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ABSTRACT OF THESIS 
  

DESIGN OF ENERGY STORAGE CONTROLS USING GENETIC ALGORITHMS 
FOR STOCHASTIC PROBLEMS 

A successful power system in military applications (warship, aircraft, armored vehicle 
etc.) must operate acceptably under a wide range of conditions involving different 
loading configurations; it must maintain war fighting ability and recover quickly and 
stably after being damaged. The introduction of energy storage for the power system of 
an electric warship integrated engineering plant (IEP) may increase the availability and 
survivability of the electrical power under these conditions. Herein, the problem of 
energy storage control is addressed in terms of maximizing the average performance. A 
notional medium-voltage dc system is used as the system model in the study. A linear 
programming model is used to simulate the power system, and two sets of states, mission 
states and damage states, are formulated to simulate the stochastic scenarios with which 
the IEP may be confronted. A genetic algorithm is applied to the design of IEP to find 
optimized energy storage control parameters. By using this algorithm, the maximum 
average performance of power system is found.  

KEYWORDS: Energy storage, electric warships, genetic algorithm, simulation, 
stochastic problems. 
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Chapter 1. Introduction 

1.1 Introduction 

In military applications, a successful power system (armored vehicle, warship, 

aircraft, etc.) must operate acceptably under a wide range of conditions as well as 

maintain war fighting ability and recover quickly and stably after being damaged. 

Research in the development of technology for and design of electric warships has 

increased significantly lately. One method is to apply newly emerging materials, 

components, and system concepts [1], which includes the wide-scale application of 

power electronics; another method to improve the performance of electric warships is the 

introduction of energy storage [2]. Energy storage devices can not only increase the 

availability by providing short-term electrical power during system faults or battle 

damage, but also support additional devices, for example, a mission load. Due to the size 

limitation of the warship, there is a trade-off between the capacity of energy storage 

device and the space that the energy storage device occupies. Therefore, the performance 

optimization of the integrated engineering plant (IEP) with restricted installed energy 

storage capacity becomes an important issue for researchers. The IEP of an electric naval 

warship contains the infrastructure that provides vital services like electric power and 

thermal management to mission loads (e.g., sensor and weapon systems) [4], [6], [9], 

[10]. 

The main contribution of the study is to develop a method to optimally control the 

energy storage system of the IEP for stochastic problems. The activity of the IEP, 

including energy storage devices, is continuous, thus continuous-time optimal dynamic 

control is required, which is more difficult to solve than static optimization problems. 



2 
 

Secondly, because of the randomness and uncertainties of realistic military applications, 

the performance of the IEP must be evaluated in a stochastic environment. Although 

similar conditions apply in deterministic environments [3], it is still more complicated to 

simulate and verify the cases in a stochastic environment.  

Genetic algorithms (GAs) have been widely applied to solve stochastic 

optimization problems.  In this thesis, a GA is used to design the energy storage controls 

of an electric warship IEP in a stochastic environment. By using this algorithm, the 

average performance of the IEP is improved. 

In previous work, the metric operability is defined as a measure of performance of 

the IEP [4], [5]. Basically, operability measures how well the IEP provide engineering 

services to different loads (electric power, communication, thermal management services, 

etc.) [6], [7]. A similar performance metric is used herein to quantify the performance of 

the IEP during a given scenario. 

Loads on the IEP are categorized in three groups: vital load, non-vital load, and 

mission load. Each type of load, as well as the generator and energy storage device, is 

assigned with a particular weight that indicates the significance of that load/device. These 

weights are event-specific and probably time varying [5]. As the energy storage both 

charges and discharges, the weight of charging and weight of discharging are assigned to 

the energy storage device, respectively. These weights are not intrinsically related to the 

desired performance of the IEP and can be regarded as control parameters; the 

performance of the IEP is partly determined by the selection of weights for the energy 

storage devices. 
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Optimal selection of charging and discharging weights for energy storage would 

be expected to improve the performance of the warship. Herein, scenarios involving the 

operation of mission loads or damage to the system are considered. In this thesis, a 

process using GAs to find the optimal charging and discharging weights of the energy 

storage is set forth in order to maximize system performance over a stochastic set of 

operational scenarios. 

1.2 Thesis Outline 

In this thesis, a GA is applied to the design of an electric warship IEP to find the 

optimized charging and discharging weights for the energy storage device. The rest of the 

thesis is organized as follows. The background and previous work in IEP system 

optimization are discussed in Chapter 2. In Chapter 3, the models of the problem are 

presented, including the simplified physical model of the IEP, the mathematical model of 

the power system, and the stochastic engagement model. In Chapter 4, the simulation and 

optimization of the problem are discussed. Chapter 5 provides conclusions and 

recommendations for future research.  
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Chapter 2. Background and Literature Review 

2.1  Integrated Engineering Plant 

Successful power systems in military applications must operate normally under a 

wide range of conditions, as well as maintain war fighting ability and recover quickly and 

stably after being damaged by an enemy weapon. The IEP of an electric naval warship is 

a good example of such power system. The networks of the IEP is illustrated in Fig. 2.1 

[8], three major networks are electrical network, fluid network, and control network. The 

IEP contains the infrastructure which provides vital services like electric power and 

thermal management to mission loads such as ship propulsion [4], [6], [9], [10]. 

 

Fig. 2.1 IEP networks [8] 

2.2  Energy Storage 

Although fuel plays the primary storage role on ships, additional energy storage 

technologies have proven to be of great use for electric power systems [11]. Energy 
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storage system may increase operating efficiency of electric ships and reduce air 

pollution by consuming less fuel. Furthermore, energy storage systems improve safety 

and reliability of the electric ship power system due to their operational flexibility [12]. 

For an electric ship power system, the functions of energy storage devices should 

perform are described as follows [11]. First, during the loss or damage of power 

generation, energy storage is required to provide power to some or all of the loads, which 

is the uninterruptible power supply function. Second, energy storage can provide 

additional load applications that cannot be provided by the generator alone. Third, energy 

storage can provide a large pulse of power to a pulsed load without occupying power 

capability from the power system. For example, in this thesis, energy storage provides 

electric power to a mission load when a mission starts. Finally, energy storage can be 

integrated into a hybrid power plant to provide propulsion for the ship [13]. 

