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Metal oxides are of interest not only because of their huge abundance 
but also for their many applications such as for electrocatalysts, gas sensors, 
diodes, solar cells and lithium ion batteries (LIBs). Nano-sized metal oxides 
are especially desirable since they have larger surface-to-volume ratios 
advantageous for catalytic properties, and can display size and shape 
confinement properties such as magnetism. Thus, it is very important to 
explore the synthetic methods for these materials. It is essential, therefore, to 
understand the reaction mechanisms to create these materials, both on the 
nanoscale, and in real-time, to have design control of materials with desired 
morphologies and functions. 

This dissertation covers both the design of new syntheses for 
nanomaterials, as well as real-time methods to understand their synthetic 
reaction mechanisms. It will focus on two parts: first, the synthesis of 1-
dimension (1-D) featured nanomaterials, including manganese-containing 
spinel nanowires, and tin dioxide and zinc oxide-based negative nanowire 
arrays; and second, a mechanistic study of the synthetic reactions of 
nanomaterials using in situ transmission electron microscopy (TEM). The 
work presented here demonstrates unique synthetic routes to single 
crystalline “positive” and “negative” metal oxide nanowires, and introduces 
a new mechanism for the formation of single-crystalline hollow nanorods. 
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Chapter 1 Introduction  

1.1  Motivation 

Metal oxides are of interest for their applications as electrocatalysts1, gas sensors2, 

diodes3, solar cells4 and LIBs5. Nano-sized metal oxides are desirable since they have 

large surface-to-volume ratios advantageous for catalytic properties, and can display size- 

and shape-dependent properties such as magnetism. Researchers have been investigating 

the synthesis of metal oxides with different nanostructured morphologies, such as 

nanoparticles (NPs), nanowires (NWs), nanotubes (NTs) and core-shell structures, for use 

as functional materials. Among those various morphologies, 1-D nanostructures such as 

NWs and NTs are especially interesting due to their structural one-dimensionality, 

leading to a wide range of potential nanoscale device applications.6   

Fabrication routes of 1-D nanostructures can be generally categorized into two types: 

top-down and bottom-up. Top-down synthetic routes are standard techniques for 

semiconductor manufacturing, and are subtractive approaches in which smaller features 

are created from a larger piece of material.7–9 The mask and the technologies used for 

etching (e.g. electron-beam or ion-beam induced etching) have, however, largely limited 

the spatial resolution of the nanoscale features. The bottom-up method, which builds up 

from atoms or small molecules and generally includes growth from vapor phase and 

solution phase, owns atomic precision in comparison.7 

In a typical vapor phase synthesis, the vapor produced at a high temperature is 

transported onto a substrate in a lower temperature region, where the material condenses 

and grows into NWs. More often, a liquid droplet phase catalyzes the growth of the 

nanostructures and this is referred to as the vapor-liquid-solid (VLS) process. Syntheses 



	
	

2 

based on this mechanism have been widely used for a large number of oxide NWs, 

including ZnO10, SnO2
11, Ga2O3

12, and TiO2.13   

The growth of NWs can also be carried out in solution such as under hydrothermal 

conditions, which can be utilized to produce NWs in large scale with relatively low cost. 

This method has been used successfully for the synthesis of NWs of ZnO14,  MnO2
15 and 

Fe2O3
16

 among other methods.    

One intriguing method for the synthesis of materials whose crystal structures are not 

naturally inclined to form one-dimensional morphologies is by utilizing a solid-to-solid 

phase transformation from existing precursor NWs. In this approach a naturally one-

dimensional material is grown in NW form, and then converted in a second, often 

topotactic, step, to the desired structure and composition, while maintaining the original 

NW morphology. For example, the decomposition of metal hydroxide NWs might lead to 

metal oxide NWs for combinations like MnOOH/Mn2O3,17 FeOOH/ Fe2O3
18 etc.  

To refine the synthesis of 1-D metal oxide nanostructures, a wide variety of 

characterization techniques have been employed to determine structure, morphology, and 

composition. X-ray diffraction (XRD) and neutron diffraction spectroscopy are 

commonly used to determine the crystal and/or magnetic structures of solid-state 

materials.19–22 X-ray photoelectron spectroscopy (XPS) has been very powerful in 

identifying the elemental species and determining their oxidation states, of particular 

importance for transition metal oxides, which often display multiple oxidation states.  

To further examine the structure and properties of nanomaterial samples, direct 

nano/atomic scale analyses are needed. Electron microscopies provide very powerful 

tools for microanalysis when combined with appropriate detectors, not only allowing 
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direct imaging of a sample down to the atomic scale, but also helping to identify 

impurities, dislocations, and grain boundaries. Transmission electron microscopy (TEM), 

in particular, provides atomic-resolution imaging, along with Z-contrast imaging, selected 

area electron diffraction (SAED), electron dispersive X-ray spectroscopy (EDS) and 

electron energy loss spectroscopy (EELS), which enables a full range of characterization 

approaches for nanomaterials. 

In the past, information on the structure and properties of materials was typically 

acquired from ex situ characterization techniques, both to design the nanomaterials and to 

understand their formation mechanisms. Nanoscale reaction mechanisms were commonly 

explored by time-dependent studies complemented with TEM characterization.4,23–25 

However, information obtainable from ex situ experiments is limited and these “time-

dependent” characterizations are very limited, and leads to the necessity of deducing 

mechanistic steps from “before” and “after” data points. To this end, in situ experiments 

especially in situ TEM-based experiments have been exploited and found to be more 

reliable to study the reaction mechanisms for certain nanostructures.  

Temperature control has been a main feature for modern in situ TEM technology. In 

situ TEM heating can be used to study the material behavior up to about 1200 ˚C, within 

which reactions of nanomaterials can be observed in real time, along with both qualitative 

and quantitative analyses. 

1.2  1-D nano structure synthetic approaches  

1.2.1 Introduction 

As mentioned above, 1-D nanostructures may be fabricated either via bottom-up or 

by top-down methods. From the perspective of a chemist, bottom-up methods are highly 
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desirable since they enable interactions between the smallest building blocks of matter to 

dictate the eventual structure and function of the nanomaterial. The purpose of this 

chapter is to describe the advantages and disadvantages of the approaches used for my 

dissertation work.  

1.2.2 Hydrothermal syntheses  

Hydrothermal synthesis refers to reactions in aqueous solutions at high temperature 

and pressure. As far back as the eighteenth century, geologists and mineralogists have 

known that numerous minerals were formed under such conditions in nature. Gradually, 

hydrothermal methods were introduced into the laboratory, to synthesize mineral crystals. 

The French scientist, De Sénarmont, was instrumental in the foundation of this field; he 

utilized sealed glass ampoules to contain the reactants and placed the ampoules in 

autoclaves (welded gun barrels) to avoid explosion. He successfully synthesized large 

numbers of oxides, carbonates, fluorides, sulfates and sulfides. In recent years this 

approach has been widely used by chemists and engineers to grow nanosized single 

crystals.15,26–29 

It is known that the properties of solvents under hydrothermal conditions are very 

different from those in standard conditions. In the hydrothermal condition, the lowered 

dielectric constant of water provides an environment for the electrolyte to form ion pairs 

or complexes, and precedes the formation of a nucleus for crystal growth. The decreased 

viscosity allows for improved mobility to maintain a supply of raw material for 

crystallization, and an increased ionic product indicates an increase in the concentration 

of dissociated water species, necessary for reaction.30 
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In a typical hydrothermal synthesis, tiny crystalline nuclei form in the supersaturated 

medium, followed by crystal growth; large particles then grow at expense of smaller ones 

through an Ostwald ripening process. The formation and aspect ratios of 1-D 

nanostructures can be affected by factors such as the pH of solution,31–33 reactant 

concentrations,27,33–35 reaction temperature33,36,37 and growth time36,38 during a 

hydrothermal synthesis. Some crystal structures tend to exhibit anisotropic growth, for 

example, hexagonal crystal structures such as ZnO,39 Ln(OH)3,40 and LnPO4 (Ln = La-> 

Dy)28.  For materials with isotropic structures, however, growing anisotropic structures 

under the same conditions is a challenge. In this case the use of a template, or 

stabilizing/capping reagents such as polymers41, surfactants,26 or strong chelating 

ligands,42 are used to break the isotropy through the interaction of the capping molecule 

on selective facets of the NP nuclei. 42–44
 

There are several proposed mechanisms for the 1D nanostructure growth within the 

confinement of capping reagents, which control kinetically the growth rate of the 

different faces of particles by interacting with those faces through adsorption and 

desorption. In the case of 1-D structure, the lateral faces are passivated with respect to the 

axial growth plane, resulting in slower growth rate of the passivated planes.42,45–47 

Similarly, Joo et al.48 were able to manipulate the aspect ratio of ZnO NWs pronouncedly, 

but instead of using capping reagents, through a face-selective crystal growth inhibition 

mechanism in an alkaline environment, by adding charged non-zinc complex ions. Since 

ZnO is charged negatively on the (0002) top surface and positively on the (1010) 

sidewalls respectively, the added charged metal complexes are selectively 
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electrostatically attracted to either the top face or the side wall, and hinder the growth of 

that face.  

The hydrothermal reactor includes an autoclave usually made of steel, with or without 

an inner reaction vessel which lines the interior wall of the autoclave, or acts as a separate 

“floating insert”. The materials of the hydrothermal reactor are chosen depending on their 

compatibility with the reaction system in question. For example, borosilicate and quartz 

glasses are stable towards neutral and acidic solutions, usable up to 300-500 ˚C, and in 

both cases transparent, allowing the experiment to be observed directly. In contrast with 

quartz glass, Teflon handles better with corrosives such as alkaline media and 

hydrofluoric acid, and can be used below 300 ˚C and 250 bars with autoclaves; such a 

combination is commercially available and most commonly chosen.  

Hydrothermal syntheses have many advantages over ceramic synthetic methods. 

Firstly, they are readily able to be scaled-up and cost effective. Secondly, hydrothermal 

syntheses allow for good control over size and morphology due to the uniformity of 

nucleation. They also have regulated growth rate, and low agglomeration of the 

precipitated crystals from solution.49 Figure 1.1 shows the SEM image of MnO2 NWs 

exhibiting homogeneous morphology, synthesized in our lab using a hydrothermal 

method.  
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Figure 1.1 SEM images of MnO2 NWs fabricated through hydrothermal method. 
 
 

More exotic versions of the hydrothermal syntheses have also been explored, in order 

to increase the reaction kinetics and/or push the phase space of accessible new materials. 

Phuruangrat et al.50 synthesized hexagonal WO3 NWs for the first time using a 

microwave-assisted hydrothermal method producing materials that prove to be excellent 

catalysts for the hydrogen evolution reaction. Yeo et al.51 utilized laser-induced 

hydrothermal growth to grow localized ZnO and TiO2 NW arrays on temperature 

sensitive substrate. The biggest drawback of hydrothermal approaches remains the fairly 

low maximum pressure, which is restrained by the relatively low reaction temperature 

limit decided by the reactor materials.  

1.2.3 Metal-catalyzed syntheses  

Another bottom-up approach to 1-D nanostructures is metal-catalyzed synthesis, and 

it is most frequently employed through the vapor-liquid-solid (VLS) synthesis 

mechanism, first proposed by Wagner52 in 1964. The general mechanism is shown in the 
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schematic Fig. 1.2. Metal catalysts (typically Au NPs) absorb the vapor precursor and 

form a liquid alloy. On supersaturation, the crystalline whiskers precipitate and grow 

from the liquid as solid single-crystalline NWs. The mechanism was further studied by 

Wu et al.53 and found to have three well-defined stages: metal alloying, crystal nucleation, 

and axial growth. This VLS synthesis has been applied tens of thousands of times and 

represents a ubiquitous method of NW synthesis, covering single elements, tetrelides, 

pnictides, and chalcogenides, including Si,54,55 Ge,56 TiC,57 GaN,58 and ZnO59 etc.  

 

Figure 1.2 Cartoon showing VLS growth mechanism 
 
 

The VLS mechanism conveys enormous control over the NW growth process with 

respect to most other methods. For instance, the diameter and length of the NW can be 

dictated by the size of the catalyst particle, and the growth time respectively.52 Also, 

vertical growth of NWs is attainable if a careful choice of substrate is made, to ensure a 

homoepitaxial relationship, or a heteroepitaxial junction with only a small lattice 

mismatch between the NW and the substrate. For example, vertical arrays of Si NWs can 

be grown from single crystalline Si substrates,61 and ZnO will grow vertically aligned on 

the a-plane of a sapphire substrate62. Figure 1.3 shows the irregular and vertical growth of 

ZnO NWs grown on Si and sapphire substrates respectively. Interestingly, the types of 

metal catalysts might also affect the growth direction of the NWs. Kuykendall et al.63 

found that GaN NWs grew in the direction of a-axis or the m-axis from an a-Al2O3 
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substrate using Ni or Au as the catalyst respectively. The major drawback of the VLS 

growth approach is the presence of unintended contamination within the NWs by the 

catalyst.64,65  

 

Figure 1.3 SEM images of ZnO NWs growth on (a) Si substrate and (b) sapphire substrate 
 

The reverse of VLS growth, is a material etching method dubbed the solid-liquid-

vapor (SLV) process, which our group is developing to grow nanosized holes (“negative 

NWs") within a single-crystalline matrix. In a SLV dissolution process, diffusion from 

the solid into the metal suppresses the liquidus of the resulting solid solution, inducing 

the particle to melt. Continued diffusion into the now alloyed droplet continues, until 

supersaturation occurs and the reactant vapor leaves the particle at the liquid−vapor 

interface. If the driving forces, such as low pressure and/or a reactive chemical 

atmosphere, are maintained, the metal droplet can be induced to etch the crystal. 

