Leucaena Toxicity: A New Perspective on the Most Widely Used Forage Tree Legume

Michael J. Halliday
The University of Queensland, Australia

Jagadish Padmanabha
CSIRO, Australia

Chris S. McSweeney
CSIRO, Australia

Graham L. Kerven
The University of Queensland, Australia

H. Max Shelton
The University of Queensland, Australia

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the [Plant Sciences Commons](https://uknowledge.uky.edu/icsc) and the [Soil Science Commons](https://uknowledge.uky.edu/soil)

https://uknowledge.uky.edu/igc/22/1-2/2

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
The 22nd International Grassland Congress (Revitalising Grasslands to Sustain Our Communities) took place in Sydney, Australia from September 15 through September 19, 2013.

Publisher: New South Wales Department of Primary Industry, Kite St., Orange New South Wales, Australia

This event is available at UKnowledge: https://uknowledge.uky.edu/igc/22/1-2/2
Leucaena toxicity: a new perspective on the most widely used forage tree legume

Michael J Halliday A, Jagadish Padmanabha B, Chris S McSweeney B, Graham Kerven A and H Max Shelton A

A School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072 Australia
B CSIRO Animal, Food & Health Sciences, Queensland Biosciences Precinct, St Lucia, Brisbane, Qld 4067, Australia
Contact email: m.halliday@uq.edu.au

Abstract. The tree legume *Leucaena leucocephala* (leucaena) is a high quality ruminant feed, vitally important for livestock production in the tropics despite the presence of mimosine in the leaves. This toxic non-protein amino acid has the potential to limit productivity and adversely affect the health of animals. The discovery and subsequent distribution in Australia of the ruminal bacterium *Synergistes jonesii* as an oral inoculum was shown in the 1980s to overcome these toxic effects. However, recent surveys of the status of toxicity worldwide; improved understanding of the chemistry and mode of action of the toxins; new techniques for molecular sequencing; and concerns about the efficacy of the *in vitro* inoculum; have cast doubt on some past understanding of leucaena toxicity and provides new insights into the geographical spread of *S. jonesii*. There is also confusion and ignorance regarding the occurrence and significance of toxicity in many countries worldwide. Ongoing research into the taxonomy and ecology of the *Synergistes* phylum, improved methods of inoculation, improved management solutions, along with awareness-raising extension activities, are vital for the future success of leucaena feeding systems.

Keywords: *Leucaena leucocephala*, *Synergistes jonesii*, toxicity, mimosine, dihydroxypyridine, DHP, urine.

Introduction

Leucaena is a multipurpose forage tree legume widely used in the tropical world (Shelton and Brewbaker 1994) with estimates of up to 5 million ha planted worldwide (Brewbaker and Sorensson 1990). There are no current estimates but this area will have increased substantially (Dalzell et al. 2012). Whilst first domesticated for human use 7000 years ago (Hughes 1998), its primary value is now as a feed for ruminants. Leucaena is high in crude protein (Jones 1979), highly palatable (Andrew et al. 2000), long-lived, and tolerant of frequent severe defoliation and drought. This latter feature is especially important as it provides edible forage long into the dry season (Shelton and Brewbaker 1994). Leucaena is a vitally important source of protein for ruminants throughout Southeast Asia, China, India, Hawaii, the Pacific islands, Mexico, Central America, South America, and Australia (Shelton and Brewbaker 1994). In tropical Australia, *L. leucocephala* ssp. *glabrata* cultivars were first released in the 1960s; there are currently over 200,000 ha of leucaena grass pastures (Dalzell et al. 2012), with more plantings each year.

Factors such as the rapid increase in international demand for animal product, high cost of protein concentrates, and shortage of nitrogen for tropical grass pastures will increase the need for alternative high protein feed sources in the tropics. This is leading to increased leucaena plantings globally. The eastern Islands of Indonesia are just one of many examples where leucaena is fulfilling an important role in ruminant production (Panjaitan 2012) and where its wider use is being promoted in Government programs.

However, while it has many positive nutritional benefits, leucaena possesses the toxic non-protein free amino acid mimosine in relatively high concentrations in leaf and young pods (up to 9% dry matter (DM) in young leaves and 4-7% DM in seeds) (Hegarty et al. 1964b). Pioneering work on leucaena toxicity was conducted between 1976 and 1994 by R. J. Jones and colleagues who published widely on the symptoms, chemistry, microbiology, and management of toxicity (Hegarty et al. 1964b; Jones et al. 1976; Allison et al. 1992; Jones 1994). They found that mimosine was rapidly converted to 3,4-dihydroxypyridine (3,4-DHP) post-ingestion resulting in reduced feed intake, decreased live weight gain (LWG), and poor animal performance on otherwise high quality pasture (Jones and Hegarty 1984; Pattanaik et al. 2007). Jones and Hegarty (1984) reported that these symptoms occurred at intakes of leucaena >30% of diet.

