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ABSTRACT OF THESIS 
 

 
 
 
 

ENERGY COMPENSATION WITH EXERCISE IS NOT DEPENDENT ON DOSE  
 
 

Background: Exercise induced weight loss is often less than expected due to a 
coordinated set of compensatory mechanisms that serve to maintain energy 
homeostasis. The extent to which exercise frequency, duration, intensity and 
exercise energy expenditure (ExEE) influences the compensatory response to an 
exercise-induced energy deficit (energy compensation) is controversial. 
Determining how these variables impact energy compensation would help health 
care providers prescribe exercise with greater probability of creating a sustained 
negative energy balance and subsequent weight loss. 
Methods: 44 Overweight/obese men and women (BMI=25-35kg/m²) aged 18 to 
40 years were randomized to perform aerobic exercise 2 or 6 days/week or into a 
sedentary control group for 12 weeks. Changes in body composition and rates of 
energy expenditure at rest and during physical activity were assessed. Exercise 
sessions were evaluated for duration, intensity, and ExEE. Energy compensation 
was determined by comparing changes in bodily energy stores to total ExEE and 
expressed as both % energy compensated (compensation index, CI) and total 
energy compensated (kcal). 
Results: No differences in energy compensation (CI or total energy 
compensated) were observed between groups exercising two or six days per 
week. ExEE, time spent exercising per week, or exercise intensity did not 
influence CI or total energy compensated. Greater fat mass was lost (-1.77 kg) 
when weekly ExEE exceeded 2,000 kcal compared to under 2,000 kcal (-0.41 kg, 
p<0.05), ExEE predicted % fat mass loss (p<0.05) when controlling for total 
energy compensated. 
Conclusion: Greater exercise intensity, frequency, ExEE or exercise duration do 
not promote greater energy compensation when expressed as CI or total energy 
compensated. When energy compensated is held constant, greater ExEE 
promote fat mass loss. ExEE over 2,000 kcal/week is needed to overcome the 
compensatory response and reduce fat mass. 
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Chapter One: Introduction 

Background 

Obesity is one of the largest epidemics plaguing affluent societies with 

nearly 40% of the U.S adult population classified as obese [1]. Obesity is a risk 

factor for some of the most serious health complications including cardiovascular 

disease, hypertension, certain cancers and type II diabetes [2]. Greater mortality 

rates with obesity have estimates of life expectancy reduced by 6-7 years with up 

to 300,000 deaths attributed to obesity annually in the US. Increased healthcare 

costs and loss of workplace productivity associated with obesity have additionally 

placed an insurmountable strain on the US. economy [3, 4]. Obesity has been 

attributed to a variety of factors, with lifestyle choices creating a positive energy 

balance, i.e., when energy consumed is greater than energy expended, cited as 

the largest contributor [5]. 

A large body of work bares proof of physical activity (PA), often increased 

by leisure-time exercise training, as the main factor of nutrient energy partitioning 

[6-10]. Energy partitioning simply refers to what becomes of macronutrients once 

they are absorbed. If one is engaged in regular PA, energy is delegated to 

repairing and refueling the body rather than storage as adipose tissue. [6-9, 11, 

12]. Additionally, most individuals have the ability to exercise for prolonged 

periods of time at intensities 2 -to -16-fold above resting rates of energy 

expenditure [13]. As such, single bouts of exercise can result in energy 
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expenditures of 250-2500 kcal and, when repeated across days, can lead to the 

significant negative energy balance needed for weight loss [13-15]. This has led 

to many using exercise training as a cost-effective solution to reverse and 

prevent obesity and the resulting comorbidities [16].  

Unfortunately, weight loss in response to exercise is often much less than 

expected [17]. Indeed, some report no changes in weight between a sedentary 

control group and exercise group after 4 weeks of exercise [18], while others 

demonstrate similar weight loss between groups expending different amounts of 

energy through an intervention [19, 20]. The reason for these perplexing results 

are most likely due to a phenomenon referred to as energy compensation. 

In an effort to maintain energy homeostasis, the body is equipped with 

both metabolic and behavioral mechanisms that aggressively retain and 

replenish bodily energy stores, during an energy deficit. Increases in energy 

intake are commonly assumed to be the primary compensatory response when 

exercising to create a negative energy balance, with some reporting a positive 

relationship between energy expenditure and energy intake [20-22]. The extent 

to which exercise dose, in terms of frequency, duration, intensity and exercise 

energy expenditure (ExEE) has on energy compensation is controversial. One 

thought is that greater energy expenditures with exercise promote greater energy 

intake and, as such, is a futile weight loss strategy [20, 22]. However, a recent 

investigation determined groups expending 3,000 or 1,500 kcal/week 

compensate similarly (about 1,000 kcal per week), causing only the 3,000 kcal 

group to have significant weight loss after 12-weeks [23]. This demonstrates 
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greater energy expenditures do not promote greater compensation, rather, are 

needed to overcome the obligatory compensatory response of about 1,000 

kcal/week. Determining the extent to which exercise impacts compensatory 

outcomes would help health care providers prescribe exercise with greater 

probability of creating a negative energy balance and subsequent weight loss. 

With obesity and co-morbidities on the rise, it is imperative to discover novel 

weight loss and maintenance strategies to mitigate the deleterious consequences 

obesity has on individuals and on society at large.  

 

Problem Statement 

 
 Obesity afflicts every modern society on the planet. With limited success 

combating the disease pharmacologically and with bariatric surgery being an 

expensive and often risky operation, it is of the upmost importance we find 

efficient and sustainable weight loss practices. Exercise and diet are 

unequivocally the most cost effective and easily implemented solution to combat 

obesity; however, weight loss results differ drastically between individuals, likely 

due to variations in the compensatory response to an exercise-include energy 

deficit. A limitation for prescribing exercise to induce weight loss is the lack of 

consensus about its role in subsequent energy compensation. The roles exercise 

variables, such as frequency, duration, intensity and energy expenditure 

contribute to maintaining a negative energy balance warrants further exploring. 

The present study aims to fill this gap. 
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Aims 

 
1. Demonstrate less frequent exercise evokes a reduced compensatory response 

compared to frequent exercise.  

 

2. Demonstrate fat mass loss is influenced by exercise dose (intensity, ExEE and 

time spent exercising per week). 

 

 

Hypothesis 

 
1. Less frequent exercise (2 days/week) will evoke a reduced compensatory 

response compared to frequent exercise (6 days/week). This hypothesis is based 

on the notion that fewer exercise sessions could result in less episodes of 

compensatory eating and/or fewer insults on the biological mechanisms 

promoting energy homeostasis.  

 
2. Greater exercise dose will lead to greater fat mass loss when controlling for 

energy compensated. This hypothesis is based on previous literature indicating 

that when energy compensation is equivocal, greater exercise expenditures are 

needed to overcome the compensatory response to produce significant weight 

loss. 
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Chapter Two: Literature Review 

Introduction 

Obesity epidemic 

Obesity is one of the largest epidemics plaguing affluent societies with 

nearly 40% of the U.S adult population classified as obese [1]. Obesity is a risk 

factor for some of the most serious health complications including cardiovascular 

disease, hypertension, certain cancers and type II diabetes [2].Increased 

healthcare costs and loss of workplace productivity associated with obesity have 

additionally placed an insurmountable strain on the US. economy [3, 4]. Obesity 

has been attributed to a variety of factors, with lifestyle choices creating a 

positive energy balance, i.e., when energy consumed is greater than energy 

expended, cited as the largest contributor [5]. A novel theory explaining modern 

obesity describes the epidemic arising from changes in 20th century socio-

environmental conditions such as reduced pathogenic disease, decreased 

physical activity and improved nutrition leading to excess maternal energy stores 

and subsequent hyperplasia of fetal pancreatic beta cells and adipocytes [24]. By 

the late 20th century, a “metabolic tipping point” was reached in which 

hyperinsulinemia, relative overabundance of adipocytes and persistent inactivity 

gave a nutrient sequestering advantage to adipocytes garnering the obesity crisis 

[24]. By 1978, the average amount of daily energy Americans consumed began 

to exceed energy expended [25, 26]. By 2006, the average American diet 

contained an extra 218 kilocalories (kcal) per day [25]. This increase in daily 

energy intake can certainly contribute to the obesity epidemic, although likely 
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only part of the problem. Comparing the energy intake of Americans in 1909 to 

1960, those in the former era actually consumed more energy, yet had much 

lower rates of obesity [25]. Early in the 20th century, roughly 40% of the U.S. 

population worked as a farmer and nearly 73% of jobs involved manual labor 

[27]. Most of the population walked to destinations with motorized vehicles being 

owned only by the wealthy. Simply put, people were far more physically active 

100 years ago and consequently required a greater energy intake. Therefore, the 

drastic spike in obesity rates are likely due to both greater energy consumption 

and less physical activity (PA). In the 1950’s, scientists demonstrated PA not only 

effects energy expenditure, but is the major modifiable determinant of energy 

intake [28]. A large body of work bares proof of PA, often increased by leisure-

time exercise training, as the main factor of nutrient energy partitioning [6-10]. 

Energy partitioning simply refers to what becomes of macronutrients once they 

are absorbed. If one is engaged in regular PA, energy is delegated to repairing 

and refueling the body rather than storage as adipose tissue. [6-9, 11, 12]. 

Additionally, most individuals have the ability to exercise for prolonged periods of 

time at intensities 2 -to -16-fold above resting rates of energy expenditure [13]. 

As such, single bouts of exercise can result in energy expenditures of 250-2500 

kcal and, when repeated across days, can lead to the significant negative energy 

balance needed for weight loss [13-15]. This has led to many using exercise 

training as a cost-effective solution to reverse and prevent obesity and the 

resulting comorbidities. Unfortunately, weight loss in response to exercise is 

often much less than expected [17]. Indeed, some report no changes in weight 
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between a sedentary control group and exercise group after 4 weeks of exercise 

[18], while others demonstrate similar weight loss between groups expending 

different amounts of energy through an intervention [19, 20]. The reason for 

these perplexing results are most likely due to a phenomenon referred to as 

energy compensation. 

What is Energy compensation 

One of the most important biological functions of the body is its ability to 

maintain homeostasis in an ever-changing environment. There are many 

examples of this including maintaining acid/base balance, blood glucose, body 

water/electrolyte equilibrium and hormonal regulation. Another often overlooked 

regulatory process is energy homeostasis, where the human body is working to 

maintain energy balance. Like other acts of maintaining homeostasis, the ability 

to maintain energy balance can be viewed as an evolutionarily conserved 

mechanism, specifically in place to retain bodily energy stores to preserve 

reproductive function, a useful survival strategy in times of famine [29]. 

Unfortunately, maintaining energy homeostasis is not advantageous for most 

individuals living in developed nations today who desire a negative energy 

balance to induce weight loss. Compensatory responses working against the 

sustained negative energy balance needed for weight loss may be biological/ 

metabolic (reduced resting metabolic rate and non-exercise activity 

thermogenesis) or behavioral (increased energy intake, decreased physical 

activity) and provoked by either prolonged energy restriction (ER) or exercise [17, 

22, 30, 31].  
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Mechanisms for Metabolic Energy Compensation  

 Negative energy balance achieved through exercise or ER can cause 

involuntary perturbations to metabolic processes that are at least partially 

sufficient to counter an exercise or dietary induced energy deficit. These 

involuntary metabolic changes include decreases in resting metabolic rate (RMR) 

and brown adipose tissue activation (BAT), and increased skeletal muscle work 

efficiency [29].  

Resting Metabolic Rate 

RMR is the rate at which the human body expends energy at complete 

rest, often conceptualized as kcal/24 hours [32]. RMR is the largest component 

(50-70%) of total energy expenditure (TEE), while fat-free mass (FFM) accounts 

for 60-70% of its variance [33]. During prolonged periods of energy restriction 

and subsequent weight loss, the body responds by reducing RMR to conserve 

energy and regain energy balance [29]. Decreases in serum catecholamine 

levels are one mechanism behind RMR reductions with weight loss, controlling 

the fraction of glucose oxidized for energy or stored in the body as glycogen or 

adipose tissue [34]. Changes in RMR could also act as a mediating variable in 

the positive relationship between FFM and appetite [35]. RMR is positively 

associated with FFM, meal size and fasting levels of hunger whereas a greater 

amount of FFM provokes greater energy expenditure and energy intake [36]. 

This is observed with obese individuals who have greater amounts of FFM to 

support the large amounts of adipose tissue they harbor, prompting greater 
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energy intakes in obese than non-obese individuals [36]. This is one reason 

obese individuals often have more difficulty in tolerating energy restriction.  

Skeletal Muscle Work Efficiency, Non-Resting Energy Expenditure 

Non-resting energy expenditure is energy expended through PA or 

exercise. Non-volitional reductions in non-resting energy expenditure during an 

energy deficit are accomplished by increasing skeletal muscle work efficiency, 

that is, reducing the energy expended per unit of FFM for a given work load [37, 

38]. Improvements in skeletal muscle work efficiency can be caused by 

increasing hypothalamic – pituitary – adrenal (HPA) axis activity and decreasing 

hypothalamic – pituitary – thyroid (HPT) axis activity [29]. Hypercortisolemia from 

increased HPA axis activity results in reductions FFM and greater energy stored 

as adipose tissue [39]. Attenuations in HPT axis activity due to leptin reductions 

after weight loss reduces active thyroid hormone (T3) [34], which normally 

promotes  energy expenditure by increasing heart rate, blood pressure and 

muscle ATP consumption through stimulating the production of muscle ATPase 

[29].  