Some major technologies used in energy storage are flywheels, batteries, and ice 

[11]. Flywheels are applied in power systems by storing rotational energy to stabilize the 

power system, improve operation, and reduce life-cycle maintenance costs [14]. Batteries 

can discharge when the peak load exceeds the peak power that can be delivered, then 

recharge when power demand drops. Also, battery storage is used to smooth load 

variations and stabilize the system. As a form of thermal storage, large quantities of ice 

are used for cooling. The battery storage technology is discussed in this thesis.  

2.3  Stochastic Optimization and GAs 

Stochastic means involving chance or probability. Stochastic optimization 

problems use random variables with given probability distributions to model some of the 

inputs to the problem [15] and are widely applied in many industries, including 
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transportation modeling [16], logistics [17], financial instruments [18], network design 

[19], scheduling [20], energy management [21], and shipboard engineering design [22]. 

GAs are one of the stochastic optimization techniques that uses random operators to solve 

optimization problems. Herein, GAs are used to solve stochastic problems involving 

random disruptions and missions. 

The original principles of GAs were first proposed by John Holland in the early 

1970’s [23]. GAs are the most popular type of evolutionary algorithms [24]. It is a search 

metaheuristic that mimics natural evolution, using operators such as selection, crossover, 

and mutation – the principle first proposed by Charles Darwin of “survival of the fittest.” 

GAs generate possible solutions to optimize problems by improving the fitness of the 

solutions [25]. Fitness is used to measure how well the candidate solutions, called 

“chromosomes,” optimize the objective function, and the value of fitness is the value to 

be optimized. The basic steps of a typical GA are illustrated in Fig. 2.2: initialization, 

evaluation, selection, crossover, mutation, and insertion. After each generation, the 

process repeats with evaluation of the new population. When the stopping criterion is 

met, the algorithm is terminated.  
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Fig. 2.2. Basic steps of a typical GA 

The first step of a GA is initialization, at which the initial population is randomly 

generated, including the whole search space. The size of the population varies depending 

on the problem but usually contains hundreds to thousands of potential solutions. During 

the selection process, part of the population is selected to mate and breed the next 

generation. The fitter solutions, measured by the fitness function, are more likely to be 

selected to the next process called crossover (recombination). In this process, every two 

“parents” solutions are selected to reproduce a new “child” solution, and this “child” 
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solution would inherit characteristics from both its “parent” solutions. However, some 

studies recommend that more than two “parent” solutions generate fitter “child” solutions 

[26], [27]. Next, the “child” solutions go through the process of mutation, in which the 

new solutions change one or more characteristics from the initial states. Mutation is a 

way to preserve diversity of the population. Since the new solutions may change entirely 

from the previous ones before mutation, a low mutation probability needs to be set to 

prevent the search devolving into a random search. The process of crossover and 

mutation are known as the main genetic operators, some other genetic operators such as 

regrouping, colonization-extinction, and migration are also used [28]. The process of 

crossover and mutation continue until a proper size of a new population is generated. By 

this time, the next generation population is different from the initial generation, and the 

average fitness is usually increased. Mostly, in order to pass the best characteristics from 

the current population to the new population, a general process called elitist selection is 

used to guarantee the solution quality does not decrease [29]. The insertion of new 

population will start the next generation of the algorithm, which continues until the 

termination condition is reached. Example termination conditions include a sufficiently 

optimized solution is found, a fixed number of generations is reached, or an allocated 

computing budget is reached.  

The applications of GAs have been growing significantly, and GAs have been 

successfully implemented in many areas. Some of the example applications are: 

economics [30], computer science [31], engineering design [22], manufacturing [32], and 

many other fields.  
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2.4  Literature Review 

Richards et al. in [7] define survivability as the ability to minimize the impact of a 

disturbance on value delivery. In [33], the authors identify some limitations of existing 

survivability engineering: 1) treating survivability as a constraint; 2) considering only 

static threat environments; 3) considering independent disturbance encounters; 4) 

considering survivability at a narrow level; and 5) lacking a value-centric perspective. In 

[34], in order to alleviate limitations presented in [33], two metrics, time-weighted 

average utility and threshold availability are proposed for the evaluation of the system 

performance over some interval. In [33], various risk metrics are also considered and 

discussed.  

Cramer, Sudhoff, and Zivi proposed a set of system performance metrics (events, 

operability, average system dependability, and minimum system dependability) in [4], 

[5], so the performance of an IEP during a mission or disruption can be quantified and 

measured. The authors proposed new metrics for the evaluation of the architectures in 

[37]: average architecture dependability and minimum architecture dependability. By 

introducing these new metrics, the survivability and performance of the notional IEP are 

both increased.  

Other studies related to performance metrics may include Said in [38], who 

discussed the concept, methods, and applications of total ship survivability, and Ball and 

Calvano in [39], who established the fundamentals of a surface ship survivability design 

discipline.  

Related work in shipboard electrical system modeling includes Chan and Sudhoff 

in [35], who proposed a linear programming approach based on the fundamental power 
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limitations to simplify the modeling. This method disregards the details of electrical 

dynamics and is mainly used in early ship design problems.  

Cramer, Chen, and Zivi [36] found two significant shortcomings in previous 

linear programming approach [35], one is potential to attempt to solve infeasible linear 

programs, and the other is problems with load sharing. In their proposed model, the linear 

program is always feasible and multiple independent load sharing cases are reduced to 

one linear program solution.  

In [22], Cramer, Sudhoff, and Zivi demonstrated a new method by using 

evolutionary algorithms to solve minimax problems in robust design. This method is 

more favorable than existing approaches and easier to implement. In [2], Chan, Sudhoff, 

and Zivi formulated an algorithm to optimally allocate energy storage in electric ships. 

By implementing this prescribed robustness evolutionary algorithm, the total installed 

energy storage amount is minimized while reaching a desired level of robustness.  

Mashayekh et al. [40] formulated a general deterministic dynamic optimization 

problem to find the optimum capacity for the energy storage.  

