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ABSTRACT OF THESIS 

 

 

RESIDUAL SPATIAL AUTOCORRELATION  

IN MACROECOLOGICAL AND BIOGEOGRAPHICAL MODELING: A REVIEW 
 

 

Macroecological and biogeographical modelers have predicted the distribution of 

species across space relying on the relationship between biotic processes and 

environmental variables. Such a method employs data associated, for instance, with species 

abundance or presence/absence, climate, geomorphology, and soils. Statistical analyses 

found in previous studies have highlighted the importance of accounting for the effects of 

spatial autocorrelation (SAC), which indicates a level of dependence between pairs of 

nearby observations. A consensus has existed that residual spatial autocorrelation (rSAC) 

can substantially impact modeling processes and inferences. However, more emphasis 

should be put on identifying the sources of rSAC and the degree to which rSAC becomes 

detrimental. In this thesis, we review previous studies to identify various factors that 

potentially engender the presence of rSAC in macroecological and biogeographical 

models. Additionally, special attention is paid to the quantification of rSAC by attempting 

to bring out the magnitude to which the presence of SAC in model residuals impedes the 

modeling process. The review identified that five categories of factors potentially drive the 

presence of SAC in model residuals: the type of ecological data and the processes 

underlying it, scale and distance, missing variables, sampling design, as well as the 

assumptions and methodological perspectives of the investigator. Furthermore, we 

concluded that more explicit discussion of rSAC should be carried out in species 

distribution modeling. We recommend further investigations involving the quantification 

of rSAC to understand when rSAC can have a negative effect on the modeling process.  

 

KEYWORDS: Spatial autocorrelation, Residual Spatial Autocorrelation, Missing 

Variables, Sampling Design, Scale, Species Distribution Models 
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CHAPTER 1.  INTRODUCTION 

1.1 Background 

Using spatial or geographical data involves learning about the properties of such 

data.  Fields such as geography, ecology that use geographic data, where space and time 

matter, remain concerned with how such data are characterized. The presence of structure 

or dependence among the observations is one of the most common issues that is associated 

with spatial data. Frequently, processes be it environmental or biological, are related across 

space and time. This fact reverts to the notion of distance decay wherein the degree of 

dependence decreases over space. That was the basis of Tobler’s (1970) first law of 

geography: everything is related to everything else, but nearby things are more related 

than distant things. This reasoning can be attributed to the concept of spatial 

autocorrelation (SAC) which was introduced around the late 1960s and early 1970s (Getis, 

2008) and which is loosely defined as follows:  

“The property of random variables taking values, at pairs of locations a certain 

distance apart, that are more similar (positive autocorrelation) or less similar 

(negative autocorrelation) than expected for randomly associated pairs of 

observations” (Legendre, 1993: 1659). 

Contingent upon the variables that drive natural processes, SAC is categorized into 

two types: exogenous and endogenous SAC (Legendre, 1993). The former is driven by 

external environmental (physico-chemical, climatological, geomorphological) factors 

such as temperature, soil and terrain attributes (Dormann, 2007a; Kissling and Carl, 2008; 

Miller, 2012; Václavík et al., 2012). Usually, it is associated with broad-scale spatial trends 

(Miller et al., 2007; Václavík et al., 2012). Endogenous SAC, however, is caused by 

biological (or biology-related) processes (geographic dispersal, predation, disturbance, 

inter-specific interactions, colonial breeding, home-range size, host availability, 
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parasitization risk, metapopulation dynamics, history) that are inherent to the species data 

(Dormann, 2007a ; Kissling and Carl, 2008; Miller, 2012; Crase et al., 2014). It emphasizes 

the contagion effects in cases of positive autocorrelation or the dispersion effects for 

negative autocorrelation (Lichstein et al., 2002; Griffith and Peres-Neto, 2006; Crase et 

al., 2014). Such intrinsic SAC is prominent at fine scales or to high-resolution stochastic 

biotic processes (Dormann, 2007a ; Miller et al., 2007; Chun and Griffith, 2011; Václavík 

et al., 2012). The following sections state the scope and relevance of the study and provide 

further insight on the concept of  residual spatial autocorrelation, hereafter, rSAC. 

 

1.2 Objectives 

The purpose of this review is to determine the circumstances in which the 

magnitude of residual spatial autocorrelation increases in species distribution modeling 

(SDM). More specifically, we sought to answer the following research questions: 

1. What are the major sources of rSAC? 

2. How much do missing variable explain rSAC? 

3. How do various sampling schemes affect the level of structure in model 

residuals? 

