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ABSTRACT OF THESIS 

 

 
THE EFFECT OF LAND-COVER/LAND-USE AND HABITAT FRAGMENTATION 

ON SPATIAL PATTERNS OF LYME DISEASE IN THE EASTERN UNITED STATES 

Lyme disease has been of national concern for the past few decades. As our 
understanding of the role of landscape structure in epidemiology expands, it is essential to 
apply the principles of landscape ecology to the research of vector-borne and zoonotic 
disease. This study examined the strength of the relationship between land-cover class, 
degree of habitat fragmentation and county-level Lyme disease cases. Forest, agricultural, 
and urban land cover types were the categories of interest, while percent cover, edge 
density, and patch density were the landscape metric used to measure habitat amount and 
fragmentation. The general linear trends were modelled with the Quasi-Poisson family to 
quantify the relationship between land cover metrics and case numbers. Forest land had the 
greatest effect on case numbers, while urban and agriculture had either positive or negative 
relationships depending on the chosen metric.  Fragmentation had a substantial effect on 
case number, regardless of cover type. The findings can be employed by policy makers and 
those who work in environments that foster high disease incidence, to keep workers and 
the local populations safe and healthy. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

In the context of the recent pandemic and ongoing global change, human 

modification of the landscape has become more important than ever to understand as an 

ecological driver of the spread of infectious disease. As a cause of infectious disease, tick-

borne pathogens are increasingly prevalent both in the United States and abroad, which 

highlights the need for a greater understanding of environmental factors contributing to the 

rising case numbers and the increasing geographic spread (Kuehn, 2019; Rochlin & 

Toledo, 2020; Rosenberg et al., 2018). This geographic expansion is shaped by the 

changing land cover and land use types, connectivity of host habitat, and proximity to 

human communities. Land-cover is primarily defined as the material that makes up an area, 

such as forest, grassland, or concrete, while land-use is defined by the human usage of said 

land, such as farmland or cities. These two terms are used in unison to describe land as 

simply what it is and what it is used for. As two major ecological drivers of biodiversity, 

land-cover/land-use change and habitat fragmentation have been widely used to measure 

anthropogenic impacts on the diverse ecosystems that are home to the vectors of zoonotic 

diseases (Haddad et al., 2015; Hooper et al., 2012; Newbold et al., 2015). Zoonotic diseases 

(also called zoonoses) are caused by pathogens that are transmitted between wildlife and 

humans. Well-known examples are the Ebola virus, COVID-19, and salmonellosis. The 

transmission of zoonoses is directly tied to the animal’s environment and as such is affected 

by ecological processes, including those that alter biodiversity. These ecological drivers of 
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land cover change and habitat fragmentation could exert far reaching yet variable influence 

on the spatial patterns of Lyme disease and other tick-borne infectious diseases. 

Lyme disease is the most common vector-borne disease in the U.S. The first known 

case was described in Wisconsin in 1970, though it occurred in isolation. The first 

documented cases of what we now know as Lyme disease were from Old Lyme, 

Connecticut in 1977, where it got its namesake.  It is transmitted by the genus Ixodes, which 

are hard ticks. Symptoms are similar to the common flu sometimes accompanied by a 

conspicuous bullseye shaped rash. Lyme disease is present in Europe as well, but has fewer 

cases on a yearly basis (Marques et al., 2021).  

Infectious zoonotic diseases such as Lyme disease can cause significant strain on 

public healthcare systems (Dantas-Torres et al., 2012; Mac et al., 2019) with serious 

physiological and neurological impacts in infected people (Eremeeva & Dasch, 2015; 

Kaiser & Holzmann, 2000; Steere et al., 2016) and pose an increased risk of infection in 

pets and livestock (Parola et al., 2005; Wikel, 2018). Humans that were previously treated 

for Lyme disease are shown to have higher incidences of joint issues, memory impairment, 

and mental dysfunction (Shadick et al., 1999). Canines have a higher risk of developing 

chronic kidney disease if they are exposed to the pathogen that causes Lyme disease (Drake 

et al., 2021).  

Due to the domestic and global implications of tick-borne disease, there has been 

some research on the patterns of potential ecological drivers of their transmission (Estrada-

Peña & De La Fuente, 2015; Ogden, 2013; Rochlin & Toledo, 2020). Ecological drivers 

that have been previously studied are host species range, habitat, climate, and host 

competency (Alkishe et al., 2021; Singh & Girschick, 2003; Wang et al., 2015). Some 
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landscape level processes such as habitat fragmentation and land-cover/land-use change 

have been studied in relation to tick-borne disease (Diuk-Wasser et al., 2021). However, 

the spatial extent examined in previous studies was limited to a few counties in New 

England or a single neighborhood. And a full geographic scope of the spatial trends of 

Lyme disease is lacking. It is understood that the disease is prominent in the Eastern United 

States, especially in the New England region. The disease has been endemic in this region 

for almost 50 years, but it has  been expanding rapidly throughout the entire eastern US. 

Studying the full spatial extent of this disease is paramount for future management and is 

especially pertinent in the current epidemiological struggle we are facing. 

The risk of Lyme disease can seem commonplace in much of the country, but the 

habitats that support the ticks and their hosts are incredibly localized. The geographic 

ranges of these medically important tick species have shifted over the years; this is 

particularly true for the species Ixodes scapularis, commonly referred to as the deer tick or 

black-legged tick, which is the main vector of the Lyme disease bacterium, a spirochete 

called Borrelia burgdorferi in the Eastern United States (Bacon et al.; Dennis et al., 1998; 

Eisen et al., 2016). The habitat ranges of the ticks could be expanding because of the 

cumulative effect of climate change and human modification of environment, which could 

help many Ixodes genus by facilitating the pathogen transmission cycle, reproduction, and 

dispersion (Azad, 1988; Ogden, 2013). The role of hosts in range expansion is also 

important. In a study conducted by Madhev. et al (2004), they summarized the impacts 

different host species can have on the range of ticks. Large mammal hosts with high tick 

burdens and a large geographic range of their own, i.e., white-tailed deer (Odocoileus 

virginianus), play the most crucial role in assisting the range expansion. In contrast, many 
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small mammal hosts with limited home ranges could actually limit expansion, but avian 

hosts, with the ability to rapidly move long distances could have a positive impact on tick 

home range expansion, although this has yet to be supported. Birds, both migratory and 

ground species, can be considered either competent hosts (able to effectively transmit the 

pathogen of interest to other wildlife) or reservoir species (species that do not build up an 

immunity to the pathogen and will hold the infection for an extended period of time, even 

up to their lifetime) (Comstedt, 2006; Martin et al., 2016). 

