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ABSTRACT OF DISSERTATION

Finite Mixtures of Mean-Parameterized Conway-Maxwell-Poisson Models

For modeling count data, the Conway-Maxwell-Poisson (CMP) distribution is a pop-
ular generalization of the Poisson distribution due to its ability to characterize data
over- or under-dispersion. While the classic parameterization of the CMP has been
well-studied, its main drawback is that it is does not directly model the mean of
the counts. This is mitigated by using a mean-parameterized version of the CMP
distribution. In this work, we are concerned with the setting where count data may
be comprised of subpopulations, each possibly having varying degrees of data disper-
sion. Thus, we propose a finite mixture of mean-parameterized CMP distributions.
An EM algorithm is constructed to perform maximum likelihood estimation of the
model, while bootstrapping is employed to obtain estimated standard errors. A sim-
ulation study is used to demonstrate the flexibility of the proposed mixture model
relative to mixtures of Poissons and mixtures of negative binomials. An analysis of
dog mortality data is presented.

As a generalization of the Poisson distribution and a common alternative to
other discrete distributions, the Conway-Maxwell-Poisson (CMP) distribution has
the flexibility to explicitly characterize data over- or under-dispersion. The mean-
parameterized version of the CMP has received increasing attention in the literature
due to its ability to directly model the data mean. When the mean further depends
on covariates, then the mean-parameterized CMP regression model can be treated
in a generalized linear models framework. In this work, we propose a mixture of
mean-parameterized CMP regressions model to apply on data which are potentially
comprised of subpopulations with different conditional means and varying degrees of
dispersions. An EM algorithm is constructed to find maximum likelihood estimates
of the model. A simulation study is performed to test the proposed mixture of mean-
parameterized CMP regressions model, and to compare it to model fits using mixtures
of Poisson regressions and mixtures of negative binomial regressions. An analysis of
the spread of a viral infection in potato plants is performed using these different mix-
tures of regressions models, where we show the mixture of mean-parameterized CMP
regressions to be an effective model.

KEYWORDS: bootstrap, count data, data dispersion, EM algorithm, generalized
linear models, negative binomial
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Chapter 1 Introduction

1.1 Finite Mixture Models

1.1.1 Introduction

Finite mixture models constitute a common and broad class of statistical models

that employ mathematical approaches to explain various random phenomena. The

concept of mixture in a population was noted in the early 19th century when statistics

initially emerged as a mathematical tool to study the numbers, primarily from social

studies. The earliest idea of mixture model could be traced back to Karl Pearson, one

of the pioneers of mathematical statistics, who, in an evolutionary study, considered

gender factors within a population, and employed two normal distributions to model

fertility (Pearson 1894).

The prominence of finite mixture models increased remarkably when the classic

theory of maximum likelihood estimation was applied to parameter estimation. With

the rapid advancement of computing technology from the 1980s onward, research

on finite mixture models and their applications has been increasingly reported in

literature, as evidenced by various books (McLachlan and Peel 2000; Schlattmann

2009; McNicholas 2016) and review articles (Melnykov and Maitra 2010; McLachlan

et al. 2019).

The previous and ongoing developments in statistical theory and methodology

have provided a robust yet flexible framework, expanding the application of finite

mixture models to a wide variety of data structures. Research articles across statisti-

cal and scientific fields have demonstrated the effectiveness of finite mixture models

to account for population heterogeneity.

The Gaussian mixture model, due to the normal distribution most commonly

1



assumed in general, was one of the earliest developed (Hasselblad 1966), and remains

one of the most widely used mixture models in various fields, including economics

(Epps and Epps 1976; Kon 1984), medical studies (Daniel et al. 1991; Bachmann et al.

1999), image analysis (Cox et al. 1996), and many others (Kelly et al. 2009; Brey and

Walker 2011). An alternative to Gaussian mixtures is the mixtures of t-distributions,

which possess longer tails to accommodate more extreme observations. Multivariate

Gaussian mixture model (Biernacki et al. 2003) and multivariate t mixture model

(Shoham et al. 2003; Gerogiannis et al. 2009) were also studied for application. The

mixture model consisting of exponential distributions was proposed for use in queuing

system (Whitt 1984). The mixture of two Weibull distributions has been introduced

for modeling the failure data in reliability analysis (Jiang and Murthy 1995).

Finite mixture models in regression settings also play an important role in han-

dling different data structures. The mixture of linear regressions model, was de-

veloped early on (Goldfeld and Quandt 1973), and has been extensively studied,

particularly for classifying the clustered data (Turner 2000; Viele and Tong 2002).

Similar to the generalized linear model extending linear regression, the mixture of

generalized linear regressions (Grün and Leisch 2008) allows response variables to

be covariates-dependent and assumed to be from non-normal distributions, such as

exponential, Poisson, and binomial distributions, among others. R packages, flexmix

(Leisch 2004) and mixtools (Benaglia et al. 2010), are available for mixture model-

ing on a variety of datasets. The popularity of these packages underscores the appeal

of finite mixture models in practice.

1.1.2 Estimating Methods and Related Issues

Estimating the unknown parameters in statistical models is the primary task for sta-

tistical analysis, and it can be challenging at times. One of the oldest approaches in

mathematical statistics, the method of moments, derives point estimators for statis-

2



tical models by matching sample moments to their distribution counterparts. Before

the era of ubiquitous computing, the method of moments was favored to solve some

simple models by hand. For instance, the ordinary least square estimators can be

derived for linear regression models using the method of moments. This method was

ever used to solve the two components of uni-variate Gaussian mixture model (Pear-

son 1894). However, the method of moments faces difficulties and accuracy problems

when dealing with mixture models which involve large mixtures, as it requires solving

a large polynomial system of high-order moment equations. Nevertheless, improved

method of moments was reported for solving complex mixture models (Anandkumar

et al. 2012; Wu and Yang 2018).

Maximum likelihood estimation is another method for determining the parame-

ter estimates by maximizing the loglikelihood function given the observed data in

an assumed model. However, closed-form expressions for maximum likelihood es-

timators rarely exist in most statistical models. Therefore, numerical optimization

techniques are required to find the maximum likelihood estimates. Newton’s method

provides an iterative algorithm for optimization, but it often encounters issues such

as convergence problems, local maxima, or challenges in inverting Hessian matrices,

and is seldom used to solve finite mixture models. Regardless, maximum likelihood

method has become the dominant method for parameter estimation, since the ex-

pectation–maximization (EM) algorithm was introduced (Dempster et al. 1977) and

commonly adopted, greatly facilitating the computation for finite mixture models.

While finite mixture models have thrived, several well-known issues in the model

setup have been identified as follows:

• Identifiability Identifiability is a fundamental property of statistical models. An

identifiable model produces distinct parameter estimates from different sets of ob-

servations. Poor identifiability can result from model structures and bad data

quality, such as insufficient or noisy data, as well as singularity or label switching

3



issues mentioned below, and substantially may lead to uncertainty or unreliability

for statistical modeling. Identifiability for finite mixture models was defined and

studied early (Teicher 1963; Yakowitz and Spragins 1968), but it is generally not a

concern in the framework of maximum likelihood estimation via the EM algorithm

for fitting finite mixture models (McLachlan and Peel 2000).

• Singularity Singularity in mathematics may refer to a point that is not differen-

tiable. A matrix is singular if it is not invertible. Singular matrices are common in

statistical modeling. For example, multicollinearity can occur in regression model-

ing when the interdependency among variables makes the correlation and covari-

ance matrices singular. In finite mixture modeling, components may yield singular

covariance matrices due to extreme data points or convergence at the boundary of

the parameter space, often leading to over-fitting or fitting a meaningless model.

• Label switching The label switching problem is caused by the permutation of

component labels during the computation in mixture modeling. It is challenging

in the context of Bayesian analysis for finite mixture models (Stephens 2000), but

is generally not a problem when computing maximum likelihood estimates via the

EM algorithm (McLachlan and Peel 2000). A simple strategy to address the label

switching problem is to impose identifiable parameter constraints on the estimates

so that only one permutation is satisfied in each iteration. Label switching occurs

among the bootstrap replicates for calculating the standard errors, but taking the

initial values of parameters to start the EM algorithm on each bootstrap sample

can completely avoid the problem (McLachlan and Peel 2000).

• Model Selection Model selection is crucial for mixture modeling, and primarily

involves determining how many components to retain in the mixture. Including un-

necessary components in the mixture may result in over-fitting to the data, while

including too few components may not reflect the true underlying model. The

4



loglikelihood-based critera, including but not limited to Akaike’s information crite-

rion (AIC; Akaike 1973) and Bayesian information criterion (BIC; Schwarz 1978),

along with their modified variants, are prevalent due to their straightforward and

easy implementation in the framework of maximum likelihood estimation, and their

good performance in model selection. However, the utilization of those criteria for

selecting an ideal model is often sensible and depends on the specific situation. The

idea of likelihood ratio test (LRT) has been considered to assist in model selection

for mixture models (Turner 2000; Chen et al. 2001). However, implementing the

LRT for mixture models can be challenging due to the need for effective application

of the theoretical development of asymptotic properties to specific mixture models

(Dacunha-Castelle and Gassiat 1999).

1.2 Conway-Maxwell-Poisson Distribution

1.2.1 Introduction

The Conway-Maxwell-Poisson distribution (Conway and Maxwell 1961) is named

after Richard W. Conway and William L. Maxwell. These two researchers made

notable contributions to the field of electrical engineering, and originally developed

this distribution to incorporate state-dependent service rates into Poisson queueing

model. While the Conway-Maxwell-Poisson distribution may not have the same long-

established history as traditional probability distributions, it has gained attention for

its ability and flexibility to handle data effectively.

The Conway-Maxwell-Poisson distribution was firstly found useful to fit the tail

regions of the purchase data in order to aid retail marketing (Boatwright et al. 2003).

The remarkable contribution to this distribution should be attributed to Shmueli et al.

(2005), who conducted a systematic investigation into the statistical and probabilistic

properties of the Conway–Maxwell–Poisson distribution. This research ignited fur-

ther studies related to the distribution’s applications. The Conway-Maxwell-Poisson
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distribution has been adopted in diverse contexts, such as cure rate survival models

(Rodrigues et al. 2009) and zero-inflated models (Sellers and Young 2019). Its ap-

plications extend to various fields, including transportation data, like motor vehicle

crashes (Lord et al. 2008), ecological analysis (Lynch et al. 2014), estimation of

COVID-19 mortality (Li and Dey 2022), and more.

As a discrete probability distribution, the Conway–Maxwell–Poisson distribution

represents a generalization of the standard Poisson distribution by incorporating an

additional parameter. The probability mass function is given by

P(X = x | λ, ν) = λx

(x!)ν
1

Z(λ, ν)
, x = 0, 1, 2, . . . , (1.1)

where Z(λ, ν) =
∞∑
x=0

λx

(x!)ν
is a normalizing constant that guarantees the probabilities

of all possible values sum to one. The rate parameter λ, with λ > 0, is adopted

from the Poisson distribution. The dispersion parameter ν, with ν ≥ 0, is introduced

to adjust the distribution shape relative to the Poisson distribution. It characterizes

over-dispersion when ν < 1 (i.e., its variance is greater than its mean), equi-dispersion

when ν = 1 (i.e., its variance is equal to its mean), or under-dispersion when ν > 1

(i.e., its variance is less than its mean).

The Conway–Maxwell–Poisson distribution forms a member of the exponential

family that share some common and convenient mathematical properties. The suf-

ficient statistics (
∑n

i=1 yi,
∑n

i=1 log(yi!)) for (λ, ν) exist, and a conjugate prior for

Bayesian estimation is guaranteed (Shmueli et al. 2005). This distribution encom-

passes some well-known distributions: Poisson distribution (ν = 1), geometric distri-

bution (ν = 0, 0 < λ < 1), and Bernoulli distribution (ν → ∞). For a comprehensive

overview of the Conway-Maxwell-Poisson distribution, including its statistical theory,

methodology, and practical models, the most recent monograph by Dr. Kimberly

Sellers (2023) serves as a valuable resource.
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1.2.2 Parameterization

Parametric distributions can be characterized by various parameter sets. For exam-

ple, the gamma distribution features shape/rate parameters or alternative shape/scale

parameters, both of which are commonly used. Parameterizing a distribution through

mathematical manipulation doesn’t change the probabilities or likelihood in the con-

text of maximum likelihood estimation, but it usually offers the advantages of con-

venience and usefulness.

The negative binomial distribution has been presented with various parameter-

izations. Originally, the negative binomial random variable was defined based on

independent Bernoulli trials to count the number of failures until a fixed number of

successes being achieved. This led to parameterization based on the number of suc-

cesses and the probability of success in each trial. Another parameterization emerged

by deriving negative binomial as a Poisson-gamma mixture, where the Poisson mean

parameter, instead of a constant assumed, but follows a gamma distribution with

its own mean as 1. This parameterization of negative binomial is characterized by a

location parameter or distribution mean from the Poisson distribution and a shape

parameter from the gamma distribution (Hilbe 2011). This new configuration makes

negative binomial distribution more convenient for practical applications.

Similarly, the parameterization approach has been successfully applied to the Con-

way–Maxwell–Poisson distribution. The rate parameter λ initially adopted from Pois-

son distribution loses its ability to indicate the distribution’s location as the distri-

bution mean. This limitation hindered the distribution’s application due to its frus-

trating aspect. Given that the Conway–Maxwell–Poisson distribution doesn’t have

closed-form expressions for its mean and variance in terms of its parameters, Shmueli

et al. (2005) provided the approximations of the mean E[Y ] ≈ λ1/ν + 1
2ν

− 1
2
and

the variance Var[Y ] ≈ 1
ν
λ1/ν by using the asymptotic expression for the normalizing

constant Z(λ, ν). These approximations have been shown to be accurate while ν ≤ 1
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and λ > 10ν (Shmueli et al. 2005), making these approximations particularly useful

for over-dispersion and equi-dispersion. Guikema and Coffelt (2008) took µ⋆ = λ1/ν

to reparameterize the center of the Conway-Maxwell-Poisson distribution, a method

adopted by SAS/ETS COUNTREG procedures (SAS Institute Inc. 2013). Ribeiro

et al. (2020) used the approximation of the distribution mean, µ ≈ λ1/ν + 1
2ν

− 1
2
, to

locate the center of the Conway–Maxwell–Poisson distribution for a regression model.

The previously mentioned parameterizations rely on the approximation of the

distribution mean, rendering their results accurate only for part of the parameter

space. By contrast, Huang (2017) reparameterized the Conway–Maxwell–Poisson

distribution via the distribution’s true mean. This approach results in a mean-

parameterized Conway–Maxwell–Poisson distribution, parameterized by the mean

parameter and dispersion parameter. The true-mean parameterization is consid-

ered valid over the entire parameter space, outperforming previous approximations

(Guikema and Coffelt 2008; Ribeiro et al. 2020). Moreover, the mean-parameterized

Conway–Maxwell–Poisson distribution exhibits a satisfying property that different

values of dispersion parameter appear comparable for the same mean value (Huang

2017). This parameterization proves to be an useful approach for meaningful and

practical applications of the Conway–Maxwell–Poisson distribution.

1.2.3 Related Distributions

The Conway–Maxwell–Poisson distribution is a valuable addition to the family of

discrete distributions. While no single distribution can guarantee its performance

outperforming the others in statistical modeling, it is necessary to consider some

related discrete distributions.

The Poisson distribution, a classical statistical model, is the most extensively

studied and applied model for count data. It is commonly used to model the prob-

ability of a specific number of occurrences. The Poisson random variable typically
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describes the rare events, assuming that the occurrences of the event are independent,

non-simultaneous, and occur at a constant rate over time (represented by the mean

rate). Notably, the Poisson distribution assumes equi-dispersion (i.e., the mean and

variance are equal), that often doesn’t hold in real-world data.

Over-dispersion, characterized by greater variability in data than what is allowed

based on the model assumed, has been a long-standing issue in discrete modeling (Cox

1983; Hinde and Demétrio 1998; Dean and Luncy 2016). General modeling sometimes

leads to a lack of fit due to over-dispersion. Over-dispersion can result from various

sources, such as assumption failures involving dependency between responses, miss-

ing covariates, extreme outliers, and zero-inflation, as well as other possible causes.

Consequently, more accurate models are needed to address this issue. The negative

binomial distribution can be viewed as an extension of Poisson distribution, since it

is alternatively derived as a Poisson–gamma mixture aforementioned in Sect. 1.2.2,

and particularly it exhibits a variance greater than its mean. It is not surprising that

the negative binomial distribution is better qualified to handle over-dispersion than

the Poisson distribution, and it has become a convention for modeling over-dispersed

data.

There are numerous generalizations of Poisson distribution available. These gen-

eralizations usually contain the Poisson distribution as a special case, and introduce

new parameters to cope with both over-dispersion and under-dispersion. The gen-

eralized Poisson distribution gained some popularity (Consul and Jain 1973; Consul

1989). The weighted Poisson distribution was proposed by Castillo and Pérez-Casany

(1998) and developed as a weighted Poisson mixture. The hyper-Poisson distribu-

tion was constructed as a power series distribution and is a subclass of the three-

parameter hypergeometric series distribution (Bardwell and Crow 1964). Unlike the

original Poisson distribution, which has a solid probabilistic foundation to character-

ize Poisson process, these generalizations often seek a desired fit empirically without
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phenomenon-based understanding, resulting in a lack of intuitive interpretation of

their parameters.

However, the Conway-Maxwell-Poisson distribution, particularly the mean-

parameterized Conway-Maxwell-Poisson distribution, stands out among these

generalizations as a proximal alternative to the Poisson distribution. Its simple

yet effective modification, based on Poisson distribution, enables it to model both

over-dispersion and under-dispersion.

1.3 Overview of the Dissertation

The rest of the dissertation is organized as follows:

• Chapter 2 is the paper titled “Finite Mixtures of Mean-Parameterized Con-

way–Maxwell–Poisson Models,” which is currently in press with Statistical

Papers.

• Chapter 3 is the paper titled “Finite Mixtures of Mean-Parameterized Conway-

Maxwell-Poisson Regressions,” initially submitted to the Journal of Statistical The-

ory and Practice. This paper is currently under review after a major revision, with

improvements primarily attributed to the essential contributions of my advisor.

These improvements are discussed in Chapter 4.

• Chapters 2 and 3 propose finite mixtures of mean-parameterized Conway-Maxwell-

Poisson (regressions) models. Chapter 2 focuses on the univariate setting, while

Chapter 3 explores the regression setting on the means. In both chapters, the EM

algorithm was utilized for maximum likelihood estimation, and the parameters were

estimated for the mixtures of two or three mean-parameterized Conway-Maxwell-

Poisson components in the simulation study.

