ICTV Virus Taxonomy Profile: *Partitiviridae*

Eeva J. Vainio
Natural Resources Institute Finland, Finland

Sotaro Chiba
Nagoya University, Japan

Said A. Ghabrial
University of Kentucky, saghab00@uky.edu

Edgar Maiss
Leibniz University Hannover, Germany

Marilyn Roossinck
Pennsylvania State University

See next page for additional authors

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/plantpath_facpub

Part of the Genetics and Genomics Commons, Virology Commons, and the Viruses Commons

Repository Citation

Vainio, Eeva J.; Chiba, Sotaro; Ghabrial, Said A.; Maiss, Edgar; Roossinck, Marilyn; Sabanadzovic, Sead; Suzuki, Nobuhiro; Xie, Jiatao; Nibert, Max; and ICTV Report Consortium, "ICTV Virus Taxonomy Profile: *Partitiviridae*" (2018). *Plant Pathology Faculty Publications*. 83.
https://uknowledge.uky.edu/plantpath_facpub/83

This Article is brought to you for free and open access by the Plant Pathology at UKnowledge. It has been accepted for inclusion in Plant Pathology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Authors
Eeva J. Vainio, Sotaro Chiba, Said A. Ghabrial, Edgar Maiss, Marilyn Roossinck, Sead Sabanadzovic, Nobuhiro Suzuki, Jiatao Xie, Max Nibert, and ICTV Report Consortium

ICTV Virus Taxonomy Profile: Partitiviridae

Notes/Citation Information

This is an open access article published by the Microbiology Society under the Creative Commons Attribution License.

Digital Object Identifier (DOI)
https://doi.org/10.1099/jgv.0.000985

This article is available at UKnowledge: https://uknowledge.uky.edu/plantpath_facpub/83
ICTV Virus Taxonomy Profile: *Partitiviridae*

Eeva J. Vainio,1,* Sotaro Chiba,2 Said A. Ghabrial,3 Edgar Maiss,4 Marilyn Roossinck,5 Sead Sabanadzovic,6 Nobuhiro Suzuki,7 Jiatao Xie,8 Max Nibert9 and ICTV Report Consortium

Abstract

The *Partitiviridae* is a family of small, isometric, non-enveloped viruses with bisegmented double-stranded (ds) RNA genomes of 3–4.8 kbp. The two genome segments are individually encapsidated. The family has five genera, with characteristic hosts for members of each genus: either plants or fungi for genera *Alphapartitivirus* and *Betapartitivirus*, fungi for genus *Gammapartitivirus*, plants for genus *Deltapartitivirus* and protozoa for genus *Cryspovirus*. Partitiviruses are transmitted intracellularly via seeds (plants), oocysts (protozoa) or hyphal anastomosis, cell division and sporogenesis (fungi); there are no known natural vectors. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the *Partitiviridae*, which is available at www.ictv.global/report/partitiviridae.

Table 1. Characteristics of the family *Partitiviridae*

<table>
<thead>
<tr>
<th>Typical member:</th>
<th>Atkinsonella hypoxylon virus, 2H (RNA1, L39125; RNA2, L39126), species Atkinsonella hypoxylon virus, genus Betapartitivirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome</td>
<td>3–4.8 kbp of linear bisegmented dsRNA</td>
</tr>
<tr>
<td>Virion</td>
<td>Isometric, non-enveloped, 25–43 nm in diameter; dsRNA1 and dsRNA2 are separately encapsidated</td>
</tr>
<tr>
<td>Replication</td>
<td>Cytoplasmic. Genomic RNA acts as a template for mRNA synthesis within the virus particle; transcription occurs by a semiconservational mechanism</td>
</tr>
<tr>
<td>Translation</td>
<td>From monocistronic positive-sense transcripts of both genomic dsRNAs</td>
</tr>
<tr>
<td>Host range</td>
<td>Plants, fungi and protozoa</td>
</tr>
<tr>
<td>Taxonomy</td>
<td>Five genera, including >40 species, and 15 species unassigned to a genus</td>
</tr>
</tbody>
</table>

VIRION

Virus particles are isometric, non-enveloped, and 25–43 nm in diameter (Table 1, Fig. 1a, b). Each capsid is composed of 120 copies of a single protein arranged as 60 dimers with T=1 icosahedral symmetry [1]. Dimeric surface protrusions are frequently observed on viral capsids. One or two molecules of RNA-dependent RNA polymerase (RdRP) are packaged inside each particle [2].

