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RESEARCH Open Access

Retention of normal glia function by an
isoform-selective protein kinase inhibitor
drug candidate that modulates cytokine
production and cognitive outcomes
Zhengqiu Zhou1†, Adam D. Bachstetter1,2,3†, Claudia B. Späni1, Saktimayee M. Roy4, D. Martin Watterson4

and Linda J. Van Eldik1,2,3*

Abstract

Background: Brain p38α mitogen-activated protein kinase (MAPK), a potential therapeutic target for cognitive
dysfunction based on the neuroinflammation-synaptic dysfunction cycle of pathophysiology progression, offers an
innovative pharmacological strategy via inhibiting the same activated target in both glia and neurons, thereby
enhancing the possibility for efficacy. The highly selective, brain-penetrant p38αMAPK inhibitor MW150 attenuates
cognitive dysfunction in two distinct Alzheimer’s disease (AD)-relevant models and avoids the problems encountered
with previous mixed-kinase inhibitor drug candidates. Therefore, it is essential that the glial effects of this CNS-active
kinase inhibitor be addressed in order to anticipate future use in clinical investigations.

Methods: We explored the effects of MW150 on glial biology in the AD-relevant APP/PS1 knock-in (KI) mouse model
where we previously showed efficacy in suppression of hippocampal-dependent associative and spatial memory
deficits. MW150 (2.5 mg/kg/day) was administered daily to 11–12-month-old KI mice for 14 days, and levels of
proinflammatory cytokines IL-1β, TNFα, and IL-6 measured in homogenates of mouse cortex using ELISA. Glial
markers IBA1, CD45, CD68, and GFAP were assessed by immunohistochemistry. Microglia and amyloid plaques
were quantified by immunofluorescence staining followed by confocal imaging. Levels of soluble and insoluble
of Aβ40 and Aβ42 were measured by ELISA. The studies of in vivo pharmacodynamic effects on markers of
neuroinflammation were complemented by mechanistic studies in the murine microglia BV2 cell line, using live
cell imaging techniques to monitor proliferation, migration, and phagocytosis activities.

Results: Intervention with MW150 in KI mice during the established therapeutic time window attenuated the
increased levels of IL-1β and TNFα but not IL-6. MW150 treatment also increased the IBA1+ microglia within a
15 μm radius of the amyloid plaques, without significantly affecting overall microglia or plaque volume. Levels of
IBA1, CD45, CD68, GFAP, and Aβ40 and Aβ42 were not affected by MW150 treatment. MW150 did not
significantly alter microglial migration, proliferation, or phagocytosis in BV2 cells.
(Continued on next page)
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(Continued from previous page)

Conclusions: Our results demonstrate that MW150 at an efficacious dose can selectively modulate neuroinflammatory
responses associated with pathology progression without pan-suppression of normal physiological functions of
microglia.

Keywords: Cytokines, Microglia, Protein kinase inhibitors, Mitogen-activated protein kinase 14, Neuroprotective agents,
Alzheimer’s disease

Background
Alzheimer’s disease (AD) is the most common form of
dementia, affecting >5.3 million people in the USA alone
[1]. Current treatments stabilize symptoms temporarily
without slowing progression of the disease [2]. There-
fore, there is a pressing need for neuroprotective agents
for AD and related dementias.
An array of complementary clinical and preclinical re-

ports implicate discrete aspects of early stage neuroin-
flammation in disease progression. For example,
genome-wide and genetic investigations reveal associa-
tions between inflammation-related genes and AD risk
(for recent reviews, see [3–5]). Complementary to such
associations are experimental outcomes from clinical
pathology and animal model investigations that together
provide a pathophysiology link between early stage neu-
roinflammation and AD risk (for reviews, see [6–8]). A
specific form of neuroinflammation and dysregulated
proinflammatory cytokine production, was shown to be
a viable drug discovery pathway if intervention was in
early stages when basal cytokine levels were progres-
sively increasing prior to or coincident with synaptic
dysfunction [9].
The p38 mitogen-activated protein kinase (MAPK)

family of serine-threonine protein kinases, especially
p38αMAPK (MAPK14), are key regulators of proinflam-
matory cytokine production in the brain [10]. Activation
of microglia p38αMAPK and the downstream overpro-
duction of proinflammatory cytokines such as TNFα leads
to synaptic protein loss, neurite degeneration, and neur-
onal death in microglia-neuron co-cultures [11]. Activa-
tion of p38αMAPK in neurons occurs in response to a
variety of CNS disease-relevant stressors, and inhibition of
neuronal p38αMAPK can be neuroprotective [12, 13].
Taken in its entirety, the increasing body of evidence is
consistent with activation of p38αMAPK activity in both
neurons and glia in response to disease-relevant stressors,
raising the possibility that selective dosing with a brain-
penetrant, isoform-selective p38αMAPK could be a viable
approach to disease modification or attenuation of disease
progression susceptibility.
The recent description [14] and initial validation of a

highly selective p38αMAPK inhibitor, MW150, that is effi-
cacious in two different AD models provided both a mech-
anistic precedent and a novel candidate for development.