 

1.3  Conceptual framework  

Understanding rSAC remains a big issue in the field of ecological modeling. In a 

modeling context, residuals represent the differences between observed values and 

predicted values. Hence, rSAC indicates the amount of SAC present in the variance that is 

not explained by the independent variables. Understanding the distribution of residuals is 
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critical to performing regression modeling analysis, as assumptions such as linearity, 

normality, homoscedasticity (equal variance), and independence rely on the behavior of 

the error terms. The presence of SAC in model residuals is typical of spatial ecological 

data (Borcard et al., 1992;  Lennon, 2000; Dormann, 2007a; Kissling and Carl, 2008; Bini 

et al., 2009); therefore, the use of such data generally violates the assumption of 

independence between pairs of observations, demanding that the effects of rSAC be 

accounted for (Diniz-Filho and Bini, 2005; Bahn et al., 2006).  

Integrating or leaving out rSAC has implications that directly affect the outcomes 

of species distribution modeling (SDM). Failing to adequately address rSAC will 

eventually lead to three major statistical problems. First, the standard errors might well be 

underestimated, leading to what is known as Type I error. This simply means that the 

presence of dependence between pairs of observations across space, where independence 

between such observations is assumed, can result in falsely rejecting, much more often than 

expected, the null hypothesis while it is true (Lennon, 2000). Consequently, that will render 

the regression model itself unreliable (Legendre, 1993; Anselin, 2002; Kim et al., 2016). 

Second, parameter estimates, namely the regression coefficients, might be biased 

(Dormann, 2007a; Václavík et al., 2012). The inflation or deflation of predictors’ 

coefficients will lead to the over- or under-estimation of their predictive power, 

respectively. Lastly, model misspecification, a critical component of variable selection, 

remains an important problem (Austin, 2002; Lichstein et al., 2002; Miller et al., 2007; 

Václavík et al., 2012).  
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1.4 Justification 

The notion of SAC is extensively discussed in biogeography and macroecology 

literature. However, those studies have not taken a systematic look at the contexts and 

factors that contribute to rSAC. Previous researchers suspect that failing to incorporate 

certain independent predictors might be the main problem (Crase et al. 2014). The authors 

suggest that this problem, when associated with the intrinsic rather than the extrinsic type 

of SAC, remains unexplored. Identifying potential missing variables and establishing how 

much their omission increases the level of rSAC would generate new knowledge and add 

to the SDM literature body. In addition to the environmental and biotic missing variables, 

the type of sampling design should also be scrutinized since the latter is often mentioned 

as having the ability to increase rSAC (Lichstein et al. 2002; Bini et al. 2009; Crase et 

al. 2014). This thesis addresses sampling design with respect to sample size, data type, 

sampling technique, and the effect of small scales. Analyzing data at very fine scales 

coupled with the inclusion of important spatially autocorrelated missing variables is 

thought to have the potential to significantly reduce or even remove rSAC in species 

distribution models. Diniz-Filho et al. (2003) suggest that including relevant environmental 

factors that act at each scale in a regression model would eventually remove SAC from the 

residuals at different scales, under the assumption that environmental factors behave 

differently at distinct spatial scales. 

 The bottom line is that by conducting this investigation, we expected to: (1) 

provide a holistic understanding of rSAC across the existing literature of macroecological 

and biogeographical modeling and (2) lay a foundation to conduct further research on 

rSAC. 
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CHAPTER 2. METHODS AND DATA 

2.1 Selection of articles 

The purpose of this step was to gather the necessary literature to meet the objectives 

set forth in the review. Initially, we targeted published peer-reviewed articles from the 

fields of biogeography and macroecology that dealt with SDM and in which SAC was 

explicitly incorporated. For the actual search, we used keywords such as residual spatial 

autocorrelation, spatial autocorrelation, ecological or biogeographical as well as species 

distribution modeling to acquire relevant articles via the Web of Science and Google 

Scholar search engines. To complete the list, we also selected articles cited or referenced 

in the original selections.  

 

2.2 Spatial autocorrelation in the articles 

From the results of the search, we determined the degree to which each article discusses 

the concept of rSAC or SAC more broadly. The articles were carefully reviewed and then 

grouped based on the level of detail they provided about rSAC. To achieve this 

categorization, we used following scale as metric: no mention in cases the article does not 

mention rSAC, simple mention,  in the event that concept is loosely mentioned or discussed 

in the article, and elaborate  in case the topic of rSAC is well discussed by the paper. 