REPLICATION

Each dsRNA is monocistronic. The RdRP is believed to function as both a transcriptase and a replicase and catalyzes *in vitro* end-to-end transcription of each dsRNA to produce mRNA by a semi-conservational mechanism. Virions accumulate in the cytoplasm.

GENOME

Members of all five genera possess two essential genome segments, dsRNA1 and dsRNA2, each containing one large ORF on the positive-strand RNA molecule (Fig. 2). The smaller of the two dsRNA genome segments usually encodes the coat protein (CP) and the larger usually encodes the virion-associated RNA polymerase. The linear dsRNA segments are separately encapsidated. Additional dsRNA segments (satellite or defective) may also be present.

TAXONOMY

Alphapartitivirus

Members of the genus *Alphapartitivirus* infect either plants, or ascomycetous or basidiomycetous fungi. The two
essential dsRNA genome segments are individually about 1.9–2.0 kbp (dsRNA1) and 1.7–1.9 kbp (dsRNA2), typically containing a poly(A) tract near the plus-strand 3′-terminus. There is a single major CP with predicted Mr of 51–57 kDa. Plant alphapartitiviruses cause persistent infections, whereas some fungal alphapartitiviruses cause host effects, such as hypovirulence or a reduced growth rate [3, 4].

Betapartitivirus

Members of the genus Betapartitivirus infect either plants, or ascomycetous or basidiomycetous fungi. The two essential dsRNA segments are about 2.2–2.4 kbp (dsRNA1) and 2.1–2.4 kbp (dsRNA2), typically containing a poly(A) tract near the plus-strand 3′-terminus. There is a single major CP with predicted Mr of 71–77 kDa. Plant betapartitiviruses cause persistent infections [5, 6]. Some fungal betapartitiviruses cause reduced host virulence and changes in colony morphology [7].

Gammapartitivirus

All known members of the genus Gammapartitivirus infect ascomycetous fungi. The two essential dsRNA segments are about 1.6–1.8 kbp (dsRNA1) and 1.4–1.6 kbp (dsRNA2). There is a single major CP with predicted Mr of 44–47 kDa. Most gammapartitiviruses seem to induce latent infections. Aspergillus fumigatus partitivirus 1, a related, unclassified virus, has been associated with host effects.

Deltapartitivirus

All known members of the genus Deltapartitivirus induce persistent infections in plants [8]. They are transmitted by ovule and pollen to the seed embryo. The two essential dsRNA segments are individually 1.6–1.7 kbp (dsRNA1) and 1.4–1.6 kbp (dsRNA2). There is a single major CP with predicted Mr of 38–49 kDa.

Cryspovirus

Members of the genus Cryspovirus infect apicomplexan protozoa of the genus Cryptosporidium [9]. The viral genome comprises two dsRNA segments, which are individually 1.5 and 1.8 kbp. There is a single major CP with predicted Mr of 37 kDa. Virions are disseminated within Cryptosporidium oocysts. Infections of the Cryptosporidium host cells appear to be latent.

RESOURCES

Full ICTV Online (10th) Report:

Funding information
Production of this summary, the online chapter, and associated resources was funded by a grant from the Wellcome Trust (WT108418/AIA).

Acknowledgements
Members of the ICTV Report Consortium are Elliot J. Lefkowitz, Andrew J. Davison, Stuart G. Siddell, Sead Sabanadzovic, Donald B. Smith, Richard J. Orton and Peter Simmonds.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References