The host species of these important tick species play an integral role in the 

transmission of the infectious pathogen, Borrelia burgdoferi. Since wildlife are an essential 

linkage in the pathogen transmission cycle, those species pertinent to this infection cycle 

have been studied in relation to the increase in tick-borne diseases in North America and 

Lyme disease in Europe (Comstedt, 2006; Tsao et al., 2021). The infection cycle between 

ticks and wildlife hosts is a complicated physiological process that involves immune 

responses of both vector and host (Singh & Girschick, 2003). A decrease in host density 

would impact the transmission process and as a result, the rates of tick-borne disease. 

Whether tick species are considered host specialists or host generalists, they are limited by 

the biological and biogeographic constraints of their host species (Halsey et al., 2018; 

Mccoy et al., 2013). One reservoir host for I. scapularis, the white-footed mouse 

(Peromyscus. leucpus), is affected by changes in the structure of the forested lands the host 

species inhabit (Kaufman et al., 1983). Additionally, any climate change impacts on hosts 

such as the white-tailed deer and white-footed mouse could in-turn affect tick distribution 

(Dawe & Boutin, 2016; Roy-Dufresne et al., 2013).  Some of these host species have been 

considered an “edge species” where they can live on the borders between land-cover 
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classes, that typically occur because of habitat fragmentation and natural transitional zones 

(Peterson, 2018; Williamson & Hirth, 1985). 

The ability of edge species to reside at interfaces between land-cover classes ties 

into other recent work on tick-borne disease ecology, which has discussed the impact of 

both land-use and habitat fragmentation on tick-borne disease (Diuk-Wasser et al., 2021). 

One study found that there was no difference in nymphal tick abundance between different 

land-use categories, but the density of nymphs was found to be dependent on land-use types 

(Rosà et al., 2018). This measure of the density of nymphs is often correlated with risk of 

disease, even though it doesn’t directly measure case numbers. The intersection between 

different characteristics of land, such as land cover, land use, and land ownership, were 

important in predicting the spatial distribution of another tick-borne disease: Tick-borne 

encephalitis in Latvia (Vanwambeke, 2010). Forested land cover is clearly associated with 

the hosts species and tick populations, and people regularly encounter ticks in forested 

areas. In a 2018 study in Virginia, Ferrell & Brinkerhoff examined landscape drivers of B. 

burgdorferi infection prevalence and abundance of I. scapularis ticks (Ferrell & 

Brinkerhoff, 2018).  Their conclusions were that the amount of forest cover is the most 

important indicator of increased tick density, seeming to support the general idea that more 

forest equals more ticks, which could increase disease risk. In an early study in 1998, 

nymphal density was found positively associated with the proportion, area and patch 

frequency of woodland cover within residential areas (Frank et al., 1998).  Decreasing 

woodland patch size may also increase the density of infected nymphs, which is correlated 

with higher risk of Lyme disease (Allan et al., 2003). This seemingly contradicts what some 

studies previously discussed about large, intact forest patches having a higher risk of 
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disease (Ferrell & Brinkerhoff, 2018). But whether large swaths of unbroken forest or the 

peri-urban forests that made up those residential patches have the same level of risk has 

been debated. In one study conducted in Poland, no informative differences in tick 

abundance were observed between the forest patches in the urban setting and so called 

“natural forests” (Kowalec et al., 2017), while another study found variation in tick 

abundance in different kinds of forested patches (Borşan et al., 2020). The latter study 

showed that the significant predictors of abundance in their study were climate conditions 

and the presence of host populations. Anthropogenically driven land-use changes continue 

to be explored as to their effect on the pathogen transmission cycle and which of those 

mechanisms increase or decrease risk of disease (Gottdenker et al., 2014). While the results 

of these paint a certain picture of how land-cover and land-use differences could affect 

Lyme disease transmission, through tick abundance and density, they do not directly 

address actual reported cases of any tick-borne disease, leading one to question how human 

behavior factors into the actual diagnosis of Lyme disease. The study presented in this 

thesis attempts to quantify the relation of these landscape factors and disease cases, adding 

a further dimension of understanding in this research field. 

Many studies about the effect of habitat fragmentation on biodiversity and tick-

borne disease have proposed a theory or hypothesis called the “dilution effect” (Brownstein 

et al., 2003; Rosà & Pugliese, 2007; Schmidt & Ostfeld, 2001). While the dilution effect is 

a debated topic in disease ecology, at the base it asserts that biodiversity, measured by the 

species richness and evenness of vertebrate hosts, could decrease the risk of disease 

(Ostfeld & Keesing, 2000). The theory is that if there are greater numbers of animal species 

in an area, they will range in competency as a host for carrying the pathogens transmitted 
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by tick bites. Not all animals have equal competency and ticks can feed on non-reservoir 

hosts. Consequently the risk of infection is diffused over the landscape since there are 

pockets that are less able to sustain the transmission cycle. Some studies dispute this 

“dilution effect” hypothesis, citing the greater influence of other factors such as 

metapopulation characteristics and community composition (Zolnik et al., 2015). 

While forests are considered the most prominent land-cover class tied to Lyme 

disease in the literature, other land cover classes deserve focused attention as well. In a 

study conducted in central Illinois, which included young and mature forest, prairie land, 

and flood plains, it was found that prairie land had the highest pathogen prevalence 

(Rydzewski et al., 2011). The authors also discussed how this could have been due to the 

general patchiness of the landscape. Agricultural land and urban areas bordered many of 

these land-cover classes and the patches had a high connectivity, allowing for movement 

of hosts species and points of contact with human populations. In general, the 

intensification of agricultural processes has been observed to increase zoonotic diseases, 

including Lyme disease (Jones et al., 2013). This is primarily linked to increasing the 

wildlife-urban-interface as agricultural and suburban areas encroach on natural areas. In 

France, it was found that living in a rural area and farming occupations are risk factors for 

contracting Lyme disease (Letrilliart et al., 2005). As agricultural development and land-

use change persist, forest patches and total forest area will continue to shrink in size, 

increasing their proximity to human settlements and cases of tick-borne disease are likely 

to continue to rise (Jones, 2013). 

Peri-urban areas, more commonly known as suburbs, often occur at the intersection 

of human populations and result in behaviors that can increase contact with suitable tick 



8 
 

habitat. Finch et al (2014) found that in neighborhoods on an island off the coast of Rhode 

Island, the age of residents, the number hours spent in vegetation, and most notably the 

edge density of shrubs increased the risk of Lyme disease. While the study presented in 

this thesis will not directly measure human behaviors, certain human-landscape 

interactions will be inferred through the land-cover classes and fragmentation metrics 

chosen. 

This thesis examines Lyme disease cases synthesized at a county scale across the 

eastern United States. The reported Lyme disease case numbers aggregated at the county 

level are associated with county’s land-cover percentage and fragmentation metrics, which 

offers a perspective on disease cases that is different from previous studies that look at 

disease risk or tick density as the dependent variable.  

1.2 Research Questions and Hypotheses 

The overarching research questions of this thesis are: What are the spatial patterns 

of Lyme disease in the Eastern U.S. at the county level? And to what degree can such 

patterns be attributed to land-cover/land-use and habitat fragmentation? 