 

2.3 Sources of SAC 

Finally, we meticulously reviewed each article to find out which factor or the 

circumstance that study mentioned or identified as a potential source of SAC in model 

errors. By repeating this process across all the articles, we were able to group the sources 



6 

 

into larger categories, which was the main goal of our review.  In the end, we attempted to 

understand the conditions under which SAC occurred—and magnified—in model 

residuals. The findings and their interpretation and discussion are presented in Chapter 3. 
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CHAPTER 3. RESULTS AND DISCUSSION 

3.1 Subjects and species addressed 

We ended up selecting 97 articles dating from 1984 to 2017 (Table 2.1). Then, we 

reviewed the selected papers in relation to the concept of SAC. The review of the existing 

literature revealed that accounting for SAC in SDM is still in an early stage, despite studies 

having increasingly attempted to widely incorporate the effect of spatial dependence in 

investigating ecological and biogeographical processes over the course of the last thirty 

years. The results indicated that only a small proportion (less than 20%) of ecological and 

biogeographical modelers incorporated SAC in their research. This is partly attributed to 

the fact that the need to incorporate SAC is still contentious among modelers (Diniz-Filho 

et al. 2003; Hawkins et al. 2007; Bini et al. 2009; Miller 2012). The presence of SAC in 

ecological and biogeographical data has long been detected (since around the late 1970s), 

and statistical methods capable of addressing it were developed almost in the same period 

(Dormann 2007a). Legendre (1993) defined and categorized the concept of SAC into 

endogenous and exogenous SAC in the field of ecological data modeling. However, 

modelers did not start substantially publishing studies that incorporate SAC until after 

2000.  

Species distribution modeling stood out as the most studied topic across the board 

(61% of the articles), followed by habitat suitability modeling (22%), and methods (16%). 
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The remaining proportion discussed other aspects of SAC modeling. The modeling 

included many species, such as birds, plants, mammals, and reptiles. Here are some proxies 

used as dependent variables: richness, occurrence, abundance, presence and absence, 

occupancy, composition, dispersal, diversity, and density. For habitat suitability, some 

surrogates are niche suitability, habitat distribution, climatic suitability, climatic forecast, 

or predictability. 

This finding aligns with the fact that 92 out of the 97 articles we reviewed were 

published in the new millennium. Some of the early works that acknowledged the effect of 

SAC before 2000 include, but are not limited to, Borcard et al (1992) who sought to 

partition the total variance of species abundance into spatial and non-spatial components, 

and Pickup and Chewings (1986) who worked on the prediction of erosion and deposition 

in alluvial landscapes of central Australia.  

Reading these discussions about the context of  the current literature shows why 

rSAC, as a subcategory of SAC, remains relatively unexplored in ecological and 

biogeographical modeling.  We divided the articles into three groups (i.e., no mention, 

simple mention, and elaborate) based on the level of details being provided from the 

discussion on rSAC (Table 2.1). We found that 35 articles (36%) never mentioned the 

presence or influence of rSAC. Of the remaining 62 (simple mention plus elaborate) 

articles  51 of them provided more in-depth discussions on the topic (i.e., the elaborate 
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category which represents 53%). Yet the levels of information found in the 62 articles are 

still insufficient for quantifying which factors possibly caused the occurrence of rSAC 

during the modeling processes. It is worth pointing out that 11 (the simple mention) of these 

62 articles only mentioned the term residual spatial autocorrelation once or twice in their 

introductions. As far as the remaining 51 articles were concerned, they provided more 

detailed and descriptive information about rSAC. Such details included the definition of 

rSAC, its origin, methods, and suggestions on how to address it, and its quantification using 

Moran’s I (Table 3.1). In the following sections, we discuss five possible mechanisms or 

factors that potentially dictate rSAC in ecological and biogeographical modeling. 

 

3.2 Ecological data and processes 

Theoretically speaking, SAC is likely to exist in any spatial data because 

observations from nearby locations are normally more related than would be expected on 

a random basis (Kissling et al., 2008). The exchange between responses at these locations’ 

zone of spatial influence results from, for example, contagious biotic processes, such as 

dispersal, growth, mortality, spatial diffusion, diseases, reproduction, and predation 

(Borcard et al., 1992; Lichstein et al., 2002). These underlying processes can eventually 

create spatial patterns in species data without the influence of other external environmental 

data (Borcard et al., 1992). Moreover, Kim et al. (2013) mentioned the increase in size or 

a reduction of vegetation as being another contagious biological process capable of 

explaining the presence of fine-scale intrinsic SAC in spatial environmental data. 
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Furthermore, SAC occurs in ecological data due to the diffusive property across space in 

the movement of environmental and biotic processes, whether it be on the surface of the 

