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Subsystem identification of feedback and feedforward systems with
time delay✩
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A R T I C L E I N F O
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A B S T R A C T

We present an algorithm for identifying discrete-time feedback-and-feedforward subsystems
with time delay that are interconnected in closed loop with a known subsystem. This frequency-
domain algorithm uses only measured input and output data from a closed-loop discrete-time
system, which is single input and single output. No internal signals are assumed to be measured.
The orders of the unknown feedback and feedforward transfer functions are assumed to be
known. We use a two-candidate-pool multi-convex-optimization approach to identify not only
the feedback and feedforward transfer functions but also the feedback and feedforward time
delay. The algorithm guarantees asymptotic stability of the identified closed-loop transfer
function. The main analytic result shows that if the data noise is sufficiently small and the
cardinality of the feedback-candidate-pool set is sufficiently large, then the identified feedfor-
ward and feedback delays are equal to the true delays, and the parameters of the identified
feedforward and feedback transfer functions are arbitrarily close to the true parameters. This
subsystem identification algorithm has application to modeling human-in-the-loop behavior.
To demonstrate this application, we apply the new subsystem identification algorithm to data
obtained from a human-in-the-loop control experiment in order to model the humans’ feedback
and feedforward (with delay) control behavior.

1. Introduction

Subsystem identification (SSID) is the process of using measured data to construct an empirical model of unknown dynamic
subsystems, which are interconnected with known dynamic subsystems [1–4]. For example, Fig. 1 shows an unknown feedback-
and-feedforward subsystem interconnected in closed loop with a known subsystem. The closed-loop SSID problem is to construct a
model of the feedback-and-feedforward subsystem using the measured exogenous input 𝑟 and measured output 𝑦. Closed-loop SSID
is distinct from the problem of system identification in closed loop (see [5,6]), because the unknown subsystems in SSID can have
inputs or outputs that are inaccessible. For example, the internal signals 𝑢 and 𝑣 (shown in Fig. 1) are not necessarily available for
measurement.

SSID has application to modeling systems in biology (e.g., [7,8]) and physics (e.g., [2,9,10]). For example, in [10], a Reynolds-
averaged Navier–Stokes model of unsteady turbulent fluid flow is improved by using measured data to estimate parameters
of a turbulence-closure model, which is viewed as an unknown feedback subsystem that is interconnected with the known
Reynolds-averaged Navier–Stokes model. For this fluid-dynamic application, the output 𝑢 of the unknown subsystem cannot be
measured.
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Fig. 1. The unknown feedback-and-feedforward subsystem (with feedback and feedforward delay) is to be identified using measured data 𝑟 and 𝑦. The internal
signals 𝑢 and 𝑣 are not assumed to be measured.

SSID also has application to modeling human control behavior in human-in-the-loop (HITL) systems (e.g., [11–21]). For
example, [21] use an SSID approach to model the feedforward and feedback control that human subjects use in an HITL experiment,
where subjects interact with a linear time-invariant dynamic system and perform a command-following task. The results in [21]
demonstrate that subjects learn to update the feedforward (i.e., anticipatory) control until it approximates the inverse dynamics of
the system with which the subjects interact. This result supports the internal model hypothesis (see [22,23]). We note that the SSID
approach used in [21] does not allow for the identification of delay in the feedforward path.

Other closed-loop SSID algorithms are presented in [1,2,10]. However, these methods can result in identified closed-loop
dynamics that are unstable. To address closed-loop stability, [4] presents an SSID technique that uses a candidate pool of potential
feedback transfer functions in order to guarantee asymptotic stability of the identified closed-loop transfer function. However, [4]
does not allow for the identification of feedback and feedforward time delay, which is critical for a variety of modeling applications
such as modeling HITL behavior (see [24]).

The new contribution of this paper is a closed-loop SSID method that identifies discrete-time feedback and feedforward
subsystems with time delay; and guarantees asymptotic stability of the identified closed-loop transfer function. This paper goes
beyond [4] by identifying not only the feedback and feedforward transfer functions but also the feedback time delay and feedforward
time delay, which need not be equal. Although [4] can be extended to address feedback time delay, an extension to address
feedforward time delay is more challenging. Specifically, the challenge in extending [4] is to develop an algorithm that addresses
feedforward time delay without significantly increasing computational complexity. The new algorithm in this paper addresses
feedforward delay without significant additional computational cost (relative to the case without feedforward time delay). The key
technical contributions that allow for time-delay identification are: (i) the introduction of a second candidate pool for feedforward
delay; and more importantly, (ii) a two-step-optimization approach that minimizes computational complexity.

The main analytic result of this paper shows that if the data noise is sufficiently small and the cardinality of the feedback-
candidate-pool set is sufficiently large, then the identified feedforward and feedback delays are equal to the true delays, and the
parameters of the identified feedforward and feedback transfer functions are arbitrarily close to the true parameters. For clarity
of presentation, this paper focuses on the single-input single-output SSID problem. However, the method can be extended to
address the multivariable SSID problem by adopting the multivariable aspects of [4] in combination with the time-delay treatment
(i.e., two-candidate-pool and two-step-optimization approach) presented in this paper.

The SSID algorithm in this paper has application to modeling HITL behavior. To demonstrate this application, Section 8 applies
the SSID algorithm to data obtained from a HITL experiment in order to model the human’s feedback and feedforward (with delay)
control behavior.

2. Notation

Let F be either the set of real numbers R or the set of complex numbers C. Let ‖ ⋅‖ be a norm on F𝑛, and let ‖ ⋅‖2 be the two-norm
on F𝑛. Define the open ball of radius 𝜖 > 0 centered at 𝑐 ∈ F𝑛 by B𝜖(𝑐) ≜ {𝑥 ∈ F𝑛 ∶ ‖𝑥 − 𝑐‖ < 𝜖}. Let 𝑥∗ denote the complex conjugate
transpose of 𝑥 ∈ F𝑛. Let diag 𝑥 denote an 𝑛 × 𝑛 diagonal matrix whose diagonal entries are the elements of 𝑥 ∈ F𝑛.

Let Z+ denote the set of positive integers, and let N denote the set of nonnegative integers.
Let R[𝑧] denote the set of polynomials with coefficients in R. The degree of the polynomial 𝑝 ∈ R[𝑧] is denoted by deg 𝑝.
The real rational transfer function 𝐺∶ C → C is discrete-time asymptotically stable if all the poles of 𝐺 are contained in the open

unit disk of C. For the remainder of this paper, we omit the words discrete time when referring to a discrete-time asymptotically
stable transfer function.

3. System description

Let 𝐺𝑦, 𝐺𝑣 ∶ C → C be real rational transfer functions, and consider the linear time-invariant system

𝑦(𝑧) = 𝐺𝑦(𝑧)
(

𝑢(𝑧) + 𝜁𝑢(𝑧)
)

+ 𝜁𝑦(𝑧), (1)

𝑣(𝑧) = 𝐺𝑣(𝑧)
(

𝑢(𝑧) + 𝜁𝑢(𝑧)
)

, (2)

where 𝑦(𝑧) ∈ C, 𝜁𝑦(𝑧) ∈ C, 𝑢(𝑧) ∈ C, 𝜁𝑢(𝑧) ∈ C, and 𝑣(𝑧) ∈ C are the 𝑧-transforms of the output, output noise, control, control noise,
and feedback, respectively. Let 𝐺f f , 𝐺fb ∶ C → C be real rational transfer functions, and consider the control

𝑢(𝑧) = 𝑧−𝜏f f𝐺f f (𝑧)
(

𝑟(𝑧) + 𝜁𝑟(𝑧)
)

+ 𝑧−𝜏fb𝐺fb(𝑧)
(

𝑒(𝑧) + 𝜁𝑒(𝑧)
)

, (3)
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Fig. 2. The input 𝑟 and output 𝑦 are measured, but all internal signals and the noises are unmeasured.

where the nonnegative integers 𝜏f f and 𝜏fb are the feedforward and feedback delays, 𝑟(𝑧) ∈ C is the exogenous input, 𝜁𝑟(𝑧) ∈ C is the
feedforward noise, 𝑒(𝑧) ≜ 𝑟(𝑧) − 𝑣(𝑧) is the error, and 𝜁𝑒(𝑧) ∈ C is the error noise. Thus, 𝑢 is generated by feedback and feedforward
as shown in Fig. 2. The feedforward transfer function 𝐺f f is asymptotically stable. It follows from (1)–(3) that

𝑦(𝑧) = 𝐺̃(𝑧)𝑟(𝑧) + 𝜁 (𝑧), (4)

where

𝐺̃ ≜
𝐺𝑦(𝑧−𝜏fb𝐺fb + 𝑧−𝜏f f𝐺f f )

1 + 𝑧−𝜏fb𝐺fb𝐺𝑣
, (5)

and the noise is

𝜁 ≜
𝐺𝑦(𝑧𝜏fb−𝜏f f𝐺f f 𝜁𝑟 + 𝐺fb𝜁𝑒 − 𝐺fb𝐺𝑣𝜁𝑢)

𝑧𝜏fb + 𝐺fb𝐺𝑣
+ 𝐺𝑦𝜁𝑢 + 𝜁𝑦. (6)

For some applications (e.g., the HITL modeling in Section 8), the control-to-feedback transfer function equals the control-to-
output transfer function (i.e., 𝐺𝑣 = 𝐺𝑦). However, there are SSID applications where 𝐺𝑣 ≠ 𝐺𝑦. For example, 𝐺𝑣 ≠ 𝐺𝑦 for the
fluid-dynamic applications considered in [2,9,10].