Specific research questions: 

1. Population size: How does a county’s population size affect Lyme disease case 

numbers? Does the population effect differ in hotspot counties versus non-hotspot 

counties? 

2. Land cover: What land cover classes are more strongly associated with the county-

level Lyme disease case numbers? Does the amount of forest habitat affect the case 

numbers more than agricultural land or urban land? 
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3. Fragmentation: How do habitat fragmentation metrics such as edge and patch 

density affect Lyme disease case numbers? Which land cover's fragmentation 

metrics are more important in explaining the variation of county-level Lyme disease 

case numbers? 

 

This study is interested in quantifying the spatial patterns and drivers of Lyme disease in 

the Eastern U.S. through testing the following hypotheses: 

1. The spatial clusters of Lyme disease are predicted to be focused in the Northeast 

and the Lake States, where there is a historical presence of reported cases among 

the populations. Outside those regions, the disease will be prevalent in highly 

populated counties. 

2. Counties dominated by forest land cover are predicted to have the highest instance 

of Lyme disease, followed by agriculture and urban land cover. 

3. Counties with higher proportions of forest and agriculture edge habitat will have 

more Lyme disease cases. 
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CHAPTER 2. METHODS 

2.1 Study Area 

This study is focused on the eastern contiguous United States, which is covered by 

the Census designated regions of the Northeast, South, and Midwest (Figure 2.1) and 

includes 37 states with 2,374 counties. In 2019 the total population of these counties was 

326,063,037. These counties contain a variety of land-cover types such as forest, both 

deciduous and coniferous, wetlands, grasslands, a large proportion of agricultural land, and 

pockets of intense urbanization and highly populated cities. 

Over the study period (2000-2019) the eastern USA had a total of 435,983 cases of 

Lyme diseases reported to the Centers for Disease Control and Prevention (CDC). These 

cases were mainly concentrated in the New England region and the Lake States. 

Pennsylvania had the highest average number of cases over the study period. This study 

focuses on the eastern US because most of the reported Lyme disease cases are 

concentrated in the eastern. While there are Lyme disease cases found in almost every state, 

there are differing ecological conditions in many of the western states that could make 

comparison between the eastern US and the western US difficult. For example, in the 

eastern states the primary tick vector of Lyme disease is Ixodes scapularis, while the 

primary vector in the western states is Ixodes pacificus. These two species are similar, but 
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have differences in life cycle, availability of hosts, and distance from the geographic origin 

of cases. 

2.2 Data 

All data used in analysis was secondarily sourced. Lyme disease case data was 

obtained from the CDC National Center for Emerging and Zoonotic Infectious Diseases 

(NCEZID), Division of Vector-Borne Diseases (DVBD) (Division of Vector Borne 

Disease, 2022). This data was a record of all reported cases of Lyme disease per county 

between the years 2000-2019. Since Lyme disease is a nationally notifiable disease, data 

is compiled by this federal organization to monitor the progression of the disease and can 

be accessed through the CDC website. The shapefile of all county boundaries in the United 

States was downloaded from the Census Bureau website (Cartographic Boundary Files - 

Shapefile, 2018) and then cropped in ArcGIS Pro (ArcGIS Pro 3.1) to the counties included 

in the study area. The data source that was used to obtain the population of each county 

was the decennial census collected by the U.S. Census Bureau and accessed through their 

website (PEPANNRES| Annual Estimates of the Resident Population: April 1, 2010 to July 

1, 2019, 2010). 

The National Land Cover Database (NLCD) was the source of the geospatial land 

cover data. The survey is done at least every 5 years and tracks 20 categories of land cover. 

This database is provided by the U.S. Geological Survey and is accessible through the 

Multi-Resolution Land Consortium website(Dewitz, 2021). This study accessed the NLCD 

data through the FedData package in R (Bocinsky, 2023) using the get_nlcd function to 

produce a raster of the land-cover of the Eastern US. The most recent (i.e., 2019) NLCD 

data was used in the subsequent analyses.  
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2.3 Spatial Analysis 

ArcGIS Pro (ArcGIS Pro - Hotspot Analysis, 2023) was used to conduct the 

Hotspot Analysis. Hotspot analysis was completed through the Optimized Hot Spot 

Analysis tool. This tool uses the Getis-Ord Gi* statistic of each feature provided in a spatial 

dataset to find statistically significant “hot” and “cold” spots within the study area, given a 

set of weighted features. The formulas are given in Equations 1, 2, 3. 

 

Equation 1 

𝐺𝐺𝑖𝑖∗ =
� 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑗𝑗=1
𝑥𝑥𝑗𝑗 − 𝑋𝑋�� 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑆𝑆
��𝑛𝑛� 𝑤𝑤𝑖𝑖,𝑗𝑗2 − �� 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑗𝑗=1
�
2𝑛𝑛

𝑗𝑗=1

�

𝑛𝑛 − 1

 

xj is the attribute value for feature j, wi,j is the spatial weight between feature i and 

j, n is equal to the total number of features. 𝑋𝑋� and 𝑆𝑆 are calculated by  

Equation 2 

𝑋𝑋� =
� 𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛
 

Equation 3 

𝑆𝑆 =
�� 𝑥𝑥𝑗𝑗2

𝑛𝑛

𝑗𝑗=1

𝑛𝑛
− (𝑋𝑋�)2 

 

High attribute values must be surrounded by other high attribute values to be 

considered statistically significant. The 𝐺𝐺𝑖𝑖∗ statistic value that results for each feature 
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attribute is a Gi z-score, additionally this analysis tool produces p-values for each feature’s 

attribute z-score. The p-value denotes the statistical significance of the case numbers of 

each county in relation to the surrounding counties. Gi_Bin is a categorical variable that 

represents the confidence interval determined by the Gi z-score and p-value. If the county 

had a positive (>=1) Gi_Bin score then it was identified as a hotspot county with a 

confidence interval greater than 90%. If the Gi_Bin was a negative score (<=-1) then it was 

identified as a cold spot with a confidence interval greater than 90%. This categorical 

determiner was transformed so that any county with a Gi_Bin score of greater than or equal 

to 1 is considered significant and was marked as hotspot status of 1. Any county with 

Gi_Bin score less than 1 was marked as hotspot status 0, so it was a binary variable. The 

hotspot status was included in the modelling as a predictor variable when quantifying the 

effect of population on case numbers and a confounding variable when examining the 

effect of land-cover and fragmentation on cases.  

After obtaining the raster layer of land-cover data, the land-classes of interest were 

aggregated into three broad categories, forested land, agricultural land, and urban land. 

This was accomplished by reclassification from the original NLCD categories and grouped 

by the following: forest (classes 41-43), agriculture (classes 81-82), and urban (classes 21-

24). The next package that was utilized was landscapemetrics (Hesselbarth, 2019), which 

is compatible with the larger R package ecosystem tidyverse (Wickham, 2019). It is a 

package that calculates a host of metrics for landscape patterns produced by categorical 

land-cover data. These metrics can be measured at the landscape, class, and patch level. 