Previous efforts at validating p38αMAPK as a viable CNS
target used mixed-kinase inhibitors whose results were dif-
ficult to interpret or lacked blood brain barrier penetrance
and bioavailability to allow exposure to the brain-activated
p38αMAPK [15]. The development of MW150 solved
those problems. Briefly, MW150 is a unique small molecule
drug candidate that is the most highly specific p38αMAPK
inhibitor reported to date. MW150 is orally bioavailable,
CNS-penetrant, and efficacious in rescuing hippocampal-
dependent associative and spatial memory deficits in mouse
models of AD-related pathology [14]. MW150 outcomes in
a series of pharmacological screens forecast lower risk for
development and documented the absence of safety prob-
lems that plagued previous CNS p38MAPK inhibitor cam-
paigns. The battery of critical pharmacological and efficacy
results qualified this unique, isoform-selective, p38αMAPK
inhibitor as a candidate for investigational new drug (IND)
development required for first-in-human clinical studies.
There is no comparable drug or drug candidate with the
combination of documented specificity and safety, in vitro
and in vivo pharmacological features, and target recogni-
tion [14, 15]. Therefore, it is essential that the glial effects
of this exceptional inhibitor with in vivo efficacy be ad-
dressed in order to anticipate future use in clinical
investigations.
The goal of the current study was to determine in

more depth the effects of MW150 on glial biology and
proinflammatory cytokine dysregulation in the AD-
relevant APP/PS1 knock-in (KI) mouse model previously
used to show MW150 efficacy in suppression of
hippocampal-dependent associative and spatial memory
deficits [14]. To further probe the selective action of
MW150, we complemented the in vivo studies by live
cell imaging analysis of the murine microglia BV2 cell
line to monitor proliferation, migration, and phagocyt-
osis activities. Our results demonstrate that MW150 has
a selective role in modulation of neuroinflammatory re-
sponses without pan-suppression of normal physio-
logical functions of microglia.

Methods
Animals
The AD mouse model we used is the APPNLh/NLh ×
PS1P264L/P264L KI mouse model originally developed at
Cephalon [16]. This double KI mouse line expresses

Zhou et al. Journal of Neuroinflammation  (2017) 14:75 Page 2 of 12



mutant APP and PS1 under the control of the endogen-
ous promoters, and therefore, shows AD pathology with-
out APP or PS1 overproduction. The APP/PS1 KI mice
were maintained on a CD-1/129 background; wild-type
(WT) control mice were obtained from heterozygous
APP/PS1 matings and were maintained as a separate line
for >20 generations, as previously described [9].

Synthesis and use of MW150
MW01-18-150SRM (MW150) was synthesized and char-
acterized as previously reported [14]. For all experiments
in this report, MW150 was dissolved in 0.9% sterile
NaCl (saline: Hospira NDC 0409-4888-10) and was ad-
ministered (2.5 mg/kg/day) by intraperitoneal (i.p.) injec-
tion to 1112-month-ld APP/PS1 KI mice once daily for
14 days. APP/PS1 KI and WT mice administered saline
vehicle i.p. under the same administration paradigm
were used as controls.

Brain tissue harvesting, biochemical, and
immunohistochemical and immunofluorescent endpoints
Mice were anesthetized with 5% (v/v) isoflurane prior to
transcardial perfusion with ice-cold PBS for 5 min. The
brains were then rapidly removed and were fixed or
homogenized as previously described [9]. IL-1β, TNFα,
IL-6, Aβ40, or Aβ42 levels were measured in cortex
homogenates using Meso Scale Discovery (MSD) ELISA,
as previously described [9, 17, 18]. Immunohistochemi-
cal (IHC) staining was done, and images quantified with
the Aperio ScanScope XT digital slide scanner and
Aperio ImageScope software positive pixel count algo-
rithm (version 9) as previously described [9, 17]. Primary
antibodies used for IHC staining included: rabbit anti-
glial fibrillary acidic protein (GFAP) at 1:10,000 dilution
(cat# Z0334; Dako); rat anti-CD68 at 1:5000 dilution
(cat# MCA1957T; Serotec); and rat anti-CD45 (YW62.3)
at 1:10,000 dilution (cat# MA1447081; ThermoFisher
Scientific). For the detection of GFAP, a HRP-conjugated
goat anti-rabbit IgG was used. For all other primary anti-
bodies, a biotinylated secondary antibody was amplified
in avidin-biotin substrate (ABC kit, Vector Laboratories).
All sections were developed in 0.5 mg/ml 3,3-diamino-
benzidine tetrahydrochloride solution (Sigma, cat# D5637).
Immunofluorescence staining was done following