Earth or below the ground (Kim et al., 2016). These environmental factors distributed 

continuously across the geographical area explain why, for instance, species composition 

remains the same among neighboring locations, as most species generally occupy the 

ranges that are greater than the cell size under study (Diniz-Filho et al., 2003). As a 

consequence, Diniz-Filho et al. (2003) suggested that using coarse scales to explain species 

richness would certainly deemphasize variations at very fine scales. The authors suggested 

the use of diffusive ecological processes that are effective at small scales to capture 

information on species composition. Later, Václavík and Meentemeyer (2009) sought to 

capture small-scale contagious processes that lead to spatially dependent distributions and 

thereby violating the assumption of equilibrium between species and environmental 

controls (Václavík et al., 2012). Both works used multiple levels of spatial dependence to 

investigate the effect of dynamic contagious processes in empirical data. Inherently, any 

discipline where these data are analyzed is bound to address the issue of SAC generated by 

diffusive processes. Thus, spatial dependencies will likely appear in models that use 

ecological data and processes (Kissling et al., 2008; Bini et al., 2009; Crase et al., 2014: 

2467). Models that use spatial data are not susceptible to having spatially autocorrelated 

residuals only, as Reverman et al. (2012) noted. Using grid data almost guarantees that 

SAC patterns will be observed in the residuals (Oliveira et al., 2012). Sometimes, this is 

labeled a mismatch between a process unit and an observational unit.  
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3.3 Scale and distance  

Several studies have reiterated that rSAC is highly associated with distance. 

According to Bini et al.  (2009: 196), rSAC was stronger at smaller distances in most 

empirical datasets. Certain researchers have used terms related to scale and distance to 

account for the circumstances in which model residuals show spatial autocorrelation. As 

for Lichstein et al. (2002: 449), they mentioned first proximity or distance and then defined 

the concept of appropriate neighborhood size. According to the authors, distance among 

samples was a necessary condition for the presence of rSAC in regression models. Such 

patterns occurred within an “appropriate neighborhood size,” or the maximum distance at 

which model residuals are autocorrelated. Consequently, when spatial data are analyzed, 

an inappropriate spatial scale will often produce rSAC (Dormann, 2007a). An increasing 

number of studies acknowledge that scale extent is a contributing factor for rSAC. Crase 

et al. (2014) found that most of the SAC occurred at small scales (less than 1 km). As it 

pertains to small scales, it is worth mentioning that failing to account for small-scale 

environmental factors (Diniz-Filho et al., 2003) or only accounting for broad-scale spatial 

dependencies (Diniz-Filho et al., 2005) will create positive rSAC in species richness at 

small scales. Thus, all these local-scale spatial structures (Wu and Zhang, 2013) 

accumulated and caused spatial autocorrelation in the residuals (Bahn et al., 2006). Barn et 

al. (2006) suggested that rSAC disappeared when using environmental predictors at large 

scales (> 100 km). The researchers also admitted that the omission of important 

community-scale processes constituted another crucial factor of spatial dependence.  
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3.4 Missing Variables 

When it comes to comparing traditional non-spatial models to spatial models which 

explicitly account for the presence of SAC, variable selection proves necessary. One way 

to explain the differences between non-spatial and spatial approaches in selecting variables 

is that non-spatial models tend to recover the missing spatial information by including 

environmental variables that happen to be spatially autocorrelated (Bahn et al., 2006). 

Failing to incorporate relevant localized, spatially autocorrelated variables is one of the 

primary sources, if not the first, of rSAC. Leaving out important spatially autocorrelated 

explanatory variables will directly lead to model misspecification (Bini et al., 2009; Miller, 

2012), which potentially produces rSAC and creates an instability associated with the 

Lennon (2000)’s ‘red shift’ problem (Bini et al., 2009). As corroborated by Bini et al. 

(2009), whenever such unmodeled spatially independent variables are included in the 

model, the level of rSAC goes down. On the contrary, when SAC is accounted for as in the 

case of a spatially explicit model, the relative importance likely decreases for non-spatially 

autocorrelated explanatory variables. Certain variables influence the response of 

biogeographical and ecological processes essentially at local scales. Performing broad-

scale modeling will undermine such localized dependent variables, thus resulting in the 

creation of rSAC (Diniz-Filho et al., 2003). Similarly, studies suggest that failing to include 

important variables also causes positive rSAC, which may be an indicator for model 

misspecification (Lichstein et al., 2002; Diniz-Filho et al., 2008;  Kissling et al., 2008; Bini 

et al., 2009). Residual SAC is a sub-type of either exogenous or endogenous SAC. 