Schematics of this process are shown in Fig. 1.4a for the SLV dissolution of an entire 

NW and in Fig. 1.4b for the SLV creation of NNW arrays.66 More about SLV process 

will be discussed in Chapter 4.  
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Figure 1.4 Cartoon showing (a) SLV dissolution of a single NW and (b) SLV formation of 
negative NWs. 
 

1.2.4 Solid to solid transformations 

For some materials, it is difficult to synthesize them into a NW morphology directly. 

In this case, materials for whom synthesis as a 1D nanostructure is facile can be used as 

chemical templates, to generate new 1D materials through a secondary reaction in which 

the original 1-D morphology is preserved. The second morphology-preserving step can 

be achieved through solution-phase, vapor-phase, or solid-state reaction, as shown in Fig. 

1.5, utilizing nanocrystals as starting materials eliminates some of the disadvantages of 

traditional solid-state reactions using larger-sized powders, such as the necessity for 

diffusion over long distances, and large strain nucleation barriers.67  
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Figure 1.5 Cartoon showing three types of solid-to-solid transformation of NWs: (a) ion 
exchange reaction, (b) vapor-phase diffusion and (c) solid-state transformationz 
 
 

Phase transitions in solution phase can either be accomplished through anion or cation 

exchange, in which ion exchange happens when precursor NWs are mixed with other 

anion or cation sources in solution to get new phases, with the NW morphology 

maintained. Recently, Zhang et al.68 synthesized CsPbCl3, CsPbI3, and CsPbX3 alloy 

NWs through the fast anion exchange reaction of CsPbBr3 NWs and other halide 

precursors. Similarly, Xia69–71 and co-workers have shown control over the synthesis of 

metal chalcogenide NWs utilizing cation exchange reactions. In these experiments, as-
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obtained trigonal-Se (t-Se) NWs were reacted in solution with Ag+ cations, resulting in 

Ag2Se NWs. Interestingly, the crystal structure of the resulting Ag2Se NWs depends on 

the size of the t-Se NWs, with tetragonal and orthorhombic Ag2Se NWs obtained when 

the diameter of t-Se NWs is smaller or bigger than 40 nm respectively. Further, they 

transformed the Ag2Se NWs to CdSe NWs via a second cation exchange process. 

Moreover, tubular CdSe can be obtained if the Se NWs are initially just partially 

converted, by controlling the extent of transformation. The topotactic relationship 

(involving displacement and exchange of atoms within crystal lattice) between the parent 

solid and the resulting species is the key to the single-crystal to single-crystal 

transformation in solution phase.  

The solid-to-solid transformation in the vapor-phase is also being widely used. 

Yang72 and co-workers used this method to synthesize MgB2 NWs by reacting B NWs 

with Mg vapor. Various transition metal phosphides, such as FeP, CoP, Cu3P, FexCo1-

xP,73–77 can also be synthesized in this way, for which the hydrothermally obtained 

transition metal hydroxide or oxide NWs undergo a low-temperature phosphidation 

reaction with a phosphorus-containing vapor source. Oxidization of a precursor NW also 

falls into this category, and is among the simplest class of solid-solid transformations 

since it involves the simple reaction of a NW with oxygen in the air. For example, 

Kolmakov et al.78 figured out a topotactic transformation from Sn NWs to SnO2 NWs, 

going through a lower temperature oxidation to form a SnO shell used to retain the NW 

morphology, followed by a fast, higher temperature, oxidation to form SnO2 NWs. Li et 

al.79 synthesized core-shell Bi-Bi2O3 NWs by oxidizing Bi NW arrays under slow heating, 

and single crystal Bi2O3 nanotubes were obtained when this was followed by a quick 
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heating process. Shan et al.80 synthesized porous ZnO NWs and ZnCdO NWs by 

oxidizing ZnSe and ZnCdSe  NWs respectively. In these cases the nanopores in the NWs 

are believed to result from rapid oxidation occurring at defects and boundaries, breaking 

the continuous NW into small particles.  

Finally, solid-state transformations of NWs are another very important route for NW 

synthesis, in which material exchange with an external precursor may or may not occur. 

For the former scenario, the synthesis of metal silicide NWs is a good example. 

Numerous species of metal silicide NWs are synthesized through the reaction of Si NWs 

with sputter-coated metal layers, such as NiSi, NiSi2, CoSi, Mn4Si7 and Mg2Si etc.81–

85Similarly, some ternary spinel NWs such as ZnAl2O4
86

 and LiMn2O4
87 are synthesized 

through reaction of metal oxide NW with another metal/oxide coating. Lithium, due to its 

small size and good diffusivity, has also been used to react with other NW species to 

form ternary NWs through a bias-induced lithiation process, such as Li2V2O5,88 LiV3O8,89 

LixSi,90 LixSn,91 and LixGe92. Transformation of In2Se3 NWs to CuInSe2 NWs by reaction 

of precursor NWs with contacted copper on two ends67 or coated copper93 were reported 

by Cui’s group, in which the transformation temperature largely dictates the crystal 

orientation of the long axis for In2Se3 NWs. Examples of solid-state phase transformation 

of NWs without external reactant include the dehydration and decomposition of parent 

precursor NWs, such as the formation of NiO NWs resulting from the heat treatment of 

Ni(OH)2 ,94 as well as pure-phase structural transformations, such as that displayed by the 

cubic to orthorhombic phase transformation of FeSi2 NWs,95 and the  κ- to α-phase 

transformation of In2Se3. 85 

1.3  In situ transmission electron microscopy 
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1.3.1 Introduction  

Electron microscopy uses a beam of accelerated electrons as illumination sources to 

create images of materials, and enables the resolution of structures on the micro-/nano-

scale, unattainable by conventional light microscopy. The first electron microscope was 

invented in the 1930s; in less than 100 years it has become ubiquitous in the 

characterization of materials, evolving into an incredibly powerful tool with 

magnifications range of ×50 to ×10,000,000, and has been responsible for pushing the 

limits of material science.   

In addition to the capability of atomic-resolution imaging, various attached analytical 

techniques enable the TEM to characterize crystallographic phases and orientation (by 

using electron diffraction), generate elemental maps (by using EDS and EELS), and 

images with elemental contrast (Z-contrast imaging) precisely in nano-scaled localized 

regions.  

Traditionally, characterization methods have been used to study materials in a static 

state, before or after a reaction. To study the dynamics of a reaction mechanism, 

however, in situ methods are essential to acquire the missing information during the 

evolution of materials, such as the presence of metastable intermediate phases. In situ 

TEM enables us to monitor reactions in real-time and at atomic-resolution. High-

resolution TEM imaging in combination with other techniques such as EDS, EELS, and 

SAED taken during the reaction, can further provide us with local information at the 

reacting interfaces. 96 Reactions in the TEM can be stimulated in several ways: radiating 

the sample with electrons or light,97–99 varying the temperature using an in situ heating 

holder,100,101 putting the sample in a solution or gaseous environment using special 



	
	

15 

sample holders or modified vacuum systems,102–105 performing local electrochemical 

reactions,106,107 or by applying mechanical testing.108–111  

TEM characterization forms the backbone of much of the work reported in this thesis, 

to both characterize materials, and study the phase transformations of 1D nanomaterials. 

The following sections in this chapter will discuss breakthroughs in 1D nanostructure 

synthesis using in situ TEM. The operation of the TEM will be discussed in chapter 2. 

1.3.2 Studies on 1-D nanostructure synthesis using in situ TEM 

As mentioned above, ternary and quaternary NWs can be synthesized by reacting a 

simpler and readily available binary NW with compounds containing the additional 

desired elements. Recently, in situ TEM has been widely used to study this type of 

reaction. Schoen et al. used in situ heating within the TEM to induce the reaction of 

In2Se3 NWs with Cu, and observed the formation of single-crystalline CuInSe2 NWs.112 In 

this experiment, real-time observation of the reaction revealed that the transition 

temperature strongly influences the crystal orientation of the NW. Wu and co-workers 

synthesized and studied the growth behaviors of series of heterostructure NWs, including 

CoSi2,113 NiSi81 and MnSi114 in Si NWs, and ZnO in Al2O3 NWs,115 based on a similar 

design by annealing the starting NW with another material either in point or line contact 

in TEM.  

In situ heating within TEM was also been employed to study the growth mechanism 

of NWs. Persson et al.116 investigated GaAs NW growth via in situ TEM, in which the 

NW was discovered to grow via a vapor-solid-solid (VSS) solid-phase diffusion 

mechanism, through the diffusion of elements from the solid metal alloy seed, in contrast 

to the more widely studied VLS mechanism for semiconductor NW growth.117 In this 
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case, the solid seed particle was found to be an alloy of only Au and Ga during growth, 

without the presence of As. This is in direct contrast to the case of In2Se3, the growth of 

which was also studied using in situ heating in the TEM, revealing a VLS growth 

mechanism via a liquid Au-In-Se alloy droplet. More recently, Boston et al.118 performed 

a microcrucible synthesis for quaternary metal oxide Y2BaCuO5 NWs within the TEM. 

The presence of a catalytic barium carbonate NP and a porous matrix containing copper 

and yttrium oxide in this case enabled migration of the NP, leading to the growth of NWs 

out from the surface. 

In addition to NW growth, NW etching/dissolution/sublimation has also been studied 

using in situ TEM. In our own group, Hudak et al.119 studied the evaporation of SnO2 

NWs via the SLV mechanism (see section 1.2.3 above), catalyzed by a gold nanodroplet. 

Later, Hsin et al.120 studied the sublimation of In2Se3 within an In2Se3/In2O3 core/shell 

NW, revealing two mechanisms at the exposed In2Se3 surface: mass desorption and 

stepwise migration. 

 

Figure 1.6 Schematic graph showing an experimental setup for solid nanobattery cell in TEM 
 
 

Finally, the electrochemical behavior of NWs as battery electrodes, such as for 

lithium and sodium ion batteries (LIB and SIB) can also be studied using in situ TEM 

techniques. Figure 1.6 shows a typical experimental setup for a solid nanobattery cell, in 

which a NW is mounted to a copper probe and used as a working electrode, while a piece 
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of Li metal is mounted on a tungsten probe as a counter electrode, with a native Li2O 

layer performing as a solid-state electrolyte. Using a similar setup, Liu et al.92 studied the 

electrochemical lithiation/delithiation behavior of a Ge NW, and observed directly the 

formation and progression of nanopores in this material for the first time, as well as the 

reversible expansion and contraction of the NW, providing insight into the mechanism of 

microstructure evolution for Ge electrodes. More recently, researchers have studied 

extensively the lithiation/delithiation behaviors of other 1D nanostructures, such as 

amorphous silicon coated carbon nanofibers,121 Si NPs attached to carbon nanofibers,122 

Si NWs,123 ZnO NWs,124 NaV3O8,125 and a-V2O5.88 Additionally, Lu et al.126 has recently 

studied the sodiation behavior of Ge NWs via in situ TEM, for which sodium metal was 

used instead of lithium.  
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Chapter 2 Experimental methods  

2.1  Sample preparation  

2.1.1 Hydrothermal syntheses of metal oxide nanowires 

Hydrothermal methods are used to prepare the precursor NWs for further spinel NW 

synthesis, and iron oxy-hydroxide NWs for in situ TEM experiments. The reactor 

consists of two parts: the stainless steel autoclave vessel and the Teflon liner, as shown in 

Fig. 2.1. In a typical synthesis, a well-mixed solution of reactants is transferred into the 

Teflon-lined stainless steel autoclave, assembled and sealed, and maintained at the 

reaction temperature for a certain amount of time. After the system is cooled down, the 

product is collected and washed several times with distilled water, and dried at 60 ˚C 

overnight.  

 

Figure 2.1 Schematic picture of hydrothermal reactor showing (A) showing components of 
hydrothermal reactor, stainless steel autoclave vessel and Teflon liner, and (B) the assembled 
hydrothermal reactor. 
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2.1.2 Pulsed laser deposition for thin film growth 

Pulsed laser deposition (PLD) is a physical vapor deposition technique to grow high-

quality films, which utilizes a high energy focused pulsed laser beam to strike and 

remove materials from the surface of a target in an ultra high vacuum. The vaporized 

material is then deposited on a substrate, which is placed facing the target. A KrF 

excimer laser (λ   248 nm) with a fluence of 1.6 J/cm2 was used in this study to grow 

SnO2 thin films for SLV etching.  

2.2  Characterization 

2.2.1 Powder X-ray diffraction  

Powder X-ray diffraction (XRD) was used to identify the crystal phases of our 

powder samples. XRD detects constructive interference of incident X-rays scattered from 

atomic planes in crystals, producing peaks under the condition that the diffracted rays 

satisfy  Bragg’s law (nλ = 2d sin θ). XRD not only provides information about the unit 

cell dimensions, but can also reveal the phase-purity of samples by uncovering impurity 

peaks. XRD patterns were collected on a Bruker-AXS D8 Discover diffractometer. 

Powdered materials were scanned with CuKα radiation (1.5418Å) from 10°-70° (2θ). The 

XRD patterns were compared with standards from the database, e.g. international center 

for diffraction data (ICDD), and/or indexed using simulations calculated patterns 

(CrystalMaker software suite).  

2.2.2 Scanning electron microscopy  

Scanning electron microscopy (SEM) produces images using a focused electron-beam, 

which is scanned across the sample in a raster pattern. When the incident electrons 
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interact with the atoms of the specimen, energy may be lost through several processes, 

This energy may be converted via conversion to elastic electrons (backscattered 

electrons), inelastic electrons (secondary and Auger electrons), cathodoluminescence 

photons, and/or X-rays, as shown in Fig. 2.2, all of which convey information about the 

surface and the properties of the material.  