The class-level metrics that were calculated for this study were Percentage of Landscape 

(PLAND), Area of Class (CA), Edge Density (ED), Total Edge (TE), Number of Patches 
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(NP) and Patch Density (PD). PLAND and CA are the measures of the amount of habitat 

on the landscape, while TE, NP, and PD are measures of the level of habitat fragmentation. 

The percentage of landscape (PLAND) is calculated by the summation of the area of all 

patches of one class, divided by the total area of the observational unit and multiplied by 

100 to form the percent value. Class area (CA) is calculated by the summation of all patch 

areas of one class and its unit is hectares. Edge density (ED) is an edge metric, dividing the 

land-cover class total edge length by the total area of the observational unit. The unit for 

ED is meters per hectare. Total edge (TE) is a simple length metric, with meters as its unit. 

Number of patches (NP) is an aggregation metric that counts the number of non-connected 

patches of the land-cover class of interest. Finally patch density (PD) takes the number of 

patches within the observational unit divided by the total area of the observational unit. 

2.4 Statistical Analysis 

The descriptive statistics of both the response variable and predictor variables were 

calculated by using the base stats package in R. The basic statistics included mean, median, 

IQR, and range. Histograms were produced by the geom_hist function in the ggplot2 

package. Boxplots were also created in the ggplot2 package, but by using the geom_boxplot 

function instead.  

The specific research questions and subsequent hypotheses were analyzed with 

generalized linear models in the Quasi-Poisson family with a log link. This was chosen 

because Quasi-Poisson family models are appropriate for count data sets that are skewed 

and over-dispersed (Hoef, 2007). Additionally, the Quasi-Poisson family can be applied to 

data where the variance is greater than the mean, which was true of this data set. The 

models were run in R, with the glm function. The response variable was total number of 
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Lyme disease cases while population, hotspot status, percentage cover of landscape 

(PLAND), and class-level edge density (ED) were the response variables. Edge density 

was chosen for analysis instead of total edge length (TE) since it allows comparisons 

between counties of varying sizes. These generalized linear models only explored the first 

order effects present in the relationship between case numbers and the predictor variables. 

Higher orders of effects were not captured by these models. To assemble the model result 

into tables, the package jtools (Long, 2022) was used to compile all the model formulas for 

each hypothesis. The function that was utilized was the export_summs function. The exp 

argument was set true to exponentiate the coefficients and the scale argument was set true 

to scale the original values of the predictor continuous variables into mean centered. Mean-

centering changes the way these coefficients are interpreted, so that all coefficients are on 

the same scale and represent the magnitude change based on distance of standard deviation 

from the mean. Any coefficient greater than 1 was interpreted as a positive effect and any 

coefficient value less than one was interpreted as a negative effect. Doing so allows for 

straightforward comparison and quantifies the ratio of the incidence rate or the magnitude 

change in the response variable. 
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2.5 Figures 

 

Figure 2.1: Map showing the study area and its Census designated regions 
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CHAPTER 3. RESULTS 

3.1 Spatial Patterns of Lyme Disease in the Eastern U.S. 

The reported Lyme disease cases for the study period were concentrated most 

heavily in the New England region and in a concerted part of the Lake States (Figure 3.1). 

The top five counties in terms of the Lyme disease case numbers reported from the year 

2000 to 2019 are Dutchess County, NY (12 931 cases), Fairfield County, CT (10 293 

cases), Morris County, NJ (9 326 cases), Middlesex, MA (8 471 cases), Columbia County, 

NY (8 080 cases) respectively. All these counties are in the New England region. Outside 

of these regions, the top five counties are Washington County, PA (4 153 cases), Hennepin 

County, MN (3 431 cases), Ramsey County, MN (2 117 cases), Dane County, WI (1 935 

cases), and Crow Wing, MN (1 912 cases). Hennepin County, Minnesota had the highest 

case numbers of any county in the Lake States. Within this region, the states with the most 

cases were Minnesota and Wisconsin. Cases in this area are clustered north and east across 

the counties surrounding Hennepin, which is the seat of Minneapolis, the most populated 

county in Minnesota. One common geographic characteristic of the top five hotspot 

counties and non-hotspot counties was their placement between the 40th and 45th parallels. 

Over half of all counties in the study area (1829 out of 2694) had at least one reported 

Lyme disease case between 2000-2019. Counties with no reported cases are found mostly 
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along the western portion of the study area and some scattered counties in the Southeastern 

states.  

3.2 Population and Hotspot Analysis 

The first research question was related to how the population size of each county is 

related to the total number of Lyme disease cases. This study question was a building block, 

so that additional variables of interest, specifically the percent land cover and the chosen 

fragmentation metrics, could be modelled in addition to the effect of population on the case 

numbers. Hotspot status was included in the models as a counfounding variable. Two 

variables of interest included in the hotspot analysis output were: the Gi_Bin score and the 

Gi z-score. The hotspot map is given in Figure 3.2, where the red color denotes the 

“hotspot” counties, which are counties with a Gi_Bin classification of +1,+2,+3. There 

were 223 counties considered hotspots and 2471 counties classified as non-hotspots. 

Among the 223 counties considered hotspots, the average population in 2019 was 170 156, 

which was substantially greater than the average population (74 680) for the 2471 counties 

classified as non-hotspots. Figures 3.3 and 3.4 indicate the effect of population on cases in 

hotspot counties and non-hotspot counties respectively. In hotspot counties, the general 

trend shows increasing case numbers with an increasing population (Figure 3.3). However, 

this trend does not hold for counties with over 1 million people. There are eleven counties 

in a hotspot region with over 1 million in population. One county is in Maryland, one in 

Massachusetts, six in New York, two in Pennsylvania, and one in Virginia. There is a less 

clear relationship with population after reaching 1 million, and it is a generally negative 

trend. In comparison, non-hotspot counties exhibited a less steep positive relationship 

between case numbers and population, and this relationship reached the “tipping point” 
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sooner, which is approximately 2.5 million people (Figure 3.4) Within the hotspot counties, 

the simple uni-variable Model 1 including only population as a predictor (Table 3.1) shows 

that population accounts for about 12% variation in Lyme disease cases. In contrast, Model 

2 with the identical formula but was specifically the non-hotspot counties, only explained 

about 5% variation (Table 3.1). The effect size of population on case numbers in hotspot 

counties was higher than that of non-hotspot counties. The effect of population in hotspot 

counties is 1.4 times higher, whereas non-hotspot counties only have 1.2 times higher cases 

than counties with the mean population. Model 3 accounted for all counties and its 

predictor variable was hotspot, whereas Model 4 instead had population as its predictor 

variable. Model 5 accounted for all counties where population and hotspot status were 

predictor variables, both had significant positive coefficients. This model explalined 60% 

variation of the county-level case numbers across the eastern US.   

