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STUDY PROTOCOL Open Access

Metformin to Augment Strength Training
Effective Response in Seniors (MASTERS):
study protocol for a randomized controlled
trial
Doug E. Long1, Bailey D. Peck1, Jenny L. Martz2, S. Craig Tuggle2, Heather M. Bush3, Gerald McGwin2,
Philip A. Kern4, Marcas M. Bamman2 and Charlotte A. Peterson1*

Abstract

Background: Muscle mass and strength are strong determinants of a person’s quality of life and functional independence
with advancing age. While resistance training is the most effective intervention to combat age-associated muscle atrophy
(sarcopenia), the ability of older adults to increase muscle mass and strength in response to training is blunted and highly
variable. Thus, finding novel ways to complement resistance training to improve muscle response and ultimately quality of
life among older individuals is critical. The purpose of this study is to determine whether a commonly prescribed
medication called metformin can be repurposed to improve the response to resistance exercise training by altering the
muscle tissue inflammatory environment.

Methods/design: Individuals aged 65 and older are participating in a two-site, randomized, double-blind, placebo-
controlled trial testing the effects of metformin or placebo on muscle size, strength, and physical function when combined
with a progressive resistance training program. Participants consume 1700 mg of metformin per day or placebo for
2 weeks before engaging in a 14-week progressive resistance training regimen, with continued metformin or placebo.
Participants are then monitored post-training to determine if the group taking metformin derived greater overall benefit
from training in terms of muscle mass and strength gains than those on placebo. Muscle biopsies are taken from the
vastus lateralis at three time points to assess individual cellular and molecular adaptations to resistance training and also
changes in response to metformin.

Discussion: The response of aged muscles to a resistance training program does not always result in a positive outcome;
some individuals even experience a loss in muscle mass following resistance training. Thus, adjuvant therapies, including
pharmacological ones, are required to optimize response to training in those who do not respond and may be at
increased risk of frailty. This is the first known metformin repurposing trial in non-diseased individuals, aimed
specifically at the resistance exercise “non-responder” phenotype present in the aging population. The overall goal of this
trial is to determine if combined exercise-metformin intervention therapy will benefit older individuals by promoting
muscle hypertrophy and strength gains, thereby maintaining functional independence.

Trial registration: ClinicalTrials.gov, NCT02308228. Registered on 25 November 2014.

Keywords: Metformin, Placebo, Sarcopenia, Aging, Skeletal muscle, Resistance exercise, Inflammation, Medication
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Background
Muscle mass and strength are critical determinants not
only of a person’s quality of life and functional independ-
ence, but also metabolic health, as skeletal muscle is the
primary regulator of glucose uptake, usage, and storage.
The aged suffer obligatory losses of muscle mass and
strength, exacerbated by illness and physical inactivity,
and in the absence of effective countermeasures, advan-
cing age leads to physical frailty and dependent living.
The significance of this cannot be overstated, as the
consequent impact on individual life quality and system-
wide healthcare expenditures is staggering, and com-
pounded by the ever-expanding elderly population.
Muscle mass and strength decrease approximately 10%
per decade after the age of 50, with strength loss being
even more pronounced after the age of 70 [1]. While
resistance exercise training is an established method to
increase muscle mass, strength, and functional capacities
such as balance and mobility, this effect can be very low
in aging cohorts [2, 3]. In fact, up to 38% of older adults
do not respond with significant muscle growth when
performing resistance exercises alone [4]. Thus, identify-
ing strategies to improve muscle health and applying
therapies that may be combined with resistance exercise
to slow the debilitating conditions associated with the
aging process are of paramount importance. This proto-
col was designed to study the molecular and cellular
mechanisms underlying the “non-responder” phenotype
with the goal of identifying a novel intervention to
enhance muscle adaptation to progressive resistance ex-
ercise training (PRT) in healthy, elderly individuals. A
randomized controlled trial is currently underway to
study whether metformin, a first-line drug of treatment
for type 2 diabetes, can be used alternatively as a treat-
ment to improve the ability of older individuals to re-
spond appropriately to PRT (Fig. 1).
Recent work has shown that advanced age promotes

an inflammatory muscle microenvironment which may
contribute to the exercise “non-responder” phenotype
[5–8]. Pro-inflammatory cytokines such as interleukin-6
(IL-6) and tumor necrosis factor alpha (TNF-α) have ele-
vated expression levels both pre- and post-resistance
training in seniors compared to their younger counter-
parts, with TNF-α being a key prognosticator for non-re-
sponders following a 16-week resistance training
intervention [6, 9]. Higher levels of these inflammatory
cytokines have been associated with lower muscle mass
and strength [9]. Additionally, it has been suggested that
aging results in substandard muscle macrophage function,
hindering the regulation of inflammation and ultimately
the regenerative capacity of skeletal muscle [10].
Muscle macrophages have been most studied within

the context of muscle damage and regeneration in ro-
dents, where they have been shown to progress from a