 

Figure 2.2 Diagram illustrating the interactions of the incident electron-beam with the sample in 
the SEM 
 
 

The two most common imaging modes in SEM are secondary electron (SE) imaging 

and backscattered electron (BSE) imaging, providing mainly topological information 

about the surface of the sample and its mass (atomic number) information at the 

nanoscale, respectively. The SEM images in this dissertation were taken on Hitachi 

S4300SE using SE imaging mode at a voltage between 15 kV and 20 kV. 

2.2.3 X-ray photoelectron spectroscopy 
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X-ray photoelectron spectroscopy (XPS) is a surface analysis technique used to 

measure the elemental composition (except H and He), the chemical state, and the 

electronic state, of elements from the surface of solid materials.127 When the sample 

surface is irradiated with incident X-rays, the energy is transferred to a core-level 

electron. When sufficient energy is incident, the electron will be ejected away from the 

nuclear attraction force with a kinetic energy characteristic of the incoming photon, and 

the particular element. The energy and intensity of emitted photoelectrons are then 

collected and analyzed. Characteristic bonding energy can be calculated by subtracting 

the measured kinetic energy from the energy of the incident X-rays.  

In this dissertation, XPS was performed for the as-synthesized manganese-containing 

spinel NWs to identify the oxidation states for the cation species. X-rays generated by a 

Mg K-α source (1253.6 eV, PHI 04-548 Dual Anode X-ray source), an 11 inch diameter 

hemispherical electron energy analyser with multichannel detector, with pass energies of 

23.5 eV and 0.025 eV step sizes (PHI 5600) and a Thermo Scientific Model K-Alpha 

XPS instrument, with a monochromated, microfocusing Al Kα X-ray source (1486.6 eV) 

were used. The base pressure in the analysis chamber is typically 2×10-9 mbar or lower. 

Survey spectra (0-1350 eV) were acquired with a pass energy of 200 eV and the high-

resolution spectra were collected with a pass energy of 50 eV. Peak fitting was performed 

using mixed Gaussian/Lorentzian peak shapes and a Shirley/Smart type background.   

2.2.4 Linear sweep voltammetry  

 Linear sweep voltammetry (LSV) is used to test our products’ ability to catalyze the 

oxygen evolution reaction (OER) in alkali solution. We used a three-electrode system, 

which comprises a counter electrode (CE), a working electrode (WE) and a reference 
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electrode (RE), as shown in Fig. 2.3. The three electrodes were immersed in alkali 

solution, with potential catalyst material for testing cast on the tip of the working 

electrode. A cycling potential was applied to the working electrode versus the reference 

electrode. During the potential cycling, the current between the working electrode and the 

counter electrode was measured.  

 

Figure 2.3 Linear sweep voltammetry set-up comprising counter electrode (CE), working 
electrode (WE) and reference electrode (RE). 
 
 

Linear sweep voltammetry (LSV) curves were obtained with a scan rate of 10 mV/s 

in the potential range of 0-1V vs. Ag/AgCl. We used a Pt wire as the counter electrode, 

silver/silver chloride (Ag/AgCl) as the reference electrode, and a 0.1 M KOH solution 

was used as the electrolyte. For the working electrode, the mixture of catalysts and 

carbon black were deposited onto a glassy carbon (GC) current collector (diameter = 

4mm). 3 mg of catalyst mixed with 7 mg of carbon black were dispersed in 1 mL of 

acetone by sonicating for 30 minutes. Carbon black was added to increase the 
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conductivity. 6 µL of the as-prepared catalyst solution was dropped on the GC. After 

drying, 3 µL of 2.5 wt % nafion was then applied to the catalyst. The current density 

(A/cm2) was obtained by normalizing the measured current by the geometric area of the 

electrodes. A difference in surface roughness of each electrode was not corrected for. 

Finally, the LSV curves of the spinel NWs for the oxygen evolution reaction were 

corrected for iR effect. The electrical resistance (R) of the NW electrode was determined 

by electrochemical impedance spectroscopy at the DC potential of 1.0 V vs. Ag/AgCl. 

LSVs were plotted as a function of potential versus hydrogen electrode (RHE).  

The performance of the catalyst towards the oxygen evolution reaction (equation 2.1) 

was evaluated by two factors, the onset potential and the current density, which can be 

determined from the CV curves. 

 4 𝑂𝐻! → 𝑂! +  2𝐻!𝑂 + 4𝑒! (2.1) 

A large increase in current occurs at the onset potential due to electrons produced by the 

OER. 

2.3  Transmission electron microscopy 

2.3.1 Principles of transmission electron microscopy 

In a TEM, a high-energy electron-beam is produced and emitted from a gun through 

thermionic or field electron emission into vacuum. The as-produced electron-beam is 

then manipulated and directed by a magnetic field, analogous to a lens in optical 

microscopy, passing through and interacting with a thin sample specimen. The 

transmitted electrons are then focused to produce high-resolution images. High-resolution 

is possible due to the short wavelength of electrons accelerated through the high voltages 

used, based on the relationship between resolution and wavelength as shown in equation 
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2.2, where δ is the smallest distance that can be resolved, 𝜆 is the wavelength of radiation, 

µ is the refraction index of the viewing medium, and β is the semi-angle of collection of 

the magnifying lens. To simplify the expression, the 𝜇 sin𝛽 term may be approximated to 

unity. 

 𝛿 =
0.61 𝜆
𝜇 sin𝛽 

(2.2) 

The electron wavelength may be estimated using De Broglie’s equation (equation 2.3), 

where the energy of the electron, E, is measured in electron volts (eV), and its 

wavelength, 𝜆, is in nanometers (nm).  

 𝜆 =  
1.22
𝐸

 
(2.3) 

Combining equations 2.2 and 2.3 above thus produces the following expression for 

resolution: 

 𝛿 =  
0.74
𝐸

 
(2.4) 

The maximum possible resolution for a 200 keV electron-beam would therefor be 

~0.0016 nm. Lens imperfections limit the resolution, however, such that the wavelength-

limited limit of resolution can never be obtained. To this end on of two approaches are 

typically employed: (1) increasing the accelerating voltage, or (2) emplying spherical (Cs) 

and/or chromatic (Cc) aberration correctors. In recent years the development of 

aberration-correction techniques has been transformative to field of microscopy thanks to 

the ultra-high resolutions obtainable.   

The most common operation mode in TEM is bright-field imaging. In this mode, the 

electron-beam passes through the condenser lens system, and is scattered by the specimen. 

The transmitted electrons pass through the apertures and are focused in the back focal 
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plane, producing a magnified projection of the specimen onto the viewing fluorescent 

screen with intermediate lens and projector lens or can be also recorded digitally by a 

CCD camera. At low resolution, the contrast in bright-field mode comes from the 

variation in thickness and density in the sample. Thicker, denser or heavier atom areas 

block more electrons and thus appear dark in the image, while on the contrary, regions in 

which are thinner, or have lower density and/or lighter atoms (including the vacuum) 

would appear bright. 

 

Figure 2.4 Cartoon depicting the interations of incident electrons with the specimen in a TEM 
 
 

2.3.2 Scanning transmission electron microscopy 

In addition to the directly transmitted beam, there are many secondary signals, as 

shown in Fig 2.4, produced when the incident electron-beam interacts with atoms in 

specimen, due to the ionizing nature of electrons.128 Many of these secondary signals, 

such as characteristic X-rays and inelastically scattered electrons, are used in analytical 

electron microscopy (EDS and EELS respectively), providing us chemical information 
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and other details about the specimen. To achieve a localized signal, a very small beam or 

probe may be produced by the TEM, usually less than 5 nm, in which case the scanning 

mode of TEM (or STEM) is obtained. By combining the STEM with high-angle detector, 

high-resolution imaging with atomic number contrast is possible, in which, the electrons 

are scattered with low angle by light elements while heavier atoms scatter electrons to a 

high angle.  This mode is the subject of the next section. Scanning transmission electron 

microscopy 

Very similar to SEM, in STEM mode, the electron-beam (or probe) is convergent to 

sub-nanometer size and scanned over a selected region of the specimen in a raster fashion. 

Unlike in TEM mode, where the straight-through electrons are used to generate images, 

in STEM mode, scattered electrons are instead collected to create images, with annular 

detectors being used simultaneously as shown in the Fig. 2.5. While collecting high 

resolution images in STEM mode, spectroscopic signals such as characteristic X-rays and 

low-angle scattered electrons can be collected at the same time, which enables 

complimentary atomic resolution EDS and EELS mapping respectively.129  
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Figure 2.5 Schematic diagram depicting HAADF, ADF and BF detectors in the STEM 
 
 

Images collected at high angle (usually >50 mrads) with respect to the original beam 

propagation by a high-angle annular dark field detector (HAADF) are called HAADF 

images, and also sometimes referred to as Z-contrast images. Electrons at high angle are 

mainly incoherently scattered (also called Rutherford scattering), and the intensity of the 

image strongly depends on the atomic number (Z2), and is least affected by inelastically 

or Bragg scattering at lower angle relating to sample thickness.128,130 For HAADF, or Z-

contrast, imaging, atoms with higher atomic number scatter more strongly, producing a 

bright signal, and lighter atoms or areas without material appear dark.    

2.3.3 Energy dispersive X-ray spectroscopy 

Energy dispersive X-ray spectroscopy (EDS) is very useful in localized elemental 

analysis. When the electron-beam intereacts with atoms in the specimen, the electron in 
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the inner shell may be knocked out forming a electron hole, and the hole would be filled 

rapidly by electrons of high energy from an outer shell. The energy difference between 

the two energy levels can be released in the form of an X-ray (Fig. 2.6)  The emitted X-

rays are then collected by EDS detectors, generating a spectrum with counts of X-rays as 

a function of X-ray energy.  Each elemental atom has its unique set of X-rays due to its 

distinctive atomic structure. Thus, such characteristic X-rays spectra can be used to 

identify the elemental species in the sample. 

 

Figure 2.6 Schematic figure showing the emission of characteristic X-rays as a result of 
interactions of the incident electron-beam and atom 
 
 

Both qualitative and quantitative analysis can be perfomed using EDS, though there 

are some detection limits. For example, only elements above lithium in the periodic table 

can in principle be detected by EDS, and EDS has fairly low energy resolutions (>100 
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eV). Some of these challenges may be addressed with a complementary technique EELS, 

which will be discussed in the following section.  

2.3.4 Electron energy loss spectroscopy  

When the electron-beam interacts with the atoms of the specimen, inelastic scattering 

can occur, resulting in energy loss of the incident electrons. Measurement of these energy 

losses form the signal for EELS, which therefore provides information about the local 

physical and chemical environment of specimen. In a typical EEL spectrum (Fig. 2.7), 

the peak at zero energy is known as the zero-loss peak (ZLP), and represents the electrons 

transmitted elastically, without any measurable energy loss. Low-energy losses (less than 

50 eV) are primarily due to excitations of valence shell electrons, which are usually 

interpreted in terms of band structure, band gap, surface plasma etc.131, 132 Energy losses 

greater than 50 eV are from inelastic scattering with inner-shell electrons, showing as 

“ionization edges” (due to the their cliff-shape) in the spectrum, and are known as core-

loss peaks. The edges are formed when inner electrons are excited to a state above the 

Fermi level upon absorbing enough energy from the incident beam, and the energy lost 

by the incident beam is recorded in the spectrum. Since the ionization energies of 

elements are characteristic of the core energy levels, those core-loss peaks can be used to 

identify elemental species without the detection limits for light elements in EDS.  
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Figure 2.7 EELS spectrum of a 20 nm thin titanium carbide specimen132 (Figure adapted from 
Ref. 132) 
 
 

In combination with high-resolution STEM imaging, an EEL spectrum may be 

acquired for each pixel for an image, gathering a data cube known as a spectrum image, 

allowing energy losses to be mapped as a function of spatial variants x and y. A recent 

advance in EELS includes the introduction of a monochromated electron source, 

commonly improving the energy resolution to less than 0.1 eV, opening up the potential 

for detailed studies on electronic structure and bonding effects through near edge fine 

structure of the ionization edges, and accurate band gap and dielectric function 

measurements from the low-loss region.132,133 

In this dissertation, applications of EELS are introduced in chapter 5 to identify the 

oxidation state changes of iron cations during phase transformation, which unravel the 

phase transition from γ-Fe2O3 to the isostructural polymorph Fe3O4.   



	
	

31 

2.3.5 In situ heating within TEM 

In situ heating in the TEM has been widely used to study the crystal growths or 

segregations,134–136,118,137,138 phase transformations,139–141 lithiation behaviors for battery 

materials,88,92,121–123,125,126,142–144 melting or evaporation behaviors of 

nanocrystals,119,145,146 and other phenomena. Current state-of-the-art TEM heating holders 

are based on microelectromechanical systems (MEMS) chip technology. These chips 

consist of a Si-based substrate, overlaid by a thin film featured with electron transparent 

windows for heating and TEM analysis. Ultra fast temperature changes (up to 1200 ˚C) 

with high stability can be applied via dielectric resistive heating through electrodes 

connected to the thin film.147  

For our in situ heating experiments, we use a commercially available Protochip 

Aduro holder and thermal E-chips, which enable us to make ultra-fast temperature 

changes (1x106 °C/s) within the temperature range from room temperature to 1200 ˚C 

with high stability, shown in Fig. 2.8 (Protochip, Inc).  