Research conducted in the 1980’s led to the isolation and identification of a previously unknown, and at the time unusual species of bacterium from the rumen of a Hawaiian goat which was shown to be a gram-negative obligate anaerobic bacterium and was subsequently named *Synergistes jonesii*. Strains from this species of bacterium were introduced into Australian cattle herds in 1983 and provided protection against the toxic effects of
leucaena by degrading DHP to harmless by-products (Jones and Megarrity 1986). This success was followed by the development of a commercial inoculum in Australia, comprising initially of rumen fluid (in vivo) and subsequently of fermenter-produced (in vitro) mixed inoculum containing S. jonesii (Klieve et al. 2002). Since animals were reported to readily transfer the ‘bug’ within a herd (Quirk et al. 1988; Pratchett et al. 1991) (the exact methods of which are unknown, but likely encapsulated in saliva or faeces) it was recommended that only 10% of the herd need to be inoculated. Protection of herds from toxicity in this way has led to annual live weight gains of up to 300 kg in inoculated beef cattle grazing leucaena-grass pastures in northern Australia (Wildin 1994).

For these reasons, the problem of leucaena toxicity was thought to be resolved in Australia. However, a survey of the protection status of herds in Queensland on high leucaena diets has shown that almost 50% appeared to be unprotected, including previously inoculated herds (Dalzell et al. 2012). There was also poor understanding and awareness of leucaena toxicity by farmers. There was ignorance of both methods of detection of toxicity and of management to limit adverse effects. This was of great concern as undiagnosed subclinical toxicity leads to reduced animal production (Dalzell et al. 2012).

The aim of this paper is to clarify the many issues regarding leucaena toxicity and to update readers regarding recent findings and future directions.

Occurrence of toxicity in tropical countries

During 1984-94, a survey of leucaena toxicity status, based on assay of urinary DHP excretions, was conducted in many countries where leucaena was being fed to ruminants to determine the presence or absence of DHP degrading bacteria (Jones 1994). R. J. Jones concluded that countries protected from toxicity by the presence of S. jonesii included: Indonesia, Vanuatu, Thailand, Malaysia, India, Seychelles, Mauritius, and Mexico, while over 13 other countries were not protected. He hypothesised that lack of protection in the latter countries may have caused an aversion to intensive feeding of leucaena and become a barrier to adoption, while in those countries protected from toxicity there was greater use of leucaena as forage for ruminant production (Jones 1981).

However, detailed recent monitoring of ruminant leucaena toxicity has demonstrated a more complex situation. Using the criteria that mean urinary DHP levels in protected herds should be < 100 mg/L (Dalzell et al. 2012), a survey of 20 villages within 4 islands of eastern Indonesia found that village herds within close proximity (<40 km and in some cases <1 km) differed in their protection status (Halliday et al. 2013b). It is therefore unwise to classify the protection status of whole countries. Furthermore, as leucaena feeding in the tropics increases, with movement of animals with DHP degrading bacteria both in and out of villages where leucaena is fed, this may see some ruminants lose protection, while others in neighbouring villages may gain protection if their animals are maintained on leucaena.

Thailand’s inclusion as a protected country (Jones 1994) was based on the lack of urinary DHP found in a single goat farm in 1983. However, a comprehensive survey of goat farms within 4 Thai provinces in 2009 (Phaikaew et al. 2012) found that all 63 goats sampled had exceedingly high levels of urinary DHP, often > 1000 mg/L. Similarly, urine samples collected from goats consuming 100% leucaena in Mexico, also previously listed as a protected country, within the Yucatan region where leucaena is thought to have originated, had exceedingly high levels of DHP, in one case >10000 mg/L. (Graham Kerven, unpublished data). Thus, it is not appropriate to refer to ‘protected or unprotected’ countries as capability to degrade leucaena toxins varies among ruminants at the village and even farmer level.