 Increasing the ability of skeletal muscle to oxidize fat over glucose is 

another mechanism working to improve skeletal muscle work efficiency with 

weight loss [38, 40]. A 20% increase in skeletal muscle efficiency as a result of a 

10% decrease in body weight  alters gene expression involved with lipid and 

carbohydrate metabolism to increase free fatty acid oxidation [37, 38]. 

Specifically , a downregulation of phosphofructokinase 1 (PFK-1) and fructose-

bisphosphate aldolase C (AldoC) are observed, while genes involved in fatty acid 
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oxidation such as 3-hydroxyacyl-CoA dehydrogenase (HADHsc) and fatty acid 

binding protein 4 (FABP4) are upregulated [40]. These changes in gene 

expression cause skeletal muscle to be less reliant on glucose and reduce 

activity induced energy expenditure as a mechanism to attenuating further weight 

loss [40]. Shifts in macronutrient utilization can also be assessed by calculating 

respiratory quotient (RQ, the ratio of CO2 produced to O2 consumed during 

respiration). RQ indicates the predominant macronutrient one is utilizing for fuel, 

as an RQ of 1 indicates the metabolism of pure glucose, 0.818 indicates protein 

and 0.696 indicates fatty acid oxidation [41]. Most RQ values are between these 

values, indicating mixed macronutrient usage. Often, a decrease in RQ follows 

weight loss, indicating a greater proficiency for fat oxidation, which often follow 

reductions in resting and TEE [29].  

Brown Adipose Tissue Activation 

BAT-induced thermogenesis is regulated production of heat, which is 

influenced by environmental temperature and diet [29]. Brown adipose tissue 

(BAT) contains the enzyme Uncoupling Protein 1 (UCP1) which is responsible for 

uncoupling mitochondrial substrate oxidation and releasing energy as heat 

instead of forming ATP [29]. BAT is highly innervated and vascular, responding 

to cold weather, changes in body weight and sympathetic nervous stimulation 

from catecholamines and T3 to generate heat [42, 43]. Reductions in 

sympathetic nervous system activity (SNS) and T3 after weight loss reduces BAT 

activation and thus reduce resting and TEE [34]. As little as 25 grams of BAT 



 
 

 11  

becoming minimally active would be sufficient to account for declines in energy 

expenditure beyond what is predicted after weight loss [44]. 

Behavioral energy compensation mechanisms  

Behavioral compensatory mechanisms are volitional responses to an 

energy deficit, that is, those in which we have control over, modulated by certain 

neurobehavioral mechanisms [45]. Behavioral compensatory mechanisms 

include increases in energy intake and decreases in voluntary PA/exercise 

engagement, with the former being the primary compensatory mechanism 

responsible for maintaining energy homeostasis when exercising for weight 

control [22]. 

Increases in energy intake 

An energy deficit influences the desire to eat through the 

activation/deactivation of certain regions of the brain [46].Greater energy intake 

in response to a negative energy balance can be caused by changes in neuronal 

signaling in response to food [46]. Brain areas that are more active in response 

to visual food vs. non-food cues following weight loss include areas of the limbic 

and reward system whereas parts of the brain associated with executive and 

decision-making functions are decreased [47, 48]. This causes the rewarding 

properties of food to take precedent over inhibitory control to drive eating 

behavior [49].  

Fluctuations in appetite regulating hormones have long been attributed to 

increases in appetite and decreases in satiety during a negative energy balance, 

either from ER or exercise [50]. The “hunger hormones” can either be orexigenic 
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(ghrelin) or anorexigenic (leptin, insulin, GLP-1, pancreatic peptide, peptide YY) 

[51]. A rise in ghrelin can cause greater appetite, whereas decreases in the 

anorexigenic hormones lower feelings of satiety after a meal, both of which can  

leading to over indulging [52].  

The endocannabinoid system (ECS) is a widespread neuromodulatory 

system that plays important roles in central nervous system (CNS) development, 

synaptic plasticity, immunity, and energy homeostasis [53, 54]. The ECS is 

comprised of cannabinoid receptors, endogenous cannabinoids 

(endocannabinoids), and the enzymes responsible for the synthesis and 

degradation of the endocannabinoids. The two most well-studied 

endocannabinoids are the arachidonic acid derivatives, N-

arachidonoylethanolamide (AEA) and 2-acachidonoylglycerol (2-AG) and come 

from multiple organs and tissues including the brain, muscle and adipose tissue 

[55]. AEA serves as an orexigenic factor in hunger-driven, homeostatic feeding, 

while 2-AG is implicated in the motivational value of food [55]. 

AEA and 2-AG are endogenous agonists of the canonical cannabinoid 

receptors, CB1R and CB2R, G protein coupled receptors that are widely 

distributed throughout the body [55]. CB1R is heavily concentrated in organs and 

tissues associated with energy homeostasis including the brain, liver, pancreas, 

GI tract, muscle and adipose tissue, whereas CB2R is primarily involved with 

immunity [55]. Activation of CB1R receptors in the hypothalamus increases 

consumption of food and is suppressed by the satiety signaling hormone leptin 

[56]. In the reward centers of the brain (mesolimbic system), CB1R activation 



 
 

 13  

enhances reward driven consumption of highly palatable food [57-59]. In the 

periphery, CB1R binding by endocannabinoids increases energy storage via 

stimulation of fat mass hyperplasia, glucose uptake and lipogenesis in adipocytes 

[60], initiation of lipogenesis in the liver [61], and increased insulin secretion from 

the pancreas [62]. In addition to favoring energy storage, CB1R activation can 

also reduce energy expenditure by decreasing BAT-induced thermogenesis [63] 

and glucose uptake into skeletal muscle [64]. Increasing plasma glucose and 

insulin suppresses the amount of endocannabinoids found in circulation, but not 

in insulin resistant individuals, which may be implicative in the overeating 

associated with type II diabetes or pre-diabetes [65]. Interestingly, the more 

visceral adipose tissue an individual has the greater the concentration of 2-AG, 

but not AEA found in circulation [66, 67]. Given the role 2-AG has on activating 

energy storage mechanisms in the periphery and its ability to promote the 

consumption of highly palatable foods, its role in the progression of obesity and 

other metabolic syndrome components seems probable. 

Reductions in physical activity 

  Another proposed behavioral change during a negative energy balance is 

engaging in less non-exercise physical activity (NEPA). Limiting the amount of 

time spent doing unstructured physical activity may counter the energy expended 

during exercise or the negative energy balance created via energy restriction 

[68]. Experiencing muscle soreness or mental fatigue after a rigorous bout of 

exercise may lead one to engage in more sedentary behaviors such as taking the 

elevator instead of climbing the stairs.  
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Exercise and Energy balance: 

Exercise is a common therapy for weight loss with the American College 

of Sports Medicine recommending 225 minutes of moderate physical activity per 

week for adults seeking weight loss [69]. However, exercise-induced weight loss, 

based on the energy expended during exercise, is often much less than one 

would expect due to the compensatory mechanisms working to maintain energy 

balance discussed above. Increases in energy intake are commonly assumed to 

be the primary compensatory response when exercising to create an energy 

deficit [21, 22]. Edholm et al. was the first to establish a positive relationship 

between energy expenditure and energy intake [70, 71]. His research suggested 

activity levels and energy intake formed a J-shaped curved, where inactive and 

highly active individuals have the greatest energy intakes with moderately active 

individuals having the lowest. Subsequent research has backed this claim that 

greater energy expenditures promote greater energy intake, implying excessive 

exercise is a futile weight loss strategy [20, 72]. However, disagreement exists in 

the notion that greater amounts of exercise energy expenditure (ExEE) cause an 

equivalent increase in energy intake. A recent investigation determined groups 

expending 3,000 or 1,500 kcal/week compensate similarly (about 1,000 kcal per 

week), causing only the 3,000 kcal group to have significant weight loss after 12-

weeks [23]. This finding was replicated in another trial where overweight 

individuals exercising either 6 days per week (expending 2,753 kcal/week) or 2 

days per week (1,490 kcal/week) compensated similarly, with only the group 

exercising at the greater dose losing significant amount of body fat mass [73].  
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Exercise plays a role in regulating appetite hormones and subsequent 

energy compensation. Many have shown single bouts of exercise do not alter 

circulating concentrations of hunger hormones [74, 75], while chronic exercise 

can improve the satiety response to a meal [76, 77] leading to reductions in 

energy intake [78, 79]. Additionally, obese individuals often present with leptin 

and insulin resistance, causing lower and less pronounced feelings of satiety 

[80]. Exercise improves leptin sensitivity, promoting greater hormone/receptor 

binding to stimulate satiety even when decreasing concentrations of leptin [81, 

82].   

 An emerging field of interest with regards to exercise and subsequent 

energy consumption involves investigating potential psychological mechanisms. 

Post-exercise eating behavior can be influenced by the extent to which exercise 

is experienced as autonomous (enjoyable, valued) or controlled (forced, internal 

and external pressures) [83]. Feelings about exercise have such a strong 

implication on food intake just reading about “tiring” physical activity leads to 

more snacking as opposed to reading about “fun” physical activity [84]. 

Exercising because you “have” to rather than because you “want to” also 

influences eating behaviors, as individuals who self-impose physical activity are 

more prone to consume a “food reward” post-exercise compared with individuals 

who possess more self-determined regulation for exercise [85]. In alliance with 

this, compared to individuals in a controlled exercise setting, individuals who 

have more choice over exercise mode, intensity, duration, time of session and 

music played during exercise consume less energy post-exercise [86]. Exercise 
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autonomy also leads to consuming less energy from “unhealthy” food choices 

post-exercise [86]. It therefore appears the notion that exercise causes 

compensatory increases in energy intake is multi-layered and influenced by 

attitudes regarding the exercise bout itself.  

 The implications exercise has on metabolic energy expenditure is mixed. 

Many studies demonstrate greater post exercise oxygen consumption (EPOC) 

following single bouts of exercise can increase RMR for up to 48 hours [87-89]. 

However, determining exercise’s long-term effects on RMR is more mottled. It 

can be argued that a negative energy balance created from exercise would elicit 

reductions in RMR (metabolic compensation). Couple this with homeostatic 

signals promoting over-eating and you have a feedback loop primed to protect 

from losing body mass, abolishing the negative energy balance created through 

exercise [90]. The change in one’s RMR after aerobic and/or resistance exercise 

appear to depend on how long after the final exercise bout RMR is measured 

and if changes in FFM is controlled for [91]. Long-term exercise studies 

consisting of predominantly aerobic interventions for maximizing fat loss showed 

significant decreases in RMR greater than would be expected from losses in 

FFM alone [92-94].  

 With the role the ECS plays in energy consumption and storage, it is 

logical to hypothesize that increased energy expenditure will lead to increased 

plasma concentrations of endocannabinoids to replace lost energy stores. 

Indeed, engaging in 30-90 minutes of moderate intensity exercise increases 

plasma levels of AEA immediately post exercise [95, 96]. The rise of 
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endocannabinoids in response to exercise appears to be intensity and modality 

dependent. When heart rate reaches 75% of maximal level, plasma AEA 

increases significantly form baseline, where no significant increases are 

witnessed with lower or near maximal intensities [96]. Exercise protocols utilizing 

intense isometric muscle contractions significantly increase circulating levels of 

2-AG but not AEA, and may have something to do with endocannabinoids role in 

decreasing pain sensations [97]. Overall, engaging in moderate intensity, longer 

duration exercises will increase AEA while short bursts of exercise, as in a 

strength training regimen, will garner increases 2-AG. However, these increases 

in endocannabinoids may not lead to greater energy intake post exercise as 

expected. The rise in AEA following exercise may affect only the periphery and 

not the brain, as perceived feelings of hunger are not positively correlated with 

increases in AEA [98]. This may be related to in AEA’s ability to increase muscle 

glucose uptake, improving insulin sensitivity and mitochondrial biogenesis [99]. In 

order to mitigate the post-exercise desire to replenish energy expended it may be 

beneficial to engage in interval training protocols over moderate intensity or 

strength training especially if an individual has significant visceral adipose tissue, 

as individuals with greater amounts of visceral adipose tissue have greater 

amounts of plasma 2-AG [66]. 

 There are many different exercise modalities that may influence the 

degree of energy compensation. An investigation of how exercise mode may 

influence individual responses to exercise is of great interest to the health 
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community in order to develop optimal exercise prescriptions resulting in a 

minimal compensatory response and therefore maximize weight loss. 

Summary of Research Related to Physical Activity and Energy Balance 
 

Source Study Design Exercise 
protocol 

Study 
Population* 

Primary Findings 

Werle et al. 
[80] 

Cross sectional 
analysis 
demonstrating 
compensatory eating 
after reading/thinking 
about engaging in 
physical activity  

N/A 78 women; 45 
men; healthy, 
age 38.7 ± 16 
years; BMI 
26.37 ± 4.78 
kg/m²  

Reading about 
physical activity 
leads participants 
to compensate by 
eating more 
snacks and if the 
exercise is 
perceived as 
tiring. 