In these works, most problems are solved in a static or deterministic dynamic 

environment, and the problems in [2] and [40] are the optimization of the capacity of the 

energy storage, given a certain load profile or a preferred level of robustness. In this 

thesis, the events are simulated in a stochastic environment. The capacity of the energy 

storage is fixed, and the optimal control weights of the energy storage are sought in order 

to get the maximum performance of the IEP. 
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Chapter 3. System Modeling 

3.1 Structure of the Proposed Solution 

 

Fig. 3.1. Structure of the Proposed Solution 

Fig. 3.1 demonstrates the structure of the proposed solution. The system is 

represented by an ordinary differential equation (ODE). Within the ODE, a linear 
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programming model is used to represent power conservation and the action of the power 

controller at each time. The system model is challenged by events drawn from a 

stochastic engagement model. The mean performance is estimated by averaging a number 

of sampled performances. This sample mean is used by the GA as a fitness function, 

which is maximized in order to find the control parameters (i.e., weights in the linear 

program) that result in the highest expected performance. 

 

3.2 Notional Integrated Engineering Plant 

Fig. 3.2 shows a notional medium-voltage dc system (MVDC) [41]. In the four-

zone system, there are two main generators (MTG) and two auxiliary generators (ATG). 

The two propulsion motors (PMD) will operate at different power levels corresponding 

with the required speed. The radar (R) has two operating modes, a low-power mode and a 

high-power mode. The high-power load (PL) is used to perform in the mission. The 

energy storage device (ES) can provide backup power during missions or system 

disturbance as well as compensate for load dynamics. The zonal loads (ZL), including 

some vital loads and non-vital loads, are connected through converters (CM). The layout 

of zonal loads can increase the survivability of the IEP, because if one zone is damaged, 

the operation of other zones will not be affected. 
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Fig. 3.2. Notional medium-voltage dc system (MVDC) [41] 

The thermal management system is used for cooling the shipboard electrical 

components and is critical to the survival and endurance of a warship [42]. The warship is 

also divided into cooling zones to increase the survivability. In [42], the major 

components of the cooling system are included in the ac plant, which is defined as a 

typical marine refrigeration cycle including compressor, condenser, expansion valve and 

evaporator cycle. The ac plant removes heat from the chilled water system and dumps 

heat to a seawater system. There are strong dynamic interdependencies between the 

electrical and thermal management systems [43], but the thermal management system is 

not considered further in this thesis. 
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3.3 Simplified Integrated Engineering Plant 

Loads on a simplified IEP model can be categorized in three groups: vital load, 

non-vital load, and mission load. Vital load is most prioritized at all times. During 

mission modes, mission load also needs to be supported. If both the generator and energy 

storage cannot provide enough power for the whole system, part of (all) non-vital load 

will be shut down until sufficient power is available. The power flow of this simplified 

IEP model is illustrated in Fig. 3.3.  

 

Fig. 3.3. A simplified IEP 

The power flow of the IEP model can be expressed as 

 ௚ܲ ൅ ௘ܲ௦ௗ െ ௘ܲ௦௖ െ ௩ܲ െ ௡ܲ௩ െ ௠ܲ ൌ 0, (3.1) 

where ௚ܲ is the power of the generator, ௘ܲ௦ௗ is the discharging power of the energy 

storage, ௘ܲ௦௖ is the charging power of the energy storage, ௩ܲ is the power of the vital load, 

௡ܲ௩ is the power of the non-vital load, and ௠ܲ is the power of the mission load. It should 

be noted that each of these variables represent aggregations of many such components. 
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It is convenient to denote system status with ௜ܵ௝, ݅, ݆	 ൌ 	0, 1, 2, where ݅ represents 

the state of mission, and ݆ represents the state of damage. When ݅ ൌ 0, it means the 

mission has not start yet; when ݅ ൌ 1, it means there is a mission running; when ݅ ൌ 2, it 

means the mission is over. When ݆ ൌ 0, it means there is no fault in the system; when ݆ ൌ

1, it means the power system is damaged; when ݆ ൌ 2, it means the damage has been 

(partly or completely) recovered. The status transition relationships are illustrated in 

Fig. 3.4.  

S00 

No mission, no 

fault 

→ 

S01 

No mission, 

damaged 

→ 

S02 

No mission, 

damage recovered 

↓  ↓  ↓ 

S10 

Mission starts, no 

fault 

→ 

S11 

Mission starts, 

damaged 

→ 

S12 

Mission starts, 

damage recovered 

↓  ↓  ↓ 

S20 

Mission ends, no 

fault 

→ 

S21 

Mission ends, 

damaged 

→ 

S22 

Mission ends, 

damage recovered 

Fig. 3.4. System status 

As described above, there are three mission states (pre-mission, mission, post-

mission) and three damage states (normal, damage, recovery). Hence, the total states are 

nine, as shown in Fig. 3.4. 
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In the pre-mission state, the vital and non-vital loads are commanded to full 

power. During the mission state, the mission load is commanded to a given power level 

associated with the mission. In the post-mission state, the mission load is again 

deactivated. 

When the damage state is normal, the generator and mission load are capable of 

full operation. When the system is damaged, the generator and mission load capabilities 

are reduced by a given fraction associated with the damage scenario. When the system 

recovers, a given fraction of the lost capability of the generator and mission load is 

restored associated with temporary or recoverable damage. 

3.4 Mathematical Model 

Each type of load, as well as the generator and energy storage device, is assigned 

with a particular weight, ݓ ($/W), defined as the unit cost of power, which indicates the 

significance of that load/device.  

In order to get the optimum expected performance over a time frame, the 

approximate behavior at each time step needs to be calculated. Then calculate the integral 

of these discrete behaviors, the result is the optimum performance over time.  

In previous work [35], [36], approaches involving linear programming to model 

the action of the power system are proposed. A linear programming problem is a method 

to maximize or minimize a linear function, subject to linear equality and linear inequality 

constraints. In this thesis, a similar but simpler model is formulated as [35] and [36].  

The linear programming approach to model the electrical power system can be 

expressed in the following form:  

 max(3.2) ்࢞ࢉ 
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subject to 

࢞࡭  ൑  (3.3) ࢈

௘௤࢞࡭  ൌ  ௘௤ (3.4)࢈

 ࢞ ൒ ૙. (3.5) 

The elements of ࢞ represents the vectors of variables, which describe the power 

flow of the power system. The vector ࢉ denotes the weights assigned to the power flows 

for the objective function, while ࢞࡭ ൑ ௘௤࢞࡭ ,࢈ ൌ ࢞ ௘௤, and࢈ ൒ ૙ are the linear equality 

and inequality constraints that the solution must satisfy.  