• Moreover, Poisson (regression) mixtures and negative binomial (regression) mix-

tures models were used for model selection in Chapter 2, and model comparison in
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Chapter 3. The dog mortality data in Chapter 2, and the aphids data in Chapter

3 were applied, respectively, to the corresponding models.

• Chapter 4 provides conclusions and some discussions for the study. Improvements

for Chapter 3 are available and applied to SIDS data in Chapter 4. Addition-

ally, future research to regress on mixing proportions in the mixture of mean-

parameterized Conway-Maxwell-Poissson regressions model and some considera-

tions regarding singularity are included in Chapter 4.

Copyright© Dongying Zhan, 2023.
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Chapter 2 Finite Mixtures of Mean-Parameterized

Conway-Maxwell-Poisson Models

2.1 Introduction

Count data are ubiquitous in many important applications, such as when record-

ing the number of insurance claims filed by individual policyholders (Smyth and

Jørgensen 2002; Yip and Yau 2005), the number of car crashes on a particular road

segment (Abdel-Aty and Essam Radwan 2000; Konşuk Ünlü et al. 2022), the number

of adverse events or deaths in biomedical research (Zhang et al. 2018; Muenz et al.

2018), or the number of a particular species of wildlife in nature (Cunningham and

Lindenmayer 2005; Dénes et al. 2015). Observed counts from such settings often

come from a relatively small subset of the natural numbers N, for which the Poisson

or negative binomial distributions tend to be good-fitting models.

The Poisson distribution is parameterized by the rate parameter λ > 0, which is

the average number of events that occur. The Poisson distribution characterizes data

that are equi-dispersed; i.e., the variance is equal to the mean. This is often unrealistic

in most observed count datasets. Departures from the equi-dispersion assumption of

Poisson models include where the data are over-dispersed (i.e., the variance of the

data is greater than what is expected under the Poisson model, which is the mean)

or under-dispersed (i.e., the variance of the data is less than what is expected under

the Poisson model, which is, again, the mean). The degree of dispersion in a dataset

is often measured by the dispersion index, which is the ratio of the data’s variance to

its mean.

The negative binomial distribution is, perhaps, the most commonly-employed

discrete distribution used to model over-dispersed count data. In classic probability

theory, a negative binomial variable is built from independent Bernoulli trials to count
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the number of failures until a fixed number of successes is achieved. This is what

Hilbe (2011) calls the type I negative binomial (NB1) distribution. Alternatively,

the negative binomial distribution can be derived using a Poisson-gamma mixture

distribution. In this latter setting, the negative binomial distribution is parameterized

by the mean parameter µ > 0 and the gamma shape parameter α > 0, thus yielding

the variance of the negative binomial distribution as µ + µ2/α. Hilbe (2011) calls

this parameterization the type II negative binomial (NB2) distribution. It is clear

that this form of the negative binomial distribution can characterize over-dispersion

relative to the Poisson assumption since the variance is greater than the mean.

The Conway-Maxwell-Poisson (CMP) distribution is another popular discrete dis-

tribution that generalizes the Poisson distribution by incorporating a dispersion pa-

rameter to handle both over-dispersion and under-dispersion. The distribution was

originally proposed in Conway and Maxwell (1961) to model queueing systems with

state-dependent service rates. While used occasionally in the literature thereafter,

the current popularity of the distribution can be attributed to Shmueli et al. (2005),

who studied the statistical and probabilistic properties of the CMP distribution as

well as presented various estimation methods. They further demonstrated the CMP’s

utility by modeling two datasets: one on the sales of a particular item of clothing

from a large national retailer and one about the lengths of words in a Hungarian

dictionary. Since then, various novel model extensions using the CMP distribution

have been used for many interesting applications, including the development of CMP

regression in a generalized linear models (GLM) framework for a refined analysis of

motor vehicle crashes (Lord et al. 2008) and the modelling of airfreight breakages

(Sellers and Shmueli 2010), a spatio-temporal CMP model for estimating COVID-19

mortality data in the United States (Li and Dey 2022), and a multivariate CMP

model for analyzing the numbers of goals scored by the home and away teams in

the English Premier League from 2018 to 2021 (Piancastelli et al. 2022). We refer

13



the reader to the recent monograph of Sellers (2023) for a modern and expansive

treatment of CMP models. Note that the acronyms used for various CMP models in

that monograph are employed in the present work.

Other extensions to CMP models have been developed to better characterize the

perceived amount of dispersion in the data. For example, Sellers and Shmueli (2013)

use a log link function applied to the CMP dispersion parameter such that the linear

predictor in this relationship includes dummy variables to model varying group-level

dispersions. Sellers and Raim (2016) address the increased chance of data over-

dispersion due to excess zeroes through a zero-inflated CMP (ZICMP) regression

model. Arora et al. (2021) develop a zero- and k-inflated CMP (ZkICMP) model

for further flexibility in characterizing data dispersion when inflation occurs at both

0 and another positive count k ∈ N+. One setting where there is scant treatment

of CMP distributions is when count data for a particular application may be com-

prised of subpopulations, each possibly having varying degrees of dispersion, but the

subpopulation to which an individual observation belongs is unobserved. Specifically,

this would be a finite mixture model where the components are CMP distributions.

Sur et al. (2015) is the only work to our knowledge that addresses such a mixture

model. However, that paper is focused on a very specific setting where the data is ob-

served in the range of t, t+1, . . . , T , so that a truncated CMP distribution (truncated

at values below t and above T ) is considered. Moreover, the authors are attempt-

ing to characterize bimodality that results from peaks at the values of t and T , so

the resulting model is a two-component mixture of truncated CMPs. This model is

demonstrated to be effective in characterizing the number of days spent in a hospital

(where t = 1 and the counts are censored at T = 15) and to characterize data on a

Likert scale (one example involves a marketing survey research question and another

involves online ratings of a particular hotel).

Our work develops a general m-component mixture of CMPs where m is allowed
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to be greater than 2. However, we do not consider a truncated version of the CMP,

but rather we use a mean-parameterized version of the CMP for our component

distributions. This has the benefit of yielding component means that not only have a

more intuitive interpretation, but also can be easily compared with component means

from, say, mixtures of Poissons or mixtures of negative binomials. We further address

other considerations, such as the estimation of standard errors for the parameters

in our model and determining the number of components through model selection

criteria, neither of which were addressed in the model presented in Sur et al. (2015).

We perform maximum likelihood estimation using an expectation-maximization (EM)

algorithm (Dempster et al. 1977), and show that the model is informative for a dog

mortality dataset.

The rest of this paper is organized as follows. In Sect. 2.2, we provide a brief

review of both the classic CMP and mean-parameterized CMP distributions. In Sect.

2.3, we have a general discussion about finite mixture models where the components

are discrete distributions. Emphasis will be given to the Poisson, negative binomial,

and mean-parameterized CMP settings. In Sect. 2.4, we present details for maximum

likelihood estimation of mixture of mean-parameterized CMP models via an EM

algorithm. In Sect. 2.5, we conduct a simulation study on the performance of our

model, including an assessment of model selection criteria for determining the number

of components and comparing to other mixtures of discrete distributions. In Sect.

2.6 we analyze a dog mortality dataset. We conclude with some final comments in

Sect. 2.7.

2.2 Mean-Parameterized CMP Distribution

The flexible queueing system considered in Conway and Maxwell (1961) is a single-

queue, single-server system with random arrival times and a first-come-first-serve

policy for arriving units, where the interarrival times and service times are each
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exponentially distributed. Under these assumptions, the authors define a system of

differential equations with an assumed steady state and further define the quantity

λ to be the product of the mean of the exponential distribution for the interrarival

times and the mean service for a unit when it is the only unit in the system. This

results in a set of recursion equations (that depend on λ), which upon solving yield

the CMP distribution. The classic CMP distribution is a member of the exponential

family, and is characterized by the rate parameter λ > 0 and dispersion parameter

ν ≥ 0. The probability mass function (pmf) for a CMP random variable Y is given

by

P(Y = y | λ, ν) = λy

(y!)ν
1

Z(λ, ν)
, y = 0, 1, 2, . . . , (2.1)

where Z(λ, ν) =
∞∑
y=0

λy

(y!)ν
is a normalizing constant that guarantees the pmf sums to

unity. For such a random variable Y , λ = E[Y ν ] is a generalized form of the Poisson

rate parameter, and ν, which does not appear in the Poisson distribution, allows for

adjustment of the rate of decay. Note that if you have a sample of n iid values, say

y1, . . . , yn, from the above CMP distribution, the factorization theorem can be applied

to the corresponding loglikelihood to show that (
∑n

i=1 yi,
∑n

i=1 log(yi!)) is sufficient

for (λ, ν) (Shmueli et al. 2005).

The flexibility of the CMP pmf in (2.1) is attributed to how it generalizes the

pmfs for a number of other discrete distributions. Specifically, we have a Poisson dis-

tribution with rate λ when ν = 1, a geometric distribution with success probability

(1− λ) when ν = 0 and λ < 1, and a Bernoulli distribution with success probability

λ/(1+λ) as ν → ∞. Moreover, the dispersion parameter in the classic CMP provides

the ability to indicate over-dispersion when ν < 1 and under-dispersion when ν > 1.

However, unlike the rate parameter λ in a Poisson distribution and the mean param-

eter µ in a negative binomial distribution, the parameter λ in the CMP distribution

does not directly indicate the center of the distribution nor explain the occurrence
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rate in the data. Moreover, the CMP distribution does not have closed-forms for

its mean and variance in terms of λ and ν, which again obfuscates the interpreta-

tions of estimates for those parameters. Regardless, Shmueli et al. (2005) utilize the

asymptotic expression of the normalizing constant Z to provide approximations for

the mean and variance. These are given by, respectively,

E[Y ] ≈ λ1/ν +
1

2ν
− 1

2
and (2.2)

Var[Y ] ≈ 1

ν
λ1/ν , (2.3)

which are considered accurate while ν ≤ 1 and λ1/ν > 10.

Some authors worked on reparameterizing the CMP distribution in (2.1) to fit

within a GLM-type framework. The approximated CMP (ACMP) of Guikema and

Coffelt (2008) took µ⋆ = λ1/ν to reparameterize the center of the CMP distribution.

This method was adopted to use within SAS/ETS COUNTREG procedures. Ribiero

et al. (2020) presented a mean-parameterized CMP (MCMP2) model that used the

approximation of the distribution mean µ ≈ λ1/ν − ν−1
2ν

to locate the center of the

CMP distribution. Since these reparameterizations rely on the approximation of the

normalizing constant Z, the results are only accurate for part of the parameter space.

Huang (2017) also reparameterized the CMP distribution via the distribution

mean µ. This mean-parameterized CMP (MCMP1) distribution can be characterized

by the mean parameter µ ≥ 0 and dispersion parameter ν ≥ 0 such that its pmf is

P(Y = y | µ, ν) = λ(µ, ν)y

(y!)ν
1

Z(λ(µ, ν), ν)
, y = 0, 1, 2, . . . , (2.4)

where the rate parameter λ(µ, ν) can be solved as a function of µ and ν by using

∞∑
y=0

(y − µ)
λ(µ, ν)y

(y!)ν
= 0. (2.5)
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This reparameterization via the mean is found by solving the nonlinear equation (2.5)

instead of adopting an approximation as done in the MCMP2 model. The MCMP1

distribution has other appealing properties. For example, µ and ν are orthogonal

(Huang and Rathouz 2017), while the values of ν appear comparable for the same

value of µ (Huang 2017). Therefore, the MCMP1 provides, perhaps, a more ideal

approach when seeking meaningful and practical interpretations from an estimated

CMP model.

2.3 Finite Mixtures of Discrete Distributions

The random variable Y follows an m-component (parametric) mixture distribution if

it has the mixture density

g(y;Ψ) =
m∑
j=1

πjfj(y;θj), (2.6)

where the πjs are mixing proportions that satisfy 0 ≤ πj ≤ 1, j = 1, . . . ,m and∑m
j=1 πj = 1. Depending on whether Y is a continuous or discrete random variable,

the fj are, respectively, component-specific density or mass functions from a para-

metric family with θj ∈ Θj ⊆ Rq, where Θj is open in Rq. The mixture density in

(2.6) is then parameterized by Ψ =
(
π1, . . . , πm−1,θ

T
1 , . . . ,θ

T
m

)T
. In the present work,

we focus on finite mixtures of discrete distributions, so Y ∈ N. For the majority of

applications, including the dog mortality data analyzed later, the observed (count)

values are typically not large. Moreover, we focus on mixtures of Poissons, mixtures

of negative binomials, and mixtures of MCMP1, which are now defined in turn.

The m-component mixture of Poissons model has the mixture density

g(y;Ψ) =
m∑
j=1

πj

e−λjλy
j

y!
, (2.7)
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where the parameter vector is Ψ = (π1, . . . , πm−1, λ1, . . . , λm)
T. Compared to a single

Poisson distribution, mixtures of Poissons can characterize over-dispersion (relative to

a single Poisson distribution) by including more equi-dispersed components. Two- and

three-component mixtures of Poissons were found to provide good fits for insurance

claims data (Ismail et al. 2004). Mixtures of Poissons were also applied to identify

different RNA polymerase II distributions in the transcribed regions (Feng et al.

2008) and to inform document classification (Li and Zha 2006).

The m-component mixture of negative binomials model has the mixture density

g(y;Ψ) =
m∑
j=1

πj
Γ(y + αj)

y!Γ(αj)

(
αj

µj + αj

)αj
(

µj

µj + αj

)y

, (2.8)

where the parameter vector is Ψ = (π1, . . . , πm−1, µ1, . . . , µm, α1, . . . , αm)
T. The µjs

and the αjs are, respectively, the mean parameters and dispersion parameters for the

components. Mixtures of negative binomials have been used to model vehicle crash

data (Park and Lord 2009; Zou et al. 2013) and the frequency of earthquakes (Huang

et al. 2019). Likewise, mixtures of negative binomials have also been found as an

effective model-based clustering tool in RNA-seq count studies (Li et al. 2018).

Finally, we define our proposed m-component mixture of MCMP1 model. Using

the definition we supplied in Sect. 2.2, this model has the mixture density

g(y;Ψ) =
m∑
j=1

πj
λ(µj, νj)

y

(y!)νj
1

Z(λ(µj, νj), νj)
, (2.9)

where the parameter vector is Ψ = (π1, . . . , πm−1, µ1, . . . , µm, ν1, . . . , νm)
T. Similar

to the mixture of negative binomials, the µjs are mean parameters and the νjs are

dispersion parameters for the components. Beyond the advantages of interpretability

for each component’s MCMP1 distribution, we are also able to leverage some of the

estimation tools that are presented in Huang (2017). These are incorporated in the
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next section and Appendix A.

2.4 EM Algorithm for Maximum Likelihood Estimation

In this section, we provide the details to perform maximum likelihood estimation of

the mixture of MCMP1 model using an EM algorithm. Let Yi ∈ N, i = 1, . . . , n be iid

random variables following the m-component mixture model in (2.9) parameterized

by Ψ which was defined immediately following the density. Let y = (y1, . . . , yn)
⊺ be

a vector of the corresponding realizations of the Yis. The likelihood function for this

model is then given by

Lo(Ψ;y) =
n∏

i=1

m∏
j=1

πj
λ(µj, νj)

yi

(yi!)νj
1

Z(λ(µj, νj), νj)
. (2.10)

The corresponding loglikelihood function is then given by

ℓo(Ψ;y) =
n∑

i=1

m∑
j=1

{
logπj + log

(
λ(µj, νj)

yi

(yi!)νj
1

Z(λ(µj, νj), νj)

)}
. (2.11)

Note that we use the “o” subscript on both of the above functions to indicate that

these are the likelihood and loglikelihood functions based on the observed data.

As is typical in maximum likelihood estimation of mixture models, the likelihood

in (2.10) is difficult to directly optimize. To make optimization tractable, we begin by

noting that the observations y are considered incomplete, because their corresponding

component labels are not observed. To make the data complete, we define the indica-

tor variables Zij ∼ Bern(πj) to be the (unobserved) component label for observation

i; specifically, Zij = I{if Yi is from component j}. Letting Zi = (Zi1, . . . , Zim)
⊺, it

follows that

Z1, . . . ,Zn
iid∼ Multm(1, {π1, ..., πm}), (2.12)

where Multm(·, ·) denotes the multinomial distribution with m categories.
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The complete data are then given by (y1,Z
⊺
1), . . . , (yn,Z

⊺
n), which are then used

to form the complete-data likelihood

Lc(Ψ;y,Z) =
n∏

i=1

m∏
j=1

{
πj

λ(µj, νj)
yi

(yi!)νj
1

Z(λ(µj, νj), νj)

}Zij

. (2.13)

Moreover, the complete-data loglikelihood is given by

ℓc(Ψ;y,Z) =
n∑

i=1

m∑
j=1

Zij

{
logπj + log

(
λ(µj, νj)

yi

(yi!)νj
1

Z(λ(µj, νj), νj)

)}
. (2.14)

The “c” subscript used on the above functions is to indicate that these are the like-

lihood and loglikelihood functions based on the complete data. As noted earlier, the

Zis are unobserved, and thus treated as missing in the loglikelihood function (2.14).

Using the above complete-data setup, we can turn to perform maximum likelihood

estimation via an EM algorithm.

E-Step Given a fixedΨ(t) at the tth iteration, t = 0, 1, . . ., the conditional expectation

of ℓc(Ψ;y,Z) given the observed data Y = y is computed as

Q(Ψ;Ψ(t)) = EΨ(t) [ℓc(Ψ;y,Z)] (2.15)

=
n∑

i=1

m∑
j=1

z
(t)
ij

{
logπj + log

(λ(µj, νj)
yi

(yi!)νj
1

Z(λ(µj, νj), νj)

)}
. (2.16)

The above expression depends on z
(t)
ij , which are referred to as posterior membership

probabilities. These arise by noting that Zij is independent of Yi′ for all i ̸= i′. Since

EΨ(t) is a linear functional, we may replace Zij by EΨ[Zij | Yi = yi], which when
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provided the estimate Ψ(t) yields

z
(t)
ij =

π
(t)
j

(
λ(µ

(t)
j , ν

(t)
j )yi

(yi!)
ν
(t)
j

1

Z(λ(µ
(t)
j , ν

(t)
j ), ν

(t)
j )

)
∑m

k=1 π
(t)
k

(
λ(µ

(t)
k , ν

(t)
k )yi

(yi!)ν
(t)
k

1

Z(λ(µ
(t)
k , ν

(t)
k ), ν

(t)
k )

) . (2.17)

M-Step The maximization of Q(Ψ;Ψ(t)) with respect to Ψ gives the updated es-

timates Ψ(t+1). First, through the direct use of a Lagrange multiplier, the updated

mixing proportions are derived as

∂Q(Ψ;Ψ(t))

∂πj

set
= 0 ⇒ π

(t+1)
j =

∑n
i=1 z

(t)
ij

n
. (2.18)

The updated mean parameter µ
(t+1)
j for component j is then found as a weighted mean

of the observations, where the current values of the posterior membership probabilities

are the weights:

∂Q(Ψ;Ψ(t))

∂µj

set
= 0 ⇒ µ

(t+1)
j =

∑n
i=1 z

(t)
ij yi∑n

i=1 z
(t)
ij

. (2.19)

Finally, the updated dispersion parameter ν
(t+1)
j for component j can be obtained by

solving

∂Q(Ψ;Ψ(t))

∂νj

set
= 0 ⇒

E[Y log(Y !)]− µ
(t+1)
j E[log(Y !)]