Fenzl et al. 
[81] 

Randomized, two-
armed trial 
determining if labeling 
an exercise bout 
affects immediate 
post-exercise food 
intake in individuals 
who self-impose 
exercise 

20-minute 
Moderate 
intensity 
bicycle 
ergometer ride  

45 women; 51 
men; healthy, 
age 26.1 ± 
9.4, recruited 
from a college 
campus 

Self-imposed 
exercisers ate 
more food after 
exercise when the 
bout was labeled 
“fat-burning” 
compared to 
“endurance” 

Beer et al. 
[82] 

Randomized between 
subject yoked design 
investigating the role 
choice in exercise has 
on subsequent energy 
consumption.  

30-60 minutes 
of aerobic 
training on 
either a bike 
or treadmill 

38 men and 
20 women; 
healthy, age 
22 ± 4; BMI 
23 ± 2.3 
kg/m²; VO2 
max 52.7 ± 
6.4  

Greater energy 
intake after 
exercise 
performed under 
the no-choice 
condition (587 ± 
344 kcal vs. 399 ± 
290 kcal) 

Johannsen et 
al. [89] 

2-armed longitudinal 
design determining if 
diet restriction with 
exercise helps 
preserve FFM and 
maintain RMR.  

90 min/d of 
circuit or 
aerobic 
training for 40 
weeks 

7 men; 9 
female; 
obese, age 33 
± 10; BMI 
49.4 ± 9.4 
kg/m²  

% BW lost was 38 
± 8%, 83% of that 
being fat mass. 
RMR decreased 
out of proportion 
to decrease in 
body mass. 

Cedernaes et 
al. [94] 

Crossover design 
comparing alterations 
to endocannabinoids 
after sleep deprivation 
and exercise 

30-minute 
moderate 
intensity 
bicycle 
ergometer ride 
per each 
intervention  

16 men; age 
22.9 ± 0.66 
years, 
healthy, BMI 
22.9 ± 0.46 
kg/m²  

Plasma 
concentrations of 
AEA increased 
after exercise but 
did not cause 
increases in 
hunger. 
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*Units listed as means + SD 

 

  
 

High intensity interval training and compensation 

High intensity interval training (HIIT) is characterized by brief, intense 

bouts of near maximal effort exercise performed at ≥ 80% of maximum heart rate 

or the equivalent VO2 max separated by recovery periods in a work to rest 

duration of ≥ 1:1 [100]. Sprint interval training (SIT) is another form of HIIT and is 

performed at intensities equal to or superior to one’s VO2 max [101]. HIIT is 

equally effective, or superior to moderate intensity continuous training for 

improving various health variables including increasing VO2 max [102], increased 

capacity for oxidative phosphorylation in skeletal muscle [103], improving insulin 

resistance [104] and reducing body fat mass [101, 103]. HIIT is associated with 

increased NEPA and thus an increase in total daily energy expenditure (TDEE), 

which may lead to less energy compensation [105, 106]. HIIT may also reduce 

the compensatory response to exercise by reducing  food intake and appetite 

sensations post exercise due to a rise in a potent anorectic peptide called 

corticotrophin releasing factor (CRF) [107, 108]. In rats infused with a CRF 

antagonist, hard exercise had no effect on food intake nor did it reduce body 

weight opposed to exercised rats without the CRF antagonist who decreased 

food intake and body weight [108]. Among humans, exercise-induced hunger and 

desire to eat decreases after HIIT when compared to moderate intensity interval 

training (MIIT), specifically causing less wanting and consumption of high fat 
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foods post-exercise [109]. These changes in macronutrient preference may be 

one reason HIIT elicits greater reductions in fat mass even if energy expenditure 

is less than or equal to MIIT. [109]. HIIT may also preferentially influence 

metabolic compensation by provoking greater EPOC and thus increasing TEE 

[110, 111]. It therefore appears HIIT has an advantage over traditional moderate 

intensity aerobic exercise by favoring less energy compensation. However, 

research on HIIT and weight loss is mixed possibly due to the variability of HIIT 

protocols (HIIT vs. SIT) [101]. When compared to moderate intensity exercise, 

HIIT requires nearly half the exercise time to burn equivalent amounts of energy 

[109]. With leisure time shrinking in modern societies, having the ability to 

shorten training time while maintaining increases in energy expenditure is of 

great value. Future research may investigate specific variables in a HIIT program 

that may be modified to attenuate the compensatory response to HIIT, such as 

different intensities of the work intervals, durations, frequency, and individual 

factors such as gender, age, and training status.   
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Summary of Research Related to HIIT and Compensation 

Source Study 
Design 

Exercise Protocol Study 
Population* 

Primary 
Findings 

Schubert 
et al. 
[102] 

RCT, 
Investigating 
the effects of 
different 
interval 
training on 
RMR 

SIT or HIIT, 4 weeks 30 healthy 
men and 
women, age 
28.8 ± 7.6 
years 

SIT protocol 
significantly 
increased 
RMR after 
four weeks 

Rivest et 
al. [104] 

RCT 
Investigating 
the role CRF 
plays in the 
anorexia 
induced by 
exercise 

40 minutes high 
intensity running 

Male Wistar 
rats roughly 
200 grams 
in weight 

Exercised 
rats ate less 
food when 
injected with 
saline than 
resting 
animals or 
CRF 
antagonist 

Alkahtani 
et al. 
[105] 

2-armed 
Crossover 
design 
Comparing 
the effect of 
moderate and 
high intensity 
interval 
training on 
eating 
behavior and 
compensation 

4 weeks of HIIT 
(3x/week) and 4 
weeks of MIIT 
(3x/week) 

10 
sedentary 
males; age 
29 ± 3.7; 
BMI 30.7 ± 
3.4 kg/m² 

HIIT 
decreased 
desire to eat, 
liking of high 
fat non- 
sweet food 
and overall 
fat 
consumption 

 
* Units listed as means + SD 

Resistance training and compensation 

Resistance training (RT) is a form of exercise whereby external weights 

provide progressive overload to skeletal muscles in order to make them stronger 

often resulting in hypertrophy [112]. Most individuals envision loads> 80% max 

and fewer repetitions (5-9) per set best for increasing muscle strength whereas 

lower loads (50-70% max) and more repetitions (9-20) best for muscular 
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endurance [112]. RT lowers blood lipids and blood pressure, promotes skeletal 

muscle maintenance/growth, improves blood glucose levels, insulin sensitivity 

and is effective for fat mass loss [113]. Because RT acts to preserve FFM during 

weight loss it may eliminate or attenuate metabolic compensatory responses 

such as the drop in RMR often seen with energy-restriction or aerobic exercise-

induced weight loss [112]. Indeed, increases in RMR with RT and protocols using 

both RT and aerobic training increases RMR compared to aerobic exercise alone 

[114]. When controlling for ExEE, there appears to be a sex effect when 

assessing differences in compensatory increases in energy intake between RT 

and aerobic exercise, whereas only men are more prone to compensatory 

increases in energy intake after RT compared to after aerobic exercise [115]. 

Resistance training does lead to different changes in body composition 

compared to aerobic exercises [116] and compensatory increases in energy 

intake in men may have to do with the anabolic nature of RT and the subsequent 

gains in lean muscle mass when combined with adequate protein intake [117, 

118]. Therefore, compensatory eating with RT may be due to muscle growth and 

repair and less to do with replenishing energy stores to maintain energy balance.  

 

 

 

 

 



 
 

 23  

Summary of Research Related to Resistance Training and 

Compensation 

Source Study 
Design 

Exercise 
protocol 

Study 
population* 

Primary 
findings 

Dolezal et 
al. [110] 

RCT 
Comparing 
changes in 
RMR, body 
fat, max 
aerobic 
power and 
strength 
between 
exercise 
modalities 

10 weeks, 
3x/week Aerobic 
(AT), concurrent 
(CT) or RT 

30 physically 
active, healthy 
men, age 20.1 ± 
1.6 years 

Greater 
increases in 
RMR in RT and 
CT compared to 
AT. Greater 
decreases in 
body fat in CT 
compared to RT 
and AT 

Cadieux 
et al. 
[111] 

3-armed 
Crossover 
design to 
evaluate the 
effects of 
exercise 
modality on 
EI, TEE, 
NEAT  

RT, AT and 
control for 4 
days /week, 6 
weeks 

8 men and 8 
women; healthy, 
sedentary, age 
21.9 ± 2.6 

When 
controlling for 
ExEE, no 
differences in 
energy 
compensation 
except in males 
after resistance 
training 
(1567 ± 469; 
1255 ± 409 kcal, 
respectively) 

 

* Units listed as means + SD 

Aerobic training and compensation 

Aerobic exercise is continuous exercise performed at submaximal 

intensity and involves large groups of skeletal muscles [30]. Aerobic exercise 

attenuates risk for coronary artery disease, obesity, depression and diabetes 

[119]. Aerobic exercise has long been prescribed to combat obesity because of 

the large acute energy deficit it can elicit. Despite this, the magnitude to which 

aerobic exercise precisely impacts energy compensation and thus weight loss is 
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debatable and highly individualistic [120]. Some have indicated greater ExEE 

produced with high volume aerobic exercise is positively correlated with 

increases in energy compensation resulting in no significant differences in weight 

loss compared to a moderate volume exercise protocol expending less energy 

[20]. Others have demonstrated an acute bout of aerobic exercise has little effect 

on immediate energy intake [121, 122], inducing changes in “hunger hormones” 

and alterations in substrate oxidation in muscle and liver  correlated to the post-

exercise decrease in hunger and food intake [123, 124]. A negative energy 

balance induced by exercise can provoke these responses due to increased SNS 

activation in the hypothalamus by hunger hormones and the endocannabinoids 

favoring energy consumption [50, 52, 55, 125].  

Compensatory responses to aerobic exercise are extremely idiosyncratic 

with some achieving drastic weight loss and others actually gaining weight [126]. 

Success of an aerobic exercise protocol may have to do with one’s baseline body 

fat percentage, whereas obese individuals may be more successful at 

decreasing fat mass while maintaining lean mass compared to their lean 

counterparts [127]. In this light, body fat may serve as an energy buffer to 

mitigate compensatory eating and to improve weight loss [127]. This may be why 

energy compensation first presents 2-4 weeks after establishing an exercise 

induced negative energy balance in obese individuals [21, 128].  

Alternatively, a recent study demonstrated individuals expending 1,500 

kcal or 3,000 kcal per week in aerobic exercise saw no differences in energy 

compensation (roughly 1,000 kcal extra per week) indicating greater amounts of 
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aerobic exercise do not produce more energy compensation. Rather, a large 

exercise dose is needed to overcome the compensatory response to promote 

significant fat mass loss [23], which has been replicated in a separate trial where 

aerobic exercise expenditures of 2,753 and 1,490 kcal per week resulted in 

similar energy compensation [73]. This is at odds with Rosenkilde et. al, who 

demonstrated that expending either 1,800 or 3,600 kcal during exercise per week 

produced nearly identical energy deficits after 12-weeks due to the greater 

energy compensation among the 3,600 kcal group [20]. Results from the large E-

MECHANIC study (Examination of Mechanisms of Exercise-Induced Weight 

Compensation) offers additional insight with high-volume group (ExEE of 20 

kcal/kg body weight) compensating significantly more than the low-volume group 

(eight kcal/kg body weight); however, weight loss was greater in the 20 kcal/kg 

group compared to the eight kcal/kg (-1.6 vs. -0.4, respectively, P=0.02) [129]. 

These results partially support both findings, that greater exercise energy 

expenditures are needed to produce weight loss, and those of Rosenkilde et. al, 

that greater ExEE instigates greater compensation. The ExEE of E-MECANIC 

study participants was about 1760 and 700 kcal per week for the 20 and eight 

kcal/kg groups respectively, much lower than the energy expenditures of [23, 73]. 

The larger dose (3,000 vs 1,800 kcal/week) and larger differences in ExEE 

between groups (1,800 kcal) Rosenkilde et. al used may explain some of the 

discrepancies [20]. It is possible that there may be a point at which greater levels 

of ExEE do not additionally contribute to weight loss, rather, disproportionately 

influence energy compensation. Future research may benefit from assessing the 
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compensatory responses to 4,000-5,000 kcal per week to investigate this 

possibility. 