established methods as previously described [19, 20].
Antibodies used included: rabbit anti-IBA1 at 1:200 dilu-
tion (cat# 019-19741; Wako); and biotin-labeled mouse
anti-Aβ (6E10) at 1:200 dilution (cat# 39340-200, Cov-
ance). Primary antibodies were detected by Alexa 488
goat anti-rabbit IgG at 1:200 dilutions (cat# A-11034,
Life Technologies) or Alexa Fluor 594 streptavidin (cat#
S32356, Life Technologies). Immunofluorescent images
were taken on a Nikon C2Plus Confocal Microscope
using a 40× objective, at 18 μm range with 0.175 μm

step size, 2× zoom, 512 × 512 pixel size, 0.0003 mm/
pixel. Imaris software (version 8.1.2: Bitplane AG) was
used for 3D reconstructions of the confocal Z-stacks. An
observer blind to experimental conditions selected re-
gions of interest in the cortex in a pseudo-randomized
fashion using the presence of a 6E10 positive Aβ plaque
as the only criterion for selection. The surface creation
tool was used to create surfaces for Aβ and microglia.
Amyloid plaque surfaces larger than 10,000 voxels were
considered “large plaques”. Distance transformation tool
(MATLAB; version R2016b MathWorks) was used to
create the distance channel from plaques. A surface of
15 μm radius around large plaques was created using
the distance channel. We empirically tested a range of
different radiuses from 2–300 μm on a test image. The
goal was to find a radius that captured the majority of
microglia that were plaque associated (i.e., touching),
while avoiding microglia that were not in close proxim-
ity (i.e., not touching) the plaque. 15 μm was chosen as
the radius that best met these criteria.

BV2 cell culture
The murine microglial BV2 cell line [21] was cultured in
DMEM/F12 media (cat#15-090-CV, Mediatech) supple-
mented with 10% FBS, 100 IU/ml penicillin, 100 μg/ml
streptomycin (cat# 30-002-CI, Mediatech), and 2 mM L-
Glutamine (cat# 25-005-CI, Mediatech), as previously
described [18].
Proliferation, migration, and phagocytosis assays were

done as previously described [19]. Cytochalasin D (CytD;
cat# C8273, Sigma), an inhibitor of actin polymerization,
was used as a positive control. CytD was dissolved in di-
methyl sulfoxide (DMSO; cat# D2650, Sigma); therefore,
a DMSO control at the same concentration was included
in all experiments. As no difference was found between
the saline control and the DMSO control, only the saline
control values are shown.
For proliferation assays, BV2 cells were plated in a

96-well plate at 5000 cells/well in the presence of sa-
line, DMSO (0.01%v/v), cytD (1 μM), or MW150 (3.75,
7.5, 15 μM). Cell density (image confluence) was re-
corded every 2–3 h using IncuCyte Zoom Live Cell
Imager (Essen Bioscience) with 10× objective and ana-
lyzed with IncuCyte Zoom software (Essen Bioscience).
Three independent experiments were performed, with
eight technical replicates conducted for each
experiment.
For phagocytosis assays, BV2 cells in a 96-well plate

(5000 cells/well) were incubated with saline, DMSO
(0.01%v/v), cytD (1 μM), or MW150 (3.75, 7.5, 15 μM)
for 30 min. pHrodo red E. coli bioparticles (cat#
P35361, ThermoFisher Scientific) were then added to
the wells at a final concentration of 400 μg/ml. Fluores-
cence of the BV2 cells in the red channel was recorded
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every 30 min using IncuCyte Zoom at 20× objective.
Three independent experiments were performed, with
four technical replicates conducted for each experiment.
BV2 cell migration was assessed in a scratch wound

assay. In a 96-well plate, the WoundMaker (Essen Bio-
science) was used to create a strip devoid of cells in the
center of each well when the cells were approximately
90% confluent. Saline, DMSO (0.01%v/v), cytD (1 μM),
or MW150 (3.75, 7.5, 15 μM) was added to each well,
and images were recorded every 2–3 h using IncuCyte
Zoom with 10× objective. The average size of the scratch
wound that had filled with cells at 12 h post-scratch was
determined by the percent confluency in the area left
nearly devoid of cells after the scratch wound and nor-
malized to vehicle. Three independent experiments were
performed, with eight technical replicates conducted for
each experiment.
MW150 inhibition of lipopolysaccharide (LPS)-in-

duced proinflammatory cytokine upregulation in BV2
cells was measured as previously described [14]. Briefly,
BV2 cells were plated at a cell density of 2 × 104 in a 48-
well plate and incubated for 24 h. Cells were then
treated with either saline control or 100 ng/ml of LPS
(Salmonella enterica serotype typhimurium, cat# L6143,
Sigma, 600,000 EU/mg), in the absence or presence of
increasing concentrations of MW150. After 16-h incuba-
tion, levels of TNFα in the conditioned media were mea-
sured by MSD ELISA.