 

Figure 2.8 Details of Protochips Aduro E-chip. 
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E-chips are constructed with a ceramic window to perfrom as heating membrane, 

with 7µm holes spaced 7 µm apart to allow electron-beam transmission. E-chips may be 

overlaid with SiN film, holey carbon film or no film; for the work discussed in this thesis 

a holey carbon overlay was used throughout. The holy carbon layer is 20 nm thick with 2 

µm holes spaced 2 µm apart. Gold electrodes attached to the ceramic apply resistive 

heating to the sample. 

All samples for in situ heating were suspended in solvent, and then drop-casted onto 

Protochips E-chips. The E-chips are then dried in an oven at 60 ˚C for 15 min. The E-

chips are loaded in a Protochips Aduro heating holder, and used to perform in situ TEM 

heating experiments.  

All samples for in situ heating were suspended in solvent, and drop-cast onto the 

Protochips E-chip. The E-chip is then dried in an oven at 60 ˚C for 15 min, loaded into a 

Protochips Aduro heating holder, and used to perform in situ TEM heating experiments.  
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Chapter 3 Manganese-containing nanowires with the spinel crystal structure  

Parts of this chapter are taken from “Simple Synthetic Route to Manganese-Containing 

NWs with the Spinel Crystal Structure”, Journal of Solid State Chemistry, 2016, 8, 23-

29.22 

3.1  Introduction  

Manganese-containing spinels have interested researchers for decades, both for the 

versatility of the spinel-type crystal structure having many interstices, and for the 

multiple oxidation states of manganese and different properties of the resulting spinels. 

Spinels such as Fe3O4,148,149 Mn3O4,150,151 and LiMn2O4,152,153 for example, are known to 

perform well as electrodes for lithium ion batteries; of particular interest are the tests 

performed by Thackeray et al.154 and Feltz et al.155 who tested the lithiation kinetics for 

manganese-containing spinels MMn2O4 (M = Mn, Mg, Li), and found the reducibility of 

the manganese cations was a crucial factor for lithiation. Besides their use as battery 

electrodes, manganese-based spinels are also good catalysts for oxidation and reduction 

reactions:156 CdMn2O4 can be used as an electrode material for NO gas sensors;157 

NiMn2O4,158 mesoporous MnCo2O4,159 and high surface area CuMn2O4
160 have been 

shown to catalyze CO oxidation at ambient temperatures, exhibiting robust stabilities.  

Cu-Mn spinel oxides are also highly active for production of H2 from methanol.161 In 

addition, manganese spinels are reactive towards electro-organic redox catalysis with 

comparative stability.162 

Since Tarascon et al. found that nanoscale transition-metal oxides were able to 

enhance lithium reactivity,148 which is fundamental for lithium ion battery performance, 
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researchers have studied several promising nanoscale metal oxides, particularly nanoscale 

manganese-containing spinels. Based on this research, these nanoscale spinels have better 

performance than bulk materials for lithium ion batteries.163, 164 Additionally, nano-sized 

manganese spinels are also more desirable for catalytic processes taking place at active 

surfaces, since they have larger surface-to-volume ratios than dense spinels. Though 

some reports exist on the synthesis of manganese-containing spinels with NP165, 166–168 

and nanorod (NR)169 morphology, a NW morphology is still quite challenging to 

synthesize and only a limited number of reports regarding the manganese-containing 

spinel NW synthesis exist. For example, Hosono et al.170 and Lee et al.87 reported the 

synthesis of single crystalline LiMn2O4 NWs by hydrothermal and solid-state methods 

respectively; Song et al. synthesized manganese-gallium oxide NWs with a minor 

MnGa2O4 spinel phase;171 and Chen at al. obtained MnCr2O4 NWs by heating stainless 

steel foil;172 and Na et al. synthesized Mn2SnO4 NWs using a chemical vapor deposition 

method.173 To date, however, no reports exist for the synthesis of single-crystalline NWs 

of Mg2MnO4 or CuMn2O4.  

Cubic Mg2MnO4 forms the inverse spinel structure, with half of the Mg2+ ions in the 

tetrahedral A-sites, and the octahedral B-sites occupied equally by Mg2+ and Mn4+ to 

maximize the crystal field stabilization energy of the Mn4+ cations, as shown in Fig. 3.1. 

Both Mg2+ and Mn4+ are critical in determining the functionality of this compound. Izawa 

et al. found Mg2MnO4 showed good lithium isotope selectivity in the ion exchange 

process in which Li+ ions replace Mg2+ in the Mg2MnO4.174 Mg2MnO4 is also a good 

electrocatalyst for the oxygen evolution reaction, due to its high ion mobility enhanced by 

the tetravalent manganese ions within the spinel structure.175,176 
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CuMn2O4 is known to exist in both a cubic177,178 and a tetragonal179 phase, with 

differing structurally-dependent properties. Waskowska et al.180 synthesized 0.8 inverted 

cubic CuMn2O4 which has Cu+ and Mn2+ on the A-sites and Cu2+, Mn3+ and Mn4+ taking 

B-sites. This coexistence of Mn3+ and Mn4+ cations on the octahedral sites is believed to 

be the driving force for its high electrical conductivity. Despite the presence of two Jahn-

Teller (J-T) active ions, the proportion of Cu and Mn cations with the J-T active Cu2+ and 

Mn3+ oxidation states is smaller than the critical amount required to cause an overall J-T 

distortion,180 and the structure therefore forms a cubic phase. The structure of tetragonal 

CuMn2O4, however, is more complicated than that of the cubic phase. Shoemaker et al.181 

refined the tetragonal CuMn2O4 structure with c/a ratio of 1.03399 and a 0.27 inversion 

degree. In this tetragonal spinel, Cu+, Cu2+, Mn2+, Mn3+ ions all take tetrahedral sites, 

with octahedral sites occupied by Cu2+, Cu3+, Mn3+, Mn4+. In its bulk form, CuMn2O4 is 

 

Figure 3.1 Structure of cubic spinel AB2O4 
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known to catalyze the oxidation of CO to CO2 at room temperature,160,182,183, and the 

reduction of NOx.184 

With the many useful applications of Mg2MnO4 and CuMn2O4 as enumerated above, 

it would be highly desirable to have a reliable, inexpensive, and scalable route for the 

production of single-crystalline NWs of these materials. 1-D nanomaterials have the 

advantage of possessing high aspect ratios and high surface areas, which are particularly 

crucial for catalyst applications, and may be fabricated into 2-D membranes for easier 

manipulation in industrial applications.185–188 In addition, since catalysts have preferred 

faces for catalytic activity,184,189 single-crystalline materials – especially those with 

specific crystalline facets – are needed. Given these reasons, and the fact that syntheses of 

ternary oxides in NW form can be notoriously tricky, we were intrigued by the report by 

Lee et al.87 of LiMn2O4 NW synthesis, using a binary manganese oxide or oxyhydroxide 

NW precursor to essentially “lock-in” the NW morphology, and a simple solid-state 

reaction to convert the material to the desired ternary oxide spinel phase; this is a 

remarkable result given the very different crystal structures of the starting NWs (which 

are rutile-type) and the product (which are spinel-type). 

In this project, we expand on the approach of Lee et al.,87 to introduce a new route to 

synthesize other single-crystalline manganese-containing spinel NWs by the solid-state 

reaction of binary manganese-containing NW precursors with metal hydroxides. Our 

study is the first report of the synthesis of Mg2MnO4 or CuMn2O4 in single-crystalline 

NW or NR morphology. Powder X-ray diffraction (XRD), scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy 

(XPS) and linear sweep voltammetry (LSV) have been used to characterize phase purity, 
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crystal structure, morphology, oxidation states of elements, and electrochemical catalytic 

performance with regards to the oxygen evolution reaction (OER).  

3.2  Methods  

MnO2 and γ-MnOOH NWs are grown via hydrothermal reaction as described in the 

literature. 190, 191 For precursor MnO2 NWs, 1.37 g MnSO4.H2O and 0.086 g NaClO3 were 

dissolved in 36 mL distilled water and stirred for 15 minutes. The mixed solution was 

transferred to a 45 mL Teflon-lined stainless steel autoclave, assembled and sealed, and 

maintained at 160 °C for 18 h. After the system was allowed to cool to room temperature, 

the product was collected and washed with distilled water several times, then dried at 60 

°C overnight. In a typical procedure for γ-MnOOH NWs, 0.63 g KMnO4 and 0.45 g 

CTAB were dissolved in 36 mL distilled water and stirred for 20 minutes. The mixed 

solution was transferred to a 45 mL Teflon-lined stainless steel autoclave, sealed, and 

maintained at 180 °C for 12 h. The system was again allowed to cool to room 

temperature, the product collected and washed with distilled water several times, and then 

dried at 60 °C overnight.  

To make CuMn2O4 NWs, a mixture of Mn-containing precursor NWs and well-

ground Cu(OH)2 with molar ratio 2:1 was dispersed with methanol in a crucible and 

stirred for 20 min to make an even mixture. This was dried on a hot plate to produce a 

pellet, which was annealed at 900 °C for 1-3 h in air. A similar procedure was applied to 

make MgMn2O4 and Mg2MnO4 NWs, using the correct molar ratio of Mn-containing 

precursor NWs and well-ground Mg(OH)2. Samples were quenched in liquid nitrogen to 

reduce the formation of secondary impurity phases during cooling. Optimization of the 

experimental parameters (leading to the choice of the above conditions) revealed that 
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calcining the copper-containing mixture below 850 °C results in a mixture of CuO, 

Mn2O3 and CuMn2O4, and that calcining the magnesium-containing mixture below 850 

°C results in MgO, Mn2O3, and Mg2MnO4. In both cases, using calcination temperatures 

higher than 950 °C yielded large CuMn2O4 and Mg2MnO4 whiskers. Molar ratios of 

starting materials different from those listed yielded the same products but with 

additional impurity phases, implying that the chosen compositions (CuMn2O4, MgMn2O4, 

and Mg2MnO4) are the most stable under our reaction conditions. 

3.3  CuMn2O4, MgMn2O4 and Mg2MnO4 nanowires  

The solid-state reaction of MnO2 NWs with the rutile-type pyrolusite structure with 

polycrystalline Cu(OH)2 was performed, to obtain NWs of CuMn2O4 with the spinel-type 

crystal structure. Shown in Fig. 3.2 are SEM images and indexed XRD patterns from 

both the MnO2 NW starting material, and the resulting CuMn2O4 NWs. Remarkably, 

though the reaction of rutile-type NWs to form spinel NWs represents a massive 

structural change, the anisotropic morphology of the starting material is retained during 

the transformation to the resulting a wire- or rod-shaped crystals, though admittedly with 

some degradation of wire quality. Fully-indexed XRD patterns show that a conversion 

from MnO2 to CuMn2O4 was achieved, with both phase-pure reactant and product, 

proceeding via the following proposed solid-state reaction: 

 4𝑀𝑛𝑂! + 2𝐶𝑢(𝑂𝐻)! →  2𝐶𝑢𝑀𝑛!𝑂! +  2𝐻!𝑂 + 𝑂! ( 3.1) 
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Further characterization of the crystallinity and composition of the CuMn2O4 NWs 

was performed using the TEM to collect higher resolution images, which are shown in 

Fig. 3.3, with accompanying fast Fourier transform (FFT) and EDS analysis. Inspection 

of the images and indexing of the FFT confirms the expected spinel structure, and that the 

wires are single-crystalline; indeed, in every case for which a wire was sufficiently thin to 

enable high-resolution imaging, the wire was a single crystal.  Exact values for the 

relative concentration of Cu and Mn were challenging to obtain using EDS, since the 

wires are somewhat too large for a Cliff-Lorimer correction, yet possibly too small for 

 

Figure 3.2 Structural characterization of MnO2 to CuMn2O4 conversion. SEM images of (a) 
MnO2 and (b) CuMn2O4 NWs; and powder XRD patterns of (c) MnO2 NWs, indexed to the 
pyrolusite phase (pdf card # 01-071-0071), and (d) CuMn2O4 NWs, indexed to CuMn2O4 spinel 
(using the tetragonal space group I41/amd, with a = 5.798 Å, and c = 8.791 Å). 
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the standard “ZAF” correction. With this caveat in mind, ZAF-corrected estimates of the 

Cu and Mn concentrations for the wire shown in Fig. 3.3 are consistent with a 1:2 ratio of  

Cu:Mn. 

Our crystal structure model for CuMn2O4 was built using CrystalMaker software. By 

analysis of the calculated spectra, we found that certain relative peak intensities change 

with degree of inversion (defined by the occupancy of the spinel crystal A- and B-sites), 

though the peak positions remain the same. These results are shown in Fig. 3.4. The 

intensities of the (011) and (022) reflections increase, while those of (112) and (020) 

decrease with an increasing degree of inversion. Though not conclusive, since peak 

intensities would also depend on crystalline anisotropy resulting from the one-

dimensional rod morphology, this allows us to estimate an inversion degree of about 0.9 

for our CuMn2O4 NR samples where the intensity of (011) lies between that of (112) and 

(020), while (020) and (022) have about the same intensity, which is consistent with the 

same four sharp peaks of our experimental XRD pattern. The breadth of the (013) peak 

makes intensity comparison of this reflection difficult to include in the comparison. 

Figure 3.3 Crystallinity and compositional analysis of a CuMn2O4 NW (synthesized from MnO2 
precursor). (a) TEM image demonstrating NW facets. (b) High-resolution TEM image with FFT 
inset, demonstrating single-crystallinity. (c) EDS spectrum showing the presence of Cu, Mn, and 
O within the wire. Ni peak due to the TEM grid marked in blue. 
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Figure 3.4 (a) Calculated XRD patterns of CuMn2O4 with varied inversion degree, compared with our 
experimental data for the product synthesized from MnO2. The intensity of the (011) and (022) 
reflections increase, while that of (112) and (020) decrease with increasing degree of conversion. (b) 
Comparison of experimental data to calculated reveals an estimated inversion degree of 0.9, by 
comparison of the (011), (112), (020), and (022) peaks. The breadth of the (013) peak makes intensity 
comparison of this reflection difficult to include in the comparison. 