We assume that the exogenous input 𝑟 and the noisy output 𝑦 are measured, but no other signals are assumed to be measured.
In some applications, certain internal signals (e.g., 𝑢) could be measurable. For example, 𝑢 is measurable in the HITL experiments
presented in Section 8. However, for other applications such as turbulence modeling (e.g., [9,10]), this internal signal could represent
unknown parameters (e.g., closure coefficients), which are not measurable.

Let 𝐺𝑦, 𝐺𝑣, 𝐺f f , and 𝐺fb be expressed as 𝐺𝑦 = 𝑁𝑦∕𝐷, 𝐺𝑣 = 𝑁𝑣∕𝐷, 𝐺f f = 𝑁f f∕𝐷f f , and 𝐺fb = 𝑁fb∕𝐷fb, where
𝑁𝑦, 𝑁𝑣, 𝑁f f , 𝑁fb, 𝐷,𝐷f f , 𝐷fb ∈ R[𝑧]; 𝑁𝑦𝑁𝑣 and 𝐷 are coprime; and 𝑁fb and 𝐷fb are coprime. Without loss of generality, assume
that 𝐷, 𝐷f f , and 𝐷fb are monic. Thus, (5) can be expressed as

𝐺̃ =
𝑁𝑦𝑁fb

𝐷̃
+
𝑧𝜏fb−𝜏f f𝑁𝑦𝐷fb𝑁f f

𝐷̃𝐷f f
,

where

𝐷̃ ≜ 𝑧𝜏fb𝐷fb𝐷 +𝑁fb𝑁𝑣 ∈ R[𝑧].

Define 𝑑 ≜ deg𝐷, 𝑑fb ≜ deg𝐷fb, 𝑛𝑦 ≜ deg𝑁𝑦, 𝑛𝑣 ≜ deg𝑁𝑣, 𝑛f f ≜ deg𝑁f f , and 𝑛fb ≜ deg𝑁fb. We make the following assumptions:

(A1) 𝑑 + 𝑑fb > 𝑛𝑣 + 𝑛fb.
(A2) If 𝜆 ∈ C and 𝐷̃(𝜆) = 0, then |𝜆| < 1.
(A3) 𝐷f f (𝑧) = 𝑧𝑛f f .
(A4) 𝑛f f , 𝑑fb, and 𝑛fb are known.

Assumption (A1) states that 𝐺fb𝐺𝑣 is strictly proper, and (A2) implies that 𝐺̃ is asymptotically stable. These assumptions restrict
our attention to causal feedback systems that have bounded responses to bounded inputs 𝑟, 𝜁𝑟, 𝜁𝑒, 𝜁𝑢, and 𝜁𝑦. Assumption (A3) implies
that 𝐺f f is finite-impulse response (FIR). For sufficiently large 𝑛f f , an FIR transfer function can approximate an asymptotically stable
infinite-impulse-response transfer function to arbitrary accuracy evaluated along the unit circle. Thus, (A3) does not significantly
restrict the feedforward transfer functions considered. Assumption (A3) is invoked to improve computational efficiency of the SSID
algorithm; however, it is not required (see [3]). Assumption (A4) implies that the orders of 𝐺f f and 𝐺fb are known.

Remark 1. Before proceeding with the SSID problem formulation, we briefly address the situation where the system transfer
functions 𝐺𝑦 and 𝐺𝑣 are uncertain. For many applications (e.g., modeling HITL behavior), 𝐺𝑦 and 𝐺𝑣 are known with a high level of
accuracy. However, the SSID method in this paper is also applicable to situations where 𝐺𝑦 and 𝐺𝑣 are uncertain. To illustrate, we
consider the situation with multiplicative uncertainty; however, a similar approach can be applied with other types of uncertainty
(e.g., additive, subtractive, divisive). Let 𝐺𝑦0, 𝐺𝑣0 ∶ C → C be real rational transfer functions, which are the known nominal models,

3
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and let 𝛥𝑦, 𝛥𝑣 ∶ C → C be real rational transfer functions, which are the unknown unstructured uncertainties. Then, the system
transfer functions are 𝐺𝑦 = 𝐺𝑦0(1 + 𝛥𝑦) and 𝐺𝑣 = 𝐺𝑣0(1 + 𝛥𝑣). In this case, it follows from (1)–(3) that

𝑦(𝑧) = 𝐺̃0(𝑧)𝑟(𝑧) + 𝜁 ′(𝑧), (7)

where

𝐺̃0 ≜
𝐺𝑦0(𝑧−𝜏fb𝐺fb + 𝑧−𝜏f f𝐺f f )

1 + 𝑧−𝜏fb𝐺fb𝐺𝑣0
, (8)

𝜁 ′ ≜ 𝛥𝑟 + 𝜁, (9)

where the noise 𝜁 is defined by (6), and

𝛥 ≜ 𝛥𝑦

[𝐺𝑦0(𝑧−𝜏fb𝐺fb + 𝑧−𝜏f f𝐺f f )
1 + 𝑧−𝜏fb𝐺fb𝐺𝑣

]

+ 𝛥𝑣

[−𝑧−𝜏fb𝐺𝑦0𝐺𝑣0𝐺fb(𝑧−𝜏fb𝐺fb + 𝑧−𝜏f f𝐺f f )
(1 + 𝑧−𝜏fb𝐺fb𝐺𝑣0)(1 + 𝑧−𝜏fb𝐺fb𝐺𝑣)

]

.

The closed-loop system (7)–(9) with uncertainty is similar to the closed-loop system (4)–(6) without uncertainty, but 𝐺̃ is replaced
by the nominal closed-loop transfer function 𝐺̃0, and the unknown noise 𝜁 is replaced by 𝜁 ′, which includes the unknown noise 𝜁
as well as the uncertainty 𝛥 in the closed-loop transfer function. Thus, the SSID algorithm and analysis presented in the subsequent
sections applies to situations where 𝐺𝑦 and 𝐺𝑣 are uncertain by replacing 𝐺̃ with the known nominal model 𝐺̃0 and replacing 𝜁 with
𝜁 ′, which includes the impact of not only the unknown noise but also the unknown model uncertainty. In this case, the analytic
properties of the SSID algorithm given in Section 6 require not only that the noise 𝜁 is sufficiently small but also that the model
uncertainty 𝛥 is sufficiently small.

4. SSID problem formulation

Let 𝑁 ∈ Z+ be the number of frequency-response data, and we assume that:

(A5) 𝑁 > 𝑛𝑦 + 𝑑fb + 𝑛f f .

Assumption (A5) ensures that the number 𝑁 of frequency-response data is large enough to ensures that the minimization
problems solved in the SSID algorithm have unique solutions. For implementation of the SSID algorithm, (A5) in combination
with the subsystem orders 𝑛𝑦, 𝑑fb, and 𝑛f f allows the user to determine the number 𝑁 of frequency-response data required, which,
in turn, influences the choice of the exogenous input 𝑟.

For all 𝑘 ∈ N ≜ {1, 2,… , 𝑁}, let 𝜃𝑘 ∈ [0, 𝜋], where without loss of generality, we assume that 𝜃1 < ⋯ < 𝜃𝑁 . For all 𝑘 ∈ N, define
the closed-loop frequency-response data

𝐻(𝜃𝑘) ≜ 𝐺̃(𝑒𝚥𝜃𝑘 ) +
𝜁 (𝑒𝚥𝜃𝑘 )
𝑟(𝑒𝚥𝜃𝑘 )

∈ C,

and define the noise

𝜂∗ ≜
[

𝜁 (𝑒𝚥𝜃1 )
𝑟(𝑒𝚥𝜃1 )

⋯ 𝜁 (𝑒𝚥𝜃𝑁 )
𝑟(𝑒𝚥𝜃𝑁 )

]T
∈ C𝑁 .