Confusion regarding toxicity symptoms

When leucaena was first introduced to Australia, the clinical symptoms of toxicity were quite serious, presenting as emaciated animals, with some animal mortalities (Jones et al. 1978). However, severe clinical symptoms are now rarely seen, and most farmers feeding leucaena are ignorant of the visible symptoms of toxicity. While some Australian graziers suspect subclinical toxicity by monitoring reductions in LWGs, livestock raisers in most other countries have no way of knowing if their animals are suffering from toxicity, as data are not available. Also, since their animals fed leucaena may still be performing better than those without legume, there is understandable confusion over the toxicity issue. Another highly anomalous situation is that many ruminants in the tropical world are consuming large amounts of leucaena for prolonged periods and excreting high concentrations of urinary DHP without any apparent clinical symptoms of toxicity (Phaikaew et al. 2012; Graham et al. 2013; Halliday et al. 2013b) including no indication of goitre (Palmer et al. 2010). The reasons for this are not understood but may be due to chemical conjugation of the toxins reducing their toxicity (mentioned later in this paper).

The symptoms associated with leucaena toxicity are now discussed and clarified. They are ascribed to both mimosine and its primary metabolites: 3,4-DHP and 2,3-DHP (Fig. 1). While structurally similar, these toxins have different modes of toxicity. Although there is some overlap, they are responsible for different clinical, and subclinical symptoms. It is therefore essential that toxicity symptoms are understood and the causes correctly

Figure 1. (a) Mimosine and its ruminal degradation products; (b) 3,4-DHP and (c) 2,3-DHP, adapted from Hammond (1995).
identified for proper management of leucaena-based feeding systems.

Mimosine toxicity

Mimosine (β-[N-(3-hydroxy-4-oxopyridyl)-α-amino-propionic acid) (Hegarty et al. 1976) is acutely antimitotic, inhibiting the synthesis of DNA (Perry et al. 2005; Pandey and Dwivedi 2007), particularly in rapidly dividing cells (Tsai and Ling 1971; Jones and Hegarty 1984), and can cause damage to internal organs (Prasad and Paliwal 1989). The symptoms ascribed to mimosine include alopecia (Ram et al. 1994), oesophageal lesions (Jones et al. 1978), foetal abortions (Holmes 1980), low bull fertility (Holmes 1981) and death (Jones et al. 1978; Prasad and Paliwal 1989; Dalzell et al. 2012). It should be noted that mimosine itself is not responsible for the symptoms of goitre (Hegarty et al. 1979).

Structurally, mimosine is a tyrosine analogue (Hegarty et al. 1964a; Hashiguchi and Takahashi 1977), capable of inhibiting enzyme functions such as tyrosine decarboxylase and tyrosinase (Crounse et al. 1962). The inhibition of these enzymes, especially of [3+]-thymidine in the follicle bulbs of hair cells, along with the incorporation of mimosine into biologically vital proteins (Tsai and Ling 1971) can result in depilation of actively growing hairs.

For this reason, alopecia is one of the most commonly reported symptoms when animals are first introduced to leucaena, and can occur within 7 days on 100% leucaena (Hegarty et al. 1964a). Hair loss is commonly observed from the penis sheath and tail areas where growth is more continuous; mimosine only affects the follicle bulb in the active phase of growth (Hegarty et al. 1964a). This is best demonstrated in sheep as wool growth is largely continuous and therefore sensitive to alopecia from mimosine toxicity (Hegarty et al. 1964a). Alopecia is evident when levels of mimosine in diet are >0.015% body weight (BW) (Szyszka and Termeulen 1985). As consumption of 100% fresh leucaena leaves may be as high as 0.031% BW mimosine (Tangendjaja et al. 1985) this would suggest leucaena feeding at levels greater than 50% would lead to alopecia in unprotected animals.

While mimosine toxicity can be potentially severe, it is relatively short term and only appears when animals are first introduced to high leucaena diets (Ghosh et al. 2007; O'Reagain 2009). Ruminants typically acquire the ability to fully degrade mimosine in high leucaena diets (>50%) within 2 weeks from initial introduction (Ghosh et al. 2007); and excretion of mimosine ceases within 24 hours of removal of leucaena from the diet (O'Reagain 2009). For this reason, mimosine toxicity symptoms rarely persist within an animal, especially if introduced to leucaena slowly (Jones 1979).

The degradation of mimosine to 3,4-dihydroxyypyridine (3,4-DHP) occurs via many endogenous rumen bacteria (Hegarty et al. 1964a) and by plant hydrolase activity of endogenous enzymes within leaves (Smith and Fowden 1966; Lowry et al. 1983). Up to 30% of the mimosine is converted to 3,4-DHP in the initial process of mastication (Ram et al. 1994) within 1 hour of ingestion (Jones and Megarry 1983). Although mimosine is readily degraded to 3,4-DHP, this does not result in detoxification.