	
	

42 

Figure 3.5 shows XRD patterns and SEM images of MgMn2O4 and Mg2MnO4 NWs 

using an analogous synthetic approach, for which the following solid-state reactions were 

expected: 

 4𝑀𝑛𝑂! + 2𝑀𝑔(𝑂𝐻)! →  2𝑀𝑔𝑀𝑛!𝑂! +  2𝐻!𝑂 + 𝑂! ( 3.2) 

 2𝑀𝑛𝑂! + 4𝑀𝑔(𝑂𝐻)! →  2𝑀𝑔!𝑀𝑛𝑂! +  4𝐻!𝑂 ( 3.3) 

 

For these reactions, however, XRD reveals that the products are not phase pure, and 

in each case comprise a dominant phase of the expected structure, with secondary spinel 

and binary oxide phases. One explanation for this is that the MgMn2O4-Mg2MnO4 system 

forms a limited solid solution, phase separating into cubic spinel on the Mg-rich end, and 

tetragonal spinel on the Mn-rich end, with mass-conservation achieved by the formation 

of small amounts of MgO and Mn3O4 respectively. 

Figure 3.5 Structural characterization of Mg-containing NW syntheses. SEM images of (a) 
tetragonal spinel NWs with nominal composition MgMn2O4 (synthesized from MnO2 precursor 
NWs); (b) cubic spinel NWs with nominal composition Mg2MnO4 (synthesized from MnO2 
precursor NWs); (c) γ-MnOOH NWs; and (d) cubic spinel Mg2MnO4 NWs (synthesized from γ-
MnOOH precursor NWs). (e) to (h) Powder XRD   patterns from (a) to (d) respectively. 
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To attempt to access a phase-pure region, we further tried an experiment, using γ-

MnOOH NWs as an alternate precursor to replace MnO2, which for the composition 

Mg2MnO4 produced improved results. SEM images and XRD patterns from both the γ-

MnOOH and resulting Mg2MnO4 NWs are shown in Fig. 3.5. In this case, though SEM 

images suggest that our MnOOH starting material is a single material, XRD analysis 

reveals that it is a mixture of MnOOH and KMnO2 structure types, and a small 

(unidentified) impurity phase. (It should be noted that both our SEM and XRD results for 

γ-MnOOH NWs appear indistinguishable from those of γ-MnOOH NWs used in the 

published report190 on which we based our synthesis.) Despite the mixture of structures in 

the starting material, both types of wires apparently react to form Mg2MnO4 NWs in the 

solid-state reaction step, as indicated by the XRD from this product, for which all but one 

peak (at 12.5o) can be assigned to cubic Mg2MnO4. For the γ-MnOOH starting material, 

we propose the following solid-state reaction (3.4), and we speculate that the KMnO2 

wires must react similarly, though additionally producing a gas-phase or amorphous 

potassium-containing side product:  

The high-resolution TEM image and FFT of a representative Mg2MnO4 NW in Fig. 

3.6 shows that similar to the CuMn2O4, these wires are single-crystalline, and EDS 

analysis with a ZAF correction is again consistent with the expected ratio of Mg to Mn. 

TEM and EDS analysis were additionally performed on a secondary morphology present 

in our samples, with a small particle (as opposed to NW) morphology (Fig. 3.7). EDS 

reveals that this phase is very rich in Mg.  

 

 4 MnOOH + 8 Mg(OH)! + 𝑂! →   4 𝑀𝑔!𝑀𝑛O4 + 10 H2O ( 3.4) 
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For completeness, we further performed the reaction of Cu(OH)2 with the γ-MnOOH 

NW precursor, with similar results in terms of phase-purity, crystallinity, and 

morphology. In this case, we speculate that the dominant solid-state reaction proceeds as 

equation 3.5. 

 2 MnOOH + Cu(OH)! → 𝐶𝑢𝑀𝑛!𝑂! + 2 H2O (3.5) 

 

Figure 3.6 Crystallinity and compositional analysis of a Mg2MnO4 NW (synthesized from γ-
MnOOH precursor). (a) High-resolution TEM image with FFT inset, demonstrating single-
crystallinity. (b) EDS spectrum showing the presence of Mg, Mn, and O within the wire 
(quantitative analysis in supporting information). Cu peak due to the TEM grid marked in blue. 
 

 

Figure 3.7 EDS spectra and TEM images (inset) from NP impurities present in the ternary 
oxides synthesized from γ-MnOOH starting material (a) Mg2MnO4 synthesis, and (b) CuMn2O4 
synthesis. Ni peaks from the TEM grid are labeled in blue. 
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The XRD pattern from CuMn2O4 (Fig. 3.8) matches the calculated spectrum (using 

the tetragonal space group I41/amd, with a = 5.798Å, and c = 8.791Å), except for three 

minor CuO impurity peaks and one unidentified peak at 12.5o.  Given the small powder 

samples available, and small crystallite size, a Rietveld refinement to further identify 

these peaks was not possible. CuMn2O4 NWs are confirmed to be single-crystalline using 

high-resolution TEM imaging (Fig. 3.8), and EDS is again consistent with the expected 

Cu:Mn ratio. The minor (non wire-like) particle phases have also been analyzed by TEM 

and EDS (Fig. 3.7), but in this case appear to have the same composition as the NW 

morphologies.  

 

Figure 3.8 (a) SEM image; (b) TEM image; (c) high-resolution TEM image with FFT inset; 
(d) EDS spectrum; (e) XRD pattern; XPS spectra for the 2p3/2 region of (f) Cu cations, and (g) 
Mn cations; and electrocatalytic activity measurement, taken from CuMn2O4 synthesized from 
γ-MnOOH starting material. 
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3.4  In situ TEM study of the reaction mechanism for spinel nanowires  

In order to elucidate the structural changes occurring during the calcination process in 

order to form these spinel NWs, we ran in situ TEM heating experiments for the reaction. 

The diffusion process of metal sources into γ-MnOOH NWs was observed.  

Figure 3.9 shows preliminary data taken using this approach, in which γ-MnOOH 

NWs and bulk Mg(OH)2 were deposited onto a commercial TEM heating substrate 

(Protochips Aduro heating E-chip), and the sample temperature was ramped from 300 oC 

to 870 oC in situ while imaging in the TEM. The figure shows frames from the resulting 

movie, in which the wire on the right of each frame is γ-MOOH (diameter = 80 nm) and 

the grain on the bottom left is Mg(OH)2, both of which were identified by energy 

dispersive X-ray spectroscopy (EDS).  The results of this preliminary data are revealing: 

as magnesium atoms diffuse into the MnOOH NW, the wire undergoes a transformation 

from single-crystalline to polycrystalline, and back to single-crystalline via the ripening 

of smaller to larger grains within the polycrystal. From the EDS spectrum of the NW 

after heating, magnesium is seen to have diffused into the NW (Fig. 3.10).  

 

Figure 3.9 Frames from an in situ TEM heating video from a γ-MnOOH NW (right) in contact 
with Mg(OH)2 crystal (bottom), at (a) 0 min, (b) 13 min, (c) 26 min, (d) 39 min, (e) 46 min; T = 
300 to 870 oC 
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3.5  Catalytic properties towards oxygen evolution reactions 

One of the key factors determining the catalytic properties of these NWs is the 

oxidation states of the cations, which we determined for three samples, using XPS: 

CuMn2O4 using the MnO2 starting material (as shown in Fig. 3.2 & Fig. 3.3), tetragonal 

MgMn2O4 using the MnO2 starting material (as in Fig. 3.5), and cubic Mg2MnO4 using 

the γ-MnOOH starting material (as shown in Fig. 3.5 & Fig. 3.6). The binding energy of 

copper is related to its valence state and its coordination environment. The intense peak at 

931.1 eV in the XPS spectra of Cu 2p3/2 (Fig. 3.11a) is assigned to Cu+ on the spinel B 

site. According to previous XPS studies of CuMn2O4,192–194 the two broad peaks at 932.8 

eV and 934.1 eV could be due to Cu+ on the A site and Cu2+ on the B site. Shoemaker et 

al., however, assigned the peak at 934.75 eV to Cu3+ on the B site. From the XPS 

spectrum, it is evident that significantly more copper cations reside on B sites than A 

sites, which is consistent with the high inversion degree calculated from CrystalMaker. 

 

Figure 3.10 EDS spectra taken from the MnOOH NW before and after in situ TEM heating 
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Manganese is also known to show mixed oxidation states in manganese-containing 

spinels. In Fig. 3.11b, peaks at 640.5 eV, 642.1 eV and 644.4 eV can be assigned to 

Mn2+, Mn3+, and Mn4+, respectively195 The CuMn2O4 NWs are therefore seen to contain 

Mn2+, Mn3+ and Mn4+. In contrast, MgMn2O4 and Mg2MnO4 NWs contain only Mn3+ and 

Mn4+, heavily dominated by Mn3+ in the MgMn2O4 sample, and by Mn4+ in the Mg2MnO4 

sample. 

 

Figure 3.11 XPS spectra for the 2p3/2 region of (a) Cu cations in CuMn2O4 (from MnO2); (b) Mn 
cations in CuMn2O4 (from MnO2); (c) Mn cations in MgMn2O4 (from MnO2); and (d) Mn cations 
in Mg2MnO4 (from γ-MnOOH). 
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The catalytic activity of these same three samples towards the oxygen evolution 

reaction (OER) in equation 3.6, was evaluated from linear sweep voltammetry curves 

comparing NW samples with pure carbon black (Fig. 3.12).  

Though all curves were collected with the same mass of sample loaded onto the GC 

(at 0.143 mg/cm2), the electrocatalytic activity of CuMn2O4 NWs toward the OERs was 

found to be superior to those of magnesium-containing spinels and pure carbon black, 

with around five times the current density determined at 2.0V. 

 

 4 𝑂𝐻! → 𝑂! + 2 𝐻!𝑂 + 4𝑒! ( 3.6) 

 

Figure 3.12 Linear sweep voltammetry curves of CuMn2O4, Mg2MnO4, and MgMn2O4, 
compared with carbon black (iR corrected) 
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The onset potential of CuMn2O4 was measured to be 1.6 V vs. RHE, which is 

comparable to the values reported for LaCo3O4 and La0.8Sr0.2MnO3 perovskite oxides, 

and CoxMn3-xO4 spinel structures.196–198 The OER current of CuMn2O4 NWs is 

significantly larger than those of Mg-containing NWs and carbon black, although the 

surface roughness of Mg2MnO4 is expected to be much lower due to lower expected 

Brunauer-Emmett-Teller (BET) surface areas, suggesting that optimizing the surface area 

of the CuMn2O4 NW sample would lead to a highly catalytic sample. Despite of large 

differences in BET surface areas between two catalysts, calibration of the LSV data with 

respect to BET surface areas was not attempted, since it is difficult to estimate the area 

available for catalysis, and the surface area is in any case dominated by that of carbon 

black. We speculate that the multiple oxidation states of Cu and Mn induce the strong 

adsorption of OH- reactants on catalyst surfaces, and also provide enough density of 

states to support fast electron transfer.                                                                                                                                                                                       

Oxidation state variance of the metals in Mg2MnO4 and CuMn2O4 are expected to 

affect the catalytic properties. Studies have shown that the key factor determining 

catalytic activity towards the OER for cubic Mg2MnO4 is the large amount of tetravalent 

manganese ions on the octahedral sites.176 Interestingly, for tetragonal CuMn2O4, 

however, the material is more catalytically-active but has fewer tetravalent manganese 

ions on the octahedral sites. Reported characterization of this material suggests that half 

of the tetravalent manganese ions reside on the octahedral sites, along with one third of 

the trivalent manganese ions and a small number of Cu2+ and Cu3+
 cations.181 It is 

possible that having both multivalent copper as well as manganese in CuMn2O4 might 

provide a synergy which promotes catalytic activity.  
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3.6  Conclusion  

We described a new route to make single crystalline Mg2MnO4 NWs and CuMn2O4 

NWs by the simple solid-state reaction of MnO2 and γ-MnOOH NWs with metal  

hydroxide metal sources in such a way that the metal diffuses into the NW, undergoing a 

rutile to spinel crystal structure transformation, while preserving an anisotropic wire or 

rod-like morphology. Linear sweep voltammetric results revealed the electrocatalytic 

activity of Cu2MnO4 NWs for the oxygen evolution reaction in alkaline solution. We 

believe this synthetic route may be extended as a general way to synthesize many 

manganese-containing spinel NWs, as well as other ternary oxides. 
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Chapter 4 Solid-liquid-vapor synthesis of negative metal oxide nanowire arrays  

Parts of this chapter are taken from “Solid-Liquid-Vapor Synthesis of Negative Metal 

Oxide NW Arrays”, Chemistry of Materials, 2016, 28(24), 8924-8929.66  

4.1  Introduction  

Single-crystalline NW syntheses comprise a vast body of research, in no small part 

because such an approach can produce materials with well-defined, crystalline surfaces 

which are identical in structure and function from wire to wire.15,54,199,200 In large (bulk) 

quantities, the large surface-to-volume ratios of nanomaterials translates to very large, 

functional, surface areas. For anisotropic materials such as NWs, growing them in large 

arrays has created further interest, since in this architecture the surfaces presented may be 

aligned, and very closely spaced, making them attractive for incorporation into working 

devices.74,201–203 In the usual case an array of NWs is fabricated by growing from within a 