Summary of Research Related to Aerobic Training and Compensation 

Source Study Design Exercise 
protocol 

Study 
population* 

Primary 
findings 

Rosenkilde 
et al. [24] 

RCT 
examining 
effects of 
increasing 
doses of 
aerobic 
exercise on 
body 
composition, 
AEB and 
compensation 

MOD (300 
kcal/d) or 
HIGH (600 
kcal/d) for 13 
weeks 

61 males, 
age 20-40, 
healthy, 
sedentary, 
moderately 
overweight 

Similar body 
fat loss was 
obtained 
regardless of 
exercise dose 
with the 
greater dose 
inducing a 
greater 
degree of 
compensation 

Flack et al. 
[70] 

2-arm 
randomized 
trial comparing 
compensation 
to exercise 
energy 
expenditures 
of 1,500 and 
3,000 kcal/wk 

Aerobic 
exercise 
expending 
300 or 600 
kcal/exercise 
session, 5 
days/wk, 12 
weeks 

10 males and 
26 females, 
age 18-49, 
sedentary, 
BMI 25-35 
kg/m² 

Similar 
energy 
compensation 
occurs in 
response to 
both ExEE 
groups, 
rendering 
greater fat 
mass loss in 
3,000 kcal/wk 
group 

Lim et al. 
[125] 

Cross 
sectional study 
comparing the 
effects of 
basic military 
training on 
body 
composition in 
obese recruits 

Aerobic 
exercise 
3x/week 
Circuit 
training 
2x/week for 
20 weeks 

40 healthy 
males, age 
18.9 ± 1, BF 
> 24% of 
total body 
weight 

20 weeks of 
basic military 
training was 
effective at 
decreasing 
body fat mass 
and 
maintaining 
FFM in obese 
subjects 

* Units listed as means + SD 
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Diet and Energy balance: 

Creating the necessary energy deficit to experience significant weight loss 

is also often accomplished through dietary energy restriction. Similar to exercise, 

this negative energy balance can induce the same compensatory response to 

maintain energy homeostasis. Unlike energy compensation exhibited with a 

negative energy balance, humans tend not to compensate for increases in 

energy intake, that is, they fail to increase energy expenditure upon increasing 

energy intake [130]. This becomes problematic when coupled with the energy 

dense, palatable, and convenient food environment of modern society. However, 

timing between meals may be one malleable variable to attenuate this response. 

When examining subsequent energy intake after a low-energy preload to 

produce an acute energy deficit, individuals compensate for at least 100% of the 

energy deficit when the time interval to the next meal is roughly 30 minutes [130]. 

Spacing the next meal to 2 hours individuals only compensate 60% of the low-

energy preload [130]. Similar to an energy deficit with exercise, restricting food 

intake can lead to metabolic adaptations to further imped weight loss. Studies 

performed in a controlled environment producing a 10% weight loss in obese or 

normal weight individuals promote a decrease in RMR and TEE of 3-4 kcal per 

kg of FFM [38, 131].  

Intermittent fasting (IF) has been growing in popularity for its ability to 

restrict energy intake and limit compensatory responses [132]. IF encompasses 

periods of voluntary abstinence from food and drink and can be followed in a 

variety of different designs [133]. In studies involving individuals with obesity, 24-
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hour total energy restriction or 75% energy restriction improves subsequent 

postprandial glucose and lipid metabolism while inducing a 30% energy deficit 

over 3 days [132]. Resting and meal-induced thermogenesis do not change in 

either a 24-hour total energy restriction or 75% restriction protocol, indicating a 

lack of metabolic compensatory response to the energy deficit [132]. Although 

initial research using IF to combat obesity is promising, many of the studies 

include few individuals for short periods of time.  

Recent research has examined the extent to which foods and beverages 

alter hunger and the desire to eat in order to inhibit future eating. One of the 

techniques explored is to design nutrient dense “satiating” foods that decrease 

the return of hunger after eating and inhibit future energy intake [134]. These 

foods are often high in fiber and protein and enhance satiety in an acute manner 

[134] but fail to attenuate the long term compensatory increases in energy intake 

needed to promote significant weight loss [135]. The popularity of diets such as 

the ketogenic, high protein or carbohydrate cycling in promoting significant 

weight loss is well documented, but all successful diets have one thing in 

common: maintaining an energy deficit. The degree to which type of diet 

promotes the least amount of compensatory eating and metabolic adaptations to 

maintain the greatest energy deficit needs further exploration. 
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Summary of Research Related to Diet and Energy Balance 

Source Study Design Diet 
protocol 

Study 
population* 

Primary 
findings 

Leibel et 
al. [129] 

3-arm crossover 
study comparing 
metabolic 
adaptations in 
obese and non-
obese when 
exposed to an 
energy deficit and 
surplus. 

Dietary 
formula (40% 
fat, 45% 
carb, 15% 
pro) at 800 
kcal/d or 
5,000-8,000 
kcal/day self-
selected food 

11 obese 
women, 7 
obese men, 
and 7 normal 
weight 
women, 16 
normal weight 
men age 29 ± 
10 years 
(obese) 26 ± 
10 (normal 
weight) 

Maintenance of 
a reduced or 
elevated body 
weight is 
associated with 
compensatory 
changes 
targeted at 
returning to 
initial weight in 
both obese and 
normal weight 
individuals 

Antoni et 
al. [130] 

3-arm crossover 
study looking to 
characterize the 
early metabolic 
responses to 
varying degrees of 
IF over 24 hours 
(0%, 75% or 100% 
ER) 

75% or 100% 
ER for 24 
hours and ad 
libitum 
feeding day 

6 female and 
8 male, 
overweight or 
obese, aged 
36 ± 17.2 

ER alters post 
prandial 
glucose/lipid 
metabolism 
with partial ER 
producing 
more favorable 
results 
including 
incomplete 
energy 
compensation 

McCrickerd 
et al. [132] 

4-arm crossover 
study looking at the 
role sensory 
characteristics of 
food influence 
appetite regulation 
and portion size 
selection.  

Once daily 
iso-energetic 
fruit drink of 
varying 
sensory 
contexts 
consisting of 
either 
thin/low 
creamy, 
thin/high 
creamy, 
thick/low 
creamy, 
thick/ high 
creamy  

24 male and 
24 female, 
healthy, age 
20.8 ± 5.3 
years, BMI 
22.5 ± 2.8 
kg/m² 

Women 
consume 
smaller 
portions of a 
drink when its 
sensory 
characteristics 
indicate it will 
be satiating 
(thick texture) 

* Units listed as means + SD 
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Protein and compensation 

The ideal conditions for body weight loss are sustained satiety despite a 

lower energy intake, [136, 137] and sustained metabolic energy expenditure 

despite body weight loss [137, 138]. High-protein diets are a popular strategy for 

weight loss, based on the idea dietary protein helps spare muscle protein 

degradation and elicits greater satiating effects compared to other macronutrients 

[139]. The satiating effects of eating protein are partly due to slowing gastric 

emptying. When protein is infused intra-duodenally, the digestive system 

responds by increasing pyloric motility and stifling antral and duodenal movement 

[140, 141]. Oral ingestion of protein in healthy adults slows gastric emptying rates 

to reduce plasma ghrelin and increase insulin, CCK and GLP-1 concentrations, 

which all play a role in satiety signaling [141]. Macronutrients are seldom 

ingested alone but evidence does show greater postprandial plasma 

concentrations of CCK and GLP-1 (satiety hormones) and lower ghrelin after 

ingestion of yogurt containing a greater percentage of protein than a comparable 

yogurt with less [142]. When comparing gastric emptying of fat and carbohydrate, 

high-fat or high-carbohydrate meals have similar gastric emptying half times, 

both faster than protein, indicating protein may be the crucial macronutrient 

responsible for slowing gastric emptying and thus influencing appetite and satiety 

[143, 144]. Ratings of hunger and desire to eat tend to be attenuated by a high-

protein drink compared to iso-volumetric drinks containing less protein and 

greater amounts of fat and carbohydrate. Even when energy content is controlled 

for, the high-protein option reduces ratings of hunger and desire to eat and slows 
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gastric emptying several hours after consumption [144]. The ability of a high-

protein diet to mitigate lean muscle mass losses body fat loss is also plausible. 

When combined with resistance exercise, a high-protein diet consisting of 2g per 

kg body weight spaced evenly throughout the day paired with a slight energy 

deficit can alter body composition and preserve lean mass [145, 146]. Preserving 

lean mass during weight loss would serve to maintain RMR (attenuate metabolic 

compensation) compared to equivocal weight loss where FFM is decreased 

[147]. 
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Summary of Research Related to Protein and Energy Compensation 

Source Study 
Design 

Diet protocol Study 
population* 

Primary 
findings 

Blom et al. 
[140] 

Single blind 
crossover 
design 
investigating 
the satiating 
effects of a 
high-protein 
breakfast 
compared to 
a high-
carbohydrate 
meal. 

Isoenergetic 
dairy 
breakfast 
differing in 
protein and 
carbohydrate 
content 

15 males, 
healthy, age 
18-26 
years, BMI 
19-25 kg/m² 

High-protein 
breakfast 
decreased 
postprandial 
ghrelin 
concentrations 
more and for 
longer duration 
than a high-
carbohydrate 
breakfast. 

Giezenaar 
et al. [142] 

Double-blind 
crossover 
design 
determining 
the effects of 
adding or 
substituting 
carb or fat to 
whey protein 
on gastric 
emptying, gut 
hormones, 
appetite and 
energy intake 

(Pro/carb/fat) 
 
14g/28g/12.4g 
(280 kcal) 
 
70g/28g/12.4g 
(504 kcal) 
 
70g/0g/0g 
(280 kcal) 

13 males, 
healthy, age 
18-30 
years, BMI 
24 ± 3.6 
kg/m² 

Substitution of 
whey protein 
with 
carbohydrate 
and fat 
accelerated 
gastric emptying. 
High-protein 
mixed 
macronutrient 
drink increased 
gut hormone and 
insulin 
responses 

Hector et 
al. [144] 

Randomized 
double-blind 
trial 
comparing 
impact of 
protein 
quality on 
rates of 
muscle 
protein 
synthesis 
and lipolysis 

Energy-
restricted diet 
consisting of 
either 1.3 g/kg 
protein or 
0.7g/kg 
protein. The 
high-protein 
group either 
received 27g 
whey protein 
or 27g soy 
twice/day for 
14 days 

19 men and 
21 females, 
healthy, age 
35-65, BMI 
28-50 kg/m² 

Whey protein 
supplementation 
attenuated the 
decline in 
postprandial 
rates of muscle 
protein synthesis 
compared to soy 
when in energy 
deficit. 

*Units listed as means + SD 
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Ketogenic diet 

The ketogenic diet is a high-fat diet with 80-90% of energy derived from 

fat. [148]. With so little dietary glucose, the body and brain depend on the 

utilization of fat for fuel. Consumption of a ketogenic diet is characterized by 

elevated levels of ketone bodies, primarily β-hydroxybutyrate, which represent an 

alternative energy source to glucose and can increase feelings of satiety [148, 

149]. In fact, some argue it’s a better energy source compared to glucose due to 

ketones having a greater inherent energy [150], causing greater heart 

contractility while utilizing less oxygen in animal models [151]. The health 

benefits promoted by a ketogenic diet are improvements in epilepsy [152, 153], 

weight loss [154], cognitive improvements in Parkinson’s and Alzheimer’s 

disease[155, 156], decreased fasting insulin and lower blood glucose levels 

[148]. The ketogenic diet is a popular strategy to fight obesity based on its 

efficacy in promoting satiety while maintaining an energy deficit [157-159]. This is 

accomplished through interactions between circulating ketones and hormonal 

mediators of appetite in the periphery and the brain [160]. Under normal 

circumstances, the preferred fuel source for the brain is glucose; however, it can 

utilize β-hydroxybutyrate to meet its energy needs, which is roughly 20% of TEE 

[161]. Most of the body (excluding red blood cells) can utilize free-fatty acids 

(FFA’s) from endogenous adipose tissue as an energy source further decreasing 

the need to feed. Compensatory eating is therefore less likely to take place and 

subsequent altered weight maintenance is easier to achieve when the body is 

using fat and its metabolites for fuel. Weight loss from a ketogenic diet is 
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primarily due to fat mass reductions, and may often lead to increases in FFM 

[154]. Unlike other diet-induced weight loss protocols, no significant reductions in 

RMR, circulating leptin or postprandial release of CCK occur while on an energy 

restricted ketogenic diet [154, 160]. The lack of metabolic compensation on a 

ketogenic diet could be due to the increased energy demands of undergoing  

gluconeogenesis in the absence of dietary glucose [149, 154], despite 

upregulating fatty-acid oxidation that often promotes metabolic compensation 

with energy restriction [29, 37]. 
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Summary of Research Related to Ketogenic Diet and Energy Compensation 

Source Study Design Diet 
protocol 

Study 
population* 

Primary 
findings 

Mohorko 
et al. 
[152] 

Longitudinal 
intervention 
examining the 
effects of a 12-
week ketogenic 
diet on 
physiological, 
psychological and 
biochemical 
changes in the 
body 
 

12-week 
energy-
restricted 
ketogenic 
diet 

13 men and 25 
women, obese, 
aged 37 ± 7 
years, BMI 36.1 ± 
5.6 kg/m² 

Significant 
weight loss, 
reductions in 
plasma 
insulin and 
leptin and 
decreased 
snacking 
with 
ketogenic 
diet 

Sumithran 
et al. 
[158] 

RCT examining 
the effects of 
ketosis on 
different factors 
involved with 
appetite 
regulation 
 

10-week 
energy-
restricted 
ketogenic 
diet 

Healthy, 
overweight/obese 
men and 
postmenopausal 
women, age 54 ± 
10.9 

Ketogenic 
diet induced 
significant 
weight loss 
while 
suppressing 
ghrelin and 
ratings of 
hunger 

Johnstone 
et al. 
[155] 

3-arm crossover 
study comparing 
the hunger, 
appetite and 
weight loss 
responses to a 
high-protein 
ketogenic diet and 
high protein 
normal carb diet 

High protein 
ketogenic 
diet vs. high-
protein 
normal 
carbohydrate 
diet for 65 
days 

17 healthy men, 
age 20-65, BMI 
>30 kg/m² 

High-protein 
ketogenic 
diet reduced 
hunger and 
lowered food 
intake 
compared to 
high protein 
normal 
carbohydrate 
diet 

*Units listed as means + SD 

 

Low energy meal replacement 

 Countless “low calorie” foods appear in every aisle of the supermarket 

including brownies and potato chips, where food manufacturers aim to attenuate 

the energy density of these foods without changing the palatability and sensory 
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experience of eating [162]. Designing low energy foods and beverages that 

satisfy hunger and do not lead to later compensation would greatly improve 

obesity rates throughout the modern world. Although these foods often do not 

completely accomplish this goal, promising research does exist. When a meal is 

given to an individual 60 minutes after ingesting either a low-energy preload (100 

kcal beverage) or a high-energy control beverage (300 kcal), individuals 

consume 80 kcal more in the low-energy preload scenario, which constitutes only 

40% of the 200 kcal removed from the control beverage [162]. When exposed to 

the same control preload containing an additional 200 kcal, individuals do not 

alter their next meal energy intake compared to the 300 kcal preload, 

demonstrating our lack of ability to completely compensate for decreases or 

increases in energy intake [162]. In addition to only a partially compensating to a 

low-energy preload in the following meal, there appears to be no such 

compensation the rest of the day, whereas participants consumed the least 

amount of energy on the low energy meal day and most on the high energy day 

(Low energy: 2172 ± 93; Control: 2323 ± 73 High energy: 2500 ± 84) [162]. 