Statistics
Graphs and statistical analyses were done using Graph-
Pad Prism software version 6.0. A one-way analysis of
variance (ANOVA) was used to compare three or more
groups. A two-tailed Student’s t test was used for com-
parisons between KI + veh vs. KI +MW150-treated ani-
mals and WT + veh vs. KI + veh, as these comparisons
were decided a priori to be the only ones of interest. A
p value < 0.05 was considered significant. Values are
expressed as mean ± SEM. Data for all endpoints are
available in Additional files 1, 2, 3 and 4: Tables S1-S4.

Results
MW150 reduces proinflammatory cytokine levels in the
cortex of APP/PS1 KI mice
Previously, we found that MW150 rescued cognitive
function as measured in the radial arm water maze in
APP/PS1 KI mice [14]. Here, we investigated endpoints
that may be associated with the protective effect of
MW150 treatment in this mouse model. In many in
vitro and in vivo systems, disease- or injury-induced ac-
tivation of p38αMAPK and subsequent upregulation of
proinflammatory cytokines have been linked to down-
stream synaptic dysfunction. Therefore, the effect of
MW150 treatment on proinflammatory cytokine levels

was measured. For the study design, 11–12-month-old
WT or KI mice were treated daily for 14 days with saline
vehicle (veh) or MW150 (2.5 mg/kg) by i.p. injection.
The mice were euthanized at day 19 after the start of
treatment (Fig. 1a). As expected, based on our previous
studies with the KI mice [9], protein levels of IL-1β in
cortex homogenates were markedly elevated in KI + veh
mice compared to WT + veh mice (Fig. 1b). MW150-
treated KI mice showed significantly reduced IL-1β, with
levels approaching those in WT mice (Fig. 1b). A similar
pattern of changes was seen with TNFα; however, this
change was not statistically significant (Fig. 1c). MW150
did not inhibit IL-6 levels under the conditions used in
this experiment (Fig. 1d).

MW150 treatment does not significantly alter GFAP
immunostaining in the cortex of APP/PS1 KI mice
To investigate whether astrocyte activation might be
modulated by MW150 treatment, we measured a marker
of reactive astrocytes, GFAP. The APP/PS1 KI mice
showed higher levels of GFAP immunostaining than WT
mice (Fig. 2a). KI mice treated with MW150 showed a
trend of reduced GFAP staining in the cortex compared
to KI + veh-treated mice, but this difference did not
reach significance (Fig. 2b).

MW150 treatment does not alter multiple markers of
reactive microglia in the cortex of APP/PS1 KI mice
IBA1 is a commonly used pan-marker of microglia and
macrophages. Change in morphology (i.e., hypertrophy)
of IBA1-positive cells is used as a marker of a reactive
microglia response. To determine if MW150 had an
effect on the reactive microglia response, we performed
immunofluorescent staining for IBA1, followed by con-
focal microscopy and three-dimensional (3D) recon-
struction using Imaris software. For each animal, 3–4
confocal z-stacks were collected. A 3D surface rendering
was made of the IBA1 staining, and the total volume of
the 3D z-stack that was occupied by the rendered IBA1+

staining was determined, for approximately 40–70
microglia per animal. The volume of microglia staining
included all IBA1+ staining captured in the z-stack
including processes not associated with cell bodies. As
shown in Fig. 3, there was no difference in the volume
of microglia in the KI mice treated with MW150 or
vehicle.
To further investigate changes in microglia/macro-

phage activation, we used two additional markers that
are expressed at low levels in the mouse brain without
an activating stimulus or pathology (Fig. 4). CD45 is a
transmembrane protein that is expressed on all nucle-
ated hematopoietic cells [22]. Its expression on resident
microglia is low, but upon stimulation, its expression in
microglia is upregulated [23]. IHC staining of CD45+
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cells in mice cortex was increased in KI mice compared
to WT; however, CD45+ staining was not significantly al-
tered with MW150 treatment (Fig. 4a. b). CD68 is a
glycoprotein that is associated with lysosomes and is
therefore linked to activated microglia, macrophages,
and other phagocytic cells [24, 25]. CD68 was increased
in the KI + veh mice compared to the WT mice, and
MW150 treatment of the KI mice did not decrease
CD68 staining (Fig. 4c, d).