(usually amorphous) template (which is subsequently dissolved),204–207 or from a 

patterned array of metal catalyst particles.208,209 The resulting wires are therefore 

freestanding, with no precise relationship to, or interaction with, one another, though 

there are some reports of alignment achieved via lattice-matching with the underlying 

substrate.33,210–212  

An alternate approach to creating a similar array of surfaces is instead to embed an 

array of negative nanowires (NNWs), or pores, within a single-crystalline matrix. Several 

attempts have been made to create such materials with high aspect ratio pores, or NNWs, 

including dry etching methods, metal assisted chemical etching, and solid-liquid-vapor 

etching. Dry etching methods such as reactive ion etching are used widely, both 

industrially and for research.213–216 In this approach, ions are produced from a reactive 
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gas and accelerated with high energy, to collide and react (both physically and 

chemically) with a substrate. Though effective this leads to limited pore depths and 

correspondingly low aspect ratios, sidewall roughness induced by the ions, and can be 

expensive. In metal-assisted chemical etching, noble metals are used to induce local 

oxidation and reduction reactions under open circuit, in solution. This technique is mainly 

used for  Si,217–222 and it remains a challenge to apply to other materials.223,224 

One particularly elegant approach is to utilize metal catalyst droplets via the SLV 

mechanism.225–231 This approach employs a variation on the reverse of a typical VLS NW 

growth mechanism, in which a metal catalyst droplet catalyzes the growth of a single-

 

Figure 4.1 Cartoon depicting (a) VLS growth of SnO2 NWs, (b) SLV dissolution of a single 
SnO2 NW, and (c) SLV creation of negative SnO2 NWs 
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crystalline NW from vapor-phase reactants (Fig.  4.1a). In an SLV dissolution process, 

diffusion from the solid into the metal suppresses the liquidus of the resulting solid 

solution, inducing the particle to melt. Continued diffusion into the now alloyed droplet 

continues, until supersaturation occurs and the reactant vapor leaves the particle at the 

liquid-vapor interface. If the driving forces, such as low pressure and/or a reactive 

chemical atmosphere, for the process are maintained, the metal droplet can be induced to 

etch the crystal. Schematics of this process are shown in Fig. 4.1b for the SLV dissolution 

of an entire NW, and in Fig. 4.1c for the SLV creation of NNW arrays as discussed in 

this dissertation. 

In addition to the typical advantages associated with VLS NW growth, such as 

control over size of the NNW (via controlling the size of the catalyst), control of the 

cross-sectional shape of the NNW (by minimizing the surface energies of the bounding 

facets), and great versatility in the choice of material, NNW arrays created using the SLV 

mechanism have several other key advantages. Like freestanding NWs, NNWs could be 

expected to grow along unique etch directions (so as to minimize the surface energy 

associated with the bounding facets) and can therefore be expected to have well-defined 

crystallographic relationships to one another, for example by aligning in parallel. 

Additionally, unlike an array of freestanding NWs (other than perhaps those grown 

epitaxially from a single-crystalline substrate), a NNW array will not comprise many 

free-standing objects, but will instead be contained within a single object, rendering it 

facile to move and manipulate. Further, because it is contained within a single crystal, it 

is possible to imagine that interaction between the NNWs might be manipulated by an 

external stimulus such as applied pressures and lattice strains.  
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Previous work to synthesize NNW arrays has focused on Group IV, III-V, and II-VI 

semiconductors, and mostly utilized reactive gaseous environments. Wagner first 

reported SLV etching of negative whiskers in 1968,225 etching holes into single-

crystalline Si and Ge substrates with Au and Ni catalyst particles respectively, within a 

reactive gas environment. In this case reaction of Si or Ge with hydrogen chloride gas at 

the liquid-vapor interface was seen to drive the etching process. Over a decade after this 

first report, Givargizov et al. grew negative whiskers of ZnS via the SLV mechanism in 

hydrogen flow,226 and CdS,227 GaAs and GaP228 were found to etch in a similar way. 

Much more recently, InP NWs have been found to etch using Au catalyst particles in HCl 

flow,229 Ge NWs were created by etching in 2,3-butanedione,230 and Nikoobakht et al. 

found Au catalysts would etch across the (001) surface of InP, InAs, and GaP in water 

vapor.231 

Reactive gas atmospheres can present their own challenges, however, as these gases 

are often corrosive, or highly diffusive, and the diffusion of reactive gases and etchant 

ions into the substrate material may leave behind unwanted byproducts.232,233 Etching in 

vacuum (in a non-reactive atmosphere) is a way to overcome this praooblem. To date, the 

only report of SLV etching to produce NNW arrays performed in a vacuum environment 

was published by Kim and Stach,234 who etched GaN self-catalytically, with Ga droplets 

formed by the decomposition of the surface layer of the substrate, and the only known 

report of SLV etching by a dissimilar catalyst material in a similar environment, involves 

our own work in which an entire NW of SnO2 was dissolved by the metal catalyst particle 

at its tip (see Fig. 4.1b), during in situ heating in the transmission electron microscope 

(TEM).235 On the basis of our work and the previous reports, we speculate that a similar 
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vacuum SLV etching approach could be applied to a wide range of crystalline substrates 

to produce NNW arrays; indeed, any catalyst-substrate material combination previously 

known to produce NWs via the VLS mechanism should be a viable candidate for SLV 

etching. Here we show controlled SLV etching in a chemical-free environment using a 

dissimilar catalyst for the first time, on two different oxides, SnO2 and ZnO, and 

demonstrate control over the size, shape, and etch direction of NNW production. We 

additionally have performed SLV etching on Si substrates revealing an orientation 

relationship between the resulting etch-pits.  

4.2  Methods 

Epitaxial (111) SnO2 thin-films of around 350 nm were grown on (0001) sapphire 

substrates via pulsed laser deposition (PLD),236 using a ceramic target, and a KrF excimer 

laser (λ = 248 nm) with a fluence of 1.6 J/cm2. The films were deposited at 350˚C in an 

oxygen atmosphere of 50 mTorr, with a laser repetition rate of 10 Hz.  We used 

commercial sapphire (Al2O3) (0001) substrates bought from University Wafer.   

To produce metal catalyst droplets, 4 nm (for Si) or 8 nm (for the oxides) of Au was 

deposited on each substrate using e-beam evaporation, and the composite was annealed at 

500˚C for 30 mins, to produce NPs. Alternately 50 nm gold colloid solution (BBI 

Solutions) was drop-cast onto the surface. 

To perform etching, the NP/substrate composite was placed in a closed end tube 

furnace, connected to a turbo pump and heated under the conditions given in the text at a 

pressure of 10-5-10-6 Torr. 

A dual beam focused ion beam (FIB) scanning electron microscope (SEM) was used 

to view the cross section of the substrates. For this, a FEI Helios Nanolab 660 system was 
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operated with immersion mode in either secondary electron (SE) or backscattered 

electron (BSE) mode. A gas injection system (GIS) was used to deposit carbon or 

platinum to protect the surface of the sample; a gallium liquid metal ion source (LMIS) 

was used for milling, and an Oxford EDX detector was used for elemental analysis. The 

area for imaging was first covered in carbon or platinum, and the ion beam was used to 

drill into the sample, exposing an inner cross-section of the sample for imaging. 

4.3  Temperature and time effect on SLV etching for SnO2 thin films 

The crystallography controlling VLS NW growth should in large part be transferable 

to SLV NNW array synthesis. In order to investigate the extent to which the 

crystallographic arguments are similar, we attempted the SLV etching process on 

epitaxial thin-films of SnO2. 350 nm-thick films of SnO2 were grown using pulsed laser 

deposition (PLD), and showed phase-purity and good crystallinity, with a (111) 

orientation due to matching with the underlying (0001) sapphire substrate (Fig. 4.2). Au 

NPs were deposited on the SnO2 surface using electron-beam evaporation of a thin gold 

 

Figure 4.2 Characterization of SnO2 on Al2O3 thin film. (a) XRD pattern, and (b) SEM image of 
the substrate cross-section. 
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layer, and annealing. In these initial studies we first optimized the time and temperature 

dependence of SLV etching. In VLS NW growth, NW length is positively correlated with 

growth time, since the saturation of gold catalyst particle with reactants and subsequent 

nucleation of the NW occurs rapidly, after which the NW length increases at a roughly 

constant rate.237,238 Using parameters identified previously from SLV  

etching of an individual NW,235 we annealed the SnO2 film at 900˚C and low pressure for 

several different times, as shown in Fig 4.3. Before annealing the Au particles are easily 

observed on the surface of the SnO2 film, and all of them have initiated the etching 

process after an annealing period of 60 min, though the particles are still visible (Fig 

4.3c). At the 30 min midpoint roughly half of the NPs appear to have initiated the etching 

process, suggesting that unlike the VLS growth process, saturation of the gold catalyst 

and “nucleation” of the NNW does not occur rapidly during SLV etching, most likely 

Figure 4.3 SEM images of the SLV process. (a-c) Gold NPs on SnO2 epitaxial thin-film after 
annealing under high vacuum at 900˚C for (a) 0 min; (b) 30 min; and (c) 60 min. (d-f); Gold NPs 
on a SnO2 epitaxial thin-film after annealing under high vacuum for 60 min at (d) 900˚C; (e) 
925˚C; and (f) 950˚ C 
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because the reactant is now contained within a stable crystalline lattice, as opposed to the 

vapor phase as is the case for VLS. 

Another key factor in determining etching depth is the annealing temperature.  As 

shown in Fig. 4.3 (d-f), the length of the SnO2 NNWs increases with elevated annealing 

temperature. When annealing the Au NP-decorated SnO2 substrate for 1 h in vacuum, the 

depth of NNW was seen to increase on changing the temperature from 900˚C to 950˚C. 

Cross-sectional images of an SnO2 substrate etched at 950 ° C for 60 min were collected 

using a dual-beam focused ion beam (FIB) instrument to mill a cross-section and image 

and show the residual gold catalyst at the base of the NNW (Fig. 4.4). The identity of the 

gold was confirmed using energy dispersive X-ray spectroscopy (EDS). Studies to 

measure the nucleation rate, and rate of NNW growth, as a function of Au NP size, 

temperature, time, and dispersion, are ongoing and expected to enable quantitative 

modeling of the SLV-etching kinetics.  

 

Figure 4.4 (a) Cross-section SEM image of SnO2 thin film etched with 8 nm thickness of Au at 
950 °C for 1 h and (b) EDS spectrum for the bright region at the bottom of the hole, showing 
the presence of gold. 
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4.4  Effect of catalyst particle size and crystal orientation on SLV etching for ZnO  

One simple advantage of VLS NW growth is the ability to dictate NW diameter 

using the size of the metal catalyst particle. A similar dependence is observed in our 

experiments, as evidenced by comparison of Au NP size and dispersion before SLV 

etching, and NNW size and dispersion afterwards (Figure	 4.5). An analysis of the 

images shown in Figure	 4.5, in which 50 nm Au particles were deposited on the 

(0001) surface of a single-crystalline ZnO substrate, and annealed at 1000 ˚C for 60 

min, shows approximately a one-to-one correlation of the number of NPs before 

etching to NNWs post-etching (3.52 NPs per square micron to 3.45 NNWs per square 

micron respectively), and an average NNW diameter of 78 ± 9.6 nm in comparison to 

50 nm for the pre-etching NPs. Interestingly, though the dispersion of NNWs, is close 

to the initial NPs, the average NNW diameter is seen to be consistently larger than that 

of the initial NP, suggesting that once melted, the NP wets the surface to form a 

flattened droplet with wider diameter than the initial solid metal.  In the limit of a 

spherical NP flattering to form a completely flat disc, we calculate that the height of 

such a disc (assuming constant volume) would be 14 nm. An interesting observation in 

support of the flat disc scenario is the presence of a flat disc-like piece of gold at the 

base of each NNW in the cross-section images shown in Figure	 4.4. Though 

potentially complex, there is clearly a close dependence of NNW diameter on the initial 

Au droplet size, and it is the opposite to that seen for VLS growth of NWs, for which 

surface tension of the Au droplet leads to NW diameters smaller than the droplet 

diameters.  
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VLS grown NWs are well-known to possess unique wire directions, resulting from 

preferential growth directions which maximize the low energy surfaces. To investigate 

the possible translation of this effect to NNW growth, we performed SLV-etching of 

single-crystalline ZnO substrates with the wurtzite structure and three different 

orientations. ZnO was chosen because when grown in NW form it is consistently seen 

to grow along the [0001] direction, and with a distinctive hexagonal cross section. 