This paper presents an SSID method to identify 𝐺f f , 𝜏f f , 𝐺fb, and 𝜏fb under the assumption that 𝐺𝑦, 𝐺𝑣, and {𝐻(𝜃𝑘)}𝑁𝑘=1 are
known. For each 𝑘 ∈ N, 𝐻(𝜃𝑘) can be calculated from 𝑦 and 𝑟 as 𝐻(𝜃𝑘) = 𝑦(𝑒𝚥𝜃𝑘 )∕𝑟(𝑒𝚥𝜃𝑘 ). Thus, {𝐻(𝜃𝑘)}𝑁𝑘=1 can be obtained from
the accessible signals 𝑟 and 𝑦. Furthermore, for practical implementation, 𝑦(𝑒𝚥𝜃𝑘 ) and 𝑟(𝑒𝚥𝜃𝑘 ) can be computed from time-domain
data using the discrete Fourier transform. See [25, Chap. 2] for additional details on how to reduce errors that can occur in the
𝑧-transform when, for example, calculations use a finite number of time-domain data.

For notational convenience, define 𝜎𝑘 ≜ 𝑒𝚥𝜃𝑘 , 𝑎 ≜ 𝑛f f + 1, and 𝑏 ≜ 𝑑fb + 𝑛fb + 1. Consider the functions Nf f ∶ C × R𝑎 → C,
Nfb ∶ C × R𝑏 → C, and Dfb ∶ C × R𝑏 → C defined by

Nf f (𝑧, 𝛼) ≜
[

𝑧𝑛f f 𝑧𝑛f f−1 ⋯ 𝑧 1
]

𝛼,

Nfb(𝑧, 𝛽) ≜
[

𝑧𝑛fb ⋯ 𝑧 1 01×𝑑fb
]

𝛽,

Dfb(𝑧, 𝛽) ≜ 𝑧𝑑fb +
[

01×(𝑛fb+1) 𝑧𝑑fb−1 ⋯ 𝑧 1
]

𝛽,

where 𝛼 ∈ R𝑎 contains the parameters of Nf f , and 𝛽 ∈ R𝑏 contains the parameters of Nfb and Dfb. For all 𝛼 ∈ R𝑎 and 𝛽 ∈ R𝑏, define

Gf f (𝑧, 𝛼) ≜
Nf f (𝑧, 𝛼)
𝑧𝑛f f

, Gfb(𝑧, 𝛽) ≜
Nfb(𝑧, 𝛽)
Dfb(𝑧, 𝛽)

.

Consider G̃∶ C × R𝑎 × N × R𝑏 × N → C defined by

G̃(𝑧, 𝛼, 𝜓, 𝛽, 𝛾) ≜
𝑁𝑦(𝑧)Nfb(𝑧, 𝛽)

D̃(𝑧, 𝛽, 𝛾)
+
𝑧𝛾−𝜓−𝑛f f𝑁𝑦(𝑧)Dfb(𝑧, 𝛽)Nf f (𝑧, 𝛼)

D̃(𝑧, 𝛽, 𝛾)
, (10)

where

D̃(𝑧, 𝛽, 𝛾) ≜ 𝑧𝛾Dfb(𝑧, 𝛽)𝐷(𝑧) +Nfb(𝑧, 𝛽)𝑁𝑣(𝑧), (11)
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and 𝜓 ∈ N and 𝛾 ∈ N represent the feedforward and feedback delays, respectively. Note that G̃ can be interpreted as the closed-loop
transfer function obtained from the feedforward and feedback parameters 𝛼, 𝜓 , 𝛽, and 𝛾. Furthermore, for any 𝛼, 𝜓 , 𝛽, and 𝛾, the
transfer function G̃ can be computed directly from (10) and (11) because the 𝐺𝑦 and 𝐺𝑣 are known.

Let 𝛼∗ ∈ R𝑎 and 𝛽∗ ∈ R𝑏 be such that 𝑁f f (𝑧) ≡ Nf f (𝑧, 𝛼∗), 𝑁fb(𝑧) ≡ Nfb(𝑧, 𝛽∗), and 𝐷fb(𝑧) ≡ Dfb(𝑧, 𝛽∗). Thus, Gf f (𝑧, 𝛼∗) ≡ 𝐺f f (𝑧),
Gfb(𝑧, 𝛽∗) ≡ 𝐺fb(𝑧), and G̃(𝑧, 𝛼∗, 𝜏f f , 𝛽∗, 𝜏fb) ≡ 𝐺̃(𝑧). In other words, 𝛼∗ and 𝛽∗ are the parameters of the feedforward and feedback
transfer functions 𝐺f f and 𝐺fb.

Our objective is to determine 𝛼, 𝜓 , 𝛽, and 𝛾 such that Gf f , 𝜓 , Gfb, and 𝛾 approximate 𝐺f f , 𝜏f f , 𝐺fb, and 𝜏fb, respectively. To
achieve this objective, we seek to minimize the cost

𝐽 (𝛼, 𝜓, 𝛽, 𝛾) ≜
𝑁
∑

𝑘=1
𝑤𝑘

|

|

|

G̃(𝑒𝚥𝜃𝑘 , 𝛼, 𝜓, 𝛽, 𝛾) −𝐻(𝜃𝑘)
|

|

|

2
, (12)

subject to the constraint that
[ 𝛽
𝛾
]

∈ S, where

S ≜
{

[ 𝛽
𝛾
]

∈ R𝑏 × N∶ 𝛽 ∈ R𝑏, 𝛾 ∈ N, and if 𝜆 ∈ C and D̃(𝜆, 𝛽, 𝛾) = 0, then |𝜆| < 1
}

,

which is the set of (𝛽, 𝛾) such that D̃(𝑧, 𝛽, 𝛾) is asymptotically stable, and where for all 𝑘 ∈ N, 𝑤𝑘 > 0 is a weight on the
identification error at the 𝑘th frequency 𝜃𝑘. Thus, the cost (12) is the weighted difference between the closed-loop frequency-
response data {𝐻(𝜃𝑘)}𝑁𝑘=1 and the closed-loop transfer function obtained from the estimates Gf f , 𝜓 , Gfb, and 𝛾. The cost (12) and
constraint

[ 𝛽
𝛾
]

∈ S are nonlinear and nonconvex in (𝛼, 𝜓, 𝛽, 𝛾). If {𝐻(𝜃𝑘)}𝑁𝑘=1 is noiseless, then 𝐽 (𝛼∗, 𝜏f f , 𝛽∗, 𝜏fb) = 0. In this case,
(𝛼, 𝜓, 𝛽, 𝛾) = (𝛼∗, 𝜏f f , 𝛽∗, 𝜏fb) minimizes the cost (12).

The weights 𝑤1,… , 𝑤𝑁 are selected based on the relative importance of minimizing the identification error at the associated
frequencies. For example, the weights can be selected based on the uncertainty in the frequency-response data {𝐻(𝜃𝑘)}𝑁𝑘=1.
Specifically, larger weights can be applied at those frequencies where the data has the least uncertainty. As discussed above, the
length and frequency content of the time-domain data used to compute {𝐻(𝜃𝑘)}𝑁𝑘=1 impacts the accuracy of the frequency-response
data; see [25] for additional details. Thus, the weights provide the user with a parameter to help account for uncertainty. Of course,
each frequency can be weighted equally by using 𝑤1 = ⋯ = 𝑤𝑁 = 1.

