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Abstract. Unmanned aircraft systems (UASs) offer innovative capabilities for providing new perspectives on
the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying
the planetary boundary layer. In support of this expansion, from 14 to 20 July 2018 the International Society
for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a community flight week, dubbed
the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-
RATE; de Boer et al., 2020a). This field campaign spanned a 1-week deployment to Colorado’s San Luis Valley,
involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These groups conducted
intensive field operations using unmanned aircraft and ground-based assets to develop comprehensive datasets
spanning a variety of scientific objectives, including a total of nearly 1300 research flights totaling over 250 flight
hours. This article introduces this campaign and lays the groundwork for a special issue on the LAPSE-RATE
project. The remainder of the special issue provides detailed overviews of the datasets collected and the platforms
used to collect them. All of the datasets covered by this special issue have been uploaded to a LAPSE-RATE
community set up at the Zenodo data archive (https://zenodo.org/communities/lapse-rate/, last access: 3 Decem-
ber 2020).

Published by Copernicus Publications.
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1 Background

Over the past decade there has been a significant expansion
of the use of unmanned aircraft systems (UASs) to make
measurements of the atmosphere and its interactions with
the surface of the Earth. Rapid miniaturization and cost re-
ductions of instrumentation, other hardware, and the aircraft
platforms used to carry them have brought UAS-based atmo-
spheric science to many reaches of the globe. Specific ad-
vancements such as vertical takeoff and landing capabilities
offered by rotary-wing and hybrid UAS platforms that limit
the footprints required for launch and recovery (e.g., McGo-
nigle et al., 2008; Brady et al., 2016; Hemingway et al., 2017;
Wildmann et al., 2017) have made meteorological observa-
tions in focused areas feasible. Scientifically, UAS-based at-
mospheric science campaigns have focused on evaluating the
planetary boundary layer (PBL) and atmospheric turbulence
(e.g., Reuder et al., 2012; Bonin et al., 2013; Lothon et al.,
2014; Altstädter et al., 2015; Lawrence and Balsley, 2013).
Together, fixed- and rotary-wing UASs have expanded ob-
servations beyond those from operational meteorological ob-
serving networks (Hemmingway et al., 2017), offering high-
resolution insight into key parameters in locations where sur-
face observations may be challenging. Specific examples of
difficult-to-observe areas that have been sampled using UASs
include in tropical cyclones (e.g., Cione et al., 2016, 2019),
over the Arctic Ocean (e.g., Curry et al., 2004), in distant
Antarctic regimes (e.g. Knuth et al., 2013), during a total so-
lar eclipse (Bailey, et al., 2019), and in and around supercell
thunderstorms (e.g., Elston et al., 2011). Beyond the PBL,
data gathered by UASs have shed light on interactions be-
tween the atmosphere and other components of the Earth sys-
tem (e.g., oceans, ice, land surface), with campaigns covering
both lower latitudes (e.g., Corrigan et al., 2006; Ramanathan
et al., 2007; van den Kroonenberg et al., 2008; Houston et al.,
2012) and higher latitudes (e.g., Curry et al., 2004; Cassano
et al., 2010; Knuth and Cassano, 2014; de Boer et al., 2018;
Kral et al., 2018).

With this rise in the popularity of the use of UASs in atmo-
spheric science, in 2008 the European Union funded a COST
(Cooperation in Science and Technology) action to advance
and support the community of researchers focused on using
UASs for atmospheric science. From this COST action, the
International Society for Atmospheric Research using Re-
motely piloted Aircraft (ISARRA) emerged. ISARRA has
met annually since 2012, with five meetings in Europe (2013,
2014, 2016, 2017, 2019) and two in the United States (2015,
2018). The 2018 meeting, hosted by a joint committee of rep-
resentatives from The University of Colorado, the National
Center for Atmospheric Research (NCAR), and the National
Oceanic and Atmospheric Administration (NOAA), was held
in Boulder, Colorado, USA, between 9 and 12 July 2018
(de Boer et al., 2019). Since 2012, several ISARRA con-
ferences have featured coordinated flight activities to offer
a field-based opportunity for participants to share informa-