The objective function is to maximize the performance of the electrical power 

system. Since the power flow of the energy storage is bidirectional, there will be two 

elements of ࢞—one element for charging and the other one for discharging. The power 

flows of the generator and the different loads are unidirectional; hence, they correspond 

to single elements of ࢞. 

Each component, different types of load, generator, and energy storage device, are 

assigned with their particular weights, which indicate the significance of that component. 

Generally, these weights are event-specific and probably time-varying [5]. For example, 

in this thesis, the vital load and mission load are rather important, hence, the weights 

assigned to them are relatively higher; the non-vital load is less critical so the weight is 

much lower. The charging and discharging weights associated with the energy storage are 

to be determined in order to get the optimum performance. 

The detailed linear program problem is as follows: 

 maxݓ௩ ௩ܲ ൅ ௡௩ݓ ௡ܲ௩ ൅ ௠ݓ ௠ܲ ൅ ௘௦௖ݓ ௘ܲ௦௖ െ ௘௦ௗݓ ௘ܲ௦ௗ െ ௚ݓ ௚ܲ (3.6) 

subject to the following linear constraints: 
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 ௚ܲ ൅ ௘ܲ௦ௗ െ ௘ܲ௦௖ െ ௩ܲ െ ௡ܲ௩ െ ௠ܲ ൌ 0 (3.7) 

 0 ൑ ௚ܲ ൑ ௚ܲ௠௔௫ (3.8) 

 0 ൑ ௩ܲ ൑ ௩ܲ௠௔௫ (3.9) 

 0 ൑ ௡ܲ௩ ൑ ௡ܲ௩௠௔௫ (3.10) 

 0 ൑ ௠ܲ ൑ ௠ܲ௠௔௫ (3.11) 

 0 ൑ ௘ܲ௦௖ ൑ ௘ܲ௦௖௠௔௫ ( ௘ܲ௦௖௠௔௫ → 0 as ܧ௘௦ →  ௘௦௠௔௫) (3.12)ܧ

 0 ൑ ௘ܲ௦ௗ ൑ ௘ܲ௦ௗ௠௔௫ ( ௘ܲ௦ௗ௠௔௫ → 0 as ܧ௘௦ → 0) (3.13) 

 
ௗா೐ೞ
ௗ௧

ൌ ௘ܲ௦௖ െ ௘ܲ௦ௗ, (3.14) 

where ݓ is the weight of each load or other device, ܲ is the power of the load or other 

device, ܧ௘௦ is the energy stored in the energy storage unit. The relationship between ܧ௘௦ 

and ௘ܲ௦௫௠௔௫ ( ௘ܲ௦௖௠௔௫ and ௘ܲ௦ௗ௠௔௫) is described by the equations below and shown in 

Fig. 2.1: 

 ௘ܲ௦௖௠௔௫ ൌ ൝
௘ܲ௦௠௔௫, ௘௦ܧ ൑ ௘௦௠௔௫ܧ െ ߬ ௘ܲ௦௠௔௫

݂ሺܧ௘௦௠௔௫ െ ,௘௦ሻܧ ௘௦௠௔௫ܧ െ ߬ ௘ܲ௦௠௔௫ ൏ ௘௦ܧ ൏ ௘௦௠௔௫ܧ
0, ௘௦ܧ ൒ ௘௦௠௔௫ܧ

 (3.15) 

 ௘ܲ௦ௗ௠௔௫ ൌ ൝
0, ௘௦ܧ ൑ 0

݂ሺܧ௘௦ሻ, 0 ൏ ௘௦ܧ ൏ ߬ ௘ܲ௦௠௔௫

௘ܲ௦௠௔௫, ௘௦ܧ ൒ ߬ ௘ܲ௦௠௔௫,
 (3.16) 

where ݂ሺ∆ܧሻ is formulated as 

 ௘ܲ௦௫௠௔௫ ൌ ݂ሺ∆ܧሻ ൌ ଷܧ∆ܽ ൅ ଶܧ∆ܾ ൅ ܧ∆ܿ ൅ ݀ (3.17) 

subject to 

 ݂ሺ߬ ௘ܲ௦௠௔௫ሻ ൌ ௘ܲ௦௠௔௫ (3.18) 

 ݂ሺ0ሻ ൌ 0 (3.19) 

 ݂ᇱሺ߬ ௘ܲ௦௠௔௫ሻ ൌ 0 (3.20) 

 ݂ᇱሺ0ሻ ൌ 0. (3.21) 
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Application of these constraints yields the following coefficients: 

 ܽ ൌ െ
ଶ

ఛయ௉೐ೞ೘ೌೣ
మ  (3.22) 

 ܾ ൌ
ଷ

ఛమ௉೐ೞ೘ೌೣ
 (3.23) 

 ܿ ൌ 0 (3.24) 

 ݀ ൌ 0. (3.25) 

When the energy storage is full, it stops charging, so the maximum charging power 

approaches to zero; when the energy storage is empty, it stops discharging, so the 

maximum discharging power approaches to zero. 

 

Fig. 3.5. Stored energy vs. maximum power 

 

For the study, the loads or devices are weighted according to the weights provided 

in Table 3.1. As the energy storage both charges and discharges, the weight of charging 

and weight of discharging are assigned to the energy storage device, respectively.  



20 
 

Table 3.1. Linear program weight matrix 

Load/Device Weight ($/W) 

Generator 0.5 

Vital load 25 

Non-vital load 3 

Mission load 20 

Energy storage charging To be calculated 

Energy storage discharging To be calculated 

 
Other parameters of the power system in the study are listed in Table 3.2.  

Table 3.2. Parameters of power system 

Total generation 85 MW 

Total vital load 20 MW 

Total non-vital load 60 MW 

Mission load 20 MW 

Energy storage 20 MW, 5 GJ

 
The MATLAB package linprog [44] is used to formulate and solve the linear 

programs; the ode23tb solver [44] are used to integrate the differential equations. 

3.5 Stochastic Engagement Model 

In this thesis, hostile disruptions and missions are assumed to occur randomly, 

which means the system is modeled in a stochastic environment.  

The occurrence of the disturbances/failures of the IEP can be modeled by many 

probability distributions, one common model is the exponential failure distribution, 
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which is applied in the study. The missions are assumed to occur with a given mean time 

between occurrences and are modeled using a similar exponential distribution. The 

exponential distribution is the probability distribution which describes the time interval 

between event occurrences continuously and independently at a constant average rate. 