phagocytic, inflammatory M1 state to an anti-
inflammatory M2 state that promotes repair [11–14].
M2 macrophages have also been reported to protect
against muscle atrophy in rodents and promote muscle
recovery both in vivo and in vitro [15]. Many of the fac-
tors produced by M2 macrophages facilitate muscle
growth and repair by stimulating the activity of muscle
stem cells called satellite cells [16, 17]. The resolution of
inflammation following injury in muscle is a product of
both repressed inflammatory cytokine production and
transcriptional up-regulation of anti-inflammatory genes
like insulin-like growth factor (IGF)-1 and IL-4 and IL-
10 from M2 macrophages. We showed that resistance
exercise in humans that promotes muscle growth results
in an increase in the relative proportion of alternatively
activated M2 macrophages, with only a small subpopula-
tion expressing classical, pro-inflammatory M1 charac-
teristics 3 days after the exercise bout, and this response
was impaired in the elderly [10]. Thus, evidence sup-
ports the idea that augmenting M2 macrophage abun-
dance in muscle will facilitate a hypertrophic response.
The use of pharmacological treatments that moderate

the inflammatory microenvironment of aged muscle is
of particular importance to the success of exercise inter-
ventions such as PRT. Metformin has come to the fore-
front due to recent negotiations undertaken by experts
in the aging field with the Food and Drug Administra-
tion (FDA) for the classification of an anti-aging drug,
whose widespread prescription could benefit our grow-
ing aged population [18]. Metformin is a biguanide
compound, prescribed since the early 1980s as an anti-
hyperglycemic agent for prediabetes and type 2 diabetes.
Re-evaluation and potential re-classification stem from
longitudinal studies carried out in diabetic patients sub-
ject to 10+ years of metformin treatment [19]. The
diabetic subjects receiving metformin monotherapy
demonstrated a 15% higher survival rate than the aged
matched population over the 10+ years under observa-
tion [19]. This finding supports the position that metfor-
min treatment may be applicable to improving the
health span of non-diabetic populations. Metformin
primarily exerts its major effects on improving insulin
sensitivity through activation of adenosine monophosphate-
activated protein kinase (AMPK), a master switch to regu-
late suppression of hepatic glucose output [20–22]. Recent
work shows that skeletal muscle repair may be improved
when AMPK is activated [23], and that the AMPKα1 iso-
form is required for macrophages to acquire the functions
of the M2 subtype in muscle [24]. The AMPKα1 isoform in
macrophages is the only catalytic subunit expressed, and
when in association with an AMPK activator such as
metformin (by way of activating transcription factor
3, ATF-3) or 5-amino-1-β-D-ribofuranosyl-imidazole-
4-carboxamide (AICAR), this isoform demonstrates
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the ability to induce M1 to M2 macrophage polarization
such as in response to lipopolysaccharide (LPS), an endo-
toxin with pro-inflammatory effects, over placebo [25].
When AMPKα1 is absent, skeletal muscle repair is de-
layed, associated with elevated levels of M1 macrophage
markers [24].
Interestingly, our preliminary analyses of muscle from

insulin resistant participants (n = 6) showed that 10 weeks
of metformin (1700 mg per day) effectively increased M2
macrophage abundance (Fig. 2a) and decreased inflamma-
tory cytokine gene expression (Fig. 2b) in vastus lateralis
muscle biopsies. These provocative findings have led us to
our central hypothesis that adjuvant metformin treatment
may improve the responses to PRT in the elderly by alter-
ing the muscle tissue inflammatory environment, thereby
enhancing mechanisms that drive resistance training-
induced myofiber hypertrophy.

Methods/design
Human subject participation
Trial summary and overall design
Subjects are participating at two sites, the University of
Kentucky (UK) and the University of Alabama at
Birmingham (UAB), in a randomized, double-blind,
placebo-controlled trial centered on a novel, alternative
use of metformin to potentially augment muscle mass
gains to resistance exercise. The two-site design ensures
that the recruitment goals are met and that the results
are generalizable due to the diverse population that
could not be studied at either site alone. Complete par-
ticipation requires that each individual spend approxi-
mately 19 weeks attending 8 study assessments and

Fig. 2 Preliminary analyses of the effects of metformin on muscle tissue.
Effects of metformin on muscle tissue M2 macrophage (CD68 +CD206+)
frequency (a) and IL-1β inflammatory gene expression (b). *Different from
pre-treatment, p< 0.05. Values are mean ± standard error (SE)

Fig. 1 Does metformin augment the variable response to resistance training in healthy older adults by modifying the muscle microenvironment?
Study objective for a randomized control trial of metformin to improve the response of muscle to resistance exercise

Long et al. Trials  (2017) 18:192 Page 3 of 14



finishing 42 resistance exercise sessions and, thus,
approximately 50 total study visits. This time includes a
2-week pre-treatment or baseline period involving a de-
tailed screening and physical exam for inclusion/exclu-
sion clearance as well as baseline testing for glucose
tolerance, body composition, and muscle function, a
2-week medication ramp-up period prior to exercise
along with medicationonly testing, followed by 14 weeks
of supervised PRT. All post-intervention assessments are
completed within 3 days following training. In addition,
participants can opt to complete two follow-up assess-
ments of muscle function, quality of life, and physical
activity levels at approximately 10 and 36 weeks post-
training. The effects of metformin or placebo on the
muscle environment after 2 weeks of ramped medication
and when combined with 14 weeks of PRT are mea-
sured. The protocol is designed in accordance with the
Standard Protocol Items: Recommendations for Inter-
ventional Trials (SPIRIT) guidelines for interventional
trials (Additional file 1). A summary of study visits and
the participant data collection schedule are shown in
Table 1, and the flow diagram for the overall study in
Fig. 3. The study is currently being conducted at each
respective Center for Clinical and Translational Science
(CCTS) Clinical Research Unit, the Human Performance
Lab at UK, and the Center for Exercise Medicine at
UAB where subjects are compensated $300 for their
time. Subjects are stratified and randomized based on
study site and functional status.