tion on platforms and sensing capabilities and promote col-
laboration between individual groups working towards sim-
ilar goals. The 2018 conference offered participants a field
experience highlighting Colorado-specific science topics and
leveraging ongoing work within the state of Colorado to fos-
ter community relations surrounding the use of UASs. This
week-long flight event, named Lower Atmospheric Profiling
Studies at Elevation – a Remotely-piloted Aircraft Team Ex-
periment (LAPSE-RATE) was held in the San Luis Valley
(SLV) of south-central Colorado from 14 to 21 July 2018,
immediately following the 2018 ISARRA conference.

Prior ISARRA flight campaigns generally focused on sys-
tem intercomparison and demonstrations. However, LAPSE-
RATE set out to increase the coordination and scientific value
of this significant effort, shifting the focus to not only of-
fer opportunities for aircraft and sensor comparisons but also
target data collection on specific science themes identified
collaboratively by the community, including the following:

– The morning boundary-layer transition. The diurnal cy-
cle in temperature in the SLV can be substantial, making
for large swings between stable and convective bound-
ary layers, with near-surface temperatures changing by
up to nearly 25 ◦C as part of the diurnal cycle. This topic
was sampled using a distributed profiling approach,
with measurement sites located geographically across
different surface types and across different parts of the
valley.

– Aerosol properties. A variety of particle sources in the
SLV, including agriculture, the Great Sand Dunes Na-
tional Park, wildfires, biogenic emissions, and advec-
tion, make this an interesting area to study aerosol prop-
erties and their variability. Routine lower-atmospheric
profiling allowed teams to document particle sizes and
concentrations and their connections to boundary-layer
and synoptic-wind regimes.

– Valley drainage flows. The SLV itself is very broad and
of a substantial scale (see Fig. 1), with several smaller
valleys feeding into it. Clear nights often result in dis-
tinct density currents from these smaller valleys into the
main SLV. Targeted sampling within the Saguache Val-
ley and its outflow area captured the evolution of such
a density current and provided data to map its outflow
into the SLV.

– Deep convection initiation. Thunderstorms routinely
form over the mountains surrounding the SLV, with
storms sometimes advecting into or forming over the
central part of the valley. Storm life cycles are thought
to be impacted by local sources of potential energy
and/or coherent circulations tied to gradients of surface
types. Distributing teams throughout the northern por-
tion of the valley to make detailed measurements of the
thermodynamic state and its evolution with time across
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a variety of surface gradients offered data to evaluate
whether the surface plays a role in the development and
evolution of valley storms.

– Atmospheric turbulence profiling. Understanding atmo-
spheric turbulence in the lower atmosphere is key to the
development of numerical models. Furthermore, turbu-
lence can undermine the performance of communica-
tion systems due to its impact on signal integrity. Teams
deployed a variety of measurement platforms to char-
acterize the diurnal cycle of turbulence intensity in the
“high desert” environment of SLV to provide a unique
dataset on variability within the valley, terrain effects,
and the impact of low water vapor amounts on turbu-
lence generation.

The current special issue provides information on datasets
collected during the LAPSE-RATE campaign. This introduc-
tory article provides background information on the cam-
paign itself and the general conditions that were sampled
throughout the week, with additional details on the campaign
and associated activities available in de Boer et al. (2020a).
The subsequent articles in the special issue describe, in de-
tail, the datasets that were collected by the various teams
participating in the event. These details include information
on completed flights, platforms used for data collection, spe-
cific flight permissions, the sensors deployed and their ex-
pected accuracy, interesting conditions encountered, and an
overview of statistics related to the scientific objectives and
individual datasets obtained.