This rate, is a constant with respect to time, which means the distribution is memoryless. 

The probability density function of an exponential distribution with parameter ߣ is 

 ݂ሺݔ; ሻߣ ൌ ൜݁ߣ
ିఒ௫					ݔ ൒ 0

ݔ														0 ൏ 0
 (3.26) 

Inverse transform sampling is used in the study to generate exponential variates: 

 ܶ ൌ
ି୪୬ሺ௎ሻ

ఒ
, (3.27) 

where ܶ is the time interval between events, random variate ܷ is uniform on (0, 1), and ߣ 

is the frequency which the disturbance or mission occurs. 

The time frame of the study is 900 s, and the probability of mission or disturbance 

occurs is set to 0.5. Under this assumption for the study, the probability of the four 

categories of scenarios are all equal to 25%. The four categories of scenarios are no fault 

nor mission, fault occurs but no mission, mission occurs but no fault, and both fault and 

mission occur during the study. The occurrence rate used in the study is calculated as 

ߣ  ൌ
ି୪୬ሺ ଴.ହሻ

ଽ଴଴
ൌ 7.7016݁ିସ (3.28) 

The duration of a mission is uniformly distributed between 120 s to 600 s; the 

length of the recovery period (time between entering the damage and recovery states) is 

uniformly distributed between 60 s to 300 s.  
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In this study, the hostile disturbances are only restricted to occur at generator and 

mission load; whereas in reality, damages may apply to any part of the power system — 

other loads and the energy storage units.  

The commanded power of the mission load is uniformly distributed between 50% 

to 100%, and for the remaining four stochastic variables, generator damage degree, 

generator recover degree, mission load damage degree, and mission load recover degree, 

they are all uniformly distributed between 0 and 100%.  

In [5], [35], [37], the notion of event is introduced. An event ߠ ∈ Θ is a vector 

whose elements represents all the information necessary to predict the response of the 

system. The information may include the external environment in which the system is 

operating (e.g., the mission of the warship), the internal conditions of the system prior to 

the disruption and the disruption itself [37]. In this study, an event contains the following 

information of the system: mission start point, mission end point, damage start point, 

damage end point, mission load initial state, generator damage degree, generator recover 

degree, mission load damage degree, and mission load recover degree.  

Some example random events are shown below to demonstrate the simulation 

model. For calculation convenience, all the power parameters are converted into per unit 

values; accordingly, the energy storage is also divided by base power, and the unit 

becomes second (Joule/Watts). The value of charging and discharging weights are both 

1.75, according to the test results below. 
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Event with mission but no damage 

 

Fig. 3.6. Event with mission but no damage 

Fig. 3.6 illustrates the response of the system to an event with a mission but no 

damage. The vital load fully operates through the duration of the scenario. The mission 

load starts operating at 206 s, and the mission ends at 746 s. After the mission starts, the 

generator cannot provide enough power for the entire system. Thus, the energy storage 

begins to discharge. Before the energy storage depletes, the mission load as well as the 

non-vital load can fully operate. When the energy storage is completely discharged (after 

680 s), the non-vital load is partly shut down to prioritize the function of the vital and 

mission loads. The energy storage resumes charging after the mission ends.  
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Event with mission after recovery 

 

 

Fig. 3.7. Event with mission after recovery 

Fig. 3.7 indicates the response of the system to an event with mission after 

recovery. During this event, the vital load is fully functioning during the whole time. 

There is a generator failure at 22 s, and the generator capacity is reduced by 15%. The 

failure is partially recovered at 179 s, and the generator recovers to 87% capacity. During 

the generator fault, energy storage keeps discharging to power the vital and non-vital 

load. At 493 s the mission starts and lasts until 806 s. The mission load only operates at 

79% of its rated power after it recovers from the initial damage. Before the mission starts, 

all loads can work normally. When the mission starts while the energy storage has not 
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completely discharged (around 580 s), the non-vital load is partly shut down to prioritize 

the function of vital and mission load. When the energy storage depletes, the non-vital 

load is shut down further. Even though the mission ends, the non-vital load still cannot 

fully operate due to the generation loss.  

Event with damage during mission 

 

Fig. 3.8. Event with damage during mission 

Fig. 3.8 shows a complicated case, an event with damage during mission. The 

disruptions occur in the middle of the mission. The energy storage starts discharging at 

473 s, when the mission starts. The mission load operates at 66% of the rated power at 

first. At 643 s, the generator is damaged, reducing its capacity to 54%, and the mission 

load is also damaged, reducing its capacity to 47%. During the system failure, the non-
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vital load is greatly reduced so that the vital and mission load can work well. When the 

energy storage is completely depleted, the non-vital load is shut down further. At 841 s, 

the generator capacity recovers to 95%, while the mission load capacity recovers to 80%, 

the non-vital load resumes operation given the extra additional power. Because the 

mission load power is 66%, the mission load is able to resume at the full power required 

for the mission after recovery. 

3.6  Simulation Method 

In this study, repeated random sampling is needed to obtain the final results. 

Hence, Monte Carlo simulation is used herein. Monte Carlo methods are mainly applied 

in optimization, numerical integration, and generating draws from a probability 

distribution.  Monte Carlo simulation is a problem solving method running multiple trial 

simulations, using random variables, to produce the approximated distributions of 

possible outcome values. It then calculates results recurrently, each time using a different 

set of random values from the input probability functions (iteration), and the resulting 

outcome from that sample is recorded. Depending on the uncertainties and the ranges of 

the problem, a Monte Carlo simulation could involve thousands or tens of thousands of 

recalculations before complete [45].  

A Monte Carlo simulation is used by a GA for fitness evaluation. As introduced 

in Chapter 2, GA is a search metaheuristic that mimics natural evolutions. GAs generate 

possible solutions to optimize problems by improving the fitness of the solutions [25]. 

The value of fitness is the value to be optimized, and the basic steps of a typical GA are: 

initialization, evaluation, selection, crossover, mutation, and insertion. When the stopping 

criteria is met, the algorithm is terminated.  
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Two weights are to be optimized by the GA. As the GA seeks the optimized 

charging and discharging weights, the average performance of the IEP is maximized.  