Mimosine also forms strong complexes with metal ions (Hashiguchi and Takahashi 1977). While the chelation of mimosine antagonizes its antimitotic ability (Hashiguchi and Takahashi 1977), the process of chelation with high affinity metal ions from animal cells, such as Fe, Cu and Zn, inhibits many enzymatic pathways; these metals are also required for normal hair growth (Hegarty et al. 1964a; Hashiguchi and Takahashi 1977; Paul 2000). Ultimately, the chelatory effects of mimosine exacerbate the overall deleterious effects, resulting in overlap of some symptoms with DHP toxicity (Puchala et al. 1995).

DHP toxicity

The primary metabolite of mimosine is the compound 3-hydroxy-4(1H)-pyridine (3,4-DHP) (Hegarty et al. 1976), which in the presence of certain ruminal microbes, can be further converted to its isomer 2,3-dihydroxyypyridine (2,3-DHP) (D’Mello 1992). DHP acts as a potent goitrogen, due to its antiperoxidase activity. By inhibiting essential peroxidase- and lactoperoxidase-catalyzed reactions (Christie et al. 1979; Lee et al. 1980), the iodination of tyrosine in the binding step of the thyroid is inhibited. This step is crucial for the synthesis of thyroid hormones, such as thyroxin (T 4) and triiodothyronine (T 3), resulting in depressed serum T 4 levels, which causes overstimulation and enlargement (up to 4 times) of the thyroid glands (goiter) (Hegarty et al. 1979; Jones 1979; Megarry and Jones 1983). Studies have also shown that persistent administrations of DHP increase the uptake of iodine in the hyperplastic thyroid, confirming the anti-thyroid effects of DHP (Hegarty et al. 1979). The effect of lowered serum T 4 and T 3 levels is reduced appetite, and ultimately a decreased LWG. Serum T 4 levels below 13 n mol/L may even result in death (Jones et al. 1978).

Reduced iodine availability due to DHP can also affect the salivary glands. Iodine is incorporated into salivary glands via a different method and inhibits the trapping step rather than the binding step, as in the thyroid (Koutras et al. 1967; Harden et al. 1968), leading to excessive salivation after prolonged exposure to leucaena (Jones et al. 1976; Jones et al. 1978; Holmes 1981; Megarry and Jones 1983; Ram et al. 1994).

Compounding the goitrogenic effects of DHP, is the fact that both isomers also strongly chelate with metal ions (Tsai and Ling 1971), forming complexes with Zn, Cu, and Fe in particular, leading to excretion and depletion of these minerals (Ghosh and Samiran 2007). A deficiency in Zn was shown to be responsible for skin lesions (Mills 1978; Paul 2000), increased salivation (Mills 1978; Puchala et al. 1996) and abnormal hair growth (Hashiguchi and Takahashi 1977). Zn deficiency can also be responsible for inhibiting DNA replication (Perry et al. 2005) and can adversely affect spermatogenesis (Yamaguchi et al. 2009). These all suggest that the chelation of essential minerals is a major toxic effect of DHP. The presence of existing deficiencies of essential minerals in the diet may hasten the manifestation of clinical toxicity symptoms.

The effects of DHP toxicity are a function of both amount of leucaena in diet and time on leucaena. Clinical symptoms may take up to 8 weeks to become evident (Quirk et al. 1988). This can manifest itself in scenarios
where new animals on a leucaena/grass paddock can gain up to 1 kg/head/day, while existing animals grazing that same paddock for longer periods can be gaining as little a 0-0.2 kg/head/day (Jones and Bray 1983). These lowered LWGs were found to be directly related to lowered levels of serum T4, with a threshold of 25 n mol/L before clinical symptoms such as drooling and hair loss were observed (Jones and Winter 1982). It is this chronic nature of DHP, the dual modes of toxicity, and the long periods of time that toxicity can go unnoticed that contribute to the complexity of recognition of potential toxicity.

However, as mentioned, inexplicably, goats in Thailand and Indonesia on long-term high leucaena diets were shown to be excreting high concentrations of 2,3-DHP in urine without indication of goitre (Phaikaew et al. 2012; Halliday et al. 2013b).

The dominance of 2,3-DHP

The isomer 2,3-DHP was originally thought to be transitory, and indicative of incipient ruminal colonisation of S. jonesii (Ford et al. 1984; Jones et al. 2009). Much recent data from Australia, Thailand and Indonesia contradicts this notion of 2,3-DHP being transitory (Dalzell et al. 2012; Phaikaew et al. 2012; Graham et al. 2013; Halliday et al. 2013b) and indicates that it is usually the dominant isomer in ruminants fed leucaena long-term. Phaikaew et al. (2012) reported exceedingly high levels (>1000 mg/L) of 2,3-DHP in the urine of ruminants fed over extended periods (>3 months). It is generally considered that the isomers 3,4-DHP and 2,3-DHP are equally harmful (Lee et al. 1980; Ghosh et al. 2008). The latter has been shown to reduce intake (suppress appetite) (McSweeney et al. 1984), reduce milk production in dairy cows (Ghosh et al. 2007), and can be fatal given intra-ruminally in pure form (Puchala et al. 1995).