Therefore, there will be a possibility that residuals are also autocorrelated, provided that 

one of these two types of SAC exists in the data, as supported by Diniz-Filho and Bini 
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(2005), Miller et al. (2007), Václavík et al. (2012), and Crase et al. (2014). Wu and Zhang 

(2013) similarly invoke missing spatially-structured covariates as factors that are 

responsible for rSAC. 

 

3.5 Sampling Design 

By the “sampling design” designation, we mean to consider sampling size, 

measurement,  sampling scheme, and sampling intensity. Each one of these components 

can potentially lead to residual spatial autocorrelation as mentioned by previous studies. 

Bini et al. (2009) observed that a high degree of rSAC is often present in datasets with 

multiple observations. In contrast, Lichstein et al.(2002: 458) suggested that autocorrelated 

residuals can be caused by poor measurement of an important autocorrelated variable. In 

sampling, these are termed “artifacts” in that they are not a result of the environment but 

rather caused by the researcher (Dormann, 2007a; Crase et al., 2014). For these authors, 

such artifacts are difficult to correct, and they ultimately display rSAC. The artifacts are 

generated by species-specific bias or by differences in how species are lumped or split into 

groups. For instance, taxonomists may split plant species into more ‘species’ than common 

botanists would, or a data recording team may sample one area more intensively than 

another would, thus creating a bias unrelated to the environment. Furthermore, a different 

sampling scheme would produce rSAC when regions of a known occurrence are sampled 

with higher intensity than regions of an unclear occurrence. Lastly, ecological interactions 

among species (e.g., competitive exclusion and founder effects) in isolated habitat patches, 

such as fragmented landscapes and lakes, will increase the level of SAC in assemblage data 
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that are absent from individual species distribution data (Dormann, 2007a; Crase et al., 

2014).  

 

3.6 Assumptions and methodological approaches 

Spatially autocorrelated residuals can be the result of falsely assuming linearity 

between two factors, using a wrong variable selection method, or ignoring the presence of 

non-stationarity in a dataset. As Bini et al. (2009: 197) put it, as an illustration, fitting a 

linear model to a quadratic distribution or response leads to the residuals being spatially 

autocorrelated. In addition, performing model selection requires modelers to follow several 

key steps, including variable selection. Various methods are used in variable selection, 

such as P-value, Adjusted R2, Aike information criterion, prediction and cross-validation, 

to name a few. Le Rest et al. (2014) suggested that the Akaike information criteria, when 

used as a metric to select variables in the presence of rSAC, proved to include unwanted 

variables to the detriment of other relevant variables, thereby ignoring the presence of 

dependence in such residuals. Bini et al. (2009) viewed non-stationarity as the non-

consistency in the relationship between variables throughout the whole extent of the data. 

For Miller (2012), non-stationarity is less intuitive and less used compared to SAC and has 

only lately been incorporated in SDM. The author suggests that the concept can be viewed 

as the spatial variant of a constraint in correlation and regression modeling known as the 

Simpson’s paradox (the linear trend of a sub-group is reverse of that of the overall group). 

It represents the statistical formalization of spatial heterogeneity, which defines uneven 

spatial distribution (like SAC, it is generally the result of sampling differences, another 

process in different locations of the study area or model misspecification such as missing 
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variables). Bini et al. (2009: 200) found that high rSAC usually exists in datasets with high 

levels of non-stationarity. Comparably, Lichstein et al. (2002: 449) contended that mis-

specifying a model form, such as assuming linearity when the relationship is nonlinear, 

may lead to spatially autocorrelated residuals. For Wu and Zhang (2013: 59, 60), rSAC 

will eventually be caused by linearity oversimplification. Finally, the consensus view from 

among these studies is that residual structures may result from an assumption one holds 

about the system under study or the methodological approach that one chooses.  
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Table 3. 1 Literature review in macroecological and biogeographical modeling. SAC 

spatial autocorrelation, rSAC residual spatial autocorrelation 

Number Author Year  Journal  rSAC Subject 

1 Bahn et al. 2006 Ecography Elaborate Bird distribution 

2 Bini et al. 2009 Ecography Elaborate Spatial and 

non-spatial 

regression 

3 Borcard et al. 1992 Ecology Elaborate Partialing out 

Species abundance 

4 Bonada et al. 2012 Journal of 

Biogeography 

Elaborate Richness and 

composition 

invertebrates 

5 Crase et al.  2012 Ecography Elaborate RSAC in Mangrove 

species distribution 

6 Crase et al. 2014 Global Change 

Biology 

Elaborate Mangrove Species 

distribution and 

forecast 

7 Diniz-Filho et 

al. 