In order to improve MATLAB code performance by speeding up executions, 

MATLAB parallel computing is used in this study. The supercomputers at the University 

of Kentucky, which ranked as high as #66 on the world-wide Top 500 list 

supercomputers list, provide the High Performance Computing (HPC) environment so 

that the MATLAB code can run in parallel in several processors.  

The University of Kentucky Information Technology department and Center for 

Computational Sciences is appreciated for computing time on the Lipscomb High 

Performance Computing Cluster and for access to other supercomputing resources. The 

Lipscomb High Performance Computing Cluster (dlx.uky.edu) is used to run the GA in 

parallel for the study. The cluster is named after Dr. William N. Lipscomb, Jr, an 

outstanding UK alumnus and Nobel Prize-winning chemist. It is built from a large 

number of commodity servers, a high speed interconnect, a unified file system, and a 

large mass storage system [46]. 
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Chapter 4. Simulation Validation Study 

4.1  GA Simulation Results Analysis 

In order to find satisfactory results from the GA, the algorithm is executed for 100 

generations with 100 individuals and tested several times.  

The expected performance is estimated by averaging the performance over 100 

samples. The performance of a single sample is formulated as 

݁ܿ݊ܽ݉ݎ݋݂ݎ݁ܲ  ൌ
׬ ሺ௪ೡ௉ೡା௪೙ೡ௉೙ೡା௪೘௉೘ሻௗ௧
೟೐೙೏
బ

ሺ௪ೡ௉ೡ೘ೌೣା௪೙ೡ௉೙ೡ೘ೌೣሻ௧೐೙೏ା௪೘׬ ௉೘
∗ ௗ௧

೟೐೙೏
బ

, (4.1) 

where ݐ௘௡ௗ is the terminal time of the study, which is 900 s, ݓ௩, ݓ௡௩, and ݓ௠ are the 

weights of vital, non-vital , and mission loads, respectively, ௩ܲ, ௡ܲ௩, and ௠ܲ are the actual 

power of vital, non-vital, and mission loads, respectively, ௩ܲ௠௔௫ and ௡ܲ௩௠௔௫ are the 

maximum power of vital and non-vital loads, respectively, and ௠ܲ
∗  is the commanded 

power of the mission load at each time. 

The optimum weights of charging and discharging by which the GA find are 

based on equal allocation sampling of the fitness; in this study, each individual is 

sampled 100 times and the expected value of the 100 samples is considered as estimated 

performance. When the values are sought, more samples need to be performed to better 

estimate the true average performance associated with these parameters. Hence, a random 

set of 1,000 or 10,000 scenarios are selected to use as a proxy for the true average. In this 

way it can be determined if the GA was actually finding a good answer of being tricked 

by limited sampling. The reference performance is the average of the performance over 

1,000 samples using a reference set Θ௥௘௙. 
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The simulation results are shown in the following. Four major variables are 

evaluated for the validation of the simulation: optimum weight of charging and weight of 

discharging (final values at the termination of the GA), as well as the estimated 

performance at the termination of the GA. These three values are the final results of the 

GA, while the last result, reference performance, cannot be acquired from the GA.  

Test 1 

The results of Test 1 are listed in Table 4.1. Both the weight of charging and 

weight of discharging are between the weight of generator and the weight of non-vital 

load. The GA estimated performance is 98.52%, and the reference performance is 

97.76%. 

Table 4.1. Test 1 result 

Optimum charging weight 0.7432 

Optimum discharging weight 2.1684 

GA estimated performance 98.52%

Reference performance 97.76%

 
The detailed reference performances of 1,000 samples are sorted in Fig. 4.1.  
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Fig. 4.1. Reference performance of Test 1 

From Fig. 4.1, it can be concluded that most of the time (close to 60%) the 

performance is 1, which means there are neither missions nor disturbances occur during 

the test time. The probability is greater than 25%, which is because the study time 

interval is 900s, many missions and disturbances occur after 900s and those cases are not 

discussed in this study. 

To validate that the use of 1,000 samples for reference performance is a good 

proxy for the true expected performance, using the same charging and discharging weight 

as Test 1, a larger set of events Θ௥௘௙ଶ with 10,000 samples is used. The detailed reference 

performance of 10,000 samples are sorted in Fig. 4.2. 
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Fig. 4.2. Reference performance of 10,000 samples 

Compared to Fig. 4.1, the curve patterns are very similar. The reference 

performance of 10,000 samples is 97.64%, a little less than the reference performance of 

1,000 samples. This means as the number of samples increase, the number of bad cases 

may also increase. But the reference performance of 10,000 samples is close enough to 

the reference performance of 1,000 samples, which indicates that the reference 

performance of 1,000 samples could be a useful proxy to the true average performance. 

Test 2 

The results of Test 2 are listed in Table 4.2. The weight of charging and 

discharging are also in between of the weight of generator and the weight of non-vital 

load. The GA estimated performance is 98.54%, close to the GA estimated performance 
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in Test 1; and the reference performance is 97.76%, same as the average performance in 

Test 1since the same reference events are applied.  

Table 4.2. Test 2 result 

Optimum charging weight 1.4679 

Optimum discharging weight 2.3656 

GA estimated performance 98.54%

Reference performance 97.76%

 
The detailed reference performances of 1,000 samples are sorted in Fig. 4.3, 

which show similar pattern as Test 1.  

 

Fig. 4.3. Reference performance of Test 2 
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Test 3 

The results of Test 3 are listed in Table 4.3. The charging weight is 2.1228, and 

the discharging weight is 1.3367, both are in the interval of 0.5 (weight of generator) to 3 

(weight of non-vital load), which supports the results from the previous two tests. There 

is a small difference of GA estimated performance with the previous two test, which is 

caused by the random cases selected by GA. The reference performance is the same with 

the previous results.  

Table 4.3. Test 3 result 

Optimum charging weight 2.1228 

Optimum discharging weight 1.3367 

GA estimated performance 98.53%

Reference performance 97.76%

 
The detailed reference performances of 1,000 samples are sorted in Fig. 4.4, 

which show similar pattern as the previous tests.  
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Fig. 4.4. Reference performance of Test 3 

Test 4 

The results of Test 4 are listed in Table 4.4. The weight of charging and weight of 

discharging are both in between the weight of generator and the weight of non-vital load, 

in the same interval as the previous results. The GA estimated performance is 98.52%, 

close to the previous results, and the reference performance is the same as the previous 

results.  