V (Y )

n∑
i=1

[z
(t)
ij (yi − µ

(t+1)
j )]−

n∑
i=1

[z
(t)
ij log(yi!)]

+ E[log(Y !)]
n∑

i=1

z
(t)
ij = 0. (2.20)

The E-step and M-step are alternated until the stopping criterion ℓo(Ψ
(t+1)) −

ℓo(Ψ
(t)) < ϵ, for some small fixed ϵ > 0. Since the MCMP1 distribution is from the

exponential family (Huang 2017), the convergence of estimates is always guaranteed
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using the EM algorithm (Wu 1983). Also, for completeness, we have supplied the

derivations for the mean estimator µ̂ and dispersion estimator ν̂ for the unicomponent

MCMP1 distribution in Appendix A.

2.5 Simulation Study

To evaluate the proposed mixtures of MCMP1 model along with our EM algorithm,

we generated data from various mixtures of MCMP1 models. In our simulation, differ-

ent sample sizes and m ∈ {2, 3} components are considered. The results demonstrate

the efficacy of the mixture of MCMP1 models under these conditions. The simulated

data from two components of MCMP1 mixtures were fit by the MCMP1, negative

binomial, and Poisson mixtures for comparison. All numerical work is performed

using the R programming language. Flowcharts illustrating the simulation processes

used in Sects. 2.5.1 and 2.5.2 are given in Fig. S1 of the Supplementary Information.

2.5.1 Parameter Estimates

We start with a numerical investigation into the biases and root mean squared errors

(RMSEs) using our EM algorithm results when fitting various mixtures of MCMP1

models. Case I is comprised of a distribution with two well-separated components

with the following parameters: mixing proportions (π, 1 − π) = (0.3, 0.7), means

(µ1, µ2) = (1, 10), and dispersions (ν1, ν2) = (0.6, 1.5). Case II has two overlapping

components with the same parameters as Case I except the means, which are set as

(µ1, µ2) = (1, 6). Case III has a distribution consisting of a well-separated scenario

with the following parameters: mixing proportions (π1, π2, 1−π1−π2) = (0.2, 0.3, 0.5),

means (µ1, µ2, µ3) = (1, 10, 25), and dispersions (ν1, ν2, ν3) = (0.6, 1.5, 1.7). Compa-

rably, Case IV has the same parameters as Case III except the means, which are set

as (µ1, µ2, µ3) = (1, 6, 25). Thus, the three components appear as two overlapping

plus one that is more separated. Again, we highlight that a benefit with using the
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MCMP1 distribution is that the component mean parameters are at the center of

their respective component, and thus can be used to identify the location of each

component’s distribution. Plots of the mass functions for each of these four cases are

given in Fig. S2 of the Supplementary Information.

When assessing the biases and RMSEs, we generate 1000 replications from each of

the four MCMP1 mixture models for each of the sample sizes n ∈ {50, 100, 200}. One

consideration whenever conducting such a simulation study performing optimization

via an EM algorithm, especially when estimating finite mixture models, is the choice

of initial values. In the present setting, we used a combination of uninformative start-

ing values for the mixing proportions (i.e., set each mixing proportion to 1/m) and

the dispersion parameters (i.e., set each dispersion parameter to 1), but started the

algorithm at the component-specific means. Granted the component-specific means

are unknown to the user, but since this is a univariate setting, it is expected that the

user can posit some reasonable guesses for the component means by either assessing

a histogram or proceeding with some other näıve clustering prior to estimating a

mixture of MCMP1 model. Regardless of how we proceeded, it always produced the

best fitting solution relative to simply generating random starting values for all of the

parameters. This is consistent with the focus in this part of the investigation, which

is to get the “best” fitting solution so that we can assess the biases and RMSEs.

Tables 2.1 and 2.2 summarize the simulation results for, respectively, the two-

component (Cases I and II) and three-component (Cases III and IV) MCMP1 mixture

models used in this study. In all cases, we imposed an identifiability constraint where

we ordered the means (i.e., µ1 < µ2 in the two-component setting and µ1 < µ2 < µ3

in the three-component setting) so as to avoid the label switching problem (see Redner

and Walker 1984). In both tables, we see that the biases for the mixing proportions

and component means across the four cases are all relatively small with a mostly de-

creasing trend in terms of their absolute values relative to n increasing. However, the
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bias values for the dispersion parameters are slightly larger, but clearly demonstrate

an overall decreasing pattern as n increases. In all four cases, the RMSEs decrease as

n increases for the mixing proportions, means, and dispersions. However, the RMSEs

for the mixing proportions and means are smaller relative to the dispersions. The bias

and RMSE results noted about the dispersion parameters are likely attributable to

the larger or smaller variance that is expected when a component is, respectively, over-

dispersed or under-dispersed, such that the MCMP1 affords us with the flexibility of

reasonably characterizing the latter. Overall, these results for the component-specific

dispersion parameters indicate that the sampling variability has a noticeable impact

on the accuracy of estimating this parameter. This is further highlighted by the re-

sults for the component with a larger mixing proportion, which yields smaller RMSEs

for the corresponding dispersion parameter. For both the two-component (Table 2.1)

and three-component (Table 2.2) mixtures of MCMP1s, the RMSEs in the overlap-

ping cases are higher than that in the well-separated cases. Overall, these results

indicate that our EM algorithm is producing consistent estimates for the MCMP1

mixture models considered in this study.

2.5.2 Model Selection

We now turn to a simulation study to assess how well other competitor models fit data

that were, in fact, generated from a mixture of MCMP1s. Specifically, we generate

data from two-component mixtures of MCMP1s with varying degrees of dispersion,

and then compare the corresponding fits to those obtained under two-component

mixtures of Poissons and two-component mixtures of negative binomials. Estimation

of mixtures of MCMPs follows what we presented in Sect. 2.4. The glm.nb() function

in the MASS package (Venables and Ripley 2002) is used to construct an EM algorithm

for estimating mixtures of negative binomials. We use the flexmix() function in the

flexmix package (Leisch 2004) for estimating mixtures of Poissons. We found that
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the solutions obtained for each model fit did not heavily depend on the choice of initial

values since the components of the data-generating models (to be defined shortly) are

well-separated. Thus, we just use a simple k-means method in R to roughly group

the data for having the initial values to start the EM algorithm in the mixtures of

CMP and mixture of negative binomial models.

After fitting the candidate mixture models, we proceed to use the Bayesian in-

formation criterion (BIC; Schwarz 1978) to select the best fitting model. Recall that

the BIC values are calculated using the formula −2ℓ
(∞)
o + dlog(n), where ℓ

(∞)
o is the

converged (observed) loglikelihood from the corresponding optimization routine, d is

the number of parameters in the model, and n is the sample size. Thus, when com-

paring across a set of candidate models, a smaller BIC value indicates a better-fitting

model.

The use of information criteria for selecting the number of components in finite

mixtures is well-studied; see, for example, Chapter 6 of McLachlan and Peel (2000).

Akaike’s information criterion (AIC; Akaike 1973) is also frequently employed for the

broader purpose of model selection, which includes choosing among candidate count

models. However, there is a breakdown in regularity conditions for the asymptotic

expansions of the penalty terms for many of these information criteria. The implica-

tions of this on selecting the number of components in a mixture model is that AIC

is order-inconsistent and tends to overestimate the correct number of components

(Celeux and Soromenho 1996). BIC, however, has empirically been shown to per-

form well, including that it does not underestimate the true number of components,

asymptotically (Leroux 1992). Moreover, the use of BIC is generally supported in

the mixture modeling literature (Fraley and Raftery 1998). Thus, we proceed with

interpreting the BIC results for our simulation work and data analysis, but include

in the Supplementary Information summaries of the loglikelihood and AIC values for

completeness.
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We generate data from two-component mixture of MCMP1 models having mean

parameters (µ1, µ2) = (1, 15) and mixing proportions (π, 1 − π) = (0.3, 0.7). Such

components are well-separated for most values of dispersion, which helps us to avoid

any potential computational difficulties when fitting the different models. For this

simulation, we consider varying amounts of dispersion, (ν1, ν2), as well as the two

sample sizes n ∈ {100, 200}. The values used for the dispersion parameters in the

two-component mixture of MCMP1 models, as well as the comparative boxplots of

the corresponding BIC results, are as follows:

• (ν1, ν2) = (0.4, 0.5); Fig. 2.1a (n = 100) and e (n = 200);

• (ν1, ν2) = (1.4, 1.5); Fig. 2.1b (n = 100) and g (n = 200);

• (ν1, ν2) = (2.4, 2.5); Fig. 2.1c (n = 100) and g (n = 200);

• (ν1, ν2) = (3.4, 3.5); Fig. 2.1d (n = 100) and h (n = 200).

As in our previous simulation study, we again generate 1000 such datasets for each

simulation condition. Histograms of a simulated dataset from each of the above set-

tings, as well as the corresponding fits for each of the three mixture models considered

for this study, are given in Fig. S3 of the Supplementary Information.

Figure 2.1a and e concern the settings where both components have over-

dispersion, as indicated by their dispersion parameters (ν1, ν2) = (0.4, 0.5) both

being less than one. In these settings, mixtures of MCMP1s and mixtures of negative

binomials both provide better fits than mixtures of Poissons. This is noted by both

boxplots being slightly lower relative to those for the mixture of Poissons setting.

However, the mixtures of MCMP1s and mixtures of negative binomials have similar

boxplots, which is typical as the negative binomial and CMP distributions tend to

both fit over-dispersed data similarly.

In the MCMP1, a larger dispersion parameter corresponds to an increased amount

of under-dispersion. We show the results of increased dispersion parameters (greater
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amounts of under-dispersion) with (1.4, 1.5) in Fig. 2.1b and f, (2.4, 2.5) in Fig. 2.1c

and g, and (3.4, 3.5) in Fig. 2.1d and h. Specifically, it becomes more apparent that

mixtures of MCMP1s have the advantage over both negative binomial and Poisson

mixtures as the boxplots of their BIC values are the lowest among the three esti-

mated mixture models. For the three under-dispersed cases, the mixture of negative

binomials models is not even better than the mixture of Poissons model, which indi-

cates that a mixture of negative binomials is not competitive at fitting mixtures with

components that consist of under-dispersed data. The mixture of Poissons model has

right-skewed BIC values, indicating that data generated from a mixture with compo-

nents having dispersion does not fit well with a mixture of Poissons. These results are

consistent across the sample sizes n = 100 (Fig. 2.1a–d and n = 200 (Fig. 2.1e–h).

For completeness, Figs. S4 and S5 in the Supplementary Information show the

analogous set of comparative boxplots for, respectively, the loglikelihood values and

AIC values. Both sets of figures demonstrate the same type of behavior as what we

observed with the BIC values in Fig. 2.1.

2.6 Application: Dog Mortality Data

Lewis et al. (2018) presented statistical summaries about the age at death for n =

5663 dogs across 179 breeds from a mortality survey administered by The Kennel

Club in the United Kingdom. The ages at death are reported in years as integers,

ranging from a minimum of 0 years to a maximum 26 years. Thus, it is appropriate to

investigate modeling of these data using discrete distributions. Additional covariate

information for each dog (e.g., breed and cause of death) is not available in the

reduced version of the dataset provided, so proceeding with a univariate analysis is

necessary. Moreover, the histogram of the dog death ages in years (Fig. 2.2) clearly

demonstrates multimodality, which would also indicate that a mixture of discrete

distributions is appropriate. A mixture is also practically appropriate because missing
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covariate information (like the breed of dog) would likely inform some of the different

subpopulations of ages at time of death. For example, larger dog breeds like the

Irish Wolfhound are known to have very short lifespans (about 7–10 years), whereas

smaller breeds like the Chihuahua are known to have relatively longer lifespans (often

exceeding 12 years).

For the simulation study in Sect. 2.5, we took a mostly informative strategy

for specifying the initial values of our EM algorithm for estimating the mixture of

MCMP1 model. When initializing our EM algorithm at or near the true component

means, excellent results were obtained in the simulation study. Those component

means are also where the different peaks occur, assuming that the components are

not heavily overlapping. In a real data analysis, it is most advantageous to choose

the initial values for the means in our EM algorithm by postulating the location

of the peaks, which will be a strong indicator of the underlying component means.

Notwithstanding, we assessed the estimated model results using different initial values

on the dog mortality data in order to identify the best fit.

As in the simulation study, we use the flexmix() function for estimating mix-

tures of Poissons and developed an EM algorithm that uses the glm.nb() function

for estimating mixtures of negative binomials. The flexmix() function has the capa-

bility of using random starting values and we can employ a similar random starting

value strategy with our EM algorithm. We fit the dog death data by performing 100

random initializations of these algorithms for both mixture models with m ∈ {2, 3, 4}

components. The results for a given model were consistently comparable, with dif-

ferences appearing mostly on the order of 10−3. Regardless, the one with the largest

loglikelihood, which corresponds to the smallest BIC, among the 100 replications is

chosen to represent the case in Table 2.3. The results for the non-mixture setting

(i.e., m = 1) are also reported.

For using our EM algorithm to estimate the parameters of a mixture of MCMP1
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model (again, for m ∈ {1, 2, 3, 4}), we identified a grid of candidate mean values to

use as our initial values. Based on the range of the dog death ages, an equally-spaced

sequence consisting of seven elements is created as Ω = {0, 4.3, 8.7, 13, 17.3, 21.7, 26}.

One, two, three, or four unique values are chosen from Ω as the initial component

means to start the EM algorithm for the respective mixture of MCMP1 model hav-

ing m components. Overall, there are 7, 21, 35, and 35 distinct combinations of

starting values for the means for, respectively the unicomponent, two-component,

three-component, and four-component models. Note that starting values are neces-

sary for the optimization algorithm for the unicomponent model, where the formulas

used for performing maximum likelihood estimation of that model are highlighted in

Appendix A. The stopping criterion (based on the difference between the observed

loglikelihoods of successive EM iterations as discussed at the end of Sect. 2.4) is set

at ϵ = 10−3. The result with the largest loglikelihood is chosen among the fits to

calculate the BIC for each of the four mixtures of MCMP1 models summarized in

Table 2.3.

When comparing the BIC values of the estimated mixtures having either Pois-

son or negative binomial components, the results in Table 2.3 show that the two-

component models are the best. However, when comparing those along with all of

the mixtures of MCMP1s, we see that the three-component mixture of MCMP1 has

the smallest BIC, which is indicated in boldface. In fact, form ∈ {2, 3, 4} components,

Table 2.3: BIC values for mixtures of Poissons, mixtures of negative binomials
(NBs), and mixtures of MCMP1s fitted to the dog death data

BIC

m Poissons NBs MCMP1s

1 33994.3019 32844.9115 32403.3754
2 31432.6595 31435.9771 31284.1782
3 31449.9429 31461.8959 31194.9380
4 31467.2277 31483.4729 31205.8337
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the Poisson mixtures are better than the respective negative binomial mixtures. The

negative binomial does a good job characterizing over-dispersion in data, so having

a mixture of Poissons perform better than a mixture of negative binomials is indica-

tive that the components are either (mostly) exhibiting equi-dispersion or, possibly,

under-dispersion. In this case, the fact that the mixture of MCMP1s is the best

according to the BIC values is indicative that the data is demonstrating the latter.

We next visualize the results for the three-component mixture fits. Figure 2.2 is

a histogram of the dog mortality data (in years at time of death), with the estimated

three-component mixture of MCMP1s (solid line), negative binomials (dotted line),

and Poissons (dashed line). Note that while these are discrete distributions and,

thus, supported on N, we have connected the estimated mass values so as to more

easily discern the shapes of the different mixture model fits. The negative binomial

and Poisson mixtures are practically overlaid on top of one another. Their second

component (where the peak appears at an age of 12 years) appears to exhibit some

lack of fit as the shape is shifted to the left of the raw data in this part of the histogram.

In contrast, the MCMP1 mixture appears to do much better at capturing the shape

of the histogram, including the presence of a third component starting to emerge

Figure 2.2: Histogram of the observed dog death ages of Lewis et al. (2018) and
the fits for the three-component mixtures of MCMP1s (solid line), negative binomials
(dotted line), and Poissons (dashed line)
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around a value of 8 years. This is further illustrated by the parameter estimates

for these three models, which are given in Table 2.4. For the estimated Poisson

and negative binomial mixture models, the second and third components effectively

have the same means, which underscores the inability of these two models to be

able to clearly distinguish the presence of a third component. Moreover, the mixture

of MCMP1 model picks up three components, each with quite different dispersions:

1.8, 0.7, and 2.7. Meanwhile, the negative binomial mixture only discerns an over-

dispersed component with a dispersion estimate of 5.9, but the other two components

are effectively equi-dispersed due to their extremely large dispersion estimates. This

results in the variance being approximately equal to the mean in each of the two

components.

Table 2.4: The estimated mixing proportions (π̂j), means (µ̂j), and dispersions
(α̂j, ν̂j), j = 1, 2, 3, for the estimated three-component mixtures of MCMP1s, negative
binomials (NBs), and Poissons

π̂j µ̂j α̂j (NB), ν̂j (MCMP1)

Component j 1 2 3 1 2 3 1 2 3

Poisson 0.13 0.43 0.44 2.54 10.73 10.73 — — —
NB 0.14 0.43 0.43 2.98 10.80 10.82 5.9 156338 157683

MCMP1 0.06 0.48 0.46 1.42 8.28 12.34 1.8 0.7 2.7

We next provide more specific interpretations as they pertain to the estimated

mixture of MCMP1s model. The corresponding parameter estimates are given (again)

in Table 2.5, but this time also with estimated standard errors. From these results,

we can state that approximately 6.5% of the dogs in this survey belong to the first

component, which has the smallest mean estimate of 1.42 years at the time of death.