Individuals are good at compensating with later food intake in response to 

smaller quantities of familiar energy-dense foods, like chocolate. Although when 

energy density is reduced while keeping volume and sensory characteristics 

constant, the satiety is improved to attenuate the increase in energy consumption 

compared to control [134]. Adding volume without adding energy to a meal may 

also attenuate food intake, demonstrated in studies where individuals who 

consume 500ml of water immediately prior to a meal ingest significantly less 
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energy in the subsequent meal than individuals consuming no water [163, 164]. 

Taking advantage of the body’s inability to perfectly compensate for lost energy 

may be easier to accomplish by incorporating more reduced energy options into 

one’s diet.  

 

Summary of Research Relate to Low Energy Meal Replacement and 

Energy Compensation 

Source Study Design Diet 
protocol 

Study 
population 

Primary findings 

McCrickerd 
et al. [162] 

Single blind 
crossover study 
testing the satiety 
responses to a 
200kcal 
reduction/addition 
to a soy beverage 

Three iso-
volumetric  
soymilk test 
drinks 
varying in 
energy (100 
kcal, 302 
kcal and 500 
kcal) 

29 males, 
healthy, 
non-obese, 
age 21-37 
years, BMI 
18-28.6 
kg/m² 

Adult men were 
more sensitive to 
energy dilution 
than energy 
addition to a 
familiar beverage 

Dennis et 
al. [163] 

RCT to determine 
if pre-meal water 
consumption 
facilitates weight 
loss among 
overweight/ obese 
middle-aged adults 
through reductions 
in energy intake at 
subsequent meals 

12-week 
energy-
restricted 
diet, 500 ml 
H20 prior to 
each meal (3 
times per 
day) or diet 
alone 

48 male and 
females, 
age 55-75 
years, BMI 
25-40 kg/m² 

Combining a 
weight loss diet 
with consuming 
500ml H2O prior to 
meals leads to 
significant weight 
loss compared to 
diet alone  

 

 

Genetic variability and energy compensation 

 The large inter-individual differences in weight gain under equal conditions 

of excess energy intake that has been reported in several overfeeding studies 
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points to genetic variability playing a major role in obesity development [165, 

166]. Since the mapping of the human genome, the search for a genetic cause of 

obesity has been underway. The genetic etiology can be classified as either 

monogenic or polygenic [167]. Monogenic obesity describes individuals who 

carry a rare gene variant that is directly linked to drastic changes in adiposity and 

exhibit a nearly one – to – one relationship between genotype and phenotype 

[168, 169]. Monogenic obesity can be classified as syndromic or non-syndromic, 

with non-syndromic characterized by changes in leptin/melanocortin pathways 

leading to hyperphagia [170]. Syndromic, on the other hand, is obesity occurring 

in the clinical context of a specific genetic disorder such as found in individuals 

with Prader-Willi syndrome [171]. Homozygote carriers of non-syndromic 

mutations are rare but directly lead to early-onset extreme obesity [167]. 

Heterozygous variations in the same pathway account for a greater number of 

obesity cases, with environmental factors influencing the expression of these 

genes [170]. Polygenic obesity is attributed to the collaborative presence of 

multiple DNA mutations in several genes, each having a relatively small effect on 

obesity probability [169]. Recent advancements have identified hundreds of 

polygenic variants playing a role in obesity with environment, age, sex and 

lifestyle choices interacting to influence phenotypic expression [172]. 

 Although genetic makeup clearly plays a role in obesity, the extent to 

which is controversial, and more studies are needed to uncover the exact role 

biology plays in the obesity epidemic. Currently, research is focusing on 



 
 

 39  

metabolic phenotypes, the melanocortin system, and variants in the fat mass and 

obesity-associated gene. 

Spendthrift and thrifty phenotype 

Individuals can be classified as either “thrifty” or “spendthrift” metabolic 

phenotypes depending on changes in TEE after 24 hours of fasting and a 

subsequent 6-week overfeeding period [173]. TEE during the 24-hour fast is 

used to predict the extent of weight loss during energy restriction, in that the less 

TEE drops the more weight one loses [174]. Individuals who experience the 

smallest increases in TEE after overfeeding have the greatest decrease while 

fasted (thrifty metabolic phenotype), whereas individuals with the smallest 

decrease in TEE after fasting have the greatest increase after overfeeding 

(spendthrift phenotype) [174-176]. A smaller decrease in TEE after fasting is 

indicative of less metabolic compensation and correlated with less weight gain 

after 6 months of living normally [175]. Individuals who increase TEE the most 

during overfeeding are those who gain the least amount of weight, especially in 

fat mass [173]. The greater increase in TEE during overfeeding indicates 

metabolic “spend thriftiness” in short-term overfeeding and is therefore somewhat 

protective of weight gain while the thrifty phenotype is more prone to metabolic 

compensation [173]. The recent discovery of the hormone fibroblast growth factor 

21 (FGF21) has given a possible explanation on how the thrifty phenotype is 

expressed. FGF21 is an energy homeostasis hormone that is upregulated in 

response to low-protein/high energy diets mediating increases in energy 

expenditure potentially through diet induced thermogenesis [177, 178]. 
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Individuals with smaller increases in FGF21 after 24h of a low-protein/high 

energy diet gained more weight during a six-month intervention than individuals 

with larger increases in FGF21. These results indicate persons with a dampened 

FGF21 response have a “thrifty” metabolism and measuring FGF21 responses to 

a low protein diet may help predict an individual’s susceptibility to future weight 

gain [178]. 
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Summary of Research Related to Spendthrift and Thrifty Phenotypes 

Source Study Design Diet 
protocol 

Study 
population* 

Primary findings 

Hollstein et 
al. [172] 

2-arm crossover 
study 
investigating 
whether energy 
expenditure 
responses to 24 
h of fasting or 
overfeeding 
would predict 
weight gain in 
lean individuals 

High energy, 
low-protein 
diet (2%), 6 
weeks 

7 males, 
healthy, age 
31 ± 12 
years, BMI 
20.5 ± 1.6 
kg/m² 

Subjects with a 
lower 24-h energy 
expenditure 
decrease during 
fasting and greater 
increase during 
overfeeding gain 
less weight 

Reinhardt 
et al. [173] 

Longitudinal 
trial analyzing 
changes in 24-
hr energy 
expenditure in 
obese 
individuals after 
fasting and 
overfeeding and 
implications on 
weight loss in a 
subsequent 
energy 
restricted diet 

50% energy 
restricted 
liquid diet, 
20 weeks 
What about 
overfeeding 
group? 

7 men and 
5 women, 
healthy, age 
33.7 ± 8.6, 
BMI 38 ± 
6.3 kg/m² 

Smaller reduction in 
24-h energy 
expenditure during 
fasting and larger 
increase to 
overfeeding 
predicted more 
weight loss over 6 
weeks of 
underfeeding 

Schlogl et 
al. [174] 

Inpatient 
crossover 
design 
determining 
whether 24-h 
energy 
expenditure 
responses to 
dietary 
extremes will 
identify 
phenotypes 
associated with 
weight 
regulation 

Low-protein, 
high-fat and 
high-
carbohydrate 
overfeeding 
and a control 
energy 
balanced 
standard diet 

27 men and 
10 women, 
healthy, age 
36.1 ± 9.6, 
BMI 26.1 ± 
4 

A larger reduction in 
energy expenditure 
during fasting, a 
smaller energy 
expenditure 
response during 
overfeeding in low 
protein diet and a 
larger response to 
overfeeding in high 
carbohydrate 
overfeeding 
correlated with 
weight gain 

 
*Units listed as means + SD 
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MC4R genotypes 

 

The melanocortin system consists of several agonists, two antagonists 

and five receptors [179]. The agonists are all derived from pro-opiomelanocortin 

(POMC) in the anterior pituitary gland [180, 181]. The two antagonists of the 

receptor are Agouti and Agouti-related peptide (AgRP) [179]. The melanocortin 

receptors mediate diverse actions but the melanocortin 4 receptor (MC4R), 

expressed primarily in the central nervous system, is of interest in regards to 

obesity [179]. The MC4R is a G-protein coupled receptor that binds the agonist 

α-melanocyte stimulating hormone. This receptor/hormone binding is involved in 

feeding behavior, metabolism and other biological functions [179]. Defects in 

eight independent genes involved in neural function of the paraventricular 

nucleus and in the leptin/melanocortin pathway have been identified, promoting 

monogenic obesity through hyperphagia [182]; however, these homozygotes are 

rare and do not explain the majority of obesity phenotypes. The emergence of 

polygenic predisposition to obesity is often related to the central nervous 

system’s control of body weight regulation [183]. A single nucleotide 

polymorphism (SNP) near the MC4R (SNP rs17782313) is associated with 

increased feelings of hunger [184, 185], increased snacking [184], decreased 

satiety [185], and increased total fat and protein intake [184, 186]. The degree to 

which a specific MC4R phenotype affects hyperphagia is directly related to how 

well the receptor works or how many are present. Mutations that result in a 

complete loss of function cause the more severe forms of obesity [187]. MC4R 
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genotype also affects the extent to which a weight loss intervention remains 

successful. Individuals with decreased MC4R signaling, despite normal weight 

loss during an intervention, have more difficulty maintaining weight loss [188]. 

This could be due to  MC4R’s impact on metabolic compensation, with mutations 

causing decreased energy expenditure as evidenced in obese Pima Indian and 

Hispanic individuals [189, 190]. Although these mutations of the MC4R are 

obesogenic, others confer protection. Two such mutations protect individuals 

from severe obesity and abdominal adiposity by making MC4R less sensitive to 

its antagonist, AgRP, that results in a weaker orexigenic signal [191, 192], and by 

making it more sensitive to its agonist [191, 193]. Individuals with decreased 

functioning of the MC4R receptors are not only more prone to overeating but also 

experience greater metabolic compensatory responses to weight loss making 

weight loss maintenance especially difficult. 
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Summary of Research Related to MC4R Genotypes and Energy 

Compensation 

Source Study Design Gene 
Polymorphism 

Study 
population 

Primary 
findings 

Stutzmann 
et al. [183] 

Epidemiological 
study in French 
and Swiss 
population 
comparing 
genotype with 
eating behavior 
traits 

Rs17782313 
(MC4R) and 
rs1421085 
(FTO) 

N = 17,527 
French 
obese/normal 
weight 
children and 
adults and 
Swiss class 
III obese 
adults 

The 
Rs17782313 
allele (MC4R) 
may modulate 
eating behavior 
in both obese 
adults and 
children 

Valladares 
et al. [184] 

Epidemiological 
study 
examining the 
relationship 
between MC4R 
gene variant 
with childhood 
obesity and 
eating behavior 

Rs17782313 N = 489 
Chilean 
children and 
their parents 

The 
rs17782313 
variant is 
significantly 
associated with 
satiety 
responsiveness 
to a meal (P = 
0.01) and 
enjoyment of 
food (P = 0.03) 

Reinehr et 
al. [187] 

Longitudinal 
intervention 
study 
comparing 
weight changes 
after lifestyle 
intervention in 
children with 
mutations in 
the MC4R gene  

Loss of 
function 
mutation of 
MC4R 
compared to 
normal 

226 male and 
288 female 
children, 
healthy, age 
5-16 years, 
BMI 24-29 
kg/m² 
enrolled into 
a 1-year 
lifestyle 
intervention 

Children with 
MC4R mutation 
leading to loss 
of receptor 
function were 
able to lose 
weight as 
normal but had 
greater 
difficulties 
maintaining 
weight loss 

 

FTO genotype 

 As recently as 2007, the function of the fatso gene (FTO) [194] was 

unknown [195]. Today, FTO is known as the fat mass and obesity associated 
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gene and is responsible for coding a protein known as alpha-ketoglutarate-

dependent dioxygenase. Complete or partial inactivation of the FTO gene in mice 

protects from obesity but increases mortality [196, 197], whereas over-

expression leads to increases in food intake and subsequent obesity [198]. In 

humans, complete FTO deficiency is associated with growth retardation, multiple 

malformations and premature death, indicating its essential role in normal 

development of the central nervous system [199]. FTO is highly expressed in the 

hypothalamus and plays a large role in controlling feeding behavior and energy 

expenditure [195, 200, 201]. Initially, SNPs in the FTO gene were thought to 

show a direct association with type II diabetes, however, upon further analysis, 

the relationship between FTO SNPs and type II diabetes was facilitated by an 

association with BMI [202]. The association between FTO SNPs and the risk of 

being overweight or obese has been confirmed in several different populations 

[202, 203]. FTO is linked to deficits in Fe (II) and 2-oxoglutarate oxygenase [200]. 