MW150 treatment has no significant effect on Aβ plaque
volume or on levels of soluble or insoluble Aβ in the
APP/PS1 KI mice
We previously reported that MW150 had no effect on Aβ
plaque burden in the APP/PS1 KI mice [14], as assessed by

IHC staining. To test whether a potential effect of MW150
on Aβ might be revealed with quantitative and more de-
tailed assays, we performed immunofluorescent staining
and confocal analysis, as well as quantitative Aβ ELISAs.
Aβ plaques were stained with the 6E10 antibody, and
microglia were stained with IBA1 (Fig. 5a). 3D reconstruc-
tions were generated from the confocal z-stacks using
Imaris software, and Aβ plaque volume was calculated. A
slight reduction was found in the total volume occupied by
Aβ plaques in the KI +MW150 compared to the KI + veh-
treated mice, but the difference did not reach significance
(Fig. 5b). Measurement of Aβ40 and Aβ42 levels in PBS
soluble and formic acid (FA) soluble fractions of APP/PS1
KI mice cortex by quantitative Aβ ELISA showed that
MW150 had no effect on Aβ levels (Fig. 5c).

a b c d

Fig. 1 Selective attenuation of proinflammatory cytokines by MW150 administration in APP/PS1 KI mice cortex. a 11–12-month-old wild type (WT) or
APP/PS1 knock-in (KI) mice were treated with saline vehicle (veh) or 2.5 mg/kg MW150 by intraperitoneal injection (i.p.) once daily for 14 days. b IL-1β
was increased in KI + veh mice compared to WT + veh mice (p = 0.0012), and MW150 treatment of KI mice (KI +MW150) significantly attenuated IL-1β
levels compared to KI + veh (p = 0.0243) (F(2,38) = 6.46; p = 0.004). c TNFα was elevated in KI + veh mice compared to WT + veh and attenuated in KI +
MW150 mice compared to KI + veh; however, these changes were not significant (F(2,38) = 1.11; p = 0.34). d IL-6 was slightly elevated in KI + veh
compared to WT + veh mice, and there was no effect of MW150 treatment (n = 11 WT + veh; n = 14 KI + veh; n = 14 KI + MW150). Data are mean ±
SEM. Source data is available in Additional file 1: Table S1

a b

Fig. 2 No effect of MW150 on GFAP immunostaining. a Representative images of GFAP immunohistochemical (IHC) staining in cortex of WT or
APP/PS1 KI mice treated with vehicle (veh) or MW150. b Digital quantification of GFAP in the cortex was done using the Aperio ScanScope with
the entire cortex used as the region of interest. Quantification using the positive pixel algorithm showed a significant increase in GFAP staining in
the KI + veh compared to WT + veh (p < 0.0001). No significant difference was found between the KI + veh compared to the KI + MW150. (F2,41)
= 34.66; p < 0.0001). (n = 14 WT + veh; n = 14 KI + veh; n = 14 KI + MW150). Data are mean ± SEM. Source data is available in Additional file 2:
Table S2
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MW150 treatment increased plaque-associated IBA1+ cells
but did not significantly increase Aβ inside IBA1+ cells in
the cortex of KI mice
To determine if inhibition of p38αMAPK would affect
Aβ-microglial interactions, we tested the effect of
MW150 treatment of KI mice on the number of micro-
glia associated with amyloid plaques, and the amount of

Aβ internalized by microglia. To quantify the number of
plaque-associated microglia, we generated a 3D recon-
struction of 6E10+ amyloid plaques, with a focus only on
6E10+ amyloid plaques larger than 10,000 voxels. Using
the distance transformation tool in the Imaris software,
we then made a 3D region of interest (ROI) that was
15 μm radius from the edge of the plaque and included

a b

Fig. 3 No effect of MW150 on IBA1+ microglia volume. a Representative 3D surface reconstructions of IBA1+ cells generated from confocal
microscopic imaging using Imaris software. b Mean volume ± standard deviation (SD) of rendered IBA1 cells is shown for the APP/PS1 KI + veh
and APP/PS1 KI + MW150 groups. Data represent mean of 3–4 independent z-stacks from each mouse. (n = 11 KI + veh; n = 14 KI + MW150)