This component likely consists of dogs coming from a wide array of breeds, but where

they died as puppies or in young adulthood due to various life-ending congenital

abnormalities or possible accidents. Next, we can state that approximately 47.83% of

the dogs in this survey belong to the second component, which has a mean estimate
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of 8.28 years. This component is likely comprised of mostly larger-breed dogs, which

typically have shorter lifespans. Finally, we can state that 45.67% of the dogs in

this survey belong to the third component, which has the largest mean estimate

of 12.34 years at the time of death. This component is likely comprised of mostly

smaller-breed dogs, which often have longer lifespans. As briefly mentioned earlier,

these components show distinct dispersion behavior, with estimates 1.8, 0.7, and

2.7, respectively. In the MCMP1 distribution, this means that the first and third

components exhibit under-dispersion (as they are greater than 1), while the second

component exhibits over-dispersion (as it is less than 1).

In Table 2.5, we also provide estimated standard errors for each of the param-

eter estimates. We estimated the standard errors using both the traditional non-

parametric and parametric bootstrap. For both approaches, we drew B = 1000

bootstrap samples. For each bootstrap sample, we set the starting values of our EM

algorithm to the parameter estimates that are reported in Table 2.5. Both bootstraps

yield similar standard errors for a given parameter estimate, which are much smaller

in magnitude comparing to their corresponding estimates. Of particular note is that

the intervals of µ̂j ± (3× ŜE(µ̂j)), j = 1, 2, 3, do not overlap, thus indicating that the

means of the components are (significantly) different.

Table 2.5: The parameter estimates for the three-component mixture of MCMP1s
as also reported in Table 2.4, as well as their estimated standard errors (ŜEs) in
parentheses, which are calculated using a parametric (left of the slash) and non-
parametric (right of the slash) bootstrap

Component j π̂j

(
ŜE(π̂j)

)
µ̂j

(
ŜE(µ̂j)

)
ν̂j

(
ŜE(ν̂j)

)
1 0.0650 (0.0093/0.0097) 1.4202 (0.2147/0.2201) 1.8 (0.3399/0.2456)
2 0.4783 (0.0194/0.0218) 8.2765 (0.2605/0.2800) 0.7 (0.0467/0.0512)
3 0.4567 (0.0231/0.0266) 12.3432 (0.0791/0.0651) 2.7 (0.1222/0.0150)

As noted earlier, this survey data consists of 179 unique breeds as recognized

by The Kennel Club in the United Kingdom. Given that domestic dogs are quite
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diverse with large variation among breeds, the MCMP1 mixture provides a potential

tool to classify the dogs according to their lifespans, which in this dataset consists of

those with a short lifespan (1.42 years), medium lifespan (8.28 years), or long lifespan

(12.34 years). Beyond considering all breeds as a whole, the statistics we cited for

the components provide a more nuanced view about the lifespan of dogs that are

registered with The Kennel Club.

2.7 Discussion

The CMP distribution is a flexible generalization of the Poisson distribution, and has

seen a resurgence in popularity over about the past 20 years [see, for example, the

references within the text by Sellers (2023)]. One possible impediment to the wider

use of the classic CMP model in practice is the inability to directly model the mean

of the distribution. Huang (2017) remedied this issue by introducing the MCMP1

distribution, which was used in our work.

One setting where there is scant treatment of CMP distributions is in the context

of mixture modeling. Specifically, such a model can allow discrete data for a particular

application to be comprised of subpopulations, each possibly having varying degrees

of dispersion. As we noted, the only relevant mixture model to our knowledge appears

in Sur et al. (2015). However, that work only addresses a two-component mixture

of truncated CMPs for the purpose of characterizing the datasets presented in that

work, all of which are truncated below at t = 1. Moreover, those authors did not

present estimated standard errors for their estimates, which we addressed through

bootstrapping. Overall, our work fills the gap of having a more general finite mixture

model with components that are (mean-parameterized) CMP distributions.

We also developed an EM algorithm for estimating our finite mixture of MCMP1

models. This algorithm was employed in the extensive numerical study of Sect.

2.5. These results not only showed the excellent performance of our algorithm for
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estimating our proposed mixture model, but we also demonstrated its relative com-

petitiveness, and in certain cases superiority, when modeling data that arise as a

mixture of discrete distributions with varying degrees of dispersion. This was fur-

ther demonstrated in the analysis of the dog mortality data of Sect. 2.6, where we

identified three possible subpopulations in the dataset, and also showed that the

MCMP1 mixture model is better (in terms of its BIC value) than the Poisson and

negative binomial mixture models. Thus, our mixture of MCMP1 model contributes

a meaningful extension to the flexible class of CMP-based models.

One limitation with what we presented is that our model is only for the univari-

ate setting. We are currently developing the regression extension of our model to

incorporate covariates. Specifically, using a GLM framework, we can model each of

the component parameters, µj, νj, and πj, as a function of covariates. This could

be done by using a log link for µj and νj, and a logit link for πj. Of course, one

big issue here will be to investigate identifiability of such a generalized mixture of

MCMP1 regressions model. We expect to have results and computational routines

for this research to present in the near future.

2.8 Appendix A: ML Estimators of Mean-Parameterized CMP Distribu-

tion

Following the work of Huang (2017), this appendix gives the derivations of the max-

imum likelihood estimators (MLEs) for µ and ν in the MCMP1 distribution (2.4).

We first note that the normalizing constant Z(λ, ν) in the CMP density function

(2.4) is a function of λ and ν, so the partial derivatives of Z(λ, ν) are required in the

derivation of the MLEs for µ and ν in the MCMP1 distribution. Taking the partial
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derivative of Z(λ, ν) with respect to λ, we have

∂Z(λ, ν)

∂λ
=

∞∑
y=0

yλ(y−1)

(y!)ν

=
1

λ

∞∑
y=0

yλy

(y!)ν

=
µZ(λ, ν)

λ
.

Then, taking the partial derivative of Z(λ, ν) with respect to ν, we have

∂Z(λ, ν)

∂ν
= −

∞∑
y=0

λy

(y!)ν
log(y!).

Accordingly,

− 1

Z(λ, ν)

∂Z(λ, ν)

∂ν
=

∞∑
y=0

1

Z(λ, ν)

λy

(y!)ν
log(y!)

= E[log(Y !)].

Now, let Y1, . . . , Yn be iid MCMP1 random variables with corresponding realiza-

tions y1, . . . , yn. The loglikelihood function is then given by

ℓ(µ, ν) ≡ ℓ =
n∑

i=1

{
yilogλ(µ, ν)− νlog(yi!)− logZ(λ(µ, ν), ν)

}
. (A1)

When reparameterizing the CMP distribution using its mean µ and dispersion ν,

the original rate parameter λ in Eq. (2.5) is considered as a function of µ and ν. The

following partial derivatives are required in the derivation of the MLEs for µ and ν.

First, taking the partial derivative on both sides of Eq. (2.5) with respect to µ, we
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have

0 =
∞∑
y=0

{
− λ(µ, ν)y

(y!)ν
+ (y − µ)

yλ(µ, ν)(y−1) ∂λ(µ,ν)
∂µ

(y!)ν

}
= −

∞∑
y=0

λ(µ, ν)y

(y!)ν
+

∂λ(µ, ν)

∂µ

∞∑
y=0

(y − µ)y
λ(µ, ν)(y−1)

(y!)ν

= −Z(λ(µ, ν), ν) +
1

λ(µ, ν)

∂λ(µ, ν)

∂µ

∞∑
y=0

(y − µ)y
λ(µ, ν)y

(y!)ν

= −Z(λ(µ, ν), ν) +
1

λ(µ, ν)

∂λ(µ, ν)

∂µ
Z(λ(µ, ν), ν)

∞∑
y=0

(y − µ)y
λ(µ, ν)y

(y!)ν
1

Z(λ(µ, ν), ν)

= −Z(λ(µ, ν), ν) +
1

λ(µ, ν)

∂λ(µ, ν)

∂µ
Z(λ(µ, ν), ν)E[(Y − µ)Y ]

= −Z(λ(µ, ν), ν) +
1

λ(µ, ν)

∂λ(µ, ν)

∂µ
Z(λ(µ, ν), ν)V (Y )

⇒ ∂λ(µ, ν)

∂µ
=

λ(µ, ν)

V (Y )
,

where V (Y ) = E[(Y − µ)Y ] is the variance of the CMP distribution. Second, taking

the partial derivative on both sides of Eq. (2.5) with respect to ν, we have

0 =
∞∑
y=0

(y − µ)
yλ(µ, ν)(y−1)∂λ(µ, ν)

∂ν
(y!)ν − λ(µ, ν)y(y!)ν log(y!)

(y!)2ν

=
1

λ(µ, ν)

∂λ(µ, ν)

∂ν

∞∑
y=0

(y − µ)y
λ(µ, ν)y

(y!)ν
−

∞∑
y=0

(y − µ)log(y!)
λ(µ, ν)y

(y!)ν

=
1

λ(µ, ν)

∂λ(µ, ν)

∂ν
Z(λ(µ, ν), ν)E[(Y − µ)Y ]−Z(λ(µ, ν), ν)E[(Y − µ)log(Y !)]

=
1

λ(µ, ν)

∂λ(µ, ν)

∂ν
Z(λ(µ, ν), ν)V (Y )−Z(λ(µ, ν), ν)E[(Y − µ)log(Y !)]

⇒ ∂λ(µ, ν)

∂ν
=

λ(µ, ν)

V (Y )
E[(Y − µ)log(Y !)].

To find the MLE for µ, first take the partial derivative of (A1) with respect to µ
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and set it equal to zero:

∂ℓ

∂µ
=

∂ℓ

∂λ(µ, ν)

∂λ(µ, ν)

∂µ

=
n∑

i=1

{ yi
λ(µ, ν)

− 1

Z(λ(µ, ν), ν)

∂Z(λ(µ, ν), ν)

∂λ(µ, ν)

}∂λ(µ, ν)
∂µ

=
n∑

i=1

{ yi
λ(µ, ν)

− 1

Z(λ(µ, ν), ν)

µZ(λ(µ, ν), ν)

λ(µ, ν)

}λ(µ, ν)
V (Y )

=

n∑
i=1

yi − nµ

V (Y )

set
= 0.

Then, it immediately follows that the MLE µ̂ is solved as the mean of the observed

sample; i.e.,

µ̂ =
1

n

n∑
i=1

yi. (A2)

To find the MLE for ν, we again take the first partial derivative of (A1), but with

respect to ν and set it equal to zero:

∂ℓ

∂ν
=

n∑
i=1

{
yi

λ(µ, ν)

∂λ(µ, ν)

∂ν
− log(yi!)−

1

Z(λ(µ, ν), ν)

∂Z(λ(µ, ν), ν)

∂ν

}
=

n∑
i=1

{
(yi − µ)

λ(µ, ν)

λ(µ, ν)

V (Y )
E[(Y − µ)log(Y !)]− log(yi!) + E[log(Y !)]

}
=

n∑
i=1

{
(yi − µ)

V (Y )
E[(Y − µ)log(Y !)]− log(yi!) + E[log(Y !)]

}
set
= 0.

Then, the MLE ν̂ is found as the solution that satisfies

E[Y log(Y !)]− µE[log(Y !)]

V (Y )
(

n∑
i=1

yi − nµ)−
n∑

i=1

log(yi!) + nE[log(Y !)] = 0, (A3)

which requires use of a numerical routine.
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2.9 Appendix B: Additional Figures and Numerical Results

In this supplementary file, we provide flowcharts and additional results for the sim-

ulation study conducted in Section 2.5 of the main text as well as additional results

for the analysis of the dog mortality data in Section 2.6.

(a)

(b)

Figure S1: Flowcharts for (a) the numerical study about parameter estimates in
Section 2.5.1 and (b) the model selection study in Section 2.5.2
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(a) (b)

(c) (d)

Figure S2: Mass functions for the mixtures of MCMP1 models for (a) Case I, (b)
Case II, (c) Case III, and (d) Case IV, as defined in the main text
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(a) (b)

(c) (d)

Figure S3: Simulated datasets from each two-component mixture of MCMP1 model
used in the model selection study in the main text. The fitted two-component mixture
of MCMP1s (solid line), two-component mixture of negative binomials (dotted line),
and two-component mixture of Poissons (dashed line) are each overlaid.
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Table S1: Loglikelihood and AIC values for mixtures of Poissons, mixtures of neg-
ative binomials, and mixtures of MCMP1s fitted to the dog death data

Loglikelihood AIC

m Poissons NBs MCMP1s Poissons NBs MCMP1s

1 -16992.8301 -16413.8141 -16193.0460 33987.6602 31396.7685 32390.0919
2 -15703.3672 -15696.3843 -15620.4848 31412.7344 31402.7686 31250.9696
3 -15703.3672 -15696.3811 -15562.9022 31416.7343 31408.7623 31141.8043
4 -15703.3679 -15694.2071 -15555.3874 31420.7343 31410.4141 31132.7749

2.10 Appendix C: R Code for EM Algorithm in Section 2.4

cmp.mixEM <- function(x, k=k,

mu=NULL, nu=NULL, Pi=NULL,

nu.star=seq(0.1,10,0.1),

eps=1e-6, maxit=1000){

## initial data

x <- sort(x) # count data

n <- length(x) # n sample size; k components

## initial parameters

if (is.null(mu)) mu <- sort(as.vector(kmeans(x,k)$centers)) # k means

if (is.null(nu)) nu <- rep(1,k)

if (is.null(Pi)) Pi <- rep(1/k,k)

## initial observations in columns

x.k <- matrix(nrow=n, ncol=k)

for (i in 1:k) {

x.k[,i] <- pmf(x,mu[i],nu[i])

}

## observed loglikelihood

obs.ll <- sum(log(rowSums(t(t(x.k)*Pi))))

## iteration to update the parameters

iter <- 0

dif <- 1

# output

out <- c(Pi,mu,nu,obs.ll,iter)
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while(iter < maxit && dif > eps){

## update parameters

z.t <- t(t(x.k)*Pi) / rowSums(t(t(x.k)*Pi))

pi <- colMeans(z.t)

for (i in 1:k) {

mu[i] <- weighted.mean(x,z.t[,i])

nu[i] <- nu.fun(x,z.t[,i],mu[i],nu=nu.star)

}

## update observations

for (i in 1:k) {

x.k[,i] <- pmf(x,mu[i],nu[i])

}

new.obs.ll <- sum(log(rowSums(t(t(x.k)*Pi))))

dif <- abs(new.obs.ll-obs.ll)

print(dif)

obs.ll <- new.obs.ll

print(iter)

iter <- iter+1

# output dataframe

out <- rbind(out,c(Pi,mu,nu,new.obs.ll,iter))

}

colnames(out) <- c(paste("Pi",1:k,sep=""),

paste("mu",1:k,sep=""),

paste("nu",1:k,sep=""),"ll","iter")

return(out)

}

Copyright© Dongying Zhan, 2023.
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Chapter 3 Finite Mixtures of Mean-Parameterized

Conway-Maxwell-Poisson Regressions

3.1 Introduction

The Poisson distribution is, perhaps, the most widely used discrete distribution for

the modeling of count data. However, the Poisson distribution has its mean equal

to its variance (i.e., equi-dispersion), which limits its usage if the underlying data

are, in fact, dispersed. The negative binomial distribution, with the form being

parameterized as a Poisson-gamma mixture distribution such that it is characterized

with the Poisson mean parameter and the gamma shape parameter (called the type II

negative binomial, or NB2, by Hilbe 2011), is typically very effective in characterizing

over-dispersion (i.e., variance is greater than its mean). Another popular and flexible

discrete distribution is the Conway-Maxwell-Poisson distribution, which generalizes

the Poisson distribution by introducing a dispersion parameter to address both data

over-dispersion and under-dispersion (i.e., variance is less than its mean).

The CMP distribution was initially proposed by Conway and Maxwell (1961) as

a queuing model with state-dependent service rates. It replaces the Poisson rate

parameter with a generalized form: λ = E[Y ν ] > 0, where ν ≥ 0 is a dispersion

parameter. The classic CMP distribution is a member of the exponential family, and

a CMP random variable Y has probability mass function (pmf) given by

P(Y = y | λ, ν) = λy

(y!)ν
1

Z(λ, ν)
, y = 0, 1, 2, . . . , (3.1)

where Z(λ, ν) =
∞∑
y=0

λy

(y!)ν
is a normalizing constant that guarantees the pmf sums

to unity. For the dispersion parameter, ν = 1 yields a Poisson distribution, ν < 1

indicates over-dispersion, and ν > 1 indicates under-dispersion. The lack of proba-
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bilistic and statistical characterization restricted mainstream application of the CMP

for decades after its introduction. However, Shmueli et al. (2005) revived the CMP

distribution with an extensive investigation into the distribution, which has made it

an increasingly appealing model amongst statisticians and practitioners. Yet, unlike

the Poisson distribution, the mean parameter λ neither has its ability to specify the

distribution mean, nor locate the center of the distribution. Particularly, λ and ν do

not have closed-form solutions when estimating the model parameters. A contem-

porary treatment about the CMP distribution is given in the text by Sellers (2023),

which presents common acronyms for various CMP distributions that we use in the

present paper.

Various reparameterizations have been employed to transform the CMP distribu-

tion into a form that is more convenient for application and to provide more direct

interpretation. Specifically, these reparameterizations attempt to locate the center of

the distribution. Guikema and Coffelt (2008) was the first work to reparameterize the

CMP distribution by taking µ⋆ = λ1/ν as the center, thus yielding an approximated

CMP (ACMP). Ribeiro et al. (2020) used the approximated mean µ ≈ λ1/ν − ν−1
2ν

to reparameterize the CMP distribution (MCMP2), which is accurate when ν ≤ 1

and λ1/ν > 10 (Shmueli et al. 2005). Note that these parameterizations are based on

approximations, and especially the latter is only applicable to over- or equi-dispersed

data according to the accuracy of ν. Thus, this effectively prevents the ability of such

a reparameterized CMP model to handle under-dispersion.

Another parameterization is the mean-parameterized CMP distribution

(MCMP1) proposed by Huang (2017), which is characterized by the mean pa-

rameter µ ≥ 0 and dispersion parameter ν ≥ 0. The MCMP1 distribution has

pmf

P(Y = y | µ, ν) = λ(µ, ν)y

(y!)ν
1

Z(λ(µ, ν), ν)
, y = 0, 1, 2, . . . , (3.2)

where the rate parameter λ(µ, ν) in the original CMP distribution is regarded as a
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function of µ and ν, and is found by solving

∞∑
y=0

(y − µ)
λ(µ, ν)y

(y!)ν
= 0. (3.3)

The appeal of the MCMP1 is that it uses the true mean of the distribution for

parameterization, so not only is the mean accurate for the entire parameter space

and to denote the center, but the dispersion parameters are comparable across a

variety of CMP distributions with the same µ (Huang 2017).