Recruitment and enrollment
One hundred and twenty men and women ≥65 years of
age (n = 72 at UAB, n = 48 at UK), representative of the
racial and ethnic makeup of greater Birmingham,
Alabama and greater Lexington, Kentucky, are being re-
cruited through general advertisements and volunteer
databases. Given the anticipated attrition rate of 20%,
this will allow us to achieve a final sample size of 100.
Ethnic and racial groups are expected to enroll based on
the proportions of the surrounding areas with emphasis
placed on targeted recruitment of under-represented mi-
norities. However, representation of these groups may be
lower than intended. Individuals will be recruited who
are not currently resistance training or participating in
other forms of organized exercise more than two times
per week, and who have a Short Physical Performance
Battery (SPPB) score >3 (score range 0–12). These rep-
resent non-disabled and mobile individuals who are able
to participate in the functional testing and resistance ex-
ercise. Recruits are pre-screened by telephone interviews
to minimize screen failures due to medical history, and
all procedures included in the study are explained in
detail (including approximate time commitment and po-
tential risks) to the subjects by a member of the research

team designated to do so. Upon an initial visit, subjects
undergo a detailed medical history, medication use his-
tory, resting electrocardiogram, and physical exam by
the study physician or physician assistant. Final enroll-
ment decisions and eligibility are based on inclusion/ex-
clusion criteria, 2-h oral glucose tolerance test (OGTT),
and bloodwork also performed during the screening
visit. These criteria are shown in Table 2.

Physical function
Participants complete the SPPB for the assessment of
physical function [26]. This battery of tests includes
three timed standing balance tests (side-by-side, semi-
tandem, and tandem), a 3-or 4-m habitual gait speed test
performed twice, and a timed repeated chair sit to stand
(five times). Performance for each set of tasks is scored
(0–4), with a summary score of 0–12. Functional as-
sessment data are collected during pre-treatment,
post-training, and during optional follow-up testing
and are used as a stratification measure at each site
(high vs. low).

Randomization and stratification
Subjects screening into the study are randomized and
stratified by both site (UK vs. UAB) and by SPPB score
(4–9 low, vs. 10–12 high) to receive either metformin or
placebo. Since recruitment at UAB is expected to be
more than at UK, participants will be stratified by site
prior to randomization. Randomization is implemented
in permuted blocks of 4 using SAS v9.2 PROC PLAN to
ensure adequate distribution of all groups across the col-
lection period. Only the statistician and the investiga-
tional pharmacy will have access to the randomization
and stratification scheme; thus, assignments will be un-
known to the investigators and study team. The protocol
also appoints an individual outside of study assessments
or specimen analysis to reveal group placement to par-
ticipants at a specified time.

Medication or placebo
The metformin and placebo tablets were obtained com-
mercially through different facilities. The placebo tablets
were obtained from the Veterans Affairs (VA) Coopera-
tive Studies Program Clinical Research Pharmacy
Coordinating Center, which is in New Mexico working
through the Biomedical Research Institute of New
Mexico. This program is registered with the FDA as a
manufacturing, packaging, and distribution facility and
serves the needs of VA studies, as well as National
Institutes of Health (NIH)-funded and some industry
studies. There are many different manufacturers of met-
formin, and the VA facility in New Mexico has provided
us with a tablet which is identical to metformin 850 mg
tablets that are manufactured by Amneal Pharmaceuticals,
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an established generic drug maker. Therefore, we purchased
generic Amneal 850 mg metformin tablets through our in-
vestigational pharmacy. Subjects randomized to metformin
will take increasing doses during the medication ramp-up
period of 2 weeks to reduce gastrointestinal (GI) side effects
as follows: 1 tablet (850 mg) per day for a period of 7 days
and 2 tablets per day (1700 mg) for a period of 7 days, the
latter being the target clinical dose, continued throughout
the 14 weeks of PRT and final week of post-intervention as-
sessments. In some subjects, the dose progression may be
slower and may not reach 1700 mg/day due to GI side ef-
fects. The study physician makes individualized modifica-
tions should the need arise. Subjects remain in the study as
long as they can tolerate at least 850 mg/day. These data will
be collected and reported. The placebo tablets look identical
to the metformin tablets, but contain inert substances, and
the escalating dose schedule is the same. The hospital

investigational pharmacy dispenses the metformin or pla-
cebo in uniform generic bottles at five time points (pre-
treatment for initial 2-week medication ramp, baseline PRT
weeks 2–4, PRT weeks 4–8, PRT weeks 8–12, and PRT
weeks 12–16) throughout the protocol so that compliance
can be monitored. This allows for a compliance schedule of
approximately 4 weeks where subjects return any unused
product. Extra doses are given as needed and are noted by
the study coordinator.

Quality of life
Quality of life is being determined through self-report
instruments, the Short Form 36 (SF-36) and the Patient-
Reported Outcomes Measurement Information System
(PROMIS), for the effectiveness of the exercise training
intervention on different health-related domains includ-
ing physical, mental, and social well-being. Subjects

Fig. 3 MASTERS Flow Diagram
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complete these assessments during pre-treatment, fol-
lowing the resistance exercise program, and during
follow-up assessments at 10 and 36 weeks post-training.