These enzymes catalyze oxidative reactions on multiple substrates using non-

heme iron as a co-factor and oxyglutarate as a co-substrate [200]. The main 

enzyme FTO codes for that can cause dysregulation of metabolism-regulating 

oxygenases is a single-stranded DNA demethylase involved in nucleic acid repair 

or modification processes [200, 204]. Therefore, FTO expression has a role in 

regulating genes dealing with metabolism possibly through epigenetic 

mechanisms [200]. FTO may pose as a transcriptional coactivator that enhances 

activation of certain enhancer binding proteins dealing with the development and 

maintenance of fat tissue, with dysregulation in this process causing obesity 
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[205]. The obesity predisposing FTO variant is associated with increased energy 

and fat intake in both children and adults [206]. Certain FTO variants are also 

associated with diminished satiety and increased feelings of hunger [207]. 

Energy homeostasis is extremely sensitive and any variation in FTO, combined 

with dietary/physical activity habits can substantially impact body composition. 

The wide disparity in FTO genotypes is one possible explanation for the varying 

degrees of energy compensation individuals experience in response to exercise 

and energy restriction and the degrees of success maintaining a reduced weight. 
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Summary of Research Related to FTO Genotype and Energy 

Compensation 

Source Study 
Design 

Gene 
Polymorphism 

Study 
population 

Primary 
findings 

Cecil et al. 
[200] 

Genome 
wide 
association 
study 
analyzing the 
role FTO 
variants play 
in modulating 
specific 
components 
of energy 
balance in 
children 

Rs9939609 
FTO variant 

N = 2726 
Scottish 
children, 
healthy, age 
4-10 years 

FTO variant 
(rs9939609) 
doesn’t appear 
to be involved 
in regulating 
energy 
expenditure but 
may have a 
role in the 
control of food 
intake and 
choice 

Wardle et al. 
[201] 

Cohort study 
examining 
the 
association 
between 
alleles of 
FTO known 
to increase 
obesity risk 
and 
measures of 
habitual 
appetitive 
behavior 

Rs9939609 
FTO variant 

N = 3337 
United 
Kingdom 
children from 
TEDS cohort 

FTO variant 
(rs9939609) 
associated with 
increased 
adiposity due 
to reduced 
satiety 
responsiveness 

Church et al. 
[204] 

3-armed 
longitudinal 
study 
analyzing the 
role 
over/under 
expression of 
FTO plays on 
energy 
expenditure 
and adiposity 

FTO variants 
Which variant? 
The other 
studies you 
listed the 
specific one. Or 
was it the 
whole gene? 

Mice 
generated to 
globally 
express 
either one 
(n=17) or two 
additional 
copies of 
FTO gene 
(n=17) or 
wild-type 
control 
(n=16). 

Mice with over 
expression of 
FTO had a 
dose-
dependent 
increase in fat 
mass resulting 
from increased 
food intake. 
These mice 
also developed 
glucose 
intolerance 
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Conclusion  

 In humans, homeostatic regulation of an energetic state is regulated by a 

sensory feedback system that attempts to preserve stability through the 

concerted amendment of both energy intake and energy expenditure. The 

disruption of this metabolic homeostasis is reflected by adaptations in body 

weight, with a positive or negative energy balance leading to weight gain or loss, 

respectively. Many Americans with obesity strive to maintain a negative energy 

balance needed for weight loss, yet the majority of these efforts lead to less than 

desirable outcomes. Unfortunately for these individuals, energy balance 

regulation favors defending against an energy deficit over surplus. It can be 

argued survival rather than sustainability is the evolutionary authority, where 

periods of energy deficit are protected by a hardwired system that prevents 

starvation to promote species continuation. For most of human existence this 

was an instrumental system that ensured our survival but in the modern age of 

convenience, abundant energy-dense food and sedentary lifestyles, the once 

necessitous and rigid compensatory mechanisms are playing a role in the rising 

obesity trend. To be fair, our current biological makeup took millions of years to 

evolve and expecting it to change in response to half a century of living in an 

obesogenic society is outlandish. Obesity has reached epidemic proportions 

along with related comorbidities, thus finding novel, applicable therapies to 

remedy the situation is imperative and will likely involve individual, environmental 

and societal interventions. 
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 The most intuitive way to expend energy is by performing some form of 

physical activity. Exercise comes in many forms and intensities, ranging from 

aerobic cardiovascular bouts to anaerobic resistance training sessions to 

modalities utilizing both such as HIIT protocols. No matter the modality, the ability 

to sustain a prolonged energy deficit will determine how successful an exercise 

protocol is at reducing fat mass. There does appear to be a limit on total energy 

compensation of about 1,000 kcal per week when expending as much as 3,000 

kcal/week, indicating greater expenditures may be needed to overcome this 

compensatory response[23, 73]. Although there is some evidence that greater 

energy expenditures, beyond that of 3,000 kcal per week, elicit a greater 

compensatory response than a lower dose [20]. It therefore appears additional 

research is needed to determine the optimal dose of weekly or per session 

energy expenditure needed to best produce weight loss without instigating a 

greater compensatory response.    

 An interesting psychological aspect to exercise and subsequent food 

consumption comes in the role “choice” and “implied exertion” may play. If you 

give people structured choices in exercise modality, music, intensity and duration 

they are more inclined to view exercise as enjoyable and not seek food rewards 

post physical activity [86]. The same is true when initial thoughts about an 

exercise protocol are more positive than negative. If someone thinks a workout 

will be hard and gruesome, they are more likely to seek a reward for completing 

such a task. The opposite happens when they view a workout as beneficial and 

enjoyable [85].  
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 In a perfect world, we could promote satiety and maintain metabolic rate 

while in a negative energy balance by modifying our food choices and quantities. 

A high-protein diet may be able to accomplish such a feat. The satiety inducing 

effects amino acids is well known, but consuming increased amounts of protein 

may also spare lean muscle degradation leading to maintained metabolic rate 

during weight loss [137]. Incorporating resistance training with a high 

protein/energy restricted diet may be a potent mechanism for promoting maximal 

fat mass losses while increasing/maintaining FFM [145]. 

 Further elucidation on the role the hunger hormones and 

endocannabinoids play in the dysregulation of appetite witnessed in obesity is a 

novel area of interest. Larger amounts of visceral adiposity are positively 

correlated with insulin resistance and increased 2-AG both fostering a 

metabolism favoring energy storage and potentially leading to greater difficulty in 

achieving a healthy body composition through exercise and dieting. More 

research in this field my lead to novel pharmacological treatments for obesity that 

may be use in conjuncture with exercise or ER. 

 The role genetics play in obesity phenotypes with regards to energy 

compensation is controversial and not well understood. Although a few 

monogenic genotypes are directly related to increases in adiposity, these only 

account for a small percentage of individuals who are morbidly obese [167]. More 

research is needed to understand polygenic relationships amongst genes and 

the environment, how to identify these relationships, and if this could lead to 

personalized weight loss therapies [208]. 
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 Overall, understanding how best to limit energy compensation while 

maintaining an energy deficit is of importance in combating obesity. The answer 

may lie in a coupling paradigm where all the reputable facts and empirically 

supported theories across multiple disciplines unite to form a common 

groundwork for explanation and more effective weight loss treatments. 
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Chapter Three: Materials and Methods  

Research Design 

  This study was a randomized, controlled trial that included a 12-week 

exercise intervention of either six sessions (days) per week, two sessions per 

week, or a sedentary control group (no exercise) blocked on sex. Participants 

were randomized upon completion of all baseline assessments with no blinding 

of assignment to interventions as participants and research staff needed to 

monitor weekly exercise sessions to ensure compliance. Participants were 

assessed for outcome measures at baseline and immediately after the 

intervention. 

 

Subjects 

 A total of 52 participants aged 18 to 49 years volunteered and were 

randomized into one of three groups during this longitudinal, randomized, 

controlled trial. Of these, 44 participants completed the study (32 women), with 

six (four women) withdrawing for personal reasons and two female participants 

being excluded for non-compliance. Inclusion criteria included participants having 

a body mass index (BMI) ranging from 25-35 kg/m2, non-diabetic, no 

medications, not pregnant were between the ages of 18-49 and were inactive 

(not engaging in any form of exercise for the previous 6 months). We defined 

exercise as purposeful, leisure time physical activities performed to improve 

health and/or weight status. This was determined during screening when 

participants were asked of their exercise behaviors and were excluded if they 
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reported engaging in any exercise over the previous six months. The lack of 

exercise behaviors of the current sample was validated by accelerometry, as 

baseline seven-day vigorous physical activity (VPA) values were well below the 

recommended 75 minutes per week for every participant (Table 1). The study 

was an open enrollment with staggered start dates for participants between the 

winter of 2018 and continued until recruitment goals were met (spring of 2019) in 

and around Lexington, Kentucky. Participants were a sample who responded to 

recruitment media including printed brochures and flyers and online 

advertisements placed on University of Kentucky’s Center for Clinical and 

Translational Science (CCTS) website. This study was approved by the 

University of Kentucky Institutional Review Board and is registered with 

ClinicalTrials.gov identifier: NCT03413826. 

 

Procedures 

During the initial screening and consenting visit, participants provided their 

written informed consent and were screened of eligibility criteria, completing a 

physical activity readiness questionnaire (PARQ), health history questionnaire, 

and screened on their dieting, weight loss history, and physical activity behaviors. 

Participants were provided an ActiGraph Accelerometer (Pensacola, Fla) to wear 

for the following seven days to objectively assess physical activity prior to 

completing baseline testing. Subsequent visits included assessments for resting 

metabolic rate, rate of energy expenditure during exercise, and body 

composition, (all detailed below). 
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Assessments 

Physical activity 

  Habitual, free-living physical activity was measured using an ActiGraph 

accelerometer (GT3X+ model; Pensacola, Florida) at baseline to verify 

participants were not engaging in exercise. Participants were instructed to wear 

the monitor at the hip using the provided belt during all hours awake except when 

bathing or swimming. Data were cleaned of non-wear time, defined as 

consecutive strings of zeros greater than 20 minutes. An epoch of 10 seconds 

was used for data collection as a shorter epoch is more suitable to reflect bout 

duration under free-living conditions of sedentary individuals [209]. These data 

were used to determine participants’ weekly minutes of vigorous physical activity 

(VPA) using the Crouter et.al algorithm, and Freedson cut-points. VPA was used 

over the more typical moderate to vigorous physical activity (MVPA) to determine 

exercise behavior as VPA is a better measure of purposeful exercise opposed to 

activities like walking across a large college campus (as many participants were 

obligated to do) which can be counted as MVPA but did not fit our definition of 

“exercise”. 

 

Rate of Energy Expenditure 

A graded exercise treadmill test was used to determine each participant’s 

rate of energy expenditure at five different heart rate zones. Oxygen consumed 
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and CO2 produced were analyzed by indirect calorimetry (VMAX Encore 

Metabolic Cart, Vyaire Medical, Mettawa, IL), which included an integrated 12-

lead ECG for monitoring heart rate and used in conjunction with the Trackmaster 

TMX428 Metabolic cart interfaced treadmill. Upon completion of a five-minute 

warm-up walking at 0% grade and 3.0 mph, the treadmill grade increased to 

2.5% for three minutes. The treadmill grade was then increased every three 

minutes to produce an approximately 10-beat per minute increase in heart rate 

from the previous stage with the speed fixed at 3.0 mph. The test continued until 

a heart rate of 85% heart rate reserve (HRR) was attained or the participant felt 

they could no longer continue. Rate of energy expenditure (kcal per minute) was 

determined from the amount of oxygen consumed and CO2 expired using the 

Weir equation [210]. The average rate of energy expenditure during the last 30 

seconds of each stage of the test was regressed against the heart rate averaged 

over the last 30 seconds of the corresponding stage to calculate the rate of 

energy expenditure at different heart rates. Heart rate zones were calculated 

based on the HRR formula as (220-age)-resting heart rate * zone % + resting 

heart rate. Heart rate zone 1 ranged from 50-59% HRR, zone 2 corresponded to 

60-69% HRR, zone 3 was 70-79% HRR, zone 4 was 80-89% HRR, and zone 5 

was 90% or greater. Energy expenditure in kcal/min was averaged across each 

heart rate zone for determination of energy expenditure per minute for each 

zone. This test was completed at baseline and again at six-weeks to recalculate 

energy expenditure to take improvements in cardiorespiratory fitness into 

account.  
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Body Composition 

 Body composition was measured using a GE Lunar iDXA machine prior to 

the exercise test. The iDXA technique allows the non-invasive assessment of soft 

tissue composition by region with a precision of 1-3% [211]. Lunar iDXA was 

used pre and post intervention to determine changes in FM and FFM of each 

participant. A total body scan was conducted with participants lying supine on the 

table and arms positioned to the side. Most scans were completed using the thick 

mode suggested by the software. All scans were analyzed using GE Lunar 

enCORE Software (13.60.033). Automatic edge detection was used for scan 

analyses. The machine was calibrated before each scanning session, using the 

GE Lunar calibration phantom.   