In a controlled cattle feeding trial in India (Ghosh et al. 2007), 2,3-DHP was the dominant isomer 21 days after commencement of leucaena feeding in cattle naıve to S. jonesii, as was the case for animals offered 25 to 100% leucaena in a controlled trial in Queensland (Halliday et al. 2013a). In the latter trial, all steers on diets of 25 to 100% leucaena were excreting 2,3-DHP at levels above 100 mg/L after only 2 weeks on leucaena, increasing through to week 7 when it formed the majority of the DHP excreted.

The accumulation of high levels and proportions of 2,3-DHP in ruminants both previously exposed to S. jonesii and those naïve to it may suggest that: (1) rumen microbes other than S. jonesii are capable of degrading 3,4-DHP to 2,3-DHP; (2) the in vitro S. jonesii inoculum released in Australia may have lost/mutated the strains effective at complete DHP degradation; or (3) there are other environmental factors (including regulation of genes involved in DHP metabolism) affecting optimal ability of S. jonesii to completely degrade all DHP.

Taxonomy and distribution of S. jonesii

Recent advances in molecular techniques for the detection and sequencing of S. jonesii have allowed greater insights into the geographic spread and genetic variability of the bacterium. From the culture originally imported into Australia from an Hawaiian goat in 1982, 4 strains were later isolated including the designated type-strain 78.1 (ATCC 49833) and 3 others (100-6, 113-4, 147-1) (Allison et al. 1992). The strains were shown to have differential specificity for degrading mimosine, and/or 3,4-DHP and 2,3-DHP (Jones 1994).

PCR amplification using S. jonesii specific primers of the 16S rDNA (small sub-unit of the ribosome- ssRNA) was used as a molecular phylogenetic classifier, and has even identified S. jonesii 16S rDNA sequences in the gut of disparate animals such as the horse, Tamar wallaby, Baboon and the Emu (Chris McSweeney, unpublished data). The theoretical limit of detection of S. jonesii by PCR is 10³ cells/ml; however, a realistic PCR amplification of genomic DNA from rumen fluid/digesta is between 10⁴ and 10⁵ cells/ml due to the co-precipitation of contaminating inhibitors. This problem was overcome by a second round of PCR (nested PCR) on the initial PCR products, which increased the sensitivity of detection by several logs. Sequencing of the amplified (nested) products not only confirmed the identity of S. jonesii but also detected mutations in that segment of the 16S gene. These changes appeared as discrete mutations or ‘single nucleotide polymorphisms’ (SNPs) that may be correlated with their ability to degrade DHP, relative to the type strain. SNPs can be random or occur consistently at the same locus, termed ‘hot-spots’.

A survey was conducted of animals consuming diets of 0%-100% leucaena to understand the distribution and changes at the molecular level of S. jonesii. Rumen fluid or faeces was collected from cattle in Queensland and from cattle, sheep, goats, buffalos, and yak from Indonesia, Thailand, Vietnam, China and Brazil. In a number of these sites, animals were naïve to leucaena. In general, faecal samples failed to generate PCR products for S. jonesii 16S rDNA from either Australian or international samples.

The survey revealed that S. jonesii is far more widespread and indigenous to the rumen than originally realized and that many molecular variants of the type strain exist. The molecular detection of this bacterium internationally in ruminants, irrespective of their leucaena feeding status, corroborates some of the findings of Jones (1994), reporting on the inconsistent DHP degrading capability of rumen fluid from animals from cross-continental sites.

Yet, this information on its ubiquity has come with a proviso, that our sequence analysis from Australia and other countries showed SNPs, across ~800/1500 bases of the 16S gene of the bacterium. These SNPs were distributed primarily at ‘hot-spots’ in bases corresponding to E. coli nucleotide positions 268 (C→T), 306 (A→G), 328 (G→A), and 870 (A→C) between bases 200-900 (~700 base pairs (bp)) of the S. jonesii ATCC 16S rDNA. All 4 SNPs were identified at varying frequencies in all farms surveyed in Queensland. Of these loci, ‘306’ & ‘870’ were almost always mutated when SNPs were detected. Surprisingly, these two SNPs were present consistently in the inoculum provided to the farmers. In about 50% of these sequences, all 4 SNPs were present.