5. SSID algorithm

This section presents a new SSID algorithm for estimating 𝛼∗, 𝜏f f , 𝛽∗ and 𝜏fb. It follows from (10)–(12) that

𝐽 (𝛼, 𝜓, 𝛽, 𝛾) = 𝛼T𝛺2(𝛽, 𝛾)𝛼 +𝛺0(𝛽, 𝛾) + Re𝛶 ∗
1 (𝛽, 𝛾)

(

diag𝛤 (𝜓)
)

𝛶2(𝛽, 𝛾)𝛼, (13)

where

𝛺2(𝛽, 𝛾) ≜ Re
𝑁
∑

𝑘=1
𝐴∗
𝑘(𝛽, 𝛾)𝐴𝑘(𝛽, 𝛾) ∈ R𝑎×𝑎, (14)

𝛺0(𝛽, 𝛾) ≜
𝑁
∑

𝑘=1

|

|

𝐵𝑘(𝛽, 𝛾)||
2 ∈ R, (15)

𝛶1(𝛽, 𝛾) ≜ 2
[

𝐵1(𝛽, 𝛾) ⋯ 𝐵𝑁 (𝛽, 𝛾)
]T ∈ C𝑁 , (16)

𝛶2(𝛽, 𝛾) ≜
[

𝐴1(𝛽, 𝛾) ⋯ 𝐴𝑁 (𝛽, 𝛾)
]T ∈ C𝑁×𝑎, (17)

𝛤 (𝜓) ≜
[

𝜎−𝜓1 ⋯ 𝜎−𝜓𝑁
]T ∈ C𝑁 , (18)

where for all 𝑘 ∈ N,

𝐴𝑘(𝛽, 𝛾) ≜
√

𝑤𝑘
𝜎𝛾−𝑛f f𝑘 𝑁𝑦(𝜎𝑘)Dfb(𝜎𝑘, 𝛽)

D̃(𝜎𝑘, 𝛽, 𝛾)
𝜈(𝜎𝑘) ∈ C1×𝑎, (19)

𝐵𝑘(𝛽, 𝛾) ≜
√

𝑤𝑘

(𝑁𝑦(𝜎𝑘)Nfb(𝜎𝑘, 𝛽)

D̃(𝜎𝑘, 𝛽, 𝛾)
−𝐻(𝜃𝑘)

)

∈ C, (20)

and

𝜈(𝑧) ≜
[

𝑧𝑛f f ⋯ 𝑧 1
]

. (21)

Define 𝐸𝛽 ≜ [𝐼𝑏 0𝑏×1] and 𝐸𝛾 ≜ [01×𝑏 1]. The following result provides sufficient conditions such that 𝛺2(𝛽, 𝛾) is positive
definite. The proof is in Appendix A.

Proposition 1. Consider 𝛺2 given by (14), where (A1) and (A5) are satisfied. Then, for all 𝜙 ∈ S, 𝛺2(𝐸𝛽𝜙,𝐸𝛾𝜙) is positive definite.

Let 𝛷 ⊂ S be a set with 𝑚 elements. We call 𝛷 the feedback candidate pool. For all 𝑖, 𝑗 ∈ M ≜ {1, 2,… , 𝑚}, let 𝜙𝑖, 𝜙𝑗 ∈ 𝛷 be such
that if 𝑖 ≠ 𝑗, then 𝜙𝑖 ≠ 𝜙𝑗 . Thus, {𝜙𝑖}𝑚𝑖=1 is the feedback-candidate-pool sequence. For all 𝑖 ∈ M, define the cost function

J𝑖(𝛼, 𝜓) ≜ 𝐽 (𝛼, 𝜓, 𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖), (22)
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and define

𝛺1(𝛽, 𝛾) ≜ 𝛶 T
2 (𝛽, 𝛾)

(

diag 𝛶1(𝛽, 𝛾)
)∗ ∈ C𝑎×𝑁 . (23)

Since 𝛶 ∗
1 (𝛽, 𝛾) (diag 𝛤 (𝜓))𝛶2(𝛽, 𝛾) = 𝛤 T(𝜓)𝛺T

1 (𝛽, 𝛾), it follows from (13) and (22) that

J𝑖(𝛼, 𝜓) = 𝛼T𝛺2(𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖)𝛼 +𝛺0(𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖) + Re𝛤 T(𝜓)𝛺T
1 (𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖)𝛼. (24)

We note that for all 𝜓 ∈ N, (24) is convex in 𝛼. Furthermore, Proposition 1 implies that for all 𝑖 ∈ M, 𝛺2(𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖) is positive
definite. Thus, for each 𝑖 ∈ M,

𝛼𝑖(𝜓) ≜ −1
2
𝛺−1

2 (𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖)Re𝛺1(𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖)𝛤 (𝜓) (25)

exists. Furthermore, for all 𝜓 ∈ N and all 𝑖 ∈ M, 𝛼𝑖(𝜓) is the unique global minimizer of J𝑖(𝛼, 𝜓) [26, Chap. 1]. Notably, the matrix
inverse 𝛺−1

2 (𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖) required to compute 𝛼𝑖(𝜓) does not depend on 𝜓 . Thus, computing 𝛼𝑖(𝜓) for different values of 𝜓 ∈ N
requires minimal computation.

Define the auxiliary cost

𝑄𝑖(𝜓) ≜ J𝑖(𝛼𝑖(𝜓), 𝜓) = 𝛺0(𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖) − 𝜒𝑖(𝜓), (26)

where

𝜒𝑖(𝜓) ≜
[

Re𝛤 (𝜓)
−Im𝛤 (𝜓)

]T

F𝑖

[

Re𝛤 (𝜓)
−Im𝛤 (𝜓)

]

,

and

F𝑖 ≜
1
4

[

Re𝛺T
1 (𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖)

Im𝛺T
1 (𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖)

]

𝛺−1
2 (𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖)

[

Re𝛺T
1 (𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖)

Im𝛺T
1 (𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖)

]T

. (27)

Let 𝛹 ⊂ N be a set with 𝑡 elements. We call 𝛹 the feedforward-delay candidate pool. For all 𝑖, 𝑗 ∈ T ≜ {1, 2,… , 𝑡}, let 𝜓𝑖, 𝜓𝑗 ∈ 𝛹 be
such that if 𝑖 ≠ 𝑗, then 𝜓𝑖 ≠ 𝜓𝑗 . Thus, {𝜓𝑖}𝑡𝑖=1 is the feedforward-delay-candidate-pool sequence.

For each 𝜓 ∈ 𝛹 , 𝑄𝑖(𝜓) can be evaluated using F𝑖, which depends on 𝛺−1
2 (𝐸𝛽𝜙𝑖, 𝐸𝛾𝜙𝑖). Thus, for each 𝑖 ∈ M, 𝑄𝑖(𝜓) can be

evaluated for each element of 𝛹 using only one matrix inverse. This feature allows us to address feedforward time delay with
minimal additional computational complexity relative to the case without feedforward time delay. Specifically, each additional
element in the feedforward-delay-candidate pool 𝛹 requires only the additional computational of the inner product 𝜒𝑖(𝜓), which is
needed in (26).

For all 𝑖 ∈ M, let 𝑞𝑖 ∈ T be the smallest integer such that 𝑄𝑖(𝜓𝑞𝑖 ) = min𝑗∈T 𝑄𝑖(𝜓𝑗 ). Next, let 𝓁 ∈ M be the smallest integer such
that 𝑄𝓁(𝜓𝑞𝓁 ) = min𝑖∈M𝑄𝑖(𝜓𝑞𝑖 ). Thus, (𝛼, 𝜓, 𝛽, 𝛾) = (𝛼𝓁(𝜓𝑞𝓁 ), 𝜓𝑞𝓁 , 𝐸𝛽𝜙𝓁 , 𝐸𝛾𝜙𝓁) minimizes 𝐽 (𝛼, 𝜓, 𝛽, 𝛾) over all 𝛼 ∈ R𝑎, 𝜓 ∈ 𝛹 , and
[ 𝛽
𝛾
]

∈ 𝛷.
The identified parameters are 𝛼+ ≜ 𝛼𝓁(𝜓𝑞𝓁 ), 𝜏

+
ff ≜ 𝜓𝑞𝓁 , 𝛽+ ≜ 𝐸𝛽𝜙𝓁 , and 𝜏+fb ≜ 𝐸𝛾𝜙𝓁 , which implies that the identified transfer

functions are 𝐺+
ff (𝑧) ≜ Gf f (𝑧, 𝛼+) and 𝐺+

fb(𝑧) ≜ Gfb(𝑧, 𝛽+). We now summarize this SSID method.

Algorithm 1. Consider the closed-loop transfer function (5), where 𝐺𝑦, 𝐺𝑣, and {𝐻(𝜃𝑘)}𝑁𝑘=1 are known, and (A1)–(A5) are satisfied.
Then, the SSID algorithm is as follows:

Step 1. Generate the feedback candidate pool 𝛷 ⊂ S and feedforward-delay candidate pool 𝛹 ⊂ N, and the sequences {𝜙𝑖}𝑚𝑖=1 and
{𝜓𝑗}𝑡𝑗=1.

Step 2. For each 𝑖 ∈ M, compute 𝑄𝑖(𝜓) and find smallest integer 𝑞𝑖 ∈ T such that 𝑄𝑖(𝜓𝑞𝑖 ) = min𝑗∈T 𝑄𝑖(𝜓𝑗 ).
Step 3. Find the smallest integer 𝓁 ∈ M such that 𝑄𝓁(𝜓𝑞𝓁 ) = min𝑖∈M J𝑖(𝛼𝑖(𝜓𝑞𝑖 ), 𝜓𝑞𝑖 ).
Step 4. The identified parameters are 𝛼+ ≜ 𝛼𝓁(𝜓𝑞𝓁 ), 𝜏

+
ff ≜ 𝜓𝑞𝓁 , 𝛽+ ≜ 𝐸𝛽𝜙𝓁 , and 𝜏+fb ≜ 𝐸𝛾𝜙𝓁 .