 

Resting Energy Expenditure 

 Resting Energy Expenditure (REE) was measured using indirect 

calorimetry (Quark RMR; Cosmed USA, Chicago, IL) with a ventilated canopy. 

Calibrations were performed on the flow meter using a 3.0-L syringe and on the 

gas analyzers using verified gases of known concentrations before each test. On 

the day of the test, participants were instructed to come into the lab having fasted 

for 12 hours, engaged in no physical activity and drinking nothing but water. After 

30 minutes of quiet rest in the supine position in a dimly lit, temperature-

controlled room between 22 and 24 C, REE was measured for 30 minutes. The 

test was monitored to ensure participants remained awake and between 0.8 and 
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1.2% feCO2. Criteria for a valid REE was a minimum of 15 minutes of steady 

state, determined as a <10% fluctuation in oxygen consumption and <5% 

fluctuation in respiratory quotient. The Weir equation [210] was used to 

determine REE from the measured oxygen consumption and CO2 production. 

Participants completed the baseline REE assessment prior to the exercise test 

and 36-72 hours after their final exercise session of the intervention. Fat-free 

mass (FFM) is the predominate determinant of REE due to its metabolic activity, 

explaining 53% to 88% of the variance in REE [212, 213]. For this reason, REE 

(raw value) was divided by FFM (kg, from DXA) at each time point to standardize 

REE. This is consistent with previous literature and the definition of metabolic 

compensation, i.e. mass-independent reductions in energy expenditure [131, 

214, 215]. 

 

Compensation 

To calculate compensation for the energy expended during the exercise 

program, the accumulated energy balance (AEB) was calculated from pre-post 

changes in fat mass (FM) and FFM as body composition changes reflect long-

term alterations in energy balance [20]. Gains of 1kg FM and 1kg FFM were 

assumed to reflect 12,000 kcal and 1,780 kcal, respectively [216]. Losses of 1kg 

FM and 1kg FFM were assumed to equal -9,417 and -884 kcal, respectively 

[217]. Exercise energy expenditure (ExEE) was calculated from the training-

induced energy expenditure (TrEE) with the addition of 15% excess post-

exercise energy expenditure [218]. The REE that would have occurred during the 
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exercise sessions (REE x 1.2) was subtracted so not to include it twice. Thus, 

ExEE = (TrEE x 0.15) + (TrEE – training duration x (REE x 1.2)) [20]. 

Compensation in response to the increase in ExEE was assessed as described 

by Rosenkilde [20], with the compensation index (CI) calculated as (ExEE + 

AEB)/ExEE x 100%. When the CI equals zero, AEB equals -1*ExEE, or changes 

in the energy equivalent of FM and FFM equal energy expended during exercise. 

Positive compensation suggests that changes in body composition indicate a 

negative energy balance that was less than expected based on ExEE, whereas 

negative compensation indicates a greater than expected negative energy 

balance. ExEE, AEB, and CI could be calculated only for those participants who 

completed the study as both a pre- and post-treatment data points were needed 

to calculate these variables.   

 

 
 

 
 

 

  

Exercise Intervention 

 Participants were provided a Polar A-300 heart rate monitor (watch and 

chest strap, Kempele, Finland) for the duration of the 12-week intervention and 

instructed to engage in aerobic exercise (excluding swimming) either two or six 

days per week. Participants in the control group were instructed to remain 

sedentary and were offered the exercise intervention after post-testing, 12-weeks 

  
 exercise energy expenditure (ExEE)  
 + accumulated energy balance (AEB)                 
             ExEE   

Compensation Index (CI, 
% kcal compensated 
for) 

X 100 

Note: AEB is a negative number when bodily energy stores decrease, positive when gaining  

= 
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later. Those in the exercise groups returned to the lab weekly to meet a 

researcher and download their exercise sessions using the PolarFlow™ 

software, which allowed research staff to monitor and track compliance. If a 

participant was not 90% compliant (completed 90% of expected exercise 

sessions per month) they were dropped from the study. The downloaded 

exercise session reports provided the amount of time spent in each heart rate 

zone, which allowed for the calculation of total energy expended during each 

exercise session based off individual rates of energy expenditure averaged 

across each heart rate zone calculated from the graded exercise test with indirect 

calorimetry performed at baseline and again at week six. Participants in the two-

day per week group were instructed to perform two long exercise sessions per 

week between 90 and 120 minutes at a self-selected intensity provided they were 

in at least HRR zone 1. Participants in the six-day per week group were 

instructed to keep their sessions between 40 and 60 minutes per session with the 

same intensity guidelines as the two-day group. Individuals were instructed to 

only engage in exercise per intervention group assignment. Participants were 

provided feedback each week on their time and energy expenditure of each 

session of the prior week. All participants were instructed not to purposely 

change dietary habits during the intervention. 

 

Statistical Analysis  

 Baseline participant characteristics and exercise training-induced 

variables (ExEE, AEB, and CI) were tested for group differences using T-tests. 
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Our primary outcomes were CI, total energy compensated, and percent body fat 

loss with interest in how these variables related to exercise dose defined as 

sessions per week (randomized group), ExEE per week, time spent exercising 

per week, and exercise intensity (% time spent exercising in HRR zones 3-5). 

Differences in primary outcomes were tested via repeated measures two-way 

ANOVA to determine differences between groups, over time, and group by time 

interactions with gender and age included as covariates. Additional ANCOVA 

analyses were performed assessing changes over time and between groups for 

changes in body weight and fat mass, both as percent change and raw values. 

Linear regression analyses were used to predict CI and percent FM loss using 

exercise group (exercise frequency), time spent exercising per week, ExEE per 

week, and exercise intensity as independent variables. Additional regression 

analysis was used to predict percent change in FM using the dosing variables 

and total energy compensation. All analyses were performed in IBM SPSS 

Version 26 (IBM corporation, Armonk, New York). Power Analysis: A previous 

study [23] demonstrated significant differences (1.7 kg) in body fat loss in groups 

exercising at 3,000 kcal per week vs. 1,500 kcal per week for 12 weeks. Using an 

80% power and 95% confidence level, 13 participants per group were needed to 

detect a significant change in body fat loss from baseline to post intervention with 

a standard deviation of 2.3.   
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Chapter 4: Results 

 
 Baseline characteristics are presented in Table 1, with no differences in 

BMI, age, VPA, RMR/kg FFM, RQ, or VO2 max between groups.  Participants in 

the two-day per week group expended on average 745.33 + 61.04 kcal per 

session, while the six-day per week group expended 460.37 + 26.04 kcal per 

session, mean + SE, which was different (P<0.01) between groups as expected. 

All exercise training-induced variables are presented in Table 2, with differences 

in weekly ExEE, time spent exercising, and percent body fat loss between 

groups. Neither CI or total kcal compensated per week were different between 

groups. Figure 1 presents a plot of individual CI values, indicating a large 

individual variation and a mean CI of 50%. Both total and percent body fat and 

body weight changed (decreased) over time for the six-day per week group but 

not in the two-day per week group or control. These changes held when 

controlling for age and gender (ANOVA) and when controlling for baseline values 

(ANCOVA). The control group gained 0.98 + 0.79 kg (4.20 + 2.82 percent) body 

fat, which was significantly different (P<0.04) from both exercise groups. The 

increases in total body weight of the control group (0.40 + 0.99 kg and 0.78 + 

1.19 percent) was not significantly different from either exercise group. These 

results did not change when covarying for baseline body fat or total mass, sex, or 

age. Changes RQ and REE were not different between groups or over time when 

assessed as raw values or per kg FFM.  

Linear regression results predicting CI are presented in Table 3, 

demonstrating none of the dosing variables (exercise frequency [randomized 
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group], duration, intensity, and ExEE) predicted CI. Similar results are presented 

in table 4, whereas none of the dosing variables predicted total energy 

compensated. Linear regression results predicting changes in percent FM are 

presented in Table 5. Exercise duration, and intensity did not independently 

predict percent FM loss when accounting for energy compensation. The only 

dose variable that predicted percent FM change was weekly ExEE. Table 6 

further supports the aforementioned results demonstrating greater FM is lost 

when weekly ExEE exceeded 2,000 kcal compared to under 2,000 kcal, with no 

differences in CI or total energy compensated between these retrospectively split 

groups.  
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Figure 1. Plot of CI values.  
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Figure 1. Compensation Index values. Each point represents an individual participant. Y 
values are compensation index (CI) expressed as a percentage (% kcal compensated 
for). The solid black line is the mean. 
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Table 1. Demographics, vigorous physical activity, and metabolic rates of the 
study participants at baseline (included all randomized participants). 
 
 6 days per week 

group 
N = 19 

2 days per week 
group 
N = 20 

Control 
N = 14 

    
Sex (% female) 68.4 85.0 78.8 

Age (years) 29.32 ± 7.2 28.56 ± 5.85 26.00 ± 7.80 

BMI1 29.0  ± 2.87 30.51  ± 3.47 29.36  ± 2.87 

VPA2 9.08  ± 12.88 8.57  ± 17.45 12.91  ± 19.87 

REE/Kg FFM3 31.52  ± 4.76 33.86  ± 4.75 33.37  ± 4.62 

RQ4 0.93  ± 0.10 0.90  ± 0.09 0.92  ± 0.06 

VO² Peak5 

 
39.76  ± 4.56 38.45  ± 2.57 39.95  ± 4.84 

Data are mean ± SD 

1Body Mass Index, kg/m2 

2VPA: Minutes of vigorous physical activity assessed objectively assessed via accelerometery using 
Freedson cut points 

4RQ: Respiratory quotient, CO2 produced/O2 consumed during resting energy expenditure test. 

3REE/Kg FFM: Resting energy expenditure per kg FFM, in kcal per 24 hours, assessed from indirect 
calorimetry and calculated via the Weir equation from O2 consumed and CO2 produced. 

5VO2 Peak: Estimated from sub-maximal exercise test, ml/kg/mi 
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Table 2. Resulting data from the exercise intervention between groups that 
exercised. Data are mean ± SE, only individuals who completed exercise 
intervention 
 

 6 days per week 
group N=15 

2 days per week 
group N=17 

All participants 
N=32 

Exercise Time/week1 * 320.5 ± 20.40 188.8 ± 12.00 249.41 ± 16.85 

% Time in Zone 3-52 47.73 ± 6.13 52.31 ± 4.62 50.32 ± 3.69 

% Time in Zone 1-23 52.11 ± 5.68 47.69 ± 4.62 49.67 ± 3.69 

ExEE/week4 * 2,753.5 ± 144.9 1,490.7 ± 122.1 2,041.68 ± 150.8  

Kcal compensated/week5 1309.86 ± 274.5 715.42 ± 268.6 961.39 ± 198.7 

Total exercise time6 3,944.2 ± 242.8 2,265.4 ± 143.4 2,992.9 ± 202.2 

Total ExEE7 33,091 ± 2,112.8 17,562 ± 1,547.7 24,291 ± 1,895.0 

Total Kcal compensated8 15,718 ± 3,294.1 8,585.0 ± 3,223.0 11,537 ± 2,384.2  

AEB9 -16,789 ± 3,589.8 -8,977.3 ± 3,515.3 -12,363 ± 2,586.7 

CI10 55.43 ± 10.16 49.31 ± 20.56 50.25 ± 12.27 

Kg weight loss11 * -1.04 ± 0.45^ -0.76 ± 0.60 -0.59 ± 0.38 

% weight loss12 * -1.48 ± 0.64^ -0.84 ± 0.66 -1.09 ± 0.45 

Kg body fat loss13 -1.82 ± 0.39^ -0.64 ± 0.44 -0.58 ± 0.34 

% body fat loss14 -7.70 ± 2.04^ -1.86 ± 1.27 -4.43 ± 1.30 

Delta REE/kg FFM15 1.06 ± 0.94 -1.45 ± 1.08 -0.38 ± 0.81 

Delta RQ16 -0.11 ± 0.06 -0.09 ± 0.07 -0.09 ± 0.04 

 
 *Significantly different between groups, P ≤ 0.05 
^Significant change over time (change different from zero) P ≤ 0.05. 
 
Note: control group (N = 12) increased % weight change (+0.78 ± 1.19) and kg body weight (+0.40 ± 0.99) 
which was not different from exercise groups. The control group increased % fat change (+4.20 ± 2.82) and 
kg fat change (+0.98 ± 0.79) both different from 2- and 6-day groups (P<0.05). 
 