3.3 Land Use and Land Cover 

Figure 3.5 is a boxplot that shows distribution of the percent cover of each land-

cover type by county in 2019. Agriculture and forest land cover were the two classes with 

the highest average percentage at the county level. Agriculture had an average of 38% 

cover per county, while forest covered an average of 28% of the land. Urban land-cover 

had an average of 11%. The maps of these land-cover distributions are shown in Figures 

3.6, 3.7, and 3.8. Agricultural and urban percentage cover were both skewed data sets, 

while forest percentage was distributed evenly. Urban land had the smallest interquartile 

range, but the largest number of outliers compared to the other land class types. 

Counties with a high percent cover of forest land were largely concentrated along 

the Appalachian Mountain range, from the southern end of Maine trailing down into 
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Mississippi (Figure 3.6). The New England hotspot counties do not have a consistent forest 

cover percentage, while the Lake States hotspot is largely within the lower percentages (< 

50%) of forest land cover. Figure 3.9 is the scatterplot showing the relationship between 

the percentage of forest land cover and case numbers. The general trend is positive, but it 

is not an entirely linear relationship. Case numbers increase until about 50% cover, then 

drop off. Counties with the highest case numbers (> 7500 cases) fall within the 25-60% 

range. These counties are also in the intermediate (> 100 000) or high (> 1000 000) end of 

population size.  

Agricultural percentage cover was highest in the Midwest and Plains States (Figure 

3.7). The New England hotspot was largely counties with less than 25% coverage. The 

Lake State hotspot showed a similar pattern but was bordered by a mass of counties that 

were dominated by agriculture land cover (Figure 3.7). In contrast, the New England 

hotspot did not share this characteristic. The scatterplot (Figure 3.10) shows that there was 

a great amount of variability in the case numbers for the counties with less than 25% 

coverage of agriculture land, and the relationship between agricultural land and Lyme 

disease cases is generally negative. The highest populated counties were expected have 

low percent cover (<25%) of agriculture land. Counties that were predominantly 

agricultural land (>50%) had low case numbers and lower populations, along with a 

majority classified as non-hotspots.  

Urban percent cover had small pockets of high percentage cover (>50%) focused 

in large established cities like Atlanta (Georgia), Chicago (Illinois), Detroit (Michigan) and 

New York City (New York) (Figure 3.8). Cities such as New York City, NY and 

Minneapolis, MN are within hotspot clusters, but most hotspot counties had less than 25% 
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urban cover. In Figure 3.14, the percent cover of urban land shows a non-linear 

relationship, cases increase until urban percent reaches approximately 50%, then case 

numbers decreased. Most counties had less than or equal to 50% coverage of urban land. 

The counties with population of 1 million or higher have at least 40% or higher urban land 

coverage. In general, these counties are within the hotspot regions and have over 500 total 

cases. 

Quasi-Poisson models that included of the percentage of each land cover type, 

population, and hotspot as the predictor variable showed that the percent forested cover 

had a positive effect (corresponding coefficient greater than 1) on Lyme disease case 

numbers, whereas agriculture and urban land percentage did not (Table 2). Urban land 

percentage was also not significantly related to cases (p > 0.05). Agricultural land 

percentage had an overall negative effect on cases, with the overall case numbers of Lyme 

disease 0.71 lower than the average if the urban land percentage is 1 standard variation 

greater than the average. The model including percentage of agricultural land as an 

explanatory variable was slightly higher than the models including forest or urban, at 

pseudo R2= 0.61, 0.60, and 0.60 respectively. 

3.4 Habitat Fragmentation 

3.4.1 Edge Density 

The fragmentation metrics that were measured were edge density, total edge, 

number of patches and patch density, but only edge density and patch density were used in 

the analysis and model building. Since edge density and patch density are both density 

metrics, their values can be compared across counties of varying areas, which is useful 



22 
 

with the large variation of county size in this study. The landscapemetrics package records 

the unit of edge-density as meters per hectare (m/ha) and patch density as number of 

patches per 100 hectares (#/100 ha). Edge density maps of each land-cover class can be 

seen in Figures 3.12, 3.13, and 3.14. Forest edge density had the highest mean value at 43 

m/ha, followed by agriculture at 40 m/ha, and urban at 35 m/ha (Figure 3.15).  

The map of forest land-cover edge density showed a clear gradient from east to 

west (Figure 3.12). The western most part of the study area had very low forest edge 

density, while forest land-cover edge density tended to increase further east, peaking on 

the New England coast and in the Carolinas. Comparatively the Lake States hotspot has 

counties with lower edge densities than the New England hotspot. The scatter plot (Figure 

3.16) showed a positive relationship between forest edge density and case numbers, which 

steadily increased until approximately 90 m/ha and then trended negative. There were four 

counties with more than 100 m/ha of edge density, those included counties in Georgia, 

Maryland, Massachusetts, and Connecticut. Among these, Fayette County of Georgia was 

the only one that was not a hotspot county and had a very low number of cases, with only 

8 recorded from 2000-2019. On the opposite end of the spectrum, Fairfield of CT had over 

100 m/ha of forest edge and over 10,000 cases.  

The mean density of agricultural land edges was lower than forested areas and there 

were a few pockets of high edge density counties, particularly in the southeast region of 

Texas, the eastern half of Missouri along the western half of Illinois, and a group of 

counties stretching from the northernmost counties in Ohio down into Tennessee (Figure 

3.13). The New England area had a wide range of agriculture edge density at the county 

level, while the high case number pockets in the Lake States had a bullseye pattern. The 
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central counties in the Lake State hotspot had less than 50 m/ha while the counties 

surrounding those had edge densities greater than 50 up to 75 m/ha. Much like agricultural 

PLAND, the edge density of agricultural cover had a negative relationship with the 

reported case numbers. The highly populus counties had a lower edge density of agriculture 

land, while the county with the highest case number (Dutchess County, NY) sat near the 

mean edge density value of 43 m/ha.  

The urban edge density map shows that there were two main pockets of high edge 

density (>75 m/ha), Atlanta,GA and Philadelphia, PA (Figure 3.14). Philadelphia and its 

neighboring counties were hotspot counties. Urban edge density had a generally positive 

trend (Figure 3.17). Most counties fell within the 25-75 m/ha range and the county with 

the highest case numbers (Dutchess County, NY) had approximately 55 m/ha edge density.  

The modelling results indicated that forest land edge density had the highest effect 

size, followed by urban land-cover, and finally agricultural (Table 3). When controlling for 

population and hotspot status, forest edge density multiplied cases 1.9 times the expected 

value at the mean. In comparison, urban edge density multiplied case by 1.4 times and 

agriculture edge density slightly reduced the cases with a multiplication factor of 0.93. 

Agricultural edge density had a non-significant effect size (p > 0.05), while both forest and 

urban were significant (p < 0.001). Forest ED also explained more variations than the other 

two ED metrics. 