Step 5. The identified transfer functions are 𝐺+
ff (𝑧) ≜ Gf f (𝑧, 𝛼+) and 𝐺+

fb(𝑧) ≜ Gfb(𝑧, 𝛽+).

Note that Step 3 of the SSID algorithm selects the smallest integer 𝓁 ∈ M such that 𝑄𝓁(𝜓𝑞𝓁 ) = min𝑖∈M J𝑖(𝛼𝑖(𝜓𝑞𝑖 ), 𝜓𝑞𝑖 ). This selection
is made for convenience to address the case where there are multiple sets of parameters that minimize the cost 𝐽 (𝛼, 𝜓, 𝛽, 𝛾) over all
𝛼 ∈ R𝑎, 𝜓 ∈ 𝛹 , and

[ 𝛽
𝛾
]

∈ 𝛷. From a practical implementation perspective, it is unlikely that multiple sets of parameters will yield
exactly the same value of the cost. Thus, this step is not generally needed in practice. Furthermore, the analysis in the next section
demonstrates that under some assumptions, the value of 𝓁 ∈ M such that 𝑄𝓁(𝜓𝑞𝓁 ) = min𝑖∈M J𝑖(𝛼𝑖(𝜓𝑞𝑖 ), 𝜓𝑞𝑖 ) is unique.

6. Analysis of Algorithm 1

The main contribution of this section is an analysis of Algorithm 1 in two different scenarios: (i) 𝜙∗ ≜
[

𝛽∗
𝜏fb

]

is in the feedback
candidate pool 𝛷; and (ii) 𝜙∗ is not in the feedback candidate pool 𝛷 but the feedback candidate pool 𝛷 is arbitrarily large (i.e., the
cardinality of 𝛷 is arbitrarily large).

Let 𝜓max ≜ max 𝛹 and 𝛾max ≜ max {𝐸𝛾𝜙∶ 𝜙 ∈ 𝛷}, which are the maximum integers in the sets 𝛹 and {𝐸𝛾𝜙∶ 𝜙 ∈ 𝛷}, respectively.
We make the following technical assumption:
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(A6) 𝑁 > 𝑑 + 𝑑fb + 𝑛𝑦 + 𝑛f f + max {𝑛fb, 𝑑fb} + max {𝜏f f , 𝜏fb} + max {𝜓max, 𝛾max}.

Assumption (A6) is used for analysis but is not required to implement Algorithm 1. To implement Algorithm 1, 𝑁 need only
satisfy (A5) but not (A6). Assumption (A6) is only needed to obtain the next result, which shows that the closed-loop transfer
function 𝐺̃ is the only transfer function that perfectly fits the noiseless closed-loop frequency-response {𝐺̃(𝜎𝑘)}𝑁𝑘=1. We note that
(A6) is sufficient for this result; however, (A6) is not necessary and is often conservative. The proof of the following result is in
Appendix A.

Proposition 2. Let 𝛼 ∈ R𝑎, 𝜓 ∈ N, 𝛽 ∈ R𝑏, 𝛾 ∈ N. Assume (A1) and (A6) are satisfied. Then, ∑𝑁
𝑘=1 |G̃(𝜎𝑘, 𝛼, 𝜓, 𝛽, 𝛾) − 𝐺̃(𝜎𝑘)|

2 = 0 if and
only if G̃(𝑧, 𝛼, 𝜓, 𝛽, 𝛾) ≡ 𝐺̃(𝑧).

The condition G̃(𝑧, 𝛼, 𝜓, 𝛽, 𝛾) ≡ 𝐺̃(𝑧) is not sufficient to conclude that 𝛼 = 𝛼∗, 𝜓 = 𝜏f f , 𝛽 = 𝛽∗, and 𝛾 = 𝜏fb. See [27, Chap. 13]
or [4, Example 1] for more details.

We impose an additional assumption to ensure that if G̃(𝑧, 𝛼, 𝜓, 𝛽, 𝛾) ≡ 𝐺̃(𝑧), then 𝛼 = 𝛼∗, 𝜓 = 𝜏f f , 𝛽 = 𝛽∗, and 𝛾 = 𝜏fb. Let
𝛩 ⊂ R𝑏 × N be a compact set with no isolated points such that 𝜙∗ ∈ 𝛩. In practice, 𝛩 is used to generate the feedback candidate
pool 𝛷. We assume that:

(A7) If 𝛼 ∈ R𝑎, 𝜓 ∈ 𝛹 , 𝜙 ∈ 𝛩 ∩ S, and G̃(𝑧, 𝛼, 𝜓, 𝐸𝛽𝜙,𝐸𝛾𝜙) ≡ 𝐺̃(𝑧), then 𝛼 = 𝛼∗, 𝜓 = 𝜏f f , and 𝜙 = 𝜙∗.

Assumption (A7) guarantees that the SSID problem is well posed. More specifically, (A7) states that there are not multiple
elements in the feedback and feedforward candidate pools that yield the true closed-loop transfer function 𝐺̃. Note that (A7) is used
for analysis but is not required to implement Algorithm 1.

The following result addresses the case where 𝜙∗ ∈ 𝛷 and 𝜏f f ∈ 𝛹 . This result demonstrates that for sufficiently small noise,
𝜏+ff = 𝜏f f , 𝛽+ = 𝛽∗, 𝜏+fb = 𝜏fb, and 𝛼+ is arbitrarily close to 𝛼∗. The proof is in Appendix B.

Theorem 1. Assume (A1)–(A7) are satisfied. Let 𝛹 ⊂ N and 𝛷 ⊆ (𝛩 ∩ S). Assume that 𝜏f f ∈ 𝛹 and 𝜙∗ ∈ 𝛷. Let 𝛼+, 𝜏+ff , 𝛽
+, and 𝜏+fb

denote the identified parameters obtained from Algorithm 1 with the feedback candidate pool 𝛷 and the feedforward-delay candidate pool
𝛹 . Then, the following statements hold:

(i) There exists 𝛿0 > 0 such that if ‖𝜂∗‖ < 𝛿0, then 𝜏+ff = 𝜏f f , 𝛽+ = 𝛽∗, and 𝜏+fb = 𝜏fb. In addition, for all 𝜖 > 0, there exists 𝛿 ∈ (0, 𝛿0)
such that if ‖𝜂∗‖ < 𝛿, then 𝛼+ ∈ B𝜖(𝛼∗).

(ii) If 𝜂∗ = 0, then 𝛼+ = 𝛼∗, 𝜏+ff = 𝜏f f , 𝛽+ = 𝛽∗, and 𝜏+fb = 𝜏fb.

Next, we extend the analysis to address the case where 𝜙∗ ∉ 𝛷. Let 𝜌 ∈ (0, 1) be such that if 𝜆 ∈ C and D̃(𝜆, 𝐸𝛽𝜙∗, 𝐸𝛾𝜙∗) = 0,
then |𝜆| < 𝜌, and define

S𝜌 ≜
{

𝜙 ∈ S∶ if 𝜆 ∈ C and D̃(𝜆, 𝐸𝛽𝜙,𝐸𝛾𝜙) = 0, then |𝜆| < 𝜌
}

.

In practice, S𝜌 is used to generate the feedback candidate pool 𝛷, and 𝜌 can be selected sufficiently close to 1 to ensure that 𝜙∗ ∈ S𝜌.
Note that as 𝜌 approaches 1, S𝜌 approaches S. We require the following definition.

Definition 1. Let 𝛥 ⊆ F𝑛 be bounded and contain no isolated points. For all 𝑗 ∈ Z+, let 𝛥𝑗 ⊆ 𝛥 be a finite set. Then, {𝛥𝑗}∞𝑗=1 converges
to 𝛥 if for each 𝑥 ∈ 𝛥, there exists a sequence {𝑥𝑗 ∶ 𝑥𝑗 ∈ 𝛥𝑗}∞𝑗=1 such that for all 𝜖 > 0, there exists 𝐿 ∈ Z+ such that for all 𝑗 > 𝐿,
𝑥𝑗 ∈ B𝜖(𝑥).

The following result considers Algorithm 1 with a sequence of feedback candidate pools that converge to 𝛩 ∩ S𝜌. Note that
𝛩 ∩ S𝜌 is bounded, and 𝛩 ∩ S𝜌 contains no isolated points [3, Prop. 7]. The following result demonstrates that a sufficiently large
feedback candidate pool and sufficiently small noise ‖𝜂∗‖ yields identified parameters such that 𝜏+ff = 𝜏f f , 𝜏+fb = 𝜏fb, and 𝛼+ and 𝛽+

are arbitrarily close to 𝛼∗ and 𝛽∗. The proof is in Appendix B.