Shown in Fig. 4.6 are the results of SLV-etching of ZnO substrates with orientations 

(0001), (1100) and (1120), at 1000˚C for 30 min. Similarly to NW growth, the NNWs 

are seen to etch along the [0001] direction in all three cases, leading to tracks 

perpendicular to the substrate surface for (0001)-oriented ZnO (Fig 4.6a-d), and 

parallel to the surface for (1100) and (1120) (Fig 4.6f-i, k-n). Evidence that the NNW 

etch-direction is [0001] for (1100)- and (1120)-oriented ZnO is provided not only by 

the etch tracks parallel to the surface, but additionally by the orientation of the 

hexagonal cross-sections of the NNWs with respect to the surface (Fig 4.6h, i). These 

results are similar to those seen for Au NP etching of (001)-oriented InP in the 

Figure 4.5 SEM images of (1000) ZnO substrate deposited with 50 nm gold NPs. (a) Before 
and (b) after etching at 1000 ˚C for 1h in vacuum. 
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presence of water vapor as the reactive gas, for which anisotropic etching occurs 

preferentially along the (111)-normal.231 Pore formation with preferred low energy 

facets has also been observed previously in crystals for which a simple sublimation 

process has occurred, with no metal catalyst particles present.239 The sublimation 

process will therefore present an upper temperature bound for performing SLV-

etching, since maintaining catalyst control of the mechanism will require us to avoid a 

high-temperature sublimation regime.240  

 

Further evidence of the SLV-etching mechanism is provided by performing the 

process at lower temperatures. Fig 4.7 shows images of (0001) ZnO substrates after 

etching at 800, 900 and 1000˚C for 1h. In all cases, there is evidence of etch tracks 

parallel to the surface, suggesting that mobile gold droplets initially diffuse across the 

 
Figure 4.6 SEM images of gold NP etched ZnO substrates with different orientations upon 
annealing at 1000˚C for 30 min. (a-d), (f-i) and (k-n) are SEM images of (0001), (1100) and 
(1120) ZnO substrates respectively, with 2 top view images and 2 cross-section view images 
each case. (e), (j) and (o) show cross-sectional diagrams of the expected shape of a [0001]-
oriented NNW. 
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(0001) surface, etching trenches via the SLV process, but only in the case of annealing 

at 1000˚C, the NPs acquire sufficient activation energy to etch perpendicular to the 

surface in the preferred [0001] direction. This set of observations provides evidence 

that, though there is a thermodynamic driving force for etching in the [0001] direction, 

the particles must first overcome an activation energy. We speculate that this may be 

an adhesive force between the gold droplet and the walls of the NNW, similar to the 

adhesion observed between gold droplet and TEM substrate in our previous studies of 

individual NW dissolution via SLV.235 

 

Figure 4.7 SEM images of gold NP etched (0001) ZnO substrates upon annealing at 800 ˚C (a-
c), 900 ˚C (d-f) and 1000 ˚C (g-i) for 1 hour in high vacuum 
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4.5  SLV etching on silicon substrate 
 

 

SLV-etching was also attempted on elemental Si substrates and did not produce 

NNWs for these samples but, rather, etchpits similar to those reported by other 

groups.241–243 Etching at 950˚C for 2 hours to produce low surface energy facets is also 

observed in (100)- and (111)-oriented Si substrates (Fig. 4.8), with the 

crystallographically equivalent {111} facets resulting in differently shaped pits. For the 

case of (100) Si, square-pyramidal pits were formed, bounded by four {111} type planes. 

For the (111)-oriented Si, a wide and shallow, triangular prismatic pit was formed, 

producing a large (111) facet at the base, with six {111}-type sidewalls. In our 

experiments, due to the single-crystalline nature of the underlying Si substrate, all Si pits 

 
 

Figure 4.8 SEM images of gold NP etched (001) Si substrate (a, b) and (111) Si substrate (c, d). 
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show a clear orientation relationship to one another, aligning parallel. We include this 

data not as an example of NNW formation but as an example of the orientation 

relationship resulting from etching a single-crystalline substrate. The much larger 

footprint of these pits with respect to the original NPs suggests that the gold wets the Si 

surface and agglomerates prior to etching.  

In addition to the evidence presented above, rough calculations of the expected 

melting and decomposition temperatures of the substrates used reveal temperatures which 

are several hundred degrees higher than the temperatures used in our experiments, 

consistent with our assumption that, in each of the examples presented, the gold catalyst 

droplets were responsible for etching.  The calculations of the melting points of ZnO, 

SnO2 and Si at low pressure are provided as below. 

The sublimation temperatures of the substrates involved are much greater than 900 

˚C; at ambient pressure, ZnO decomposes at 1975 ˚C, and SnO2 and Si melt at 1630 ˚C 

and 1414 ˚C respectively.  

1) ZnO. To consider the possibility that low pressure may promote the decomposition 

of ZnO at lower temperature, we considered the thermodynamics of the reaction: 

 2 𝑍𝑛(𝑠)+ 𝑂!(𝑔) = 2 𝑍𝑛𝑂(𝑠) (4.1) 

From the Ellingham Diagram,244 the absolute Gibbs free energy (|ΔG°|) of this 

reaction was found to decrease with increasing temperature, agreeing with negative 

enthalpy gain, since the entropy change of this reaction must be negative, and ΔG° can be 

can be generally expressed as a linear relationship with T: 

 Δ𝐺∘ = Δ𝐻∘− TΔ𝑆∘ (4.2) 
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Below the boiling point of Zn metal, only O2 will contribute to the reaction constant 

of the decomposition giving the following relationship between ΔG° and the oxygen 

partial pressure pO2 at equilibrium: 

 Δ𝐺∘ = −𝑅𝑇𝑙𝑛(𝑄) = 𝑅𝑇𝑙𝑛(𝑝!!) (4.3) 

Taking ΔH° = -850 kJ/mol and ΔS° = -0.378 kJ/mol.K from the Ellingham 

Diagram244 and pO2 = 5 × 10-6 Torr (a typical pressure for our etching experiment), the 

decomposition temperature of ZnO was found to be 1317 ˚C, which is well above the 

temperature of our experiments. Thus the estimation suggests that decomposition of ZnO 

should not dominate under our experimental conditions. 

2) SnO2. For the decomposition reaction SnO2 → Sn + O2, with reference to the 

Ellingham Diagram, we get:   

 ΔG = -575 + 0.2T = RTln(pO2)  (unit: kJ/mol) (4.4) 

which gives T = 2876 K (2603 ˚C) at ambient pressure, and T = 1612 K (1339 ˚C) at 

low pressure (pO2 = 5 × 10-6 Torr  = 6.59 × 10-9 bar). 

According to literature, SnO2 may start to sublime at 1800~1900 °C,245 though the 

melting point has also been predicted to be ~2500 °C.246 One possibility is that the 

decomposition of SnO2 may accompany this sublimation, consistent with the report of 

Lamoreaux et al.247 who show that the decomposition of SnO2 is more complex than that 

of ZnO. 

3) Si. In contrast to the metal oxides, the melting point of silicon increases as pressure 

decreases, since similar to water, the molar volume of liquid silicon is less than that of 

crystalline silicon. From the experimentally-determined pressure-temperature diagram for 

bulk Si, Tm decreases as P increases in agreement with a model prediction:248 
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 Tm(P)=Tm0 (1+ 𝐴). ( 4.5) 

where A is a pressure-related negative term (dominated by Vl<Vs). In full, this can be 

expressed: 

 Tm(P)=Tm 1+ {2(𝑉! − 𝑉!)𝑃 + [𝑉!𝜅! − 𝑉!(𝛾/𝑓)𝜅!]𝑃!}/𝐻!! ( 4.6) 

Taking pressure = 5 × 10-6 Torr and A = -1.5 × 10-9, reduced pressure results in a 

small increase of Tm to 1420 ˚C as compared with 1414 ˚C at ambient conditions. 

 

4.6  Conclusion  

We report for the first time the SLV-based synthesis of NNW arrays in which the 

catalyst metal was not a product of the underlying substrate, and no reactive atmosphere 

was employed. Optimization of the process on epitaxial SnO2 thin films shows that NNW 

growth rate can be controlled by reaction temperature, and reaction time and NP catalyst 

size control the length and diameter of the NNW, respectively. For single-crystalline ZnO 

and Si substrates, a unique etch direction was observed, leading to specific NNW or etch-

pit orientations, with respect to both the substrate surface and to one another. Given the 

simplicity of our SLV approach for the synthesis of NNW arrays, it should be widely 

generalizable to any catalyst-substrate material combination previously known to produce 

NWs via the VLS mechanism. As such, this synthetic approach has the potential to be 

utilized as a method to produce high densities of highly specific and well-defined crystal 

facets, from a very wide range of materials, contained within a single, easy to manipulate 

substrate. 
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Chapter 5 Understanding hollow metal oxide nanomaterial formation with in situ 

TEM 

5.1  Introduction  

 
Hollow nanomaterials have been studied for decades, in large part for their potential 

applications such as catalysis,249–251 energy storage,252–254 sensors2 and drug delivery255, 

which rely on their unique characteristics5 such as the high surface area to provide more 

active sites, the thin shell to reduce mass transport path, and the hollow interior to relieve 

structural strain with improved stability. Hollow iron oxide nanomaterials are of 

particular interest, due to their high theoretical lithium ion storage capacity, low toxicity, 

and cost.256 For example, iron oxide nanotubes have shown to perform well as anode 

materials in lithium ion batteries,257,258 supercapacitors,259 and catalysts,260,261 and also 

display interesting magnetic properties. 261,262  

In order to fully exploit the potential of these hollow iron oxide nanomaterials, it is 

critical to understand and control the crystal structure (for the many different iron oxide 

phases) and morphology. The phase transformation of β-FeOOH to α-Fe2O3 has been 

observed in air;263–266 however, β-FeOOH undergoes transformation to the spinel phase 

(either γ-Fe2O3 or Fe3O4) in high vacuum.264,267–269 Both processes have been shown to 

result in porous or hollow morphologies.265,267,269 Chen et al.265 observed voids in the 

center of a β-FeOOH NR upon annealing in air, during the transformation to the α-Fe2O3 

phase. Single pores have been observed by Gonzalez-Calbet et al.267 in γ-Fe2O3, resulting 

from the decomposition of β-FeOOH in vacuum. In all of these cases, while the final 

structure and composition are dictated by synthetic conditions, the porous or hollow 

morphologies appear to depend solely on the identity of the starting material.  
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Hollow nanomaterial syntheses can be categorized generally, into template and 

template-free syntheses. The templates include hard templates such as polystyrene,270 

silica,271 carbon,272 and metal oxide273, and soft templates including gas bubbles274 and 

emulsion micelles275. Templated synthesis of hollow nanomaterials not only yields poorly 

crystalline materials, however, may also be expensive and time-consuming due to the 

complexity of the process.276,277 In this regard, template-free synthesis is superior and 

comes with advantages such as simple synthetic procedures, high reproducibility, low 

production costs, and the potential of scaling up the synthesis for large quantity 

production. To this end, much work has been done to understand the various hollowing 

mechanisms. Galvanic erosion, an electrochemical process with an ion metal been 

reduced by another metal with lower reduction potential, is used to produce metal hollow 

structure. Sun et al.44 synthesized Au nanoboxes by using Ag nanocubes as a sacrificial 

template, upon which Au was deposited via reaction of Ag with HAuCl4, before the 

dissolution of the Ag to form a hollow Au cube shape; Pd nanocubes were synthesized by 

Xiong et al.278 using a similar approach. The Kirkendall effect is another elegant method 

to prepare hollow metal oxide nanostructure, in which the difference in diffusion rates 

between two components in a diffusion couple leads to voids formed in the fast diffusion 

side. For example, Yin et al.279 reacted Co nanocrystals with O2, S, and Se to form hollow 

oxide or chalcogenides nanostructure, and the synthesis of hollow ZnAl2O4 NW by 

reaction of  ZnO-Al2O3 core-shell NWs, in which ZnO and Al2O3 are the fast and slow 

diffusers respectively, opened up a new window to the synthesis of various binary and 

ternary metal oxide hollow nanomaterials,280 One particularly intriguing approach, 

known as inside-out Oswald ripening, utilizes a solution phase synthesis by deposition of 
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dissolved small crystals on the surface of larger crystals in a asymmetric hollowing 

manner, and has been utilized to synthesize various hollow species such as SnO2, 281  

Fe3O4,23 and TiO2
4  hollow spheres. 

One effective way to explore hollowing mechanisms is reaction time-dependent 

studies, complemented with transmission electron microscopy (TEM) 

characterization.4,23–25 Nevertheless, the information obtainable from ex situ experiments 

are limited, and leads to the necessity of deducing mechanistic steps from “before” and 

“after” data points. To this end, in situ experiments have been exploited with great effect 

for some known hollowing mechanisms, in particular, the Kirkendall effect. Herman et 

al. demonstrated the oleylamine-assisted transformation of iron-iron oxide core-shell NPs 

to iron oxide hollow NPs induced by electron-beam irradiation in TEM.282 Niu et al. 

reported an in situ study using liquid cell TEM of the Kirkendall effect, in which it 

induces bismuth oxide hollow NP formation.283 Recently, Yu et al. investigated the 

kinetics of Ag NW hollowing via the Kirkendall effect, using transmission X-ray 

microscopy284.  

In this chapter we describe the decomposition of single-crystalline β-FeOOH NRs, to 

form hollow single crystalline NRs, for which we expect the α-Fe2O3 and γ-Fe2O3 phases 

to form in the air and high vacuum respectively, in which, the final hollow morphology is 

dictated by starting material rather than particular phase transformation. Using in situ 

imaging in the TEM we have revealed a new hollowing mechanism which we term 

“surface-confined” Ostwald Ripening, which is reminiscent but distinctive and different 

from the reported inside-out Oswald ripening. Four hollow iron oxide species were 

synthesized via this route, α-Fe2O3, γ-Fe2O3, Fe3O4 and FeO. 
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5.2  Syntheses of β-FeOOH nanorods and nanowires 

β-FeOOH NRs and NWs were synthesized through a hydrothermal method based on 

literature.37 In a typical synthesis, 4 mmol FeCl3•6H2O and cetyltrimethylammonium 

bromide (CTAB, 0.9 g) were dissolved in 36 ml deionized water and stirred for 15 min. 