3.4.2 Patch Density 

The mean patch density was approximately the same between the three land-cover 

classes (Figure 3.19). Urban patch density was the highest at 2.7 patches/100 ha, forest was 
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next at 2.09 patches/100 ha, followed by agricultural at 1.90 patches/100 ha. Forest land-

cover had an outlier county that had over 20 patches/100 ha, which was substantially higher 

than any other county. This was Falls Church County, Virginia, which had 8 cases over the 

study period, but was one of the few counties that was considered a hotspot having less 

than 500 cases. This indicates that there were enough high case counties surrounding it to 

be considered statistically significant, even if the case number is low.  

The forest patch density map indicates that coastal regions have the highest density, 

this includes both coasts bordering oceans and freshwater (Figure 3.20). As counties 

become more landlocked, the forest patch density decreased. Case hotspots had counties 

with 5-10 patches/100 ha, but there were other clusters of high values in the Southeast, 

especially in Georgia, North Carolina, and Florida. Counties in these states were not 

determined to be Lyme disease hotspots. The forest patch density scatterplot (Figure 3.21) 

shows a positive relationship up until 5 patches/100 ha and then drops off. Higher forest 

PD counties (>3 patches/100 ha) tend to be within the hotspots. The county with the highest 

number of cases sits around the mean PD value for forest land-cover.  

Agricultural patch density was highest in the western half of North Carolina, South 

Carolina, and the northern part of Georgia. It was over 5 patches/100 ha in these areas 

(Figure 3.22). Hotspot counties fell in the 2.5-5 patches/100 ha range. The scatterplot 

(Figure 3.23) shows that almost all counties had less than or equal to 5 patches/100 ha and 

the highly populated counties had 2.5 or less. There is no obvious linear trend in this scatter 

plot. 

Urban patch density, as seen in the map in Figure 3.24, was more dispersed across 

the study area. The highest urban PD (>10 patches/100 ha) was in Hunterdon County, NJ, 
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which reported 7034 cases from 2000-2019 and was included in the New England hotspot 

cluster. The northwest portion of the study area had more contiguous urban areas since 

there was a lower number of patches. Regions that had variable ranges of PD are also where 

the highest case numbers were found. Like agriculture, there was a positive relationship 

between urban patch density and case numbers that peaked around 3 patches/100 ha which 

then dropped off. Highly populated counties had less than 5 patches/100 ha. The scatterplot 

(Figure 3.25) had a linear relationship, similar to the one between urban edge density and 

case numbers. The peak of cases was at approximately 5 patches/100 ha. 

 As shown in Table 4 urban patch density had the largest effect size and explained 

the most variation of cases. Compared to the mean, urban PD multiplied cases by 1.35 

times (Model 3), agriculture multiplied them by 1.20 times (Model 1), and forest patch 

density came in with the smallest effect size at 1.16 times (Model 2). While urban patch 

density had the highest weight amongst the models, it was not substantially higher than 

either forest or agriculture, coming in at 0.63, 0.61 and 0.60 pseudo R2 respectively.  
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3.5 Tables and Figures 

Table 3.1: Results from quasi-Poisson family modelling of the effect of hotspot status and 
population on case numbers. Model 1 calculated the effect of population in hotspot 
counties, Model 2 calculated the effect of population on non-hotspot counties, while 
Models 3,4,5 grouped all the counties regardless of hotspot status. 

 Model 1 Model 2 Model 3 Model 4 Model 5 

(Intercept) 1436.62 *** 38.04 *** 151.51 *** 39.74 *** 38.19 *** 

 [1431.57, 
1441.69]    

[37.80, 
38.28]    

[151.05, 
151.98]    

[39.50, 
39.99]    

[37.95, 
38.43]    

Hotspot                         38.96 *** 32.57 *** 

                         [38.68, 
39.24]    

[32.33, 
32.80]    

Population 1.39 *** 1.19 *** 1.25 ***         1.23 *** 

 [1.39, 1.39]    [1.19, 1.19]    [1.25, 1.25]            [1.22, 1.23]    

N 223        2471        2694        2694        2694        

Pseudo R2 0.12     0.05     0.09     0.56     0.60     

All continuous predictors are mean-centered and scaled by 1 standard deviation.  *** p 
< 0.001;  ** p < 0.01;  * p < 0.05. 
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Table 3.2: Modelling results from a quasi-Poisson family generalized linear model (glm). 
Model 1 included forest PLAND (percentage of landscape), Model 2 included 
agricultural land, and Model 3 included urban land-cover. 

 

 

 

 

 

 

 

 Model 1 Model 2 Model 3 

(Intercept) 37.77 *** 36.97 *** 37.87 *** 

 [31.48, 45.30]    [30.81, 44.36]    [31.47, 45.56]    

PLAND_F 1.15 **                  

 [1.04, 1.26]                    

PLAND_A         0.71 ***         

         [0.62, 0.82]            

PLAND_U                 0.97     

                 [0.91, 1.03]    

Hotspot 30.25 *** 26.85 *** 33.71 *** 

 [24.56, 37.25]    [21.70, 33.22]    [27.12, 41.90]    

Population 1.25 *** 1.19 *** 1.25 *** 

 [1.21, 1.29]    [1.16, 1.23]    [1.19, 1.30]    

N 2688        2692        2694        

Pseudo R2 0.60     0.61     0.60     
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Table 3.3: Modelling results of a generalized linear model in the quasi-Poisson family. 
Models 1,2,3 examined the effect of edge density of forest, urban, and agriculture on 
Lyme disease cases. 

 Model 1 Model 2 Model 3 

(Intercept) 32.22 *** 38.38 *** 36.67 *** 

 [26.99, 38.46]    [31.92, 46.14]    [30.75, 43.73]    

ED_U                 1.38 *** 

                 [1.30, 1.47]    

ED_F 1.89 ***                 

 [1.71, 2.09]                    

ED_A         0.93             

         [0.85, 1.02]            

Hotspot 21.94 *** 31.87 *** 22.07 *** 

 [18.02, 26.70]    [25.83, 39.31]    [17.84, 27.30]    

Population 1.30 *** 1.21 *** 1.25 *** 

 [1.26, 1.34]    [1.17, 1.25]    [1.21, 1.29]    

N 2688        2692        2694        

Pseudo R2 0.65     0.60     0.63     

All continuous predictors are mean-centered and scaled by 1 standard deviation.  *** p < 
0.001;  ** p < 0.01;  * p < 0.05. 
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Table 3.4: Table 5: Modelling results of a generalized linear model in the quasi-Poisson 
family. Models 1,2,3 examined the effect of patch density of urban, forest, and 
agriculture on Lyme disease cases.  