Physical activity measures
The Physical Activity Survey for the Elderly (PASE) as
well as physical activity monitors are used in this study.
The PASE is a self-report or interview-based measure
designed to capture and assess occupational, household,
and leisure activities typically performed by older adults
including those of lighter intensity. Time spent partici-
pating in each activity area is multiplied by a weighted
value that reflects the amount of energy expended by an
older person engaged in that activity. These weighted
values are then summed to yield a composite PASE
score which is used for data analysis. This questionnaire
has been found to be both reliable and valid among
community-dwelling and physically disabled older

adults. The physical activity monitor being used in this
study is the Fitbit Flex; it is worn on the non-dominant
wrist for an assessment of daily step counts over a
period of at least 5 days. The day given and day of return
are excluded from the analysis, since the subject will not
have worn the monitor for a complete day. The mea-
sures are taken before resistance exercise training and
during the last week of training to account for possible
increases in activity due to the exercise sessions.
Subjects also complete these measures during their op-
tional follow-up visits by wearing the monitors for a
period of 1 week before returning to complete strength
and functional measures.

Dietary monitoring
Participants are asked to maintain their normal dietary
intake throughout the study period. Energy intake and
macronutrient composition are assessed by 4-day diet
records during pre-treatment and during the last week
of training. The nutrient content is determined by those
qualified to use the Nutrition Data System for Research,
which utilizes the multiple-pass method to help improve
the validity of dietary data [27].

Progressive resistance exercise training (PRT)
The 14 weeks of PRT (42 sessions ±5 sessions), summa-
rized in Table 3, are supervised by trained personnel
such as exercise physiologists or senior-level physical
therapy or athletic training graduate students under the
supervision of an exercise physiologist. Each site has a
certified, lead exercise physiologist with several years of
experience, responsible for managing the day-to-day
activities and supervising all trainers. Subjects are
instructed on proper techniques and continuously moni-
tored. Following a 5-min warm-up on a self-selected
bicycle ergometer or treadmill, PRT consists of eight
constant load movements to train all major muscle
groups. These exercises include those to strengthen the
lower body and thigh muscles (leg press, knee extension,

Table 3 Progressive resistance training protocol

14 weeks (42 ± 5 sessions)

Monday Wednesday Friday

Goal Hypertrophy Power Hypertrophy

Intensity ∼70% 1RM ∼40% 1RM ∼70% 1RM

Reps 8–12 12 8–12

Sets 3 3 3

Rest ∼60 s ∼30 s ∼60 s

Each session includes eight exercises performed bilaterally in pairs, with indicated
rest between pairs (chest press/squat, leg press/calf press, lateral pulldown/leg
extension, bicep curl/tricep extension), along with core and trunk exercises.
Progression to 3 full sets is achieved by session 5. Initial exercise intensity is
determined by 1RM for the chest press, leg press, and leg extension, while a
10RM is used for all other exercises. RM repetition maximum

Table 2 Study inclusion and exclusion criteria

Inclusion criteria

• ≥65 years of age

• Independently mobile with an SPPB score 4–12

• Access to transportation

• Capable of providing informed consent (cognitively intact)

• Negative diagnostic (12-lead ECG), submaximal Graded Exercise Testing
(GXT) (if applicable)

Exclusion criteria

• Obesity (body mass index (BMI) >30)

• Serum creatinine >1.4 because of risk of lactic acidosis with metformin

• History of structured, regular resistance exercise training within the
past year (more than two times per week consistently)

• Chronic aspirin or non-steroidal anti-inflammatory drug (NSAID) use
(unless it can be safely stopped prior to the biopsies) and any other use
of an anticoagulant (e.g., Coumadin) or history of bleeding

• History of alcoholism or liver disease

• History of hypo- or hypercoagulation disorders including subjects
taking Coumadin

• Any end-stage disease and/or a life expectancy less than 1 year

• Neurological, musculoskeletal, or other disorder that would preclude
them from completing resistance training and all performance tests

• Uncontrolled hypertension, unstable or exercise-induced angina pectoris
or myocardial ischemia, or congestive heart failure

• Diabetes mellitus: HgbA1C >6.5, or fasting glucose >126 mg/dl, or 2-h
glucose (on oral glucose tolerance test (OGTT)) >200)

• Any other medical condition that would interfere with testing or increase
one's risk of complications during exercise, as judged by the study
physicians

• Any other condition or events considered exclusionary by the Principal
Investigator and/or physician, such as non-compliance

• Lidocaine allergy (1% lidocaine is the local anesthetic used during the
muscle biopsy procedure)

• Currently receiving androgen or anabolic therapy
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body weight squat progressing to a split squat if the par-
ticipant is able, calf press) as well as upper body exercise
(chest press, lateral pulldown, biceps curl, and triceps
pressdown). Core and trunk exercises are also a part of
the routine, including abdominal work (various abdom-
inal exercises) and lower back flexibility and strengthen-
ing (alternating supermans). All resistance exercises are
performed bilaterally, progressing to reach full volume
and intensity for each exercise by the end of the second
week. We are implementing a variable-intensity pre-
scription: “high-low-high” 3 days/week program which
has previously been shown to optimize muscle mass and
strength gains in older adults [28]. On Mondays and Fri-
days, intensity is high with subjects completing 3 sets of
8–12 repetitions at 10RM with 60–90 s between sets.
Progression is incorporated continuously by increment-
ing the resistance load when 12 repetitions are com-
pleted for 2 of 3 sets. On Wednesdays, resistance loads
are reduced ~30% with 30- to –60-s rest periods with
the emphasis on more rapid, concentric training (with
controlled eccentric loading) to develop explosive power
while providing a protracted recovery period between
high resistance sessions. Participants complete the rou-
tine in supersets combining two exercises, loading antag-
onistic or uninvolved muscle groups, in succession with
minimal rest between exercises and 60- to 90-s rest pe-
riods between supersets. Following resistance exercise,
participants complete a 5-min cooldown. Participants
aim to complete 42 exercise sessions but have the flexi-
bility to train ±5 sessions to account for follow-up test-
ing as well as for participant schedules and vacations,
etc. Participants are expected to be in good compliance
by completing at least 2 consecutive exercise sessions in
a row before follow-up testing. Note that, due to the
two-site design, exercise equipment between the sites is
different, with UK utilizing pneumatic air-driven Keiser
equipment and UAB utilizing standard plate-loaded and
weight stack BodyMasters and LifeFitness equipment.
Between-site analysis of training outcomes will be per-
formed to account for training effects due to differences
in equipment. Details of the resistance training protocol
are given in Table 3.