2 Campaign overview and logistics

The SLV is a high-altitude depositional basin located in
south-central Colorado (USA) with an average elevation of
2336 m above sea level (a.s.l.). The full valley stretches ap-
proximately 200 km north to south and 120 km east to west. It
is surrounded by mountains, with the Sangre de Cristo moun-
tain range to the east and the San Juan mountain range to
the west. Both of these mountain ranges have peaks rising
over 4200 m a.s.l., resulting in an altitude difference of up
to 2000 m above the valley floor. The central valley is pri-
marily flat, and land cover comprises mostly agriculture and
shrub or scrublands. The agricultural areas are irrigated us-
ing groundwater and streams fed by snowmelt from the sur-
rounding mountain ranges. The shrub and scrubland areas
include very arid regions, as well as areas that are seasonally
flooded and marshy. Another unique feature in the valley is
the approximately 600 km2 Great Sand Dunes National Park,
which includes a large area with expansive sand dunes, the
tallest of which, Star Dune, is approximately 230 m tall from
the valley floor.

To collect measurements targeting the primary objectives
discussed above, teams deployed both UASs and surface-
based instrumentation across the northern half of the SLV

(entire area shown on map in Fig. 1). Potential sites were
identified during scouting trips to the valley prior to the flight
event. The identified sites were spatially distributed and rep-
resented a variety of different land cover and terrain con-
ditions. Flight permissions were secured from the Federal
Aviation Administration (FAA), and site access was secured
from landowners prior to the flight event. On any given day,
the assembled flight teams (up to 22) from the participating
organizations would set up their flight and sampling opera-
tions at one of the preselected sites. While the deployment
configuration changed somewhat from day to day based on
the specific sampling objectives, many teams spent the ma-
jority of the campaign sampling a single location. Additional
details on which specific teams were distributed to each indi-
vidual sampling location are provided in the remainder of the
articles in this special issue. However, in the current article
we provide some insight into the general motivation behind
the selection of sampling locations for the different objec-
tives covered above.

Weather conditions experienced during the LAPSE-RATE
campaign were excellent for the operation of UASs and
for studying the above-mentioned phenomena of interest.
Broadly speaking, the SLV was under the influence of a de-
veloping North American Monsoon flow, whereby moisture
from the Gulf of Mexico and Pacific Ocean were periodically
injected into a general region of anticyclonic flow that var-
ied in strength during the week-long field experiment. High
pressure was prevalent over the region during 14 July, result-
ing in limited convection forming over the mountains sur-
rounding the SLV. A cold front passed through the region on
15 July and early on 16 July. This time period also featured
upper-level advection of air from the southwest, including
moisture from the Pacific Ocean. In combination, these con-
ditions resulted in the development of more widespread con-
vective clouds and offered favorable conditions for evaluat-
ing convective initiation. These storms produced only limited
precipitation but did result in lightning and significant and
gusty winds. On 17 July, the upper-level anticyclonic circula-
tion re-established itself over the region, reducing convective
storm activity. This quieter flow regime persisted through the
rest of the campaign, resulting in generally dry conditions,
with only a limited number of thunderstorms occurring in
the mountains surrounding the SLV through the end of the
experiment.

Each day of LAPSE-RATE featured well-defined diurnal
cycles in temperature, humidity, and winds. Mornings were
characterized by calm winds and elevated humidities with
temperatures between 10 and 15 ◦C. Localized areas of fog
were observed early in the morning, particularly along the
western portion of the valley. Winds were generally stronger
and gustier in the afternoon after development of the con-
vective boundary layer, with sustained wind speeds reach-
ing around 10 m s−1 at times. Higher gusts associated with
thunderstorm outflows were also observed locally. The weak
winds that occurred overnight into the late morning resulted
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Figure 1. A map of the San Luis Valley of Colorado and photographs providing a perspective on the general variability in surface conditions
around the valley. The satellite image in the large map in the upper left is courtesy of © Google Maps.

in excellent conditions for evaluating atmospheric variability
forced by local phenomena, including assessment of how sur-
face property variability impacts boundary-layer evolution
and the evolution of density currents resulting from differen-
tial cooling across the valley. The spatiotemporal variability
in meteorological conditions throughout the field experiment
is evident in Fig. 2.

