
bioparticles as an indicator of phagocytosis. The bio-
particles have a pHrodo dye that is non-fluorescent at
neutral pH but becomes fluorescent in the red
spectrum when it enters the acidic environment of a
phagosome. MW150 (3.75, 7.5, 15 μM) or CytD was
added 30 min prior to addition of bioparticles, then
fluorescence intensity was captured by IncuCyte
Zoom software every 30 min. We have previously re-
ported [19] that in BV2 cells, the fluorescence inten-
sity gradually increases over time and reaches a
plateau by about 4 to 5 h after the addition of bio-
particles. MW150-treated cells did not show signifi-
cant differences in fluorescence intensity compared to

saline-treated cells (Fig. 7c, d), but there was a trend
toward increased phagocytosis with MW150. The
positive control, CytD, significantly reduced the up-
take of bioparticles by BV2 cells. The noticeable re-
duction in fluorescence intensity with CytD treatment
is illustrated in Fig. 7d.
We used a scratch wound assay to assess the cap-

ability of BV2 cells to migrate into an injury area de-
void of cell coverage. When BV2 cells reached
approximately 90% confluency in a 96-well plate, a
scratch wound was made by the Essen Bioscience
WoundMaker. Previously we reported [19] that by
24 h the space made by the scratch would be filled

Fig. 6 Effect of MW150 treatment on microglia closely associated with Aβ plaques and microglia-internalized Aβ in the cortex of APP/PS1 KI mice.
a Representative images of Imaris 3D reconstruction of plaques. A region of interest (ROI) was generated by expanding the plaque volume by a
15 μm radius from the edge of the large plaques (larger than 10,000 voxels). This 3D ROI (shown in gray) included the Aβ plaque, and a region
near the plaque. IBA1+ cells in this ROI (shown in cyan) were surface rendered to create a 3D volume of all IBA1 positive staining in the ROI. The
IBA1 positive staining in the 3D ROI distinguishes plaque-associated microglia (shown in cyan) compared to microglia away from plaques (shown
in green). b Volume of surface rendered IBA1+ cells within 15 μm radius around large plaques was significantly increased in KI + MW150 mice
compared to KI + veh treatment (p = 0.0397). c Representative image of microglia reconstruction with DAPI stained nuclei showing 6E10 staining
within IBA1+ cell cytoplasm. d Microglia-internalized Aβ, as measured by 6E10 staining within surface rendered IBA1+ cells, was not significantly
different between the KI + MW150 compared to KI + veh. (n = 11 KI + veh; n = 14 KI + MW150). Data are mean ± SEM. Source data is available in
Additional file 3: Table S3
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with BV2 cells. At 12 h after the scratch wound was
made, MW150 treatment did not significantly alter
the amount of empty space left by the scratch wound,
whereas CytD caused a significant delay in wound
closure (Fig. 7e, f ).
Because MW150 had no suppressive activity in the

proliferation, migration, or phagocytosis assays, it was
important to confirm that MW150 was active in the
cells. Therefore, as a positive control we tested the abil-
ity of MW150 to suppress TNFα production from LPS-
stimulated BV2 cells, a pathway known to be regulated
by p38αMAPK. We found that MW150 suppressed LPS-
stimulated TNFα upregulation with an IC50 of 1.34 to
1.99 μM (95% CI), concentrations well below the range
of MW150 (3.75, 7.5, 15 μM) used for the live cell
imaging assays.

Discussion
There are two major findings in this study. First, treat-
ment with an established efficacy dose of MW150 atten-
uated age-related increases in brain IL-1β and TNFα
without affecting the overall amount of microglia or Aβ
levels. A surprising finding was that MW150 treatment
increased the microglia closely associated with amyloid
plaques. Second, MW150 treatment did not suppress
protective microglia cell responses such as migration,
proliferation, or phagocytosis over concentrations that
attenuate proinflammatory cytokine production. These
key findings document the selective effect of efficacious
doses of MW150 on disease-linked glia processes with
retention of responses considered protective.
The results reported here extend our previous valid-

ation [14] of MW150 as a candidate for development by

Fig. 7 No effect of MW150 treatment on BV2 cell proliferation, migration, and phagocytosis. a Average BV2 cell density at 30 h after plating in a
96-well plate at 5000 cells/well. b A representative example of the cell density at 24 h after treatment with saline, MW150 (0, 3.75, 7.5, or 15 μM),
or cytochalasin D (cytD;1 μM) (mean ± SEM, n = 3 independent experiments; 8 technical replicates included for each experiment). c Quantification
of pHrodo-labeled E. coli bioparticles at 3 h after addition of bioparticles. d A representative example of the cell bioparticles uptake at 3 h after
treatment with saline, MW150 (0, 3.75, 7.5, or 15 μM), or cytD (1 μM) (mean ± SEM, n = 3 independent experiments; 4 technical replicates included
for each experiment). e Average size of scratch wound that is filled with cells, as determined by the percent confluency in the area left nearly
devoid of cells after the scratch wound, normalized to veh at 12 h post scratch. f Representative images of the scratch wound made (highlighted
by green lines), at time 0 and 12 h post scratch (mean ± SEM, n = 3 independent experiments; 8 technical replicates included for each experiment).
g MW150 concentration-dependent inhibition of TNFα levels in LPS-stimulated BV2 cells (mean ± SEM, n = 1–3 independent experiments; 4 technical
replicates included for each experiment). Source data is available in Additional file 4: Table S4
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showing that MW150 in the efficacious dose range sup-
presses IL-1β and TNFα overproduction in vivo in the
APP/PS1 KI mice. We did not detect a change in IL-6
levels, consistent with the prevailing view that IL-6 cyto-
kine induction generally occurs via signaling pathways
independent of p38αMAPK [26].
We previously reported [14] that MW150 showed no