Theorem 2. Assume (A1)–(A7) are satisfied. For all 𝑗 ∈ Z+, let 𝛷𝑗 ⊆ (𝛩 ∩ S𝜌) be a finite set such that {𝛷𝑗}∞𝑗=1 converges to 𝛩 ∩ S𝜌.
Assume that 𝜏f f ∈ 𝛹 . For each 𝑗 ∈ Z+, let 𝛼+𝑗 , 𝜏+ff ,𝑗 , 𝛽

+
𝑗 , and 𝜏+fb,𝑗 denote the identified parameters obtained from Algorithm 1 with the

feedback candidate pool 𝛷 = 𝛷𝑗 and the feedforward-delay candidate pool 𝛹 . Then, for all 𝜖 > 0, there exist 𝛿 > 0 and 𝐿 ∈ Z+ such that
if ‖𝜂∗‖ < 𝛿 and 𝑗 > 𝐿, then 𝜏+ff ,𝑗 = 𝜏f f , 𝜏+fb,𝑗 = 𝜏fb, 𝛼+𝑗 ∈ B𝜖(𝛼∗), and 𝛽+𝑗 ∈ B𝜖(𝛽∗).

Theorem 2 relies on the assumption that the cardinality of the feedback candidate pool is sufficiently large. From a practical
implementation perspective, this assumption can be tested by implementing the SSID algorithm with a sequence of progressively
larger feedback candidate pools. In this case, it is reasonable to assume that the feedback candidate pool is sufficiently large if the
decrease in the minimum cost with one candidate pool to the next larger candidate pool is less than a small user-selected tolerance.

7. Numerical examples

For all examples, let

𝐺𝑣(𝑧) = 𝐺𝑦(𝑧) =
𝑧 − 0.5
𝑧 − 0.2

, 𝐺f f (𝑧) =
0.6𝑧 − 1

𝑧
, 𝐺fb =

0.51
𝑧 − 0.6

, 𝜏f f = 3, 𝜏fb = 8.

7
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Fig. 3. Noisy data, 𝜏f f ∈ 𝛹 , and 𝜙∗ ∈ 𝛷. Algorithm 1 is used to obtain 𝛼+𝑖 , 𝜏+ff ,𝑖, 𝛽
+
𝑖 , and 𝜏+fb,𝑖. For 𝑖 ≥ 3, 𝜏+ff ,𝑖 = 𝜏f f , 𝛽+𝑖 = 𝛽∗, 𝜏+fb,𝑖 = 𝜏fb, and for sufficiently large 𝑖,

‖𝛼+𝑖 − 𝛼∗‖2 is arbitrarily small.

Thus, 𝛼∗ = [0.6 − 1]T and 𝛽∗ = [0.51 − 0.6]T. Let 𝑁 = 25, and for 𝑘 ∈ N, let 𝜃𝑘 = 0.02𝜋𝑘 and 𝑤𝑘 = 1. This example satisfies
(A1)–(A5). Let 𝜓max = 𝛾max = 10, which implies that (A6) is satisfied. Furthermore, (A7) is satisfied for any compact sets 𝛹 ⊂ N and
𝛩 ⊂ R𝑏 × N such that 𝜏f f ∈ 𝛹 and 𝜙∗ ∈ 𝛩.

Example 1. Consider the case where 𝜏f f ∈ 𝛹 , 𝜙∗ ∈ 𝛷, and the data is noiseless. Define the feedback candidate pool

𝛷0 ≜
{[ 𝜙1

𝜙2
𝜙3

]

∈ R3 ∶ 𝜙1, 𝜙2 ∈ {−2 + 0.01𝑘}400𝑘=0 and 𝜙3 ∈ {1, 2,… , 10}
}

∩ S, (28)

and note that 𝜙∗ ∈ 𝛷0. Algorithm 1 is used with the feedback candidate pool 𝛷 = 𝛷0 and the feedforward-delay candidate pool
𝛹 ≜ {1, 2,… , 10} to obtain 𝛼+ = 𝛼 ∗, 𝜏+ff = 𝜏f f , 𝛽+ = 𝛽∗, and 𝜏+fb = 𝜏fb, which demonstrates (ii) of Theorem 1. ▵

Example 2. Consider the case where 𝜏f f ∈ 𝛹 , 𝜙∗ ∈ 𝛷, and the data is noisy. For 𝑖 ∈ {1,… , 25}, let 𝜇𝑖(𝑧) ∈ C be the noise, and
define the noise-to-signal ratio

𝑅𝑖 ≜
1
𝑁

𝑁
∑

𝑘=1

|

|

|

|

|

𝜇𝑖(𝜎𝑘)
𝐺̃(𝜎𝑘)

|

|

|

|

|

.

For 𝑖 ∈ {1,… , 25}, the frequency-response data is 𝐻𝑖(𝜃𝑘) ≜ 𝐺̃(𝜎𝑘) + 𝜇𝑖(𝜎𝑘). In this example, 𝜇1,… , 𝜇25 are randomly generated such
that 𝑅1 > 𝑅2 > ⋯ > 𝑅25. Specifically, 𝑅1 = 3.25, 𝑅2 = 1.48, 𝑅3 = 0.846, and 𝑅25 = 1.68 × 10−7. For each 𝑖 ∈ {1,… , 25}, Algorithm 1
is used with the feedback candidate pool 𝛷 = 𝛷0 from Example 1, the feedforward-delay candidate pool 𝛹 ≜ {1, 2,… , 10}, and the
noisy data {𝐻𝑖(𝜃𝑘)}𝑁𝑘=1 to obtain the identified parameters 𝛼+𝑖 , 𝜏+ff ,𝑖, 𝛽

+
𝑖 , and 𝜏+fb,𝑖. Fig. 3 shows that for 𝑖 ≥ 3, 𝜏+ff ,𝑖 = 𝜏f f , 𝛽+𝑖 = 𝛽∗,

and 𝜏+fb,𝑖 = 𝜏fb. Furthermore, Fig. 3 shows that for sufficiently large 𝑖 (i.e., the noise is sufficiently small), ‖𝛼+𝑖 − 𝛼∗‖2 is arbitrarily
small, which demonstrates (i) of Theorem 1. Specifically, for 𝑖 = 4, the signal-to-noise ratio is 2.24 (i.e., 𝑅4 = 0.446). In this case,
‖𝛼+4 − 𝛼∗‖2 = 0.0753, which corresponds to 6.5% error in the estimation of 𝛼∗. Furthermore, for 𝑖 > 4 (i.e., signal-to-noise ratio
greater than 2.24), the estimation error is less than 6.5%. For 𝑖 = 8, the signal-to-noise ratio is 39.8 (i.e., 𝑅8 = 0.0251), which results
in an estimation error that is 0.7% (i.e., ‖𝛼+8 − 𝛼∗‖2 = 0.0082). For 𝑖 > 8, the estimation error is less than 0.7%. ▵

8
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Fig. 4. Noisy data, 𝜏f f ∈ 𝛹 , and 𝜙∗ ∉ 𝛷. Algorithm 1 is used to obtain 𝛼+𝑗,𝑖, 𝜏
+
ff ,𝑗,𝑖, 𝛽

+
𝑗,𝑖, and 𝜏+fb,𝑗,𝑖. For sufficient large 𝑗 and 𝑖, 𝜏+ff ,𝑗,𝑖 = 𝜏f f , and ‖𝛼+𝑗,𝑖−𝛼∗‖2, ‖𝛽

+
𝑗,𝑖−𝛽∗‖2,

and |𝜏+fb,𝑗,𝑖 − 𝜏fb| are arbitrarily small.