 Model 1 Model 2 Model 3 

(Intercept) 37.07 *** 37.94 *** 35.97 *** 

 [30.96, 44.38]    [31.75, 45.33]    [30.02, 43.09]    

PD_U                 1.35 *** 

                 [1.27, 1.44]    

PD_F         1.16 ***         

         [1.12, 1.21]            

PD_A 1.20 ***                 

 [1.09, 1.31]                    

Hotspot 30.59 *** 28.45 *** 26.35 *** 

 [25.04, 37.38]    [23.20, 34.90]    [21.47, 32.34]    

Population 1.25 *** 1.23 *** 1.27 *** 

 [1.21, 1.29]    [1.20, 1.27]    [1.23, 1.31]    

N 2692        2688        2694        

Pseudo R2 0.60     0.61     0.63     

All continuous predictors are mean-centered and scaled by 1 standard deviation.  *** p < 
0.001;  ** p < 0.01;  * p < 0.05. 
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Figure 3.1: Map of cumulative Lyme disease cases from 2000-2019 in the Eastern U.S. 
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Figure 3.2: Hotspot map for Lyme disease cases from 2000-2019 
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Figure 3.3: Population versus total Lyme disease Cases in hotspot counties. The blue line 
used the formula “glm” in the ggplot function geom_smooth while the green line uses 
“loess” or local regression. 
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Figure 3.4: Population versus total Lyme disease Cases in Non-hotspot counties. The blue 
line used the formula “glm” in the ggplot function geom_smooth while the green line uses 
“loess” or local regression 
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Figure 3.5: Boxplot of percent cover of each of the three land cover classes: urban, forest, 
and agricultural 
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Figure 3.6: Map of forest land-cover percentage by county 
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Figure 3.7: Map of agricultural land percent cover by county 
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Figure 3.8: Map of urban land-cover percentage per county 
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Figure 3.9: Scatterplot of forest land cover percentage per county versus total Lyme 
disease cases 
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Figure 3.10: Scatterplot showing relationship between percentage cover of agricultural 
land and Lyme disease case totals. 
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Figure 3.11: Scatterplot of the relationship between percent cover of urban land and total 
Lyme disease cases. 
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Figure 3.12: Map of forest land-cover edge density 
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Figure 3.13: Map of agricultural land-cover edge density 
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Figure 3.14: Map of urban edge density values distribution 
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Figure 3.15: Boxplot showing the statistical distribution of edge density of the three land-
cover classes. 
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Figure 3.16: Scatterplot of forest edge density versus total cases of Lyme disease
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Figure 3.17: Scatterplot showing relationship between urban land edge density and total 
Lyme disease cases. 
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Figure 3.18: Scatterplot of agricultural edge density versus case numbers 
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Figure 3.19: boxplot showing statistical distribution of patch density among three land-
cover classes. 
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Figure 3.20: Map of patch density of forest in 2019 
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Figure 3.21: Scatterplot showing patch density of forest land versus total Lyme disease 
cases 
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Figure 3.22: Map of patch density of agricultural land in 2019 
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Figure 3.23: Scatterplot of agricultural land patch density per county 
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Figure 3.24: Map of urban land patch density by county 
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Figure 3.25: Scatterplot of urban land patch density by county 
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CHAPTER 4. DISCUSSION 

4.1 Hotspot and Population Analysis 

Both population and hotspot showed a significant positive relationship with case 

numbers. While our first hypothesis predicted that population would play a more 

significant role in non-hotspot counties, we found that it was actually the hotspot counties 

that had more variation in case numbers explained by population. The models including 

both population and hotspot status as explanatory variables explained about 60% of the 

variation in cases.  

The impact of hotspot status was consistently observed through the models 

constructed for the second and third hypotheses, in short, the addition of hotspot status in 

multivariate models increased explanatory power significantly. In the second hypothesis 

we predicted that percentage of forest cover would be indicative of the largest case load 

per county and the third predicted that forest and agricultural edge density would have a 

greater impact on case numbers. Hotspot status was theorized to represent many different 

aspects of tick-borne disease spread. Since Lyme disease was first recorded in Connecticut, 

epidemiologic principles state that disease incidence will spread radially from the first 

known point of contact. So, it is no surprise that New England predictably saw the greatest 

number of counties within the hotspot. The other was in the Lake States region, seeming 

to start in a singular county in Wisconsin and expanding to neighboring counties from 

there. Hotspot status encompasses the geographic relation to the first point-event, along 

with potentially other factors. If an area has a high number of cases and there is public 

awareness of that, then those areas could see an inflated number of cases since people are 

aware of the symptoms and there are medical professionals that are testing for it. For Lyme 
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disease and other tick-borne diseases, the symptoms can be very generic, so many people 

may not be thinking it could be anything more than the common cold. Additionally in areas 

that do not have that extended history of having reported cases, when people seek medical 

care, doctors may not know to test for it. Even further, many states and counties have very 

limited ability to test for these diseases. Many require serological analysis in a lab. Rural 

residents may not have access to healthcare facilities with those capabilities. As a personal 

antidote, we met with a small family run logging company in south-east Kentucky. Three 

of the five employees had had one or more tick-borne diseases, even though Kentucky was 

only reported to have an average of 2 confirmed cases per year in the CDC dataset. They 

expressed the fact that they had to travel to one of major cities almost 3 hours away to be 

assessed and diagnosed with these diseases. Overall, it was surmised that hotspot status 

could represent distance from the origin of cases, healthcare access, public awareness of 

the symptoms, medical professionals knowing how to administer the diagnostic tests.  

4.2 Land-cover Effects 

The land-cover classes of interest were forest, agriculture, and urban land. As 

described in the methods, these were inclusive groupings and as such, the analysis could 

be lacking some finer details. This does not detract from the findings and offers an 

approximate picture of the overarching spatial patterns determined by land-cover classes 

in the eastern half of the country. Future work can further elucidate the patterns seen with 

the more limited classes measured by the NLCD. One previous study that compared land-

cover classes between the Northeast and Upper Midwest are congruent with the results of 

this study (Dong et al., 2020). They kept the land-cover classes as their original categories 

as defined by the land-cover database, rather than grouping them together.  
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While deciduous forest has been previously correlated with higher disease risk in 

the Northeast (Dong et al., 2020), both deciduous and coniferous can provide ample habitat, 

microclimate conditions, and host habitat.  

The agricultural land percentage per county was consistently negatively related to 

case numbers. Population and hotspot status decreased the negative impact when included 

in the model as confounding variables. Population has such a significant impact on case 

numbers and since population declines as agricultural land increases, this could explain 

some of why agricultural land has lower case numbers. 

Urban land-cover, like agricultural land, had a negative influence, but was not 

statistically significant, unlike the fragmentation metrics. Since there is such a range in 

urban land-cover per county, this could explain the lack of significance of the relationship. 