a

c

b

d

Fig. 4 No effect of MW150 on CD45 and CD68 immunostaining in the cortex. a Representative images of CD45 IHC in cortex of wild type (WT) or
APP/PS1 KI mice treated with saline vehicle (veh) or MW150. Digital quantification of CD45 in the cortex was done using the Aperio ScanScope, and
the positive pixel algorithm. b CD45 was significantly increased in the KI + veh compared to the WT + veh treated mice (p < 0.0001), with no effect of
MW150 treatment. (F(2,42) = 211.08; p < 0.0001). c Representative images of CD68 IHC. d CD68 was significantly increased in the KI + veh compared to
the WT + veh-treated mice (p < 0.0001), with no effect of MW150 treatment. (F(2,42) = 28.81; p < 0.0001). (n = 14 WT + veh; n = 14 KI + veh; n = 14 KI +
MW150). Data are mean ± SEM. Source data is available in Additional file 2: Table S2
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the plaque (Fig. 6a). Then, to determine the number of
plaque-associated microglia, a surface rendering of the
IBA1+ cell was generated (as in Fig. 3) for all of the
IBA1+ staining in this 3D plaque-associated ROI. Quan-
tification of the volume of IBA1+ staining showed a
significantly increased volume of IBA1+ staining sur-
rounding each plaque in KI +MW150 compared to the
KI + veh-treated mice (Fig. 6b).
We further investigated whether MW150 had an effect

on how much Aβ was internalized by the IBA1+ cells. A
mask for the 6E10+ staining was created, such that only
6E10+ staining that was colocalized with the surface ren-
dering of the IBA1+ cells was included in the analysis
(Fig. 6c). The volume of the 6E10+ staining within IBA1+

staining was determined as a marker of the amount of
Aβ internalized by the IBA1+ cells. MW150 treatment
resulted in a slight increase in the amount of Aβ inter-
nalized by the IBA1+ cells compared to KI + veh-treated
mice, but the difference was not significant (Fig. 6d).

MW150 treatment does not impair microglial
proliferation, migration, or phagocytosis in BV2 cells
To further investigate the action of MW150 on micro-
glia physiological functions, we used IncuCyte Zoom live
cell imaging methods to measure proliferation, migra-
tion, and phagocytosis in a mouse microglial BV2 cell
line exposed to increasing concentrations of MW150
(3.75 to 15 μM). Proliferation was measured by record-
ing cell density (image confluence) at 30 h after com-
pound treatment. Under the same culture conditions,
we previously found [19] that BV2 cells show a linear
cell growth rate at this time point. As shown in Fig. 7a,
b, there was no significant effect of MW150 on BV2 cell
density at any concentration tested. The positive control
cytochalasin D (cytD), a known inhibitor of actin
polymerization, caused a significant decrease in cell
growth and an abnormal cell morphology (Fig. 7a, b).
Next, we assessed if MW150 would affect BV2 cell

phagocytic ability, with an assay that uses E. coli

a b

c

Fig. 5 No effect of MW150 on Aβ in APP/KI mice. a Aβ and microglia volume were measured using immunofluorescent staining with 6E10 for
Aβ and IBA1 for microglia. A z-stack of images were taken using confocal microscopy then were analyzed using the surface tool in Imaris software.
Representative confocal images and 3D surface reconstructions with Imaris software are shown. b Aβ volume occupied by the surface reconstruction
was reduced in KI + MW150; however, the decrease was not significant. The data represents average of 3–4 independent z-stacks from each mouse
(n = 11 KI + veh; n= 14 KI +MW150). c PBS- and FA-soluble Aβ40 or Aβ42 levels were measured by MSD ELISA. No significant effect of MW150 treatment
was found in the Aβ ELISA. (n = 11 WT + veh; n = 14 KI + veh; n = 14 KI + MW150). Data are mean ± SEM. Source data is available in Additional
file 1: Table S1 and Additional file 3: Table S3
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bioparticles as an indicator of phagocytosis. The bio-
particles have a pHrodo dye that is non-fluorescent at
neutral pH but becomes fluorescent in the red
spectrum when it enters the acidic environment of a
phagosome. MW150 (3.75, 7.5, 15 μM) or CytD was
added 30 min prior to addition of bioparticles, then
fluorescence intensity was captured by IncuCyte
Zoom software every 30 min. We have previously re-
ported [19] that in BV2 cells, the fluorescence inten-
sity gradually increases over time and reaches a
plateau by about 4 to 5 h after the addition of bio-
particles. MW150-treated cells did not show signifi-
cant differences in fluorescence intensity compared to

saline-treated cells (Fig. 7c, d), but there was a trend
toward increased phagocytosis with MW150. The
positive control, CytD, significantly reduced the up-
take of bioparticles by BV2 cells. The noticeable re-
duction in fluorescence intensity with CytD treatment
is illustrated in Fig. 7d.
We used a scratch wound assay to assess the cap-

ability of BV2 cells to migrate into an injury area de-
void of cell coverage. When BV2 cells reached
approximately 90% confluency in a 96-well plate, a
scratch wound was made by the Essen Bioscience
WoundMaker. Previously we reported [19] that by
24 h the space made by the scratch would be filled