While observed count data often exhibit some degree of dispersion, the population

from which the data are drawn may also consist of subpopulations. If there is, indeed,

such a latent variable that can account for these subpopulations, then analyzing the

data with a single, common distribution would not be appropriate. Instead, the use of

a finite mixture model would provide a proper way to characterize the heterogeneity

due to the latent subpopulations as well as identify distinct components for statistical

analysis. We say that a random variable Y follows a mixture distribution withm ∈ N+

components if it has the mixture density

g(y;Ψ) =
m∑
j=1

πjfj(y;θj), (3.4)

where the πjs are mixing proportions that satisfy 0 ≤ πj ≤ 1, j = 1, . . . ,m and∑m
j=1 πj = 1. Here, the fjs are component-specific density (or mass) functions with

θj ∈ Θj ⊆ Rq, where Θj is open in Rq. The mixture density in (3.4) is then

parameterized by Ψ =
(
π1, . . . , πm−1,θ

T
1 , . . . ,θ

T
m

)T
. Note that the fj are typically

from the same parametric distribution (e.g., Gaussian or Poisson), so the j index on

fj will often be suppressed in (3.4).

Finite mixture models have been developed for a vast array of data structures

as well as applied to numerous diverse applications; see, for example, the texts by

Lindsay (1995), McLachlan and Peel (2000), and Frühwirth-Schnatter (2006). One
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class of mixture models that has a considerable body of literature is mixtures of linear

regressions. The mixture of linear regressions problem has been extensively studied

in the econometrics literature, where it was first introduced by Quandt (1972) as the

switching regressions, or switching regimes, problem. Since then, many authors have

addressed various inference considerations involving mixtures of linear regressions, as

well as proposed flexible extensions to those models; cf. DeVeaux (1989), Viele and

Tong (2002), Hurn et al. (2003), and Young and Hunter (2010). When the response

variable is counts, then the components can be estimated via generalized linear models

(GLMs). For example, mixtures of Poisson regressions have been applied in quality

control to model the number of faults in a bolt of fabric (Aitken 1996) and in molecular

biology to analyze high-throughput sequencing of RNA (Papastamoulis et al. 2016).

Finite mixtures of binomial regressions were used to model the number of credits

gained by freshmen during the first year at the School of Economics of the University

of Florence (Grilli et al. 2015).

In mixture modeling of count data, it may be desirable to reflect varying degrees of

dispersion across the components. Such a setting would suggest using a CMP distri-

bution for the component distributions. However, there has been limited treatment of

mixtures of CMP models. For example, Sur et al. (2015) developed a two-component

mixture of truncated CMPs to analyze two datasets: the number of days spent in

a hospital and Likert scale data for online ratings of a particular hotel. Zhan and

Young (2023a) developed a general m-component mixture of MCMP1s, which was

shown to be effective for analyzing a dog mortality dataset. However, neither of these

models reflected dependency of the components on covariates. The present work fills

that gap by developing mixtures of MCMP1 regressions.

The rest of this paper is organized as follows. In Sect. 3.2, we formally define the

finite mixture of MCMCP1 regressions model. In Sect. 3.3, we provide the details

for performing maximum likelihood estimation of this model via an expectation-
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maximization (EM) algorithm (Dempster et al. 1977). In Sect. 3.4, we present the

results from the simulation study for parameter estimation and model comparison.

In Sect. 3.5, we apply our model to analyze data on the spread of a viral infection in

potato plants by aphids. We end with a brief discussion in Sect. 3.6.

3.2 Mixtures of MCMP1 Regressions Model

In this section, we develop an m-component mixture of MCMP1 regressions model

for the conditional distribution of Y |X. Here, Y ∈ N is the discrete (count) response

variable, and X = (X1, . . . , Xp)
T ∈ Rp is a p-dimensional covariate vector. The mean

parameters for the components are µj, j = 1, . . . ,m, which are modeled as a function

of the covariates via a log link function (see Huang 2017 for the non-mixture setting)

as

µj = exp(xTβj), (3.5)

where x = (x0, x1, . . . , xp)
T and βj = (β0j, β1j, . . . , βpj)

T. Here, x0 = 1 so as to

allow for modeling with an intercept. Therefore, the β0js are the intercept of the jth

component regression and the β1j, . . . , βpj are the coefficients for the corresponding

covariates within the jth component regression.

Following the general mixture density given in (3.4), the m-component mixture

of MCMP1 regressions model for Y |X has the mixture density

g(y;x,Ψ) =
m∑
j=1

πj

λ(exp(xTβj), νj)
y

(y!)νj
1

Z(λ(exp(xTβj), νj), νj)
, (3.6)

where the parameter vector is

Ψ =
(
π1, . . . , πm−1,β

T
1 , . . . ,β

T
m, ν1, . . . , νm

)T
.

Here, the πjs are, again, the mixing proportion for each component. The νjs are
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dispersion parameters, where it is assumed the data points in the same component

follow this degree of dispersion.

3.3 EM Algorithm for Maximum Likelihood Estimation

In this section, we develop an EM algorithm to perform maximum likelihood esti-

mation on the mixture of MCMP1 regressions model. Given a set of independent

count observations y1, . . . , yn from the model in (3.6), measured with corresponding

covariates x1, . . . ,xn, the likelihood for the MCMP1 regression mixture model is

Lo(Ψ;y,X) =
n∏

i=1

m∏
j=1

πj

λ(exp(xi
Tβj), νj)

yi

(yi!)νj
1

Z(λ(exp(xi
Tβj), νj), νj)

, (3.7)

where the subscript “o” is used to denote the observed data. Here, y and X are

used to denote, respectively, the yis and xis, i = 1, . . . , n. As is typical with max-

imum likelihood estimation of mixture models, the likelihood in (3.7) is difficult to

directly optimize. To make optimization tractable, we begin by noting that the

observations y are considered incomplete, because their corresponding component

labels are not observed, i.e., they are missing. To make the data complete, we de-

fine the indicator variables Zij ∼ Bern(πj) to be the (unobserved) component label

for observation i; specifically, Zij = I{if observation i is from component j}. Letting

Zi = (Zi1, . . . , Zim)
T, it follows that

Z1, . . . ,Zn
iid∼ Multm(1, {π1, ..., πm}), (3.8)

where Multm(·, ·) denotes the multinomial distribution with m categories. Note that

there is a distinct use of Z as an indicator variable to represent the latent component

membership, while Z(·) is used as the normalizing constant in CMP pmfs. The use of

“Z” is standard in both contexts [see McLachlan and Krishnan (2007) for the usage
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in EM algorithms and Sellers (2023) for the usage in CMP modeling], which is why

we have used slightly different formatting with these quantities to avoid an abuse of

notation.

The complete data are, thus, (yi,xi,Zi), which yields the likelihood

Lc(Ψ) =
n∏

i=1

m∏
j=1

{
πj

λ(exp(xi
Tβj), νj)

yi

(yi!)νj
1

Z(λ(exp(xi
Tβj), νj), νj)

}Zij

. (3.9)

Here, the subscript “c” is used to denote the complete data. The complete data

loglikelihood is thus

ℓc(Ψ) =
n∑

i=1

m∑
j=1

Zij

{
logπj + log

(
λ(exp(xi

Tβj), νj)
yi

(yi!)νjZ(λ(exp(xi
Tβj), νj), νj)

)}
. (3.10)

Since the Zis are unknown, we use an EM algorithm to produce maximum likelihood

estimation under the complete-data setup.

E-Step Given the parameters Ψ(t) at the tth iteration, t = 0, 1, 2, ..., where t = 0 is

used to denote the step where initial values are supplied, the expectation of ℓc(Ψ),

conditioned on the observed data is computed as

Q(Ψ;Ψ(t)) = EΨ(t) [ℓc(Ψ)|y,X]

=
n∑

i=1

m∑
j=1

z
(t)
ij

{
logπj + log

(
λ(exp(xi

Tβj), νj)
yi

(yi!)νjZ(λ(exp(xi
Tβj), νj), νj)

)}
.

(3.11)

The above expression depends on z
(t)
ij , which are referred to as posterior membership

probabilities. These arise by noting that Zij is independent of Yi′ for all i ̸= i′. Since

EΨ(t) is a linear functional, we may replace Zij by EΨ[Zij | Yi = yi], which when
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provided the estimate Ψ(t) yields

z
(t)
ij =

π
(t)
j

 λ(exp(xi
Tβ

(t)
j )ij, ν

(t)
j )yi

(yi!)
ν
(t)
j Z(λ(exp(xi

Tβ
(t)
j )ij, ν

(t)
j ), ν

(t)
j )


∑n

i=1

∑m
k=1 π

(t)
k

(
λ(exp(xi

Tβ
(t)
j )ik, ν

(t)
k )yi

(yi!)ν
(t)
k Z(λ(exp(xi

Tβ
(t)
j )ik, ν

(t)
k ), ν

(t)
k )

) . (3.12)

M-Step The maximization of Q(Ψ;Ψ(t)) with respect to Ψ gives the updated es-

timates Ψ(t+1). First, through the direct use of a Lagrange multiplier, the updated

mixing proportions are derived as

∂Q(Ψ;Ψ(t))

∂πj

set
= 0 ⇒ π

(t+1)
j =

∑n
i=1 z

(t)
ij

n
, (3.13)

which is straightforward to compute as the average of the posterior membership prob-

abilities of the observations belonging to the jth component. The updated regression

parameters βj for component j can be obtained by solving

∂Q(Ψ;Ψ(t))

∂βj

=
∂Q(Ψ;Ψ(t))

∂λij

∂λij

∂µij

∂µij

∂βj

= zij
yi − µij

λij

xiexp(x
T
i βj)

set
= 0, (3.14)

where, note, that µij = exp(xT
i βj) and the chain rule has been invoked. Finally, the

updated dispersion parameter νj for component j can be obtained by solving

∂Q(Ψ;Ψ(t))

∂νj
=

n∑
i=1

zij
{
−log(yi!) + E(λij ,νj)[log(Yi!)]

} set
= 0. (3.15)

In the M-step, estimates for the βjs and νjs require us to jointly solve (3.14)

and (3.15). The R package nloptr (Johnson, 2014) is applied to solve the nonlinear
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functions, where Q(Ψ;Ψ(t)) is the objective function for optimization. We set the βjs

and νjs, along with the original rate parameters λijs, as unknowns. µij = exp(xi
Tβj)

is set as the constraint functions. We must also specify bounds for the unknown

parameters when using the nloptr() function, which we set as βj ∈ Rq, νj ∈ [0.5, 10],

and λij ∈ [0.1, 200]. The bounded support for the λj and νj parameters are necessary

for the nloptr() function to converge to reasonable estimates. Sur et al. (2015) show

in their appendix that the CMP distribution tends to degenerate when ν is less than

0.5 or larger than 10. Also, λij ∈ [0.1, 200] are often reasonable for a CMP distribution

as the count model is being fit to data that typically do not exhibit large count values.

The gradients of the objective and constraint functions are formulated with respect

to the βjs, νjs, and λijs separately. The global and local algorithm NLOPT LD SLSQP

is chosen for the optimization process, which is used when maximizing the objective

function Q(Ψ;Ψ(t)) to yield the updated β
(t+1)
j s and ν

(t+1)
j s.

The initial values impact the performance of EM algorithms when trying to find

a maximum likelihood solution for a mixture model. Granted, this can vary greatly

depending on the complexity of the model. Different strategies can be employed to

find the best solution of the model; see, for example, Chapter 2 of McLachlan and

Peel (2000). It is no different for the mixtures of MCMP1 regressions in this work.

We adopted a straightforward strategy of using the βjs from mixtures of Poisson

regressions as starting values for the βjs when estimating a mixture of MCMP1

regressions model. The initial βjs are the best among 100 fits of Poisson regression

mixtures that were determined using the R package flexmix (Leisch 2004). This

strategy makes sense because of the MCMP1 distribution being a generalization of

the Poisson distribution. Generally, the estimated component means for a mixture of

MCMP1 regressions will be close to the corresponding estimated component means

if fitting a mixture of Poisson regressions. The initial mixing proportions are simply

set at 1/m and the initial dispersion values are all set equal to 1.
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The observed loglikelihood values at subsequent iterations are used to determine

the convergence of our EM algorithm. The EM algorithm terminates when the crite-

rion ℓo(Ψ
(t+1))− ℓo(Ψ

(t)) < ϵ satisfied for some small fixed ϵ > 0. Since the MCMP1

distribution does not change the CMP density, it is still from the exponential family

(Huang 2017). Therefore the estimates always converge (Wu 1983).

3.4 Simulation Study

In this section, we use simulated data to evaluate the proposed mixture of MCMP1

regressions model and the EM algorithm. The discrete response variable is related to

a continuous covariate and is simulated according to mixture of MCMP1 regressions.

Models with two or three components are investigated, along with different sample

sizes. The simulated data from the two-component model are also compared to

estimates obtained from two-component mixtures of Poisson regressions and two-

component mixtures of negative binomial regressions.

3.4.1 Parameter Estimates

For our simulation study, we only assume a single covariate x, which is set at equally-

spaced values over the range [0, 5]. The response variable y is simulated from a two-

component mixture of MCMP1 regressions using the parameters specified in Table

3.1 and a three-component mixture of MCMP1 regressions in Table 3.2. Parameter

combinations were selected to yield two settings: one where data from the different

components are close to each other and one where data from the different components

are more separated. Datasets of sample sizes n ∈ {50, 100, 200} for each mixture

model were generated.

To help visualize a typical sample generated under the different mixtures of

MCMP1 regressions models under consideration, we provide figures for a simulated

dataset of size n = 100 along with the true component conditional means from these
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models. Figure 3.1 shows a typical sample from the two-component models using the

parameters given in Table 3.1. The sample points are overlaid with the true regression

lines in the same color for two close components in Figure 3.1a and two well-separated

separated components in Figure 3.1b. For the case of two close components, the re-

gression parameters for the components are β1 = (0.5, 0.3)T and β2 = (0.1, 0.1)T.

The mixing proportion parameters are (π, 1 − π) = (0.3, 0.7), and the dispersion

parameters are (ν1, ν2) = (0.8, 1.2) for the two components. For the case of two sep-

arate components, the analogous parameters are β1 = (2.5, 0.3)T, β2 = (0.1, 0.1)T,

(π, 1− π) = (0.3, 0.7), and (ν1, ν2) = (0.8, 1.2).

(a) (b)

Figure 3.1: Monte Carlo samples (n = 100) consisting of two components overlaid
with the conditional mean lines using the true parameters

Figure 3.2 shows a typical sample from the three-component models using the

parameters given in Table 3.2. The sample points from different components are

overlaid with the true regression lines in the same color. Figure 3.2a shows the

setting with three close components, where the regression parameters for the com-

ponents are β1 = (1, 0.3)T, β2 = (0.5, 0.3)T, and β3 = (0.1, 0.1)T. The corre-

sponding mixing proportion parameters are (π1, π2, 1 − π1 − π2) = (0.2, 0.3, 0.5)

and the dispersion parameters are (ν1, ν2, ν3) = (0.8, 1, 1.2). Figure 3.2b shows the

setting with three well-separated components. Here, the analogous parameters are
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β1 = (2.5, 0.3)T, β2 = (1.8, 0.3)T, β3 = (0.1, 0.1)T, (π1, π2, 1−π1−π2) = (0.2, 0.3, 0.5),

and (ν1, ν2, ν3) = (0.8, 1, 1.2).

(a) (b)

Figure 3.2: Monte Carlo samples (n = 100) consisting of three components overlaid
with the conditional mean lines using the true parameters

When estimating the mixture models in this part of our study, we chose to use

the true βjs as the initial values to start our EM algorithm. We always set the

mixing proportions at 1/m, and the dispersion parameters at 1. We then used the

parameter estimates to assess the bias and root mean squared error (RMSE) for

each of the estimators. These calculations were based on M = 1000 Monte Carlo

samples. While sampling variability can make data generated from the underlying

mixture models challenging to estimate when n is small, the overall performance of

our approach is generally quite good in terms of the average biases and RMSEs, which

we now look at more closely.

Tables 3.1 and 3.2 summarize the bias and RMSE values of the estimates obtained

when fitting the corresponding mixture of MCMP1 regressions. In both tables, the

biases for the mixing proportions are relatively small compared to their true parame-

ters, which indicates that the proportion of contribution from each component to the

overall mixture is being accurately captured. The bias values for all of the regression

parameters in both settings are generally small, indicating overall good performance
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when estimating the conditional mean structure. The dispersion estimates tend to

have slightly larger biases and RMSEs, but still consistent on the order observed with

the other parameters. The RMSE values decrease as n increases for all estimates in

general. Overall, the results in this section indicate that our EM algorithm performs

not bad at estimating the mixtures of MCMP1 regressions models used in this study.