In animals overseas, the very same SNPs were also distributed ranging from frequencies of 15% (for ‘870’ in Brazilian cattle) to 100% (all 4 SNPs in Vietnam cattle and goats). Among all the international samples analysed,
Jinnan cattle, Tibetan yak and Indonesian buffalos were 100% identical to the type strain of *S. jonesii*. Interestingly, the buffalos in Indonesia were on 100% leucaena for 0.5-1 years and had high clearance of both 3,4-DHP and 2,3-DHP. The Jinnan cattle and Tibetan yak were naive to leucaena. It remains to be determined if these molecular changes also modify the ability of these strains to degrade DHP. A detailed molecular and physiologic analysis of these ‘strains’ is, thus, highly desirable in order to elucidate the link between genetic changes and DHP degrading potential.

Attempts at molecular enumeration of *S. jonesii* from rumen digesta is similarly fraught with ambiguity relating to the sensitivity and specificity of the quantitative real-time PCR (qPCR) technique. Compared to the 2-step nested PCR which produces ~800 bp long product, the qPCR typically uses a 100-200 bp PCR product for real-time amplification and analysis. Although, this method has a statistically higher chance of amplifying a shorter target (100-200 bp) than the nested PCR (700-800 bp), it still has to overcome PCR inhibition and thus a lack of reduction of sensitivity, unlike the nested PCR. Any specific amplification, nevertheless, can accurately enumerate the target molecule (16S rDNA of the *S. jonesii*) from a rumen sample. Several primer sets targeting the *S. jonesii* 16S DNA, designed and tested during the past 4-5 years have indicated *S. jonesii* exists in the rumen at very low numbers, even in animals foraging on leucaena and where degradation of DHP was apparently occurring (Graham et al. 2013). This extensive molecular analysis of animals consuming leucaena demonstrates that *S. jonesii* is widespread with variants of the ATCC type strain. These variants may potentially be responsible for the partial DHP degradation results.

Management of toxicity

Methods for detecting DHP toxicity

A full understanding of DHP toxicity and of effective methods to detect subclinical toxicity is vital for productive management of animals on leucaena. There are several possible approaches to detection of toxicity, but the most effective method is assay of urine for DHP (Lowry et al. 1985; Phaikaew et al. 2012). Unmetabolised mimosine, 3,4-DHP and 2,3-DHP are readily absorbed into the blood stream and voided in the urine via glomerular filtration at the kidneys (Hammond 1995). Small amounts (up to 15%) may be voided in the faeces (Hegarty et al. 1979; Jones and Hegarty 1984; Hammond 1995), most is readily absorbed from the gut and excreted via the kidneys (Lowry et al. 1985).

While HPLC analysis of urine (Dalzell et al. 2012) is currently the most accurate method of measuring DHP toxicity, sampling many animals for analysis by HPLC is too expensive for graziers, and prohibitive for developing country farmers. In response to the need for a rapid, accurate and inexpensive urine assay, a colorimetric test kit, modified from earlier work (Lowry et al. 1985), has been developed and refined as the most cost effective and immediate assessment of toxicity (Graham et al. 2013). This is now available to Australian graziers uncertain about the toxicity status of their herds. This improved urine test gives reliable, although not quantitatively precise, indications of the concentration and nature of the toxin.

DHP can be excreted in both the free form and as a conjugate with a glucose molecule. HPLC analysis with a reduced flow rate has been able to separate free DHP from conjugated DHP-glucoside. However, preservation of urine prior to analysis requires strong acidification, which hydrolyses all conjugated DHP (Tangendjaja and Wills 1980) unless analysis is conducted immediately.

Whilst assay of serum T4 and T3 can be used as an indicator of DHP toxicity, (Jones et al. 1978; Megarrity and Jones 1983; Ghosh et al. 2007), changes in thyroxin levels occur after longer-term exposure with considerable variation among animals (Michael Halliday, unpublished data). Likewise, the development of goiter in response to depressed thyroid hormones is also a cumulative longer-term effect. As noted, ruminants do not always develop enlarged thyroids on high leucaena diets. Accordingly, these methods are not a reliable indicator of current toxicity status.