Example 3. Consider the case where 𝜏f f ∈ 𝛹 , 𝜙∗ ∉ 𝛷, and the data is noisy. For 𝑗 ∈ {1,… , 56}, define the feedback candidate pool

𝛷𝑗 ≜

{

[ 𝜙1
𝜙2
𝜙3

]

∈ R3 ∶ 𝜙1, 𝜙2 ∈
{

−1.5 + 0.75𝑘
𝑗

}4𝑗

𝑘=0
and 𝜙3 ∈ {1, 2,… , 10}

}

∩ S𝜌,

where 𝜌 = 0.99. For each 𝑖 ∈ {1,… , 25} and each 𝑗 ∈ {1,… , 56}, Algorithm 1 is used with the feedback candidate pool 𝛷 = 𝛷𝑗 ,
the feedforward-delay candidate pool 𝛹 ≜ {1, 2,… , 10}, and the noisy data {𝐻𝑖(𝜃𝑘)}𝑁𝑘=1 from Example 2 to obtain the identified
parameters 𝛼+𝑗,𝑖, 𝜏

+
ff ,𝑗,𝑖, 𝛽

+
𝑗,𝑖, and 𝜏+fb,𝑗,𝑖. Fig. 4 shows that for 𝑖 ≥ 3 and all 𝑗, the delays are identified correctly, that is, 𝜏+ff ,𝑗,𝑖 = 𝜏f f

and 𝜏+fb,𝑗,𝑖 = 𝜏fb. Note that for 𝑖 = 3, the signal-to-noise ratio is 1.18 (i.e., 𝑅3 = 0.846). Fig. 4 also shows that for sufficiently large
𝑗 and 𝑖 (i.e., the feedback candidate pool is sufficiently large and the noise is sufficiently small), ‖𝛼+𝑗,𝑖 − 𝛼∗‖2 and ‖𝛽+𝑗,𝑖 − 𝛽∗‖2 are
arbitrarily small, which demonstrates Theorem 2. Note that the estimation errors ‖𝛼+𝑗,𝑖 − 𝛼∗‖2 and ‖𝛽+𝑗,𝑖 − 𝛽∗‖2 tend to decrease as
the signal-to-noise ratio increases (i.e., 𝑖 increases) or the cardinality of the feedback candidate pool increases (i.e., 𝑗 increases).
However, for a fixed signal-to-noise ratio, the estimation errors ‖𝛼+𝑗,𝑖 − 𝛼∗‖2 and ‖𝛽+𝑗,𝑖 − 𝛽∗‖2 plateau at a nonzero value as the
cardinality of the feedback candidate pool increases. For example, for 𝑖 = 6, the signal-to-noise ratio is 8.54 (i.e., 𝑅6 = 0.117). In
this case, the estimation errors ‖𝛼+𝑗,6 − 𝛼∗‖2 and ‖𝛽+𝑗,6 − 𝛽∗‖2 plateau at approximately 0.0247 and 0.0047 as 𝑗 increases. Thus, for
this example, the noise causes approximately 2.1% and 0.6% error in the estimation 𝛼∗ and 𝛽∗, respectively. Similarly, for a fixed
feedback candidate pool that does not contain 𝜙∗, the estimation errors ‖𝛼+𝑗,𝑖 − 𝛼∗‖2 and ‖𝛽+𝑗,𝑖 − 𝛽∗‖2 plateau at a nonzero value as
the signal-to-noise ratio increases. ▵

8. Application to modeling human-in-the-loop control behavior

In this section, we apply Algorithm 1 to data obtained from a HITL experiment in which human subjects interact with a linear
time-invariant (LTI) dynamic system. A total of eleven subjects participated in this experiment. We use data from this experiment
to demonstrate how Algorithm 1 is used to model each subject’s control behavior (feedback and feedforward with time delay).

At the time of the experiment, the subjects were 18 to 35 years of age, and they had no known motor control or neurological
disorders. The University of Kentucky’s Institutional Review Board approved this study under IRB protocol 44649. A subject uses a
single-degree-of-freedom rotational joystick to affect the horizontal position of a controlled object that is displayed on a computer

9
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Fig. 5. Experimental setup. A subject uses a joystick to affect the horizontal position 𝑦t of a controlled object displayed on a computer screen. The joystick
position 𝑢t is the input to a dynamic system, and the controlled object’s position 𝑦t is the output of the dynamic system. A reference object’s position 𝑟t is also
shown on the computer screen.

screen. The position of the joystick is denoted by 𝑢t (𝑡), which is the input to an LTI dynamic system. The position of the controlled
object is denoted by 𝑦t (𝑡), which is the output of the LTI dynamic system. A reference object also moves on the computer screen,
and its horizontal position is denoted by 𝑟t (𝑡), which is independent of 𝑢t (𝑡). The signals 𝑢t , 𝑦t , and 𝑟t are functions of time 𝑡. Fig. 5
is a diagram of the experimental setup.

Prior to interacting with the experimental setup, a subject is shown the computer screen and told that manipulating the joystick
moves the controlled object. A subject is told that their objective is to manipulate the joystick and attempt to make the controlled
and reference objects have the same horizontal position at each instant of time. Thus, a subject’s objective is to generate a control
𝑢t that makes the magnitude of the error 𝑟t − 𝑦t as small as possible.

The controlled object’s position 𝑦t satisfies the LTI differential equation

𝑦t (𝑡) + 𝑎2𝑦̈t (𝑡) + 𝑎1𝑦̇t (𝑡) + 𝑎0𝑦t (𝑡) = 𝑏1𝑢̇t (𝑡) + 𝑏0𝑢t (𝑡), (29)

where 𝑎0 = 6.4, 𝑎1 = 9.76, 𝑎2 = 5.2, 𝑏0 = 7.04, and 𝑏1 = 3.2, and the initial conditions are 𝑦̈t (0) = 𝑦̇t (0) = 𝑦t (0) = 0. Thus, the
continuous-time transfer function from 𝑢t to 𝑦t is given by

𝐺(𝑠) ≜ 3.2(𝑠 + 2.2)
(𝑠 + 1.6)(𝑠2 + 3.6𝑠 + 4)

,

which has poles at −1.6 and −1.8± 𝚥0.87, and a zero at −2.2. The LTI dynamic system (29) is a second-order oscillator cascaded with
a first-order lag filter. Thus, (29) can model a variety of second-order dynamic systems that include first-order sensor/actuator lag
dynamics. For example, (29) can model a LTI spring-mass-damper system where the input 𝑢t is the force applied to the mass and
the output 𝑦t is the measured position of the mass, which provided by a sensor with first-order lag dynamics.

Each subject performed 40 trials of the experiment over 5 days. Each trial is 60 s long. These trials were divided into 4 sessions
of 10 trials, and each session was completed in a 20-minute period. Each subject completed no more than one session in a 12-hour
period.

For all 𝑡 ∈ [0, 60], the reference command is

𝑟t (𝑡) ≜ 2 sin 𝜋𝑡
2

120
,

which is an 60-s chirp with frequency content between 0 and 0.5 Hz. For each trial, we record 𝑟t , 𝑢t , and 𝑦t with a sample time
of 𝑇s = 0.02 s. The sampled data are denoted by {𝑟𝑗}𝑛𝑗=1, {𝑢𝑗}

𝑛
𝑗=1, and {𝑦𝑗}𝑛𝑗=1, where 𝑛 = 3000 samples. We discretize 𝐺 using a

zero-order hold on the input with sample time 𝑇s = 0.02, which yields the discrete-time transfer function 𝐺𝑦. Note that 𝐺𝑣 = 𝐺𝑦.
To demonstrate Algorithm 1, we use the data from each subject’s last trial. We calculate the discrete Fourier transform of {𝑦𝑗}𝑛𝑗=1

and {𝑟𝑗}𝑛𝑗=1 at the frequencies 𝜔𝑘 = 2𝜋𝑘∕60 rad/s, where 𝑘 ∈ N ≜ {1, 2,… , 𝑁}, which are 𝑁 = 30 evenly spaced frequencies over the
0-to-0.5 Hz range. Let 𝑦df t (𝜔𝑘) and 𝑟df t (𝜔𝑘) denote the discrete Fourier transform of {𝑦𝑗}𝑛𝑗=1 and {𝑟𝑗}𝑛𝑗=1 at 𝜔𝑘. Thus, for all 𝑘 ∈ N,
the closed-loop frequency-response data is 𝐻(𝜃𝑘) = 𝑦(𝜎𝑘)∕𝑟(𝜎𝑘) ≈ 𝑦df t (𝜔𝑘)∕𝑟df t (𝜔𝑘), where 𝜃𝑘 = 𝑇s𝜔𝑘 and 𝜎𝑘 = 𝑒𝚥𝜃𝑘 . For 𝑘 ∈ N, let
𝑤𝑘 = 1.

We use Algorithm 1 and the closed-loop frequency-response data is 𝐻(𝜃𝑘) to identify 𝐺f f , 𝜏f f , 𝐺fb, and 𝜏fb. We identify the best-fit
second-order strictly proper feedback transfer function and second-order feedforward transfer function (i.e., 𝑛fb = 1, 𝑑fb = 2, 𝑛f f = 2).
These controller orders are chosen sufficiently large to capture different control approaches that yield good command-following
performance, for example, high gain in feedback or approximate dynamic inversion in feedforward.

The feedback candidate pool 𝛷 is designed to capture a wide range of behavior over the 0-to-0.5 Hz range and satisfies the
following conditions:

(i) The feedback transfer function has continuous-time equivalent poles and zeros that have magnitudes less than 31.5 rad/s,
because poles and zeros with magnitude greater than 31.5 rad/s have negligible impact on the Bode plot over the 0-to-0.5 Hz
frequency range of the chirp command.
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Fig. 6. Output 𝑦t and reference 𝑟t on the last trial for the subject whose time-averaged error on the last trial is the median (i.e., 6th best) of the eleven subjects.