LAPSE-RATE flights began on 14 July. This first day
involved an intercomparison of platforms and sensors per-
formed at Leach Airport, near the center of our operations
area (point “E” in Fig. 1). This site was chosen in part be-
cause the site features open space without nearby structures,
vegetation, or topography, allowing multiple UAS teams to
safely conduct flight operations at the same time. Addition-
ally, the surrounding surface was relatively homogeneous,
with the site being largely surrounded by irrigated agricul-
tural lands and little in the way of nearby topography. Finally,
there was easy access for the University of Colorado’s Mo-
bile UAS Research Collaboratory (MURC) vehicle, a plat-
form that includes a suite of meteorological instrumentation
mounted on a 15 m tower (see de Boer et al., 2020b, in this

special issue) that was used for the intercomparison. Teams
were assigned specific flight times in proximity to the MURC
instrumentation throughout the course of 14 July. Results of
this intercomparison can be found in Barbieri et al. (2019)
and largely showed good agreement between the various
platforms. Additional intercomparison work was carried out
using measurements obtained by the University of Okla-
homa’s Collaborative Lower Atmospheric Mobile Profiling
System (CLAMPS) and Doppler lidar systems deployed by
the University of Colorado (Bell et al., 2020a, b, in this spe-
cial issue); one of the University of Colorado lidars is pic-
tured in the foreground of Fig. 1, point B.

For the remainder of LAPSE-RATE, participating teams
were distributed based on the specific science objective that
was deemed most attractive based on daily forecasts. This
was largely decided the day before during an all-teams brief-
ing in which weather forecasts and platform readiness were
discussed. Forecast guidance for planning came through
joint input from the National Weather Service and high-
resolution simulations from the Weather Research and Fore-
casting (WRF) model (Pinto et al., 2020; Nolan et al., 2018).

Earth Syst. Sci. Data, 12, 3357–3366, 2020 https://doi.org/10.5194/essd-12-3357-2020
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Figure 2. An overview of meteorological conditions observed in the San Luis Valley during LAPSE-RATE. The two leftmost figures illustrate
temperature (a) and dew point (b) profiles obtained from radiosondes launched at Leach Airport, with the colors representing the date of
launch. The center and righthand panels illustrate surface meteorology at three different sites across the valley over the course of the week.
These include surface pressure (c), air temperature (d), relative humidity (e), and wind speed (f). These observations were obtained by the
MURC vehicle (red), the Saguache Airport AWOS station (blue), and the CLAMPS trailer (yellow).

Generally, days were divided into two basic categories: days
where convection was expected and days where it was not.
Below, we provide overviews of the sampling completed on
each day of the campaign.

On 15 and 16 July, teams were deployed to collect data
to understand the development of convection over the valley.
For the convective initiation and development days, teams
were instructed to fly from sites covering a variety of surface
types. The general idea was for all teams to conduct nearly
continuous profiling at these sites to capture the thermody-
namic evolution of the boundary layer and provide informa-
tion on winds and turbulence (where available) resulting in
the organization of convection. In addition to the teams de-
ploying UASs, there were the previously mentioned surface-
based remote-sensing instruments (CLAMPS, Doppler li-
dars) deployed to Moffat School, Saguache Airport, and
Leach Airport (see Bell et al., 2020b, in this special issue)
as well as a variety of mobile systems that were deployed on
transects throughout the valley (de Boer et al., 2020b, in this
special issue).

On 17 July, teams were offered time to complete flight ac-
tivities matching their own primary objectives, without coor-
dinated organization by the larger group. Some teams con-
ducted additional intercomparison flights, while others con-
ducted equipment evaluation flights to improve their sensing
capabilities and expand their operational envelopes.

Sampling on 18 July focused on the morning boundary-
layer transition. During this day, teams aimed to arrive at
their distributed sampling sites at sunrise (around 06:00 local
time) to initiate flights and capture the transition between the

nighttime stable regime and the development of a surface-
radiation-driven convective boundary layer, with sampling
continuing until around midday. Teams were once again dis-
tributed across the valley at sites featuring a variety of sur-
face types, with some teams operating on eastward-slanting
slopes and others on westward-slanting slopes. Surface-
based assets were again located at Moffat School, Leach Air-
port, and Saguache Airport.