Muscle biopsy
Subjects have three biopsies during this protocol: at pre-
treatment, after 2 weeks of metformin or placebo, and
at3 days following the last resistance exercise bout. Sub-
jects taking blood thinning medications are asked to
stop those medications for a period of 3–5 days prior to
each biopsy. Muscle tissue is obtained from the vastus
lateralis after administration of local anesthetic (1%
lidocaine premixed with bicarbonate) using a 5 mm
Bergstrom needle with suction. A small incision is made
in the skin to allow the needle to be briefly inserted into

the muscle so as to obtain approximately 200–300 mg of
tissue, usually occurring over two passes. Direct pressure
is applied to stop bleeding for approximately 5–7 min,
and the wound is closed with Steri-Strips and covered
with gauze and a pressure bandage. Biopsies follow a
left, right, left leg pattern unless a research subject re-
quests differently. Muscle tissue is divided as follows:
100 mg is processed for muscle cell isolation, ~100 mg
is snap-frozen (~30 mg aliquots) in liquid nitrogen for
RNA and protein isolation, and ~50 mg is mounted in
tragacanth gum and frozen in liquid nitrogen-cooled iso-
pentane for detailed immunohistochemical (IHC) ana-
lyses. All biopsies are performed with the subjects fasting.

Post-training follow-ups
The subjects remain in the study after completion of the
training program for an additional 36 weeks to be con-
tacted for optional follow-up visits. These visits occur at
approximately 10 weeks and 36 weeks following the
training period but are optional for the subjects. The
retention of strength, function, physical activity, and
quality of life is examined. Subjects are not asked to re-
frain from any activity they would like to participate in
including continuing their own strength training.
Metformin or placebo is discontinued during this time.
Changes in muscle strength and power are plotted
against all time points shown in Table 1. We assess
strength change from the leg extension exercise due to
its isolation of the vastus lateralis and the leg press as a
secondary measure. Muscle power is assessed from the
isotonic mode on the Biodex set at 40% of each subject’s
maximum voluntary isometric contraction. Insulin sensi-
tivity is measured from plasma glucose and insulin
values during a 2-h OGTT. The Homeostatic Model
Assessment of Insulin Resistance (HOMA-IR) is calcu-
lated from fasting blood samples while the Matsuda
index is utilized for all other samples.

Data safety monitoring
The current clinical trial has obtained the required insti-
tutional review board (IRB) approval. Both sites have
conducted similar trials in the past and are experienced
with all regulatory requirements and with working with
their IRBs. The study has eligibility requirements to
ensure that subjects enrolled have an appropriate risk-
to-benefit ratio. The Principal Investigators (PIs) are
ultimately responsible for keeping all study documents
updated and available for inspection by the sponsor, the
UAB and UK IRBs, and other authorized reviewers. Both
sites report in the same manner and in the same time
frame. Monitoring for adverse events (AEs) is conducted
in real time by the study investigators and study coordi-
nators. Risks involved with this study are considered
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greater than minimal risk and are listed in the consent
form. For this reason, we have utilized the standing
independent Data Safety Monitoring Board (DSMB) as
chartered by the UK CCTS to monitor the safety of this
study at both sites. The DSMB reviews protocol
performance, regulatory requirements, particularly the
reporting of AEs, and serves as the sole DSMB for the
study. Both sites use the same standardized AE report
for the DSMB review to allow for an effective assessment
of potential issues. The DSMB review is given to the PIs
and study coordinators, who can then report to the UK
and UAB IRBs during Continuation Reviews.
The study coordinator is in constant contact with sub-

jects to assess pain, infection, and other symptoms indicat-
ing possible post-procedure AEs. Subjects are discharged
from the Clinical Research Unit with specific self-
monitoring guidelines and instructed to call immediately
regarding any concerning signs or symptoms. The study
procedures are halted at any time a serious safety concern
is noted.
AEs are graded according to intensity and relatability

to the study. Annual reporting of AEs and serious ad-
verse events are conducted with the IRB Continuation
Review in their appropriate time frames according to
their protocol.