Table 3.1: The average biases and RMSEs from M = 1000 datasets from two-
component mixtures of MCMP1 regressions

m = 2 Close Components m = 2 Separate Components

Parameters n Bias RMSE Parameters n Bias RMSE
β01 = 0.5 50 -0.0422 0.1024 β01 = 2.5 50 -0.0233 0.0412

100 -0.0211 0.0641 100 0.0029 0.0274
200 -0.0153 0.0460 200 0.0018 0.0187

β11 = 0.3 50 -0.0121 0.0313 β11 = 0.3 50 -0.0027 0.0048
100 -0.0063 0.0206 100 0.0004 0.0032
200 -0.0047 0.0151 200 0.0002 0.0022

β02 = 0.1 50 -0.1112 0.1666 β02 = 0.1 50 -0.0498 0.0936
100 -0.1090 0.1410 100 -0.0395 0.0674
200 -0.1019 0.1246 200 -0.0319 0.0508

β12 = 0.1 50 -0.0102 0.0183 β12 = 0.1 50 -0.0049 0.0105
100 -0.0103 0.0136 100 -0.0036 0.0067
200 -0.0098 0.0120 200 -0.0031 0.0051

π1 = 0.3 50 0.0725 0.1356 π1 = 0.3 50 -0.0022 0.0647
100 0.0567 0.0970 100 -0.0039 0.0454
200 0.0457 0.0779 200 -0.0021 0.0334

π2 = 0.7 50 -0.0725 0.1356 π2 = 0.7 50 0.0022 0.0647
100 -0.0567 0.0970 100 0.0039 0.0454
200 -0.0457 0.0779 200 0.0021 0.0334

ν1 = 0.8 50 0.2632 0.2990 ν1 = 0.8 50 0.2093 0.2097
100 0.2297 0.2442 100 0.1989 0.1992
200 0.2204 0.2279 200 0.1993 0.1994

ν2 = 1.2 50 0.0329 0.3167 ν2 = 1.2 50 -0.1118 0.1839
100 0.0070 0.1892 100 -0.1336 0.1646
200 -0.0108 0.1605 200 -0.1467 0.1994
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Table 3.2: The average biases and RMSEs from M = 1000 datasets from three-
component mixtures of MCMP1 regressions

m=3 Close Components m=3 Separate Components

Parameters n Bias RMSE Parameters n Bias RMSE
β01 = 1 50 -0.0203 0.0949 β01 = 2.5 50 -0.0120 0.0441

100 -0.0014 0.0665 100 0.0101 0.0348
200 0.0061 0.0549 200 0.0109 0.0276

β11 = 0.3 50 -0.0042 0.0225 β11 = 0.3 50 -0.0013 0.0052
100 0.0001 0.0160 100 0.0012 0.0041
200 0.0018 0.0133 200 0.0013 0.0032

β02 = 0.5 50 -0.1069 0.1692 β02 = 1.8 50 0.0032 0.0492
100 -0.0935 0.1456 100 0.0030 0.0349
200 -0.0807 0.1209 200 0.0041 0.0259

β12 = 0.3 50 -0.0327 0.0505 β12 = 0.3 50 0.0006 0.0078
100 -0.0294 0.0446 100 0.0005 0.0055
200 -0.0254 0.0373 200 0.0007 0.0041

β03 = 0.1 50 -0.1110 0.1880 β02 = 0.1 50 -0.0558 0.1119
100 -0.1007 0.1644 100 -0.0413 0.0795
200 -0.1018 0.1452 200 -0.0366 0.0615

β13 = 0.1 50 -0.0096 0.0188 β12 = 0.1 50 -0.0055 0.0121
100 -0.0092 0.0153 100 -0.0040 0.0079
200 -0.0096 0.0135 200 -0.0036 0.0061

π1 = 0.2 50 0.0534 0.1213 π1 = 0.2 50 -0.0077 0.0643
100 0.0350 0.0958 100 -0.0092 0.0448
200 0.0293 0.0808 200 -0.0090 0.0321

π2 = 0.3 50 0.0420 0.1599 π2 = 0.3 50 0.0073 0.0737
100 0.0445 0.1299 100 0.0052 0.0513
200 0.0382 0.0999 200 0.0100 0.0382

π3 = 0.5 50 -0.0954 0.1581 π3 = 0.5 50 0.0005 0.0734
100 -0.0796 0.1267 100 0.0040 0.0517
200 -0.0675 0.0986 200 -0.0011 0.0361

ν1 = 0.8 50 0.2215 0.2373 ν1 = 0.8 50 0.2048 0.2055
100 0.2029 0.2111 100 0.1961 0.1965
200 0.1957 0.2012 200 0.1957 0.1960

ν2 = 1 50 0.1768 0.3028 ν2 = 1 50 -0.0014 0.0261
100 0.1501 0.2551 100 -0.0015 0.0185
200 0.1228 0.1956 200 -0.0021 0.0138

ν3 = 1.2 50 0.0583 0.3992 ν3 = 1.2 50 -0.0892 0.2300
100 0.0196 0.3198 100 -0.1255 0.1795
200 0.0057 0.2482 200 -0.1370 0.1623
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3.4.2 Model Comparison

For the second part of our simulation study, we evaluate the performance of the

mixture of MCMP1 regressions model when comparing with estimates obtained from

mixtures of Poisson regressions and mixtures of negative binomial regressions. We

simulated data from two-component mixtures of MCMP1 regressions with various

dispersion parameters, and then fit the three different mixture models. The EM

algorithm discussed in Sect. 3.3 is used for estimating the mixture of MCMP1 regres-

sions model. The flexmix() function from the flexmix package is used to estimate

the mixture of Poisson regressions model. We then wrote an EM algorithm using the

glm.nb() function from the MASS package (Venables and Ripley 2002) to estimate

the mixture of negative binomial regressions model. We estimated the mixture of

MCMP1 regressions by initializing our EM algorithm at the true parameter values.

For estimating the mixture of Poisson regressions model, we initially proceeded by

finding the best fit from among 100 random starts based on the randomization rou-

tine underlying the flexmix() function, and then used those estimates as the initial

values for the EM algorithms to estimate the other two mixture models. However,

when also initializing the algorithm using the true regression parameters and mixing

proportions used to generate the mixture of MCMP1 regressions data, this always

converged to the best solution. We further initialized our mixture of negative bino-

mial regressions EM algorithm the same way, but set the initial dispersion parameters

equal to 1.

The data generated in this section have mixing proportion parameters (π, 1−π) =

(0.3, 0.7), and regression parameters β1 = (2.5, 0.3)T and β2 = (0.1, 0.1)T. The two

components are set as separate, and as shown in Figure 3.1b. In order to investigate

how the dispersion parameters impact the model selection, we consider five cases

with a variety of dispersion parameters assigned to the two components. The five

cases have the dispersion parameters (0.6, 0.9), (0.8, 1.2), (1.4, 1.5), (2.4, 2.5), and
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(3.4, 3.5). Case 1 consists of two over-dispersed components since both dispersion

parameters are less than 1. Case 2 consists of one over-dispersed component and one

under-dispersed component. Cases 3 to 5 consist of two under-dispersed components

and have increasing degrees of under-dispersion as the parameters increase and are

greater than 1. For each case, we generated M = 1000 datasets with the same sample

sizes as in the previous study in Sect. 3.4.1.

The converged values of the observed loglikelihoods – denoted by ℓ
(∞)
o – are ob-

tained from each of the estimated mixture models. The proportion of times when the

loglikelihood from the mixture of MCMP1 regressions fit is greater than that of the

mixture of Poisson regressions fit, and is greater than that of the mixtures of negative

binomial regressions fit, are reported separately in Table 3.3. Based on this metric,

we see that the mixture of MCMP1 regressions is almost unanimously better than

the mixture of Poisson regressions for all five cases. There are only a few datasets

Table 3.3: The proportion of the loglikelihood values from mixture of MCMP1
regressions fits (ℓMCMP1s) greater than that from mixture of Poisson regressions fits
(ℓPoissons) or mixture of negative binomial regressions fits (ℓNBs) when the data were
generated from two-component mixtures of MCMP1 regressions

Case
n (ℓMCMP1s > ℓPoissons)% (ℓMCMP1s > ℓNBs)%(Dispersions)

1
(ν1 = 0.6, ν2 = 0.9)

50 0.950 0.241
100 0.965 0.072
200 0.984 0.006

2
(ν1 = 0.8, ν2 = 1.2)

50 0.952 0.607
100 0.982 0.438
200 0.970 0.350

3
(ν1 = 1.4, ν2 = 1.5)

50 0.996 0.930
100 1.000 0.967
200 1.000 0.987

4
(ν1 = 2.4, ν2 = 2.5)

50 1.000 1.000
100 1.000 1.000
200 1.000 1.000

5
(ν1 = 3.4, ν2 = 3.5)

50 1.000 1.000
100 1.000 1.000
200 1.000 1.000
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that yielded a mixture of Poisson regressions fit as better, which only occurred under

Cases 1 and 2 when over-dispersion is present. When comparing to the mixture of

negative binomial regressions fit, the mixture of MCMP1 regressions fit is better a

strong majority of the time for all five cases. In Cases 1 and 2 when over-dispersion

is present, there is a little more competitiveness between the two models, but as the

amount of under-dispersion increases in each component, the mixture of MCMP1

regressions becomes unanimously the best fit.

Although the loglikelihood comparisons shows the performance of the mixture of

MCMP1 regressions model, with notable superiority when the components are under-

dispersed, the loglikelihoods from the three different mixture models are generally

relatively close. This indicates that the three models are, perhaps, fairly comparable

in most applications. As a further comparison, the Bayesian information criterion

(BIC) values are calculated for each model. Recall that the BIC formula is −2ℓ
(∞)
o +

dlog(n), where d is the number of parameters in the model, and n is still the sample

size. dlog(n) forms the penalty term for model over-fitting. We can shift from a “best”

model narrative, as we did with the loglikelihood comparisons, and apply the notion

of BIC differences as introduced by Raftery (1995). The BIC difference provides a

level of empirical support amongst candidate models. Formally, the BIC difference is

defined as

∆BICi = BICi −min
i∗∈I

(BICi∗),

where I = {Poisson,NB,MCMP1} is a set of the three count distributions con-

sidered for the components in the mixtures of regressions models being considered.

Thus, ∆BICi is computed for each of the mixtures of Poisson regressions, mixtures

of negative binomial (NB) regressions, and mixtures of MCMP1 regressions. We use

∆BICi ≤ 10, which is a threshold guided by Table 6 of Raftery (1995). In that table,

the author states that ∆BICi > 10 is indicative of “very strong” evidence in favor

of the model with the minimum BIC. As ∆BICi decreases towards 0, the categories
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indicate weaker evidence for distinguishing the “best” model between the two being

compared.

Using the estimated models analyzed in Table 3.3, we then calculate the BIC for

each model. The proportion of times ∆BICi ≤ 10 for each candidate model is shown

in Table 3.4. A larger proportion of ∆BICi ≤ 10 demonstrates that candidate model

i is comparable to the one that is considered “best” based on the BIC values. Since

the components in a mixture of Poisson regressions model do not have a dispersion

parameter to be estimated, this gives the mixture of Poisson regressions an advantage

with BIC because the penalty will be smaller (due to fewer parameters) relative to

the penalty for the mixture of MCMP1 regressions and mixture of negative binomial

regressions. Thus, it is not surprising that a noticeably smaller penalty term is easy

to achieve for the mixture of Poisson regressions BIC value given that the loglikeli-

hood values from the three candidate models are all very close. When one or both of

Table 3.4: The proportion of times when ∆BICi < 10 for each of the candidate
mixture of regressions models when M = 1000 datasets are generated from a two-
component mixture of MCMP1 regressions model

Case
n

#(∆BICi ≤ 10)/M
(Dispersions) Poisson NB MCMP1

1
(ν1 = 0.6, ν2 = 0.9)

50 0.999 0.999 0.948
100 0.989 1.000 0.840
200 0.961 0.951 0.049

2
(ν1 = 0.8, ν2 = 1.2)

50 1.000 0.999 0.955
100 1.000 1.000 0.981
200 0.999 0.539 0.161

3
(ν1 = 1.4, ν2 = 1.5)

50 1.000 1.000 0.996
100 1.000 1.000 1.000
200 1.000 0.003 0.627

4
(ν1 = 2.4, ν2 = 2.5)

50 1.000 1.000 1.000
100 1.000 1.000 1.000
200 1.000 0.000 1.000

5
(ν1 = 3.4, ν2 = 3.5)

50 1.000 0.999 1.000
100 1.000 1.000 1.000
200 1.000 0.000 1.000
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the two components are over-dispersed (i.e., Cases 1 and 2), the mixtures of negative

binomial regressions are almost consistently the best or comparable to the best fitting

model. Based on ∆BICi ≤ 10, we see that the mixtures of MCMP1 regressions are

fairly competitive. The advantage of the mixture of MCMP1 regressions becomes

more pronounced as the two components are more under-dispersed. In particular,

Cases 3 through 5 have increasing amounts of under-dispersion, resulting in the mix-

ture of MCMP1 regressions being almost unanimously the best or comparable to the

best fitting model, whereas the other two mixture models show relatively little com-

petitiveness, especially when n = 200. Overall, these results are consistent with the

analysis provided about the loglikelihoods from these estimated models.

3.5 Application: Aphids Data

Turner (2000) presented and analyzed data from an experiment designed to inves-

tigate how green peach aphids, a highly-infectious insect for plants, spread a viral

infection among potato plants. The number of infected plants and the number of

aphids released from the flight chamber were recorded. The response is the number

of infected plants, which ranges from 0 to 27. The primary covariate is the number

of aphids released, which ranges from 0 to 320. The experiment involved a total of

n = 51 batches of aphids that were released. Turner (2000) thoroughly analyzed

these data using a two-component mixture of linear regressions, and discussed other

relevant inferential procedures in that work. Other works have also analyzed these

data in the context of mixtures of linear regressions research; cf. Grün and Leisch

(2008), Young and Hunter (2010), and Kasahara and Shimotsu (2015). However,

the response variable is actually a count, so these data should more appropriately be

analyzed using a mixture of count regressions model. Thus, we will turn to investi-

gating the fits from mixtures of MCMP1 regressions as well as mixtures of Poisson

regressions and mixtures of negative binomial regressions.

67



For each of these mixtures of count regression models, we consider m ∈ {1, 2, 3}

for the number of components. As in Sect. 3.4.2, we use the flexmix() function to

estimate the mixtures of Poisson regressions. The fit with the smallest BIC value is

chosen to represent the model among 100 random starts. The EM algorithm we wrote

using the glm.nb() function was again used to estimate the mixtures of negative bi-

nomial regressions, while the EM algorithm introduced in Sects. 3.3 and 3.4 was used

to estimate the mixtures of MCMP1 regressions. We again use the estimates from

the mixture of Poisson regressions as the starting values for the regression parameters

in our EM algorithms. The initial mixing proportions are all set equal to 1/m and

the initial dispersions are all set equal to 1.

The BIC values from all of these fits are shown in Table 3.5. In each model

category, two components are identified as the best given they have the smallest BIC

value in the respective column. The two-component mixture of Poisson regressions

has a smaller BIC value than the other two models with two components. Those other

two models have very similar BIC values with only a difference of 0.3997 between

them. The results are consistent with the simulation results in Sect. 3.4.2 in that

while the mixture of MCMP1 regressions does not have the smallest BIC value, it

does have a relatively small BIC difference of 7.7835, indicating that it is still a

comparable model relative to the two-component mixture of Poisson regressions. But

in spite of that, the mixture of MCMP1 regressions model affords us the flexibility

Table 3.5: BIC values for mixtures of Poisson regressions, mixtures of negative
binomial regressions, and mixtures of MCMP1 regressions when those models are fit
to the aphids data

BIC

m Poissons NBs MCMP1s

1 403.3398 283.9228 401.2514
2 275.0845 282.4683 282.8680
3 285.0741 298.1957 368.1247
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of having components that characterize deviations, no matter how small, from the

equi-dispersion assumption that underlies the components of a mixture of Poisson

regressions.

The estimates and the estimated standard errors for the parameters from each of

the two-component models are reported in Table 3.6. The standard errors are esti-

mated using a parametric bootstrap with B = 1000 bootstrap samples generated from

each mixture model fit. The three mixture models yield similar mixing proportion

estimates: (0.4638, 0.5362) for the mixture of Poisson regressions, (0.4550, 0.5450) for

the mixture of negative binomial regressions, and (0.4623, 0.5377) for the mixture of

MCMP1 rgressions. The estimated standard errors for the mixing proportion esti-

mates are also very similar. Moreover, the regression parameter estimates are similar

from the three mixtures of regressions fits and their estimated standard errors are

similar in magnitude across the three estimated models. Noticeably, one component

from the mixture of negative binomial regressions fit has an extremely large disper-

sion estimate. Since our EM algorithm makes use of the glm.nb() function, this uses

the Poisson-gamma mixture representation of the negative binomial. Specifically, as

Table 3.6: The estimates and corresponding estimated standard errors for the aphids
data fit using the two-component mixture of Poisson regressions, mixture of negative
binomial (NB) regressions, and mixture of MCMP1 regressions

Poissons NBs MCMP1s

Par. Estimate ŜE Estimate ŜE Estimate ŜE
π1 0.4638 0.0367 0.4550 0.0794 0.4623 0.0752
π2 0.5362 0.0367 0.5450 0.0794 0.5377 0.0752
β01 1.7167 0.1365 1.7289 0.1886 1.7159 0.0482
β11 0.0043 0.0006 0.0043 0.0018 0.0043 0.0001
β02 -0.1081 0.3692 -0.0403 1.2629 -0.0859 0.0973
β12 0.0019 0.0021 0.0018 0.0036 0.0020 0.0002
ν1 - - 146444 89974.2 1.0004 0.0270
ν2 - - 4.2248 9007.9 0.9564 0.2646

ℓ
(∞)
o -127.7127 -127.4727 -127.6725
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discussed on page 3 of Hilbe (2011), there is an indirect relationship between the

gamma shape parameter and the degree of over-dispersion in the data. So this means

that the negative binomial effectively becomes a Poisson distribution as the dispersion

parameter goes to infinity. Moreover, the corresponding estimated standard errors for

the estimated dispersion for each component are extremely large. As a comparison,

the dispersion estimates from mixture of MCMP1 regressions and the corresponding

estimated standard errors have values that are of a much more reasonable magnitude.

The loglikelihoods for each model’s fit are also provided in Table 3.6. All three

models have very similar loglikelihood values, with the mixture of Poisson regressions

fit technically being the “worst” because it is the smallest. However, as shown in

Table 3.5, the two-component mixture of Poisson regressions has the smallest BIC

value because of the smaller penalty used in the calculation. Hence, it would be

the “best” as noted earlier. Regardless, this analysis shows that the mixture of

MCMP1 regressions model is a reasonable competitor. Even though the dispersion

parameter estimates most likely suggest that equi-dispersion is a tenable assumption

in each component, the model still gives the flexibility to capture reasonable degrees

of under-/over-dispersion for the individual components.

Figure 3.3 is a scatterplot of the aphids data with the estimated two-component

mixture of MCMP1 regressions model overlaid. Different colors and plotting symbols

are used to denote assignment of a point to a given component based on their maxi-

mum posterior membership probability. The conditional means plotted in Figure 3.3

are very similar to those estimated for the other two models in Table 3.6, so those are

not overlaid on this figure. We see that the two MCMP1 regression models appear

to be reasonable models for the respective components, and that they are adequately

capturing the seemingly two different trends in this experiment. Note that this sup-

ports the possible explanation provided by Turner (2000), who stated that “some of

the batches of aphids consisted of insects that had passed their ‘maiden’ phase. After
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Figure 3.3: Scatterplot of the aphids data overlaid with the conditional mean lines
estimated for the two-component mixture of MCMP1 regressions model

the maiden phase, aphids tend to settle on the first acceptable food host that they

encounter, leading to low or zero levels of transmission of virus.” Thus, the second

component with practically zero slope would likely be those aphids that had passed

their ‘maiden’ phase.