2003 Global Ecology 

& 

Biogeography 

Elaborate Species richness of 

bird 

8 Diniz-Filho et 

al. 

2005 Global Ecology 

& 

Biogeography 

Elaborate Bird species 

richness 

and SAC 

9 Diniz-Filho et 

al. 

2008 Global Ecology 

& 

Biogeography 

Elaborate Model selectin in 

mammal species 

10 Dormann 2007a Global Ecology 

& 

Biogeography 

Elaborate Spatial and non-

spatial 

models in ecology 

11 Griffith et al. 2006 Ecology Elaborate Eigenfunction in 

ecological 

modelling 

12 Griffith 2000 Journal of 

Geographical 

 of Systems 

Elaborate Regression 

modelling of geo-

demographic data 

13 Hawkins et al. 2007 Ecography Elaborate Analyzing 

coefficient shifts in 

bird species 

richness 

14 Kühn 2007 Diversity and 

Distributions 

Elaborate Plant species 

richness and 

environmental 

correlates 

15 Kim et al. 2013 Physical 

Geography 

Elaborate Multiple SAC in 

soil moisture and 

landscape 
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Table 3.1  (continued) 

16 Kim et al. 2016 Soil Science 

Society of 

America Journal 

Elaborate Multiple SAC in 

Soil-landform 

modelling 

17 Kissling et al. 2008 Global Ecology 

& Biogeography 

Elaborate SAC and Model 

selection  

18 Lichstein et 

al. 

2002 Ecological 

Monographs 

Elaborate Models and 

breeding habitats of 

songbirds 

19 Oliveira et al. 2012 Biodiversity 

Conservation 

Elaborate Climatic suitability 

of  

Biome in climate 

change 

20 Oliveira et al. 2014 Ecography Elaborate Ecological niche  

modeling of plant 

species 

21 Sheehan et al. 2016 Ecology and 

Evolution 

Elaborate Bird species habitat 

22 Ortiz-Yusty 

et al. 

2013 Caldesia Elaborate Species richness 

and climate 

23 Pickup et al. 1986 Ecological 

Modelling 

Elaborate Prediction of 

erosion and 

deposition  

24 Le Rest et al. 2014 Global Ecology 

& Biogeography 

Elaborate Variable selection 

in Species 

abundance 

25 Revermann et 

al. 

2012 Journal of 

Ornithology 

Elaborate Bird species habitat 

and  

climate change 

26 Václavík et 

al. 

2012 Journal of 

Biogeography 

Elaborate Multi-scale SAC & 

Invasive forest 

pathogen 

distribution 

27 Veloz 2009 Journal of 

Biogeography 

Elaborate Niche modeling 

and 

 plant species 

distribution 

28 Wu et al. 2013 Applied 

Geography 

Elaborate Model comparison 

and occurrence of 

cloud cover 

29 Siesa et al. 2011 Biological 

Invasions 

Elaborate SAC and crayfish 

distribution 

30 Piazzini et al. 2011 Journal of 

Herpetology 

Elaborate SAC and presence 

of reptile species 

31 Ishihama et 

al. 

2010 Ecological 

Resources 

Elaborate Distribution of 

herbaceous species 
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Table 3.1 (continued) 