Outcome measures and analyses
Primary outcomes
The primary outcomes are as follows:

1. Muscle size
a) Myofiber cross-sectional area (CSA)
b) Computed tomography (CT) skeletal muscle area

of the right thigh
c) CT skeletal muscle area of the vastus lateralis

2. Muscle strength and power
a) 1 RM on the leg extension exercise
b) Biodex maximum voluntary isometric contraction

(MVIC)
c) Biodex isotonic power at 40% MVIC

Muscle size This involves individual fiber CSA and total
thigh muscle size/mass. The CSA at the myofiber level
from vastus lateralis muscle biopsies is the primary out-
come of interest. Fiber type-specific CSA is quantified
on 7-μm serial cryosections using an antibody- recogniz-
ing laminin to delineate individual myofibers, followed
by incubation with a battery of monoclonal antibodies
against the different myosin heavy chain (MyHC) iso-
forms. The three MyHC primary antibodies (types I, IIa,
and IIx) are of different isotypes so that all primary anti-
bodies are added to the sections simultaneously followed
by isotype-specific secondary antibodies conjugated to
different fluorescent tags. Digital images are captured of

the entire cross section (between 400–1200 fibers), and
mean myofiber CSA by fiber type quantified using a re-
cently developed automated algorithm.
Muscle size is determined using a single slice CT

image collected on a GE Discovery CT750 HD at UAB
and Siemens Somatom Definition at UK at the mid-
thigh defined as the midpoint between the inguinal
crease and the proximal border of the patella with the
hip and knee flexed ~90°. CT images are used to quan-
tify skeletal muscle and fat area of the right thigh of each
subject using 100 mA with a scanning time of 3 s and a
512 × 512 matrix. With the subject supine, one 5-mm-
thick cross section scan of the leg is taken by lining the
scan to the midpoint mark identified on each participant.
The feet of each participant are wrapped to minimize
movement. Tissue area quantification is determined using
corresponding attenuation values of ≥200HU; –190 to –30
HU; and 0–100 HU for bone, adipose tissue, and skeletal
muscle, respectively, using available software (NIH ImageJ;
http://rsbweb.nih.gov/ij/). Skeletal muscle is subdivided into
areas of low attenuation (0–34 HU) representing fat-rich
muscle, and high attenuation values (35–100 HU) repre-
senting muscle with normal fat content. Each subject
receives a CT scan during pre-treatment and 1–3 days
following the last resistance training session. The total
skeletal muscle areas of the right mid-thigh, quadriceps
muscle area, and isolated vastus lateralis are quantified.

Muscle strength and power Voluntary, dynamic strength
is evaluated by testing a one repetition max (1RM), de-
fined as the maximal load that a subject can lift one time
with proper form through a full range of motion, via our
well-established methods that have been standardized
across sites [8, 29, 30]. After 2 sets of warm-ups at an es-
timated 40–50% for the first set and 70–80% for the sec-
ond set, single repetition trials, separated by 1–2 min of
rest, are performed with increasing resistance until two
failed attempts at a given load. The last successfully
lifted load with good form and range of motion will be
recorded as the 1RM. Verbal encouragement is given
during all lifts, and 1RM is always completed during
high or heavy days as described above.
We also evaluate MVIC knee extension strength with

a knee angle of 60° using our established methods on a
Biodex 4 dynamometer, available at both sites [31]. One
set of 5 reps is also being completed by the subjects to
determine knee extension concentric power using the
Biodex set on isotonic mode to allow for variable veloci-
ties with a constant external load equal to 40% of max-
imum voluntary isometric strength. Peak power is
recorded as the highest power recorded during the 5
repetitions. Subjects complete these assessments 5 times
throughout the protocol including a familiarization ses-
sion during pre-treatment, after 2 weeks of metformin
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or placebo, after 2 weeks of resistance training (week 4),
at the midpoint of the resistance training program (week
9), and during their last week of training (week 16).
Familiarization sessions are designed to accustom the
subjects to the different exercises using proper technique
and explain 1RM testing (maximum efforts were not
given on 1RMs). However, maximum efforts are given
on the Biodex to be used for comparison with the effort
given during the 2-week metformin or placebo testing
period. Week 4, after 2 weeks of resistance training, is
used as the baseline 1RM strength to account for the
initial neuromuscular adaptations occurring at the be-
ginning of the resistance training program.

Secondary outcomes
Secondary outcomes include the following:

1. Body composition: dual-energy X-ray absorptiometry
(DXA) total and thigh mineral-free lean mass, waist,
abdominal, and hip circumferences

2. Insulin sensitivity
a) Fasting plasma glucose and insulin (HOMA)
b) Matsuda index based on glucose and insulin values

3. Physical activity and quality-of-life self-reports

Thigh muscle mass Regional thigh DXA mineral-free
lean mass is used as a secondary indicator of muscle re-
sponse. DXA scans are performed for body composition
(whole body, regional fat, and lean mass) and bone min-
eral density assessments using a Lunar Prodigy (UAB)
and an IDXA (UK) using standardized methods for re-
gional partitioning. Data quality is assured by phantom
calibrations, and each participant receives a DXA scan at
two time points during the study, pre-treatment and
post-resistance training, by study personnel trained in
this procedure. The subjects are instructed to remove all
objects such as jewelry or eyeglasses and to wear a hos-
pital gown, or a lightweight shirt and shorts containing
no metal during the scanning procedure. All scans are
analyzed by a trained and certified investigator using the
GE Lunar software v10.0. DXA bone mineral content
(BMC; kg), DXA bone mineral density (BMD; g/cm2),
DXA fat-free mass (FFM; kg), DXA mineral-free lean
mass (MFL; kg), DXA fat mass (Fat; kg), and DXA per-
cent fat (%Fat) are assessed. Furthermore, custom ana-
lyses are performed to determine femur length and right
and left thigh muscle and fat mass. Femur length is mea-
sured from the center of the junction of the femoral
head (at the femoral neck) and the acetabulum to the
center of the bottom of the medial condyle. Right and
left thigh muscle and fat mass are calculated by subtract-
ing the lower leg from the respective right or left leg
total mass by creating a custom region of interest (ROI)
through the center of the knee joint between the tibial

plateau and the femoral condyles and encapsulating the
lower leg past the toes. In addition to DXA, circumfer-
ences are taken at three sites using American College of
Sports Medicine (ACSM) standardized procedures includ-
ing the waist defined as the narrowest part of the torso,
the abdomen at the level of the umbilicus, and the hips
defined as the maximal circumference of the buttocks.