3.6 Discussion

In this paper, we motivated and developed the estimation of finite mixtures of

MCMP1 regressions models. Our work contributes to the recent modeling devel-

opments involving the MCMP1, which was introduced by Huang (2017). Our work

also contributes to the limited literature on mixtures of CMP models, which is pri-

marily the works by Sur et al. (2015) and Zhan and Young (2023a). Both papers

only treat univariate data and do not include modeling with covariates, which allows

for much greater flexibility in modeling and understanding count datasets.

Maximum likelihood estimation for the mixture of MCMP1 regressions model

was performed using an EM algorithm that we developed. The excellent performance

of this algorithm was demonstrated via the simulation study in Sect. 3.4.1. An
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additional model comparison study was performed in Sect. 3.4.2, where mixtures of

Poisson regressions and mixtures of negative binomial regressions were considered as

other candidate models. Overall, these results showed that the mixture of MCMP1

regressions tends to be a competitive model and, especially, the more practical model

when data from a given component is under-dispersed. The performance of the

mixture of MCMP1 regressions model was also demonstrated on the aphids data of

Turner (2000).

One extension to our model that can provide additional flexibility is to further

apply a GLM framework when modeling each of the dispersion and mixing proportion

parameters as functions of covariates. This could be done by using a log link for νj

and a logit link for πj. One issue here will be to investigate identifiability of such a

generalization to our mixture of MCMP1 regressions model.

3.7 Appendix A: R Code for EM Algorithm in Section 3.3

cmp.mixEMReg <- function(y, x, k=k,

beta=NULL, nu=NULL, Pi=NULL,

eps=1e-3, maxit=1000){

X <- cbind(1,x) # covariates

n <- length(y) # n: number of observations # k: number of components

q <- ncol(X) # q: column number of beta's

## initial beta's from Poisson mixtures

if (is.null(beta)) {

out.pois <- pois.mixReg.bestfit(y,x,k,maxr=100)

beta <- matrix(out.pois[c("beta01","beta11","beta02","beta12")],

nrow=q,ncol=k)

}

## initial Pi's and nu's

if (is.null(nu)) nu <- rep(1,k)

if (is.null(Pi)) Pi <- rep(1/k,k)

## initial observations
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x.beta <- X %*% beta

mu0 <- exp(X %*% beta)

lambda0 <- matrix(nrow=n, ncol=k)

y.k <- matrix(nrow=n, ncol=k)

for (i in 1:n) {

for (j in 1:k) {

lambda0[i,j] <- lambda.fun(mu0[i,j],nu=nu[j],ylim=150)

y.k[i,j] <- pmf(y[i], mu=mu0[i,j], nu=nu[j])

}

}

## initial observed loglikelihood

obs.ll <- sum(log(rowSums(t(t(y.k)*Pi))))

## define posterior probabilities

z.t <- t(t(y.k)*Pi) / rowSums(t(t(y.k)*Pi))

## initial estimates summary

param <- c(c(beta),c(lambda0),nu)

######################################################

### Define the functions for using nloptr package ###

######################################################

#################################################

## objective function to maximize Q (i.e. minimize -Q)

Q.f <- function(param, k=k, y,X,z.t){

q <- ncol(X)

n <- length(y)

## parameters

beta <- param[1:(q*k)]

beta <- matrix(beta, nrow=q, ncol=k)

lambda <- param[(q*k+1):(q*k+n*k)]

lambda <- matrix(lambda, nrow=n, ncol=k)

nu <- param[(q*k+n*k+1):(q*k+n*k+k)]

## values in Q

nu.lfactorial <- matrix(nrow=n, ncol=k)

ZZ <- matrix(nrow=n, ncol=k)

for (i in 1:n) {

for (j in 1:k) {
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nu.lfactorial[i,j] <- nu[j] * lgamma(y[i]+1)

ZZ[i,j] <- Z(lambda[i,j],nu[j])

}

}

Q <- sum(t(z.t) * log(Pi)) + sum(z.t * ( y * log(lambda) -

nu.lfactorial - log(ZZ)))

return(-Q)

}

#################################################

## gradients of the objective function

Q.g <- function(param, k=k, y,X,z.t){

q <- ncol(X)

n <- length(y)

## parameters

beta <- param[1:(q*k)]

beta <- matrix(beta, nrow=q, ncol=k)

lambda <- param[(q*k+1):(q*k+n*k)]

lambda <- matrix(lambda, nrow=n, ncol=k)

nu <- param[(q*k+n*k+1):(q*k+n*k+k)]

mu <- exp(X %*% beta)

## values in gradients of Q

mean_logfacy <- matrix(nrow=n, ncol=k)

for (i in 1:n) {

for (j in 1:k) {

mean_logfacy[i,j] <- mean_logfactorialy.fun(lambda[i,j],nu[j])

}

}

beta.grad <- rep(0,q*k)

lambda.grad <- (z.t * y - z.t * mu)/lambda

nu.grad <- colSums(z.t * (-lgamma(y+1)) + z.t * mean_logfacy)

return(-c(beta.grad,c(lambda.grad),nu.grad))

}
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#################################################

## equality constraint function

mu.con <- function(param, k=k, y,X,z.t){

q <- ncol(X)

n <- length(y)

## parameters

beta <- param[1:(q*k)]

beta <- matrix(beta, nrow=q, ncol=k)

lambda <- param[(q*k+1):(q*k+n*k)]

lambda <- matrix(lambda, nrow=n, ncol=k)

nu <- param[(q*k+n*k+1):(q*k+n*k+k)]

mu <- matrix(nrow=n, ncol=k)

for (i in 1:n) {

for (j in 1:k) {

mu[i,j] <- mean.fun(lambda[i,j],nu[j],maxy=100,eps=1e-6)

}

}

x.beta <- X %*% beta

return(c(exp(x.beta)-mu))

}

#################################################

## gradients of equality constraint function

mu.con.g <- function(param, k=k, y,X,z.t){

q <- ncol(X)

n <- length(y)

## parameters

beta <- param[1:(q*k)]

beta <- matrix(beta, nrow=q, ncol=k)

lambda <- param[(q*k+1):(q*k+n*k)]

lambda <- matrix(lambda, nrow=n, ncol=k)

nu <- param[(q*k+n*k+1):(q*k+n*k+k)]
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## beta gradients of constraint

mu <- exp(X %*% beta)

grad.beta <- t(X) %*% diag(mu[,1])

if (k > 1) {

for (i in 2:k) {

grad.beta <- bdiag(grad.beta, t(X) %*% diag(mu[,i]) )

}

}

## lambda gradients of constraint

V <- matrix(nrow=n, ncol=k)

for (i in 1:n) {

for (j in 1:k) {

V[i,j] <- var.fun(lambda[i,j],nu[j],maxy=150,eps=1e-6)

}

}

grad.lambda <- diag(V[,1]/lambda[,1])

if (k > 1) {

for (i in 2:k) {

grad.lambda <- bdiag(grad.lambda, diag(V[,i]/lambda[,i]) )

}

}

## nu gradients of constraint

grad.nu.m <- matrix(nrow=n, ncol=k)

for (i in 1:n) {

for (j in 1:k) {

grad.nu.m[i,j] <-

mean_ylogfactorialy.fun(lambda[i,j],nu[j],maxy=150,eps=1e-6) -

mu[i,j]*mean_logfactorialy.fun(lambda[i,j],nu[j],maxy=150,eps=1e-6)

}

}

grad.nu <- grad.nu.m[,1]

if (k > 1){

for (i in 2:k) {

grad.nu <- bdiag(grad.nu, grad.nu.m[,i] )

}

}

return(as.matrix(cbind(t(grad.beta), grad.lambda, grad.nu)))

}
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################################################################

## nloptr package to solve for the estimates by minimizing -Q ##

################################################################

#################################################

# define the upper and lower bounds for the parameters

## lower bounds

beta_l <- rep(-Inf, q*k)

lambda_l <- rep(0.1, n*k)

nu_l <- rep(0.5, k)

param_l <- c(beta_l, lambda_l, nu_l)

## upper bounds

beta_u <- rep(Inf, q*k)

lambda_u <- rep(200, n*k)

nu_u <- rep(10, k)

param_u <- c(beta_u, lambda_u, nu_u)

#################################################

######################################################

################### EM algorithm #####################

######################################################

## iteration starts

iter <- 0

dif <- 1

## output summary

out <- c(iter, obs.ll, Pi, c(beta), nu)

## iteration for EM algorithm

while(iter < maxit && dif > eps){

## nloptr to minimize -Q

fit <- nloptr::nloptr(x0 = param,

eval_f = Q.f,

eval_grad_f = Q.g,

lb = param_l,

ub = param_u,

eval_g_eq = mu.con,

eval_jac_g_eq = mu.con.g,
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opts = list("algorithm"= "NLOPT_LD_SLSQP",

"maxeval" = 1000,

"local_opts" = list("algorithm" = "NLOPT_LD_SLSQP",

"xtol_rel" = 0.001)),k=k,y=y,X=X,z.t=z.t)

## update estimates

param <- fit$solution

beta <- param[1:(q*k)]

beta <- matrix(beta, nrow=q, ncol=k)

nu <- param[(q*k+n*k+1):(q*k+n*k+k)]

## update observations

x.beta <- X %*% beta

mu0 <- exp(X %*% beta)

y.k <- matrix(nrow=n, ncol=k)

for (i in 1:n) {

for (j in 1:k) {

y.k[i,j] <- pmf(y[i], mu=mu0[i,j], nu=nu[j])

}

}

## update loglikelihood

new.obs.ll <- sum(log(rowSums(t(t(y.k)*Pi))))

## update posterior probabilites

z.t <- t(t(y.k)*Pi) / rowSums(t(t(y.k)*Pi))

## update mixing proportions

Pi <- colMeans(z.t)

## print

iter <- iter+1

print(iter)

dif <- abs(new.obs.ll-obs.ll)

print(dif)

obs.ll <- new.obs.ll # iteration ends

## output dataframe

out <- rbind(out,c(iter, obs.ll, Pi, c(beta), nu))

}

colnames(out) <- c("iter", "ll",

paste("Pi",1:k,sep=""),

paste(rep(paste("beta",0:(q-1),sep=""),k),
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rep(1:k,each=q),sep=""),

paste("nu",1:k,sep=""))

return(out)

}

Copyright© Dongying Zhan, 2023.
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Chapter 4 Conclusions, Discussions, and Future Research

4.1 Conclusions

The Conway-Maxwell-Poisson distribution, as a discrete distribution, has been exten-

sively studied for its unique ability to characterize both over-dispersion and under-

dispersion in data. Equivalent to the original distribution, the mean-parameterized

Conway-Maxwell-Poisson distribution (Huang 2017) offers convenience in interpreting

data by noting the distribution’s center through the mean parameter. Additionally, it

provides insight into the degree of variation in observations around the mean using the

dispersion parameter. In this dissertation, within the context of heterogeneous data

requiring a mixture model, models along with estimation methods for mixtures of

mean-parameterized Conway-Maxwell-Poisson distributions or regressions were suc-

cessfully developed.

In Chapter 2, a finite mixture model comprising mean-parameterized Conway-

Maxwell-Poisson distributions was proposed for univariate data. The EM algorithm

was constructed for maximum likelihood estimation of the model. For the simulation

study, replicated samples were generated from mixtures of two or three components of

Conway-Maxwell-Poisson distributions. The parameter estimates from the simulation

study demonstrated the model’s validity by assessing biases and root mean squared

errors (RMSEs). The model selection results in the simulation study showed that mix-

tures of mean-parameterized Conway-Maxwell-Poisson distributions and mixtures of

negative binomials outperformed mixtures of Poissons for data with dispersions. No-

tably, mixtures of mean-parameterized Conway-Maxwell-Poisson distributions had

the advantage over both Poisson mixtures and negative binomial mixtures in ad-

dressing increased levels of under-dispersion. The analysis of dog mortality data

highlighted the capability of mean-parameterized Conway-Maxwell-Poisson mixtures
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to identify a third component among the ages at death, and that was beyond the ca-

pabilities of Poisson mixtures and negative binomial mixtures. The estimates along

with parametric and non-parametric bootstrap standard errors were provided for the

dog mortality data.

In Chapter 3, within the framework of generalized linear models, a model for mix-

tures of mean-parameterized Conway-Maxwell-Poisson regressions was constructed.

In this model, each response’mean was assumed to have a log-linear relationship with

its covariates. Maximum likelihood estimation was conducted via the EM algorithm,

with the R package nloptr employed to find solutions in the maximization step. The

mixture responses with corresponding covariates were simulated from the mixtures of

two or three mean-parameterized Conway-Maxwell-Poisson components. Parameter

estimates from the simulation study indicated that the regression model performed

quite well. The model comparison in the simulation study suggested that the three

regression models—mixture of mean-parameterized Conway-Maxwell-Poisson regres-

sions, mixture of Poisson regressions, and mixture of negative binomial regressions—

were feasibly comparable for application to dispersed data. The aphids data was

fitted using the three different mixtures of regressions models, and the estimates,

along with its parametric bootstrap standard errors, were provided. Notably, the

mixture of mean-parameterized Conway-Maxwell-Poisson regressions yielded much

more reasonable dispersion estimates and standard errors, compared with the mix-

ture of negative binomial regressions.

In summary, the mixture of mean-parameterized Conway-Maxwell-Poisson (re-

gressions) models presented in this dissertation are capable to characterize compo-

nent dispersions in data. These models offer valuable applications in specific scenar-

ios, enriching the computational toolbox of finite mixture models for discrete data,

alongside Poisson (regression) mixtures, negative binomial (regression) mixtures, and

other models.
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4.2 Discussions

4.2.1 Normalizing Constant and Mean

The Conway-Maxwell-Poisson distribution employs a dispersion parameter to adjust

the Poisson distribution, forming more variability for over-dispersion or less variability

for under-dispersion. To ensure that the probability theory is mathematically satis-

fied, a normalizing constant, Z(λ, ν), is introduced in the Conway-Maxwell-Poisson

distribution (1.1) to guarantee that the probabilities of all possible discrete values

add up to unity.

A concern revolves around how the values of the normalizing constant Z(λ, ν)

behave throughout the entire parameter space (λ, ν). Figure 4.1 presents a surface

plot of Z(λ, ν) concerning λ ∈ [1, 50] and ν ∈ [0, 5], with Z values being cut off at 105

(a) (b)

Figure 4.1: Surface plot of the normalizing constant Z(λ, ν) in the Conway-Maxwell-
Poisson distribution with respect to the rate parameter λ and the dispersion param-
eter ν. (a) and (b) are from different angles of view. The values of Z are cut off at
105.
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to display meaningful details. The calculation of Z values was based on the formula

Z(λ, ν) =
∞∑
x=0

λx

(x!)ν
, where the maximum value of x was taken as 150 for overall con-

vergence of Z(λ, ν). The normalizing constant Z(λ, ν) generally converges, but there

are parameter combinations (λ, ν) that lead to Z values converged to extremely large

values, particularly in cases of over-dispersion (ν < 1). Notably, when λ is relatively

large and ν approaches near 0, some Z values can reach the magnitude of 10100. This

somewhat corresponds to the comment in Shmueli et al. (2005) that “When ν = 0

and λ ≥ 1, Z(λ, ν) does not converge, and hence the distribution is undefined.” In

situations of under-dispersion (ν > 1), the Z values generally fall within the range

of less than or around the magnitude of 1010. Consequently, the Conway-Maxwell-

Poisson distribution may degenerate if the parameters exceed certain value ranges

(Sur et al. 2015). This is also the reason that the dispersion estimates were bounded

within the model computations in both Chapter 2 and Chapter 3, an aspect often

overlooked in the Conway-Maxwell-Poisson modeling.

In this dissertation, a genuine compliment should be attributed to Huang (2017)

for introducing the mean-parameterized Conway-Maxwell-Poisson distribution, cen-

tered around the true mean. Without the contribution of Huang (2017), this disser-

tation might not have been possible, and particularly, it would have been challenging

to reveal the advantage of mean-parameterized Conway-Maxwell-Poisson mixtures

in handling under-dispersion. Unlike the models involving only a single component,

mixture models utilize the EM algorithm for iterative computation, requiring the

evaluation of component distributions repeatedly. If a component distribution de-

generates due to certain parameter estimates at certain iteration, the EM algorithm

may hardly proceed. The establishment of mean-parameterized Conway-Maxwell-

Poisson distribution offers an idea to identify the numerical issue encountered in the

EM algorithm. The issue was finally solved by bounding the dispersion estimates.

The motivation behind bounding the dispersion estimates is that a valid distribution
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should always have a valid mean, representing the center of the distribution. As

such, degenerated distributions can be rectified by appropriate dispersion estimates.

Furthermore, as noted by Sur et al. (2015), some combinations of (λ, ν) may lead to

similar distributions. Accordingly, in the Conway-Maxwell-Poisson modeling, multi-

ple sets of parameter estimates might be possible for the same data, an issue known

as identifiability. However, this should not be a concern for the mean-parameterized

Conway-Maxwell-Poisson distribution, as it is highly unlikely for a single distribution

to exhibit multiple distinct centers.

Figure 4.2 presents a surface plot of the mean or expectation, µ(λ, ν), for the

Conway-Maxwell-Poisson distribution, with respect to the original parameters λ ∈

[1, 50] and ν ∈ [0, 5]. To display more details and the overall trend of the distri-

bution means depending on (λ, ν), the µ values were cut off at 102 in 4.2a, 104 in

4.2b, and 109 in 4.2c. The expectation for the Conway-Maxwell-Poisson distribution

shown in Figure 4.2 relates to and behaves consistently with the normalizing con-

stant Z(λ, ν) shown in Figure 4.1. In the case of over-dispersion (ν < 1), especially

when λ is relatively large and ν approaches near 0, some parameter combinations

(λ, ν) cause the distribution means extremely large, and even approaching infinity,

which is unreasonable for valid mean-parameterized Conway-Maxwell-Poisson distri-

(a) (b) (c)

Figure 4.2: Surface plot of the mean or expectation µ(λ, ν) for the Conway-Maxwell-
Poisson distribution with respect to the rate parameter λ and the dispersion param-
eter ν. The values of µ are cut off at 102 in (a), 104 in (b), and 109 in (c).
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butions. For over-dispersion (ν < 1), in order to maintain a reasonable magnitude

for mean values, the distribution requires λ relatively small and ν not too small to

approach zero. For under-dispersion (ν > 1), the distribution means remain within

a reasonable magnitude. This might explain the findings in this dissertation, demon-

strating the advantage of mixtures of mean-parameterized Conway-Maxwell-Poisson

distributions over Poisson mixtures and negative binomial mixtures in addressing

under-dispersion, while showing less capability in addressing over-dispersion com-

pared to negative binomial mixtures. For future applications of mean-parameterized

Conway-Maxwell-Poisson distribution, it might be necessary to establish a boundary

space with more convincing details for the parameters (λ, ν) or (µ, ν) to ensure the

validity of the distribution.