Inoculation

Following the initial discovery of *S. jonesii*, inoculation with rumen fluid collected from protected animals was the preferred method for transferring protection between herds, and even between countries (Jones et al. 1985). This seminal work on inoculation demonstrated that the capability to completely degrade DHP was transferred within 5 days following direct inoculation with rumen fluid (Jones and Lowry 1984; Jones and Megarrity 1986). In 1982, 10 cultures of rumen fluid from a single goat in Hawaii were imported to Australia and, in 1983, dosed into rumen-fistulated steers at the CSIRO Lansdown Research Station near Townsville (Jones and Megarrity 1986). Rumen fluid from these steers was then used as source of inoculum, given via direct rumen injection, to ~10% of the remaining herd at Lansdown, spreading passively to the entire herd. In 1984, strained rumen fluid from these cattle was administered to steers at the Queensland Government Brian Pastures Research Station near Gayndah (Quirk et al. 1988). It was from these 2 locations that rumen fluid was collected and distributed to Australian graziers and also to livestock raisers in both Ethiopia and China, with successful transfer of protection.

In 1995, production of the inoculum in an *in vitro* fermenter began, using rumen fluid containing the mixed bacterial inoculum sourced from cattle at Brian Pastures (Klieve et al. 2002). Whilst originally successful in transferring protection, the efficacy of the current *in vitro* inoculum appears in doubt, as it is neither rapid nor completely successful in its degradation of DHP. It was thus postulated that the continually cultured oral inoculum may have lost some strains, undergone genetic modification and/or that it contained other strains with an altered DHP degrading potential (Graham et al. 2013; Halliday et al. 2013a).

In Indonesia, animals identified as having *S. jonesii* by PCR analysis and confirmed by very low urinary DHP
excretions, were selected as inoculum donors for direct rumen fluid transfer. To test the efficacy of transfer, animals known to be excreting high levels of DHP were inoculated with rumen fluid, which had been maintained in a strict anaerobic state at an appropriate temperature. However, the recipient goats continued excreting 2,3-DHP at levels estimated >1000 mg/L based on colorimetric assay 10 days after inoculation indicating a lack of rapid successful response to inoculation. This occurred during August 2012 and was repeated in November 2012 with cattle and goats. Donors were established as high degraders of DHP and the presence of S. jonesii was confirmed by PCR analysis. Again, the ability to degrade DHP (or increased degradation) was not transferred within 10 days. These recent findings are in stark contrast with earlier work where rumen fluid transfer resulted in complete degradation of DHP within 5 days in Indonesia (Jones and Lowry 1984) and within 3 days in Thailand (Palmer et al. 2010), and raise questions regarding the ability of S. jonesii, and therefore the capacity to degrade DHP, to be easily transferred.

Other microbial control options

Other microbial solutions apart from S. jonesii have been investigated as alternate biological control methods. Dominguez-Bello and Stewart (1991) reported the isolation of a DHP degrading Clostridium bacteria, which was subsequently lost. In China, 4 strains were isolated which together were able to degrade up to 60% of DHP in vitro within 3 days. These gram-positive facultative and obligate anaerobes were identified as Lactobacillus spp., Streptococcus bovis and Clostridium sporogenes (Tan et al. 1994); and were quite different from S. jonesii. Strains of obligatory aerobic Streptococci, capable of degrading DHP were reported by Chhabra et al. (1998).

Researchers in Germany isolated a mimosine (and DHP) degrading bacterium from the rumen fluid of steers naïve to leucaena (Aung et al. 2011). After continuous culture with mimosine for 16 days, their work reported an aero-tolerant gram-negative cocccobacillus was isolated, belonging to the genus Klebsiella. Whilst capable of growing under anaerobic conditions, it grew best in aerobic conditions. As such, it may not readily persist in high numbers in the anaerobic conditions of the rumen. The researchers also described a method for stabilising the inoculum in alginate beads, increasing its shelf-life at room temperature up to 8 weeks. Methods such as this, and freeze-drying may be able to be incorporated into the production in vitro S. jonesii inoculum in the future, preventing loss of bacterial numbers in transit. However, further research is required.

Supplementation and conjugation

As mentioned, one of the major toxic effects of DHP is to strongly chelate essential minerals such as Fe and Zn (Stunzi et al. 1980). Methods for increasing conjugation and/or chelation of DHP by modifying the diet have been postulated as a way to reduce the toxic effects of leucaena.

While Christie et al. (1979) reported DHP conjugated with a glucose molecule to have reduced antiperoxidase activity in vitro, Hegarty et al. (1979) showed that the conjugate was of the same order of chronic goitrogenicity in vivo. However, chelation and conjugation increase the polarity of DHP, resulting in a more water soluble molecule, which can be voided more efficiently. Also, by attaching a sugar molecule or metal ion at the active binding hydroxyl site, its toxic chelating ability is reduced (Lowry et al. 1985). There is other evidence that the toxic effects of DHP are reduced due to conjugation; recent tests on highly productive animals consuming high leucaena diets in eastern Indonesia showed that they were excreting high levels (estimated at > 1000 mg/L using colorimetric analysis) of conjugated DHP. These animals may have developed a coping mechanism of being able to conjugate DHP, without ruminal degradation, thus reducing its toxicity. This may explain the absence of symptoms.