Fasting blood glucose and insulin and oral glucose
tolerance test (OGTT) Subjects undergo four blood
draws and complete two OGTTs in order to assess fast-
ing glucose and insulin, and also to assess safety and
eligibility requirements (i.e., creatinine, glucose, liver
enzymes, lipids, thyroid-stimulating hormone (TSH),
complete blood count (CBC) with platelets), as well as
banking. A standard 2-h OGTT is performed after an 8-
to 12-h fast using 75 g of glucose. Blood is drawn before
and at 30, 60, 90, and 120 min after ingestion of the glu-
cose load. The Matsuda index, which correlates well
with the euglycemic clamp, is used to calculate insulin
sensitivity [32]. Subjects are required to be fasting during
each of these research visits.

Exploratory outcomes
The following exploratory outcomes are included:

1. Macrophage profiling
a) Macrophage abundance
b) Macrophage polarization state

2. Satellite cells
a) Abundance
b) Activation state
c) Fusion

3. Assessment of inflammation
a) Cytokine gene expression
b) Signal transduction

Macrophage profiling Resident muscle macrophage
number and polarization state at baseline (first biopsy),
after metformin or placebo only (second biopsy), and
after 14 weeks of PRT (third biopsy) are determined with
IHC. Subjects are asked to continue their normal activ-
ities of daily living but to refrain from any unaccustomed
activity or exercise, including resistance training,
through the first 2 weeks of the protocol to prevent any
exercise-induced muscle inflammation. Pan monocyte/
macrophage antibody co-stains of CD11b and CD68, to-
gether with 4′,6-diamidino-2-phenylindole (DAPI) stain-
ing, are used to quantify total macrophages in 7-μm
cryosections. The relative frequency of CD11b+/CD206-/
CD163- M1 pro-inflammatory macrophages to CD11b
+/CD206+ M2 alternatively activated macrophages is also
quantified. CD163 is used for the confirmation of CD206,
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M2 macrophages. The relative frequency of macrophage
subtypes is then expressed per fiber area/total fibers.

Satellite cell analyses Muscle stem cell (satellite cells)
abundance per fiber is quantified by IHC with the Pax7
monoclonal antibody. MyoD is expressed specifically in
activated satellite cells, and IHC analysis of MyoD is
used to identify activated satellite cells. These analyses
are combined with counting total myofiber nuclei
(DAPI-stained nuclei residing within the dystrophin-
labeled sarcolemma) to monitor myonuclear accretion
from satellite cell fusion that accompanies hypertrophic
growth of myofibers in humans, including older adults.

Assessment of inflammation We are quantifying in-
flammatory gene expression in all subjects using the
Nanostring nCounter analysis system. Approximately
100 genes are analyzed based on previous work of the
genes that were most differentially expressed between
the exercise responders and non-responders. Signaling
pathways such as the AMPK pathway are measured by
western blot using phospho-specific antibodies to Thr172
on AMPK. The mTORC pathway, antagonized by AMPK,
is also analyzed, as it plays an important role in regulating
protein synthesis in muscle. Other signaling pathways,
such as p38 and PKC, are assessed in relation to growth
and macrophage profile. Down-regulation of inflamma-
tory signaling proteins, in particular, NFκB and STAT, will
also be quantified.

Statistical plan
We intend to recruit 120 participants to account for a
20% attrition rate (84 UAB and 36 UK) to achieve a final
sample size of 100 (50 metformin, 50 placebo). This al-
lows sufficient power for “as observed” comparisons.
Endpoints (myofiber CSA, thigh muscle CSA, strength,
power, and macrophage abundance) and changes with
training will be treated as continuous variables, summa-
rized with descriptive statistics. SAS v9.2 or higher is be-
ing used for all analyses, and a significance level of 0.05
is used for all statistical tests. In the case that endpoints
are found to be non-normal, appropriate transforma-
tions are employed and non-parametric tests used. The
primary analysis and representative measure used to cal-
culate power is the comparison of change in type II
myofiber CSA for those randomized to either PRT with
placebo or metformin. Type II myofiber CSA changes
due to PRT with placebo or metformin will also be com-
pared across sex. A two-sample t test will have at least
80% power to detect an effect size of 0.6 when the sam-
ple size is 50 per group (n = 100), assuming a two-sided
significance level of 0.05. Based upon our prior resist-
ance training trials in older adults, we expect 14 weeks
of PRT alone to be associated with an approximately

20% increase in type II myofiber CSA in both men and
women. We predict that adjuvant metformin will yield
an additional 25% increase in myofiber CSA (above the
20% due to PRT alone). Prior work (25 men and 25
women, age 65–80 years) showed pre-treatment type II
CSA means (SD) of 4095 (1213) μm2 in men and 2458
(690) μm2 in women. With a 20% increase in PRT alone
and an additional 25% increase with metformin, the
mean difference between treatment groups would be at
least 730 μm2, assuming a common SD of 950. The
effect size is expected to be at least 0.76, which is larger
than the detectable effect size for our planned final sam-
ple of 100.