Table 4.4. Test 4 result 

Optimum charging weight 1.7930 

Optimum discharging weight 1.1197 

GA estimated performance 98.52%

Reference performance 97.76%
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The detailed reference performances of 1,000 samples are sorted in Fig. 4.5, also 

show similar pattern as the previous tests. 

 

Fig. 4.5. Reference performance of Test 4 

Test 5 

The results of Test 5 are listed in Table 4.5. The optimum charging weight and 

discharging weight are within the interval between generator weight and non-vital load 

weight. The GA estimated performance is 98.87%, and the reference performance is the 
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Table 4.5. Test 5 result 

Optimum charging weight 2.0969 
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Optimum discharging weight 1.8488 

GA estimated performance 98.87%

Reference performance 97.76%

 
The detailed reference performances of 1,000 samples are sorted in Fig. 4.6, 

which show similar pattern as previous results.  

 

Fig. 4.6. Reference performance of Test 5 

From the test results, it can be concluded that the GA works well, the weight of 

charging and weight of discharging converged in the same interval, between the weight 

of generator (0.5) and the weight of non-vital load (3). This is reasonable because if the 
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performed to validate the results. The GA estimated performance is around 98.53%, 

except for Test 5, in which the estimated performance is better than the rest four tests. 

The reference performance is 97.76%, since in all five tests, the weight of charging and 

weight of discharging fall in the same interval and the reference events set is the same. 

4.2  Baseline Cases Test 

To validate the simulation results, some baseline cases are established. By using 

the same set of events, the difference among the results can only be caused by the 

charging and discharging weights. For these baseline cases, events set Θ௥௘௙ is applied. 

Recall that the system weight matrix is given:  

Table 4.6. System weight matrix 

Load/Device Weight

Generator 0.5 

Vital load 25 

Non-vital load 3 

Mission load 20 

 
According to the previous test results and (3.6), the weight of charging and weight 

of discharging are only sensitive to intervals. Herein, for the baseline tests, the weights of 

charging and discharging might fall in five intervals: less than the weight of generator, 

between the weight of generator and the weight of non-vital load, between the weight of 

non-vital load and the weight of mission load, between the weight of mission load and the 

weight of vital load, and greater than the weight of vital load. For each interval, one 

weight is picked as a baseline case. Hence, 25 cases are to be tested as baseline. The 

baseline cases are:  
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௘௦௖ݓ  ∈ ሼ0.25, 1.75, 11.5, 22.5, 30ሽ  

௘௦ௗݓ  ∈ ሼ0.25, 1.75, 11.5, 22.5, 30ሽ.  

Table 4.7 shows the reference performance of all baseline tests. 

Table 4.7. Reference performance of baseline tests 

wesd\wesc 0.25 1.75 11.5 22.5 30 
0.25 95.77% 95.78% 95.78% 95.78% 95.77% 
1.75 95.77% 97.76% 96.73% 96.62% 95.78% 
11.5 95.77% 96.72% 96.66% 96.56% 95.78% 
22.5 95.77% 96.61% 96.56% 96.54% 95.78% 
30 95.77% 95.77% 95.77% 95.77% 95.77% 

 
The reference performance of case {ݓ௘௦௖ ൌ 1.75, ௘௦ௗݓ ൌ 1.75} is the highest, 

which equals to the reference performance of what GA calculated. This validates the 

results of the GA studies, which is that the optimum charging and discharging weight 

shall fall between the weight of generator and the weight of non-vital load.  

4.3  Risk Analysis 

While the optimal expected performance has been found, it is known that rational 

decision makers seek a balance between performance and risk [47]. In [33], [37], several 

of risk metrics are discussed. Two traditional risk metrics are the variance and standard 

deviation, however, these two metrics cannot distinguish positive deviations from 

negative deviations, which are not good enough to measure the riskiness. Value at risk 

(VaR) is widely used in financial risk management, it is a given percentile of the 

distribution of the return of a specific portfolio over a specific time frame. VaR is not 

always incoherent. Two examples of coherent risk metrics are the worst case return and 

the expected shortfall, which is the conditional expectation of the return of a given 

bottom percentile. The expected shortfall is an alternative to VaR that is more sensitive to 

the shape of the loss distribution in the tail of the distribution.  
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In this study, 10% is applied to both VaR and expected shortfall.  

Table 4.8 lists the standard deviation of baseline tests. The standard deviation of 

case {ݓ௘௦௖ ൌ 1.75, ௘௦ௗݓ ൌ 1.75} is the lowest, which proves that the deviation is the 

lowest, and the case is the optimum result.  

Table 4.8. Standard deviation of baseline tests 

wesd\wesc 0.25 1.75 11.5 22.5 30 
0.25 6.96% 6.95% 6.95% 6.95% 6.96% 
1.75 6.96% 4.63% 4.73% 4.96% 6.95% 
11.5 6.96% 4.73% 4.84% 5.06% 6.95% 
22.5 6.96% 4.96% 5.06% 5.11% 6.95% 
30 6.96% 6.96% 6.96% 6.96% 6.96% 

 
Table 4.9 lists the worst case of baseline tests. The result shows that the worst 

case scenario of case {ݓ௘௦௖ ൌ 1.75, ௘௦ௗݓ ൌ 1.75} is not the highest, this is reasonable 

because the study is not aim to optimize the worst case, but to optimize the expected 

performance.  

Table 4.9. Worst case of baseline tests 

wesd\wesc 0.25 1.75 11.5 22.5 30 
0.25 25.94% 26.01% 26.00% 26.00% 25.93% 
1.75 25.94% 41.93% 43.82% 43.87% 26.01% 
11.5 25.94% 43.83% 43.83% 43.88% 26.04% 
22.5 25.94% 43.88% 43.88% 43.88% 26.04% 
30 25.94% 25.94% 25.94% 25.94% 25.94% 

 
Table 4.10 lists the 10% VaR of baseline tests. The case {ݓ௘௦௖ ൌ 1.75, ௘௦ௗݓ ൌ

1.75} has the highest VaR, which proves that it is the optimized case.  