The mixed solution was then transferred to 45 mL Teflon-lined stainless steel autoclave, 

sealed and maintained at 80 ˚C or 120 ˚C for 12 h. After the system was allowed to cool 

down to room temperature, the product was collected and washed with distilled water and 

ethanol, and dried at 60 ˚C overnight. To make hollow α-Fe2O3 nanocapsules, β-FeOOH 

NRs were annealed in air at 500-700 ˚C for 3 hours. 

5.3  Formation of hollow iron oxide nanorod in in situ TEM 

 

Figure 5.1 Structural characterization for β-FeOOH NRs. Powder X-ray diffraction pattern (a), 
SEM image (b) and TEM image with FFT inset (c) of β-FeOOH NRs. 
	
	

NRs and NWs for this study were synthesized via a hydrothermal method. The phase 

purity, morphology and single-crystallinity for the as-grown β-FeOOH NRs were 

identified by XRD, SEM and TEM as shown in Fig. 5.1. On annealing the β-FeOOH NRs 

in air at 500-700 ˚C, a transformation into hollow single-crystalline α-Fe2O3 capsules is 

revealed (Fig. 5.2).  High-resolution TEM images confirm the single-crystallinity of these 

nano-capsules.  
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Figure 5.2 Structural characterization of hollow α-Fe2O3 NRs. Powder X-ray diffraction pattern 
(a), SEM image (b), HAADF STEM image (c-e) and TEM images (e) of hollow α-Fe2O3 NRs 
demonstrating their phase purity and single crystallinity. HRTEM image composed of two sub 
images with FFT inset (e), showing the single crystallinity of the high curvature end.  
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Figure 5.3 Thermalgravimetric analysis of β-FeOOH NRs heated from 25 ˚C to 700 ˚C in air. 
The curve in green is the weight of sample, the blue curve is the derivative weight. 

 

As a complementary probe of the transformations occurring in air, thermalgravimetric 

analysis (TGA) was acquired (Fig. 5.3), and shows three weight losses. The loss below 

100 ˚C is assigned to the desorption of surface water, while the loss at around 300 ˚C 

signifies decomposition of b-FeOOH to a-Fe2O3. These results are consistent with in situ 

XRD (Fig. 5.4) which we acquired in the low vacuum: here we see no structural change 

below 100˚C, above which the β-FeOOH phase contracts, and eventually disappears, to 

be replaced by α-Fe2O3 at around 300 ˚C. An additional weight loss in the TGA at around 

230 ˚C is very likely from water residing in the tunnel structure of β-FeOOH, and occurs 

concurrently with the contraction of the crystal structure and collapse of the tunnel. 

Interestingly this occurs during an intermediate region of the in situ XRD for which the 

structure appears to almost entirely lose its crystallinity. 
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Figure 5.4 In situ XRD of β-FeOOH NRs during annealing from 25˚C to 900 ˚C in low vacuum. 
The two masked peaks are from the sample stage. 
 
 

We conducted in situ TEM experiments to observe the solid NR to hollow 

nanocapsule evolution process. The β-FeOOH NR was heated up from room temperature 

to 700 ˚C in the TEM with a ramping rate of 1˚C/s. Figure 5.5 shows the frames every 3 

min from the video recorded for a β-FeOOH NR during heating. The NR initially has no 

change until around 300 ˚C, at which point it starts to look polycrystalline; at 350 ˚C a 

shell starts to form, inside of which small crystals grow and agglomerate to form larger 

ones. As the temperature is ramped, the larger crystals are seemed to continuously wet 

the inner surface of the shell continuously increasing its thickness until every small 
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crystallite is consumed. Significantly, the outer diameter of the NR does not change 

throughout the hollowing process. 

 

Figure 5.5 TEM images of an FeOOH NR as it is heated in situ. The rod is seen to become 
porous, and then hollow. 
	
	

To further identify the species during phase transformation, we collected selected area 

diffraction patterns (SAED) for another NR. The β-FeOOH NR was annealed for 10 min 

at 100 ˚C intervals, and quenched for SAED pattern collection, as shown in Fig. 5.6. At 

300 ˚C the NR starts to transform into β-Fe2O3. From 400 to 600 ˚C, the NR is identified 

as spinel phase with two possible species: γ-Fe2O3 and Fe3O4. It is very interesting that 

there are two sets of patterns for spinel phases in a temperature range of 400-600 ˚C. The 

β-Fe2O3 phase is typically believed to undergo transformation to α-Fe2O3 at this 

temperature range,285–289 with one notable exception reported for β-Fe2O3, in which 

hollow NPs transform to γ-Fe2O3
 at 400˚C. In this unusual case, the authors hypothesize 

that the extremely elevated surface area of the hollow morphology of β-Fe2O3
 NPs plays 

a critical role in determining the transformation mechanism.290 Similarly, in our case, the 

porous structure of β-Fe2O3 phase dehydrated from β-FeOOH might foster the transition 

to γ-Fe2O3 phase instead of α-Fe2O3.  At 700 ˚C we found FeO and some spinel phase 

coexisted. The rod then collapsed and couldn’t be identified from diffraction pattern at 

800 ˚C.  
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Figure 5.6 TEM images and corresponding selected area diffraction patterns of a NR during in 
situ heating. The rod undergoes phase transformations from β-FeOOH to β-Fe2O3, to γ -
Fe2O3/Fe3O4, to Fe3O4/FeO, while becoming hollow, and maintaining single-crystallinity. 
 
 

The crystal structure of the two spinel species: γ-Fe2O3, and Fe3O4, are almost 

indistinguishable from their diffraction signatures, given that γ-Fe2O3 is simply a 

defective form of the Fe3O4 structure.291 Thus, electron energy loss spectra (EELS) were 

collected for another NR under the same heating profile to monitor the evolution of iron 

oxidation state during phase transformation, as shown in Fig. 5.7.  
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Figure 5.7 Iron L2,3-edge of the electron energy loss spectrum of a NR during heating from 25˚C 
to 800 ˚C. It shows a red-shift on reduction of the iron. 
 
 

The iron edge at around 711 eV started to shift to left till 700 ˚C, with a total 1.5 eV 

shift, indicating a Fe3+ to Fe2+ or Fe0 transition.292,293 The disappearance of the oxygen 

edge at around 531 eV above 700 ˚C (Fig. 5.8) confirms the reduction of Fe3+,294 while 

the retention of the 540 eV edge indicates the presence of oxygen and in an increasingly 



	
	

78 

Fe2+-rich environment. The continuous reduction of Fe3+ to Fe2+ over the 300 - 700˚C 

temperature range is suggestive of a γ-Fe2O3 to Fe3O4 phase transformation. 

 

Figure 5.8 Oxygen edge of the electron energy loss spectrum of a NR during heating from 25˚C 
to 800 ˚C. 
	
	
β-FeOOH is a channel-like structure reminiscent of hollandite, comprising iron (III) 

atoms octahedrally coordinated to oxide and hydroxide ions. The tetragonal unit cell is 
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formed by corner-sharing double rows of octahedra along the c axis, with tunnels formed 

in the center. On heating in air, phase transformation results in α-Fe2O3, which has a 

corundum-type hexagonal structure (space group R3c) with hexagonally close-packed 

oxygen matrix, and two-thirds occupancy of the octahedral sites by Fe(III). As the 

thermodynamically stable iron oxide phase at atmospheric conditions, α-Fe2O3 is 

unambiguously the product of β-FeOOH dehydration, though no clear structural 

relationship exists between β-FeOOH and α-Fe2O3. This phase transition has been 

utilized widely to synthesize α-Fe2O3 nanostructures. 266,263,264,37,295–297 

The series of phase transitions observed in the TEM, however, are quite different, 

likely due both to the stabilization of reduced iron oxide phases under the low oxygen 

fugacity of the TEM column, and because the nanostructured morphology allows the 

kinetic trapping of phases with a topotactic relationship to their precursor. In the TEM we 

observe a progression from β-FeOOH first to β-Fe2O3, then γ-Fe2O3/Fe3O4, and finally 

FeO. Interestingly, all of these phases are supported by an underlying cubic close-packed 

oxygen anion matrix, except for β-FeOOH with a body-centered cubic anion arrangement 

(Fig. 5.9). β-Fe2O3 has a bixbyite-type body-centered cubic structure (space group Ia3); 

γ-Fe2O3 and Fe3O4 have the spinel structure (space group Fd3m), where γ-Fe2O3 has 

vacancies in the octahedral positions; and FeO has the rock salt structure (space group 

Fm3m). Our observation of the phase-transition from β-FeOOH to cubic β-Fe2O3 

represents the first report of this structural transition. (It should be noted that Braun et al. 

report a tetragonal “β”-Fe2O3 phase as a product of dehydrated β-FeOOH, for which this 

phase is structurally different from previous literature describing β-Fe2O3.288,298) Previous 

reports of the decomposition of β-FeOOH under vacuum describe a transition first to γ-
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Fe2O3 at below 500 ˚C, followed by a transformation to α-Fe2O3 at higher temperature. 

264,267,291 In contrast to this, we observe a transition to γ-Fe2O3 via the β-Fe2O3 

intermediate, and a subsequent reduction first to the topotactic Fe3O4 spinel, and finally 

the rock salt-like FeO structure. Each of these transitions is favored by a clear structural 

relationship between the precursor and product (Fe3O4-like defect clusters are common 

low energy defects within FeO), suggesting that the transformation pathways require low 

activation energies, and may well be favored by kinetics, though it is also well known 

than small particle sizes selectively stabilize reduced forms of the iron oxides.299 

  

In order to check the consistency of our data analysis with mass conservation, we 

performed a density calculation for the NR shown in Fig. 5.5. As shown in Fig. 5.10, we 

calculated the volume of the NR by approximating it as a cylinder capped with two half 

 
Figure 5.9 Graphical representations of crystal structures of β-FeOOH, β-Fe2O3, γ-Fe2O3/Fe3O4, 
FeO, α-Fe2O3. The brown spheres at the centers of polyhedrons and red spheres represent the iron 
and oxygen atoms respectively. The blue and green arrows stand for the phase transition paths in 
TEM and air correspondingly. 
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ellipsoids. The volumes of the NR before (at 25˚C ) and after (at 700˚C) heating were 

thus calculated as 2.840 x 106 nm3 and 1.650 x 106 nm3 respectively. If we assume the 

iron atoms do not evaporate during heating, mass conservation dictates the resulting 

volumes of the possible species to be 1.909 x 106 nm3, 1.675 x 106 nm3 and 1.360 x 106 

nm3 for γ-Fe2O3, Fe3O4 and FeO respectively. Comparing those volumes with the real 

resulting volume, we found the hollow NR is a mixture of both Fe3O4 and FeO, in 

complete agreement with the SAED and EELS data. 

 

Figure 5.10 Cartoon showing the structure decomposition of a NR for density calculations 
	
	

As a control experiment, we tried heating longer FeOOH wires without the curvature 

of the short rods. Using the same heating profiles as previously we saw the same solid to 

hollow transformation, in this case leading to an Fe2O3 tube as shown in Fig. 5.11, 

indicating the curvature of the NR is not the reason of hollowing. 
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Figure 5.11 TEM images of an FeOOH NW before (a) and after (b) heating in TEM. The 
HRTEM image(c) shows the single-crystallinity of the hollow NW 
 

A similar transformation of metal hydroxide to annealed porous oxide have also been 

observed in other systems, such as GaOOH/Ga2O3
300, and Co(OH)2/ Co3O4

301. In these 

cases it was believed to be due to the volume contraction resulting from the loss of water, 

and also the transformation from a low-density metal (oxy) hydroxide to denser metal 

oxide; both of these factors apply also to the FeOOH/FexOy system reported here.  

Further, our in situ observations reveal that the initial decomposition from β-FeOOH to a 

structurally and thermodynamically more stable, and denser, iron oxide, produces a stable 

iron oxide shell within which all future transformations take place. Crucially, while 

particle size, system temperature and pressure, and the activation energies of 

transformation all undoubtedly play a role in dictating the resulting iron oxide phase, the 

hollow morphology depends only on the initial starting point, and is formed regardless of 

any heat treatments applied post-decomposition. We have thus demonstrated the 

decoupling of phase/structure from morphology in the creation of a class of oxides with 

great potential for commercial application. Briefly, the hollowing mechanism proceeds 

with the following steps (Fig. 5.12) the single crystal nanorod breaks into small crystals, 

followed by the formation of bigger crystals by dissolving and growing from the smaller 



	
	

83 

ones, to reduce the surface energy induced by the curvature; At the same time, a thin shell 

formed enclosing all the particles, after which the particles continuously grow into and 

thicken the shell till all been consumed.  The shell formed at very beginning seems to 

play a very important role in capturing the small crystals during the hollowing process. 

As observed, this mechanism therefore possesses many of the usual characteristics of 

Ostwald ripening, with the added component of the larger, ripening, particles comprising 

the inner surface of a nanoshell. We therefore dub this mechanism “surface-confined 

Ostwald ripening.” 

 

Figure 5.12 Surface-confined Ostwald ripening: the hollowing process observed for β-FeOOH 
NRs 
 

5.4  Conclusion  

In conclusion, a new mechanism for creating hollow nanostructures is observed, and 

dubbed surface-confined Ostwald ripening. β-FeOOH nanorods and nanowires were 

studied via in situ experiments, revealing a series of phase transformations from β-

FeOOH, to β-Fe2O3, γ-Fe2O3, Fe3O4  and FeO under high vacuum, while a β-FeOOH to 

α-Fe2O3 transformation is observed in ambient and low vacuum conditions. Despite the 

wholly different structural transformations, both routes produced hollow nanorods with 

the same morphology, indicating that the crystal structure of the starting species is the 
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critical factor determining eventual morphology. This work reveals the ability to 

decouple the factors of morphology and structure in the design of useful nanomaterials.  
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