Finally, 19 July focused on cold-air drainage flows that
were set up during the nighttime. For this effort, teams were
distributed with a focus on the Saguache Valley that feeds
into the northwest corner of the SLV (around point “B” in
Fig. 1). Several teams were distributed in the Saguache Val-
ley itself, including at the Saguache Airport which has an au-
tomated weather observing system (AWOS). An additional
array of UAS platforms was deployed in the block of agri-
cultural fields situated at the outflow region (near point “C”
in Fig. 1). Further, some teams were situated within different
parts of the main valley, and two teams were assigned to con-
duct flights in the valley feeding into the northern portion of
the SLV (near point “A” in Fig. 1).

The final day of the LAPSE-RATE campaign, 20 July, was
once again open for teams to conduct their own sampling
activities throughout the SLV as needed to accomplish in-
dividual goals and tasks. Some teams conducted additional
comparison flights with the MURC on this date.

Finally, given that only a limited number of teams were in-
terested in studying aerosol processes during the campaign,
these measurements were made continuously at a single site
approximately 15 km north of Leach Airport, using UAS-
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Table 1. A list of data-generating entities participating in LAPSE-RATE and the individual roles that each entity filled during the campaign.

Organization Primary role Relevant publications
(all in this ESSD special
issue)

University of Colorado Boulder Campaign coordination, operation of unmanned air-
craft, deployment of surface-based Doppler lidar sys-
tems and mobile measurement system

de Boer et al. (2020b)
de Boer et al. (2020c)
Bell et al. (2020b)

University of Oklahoma Operation of unmanned aircraft, deployment of
CLAMPS surface observatory

Pillar-Little et al. (2020)

University of Kentucky Operation of unmanned aircraft, deployment of sur-
face flux tower

Bailey et al. (2020)

Oklahoma State University Operation of unmanned aircraft Natalie et al. (2020)

University of Nebraska–Lincoln Operation of unmanned aircraft, deployment of
mobile measurement systems

Islam et al. (2020)

Virginia Tech Operation of unmanned aircraft Not applicable

Kansas State University Operation of unmanned aircraft, deployment of
surface aerosol instrumentation

Brus et al. (2020)

National Oceanic and Atmospheric Admin-
istration (Physical Sciences Laboratory, Na-
tional Severe Storms Laboratory, Chemical
Sciences Laboratory)

Campaign coordination, campaign forecasting,
launching of weather balloons, deployment of
mobile measurement system

de Boer et al. (2020c)
Bell et al. (2020b)

National Center for Atmospheric Research Campaign forecasting, production of numerical fore-
cast products, modeling and postcampaign support

Pinto et al. (2020)

Finnish Meteorological Institute Operation of unmanned aircraft Brus et al. (2020)

Black Swift Technologies Operation of unmanned aircraft de Boer et al. (2020b)

based sensors as well as from the surface (see Brus et al.,
2020, in this special issue).

3 Overview of datasets

Participants in the LAPSE-RATE campaign spanned a vari-
ety of organizations including various US and international
universities, US federal agencies, US and international in-
stitutes, and various companies in the private sector. An
overview of the groups responsible for the collection of data
during LAPSE-RATE, along with their specific roles and
the special-issue publications that are connected to those ac-
tivities, is provided in Table 1. As mentioned above, these
groups include operators of unmanned aircraft, surface-based
in situ and remote sensor systems, radiosondes, and surface
vehicles. Additionally, they include modelers, forecasters,
and outreach teams.