Table 4.10. 10% VaR of baseline tests 

wesd\wesc 0.25 1.75 11.5 22.5 30 
0.25 87.43% 87.44% 87.42% 87.42% 87.42% 
1.75 87.43% 92.43% 90.92% 90.49% 87.44% 
11.5 87.43% 90.92% 90.56% 90.09% 87.43% 
22.5 87.43% 90.48% 90.06% 90.06% 87.43% 
30 87.43% 87.43% 87.43% 87.43% 87.43% 
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Table 4.11 lists the 10% expected shortfall of baseline tests. The result also shows 

that the case of {ݓ௘௦௖ ൌ 1.75, ௘௦ௗݓ ൌ 1.75} is the optimized case.  

Table 4.11. 10% Expected shortfall of baseline tests 

wesd\wesc 0.25 1.75 11.5 22.5 30 
0.25 78.75% 78.80% 78.80% 78.80% 78.75% 
1.75 78.75% 86.55% 85.59% 84.78% 78.80% 
11.5 78.75% 85.58% 85.20% 84.45% 78.80% 
22.5 78.75% 84.78% 84.45% 84.26% 78.80% 
30 78.75% 78.75% 78.75% 78.75% 78.75% 

 
Some risk metrics match the result of reference performance, but the worst case 

metric does not match the result of reference performance. From Table 4.9, it can be seen 

that the worst case of case {ݓ௘௦௖ ൌ ௘௦ௗݓ,1.75 ൌ 1.75} is not the highest, which is 

possible because in the study, the value to be optimized is the expected performance, not 

the worst-case performance. Other than worst case study, other risk metrics, including 

standard deviation, VaR, and expected shortfall analyses show that the case {ݓ௘௦௖ ൌ

1.75, ௘௦ௗݓ ൌ 1.75} is the optimum baseline case, indicating that there is a connection 

between expected performance and risk. 

4.4  Tests with More Complicated Optimization Problem 

In the previous study, the weight of charging and discharging are set as constants. 

It is possible that superior performance may be obtained if the two weights are related to 

the instantaneous state of energy storage. For example, if the energy storage is full, it will 

stop charging. Hence, to explore the relationship between the charging/discharging 

weights and the state of energy storage, linear models are formulated as follows:  

௘௦௖ݓ  ൌ ሺݓ௘௦௖ଵ െ ௘௦௖଴ሻݓ
ா

ா೘ೌೣ
൅  ௘௦௖଴ (4.2)ݓ

௘௦ௗݓ  ൌ ሺݓ௘௦ௗଵ െ ௘௦ௗ଴ሻݓ
ா

ா೘ೌೣ
൅  ௘௦ௗ଴ (4.3)ݓ
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where, ݓ௘௦௖଴ is the charging weight when energy storage is empty, ݓ௘௦௖ଵ is the charging 

weight when energy storage is full, ݓ௘௦ௗ଴ is the discharging weight when energy storage 

is empty, ݓ௘௦ௗଵ is the discharging weight when energy storage is full, ܧ is the 

instantaneous state of energy storage, and ܧ௠௔௫ is the maximum capacity of energy 

storage.  

It is a larger searching space for the GA, in order to give the algorithm a fair 

chance to find a good answer, it would be reasonable to increase the combination of 

generation number, individual number, and sample number. In this study, the number of 

generations and the number of individuals are both increased from 100 to 200. The four-

parameter test is run twice, and the results are listed in Table 4.12 and Table 4.13.  

 

 
Test 6 

Table 4.12. Test 6 result 

Optimum charging weight (empty) 2.0238 

Optimum charging weight (full) 1.7517 

Optimum discharging weight (empty) 2.5153 

Optimum discharging weight (full) 0.6701 

GA estimated performance 98.63% 

Reference performance 97.75% 
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Test 7 

Table 4.13. Test 7 result 

Optimum charging weight (empty) 1.9576 

Optimum charging weight (full) 1.0196 

Optimum discharging weight (empty) 2.3010 

Optimum discharging weight (full) 1.7146 

GA estimated performance 98.63% 

Reference performance 97.75% 

 
The reference performance of the four-parameter tests should be no worse than 

that of the two-parameter tests, because constant weights can be selected by the GA in the 

four-parameter tests. In the study, the reference performance of two-parameter tests is 

97.76%, while the reference performance of four-parameter tests is 97.75%. The error is 

less than 0.01%, which is within the tolerance range. Also, the reference performance of 

case {ݓ௘௦௖଴ ൌ 1.75, ௘௦௖ଵݓ ൌ 1.75, ௘௦ௗ଴ݓ ൌ ௘௦ௗଵݓ,1.75 ൌ 1.75} is also 97.75%. This 

proves that the model is correct and the optimum weights are validated.  
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Chapter 5. Conclusion 

This thesis shows how to use GAs to optimally control the energy storage for 

stochastic problems, including hostile disruptions and special missions. Although the 

study involves a notional naval system, the approach is generic and it can be applied to 

other systems and platforms.  

The MVDC is used as the system model in the study. A simplified IEP model is 

presented in the thesis, the power system of the presented IEP model is consisted with 

generator, vital load, non-vital load and energy storage module. A linear programed 

model is used to simulate the power system, and two sets of states, mission states and 

damage states are formulates to simulate the stochastic scenarios that the IEP may be 

confronted with.  

A GA is used to find the optimal control variables for energy storage, and a 

Monte Carlo simulation is used by a GA for fitness evaluation. The estimated 

performance that GA calculated is the average of 100 samples, hence, more samples are 

performed to better estimate the true average performance. In the study, the average 

performance of 1,000 samples using the same set of events is used as the reference 

performance to proximate the true average performance. Some baseline cases and risk 

metrics analyses are also performed to validate the correctness of the GA simulation 

results. 

In the end of the thesis, a more complicated optimization problem is considered. It 

is possible that superior performance may be obtained if the two weights are related to 

the instantaneous state of the energy storage. Hence, both the charging and discharging 

weights are formulated as linear functions of the energy storage state. The reference 
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performance for the four-parameter tests is no worse than that for the two-parameter tests. 

This result is expected because the solutions located by the two-parameter tests are 

contained within the search space of the four-parameter tests. However, no further 

improvement in performance has been located using linear energy storage weights. More 

study might be needed to determine if another energy storage control method would yield 

a better result. 

For future study, the stochastic problems can be more complicated, for example, 

the energy storage can be faulted and several faults may not happen at the same time. 

Operational vignettes are proposed in [41], those vignettes may be applied to the 

stochastic model of this study Also, alternative sampling methods could be explored to 

reduce computation efforts and to obtain a more accurate consistency analysis. 
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