4.2.2 Implication and Improvements

The univariate mixture setting in Chapter 2 demonstrated that the mean-

parameterized Conway-Maxwell-Poisson mixture model competently accounted

for dispersions over Poisson mixtures. It clearly outperformed negative binomial

mixtures for under-dispersed data. However, unlike the univariate setting, the

mixtures of mean-parameterized Conway-Maxwell-Poisson regressions in Chapter

3 did not show as notable an advantage over mixtures of Poisson regressions and

mixtures of negative binomial regressions. In the case of regression setting, whether

the data was over-dispersed or under-dispersed, mixtures of mean-parameterized

Conway-Maxwell-Poisson regressions generally showed only slightly better likelihood

values than the other two regression models. However, the mixture of Poisson

regressions was often the best choice because of a lesser penalty on the Bayesian

information criterion (BIC). It’s worth noting that mixtures of negative binomial

regressions may not be more impressive than mixtures of Poisson regressions

for over-dispersion. Nevertheless, we turned to the differences in BIC values for
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comparing the three mixture of regressions models.

An idea is postulated to explain why mixtures of mean-parameterized Conway-

Maxwell-Poisson (regressions) models performed well in the univariate setting, but

less adequately in the regression setting. The dispersion parameter of the mean-

parameterized Conway-Maxwell-Poisson distribution largely determines the shape of

the distribution. Intuitively, it is challenging to perceive the overall shape of a dis-

tribution using information from only a single data point. In the regression setting,

where each individual response is assumed to follow an individual mean-parameterized

Conway-Maxwell-Poisson distribution, the dispersion parameter may not be as crucial

to model, as there is only a single data point involved in the assumed distribution.

The univariate setting worked impressively because it involves many responses to

determine a single mean-parameterized Conway-Maxwell-Poisson distribution for a

component, and thus the dispersion parameter can better model the shape of the

distribution. A similar postulation may apply to the comparison between mixtures of

negative binomial (regressions) models and mixtures of Poisson (regressions) models

regarding the discrepancy in univariate setting and regression setting. Nonetheless,

this postulation is challenging to prove. Approaching this issue in a productive man-

ner may provide further insights and directions for improvement.

In Chapter 3, the estimates for the regression setting were obtained using the

EM algorithm incorporated with the nloptr package (Johnson, 2014), which is an

R interface to a number of nonlinear optimization routines. The advantage of using

nloptr along with the algorithm NLOPT LD SLSQP is that it allows for constraint equa-

tions and solution boundaries, making it suitable for solving the series of nonlinear

functions in Chapter 3. However, it is important to note that there is no guarantee

that one optimization routine is superior to all others. Moreover, given that the rate

parameters λs and the dispersion parameters νs together contribute to valid distri-

butions, the bounds for estimates, especially for dispersion estimates, employed in
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Chapter 3 may not cover all potential estimates or the best estimates for the model,

although the solutions in Chapter 3 never encountered numerical issues, nor did they

produce any error or warning messages.

In a similar manner to solving the mixture of negative binomial regressions

model in Chapter 3, a new strategy for solving the mixture of mean-parameterized

Conway-Maxwell-Poisson regressions model was developed using the glmmTMB()

function within the glmmTMB package (Brooks et al. 2017). It is fortunate that

the glmmTMB package was updated in April 2023, allowing for generalized linear

regression to the true mean of a single Conway-Maxwell-Poisson distribution.

Specifically, the posterior membership probabilities (zij) are used as weights within

glmmTMB(), and the optimized solution for each j = 1, . . . ,m component yields the

estimates for the βjs and νjs in equations 3.14 and 3.15. The work in Chapter 3

was improved accordingly, primarily by allowing a more lenient range of dispersion

estimates. Further details are included in the article by Zhan and Young (2023b).

The mixture of mean-parameterized Conway-Maxwell-Poisson regressions model,

utilizing the glmmTMB() function, was found to be competitive for modeling SIDS

data, as illustrated in the next section.

4.2.3 SIDS Data

Symons et al. (1983) presented an analysis on the spatial occurrence of sudden infant

death syndrome (SIDS) across North Carolina counties over a four-year period. A

Poisson mixture model was used to reveal the epidemiologic information as normal

or high-risk for SIDS among different regions in the area. The numbers of live births

and SIDS deaths were recorded for n = 100 counties in North Carolina from July 1,

1974 to June 30, 1978. Each county has an observed data point. Since SIDS cases

are rare incidences, the number of SIDS deaths can be regarded as a count variable,

while the corresponding number of live births can be treated as a covariate. The three
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mixtures of regressions models, including mixtures of Poisson regressions, mixtures

of negative binomial regressions, and mixtures of MCMP1 regressions, are potential

candidates to model the SIDS data. We proceed with analyzing these SIDS data in

a manner similar to the analysis of the aphids data in Sect. 3.5.

The SIDS data was modeled using the same three mixtures of count regressions

we have been comparing throughout this work. The BIC values for different numbers

of components in the models are shown in Table 4.1. In each column with the model

category specified, the two-component fit shows as the best with the smallest BIC

value. Across the models with the same number of components, the MCMP1 model

consistently shows as the best in each row. The two-component mixture of MCMP1

regressions outperforms all of the candidate models, despite having only a slight

advantage in terms of the BIC values. For the two-component fits, ∆BICPoisson =

0.6942 and ∆BICNB = 1.6467. Under the ∆BIC rule used in our simulation study

in Sect. 3.4, the three two-component mixtures of count regressions are comparable

for this application, but the mixture of MCMP1 regressions appears to be favored

across the mixture fits with the other number of components. Specifically, the ∆BIC

values show bigger differences within m = 1 (non-mixture fit) and m = 3 mixture

models than m = 2 mixture models, with the mixture of MCMP1 regressions model

as a benchmark.

Table 4.1: BIC values for mixtures of Poisson regressions, mixtures of negative
binomial regressions, and mixtures of MCMP1 regressions when those models are fit
to the SIDS data

BIC

m Poissons NBs MCMP1s

1 637.1011 542.9037 542.2042
2 537.0027 538.0002 536.3535
3 550.6334 556.4209 554.7741

The estimates and corresponding estimated standard errors for the SIDS data re-
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gressed with two-component mixture of Poisson regressions, two-component mixture

of negative binomial regressions, and two-component mixture of MCMP1 regressions

are reported in Table 4.2. The three mixture models yield similar mixing proportion

estimates: (0.6251, 0.3749) for the Poisson components, (0.5405, 0.4595) for the nega-

tive binomial components, and (0.5184, 0.4816) for the MCMP1 components. Unlike

the estimates in the aphids data analysis where the estimated standard errors for the

mixing proportion estimates are of similar magnitude across the models, the mix-

ing proportion estimates in the SIDS data analysis have relatively larger variation

for both the mixture of negative binomial regressions and the mixture of MCMP1

regressions when compared to the mixture of Poisson regressions. For the mixture

of Poisson regressions, the estimated standard error for the mixing proportions is as

small as 0.0098. For the mixture of negative binomial regressions and the mixture

of MCMP1 regressions, the estimated standard errors for the mixing proportions are

0.1203 and 0.1655, respectively. The regression estimates along with the estimated

standard errors are slightly different, but similar in magnitude across the models.

The mixture of negative binomial regressions yields one extremely large dispersion

Table 4.2: The estimates and corresponding estimated standard errors for the SIDS
data fit using the two-component mixture of Poisson regressions, mixture of negative
binomial (NB) regressions, and mixture of MCMP1 regressions

Poissons NBs MCMP1s

Par. Estimate ŜE Estimate ŜE Estimate ŜE
π1 0.6251 0.0098 0.5405 0.1203 0.5184 0.1655
π2 0.3749 0.0098 0.4595 0.1203 0.4816 0.1655
β01 0.0021 0.2466 -0.0768 0.3907 -0.0444 0.4053
β11 4.42×10−4 7.52×10−5 4.58×10−4 1.52×10−4 4.53×10−4 1.07×10−4

β02 1.8556 0.2261 1.6982 0.3051 1.6593 0.4156
β12 8.64×10−5 1.85×10−5 9.76×10−5 2.23×10−5 9.85×10−5 4.66×10−5

ν1 — — 37297.5 23651.3 1.2994 16.2954
ν2 — — 9.3982 82394.8 0.5744 7.2049

ℓ
(∞)
o -256.9884 -252.8820 -252.0587
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estimate, which implies an approximated Poisson component being estimated. The

mixture of MCMP1 regressions produces reasonable estimates for the component dis-

persions, which implies the first component is under-dispersed with estimate 1.2994

(greater than 1) and the second component is over-dispersed with estimate 0.5744

(less than 1). If we again consider removing the top 2% of the bootstrap samples

when they are sorted according to their dispersion estimates (from largest to smallest),

then the estimated standard errors for the dispersion parameters are ŜE(ν̂1) = 1.0675

and ŜE(ν̂2) = 2.8868, both of which are noticeably lower than the estimated standard

errors reported in Table 4.2. Similar to the aphids data in Table 3.6, the loglikelihood

values across the models in the row are close for the SIDS data in Table 4.2, but the

mixture of MCMP1 regressions has the largest loglikelihood value, while the mixture

of Poisson regressions has the smallest loglikelihood value.

Figure 4.3 is a scatterplot of the SIDS data overlaid with the estimated two-

component mixture of MCMP1 regressions model, which is the best fit according to

Table 4.1. The other mixture model fits are not included on this scatterplot because

their regression mean lines are just slightly different from that of the two-component

Figure 4.3: Scatterplot of the SIDS data overlaid with the conditional mean lines
estimated for the two-component mixture of MCMP1 regressions model
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mixture of MCMP1 regressions; see Table 4.2 where the regression estimates across

the models are only slightly different. From Figure 4.3, the n = 100 counties in

North Carolina are clearly differentiated by two components. The red component

indicates the high risk to SIDS conditioned on the live births for one group of coun-

ties. The identified high-risk counties have the data points under-dispersed based on

the dispersion estimate in Table 4.2. The under-dispersion sometimes implies some

abnormality, regarding SIDS in the group of counties. The blue component indicates

the risk to SIDS more typically normal within the other group of counties, consid-

ering the moderate-ascending SIDS deaths conditioned on the live births displayed

by the component regression line. This group of counties has the data points over-

dispersed, which is commonly observed with count data. The mixture of MCMP1

regressions is not just effective for cluster analysis, but also helpful to reveal the

dispersion information about the components.

4.3 Future Research

4.3.1 Regressions Extended on Mixing Proportions

Chapter 3 in this dissertation introduces a mixture of regressions model within the

framework of generalized linear models. This regression model assumes that each

response is generated from a mean-parameterized Conway-Maxwell-Poisson distribu-

tion, with its mean linked to the respective covariates through a log-linear relation-

ship. In finite mixture models, the membership of an observation to a component

can be treated as a categorical variable, making logistic regression a feasible choice

for modeling.

Future work may extend the model presented in Chapter 3 to a more versatile

regression setting by allowing the mixing proportions to be modeled on the related

predictors. This extension is novel and may hold practical application, especially

considering the mixing proportions potentially depending on some concomitant vari-
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ables, and the limited existing research in this area (Young and Hunter 2010; Huang

and Yao 2012). Accordingly, we propose a new regression model, briefly introduced

here for future study.

The new m-component mixture of mean-parameterized Conway-Maxwell-Poisson

regressions model is constructed based on the conditional distribution of Y |(X, X̃).

Here, Y ∈ N is the discrete response variable, X = (X1, . . . , Xp)
T ∈ Rp is a p-

dimensional covariate vector, and X̃ = (X̃1, . . . , X̃q)
T ∈ Rq is a q-dimensional con-

comitant vector.

The mean parameters for the components, denoted as µj for j = 1, . . . ,m, are

modeled as a function of the covariates via a log link function

µj = exp(xTβj), (4.1)

where x = (x0, x1, . . . , xp)
T and βj = (β0j, β1j, . . . , βpj)

T. Here, x0 = 1 so as to

allow for modeling with an intercept. Therefore, the β0j is the intercept for the

jth component regression and the β1j, . . . , βpj correspond to the coefficients for the

respective covariates within the jth component regression.

The mixing proportion parameters, denoted as πj for j = 1, . . . ,m, are modeled

as a function of the concomitant variables via a logit function. The component j = 1

is taken as the baseline to calculate the odds for component j = 2, . . . ,m

log
(πj

π1

)
= x̃Tαj, j = 2, . . . ,m, (4.2)

which gives

πj = π1exp(x̃
Tαj), j = 2, . . . ,m. (4.3)
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Since
∑m

j=1 πj = 1, then we have

π1 =
1

1 +
∑m

j=2 exp(x̃
Tαj)

, and πj =
exp(x̃Tαj)

1 +
∑m

j=2 exp(x̃
Tαj)

for j = 2, . . . ,m, (4.4)

where x̃ = (x̃0, x̃1, . . . , x̃q)
T and αj = (α0j, α1j, . . . , αqj)

T. Similarly, x̃0 = 1 is for

modeling an intercept. The α0j is the intercept of the jth component regression and

the α1j, . . . , αqj correspond to the coefficients for the respective concomitant variables

within the jth component regression.

Recall that the mixture density of mean-parameterized Conway-Maxwell-Poisson

distributions is

g(y;x, x̃,Ψ) =
m∑
j=1

πj
λ(µj, νj)

y

(y!)νj
1

Z(λ(µj, νj), νj)
. (4.5)

Given the regression settings in 4.1 and 4.4, the m-component mixture of mean-

parameterized Conway-Maxwell-Poisson regressions model for Y |(X, X̃) has the mix-

ture density

g(y;x, x̃,Ψ) =
1

1 +
∑m

j=2 exp(x̃
Tαj)

λ(exp(xTβ1), ν1)
y

(y!)ν1
1

Z(λ(exp(xTβ1), ν1), ν1)
+

m∑
j=2

exp(x̃Tαj)

1 +
∑m

j=2 exp(x̃
Tαj)

λ(exp(xTβj), νj)
y

(y!)νj
1

Z(λ(exp(xTβj), νj), νj)
,

(4.6)

where the parameter vector is

Ψ =
(
βT

1 , . . . ,β
T
m,α

T
1 , . . . ,α

T
m, ν1, . . . , νm

)T
.

Here, the νjs are the dispersion parameters with assumption that the data points in

the same component follow this degree of dispersion.
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4.3.2 Singularity Considerations

The singularity issue was not a concern in my study, because Fisher information ma-

trices were not involved in the computation work. In this dissertation, the real data

were fitted with multiple-component mixtures for choosing the appropriate number

of components in the mixture models. The results demonstrated the effectiveness of

BIC in selecting a suitable model from different numbers of components (see Table

2.3, Table 3.5, and Table 4.1). Moreover, my unpublished results from this study

indicated that having more components than necessary didn’t lead to strange esti-

mates. The extra component may have a mixing proportion estimate of less than

0.05, but the other estimates for the extra component were reasonable. The loglike-

lihood values for models with extra components were almost the same as that from

the model with appropriate number of components. In other words, the loglikelihood

converged as more components were added to the mixture, but the models with more

components were not selected due to the BIC penalty resulting from the inclusion

of more parameters. In the univariate setting in Chapter 2, models with additional

components produced fit plots, which almost overlaid with that from the best model

having the appropriate number of components.

Singularity is often identified in certain statistical models when the Fisher informa-

tion matrix becomes singular. As a consequence of singularity, parameter estimates

may exhibit unusual behaviors since the Cramér-Rao theorem doesn’t hold well, thus

affecting subsequent procedures for hypothesis testing, model selection, and inference.

Whether singularity exists and how it behaves is a case-by-case and model-by-model

matter, particularly for mixture models. In the case of Gaussian mixtures, fitting

a Gaussian component to only one data point can lead to a variance estimate of

zero, causing a singular Fisher information matrix. Accordingly, the likelihood for

the component goes toward infinity, and well-posed solutions may not be guaranteed

under the framework of maximum likelihood estimation.
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Singular BIC, a generalization of BIC and a method to address the singularity

issue in mixture models, was studied by Drton and Plummer (2017) and discussed

with some other researchers in the same manuscript, which was available in 2013.

The corresponding theory behind this approach, known as the singular learning the-

ory, was proposed earlier by Watanabe (2009), who is established by his extensive

research on model selection criteria. In the presence of singularity, maximum like-

lihood estimator does not behave reasonably, even though the maximum likelihood

method itself is still acceptable, but might yield unusual estimates. The singular BIC,

incorporating loglikelihood in its formula, is one application of the singular learning

theory. This theory can be applied to various models with singularity issues, not

limited to mixture models.

While likelihood solutions are generally consistent for mixture models estimated

using the EM algorithm (Redner and Walker 1984), and ordinary BIC is consistent

as well (Keribin 2000), likelihood estimation may not perform well when the loglike-

lihood appears unusual under singular conditions. The concept of singular BIC can

assist in obtaining accurate likelihood calculations for mixture models when singular-

ity occurs. The first step to apply singular BIC is to determine whether the model is

singular or not. It yields the normal BIC if the model is not singular. Singular BIC

is useful only under singular conditions, and it can be challenging to estimate the

learning coefficient and multiplicity number for each model. Examples provided by

Drton and Plummer (2017) suggest that these values are often approximated reason-

ably, and that somehow depends on the prior or data-generating distributions, and

especially the number of components in mixture models. Singular BIC makes sense

when dealing with singular issues, although it may be challenging to apply due to the

need to identify learning coefficient and multiplicity number on a model-by-model

basis.

In this dissertation, my study focused on heterogeneous data that visibly consists

95



of multiple components. However, in some applications of mixture models, it’s not

easy to distinguish between homogeneity (one component) or distinct components in

the population. Accordingly, a procedure to test for homogeneity or to determine the

exact number of components is required. The likelihood-ratio test (LRT) is a common

statistical tool for model selection, but encounters difficulties in mixture models,

concerning issues such as limiting distribution, identifiability and others (Dacunha-

Castelle and Gassiat 1999). The asymptotic behaviour of the LRT statistics for

two-component mixtures was studied, and a bootstrap procedure was used to obtain

p-value of the LRT (Chen and Chen 2001). Certainly, the concept of singular BIC,

with its improved likelihood calculation, may help the LRT procedure in choosing

the number of components for mixture models when singularity is involved.

Copyright© Dongying Zhan, 2023.
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