It was expected that urban would follow a similar pattern to forest land-cover, where there 

is a tipping point when urban land would have a negative impact on the number of disease 

cases. In those counties with close to median value of urban land percentage, it is expected 

that it would maximize number of people that can be exposed, and enough “natural” 

ecosystems that would house the ticks and their hosts. Urban land itself isn’t necessarily 

conducive to supporting all the stages in the Lyme disease pathogen transmission cycle, 

but plays a key role in containing the dead-end hosts, humans. Future studies may keep the 

different levels of urbanization classified by the NLCD in their original categories and re-

run the model analysis including population and hotspot status.  
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4.3 Habitat Fragmentation 

The effects of habitat fragmentation on tick-borne disease have been of interest in 

landscape epidemiology. Since habitat fragmentation is somewhat of a vague term and has 

varied attributes, this study focused its analysis on two fragmentation metrics. Edge density 

and patch density were chosen since they could easily be compared between counties of 

varying sizes. Total edge and number of patches were also measured but are harder to 

accurately compare between counties. The multivariate analysis included population and 

hotspot status as confounding variables.  

4.3.1 Forest Fragmentation 

The relationship between edge density of forest peaks at around 80 m/ha, so the 

number of cases is generally increasing in a linear manner with higher density of edge 

habitat. A higher density of forest edges can provide suitable habitat for both ticks and their 

hosts. White-tailed deer have been shown to use forest edge for browsing (Williamson & 

Hirth, 1985). The density of white-footed mice (Peromyscus leucopus) has been found to 

be higher on forest edges (Anderson et al., 2003).  

4.3.2 Agricultural Fragmentation 

The edge density of agricultural patches has a negative linear relationship with 

Lyme disease cases. The counties with the highest number of cases tended to have less than 

20 m/ha density of agricultural edges. These agricultural edges may present a higher 

entomological risk, especially if they are adjacent to forest land, but this may not be enough 

to outweigh human behavioral risk and/or population factors. Agricultural communities 

tend to have lower, more sparse populations and a unique relationship with healthcare 
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access. The edges may provide suitable habitat for ticks and hosts (vertical vegetation 

structure, appropriate humidity, browsing, protection etc.) so future work could draw 

attention to the specific edge effects between agricultural and forested patches. Since 

agricultural edge density and forest edge density are two opposing land-cover classes, there 

may be unique factors about the contrast of those edge types that were not able to be 

deduced from this study. Additionally, the edge density metric measurement in this case 

was a static, cumulative mean measure. It was the average edge density of the years 

between 2001-2019. The rate of change in agricultural edge density could be studied as 

well to see if the changing metric values have a different effect on cases than found here.  

Patch density of agricultural land was the only agricultural variable that had a 

positive linear relationship with number of cases. This relationship was a surprising find 

considering all other agricultural metrics were consistently negatively related to case 

numbers. One explanation could be that the relationship between agricultural patch density 

and population was higher than edge density or percentage of landscape. Since population 

had a positive effect on case numbers as well, counties with a high density of agricultural 

patches are most likely to have higher populations. The farms and livestock pastures in 

these counties are probably smaller family-owned operations, thus allowing people to live 

closer together.  

4.3.3 Urban Fragmentation 

Urban land-cover class edges are edges touching either forested or agricultural land 

and was demonstrated to have a significant positive relationship with case numbers. Urban 

edges are most likely the locations of where people are encountering ticks and the hosts 

they feed on. The entomological risk isn’t necessarily higher on urban edges, so the density 
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of ticks may not be any more substantial, but the human behavioral risk is higher (Bron et 

al., 2020). When examining the relationship between the level of urban fragmentation and 

Lyme Disease cases, it was expected that there would be certain threshold value where the 

factors (i.e., population) that lead to the increase of cases then “work against” case numbers 

and no longer provide suitable conditions for more contact between humans and vectors. 

Since the relationship between urban fragmentation metrics and case numbers was not 

precisely linear a generalized linear model with a quadratic term was run, but it did not 

describe the relationship more completely than the linear models already had. Urban edge 

density had a smaller effect size with the quadratic term, as well as the same factor size. 

This pattern was the same as urban patch density, the effect size was lower, as was the 

factor.  

By using the patch density metric as a measure of the level of fragmentation of 

urban land, it indicates that the relationship is not purely linear. The so-called “ideal” patch 

density of urban land, where the highest number of cases would be expected would be in 

the mid-range values. Counties that have moderate levels of fragmentation have the highest 

risk. This would be especially pertinent in counties that are in the early stages of 

urbanization, land developers and residents should be made aware of the increased 

possibility of contracting Lyme disease, especially in counties that surround counties with 

known cases. This land conversion could be from forest-to-suburbs, forest-to-farm, or 

farm-to-suburbs, so it will be important for future studies to focus on the specific edges 

between land-cover classes, to fully examine the difference in disease risk and case 

outcomes. 
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4.4 Policy Implications 

With the focus on land-development, we do not believe that the results of this study 

should recommend sweeping policy changes, but rather encourage ongoing public health 

initiatives and occupational regulations. With regard to occupational health, having more 

comprehensive education on the efficacy of those policies already in place. This includes 

protective clothing, use of insect repellants, and behavioral modifications. The 

demonstrated effects of land cover can be used to target these educational reinforcements. 

4.5 Drawbacks and Limitations 

While the findings of this study will complement and add onto the existing body of 

knowledge, there are limitations to this study that should be addressed. Firstly, this study 

was focused on elucidating broad spatial patterns of disease and the landscape factors that 

could impact case numbers, but this study did not assess the temporal aspect of disease. 

The cases were accumulated over the entire study period 2000-2019 and only the area and 

edge metrics from the most recent NLCD were used. In using the most recent landcover 

data, we did not measure the change in metrics, but rather postulated that 2019 represented 

the aggregate of all land-cover changes throughout the study period. The understanding of 

these patterns could be furthered by studying the temporal trends. Averaging the case 

numbers over 5-year periods and running the models with 5-year average landscape metrics 

could be useful in contrasting the patterns found here with different time periods. 

Additionally, examining the change in case number over time and conducting a time series 

analysis of the effect of the changing landscape metrics would help provide a more 

complete picture.  
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CHAPTER 5. CONCLUSIONS 

The broad scale spatial patterns of Lyme disease in the eastern United States are 

affected by land-cover and habitat fragmentation. With human environmental modification 

and climate change intensifying, teasing out these patterns is more imperative than ever.  

Forest and urban land-cover demonstrated a positive relationship with Lyme disease cases 

initially but reached threshold values where the trend reversed at higher levels. This pattern 

followed with fragmentation metrics of the other land-cover classes as well. Agricultural 

land-cover percentage and edge density were correlated with a decrease of cases, but patch 

density showed the opposite effect. Highly fragmented counties, regardless of the land-

cover class of the patches, exhibited higher incidence rate ratios than more contiguous 

counties.  The moderate values of all the forest and urban metrics showed the highest 

proportion of cases, so those counties undergoing development or land-use changes are at 

the highest risk of disease.  These spatial patterns can be utilized in both public health 

education and occupational health regulations to improve the safety of all citizens, whether 

at work or at home. 
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