1Exercise Time/week: amount of time (in minutes) spent exercising per week 
2% Time in Zone 3-5: Percentage of time exercising spent in heart rate zones 3, 4 or 5 (70-100% heart rate 
reserve). 
3% Time in Zone 1,2: Percentage of time exercising spent in heart rate zones 1 or 2 (50-69% heart rate 
reserve). 
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4ExEE/week: Exercise energy expenditure (in kilocalories) per week. 
5Kcal compensated/week: Energy (in kilocalories) compensated for each week calculated by adding 
accumulated energy balance (AEB) and total exercise energy expenditure (ExEE) together and dividing by 
12.  
6Total exercise time: total amount of time spent exercising during the entire 12-week intervention, in min. 
7Total ExEE:  total exercise energy expenditure of the 12-week intervention, in kcal 
8Total Kcal compensated: total amount of kcal compensated, calculated by adding AEB and total ExEE 
together. 
9AEB: Accumulated energy balance, calculated from changes in bodily energy stores (changes in fat and 
lean mass) converted to kilocalorie equivalents.  
10CI: percentage of kilocalories compensated for, calculated as (ExEE + AEB) / ExEE) 
11Kg weight loss: kg of total body weight lost after the 12-week intervention  
12% weight loss: kg of weight loss / baseline body weight in kg 
13 Kg body fat loss: kg of body fat lost after the 12-week intervention 
14% body fat loss: kg of body fat loss / baseline body fat in kg 
15Delta REE/kg FFM: changes in resting energy expenditure per kg of FFM from baseline to post (post value 
minus baseline value) 
16Delta RQ: changes in respiratory quotient during rest from baseline to post (post value minus baseline 
value). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 67  

Table #3 Regression model predicting changes in compensation index with 
exercise intensity, ExEE, time spent exercising, and exercise group as 
independent variables  
 
 

Effect β SE P 

Intercept 68.357 45.719 0.147 

% Time in zone 4-51 -0.554 1.050 0.603 

Average ExEE/week2 

 
-0.002 0.030 0.953 

Average exercise 

time/week3 

-0.175 0.226 0.953 

Exercise group4 29.088 51.619 0.578 

P ≤ 0.05 
1% Time zone 4-5 - Percentage of time exercising spent in heart rate zones 4 to 5 (80-100% heart rate 
reserve) 
2Average ExEE/week – Exercise energy expenditure per week 
3Average time spent exercising per week – Amount of time (in minutes) spent exercising per week 
4 Exercise group – Low frequency (2 times per week) and high frequency (6 times per week) 
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Table #4 Regression model predicting changes in total calories compensated 
between exercise intensity, ExEE, time spent exercising and exercise group 
 
 

Effect β SE P 

Intercept 5738.435 8441.341 0.503 

% Time in zone 4-51 -150.240 192.388 0.442 

Average ExEE/week2 

 
3.342 5.687 0.562 

Average exercise 

time/week3 

-39.064 42.961 0.372 

Exercise group4 8613.149 9472.673 0.372 

P ≤ 0.05 
1% Time zone 4-5 - Percentage of time exercising spent in heart rate zones 4 to 5 (80-100% heart rate 
reserve) 
2Average ExEE/week – Exercise energy expenditure per week 
3Average time spent exercising per week – Amount of time (in minutes) spent exercising per week 
4 Exercise group – Low frequency (2 times per week) and high frequency (6 times per week) 
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Table #5. Regression Model predicting 12-week body fat change using exercise 
intensity, ExEE, total energy compensated and time spent exercising as 
independent variables  
 

Effect β SE P 

Intercept 2.640 1.571 0.106 

% Time in zone 4-51 .088 .036 0.24 

Average ExEE/week2 

 
-0.09 0.001 0.00 

Average exercise 

time/week3 

0.19 0.008 0.16 

Total calories compensated 0.000 0.000 0.000 

P ≤ 0.05 
1% Time zone 4-5 - Percentage of time exercising spent in heart rate zones 4 to 5 (80-100% heart rate 
reserve) 
2Average ExEE/week – Exercise energy expenditure per week 
3Average time spent exercising per week – Amount of time (in minutes) spent exercising per week 
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Table #6. Kilocalories compensated, ExEE, and CI Retroactively split into under 
and over 2,000 kcal burned per week with exercise 
 

 N Mean SE Max P 

Kilocalories 
compensated/week1 

Under 
2,000 

kcal/week 
 

15 858.2652 225.74631 2039.63  
 
 
 
 
 
 
 

0.600 

Over 2,000 
kcal/week 

 

14 1071.8860 339.85811 2885.11 

Total 29 961.3925 198.68406 2885.11 

Average 
ExEE/week2 

Under 
2,000 

kcal/week 
 

15 1484.0703 185.63382 3642.9  
 
 
 
 
 
 
 

*0.00 

Over 2,000 
kcal/week 

 

15 2599.2911 123.58551 3659.45 

Total 30 2041.6807 150.75241 3659.45 

Compensation 
index3 

Under 
2,000 

kcal/week 
 

15 59.1020 20.96639 114.96  
 
 
 
 
 
 
 

0.481 

Over 2,000 
kcal/week 

 

15 41.4059 13.15720 109.65 

Total 30 50.2539 12.27163 114.96 

12-week body fat 
change (kg) 

Under 
2,000 

kcal/week 
 

15 -.4067 .44195 1.42  
 
 
 
 
 
 
 

*0.015 

Over 2,000 
kcal/week 

 

15 -1.8953 .36854 .44 

Total 30 -1.1510 .31470 1.42 
 
*Significant between group difference (P < 0.05) 
1Kilocalories compensated/week: Energy (in kilocalories) compensated for each week calculated by adding 
accumulated energy balance (AEB) and total exercise energy expenditure (ExEE) together and dividing by 
12. 
2Average ExEE/week: Exercise energy expenditure (in kilocalories) per week. 
3Compensation index: Percentage of kilocalories compensated for, calculated as (ExEE + AEB) / ExEE) 
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Chapter 5: Discussion 

 
 

 The current study hypothesized that less frequent exercise (2 days/week) 

would evoke a reduced compensatory response compared to frequent exercise 

(6 days/week). This was based on the notion that fewer exercise sessions could 

result in less episodes of compensatory eating and/or fewer insults on the 

biological mechanisms promoting energy homeostasis. The obesogenic 

environment modern societies embrace shows no indications of regressing and 

as such, obesity rates will continue to rise. Understanding the most effective way 

to engage in exercise to limit the body’s compensatory response normally 

working to maintain energy homeostasis would be a valuable weight-loss 

treatment. Compensatory responses that defend against a negative energy 

balance can be separated into two types, behavioral or automatic [22]. Automatic 

compensatory responses are those in which humans have no control over, such 

as lowering metabolic rate, when faced with an energy deficit. Behavioral 

compensatory responses are those in which people do have control over, such 

as increasing energy intake, which many proclaim to be the primary 

compensatory response protecting against a negative energy balance induced by 

exercise [22]. Limiting the compensatory responses provoked by exercise would 

make it a more viable obesity treatment option. Little is known about how 

different aspects of an exercise program influence subsequent compensatory 

responses. The present investigation provides insight into some of these 

questions, with the primary finding that energy compensation is not influenced by 
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exercise frequency, intensity, duration, or energy expenditure, rather, greater 

energy expenditures (near 2,000 kcal per week) are needed to overcome this 

compensatory response to produce significant reductions in fat mass.  

 The present study failed to reject the null hypothesis that less frequent 

exercise would conjure a reduced compensatory response. Rather, the present 

study demonstrated no differences in energy compensation when engaging in 2 

or 6 sessions of aerobic exercise per week. The current findings indicate that 

individuals compensate for approximately 50% of the kcal they expend through 

exercise, regardless of exercise dose. Exercise dose in this case refers to 

frequency (number of sessions per week), duration of exercise (time spent 

engaged in exercise), exercise intensity (percent time spent exercising in heart 

rate zones 3-5) and ExEE. None of these variables influenced the compensatory 

response when including each as an independent variable in regression models 

predicting compensation index (CI) or total kcal compensated. In agreement with 

Flack et al. [23], the current investigation demonstrated the compensatory 

response when controlling for ExEE was not different between groups (mean of 

961 kcal compensated/week). When dividing participants into groups either 

expending over or under 2,000 kcal/week (mean= 2041 kcal/week) only the 

group with greater ExEE lost significant amounts of body fat, indicating greater 

energy expenditures are able to partially mitigate the compensatory response to 

an exercise-induced energy deficit to produce reductions in body fat. This is at 

odds with Rosenkilde et. al, who demonstrated that expending either 1,800 or 
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3,600 kcal during exercise per week produced nearly identical energy deficits 

after 12-weeks due to greater CI observed in the 3,600 kcal group [20].  

 The current study did successfully reject the null hypothesis of our second 

hypothesis, demonstrating greater exercise dose produces greater FM loss when 

controlling for energy compensated. This hypothesis was based on previous 

literature indicating that when energy compensation is equivocal, greater 

exercise expenditures are needed to overcome the compensatory response to 

produce significant weight loss [23]. ExEE was the only dosing variable that 

predicted percent FM loss when controlling for energy compensation (CI and 

total energy compensated). The finding that percent FM loss decreased as time 

spent exercising and ExEE increased supports what we deduced from the 

between group differences and regression models predicting CI as discussed 

earlier, that greater energy expenditures do not result in greater energy 

compensated for and thus needed to create the negative energy balance needed 

for FM loss.  

 Although exercise frequency caused equivocal obligatory compensatory 

responses, the answer to why may lie in the sedentary nature of the participants. 

A number of epidemiological studies have concluded that prolonged sitting is a 

significant risk factor for cardiovascular disease (CVD), obesity and mortality 

even in individuals who obtain the recommended physical activity levels (150 min 

per week moderate intensity or 75 min per week vigorous) [219-222]. Outside of 

the exercise intervention, subjects in the current study spent minimal time 

engaged in vigorous physical activity with the vast majority of their time spent 
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sedentary, giving credence to the idea of too much time spent idle can cause 

exercise resistance. More frequent exposures to exercise in the six day per week 

group may have countered their otherwise inactive lifestyle; however, the two day 

per week group, despite exercising188 minutes per week, saw no significant 

decreases in FM. 

The current study demonstrated the average weekly ExEE for all 

participants was 2041 ± 150 kcal with no significant decreases in percent FM. 

Our results indicate that if the two day per week group expended 2753 ± 145 kcal 

per week as in the six-day group, they would have also decreased percent FM. 

This notion would also be supported in that exercise intensity did not influence 

FM loss, so the longer duration/ lower intensity sessions that would need to be 

performed by the two day per week group to match the ExEE of the six day per 

week group would seem to be a viable way to produce FM loss. However 

formerly sedentary, obese individuals would have a difficult time expending 

roughly 1,400 kcal per session, necessitating a greater number of sessions per 

week. 

 An additional finding from the current study is REE or RQ do not 

significantly contribute to the compensatory response induced with exercise [23]. 

These results seem to dismiss the role automatic metabolic compensatory 

responses have on the overall compensatory response; however, these findings 

may be indicative of methodological inadequacies. Work by Weigle et al 

demonstrated that after weight loss, REE was 97% of that predicted, while non-

resting energy expenditure was only 76%, indicating the energy conserving 
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metabolic effects occurred primarily through non-resting energy expenditure 

[223]. Assessing skeletal muscle efficiency during exercise along with total 

energy expenditure would further elucidate metabolic adaptations occurring in 

response to a negative energy balance.  

 The study does present limitations. Although lower frequency exercise did 

not show improvements in body composition, the effects of prolonged time spent 

sedentary may have played a significant role in this finding, which may have 

been different among participants. Having all individuals engage in light physical 

activity (> 8,000 steps/day and sitting less than 10 hours per day) on days they 

are not performing vigorous physical activity may help mitigate the negative 

metabolic effects caused by a sedentary lifestyle [224-226]. Use of doubly 

labeled water would be the most accurate method to evaluate energy 

expenditure and energy intake from comparing expected to actual body 

composition changes. Energy intake of the participants is not known, and we can 

only assume most of the energy compensated came from increases in energy 

intake. The use of ab libitum energy intake in a controlled setting would help 

lessen known under-reporting of food consumption that often occurs in self-

reported dietary intake. Also, tracking food intake could help determine if dietary 

changes occurred throughout the study despite being told to eat their normal diet. 

As noted previously, the present study only assessed REE and resting RQ to 

deduce metabolic compensatory response. Additional assessments of the 

thermic effect of food and skeletal muscle efficiency would be valuable to include 

in future studies. Additionally, stage of menstrual cycle was not accounted for 
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among female participants, which could have influenced the calculated ExEE 

during the 12-week intervention. The unsupervised nature of the exercise 

sessions may also be considered a limitation as participants could have 

exercised longer without recording, although we have no reason to believe this to 

be true. Finally, out of the 44 participants who completed the study, 40 were 

Caucasian (one Pacific Islander, one Asian, two African American), thus limiting 

the generalizability to the entire population. The study was not designed to detect 

sex differences and included majority female participants; thus, sex effects 

cannot be drawn. 

 

Conclusion 

 
In conclusion, the present study demonstrates individuals do not increase 

their energy compensation with greater doses of exercise, which is in alignment 

with Flack et al. [23]. Participants compensated similarly, both when considering 

participants in the randomized groups (2 vs. 6 days/week) and ExEE groups 

(under or over 2,000 kcal/week). Only greater energy expenditures predicted fat 

loss, indicating the greater dose of the six day per week group was needed to 

overcome this compensatory response. The American College of Sports 

Medicine recommends 225 minutes per week of moderate exercise to induce 

weight loss, however, in the current study, the average weekly exercise time for 

all participants was 249 minutes with no significant changes in FM. The six-day 

per week group exercised more than 320 minutes per week in order to 
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experience significant decreases in body fat, therefore exercise 

recommendations for weight loss may need to be closer to 300 minutes per week 

instead of 225.   
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