Fig. 6 Effect of MW150 treatment on microglia closely associated with Aβ plaques and microglia-internalized Aβ in the cortex of APP/PS1 KI mice.
a Representative images of Imaris 3D reconstruction of plaques. A region of interest (ROI) was generated by expanding the plaque volume by a
15 μm radius from the edge of the large plaques (larger than 10,000 voxels). This 3D ROI (shown in gray) included the Aβ plaque, and a region
near the plaque. IBA1+ cells in this ROI (shown in cyan) were surface rendered to create a 3D volume of all IBA1 positive staining in the ROI. The
IBA1 positive staining in the 3D ROI distinguishes plaque-associated microglia (shown in cyan) compared to microglia away from plaques (shown
in green). b Volume of surface rendered IBA1+ cells within 15 μm radius around large plaques was significantly increased in KI + MW150 mice
compared to KI + veh treatment (p = 0.0397). c Representative image of microglia reconstruction with DAPI stained nuclei showing 6E10 staining
within IBA1+ cell cytoplasm. d Microglia-internalized Aβ, as measured by 6E10 staining within surface rendered IBA1+ cells, was not significantly
different between the KI + MW150 compared to KI + veh. (n = 11 KI + veh; n = 14 KI + MW150). Data are mean ± SEM. Source data is available in
Additional file 3: Table S3
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with BV2 cells. At 12 h after the scratch wound was
made, MW150 treatment did not significantly alter
the amount of empty space left by the scratch wound,
whereas CytD caused a significant delay in wound
closure (Fig. 7e, f ).
Because MW150 had no suppressive activity in the

proliferation, migration, or phagocytosis assays, it was
important to confirm that MW150 was active in the
cells. Therefore, as a positive control we tested the abil-
ity of MW150 to suppress TNFα production from LPS-
stimulated BV2 cells, a pathway known to be regulated
by p38αMAPK. We found that MW150 suppressed LPS-
stimulated TNFα upregulation with an IC50 of 1.34 to
1.99 μM (95% CI), concentrations well below the range
of MW150 (3.75, 7.5, 15 μM) used for the live cell
imaging assays.

Discussion
There are two major findings in this study. First, treat-
ment with an established efficacy dose of MW150 atten-
uated age-related increases in brain IL-1β and TNFα
without affecting the overall amount of microglia or Aβ
levels. A surprising finding was that MW150 treatment
increased the microglia closely associated with amyloid
plaques. Second, MW150 treatment did not suppress
protective microglia cell responses such as migration,
proliferation, or phagocytosis over concentrations that
attenuate proinflammatory cytokine production. These
key findings document the selective effect of efficacious
doses of MW150 on disease-linked glia processes with
retention of responses considered protective.
The results reported here extend our previous valid-

ation [14] of MW150 as a candidate for development by

Fig. 7 No effect of MW150 treatment on BV2 cell proliferation, migration, and phagocytosis. a Average BV2 cell density at 30 h after plating in a
96-well plate at 5000 cells/well. b A representative example of the cell density at 24 h after treatment with saline, MW150 (0, 3.75, 7.5, or 15 μM),
or cytochalasin D (cytD;1 μM) (mean ± SEM, n = 3 independent experiments; 8 technical replicates included for each experiment). c Quantification
of pHrodo-labeled E. coli bioparticles at 3 h after addition of bioparticles. d A representative example of the cell bioparticles uptake at 3 h after
treatment with saline, MW150 (0, 3.75, 7.5, or 15 μM), or cytD (1 μM) (mean ± SEM, n = 3 independent experiments; 4 technical replicates included
for each experiment). e Average size of scratch wound that is filled with cells, as determined by the percent confluency in the area left nearly
devoid of cells after the scratch wound, normalized to veh at 12 h post scratch. f Representative images of the scratch wound made (highlighted
by green lines), at time 0 and 12 h post scratch (mean ± SEM, n = 3 independent experiments; 8 technical replicates included for each experiment).
g MW150 concentration-dependent inhibition of TNFα levels in LPS-stimulated BV2 cells (mean ± SEM, n = 1–3 independent experiments; 4 technical
replicates included for each experiment). Source data is available in Additional file 4: Table S4
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showing that MW150 in the efficacious dose range sup-
presses IL-1β and TNFα overproduction in vivo in the
APP/PS1 KI mice. We did not detect a change in IL-6
levels, consistent with the prevailing view that IL-6 cyto-
kine induction generally occurs via signaling pathways
independent of p38αMAPK [26].
We previously reported [14] that MW150 showed no