32 Record et al. 2013 Global Ecology 

 and 

Biogeography 

Elaborate Plant species 

distribution 

projection and 

SAC 

33 Naimi et al. 2011 Journal of 

Biogeography 

Elaborate SAC and species  

Occurrence 

modelling 

34 Ficetola et al. 2012 Ecography Elaborate SAC and reptile 

species dispersal 

35 Dormannn 2007

b 

Ecological 

Modelling 

Elaborate SAC and species 

distribution 

36 Wu et al. 2009 Ecological 

Modelling 

Elaborate SAC and 

landscape 

dynamics 

37 Merckx et al. 2009 Ecological 

Modelling 

Elaborate SAC and 

Predictability 

Marine Nematode 

biodiversity 

38 Dowd et al. 2014 Ecological 

Applications 

Elaborate Coastal marine 

benthic 

microfaunal 

distribution 

modelling 

39 Hefley et al. 2017 Ecology Elaborate Modeling SAC in  

ecological data 

40 Betts et al. 2006 Ecological 

Modelling 

Elaborate SAC and forest 

bird occurrence 

41 Mets et al. 2017 Ecosphere Elaborate SAC in 

deforestation 

modeling 

42 Tallowin et al. 2017 Journal of 

Biogeography 

Elaborate Terrestrial 

vertebrate  

richness 

43 Hindrikson et 

al 

2017 Biological 

Reviews 

Elaborate Genetics-Wolf 

species  

richness and 

distribution 

44 Record et al.  2013 Ecosphere Elaborate SAC-Climate 

change prediction 

45 Austin 2002 Ecological 

modelling 

Elaborate Spatial species 

distribution 

modeling 

46 Carl et al 2007 ecological 

Modelling 

Elaborate SAC in Species 

distribution 
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Table 3.1 (continued) 

47 Dirnböck et 

al. 

2004 Journal of 

Vegetation  

Science 

Elaborate SAC-SP habitat  

distribution 

48 Zhang et al. 2009 Forest Science Elaborate Species model  

comparison-SAC 

49 Gwenzi et al. 2017 IEEE Journal of 

Selected Topics 

in Applied Earth  

Observations and 

Remote Sensing 

 

Elaborate 

 

SAC and plant 

 Biomass 

50 Roth et al. 2016 American 

naturalist 

Elaborate Interactions-

endangered  

species 

51 Davis et al. 2016 Ecosphere Elaborate Urban plant 

invasion 

52 Mattsson et 

al. 

2013 PloS ONE Simple 

mention 

SP Assamblage-

SAC 

53 Chun et al. 2011 Annals of the 

Associations  

of American 

Geographers 

Simple 

mention 

Network SAC and  

migration flows 

54 Cliff 1984 Journal of the 

American  

Statistical 

Association 

Simple 

mention 

Correlation 

estimation  

between scores 

55 Getis 2008 Geographical 

Analysis 

Simple 

mention 

History of SAC 

56 Miller et al. 2007 Ecological 

Modelling 

Simple 

mention 

SAC and 

predictive  

vegetation 

modelling 

57 Lennon 2000 Ecography Simple 

mention 

SAC and 

geographical 

 ecology 

58 Zhu et al. 2012 Journal of 

Geographical 

Science 

Simple 

mention 

SAC and 

vegetation cover. 

59 Poley et al. 2014 Journal of 

Biogeography 

Simple 

mention 

SAC and large 

mammals’ 

occupancy 

60 Jackson et al. 2015 Biological 

Conservation 

Simple 

mention 

Prediction of bird 

species habitat 

61 Platts et al. 2008 Ecological 

Modelling 

Simple 

mention 

Model selection in 

tree distribution 
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Table 3.1 (continued) 

62 Hefley et al. 2017 Ecology Simple 

mention 

Functions in 

spatial 

 ecological 

modelling 

63 Estrada et al. 2016 Animal 

Conservation 

No 

mention 

Biodiversity-Bird 

species 

64 Ali et al. 2010 Water 

Resources 

Research 

No 

mention 

Soil moisture and 

topographical 

modelling 

65 Anselin et al. 1998 Handbook of 

Applied 

Statistics 

No 

mention 

SAC and 

regression models 

66 Santos et al.  2009 Canadian 

Journal of 

Zoology 

No 

mention 

SAC in Pine SP 

67 Dorken et al. 2017 Journal of 

Ecology 

No 

mention 

Plant species 

density 

68 Ennen et al. 2016 Canadian 

Journal of 

Zoology 

No 

mention 

Reptile pattern 

modelling 

69 Weeks et al. 2017 River Research 

and 

Applications 

No 

mention 

Snail-Aquatic 

vegetation 

70 Dronova et al. 2016 Remote Sensing No 

mention 

Bird species 

diversity 

71 Anselin et al. 2006 Geographical 

Analysis 

No 

mention 

Spatial effects in  

environmental 

economics 

72 Augustin 2001 Journal of 

Applied 

Ecology 

No 

mention 

Succession in  

semi-natural 

vegetation 

73 Chang et al. 2012 PloS ONE No 

mention 

Genetic and bird 

species 

distribution 

74 Seymour 2005 Journal of the 

American 

Statistical 

Association 

No 

mention 

Spatial data: 

theory and practice 

75 Siderov 2005 Austral Ecology No 

mention 

SAC practice and 

theory  

76 Hongoh et al. 2012 Applied 

Geography 

No 

mention 

Mosquito 

distribution 

77 Miller 2012 Progress in 

Physical  

Geography 

No 

mention 

Species 

distribution 

 modelling 
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Table 3.1 (continued) 

78 Kleisner et al. 2010 Marine Ecology  

Progress Series 

No 

mention 

Pelagic fish 

modelling 

79 Tarkhnishvili 

et al. 