detectable effects on amyloid plaque burden in either
the APP/PS1 KI mice or the APP/PS1 transgenic mice
assessed by standard immunohistochemistry with 6E10
anti-Aβ antibody. We further extended the analyses here
by using quantitative Aβ ELISA and confocal micros-
copy. Aβ ELISA demonstrated that MW150 had no de-
tectable effect on the levels of PBS-soluble or formic
acid-soluble Aβ40 and Aβ42 in the APP/PS1 KI mouse
cortex, consistent with our previous study that reported
no change in plaque load by immunohistochemistry
[14]. Confocal microscopy analysis showed that MW150
treatment of APP/PS1 KI mice had no significant effect
on the total Aβ plaque volume in the cortex and on the
amount of internalized Aβ inside each microglia. How-
ever, even though the results did not reach significance,
there was a trend toward decreased Aβ plaque volume
and increased Aβ inside microglia in the APP/PS1 KI
mice treated with MW150. These results are also con-
sistent with a small increase in bioparticle phagocytosis
activity seen in BV2 cells after MW150 treatment. Over-
all, our findings raise the intriguing possibility that
MW150 stimulates microglia phagocytosis. However,
these data must be interpreted with caution because the
in vivo results with Aβ plaque volume did not reach
statistical significance, and in vitro results in the BV2
cell line with bioparticle phagocytosis cannot be directly
equated to Aβ phagocytosis in vivo. It will be important
in future studies to test potential effects of MW150 on
microglia phagocytosis in more detail. Nevertheless, it is
clear that MW150 did not impair the ability of the
plaque-associated microglia to phagocytose Aβ and did
not lead to a significant change in Aβ40 or Aβ42 levels.
An unexpected finding in the results reported here was

that MW150 treatment significantly increased the microglia
in close proximity to amyloid plaques. Whether this reflects
an effect of MW150 on microglia migration is unclear.
There was no statistically significant effect of MW150 on
migration of BV2 cells in response to a scratch wound, but
similar studies with migration to amyloid deposits were not
done because of limited responsiveness of BV2 cells to syn-
thetic Aβ. The functional significance of the increase in
plaque-associated microglia is also not known, but a logical
hypothesis to test in future studies is whether there is a re-
lationship between modulation of p38αMAPK signaling,
and the ability of microglia processes to surround amyloid
plaques and promote their compaction. A demonstrated
linkage would provide mechanisms whereby microglia

could decrease compaction (p38αMAPK mediated) or
increase compaction (e.g., TREM2 mediated; [27]). The
unexpected finding, therefore, raises the potential of subtle
effects of p38αMAPK inhibition on microglia—plaque
interactions that will require further exploration.
There is some general confusion in the literature about

the pharmacodynamic effects of p38αMAPK inhibitor drug
candidates. Specific to this report, there is an unresolved
issue in terms of the relationship between p38αMAPK and
amyloid pathology in preclinical mouse models of AD. Our
results here and elsewhere [14] using multiple experimental
approaches clearly show that the isoform-specific
p38αMAPK inhibitor MW150 does not significantly affect
overall Aβ levels or plaque burden. However, previous
studies with some p38αMAPK inhibitors that hit multiple
kinases, such as VX-745 and CNI-1493, report inhibition of
Aβ production or amyloid plaque deposition [28–30].
Whether the effects on these inhibitors on amyloid reflect
engagement of targets other than p38αMAPK [31, 32], such
as Abl [33], is not known. Further, a full evaluation of the
differences is limited by the type of animal model used in
efficacy and pharmacodynamic endpoint analyses. For ex-
ample, APP/PS1 transgenic mouse models that overexpress
APP exhibit high levels of amyloid, whereas the APP/PS1
KI mouse uses endogenous promoters and demonstrates
progressive AD pathology without the forced APP overpro-
duction. Regardless, future clinical studies are required to
resolve any therapeutic significance of these preclinical
pharmacodynamic differences.

Conclusions
In summary, our results demonstrate the selective effects
on glial inflammatory responses to treatment with MW150,
a unique, isoform-selective, p38αMAPK inhibitor drug can-
didate that attenuates cognitive impairment in AD-relevant
mouse models. The findings show that MW150 has a se-
lective role in modulation of neuroinflammatory responses
without pan-suppression of normal physiological functions
of microglia. The refined insight into glial biology pre-
sented here, combined with the safety and efficacy
pharmacological profile of MW150 [14], reinforce the
need to move this novel therapeutic candidate into clinical
development for AD and related disorders.
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