All of the datasets have been quality-controlled based on
protocols established by the individual teams. The details
behind this quality control are outlined in the individual
articles and will not be explained in detail here. However,
our common goal was to provide a quality dataset that could
be leveraged by the community for scientific studies. Data

are provided in NetCDF format with a common file name
structure. This structure is

xxx.ppppp.lv.yyyymmdd.hhmmss.cdf

using the following definitions:

– xxx – institute

– ppppp – a five-letter platform identifier

– lv – the data file processing level

– yyyymmdd – the file date (UTC) in year, month, day
format

– hhmmss – the file start time (UTC) in hours, minutes,
seconds format

– cdf – the NetCDF file extension.

As an example, a NetCDF file produced by the University
of Colorado Boulder from the DataHawk UAS that includes
non-quality-controlled data (in geophysical units) collected
starting at 11:30:54 UTC on 17 July 2018 would be named
UCB.DATHK.a1.20180717.113054.cdf.
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The groups provided files at various levels of processing.
These include

– a0 – raw data converted to netCDF

– a1 – calibration factors applied and converted to geo-
physical units

– b1 – quality control (QC) checks applied to measure-
ments to ensure that they are “in bounds”; missing data
points or those with bad values should be set to −9999.9

– c1 – derived or calculated value-added data product
(VAP) using one or more measured or modeled data
products (a0 to c1) as input.

Note that it was not required (or expected) that all groups
would submit all data levels. For example, a0 data may be
deemed too detailed, too large, and without sufficient qual-
ity control to be useful to many interested users and there-
fore may not be made available by many of the participating
groups. All groups sought to provide a1 or b1 data products
where possible as this level of processing offers the great-
est potential for community consumption and ensures some
level of quality control.

Participating teams were requested to provide sufficient
metadata in their NetCDF files to allow users to understand
and interpret the data stream. This includes information that
could be included in global metadata (i.e. specific to the en-
tire file) such as

– location of sensor or platform (if stationary platform)

– QC checks and flags applied

– calibration procedural information as appropriate

– principal investigator contact information.

Additionally, for individual variables, it was requested that
teams provide metadata to help the user understand how the
measurement was obtained and what it represents. This type
of information could include

– orientation – downwelling, upwelling, or dependent on
the installation as appropriate

– missing data value applied to a given variable
(e.g., −9999.9)

– key information to characterize the measurement

– the instrument or sensor used for the measurement (oc-
casionally important especially if it comes from a data
stream containing results from several instruments)

– time interval information (e.g., averaging time and mea-
surement intervals)

– the units of the measurement

– an indication that the data are best-estimate data or a cal-
culated value data stream; unless indicated otherwise, it
is implicit that the measurement is observed.

4 Data availability

Files from all teams are archived under individual DOIs
at the Zenodo data archive (https://www.zenodo.org/, last
access: 3 December 2020), where a dedicated community
has been established for LAPSE-RATE (https://zenodo.org/
communities/lapse-rate/, last access: 3 December 2020).
This community houses the data files along with additional
metadata on the datasets. In total, these files cover nearly
1300 flights and 250 flight hours, along with data from re-
lated ground-based observing systems, radiosondes, and nu-
merical model output.

5 Summary

During the summer of 2018, a large group of atmospheric
scientists and engineers came together in the San Luis Val-
ley of Colorado to conduct a coordinated atmospheric mea-
surement program using unmanned aircraft. This group de-
ployed fixed- and rotary-wing UASs, in combination with
surface-based in situ and remote sensors, and radiosondes to
make comprehensive measurements to demonstrate the util-
ity of these platforms in understanding a variety of boundary-
layer phenomena including the morning boundary-layer tran-
sition, density currents, convection initiation, aerosol pro-
cesses, and turbulence. Additionally, intercomparison efforts
were undertaken to evaluate to what extent these types of
measurements can be used together. In the end, a large num-
ber (> 1200) of flights were completed. This article provides
an overview of the campaign, the conditions sampled, and
the general structure of data collection. This overview in-
troduces this special issue on the LAPSE-RATE campaign,
which hosts individual articles from the teams involved that
provide additional details on their platforms, sensors, and
flights. We hope that this issue will encourage widespread
use of the data, and we encourage individuals to reach out to
the teams who collected the datasets if they have interest in
using them for their own scientific purposes.
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