detectable effects on amyloid plaque burden in either
the APP/PS1 KI mice or the APP/PS1 transgenic mice
assessed by standard immunohistochemistry with 6E10
anti-Aβ antibody. We further extended the analyses here
by using quantitative Aβ ELISA and confocal micros-
copy. Aβ ELISA demonstrated that MW150 had no de-
tectable effect on the levels of PBS-soluble or formic
acid-soluble Aβ40 and Aβ42 in the APP/PS1 KI mouse
cortex, consistent with our previous study that reported
no change in plaque load by immunohistochemistry
[14]. Confocal microscopy analysis showed that MW150
treatment of APP/PS1 KI mice had no significant effect
on the total Aβ plaque volume in the cortex and on the
amount of internalized Aβ inside each microglia. How-
ever, even though the results did not reach significance,
there was a trend toward decreased Aβ plaque volume
and increased Aβ inside microglia in the APP/PS1 KI
mice treated with MW150. These results are also con-
sistent with a small increase in bioparticle phagocytosis
activity seen in BV2 cells after MW150 treatment. Over-
all, our findings raise the intriguing possibility that
MW150 stimulates microglia phagocytosis. However,
these data must be interpreted with caution because the
in vivo results with Aβ plaque volume did not reach
statistical significance, and in vitro results in the BV2
cell line with bioparticle phagocytosis cannot be directly
equated to Aβ phagocytosis in vivo. It will be important
in future studies to test potential effects of MW150 on
microglia phagocytosis in more detail. Nevertheless, it is
clear that MW150 did not impair the ability of the
plaque-associated microglia to phagocytose Aβ and did
not lead to a significant change in Aβ40 or Aβ42 levels.
An unexpected finding in the results reported here was

that MW150 treatment significantly increased the microglia
in close proximity to amyloid plaques. Whether this reflects
an effect of MW150 on microglia migration is unclear.
There was no statistically significant effect of MW150 on
migration of BV2 cells in response to a scratch wound, but
similar studies with migration to amyloid deposits were not
done because of limited responsiveness of BV2 cells to syn-
thetic Aβ. The functional significance of the increase in
plaque-associated microglia is also not known, but a logical
hypothesis to test in future studies is whether there is a re-
lationship between modulation of p38αMAPK signaling,
and the ability of microglia processes to surround amyloid
plaques and promote their compaction. A demonstrated
linkage would provide mechanisms whereby microglia

could decrease compaction (p38αMAPK mediated) or
increase compaction (e.g., TREM2 mediated; [27]). The
unexpected finding, therefore, raises the potential of subtle
effects of p38αMAPK inhibition on microglia—plaque
interactions that will require further exploration.
There is some general confusion in the literature about

the pharmacodynamic effects of p38αMAPK inhibitor drug
candidates. Specific to this report, there is an unresolved
issue in terms of the relationship between p38αMAPK and
amyloid pathology in preclinical mouse models of AD. Our
results here and elsewhere [14] using multiple experimental
approaches clearly show that the isoform-specific
p38αMAPK inhibitor MW150 does not significantly affect
overall Aβ levels or plaque burden. However, previous
studies with some p38αMAPK inhibitors that hit multiple
kinases, such as VX-745 and CNI-1493, report inhibition of
Aβ production or amyloid plaque deposition [28–30].
Whether the effects on these inhibitors on amyloid reflect
engagement of targets other than p38αMAPK [31, 32], such
as Abl [33], is not known. Further, a full evaluation of the
differences is limited by the type of animal model used in
efficacy and pharmacodynamic endpoint analyses. For ex-
ample, APP/PS1 transgenic mouse models that overexpress
APP exhibit high levels of amyloid, whereas the APP/PS1
KI mouse uses endogenous promoters and demonstrates
progressive AD pathology without the forced APP overpro-
duction. Regardless, future clinical studies are required to
resolve any therapeutic significance of these preclinical
pharmacodynamic differences.

Conclusions
In summary, our results demonstrate the selective effects
on glial inflammatory responses to treatment with MW150,
a unique, isoform-selective, p38αMAPK inhibitor drug can-
didate that attenuates cognitive impairment in AD-relevant
mouse models. The findings show that MW150 has a se-
lective role in modulation of neuroinflammatory responses
without pan-suppression of normal physiological functions
of microglia. The refined insight into glial biology pre-
sented here, combined with the safety and efficacy
pharmacological profile of MW150 [14], reinforce the
need to move this novel therapeutic candidate into clinical
development for AD and related disorders.
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