While DHP can be excreted in the free form, it is normal for up to 33% to be found conjugated as a glucuronide or kidney clearance of DHP is more efficient when chelated or conjugated (Puchala et al. 1995). Whilst DHP is more efficiently voided in the chelated form, if essential metal ions are not replaced, deficiencies in these elements will result in toxicity symptoms (Puchala et al. 1996).

Feeding management

Management strategies that control exposure to leucaena have been effective in limiting the extent of toxicity. Prior to the discovery of S. jonesii, Jones and Hegarty (1984) suggested that leucaena should not exceed 30% of diet. As mimosine toxicity rarely presents in animals regularly consuming leucaena and since DHP toxicity is a factor of both time on leucaena and amount of leucaena in diet (Hammond 1995), moderate levels of leucaena in diet for short periods (≤ 2-3 months) can limit the toxic effects. Quirk et al. (1988) showed that it can take up to 8 weeks for clinical symptoms to become evident. Alternating time on leucaena with other feed sources can reduce the toxic effects associated with DHP. However, reducing consumption of leucaena limits the LWG potential of a fattening system. Given that leucaena is often one of the only feedstuffs available during the extended dry season in many tropical smallholder feeding systems, an effective biological control mechanism is the most practical solution to leucaena toxicity.
An example of limiting exposure is found in fattening systems in Sumbawa, eastern Indonesia, many of which feed high levels of leucaena to Bali bulls (up to 100% of diet), and typically fatten over a 4-6 month period (Panjaitan et al. 2013). Farmers report that initial hair loss is common (probably due to mimosine toxicity) followed by complete recovery. They also report that an initial aversion of naïve animals to high leucaena diets can be overcome by using a mixture of fresh faeces from an older bull and fresh leucaena leaves as a source of ‘inoculum’ (Panjaitan et al. 2013).

Other less effective management strategies include drying leucaena. While this converts most of the mimosine to DHP (Hegarty et al. 1964b; Wee and Wang 1987), it does not overcome the toxic effects of DHP itself.

Future research, development and extension directions

Leucaena toxicity, as indicated by high levels of urinary DHP, is still common through tropical countries where leucaena is fed to ruminants.

Farmers and Government agencies promoting the use of leucaena are often ignorant of the effects of leucaena toxicity, especially since there are usually no clinical symptoms. It is vital that research and education are continued to improve understanding and management of this extremely productive legume, in order to optimize animal production and eliminate negative impacts on animal health.

Bacterial control offers the most beneficial and practical solution, provided easy transfer mechanisms are developed, and long-term persistence of efficacy of DHP degradation can be assured. Future research goals include: (1) improved molecular methods for the identification and understanding of the functionality of *S. jonesii* and the *Synergistes* phylum; (2) alternate microbial control options; (3) improved inoculation protocols within Australia and developing countries; and (4) alternate methods of detoxifying DHP.

Acknowledgements

The following are acknowledged for their contributions: Dr Tanda Panjaitan, Dr Dahlauddin, Dr Jacob Nulik, and Debora Kana Hau for experimental support in Indonesia; the ACIAR supported Indonesian field researchers for their physical assistance with collection of rumen fluid and urine samples; and Dr Scott Dalzell and Hayley Giles for their guidance. The work was done with the financial support of ACIAR.

References

Brewbaker JL, Sorensson CT (1990) ‘New tree crops from interspecific leucaena hybrids.’

Hegarty MP, Court RD, Schinckel PG (1964a) Reaction of sheep

© 2013 Proceedings of the 22nd International Grassland Congress
to the consumption of Leucaena glauca Benth. and to its toxic principle mimosine. *Australian Journal of Agricultural Research* 15, 153-167.

Hughes C (1998) 'Monograph of Leucaena (Leguminosae - Mimosoideae)'.

Jones RJ, Megarrity RG (1986) Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of *Leucaena*. *Australian Veterinary Journal* 63, 259-262.

© 2013 Proceedings of the 22nd International Grassland Congress

Shelton HM, Brewbaker JL (Eds RC Gutteridge, HM Shelton) (1994) '*Leucaena leucocephala* - the most widely used forage tree legume.' (CAB International:

Wildin JH (Eds RC Gutteridge, HM Shelton) (1994) 'Beef production from broadacre leucaena in central Queensland.'