Statistics specific to primary outcomes
The primary endpoint is the change in type II myofiber
size after training, with the secondary outcome being
change in muscle size. The primary analysis design is the
intention-to-treat (ITT) comparison of change in myofi-
ber/muscle size for those randomized to either placebo
or metformin. It is expected that the randomization will
lessen the need for covariate-adjusted analyses; however,
in the event that adjusted analyses are necessary, a sec-
ondary comparison of the change in endpoints for the
two groups will be made using analysis of covariance
(ANCOVA). Potential confounders include baseline
values, BMI, age, race, ethnicity, gender, changes in insu-
lin sensitivity, and pill count. In addition to changes in
muscle size, changes in strength are also of interest.
Strength is measured at weeks 2, 4, 9, and 16 (training
begins after 2 weeks of metformin or placebo). The pri-
mary analysis for strength is conducted using the same
strategy as for muscle size, using a change score from
week 4 (true strength baseline) to 16. However, since
additional time points are collected that investigate
changes in strength over time between groups, the inter-
action of group and time can also be analyzed using co-
variance pattern models (or linear mixed models), where
the correlation between observations measured over
time can be handled more flexibly (i.e., unstructured and
autoregressive variance-covariance matrices).
The ITT analysis is performed using all randomized

participants regardless of loss to follow-up, where data
for those lost is imputed using last observation carried
forward (LOCF). In this case, LOCF should provide a
conservative estimate of the effect; however, multiple im-
putation will also be used to impute missing values and
to assess the sensitivity of the results based on LOCF. It
is expected that subjects may not be compliant to the
prescribed dosing, which is measured by pill count at
specified visits. Non-compliant subjects are included in
the ITT analysis; however, a modified ITT may also be
conducted utilizing an ITT randomization principle but
limited to those who achieved at least 1000 mg per day.
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Thus, analyses are conducted comparing groups without
imputed data (“as observed”), which will be impacted by
attrition as well as ITT analysis using the randomized
sample in which all participants are used, potentially
allowing us to detect a smaller effect size (approximately
0.5 if n = 120) with 80% power.

Discussion
As metformin is increasingly being used to treat medical
conditions other than type 2 diabetes, identifying novel
mechanisms of action of metformin is timely. While the
mechanisms of action of metformin are not fully under-
stood, much of the previous research has shown that
metformin activates the enzyme AMPK, shown to be in-
fluential in glycemic control, energy balance, and metab-
olism in multiple peripheral tissues [33]. More recent
animal research has shown metformin’s profound effects
on skeletal muscle through activation of AMPK. Im-
provements in structural integrity, oxidative metabolism,
resiliency to muscle damage, and macrophage polarization
have all been reported [34–36]. However, mouse models
have shown that metformin can maintain its hypoglycemic
effect in the absence of AMPK in the liver, indicating that
metformin may act in an AMPK-independent manner
[37]. Furthermore, metformin was shown to enhance
mitochondrial respiration in skeletal muscle of AMPK-
deficient mice after just 2 weeks of treatment [38]. Based
on the wealth of research on the beneficial skeletal muscle
effects and modulation of a variety of other conditions
such as cardiovascular disease, cancer risk, and longevity,
metformin has been proposed as a potential anti-aging
drug [19, 39–41].
AMPK signaling also responds to exercise in skeletal

muscle, but in an age- and sex-dependent manner. It has
been demonstrated that AMPK activation is significantly
increased in men but not in women following a bout of
continuous submaximal aerobic exercise [42] and that
aged animals show a reduced AMPK response to exer-
cise [43]. Thus, results from this study will determine if
metformin can augment the benefits of exercise in the
elderly in an AMPK-dependent or AMPK-independent
manner, and if this differs by sex. Results will also pro-
vide information on metformin tolerance and the fre-
quency of GI side effects in both male and female
healthy elderly individuals.
This will be the first metformin repurposing trial to

test the potential synergistic impact of combined
exercise-drug therapy on muscle mass and function, and
it will be conducted in an aging cohort in need of a
treatment that maximizes muscle regrowth and strength
gain. This study has the potential to advance our under-
standing of the mechanisms involved in muscle adaption
and to predict those individuals who may have trouble
responding to an exercise training program. Age-related

muscle inflammation susceptibility is a novel concept
[6], which the study proposes as a central mechanism
underlying the blunted responsiveness of many older
adults to resistance training by promoting a catabolic
environment. Our combined intervention will determine
if this combined exercise-drug therapy will overcome the
variable and non-responsive phenotype seen in aging. By
imposing a two-site collaboration, the study becomes
more generalizable and contains sufficient power not nor-
mally found in smaller resistance training trials.
In conclusion, there are several innovative features of

the proposed experiments that are expected to signifi-
cantly advance the field and improve muscle regrowth
and mobility, with the overall goal of reducing risk of
disability among older adults. The proposed work is ex-
pected to have a powerful impact, as we will be the first
to determine whether metformin, in combination with
resistance exercise designed to elicit muscle hypertrophy,
will augment progressive resistance training-induced
muscle gains in older adults and successfully restore
function, health, and quality of life.

Trial status
The study has been active and open for enrollment since
November 2014 with an anticipated completion date of
December 2017.
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