2012 Biological 

Journal of the 

 Linnean Society 

No 

mention 

Distribution of  

forest species 

80 Wiegand et al. 2004 OIKOS No 

mention 

Point pattern 

analysis in ecology 

81 Yu et al. 2012 ProQuest 

Dissertations 

 and Theses 

No 

mention 

Tree growth 

modelling  

and seedling 

recruitment 

82 Lloyd et al. 2005 Diversity and  

Distributions 

No 

mention 

SAC and Benthic  

invertebrates 

83 Rodriguez et 

al. 

2015 Journal Insect 

 Conservation 

No 

mention 

Distributions of 

oak  

wasps species 

84 Nicolaus et al. 2013 Journal 

Evolution  

Biology 

No 

mention 

Gastropod mollusk  

distribution 

85 Warren et al. 2014 
Trends in 

Ecology 

 and Evolution 

No 

mention 
Species  

distribution 

modeling  

86 Wieczorek et 

al. 

2014 Agricultural and 

Forest  

Entomology 

No 

mention 

Ecological niche  

modeling aphids 

87 Epperson 2000 Ecological 

Modelling 

No 

mention 

Space-time and  

ecological 

modeling 

88 Wulder et al. 2007 Ecological 

Modelling 

No 

mention 

Forest growth 

modeling 

89 Büchi et al. 2009 Ecological 

Modelling 

No 

mention 

Meta-community  

and species 

distribution 

90 Marmion et 

al. 

2009 Ecological 

Modelling 

No 

mention 

Butterfly species  

distribution 

91 Legendre 1993 Ecology No 

mention 

SAC trouble or 

 paradigm in 

ecology 

92 Guénard et al. 2016 Ecosphere No 

mention 

Fish-spatial 

modeling 

93 Estrada et al. 2016 PloS ONE No 

mention 

Habitat suitability  

94 Ingberman et 

al. 

2016 PloS ONE No 

mention 

Muriquis 

distribution 
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Table 3.1 (continued) 

95 Ciccarelli et 

al. 

2016 Folia 

Geobotanica 

No 

mention 

Spatial modeling 

Species diversity 

96 Güler et al. 2016 Journal of 

Vegetation 

Science 

No 

mention 

Plant species 

richness 

97 Komac et al. 2016 PloS ONE No 

mention 

Habitat suitability 
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CHAPTER 4. CONCLUSIONS 

Macroecological and biogeographical modelers are aware that there are multiple facets 

of spatial autocorrelation. Incorporating SAC in the modeling process, comparing spatial 

and non-spatial modeling, and identifying the potential issues arising from the presence of 

spatial dependence were often recognized in the studies surveyed in this research. There 

appears to be a consensus among modelers that spatially explicit models in most cases 

outperform non-spatial models that ignore the effects of spatial structure. Understanding, 

however, why models show such differences in performance and the circumstances under 

which they amplify remains unclear (Crase et al., 2014; Kim et al., 2016; Miralha and Kim, 

2018).  

Our review of the prominent works addressing the topic of SAC allowed us to identify 

and categorize the potential sources of rSAC. The nature of the data, missing autocorrelated 

variables, scalar extent of the study and sampling design, as well as the kinds of 

methodological assumptions represent the primary causes of SAC in model residuals. This 

categorization is a critical finding given that it provides a better understanding of the 

circumstances under which model residuals are spatially structured.  

However, the scarcity in quantifiable parameters prevented us from evaluating the 

magnitude to which rSAC becomes problematic in SDM. In our review, the percentage of 

the papers (64% comprising those elaborate and simple mention categories in Table 3.1) 

that allude to rSAC for the most part do so slightly and lack quantitative information that 

would in turn facilitate any kind of quantitative comparisons. This review shows that rSAC 

in macroecological and biogeographical models remains predominantly endogenous, in 

that intrinsic biotic processes drive the presence of spatial autocorrelation in the residuals. 
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This suggests a need for further investigations that aim to quantify rSAC and analyze how 

it accumulates. It is critical to establish the role of missing variables, various sampling 

designs and types of data along with model misspecification in generating the presence of 

SAC in model residuals. Consequently, we strongly recommend using combinations of 

these factors at multiple scales to model macroecological and biogeographical processes.  
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