(ii) The peak magnitude of the feedback transfer function is no more than 30.5, which is an estimate of the upper bound on the
peak gain that a human can implement with a joystick (see [21]).

(iii) The feedback time delay is restricted to the range of [80, 500] ms.
(iv) Each closed-loop pole has magnitude less than 0.998, which restricts 𝛷 to include only elements that result in closed-loop

settling times less than 40 s. The time-domain behavior observed in this experiment exhibits settling times significantly less
than 40 s.

The feedback candidate pool 𝛷 contains approximately one billion elements. In addition, the feedforward-delay candidate pool is
𝛹 = {0, 1, 2,… , 25}, which restricts the feedforward time delay to the range of [0, 500] ms. Algorithm 1 is coded in C++ for parallel
computation and implemented on the High Performance Computing Cluster at the University of Kentucky. For each subject’s trial
and with the relatively large feedback candidate pool described above (one billion elements), it takes approximately 3 h to run
Algorithm 1 on one compute node, which has 16 Intel E5-2670 @ 2.6 GHz cores. However, the SSID algorithm can be run using
parallel computing on multiple nodes to reduce run time in proportion to the number of nodes.

Figs. 6 shows 𝑦t and 𝑟t on the last trial for the subject whose time-averaged error 1
𝑛
∑𝑛
𝑗=1 |𝑟𝑗 − 𝑦𝑗 | on the last trial is the median

(i.e., 6th best) of the 11 subjects. Fig. 7 shows the Bode plots of the median subject’s identified feedforward controller 𝑧−𝜏
+
ff𝐺+

ff ,
identified feedback controller 𝑧−𝜏

+
fb𝐺+

fb, and closed-loop transfer function

𝐺̃+ ≜
𝐺𝑦(𝑧

−𝜏+fb𝐺+
fb + 𝑧

−𝜏+ff𝐺+
ff )

1 + 𝑧−𝜏
+
fb𝐺+

fb𝐺𝑦
obtained from the identified feedforward and feedback controllers. The shaded regions in Fig. 7 show the 10-to-90 percentile range
over the 11 subjects’ identified controllers and the closed-loop transfer functions obtained from these identified controllers.

For the subject with the median time-averaged error, the identified feedback and feedforward transfer functions are

𝐺+
fb(𝑧) =

10−3(4.0031𝑧 − 4.087)
𝑧2 − 2.007𝑧 + 1.007

, 𝐺+
ff (𝑧) =

729.8𝑧2 − 1414𝑧 + 684.8
𝑧2

,

and the identified feedback and feedforward delays are 𝜏+fb = 17 (i.e., 340 ms) and 𝜏+ff = 0. The mean feedback time delay over
all 11 subjects is 269 ms, and the mean feedforward time delay is 11 ms. The identified feedback time delays are consistent with
the range for visual feedback reported in [5,28]. The relatively small feedforward time delays can be explained by the fact that the
same reference 𝑟t is used on each trial, and 𝑟t is predictable; thus, by the last trial, the subjects can learn to compensate for delay
in the feedforward path.

Fig. 7 demonstrates that the median subject’s identified feedforward controller 𝑧−𝜏
+
ff𝐺+

ff approximates the inverse dynamics 𝐺−1
𝑦

over the 0-to-0.5 Hz frequency range of the chirp command. Similarly, the 10-to-90 percentile range demonstrates that, in generally,
the subject’s feedforward controllers approximate the inverse dynamics 𝐺−1

𝑦 over the 0-to-0.5 Hz frequency range. This result suggests
that the subjects learned to control the system by using the inverse dynamics 𝐺−1

𝑦 in feedforward. This observation supports the
internal model hypothesis (see [22,23]) and agrees with the experimental results and analysis reported in [21]. Finally, we note
that the 10-to-90 percentile range for the identified feedback controllers shows significantly larger variation (in comparison to
feedforward) across the subjects.

9. Summary and conclusion

This paper presented a new frequency-domain SSID algorithm for identifying unknown feedback-and-feedforward subsystems
with time delay that are interconnected in closed loop with a known subsystem. This SSID algorithm uses a two-candidate-pool
multi-convex-optimization approach and guarantees asymptotic stability of the identified closed-loop transfer function.
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Fig. 7. Identified closed-loop transfer function 𝐺̃+, identified feedforward controller 𝑧−𝜏+ff𝐺+
ff , and feedback controller 𝑧−𝜏+fb𝐺+

fb on the last trial for the subject
whose time-averaged error on the last trial is the median (i.e., 6th best) of the eleven subjects. The shaded region shows the 10-to-90 percentile range over the
11 subjects of the frequency responses for the identified 𝐺̃+, 𝑧−𝜏+fb𝐺+

fb, and 𝑧−𝜏
+
ff𝐺+

ff .

The main analytic results of the paper are Theorems 1 and 2. Theorem 1 addresses the case where the true feedback controller is
in the feedback candidate pool. This result shows that if the data noise is sufficiently small, then the identified delays and feedback
transfer function are equal to the true values, and the parameters of the identified feedforward transfer function are arbitrarily
close to the true parameters. Theorem 2 addresses the more practical scenario where the feedback controller is not in the feedback
candidate pool. This results shows that if the cardinality of the feedback-candidate-pool set is sufficiently large and the data noise
is sufficiently small, then the identified delays are equal to the true delays, and the parameters of the identified feedforward and
feedback transfer functions are arbitrarily close to the true parameters.

Section 8 applies the SSID algorithm to data obtained from a HITL experiment in order to model the humans’ feedback and
feedforward (with delay) control behavior. This section demonstrates how the SSID algorithm in this paper can be used to model
HITL behavior.

The primary benefit of the SSID algorithm in this paper relative to previous work (e.g., [4]) is that the algorithm in this paper
can address feedforward delay without significant additional computational cost relative to the case without feedforward delay. In
contrast, if the method in [4] is applied directly to a system with feedforward delay, then the computational complexity increases to
the point that the problem is not computationally tractable. For example, if we apply [4] with the feedforward time delay subsumed
in the feedforward transfer function, then the computation time increases by a factor of 𝑚×𝜓2

max, where 𝑚 is the number of elements
in the feedback candidate pool and 𝜓max is an upper bound on the feedforward delay. For the HITL modeling application in Section 8,
𝑚 ≈ 1 billion and 𝜓max = 25. In this case, the computation time increases by a factor of 625 billion, making it practically impossible
to run the algorithm. This increase in computational complexity occurs because the algorithm in [4] requires 𝑚 matrix inverses,
where the dimension of the matrix being inverted increases by a factor of 𝜓max if feedforward delay is included.

A better method of extending [4] to address feedforward time delay is to use a second candidate pool for the feedforward
time delay rather than subsuming the delay in the feedforward transfer function. This method is significantly more computationally
efficient; however, it still increases the computation time by a factor of 𝑡, which is the cardinality of the feedforward-delay candidate
pool (e.g., a factor of 25 for the HITL application in Section 8). This increase occurs because using two candidate pools without
additional changes to the algorithm requires 𝑚× 𝑡 matrix inverses as opposed to 𝑚 matrix inverses for the case without feedforward
delay.

The approach presented in this paper uses the two-candidate pool extension but goes further to reduce computational complexity.
In particular, this paper presented a two-step optimization approach that results in a negligible increase in computational complexity
relative to the case without feedforward time delay. The two-step optimization requires the definition of the auxiliary cost function
(26), which depends only on the feedforward time delay. Notably, this auxiliary cost can be evaluated for any feedforward time
delay without requiring additional matrix inverse computations. Specifically, the new algorithm in this manuscript requires only 𝑚
matrix inverses regardless of the cardinality 𝑡 of the feedforward candidate pool.
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Appendix A. Proofs of Propositions 1 and 2

Proof of Proposition 1. Let 𝜙 ∈ S, and define 𝛽 ≜ 𝐸𝛽𝜙 and 𝛾 ≜ 𝐸𝛾𝜙. It follows from (14) that 𝛺2(𝛽, 𝛾) is well defined and positive
semidefinite. Assume for contradiction that there exist 𝑥 ∈ R𝑎∖{0} such that 𝑥T[Re∑𝑁

𝑘=1 𝐴
∗
𝑘(𝛽, 𝛾)𝐴𝑘(𝛽, 𝛾)]𝑥 = 0. Let 𝑘 ∈ N, and it

follows that 𝐴𝑘(𝛽, 𝛾)𝑥 = 0. Define 𝜅(𝑧) ≜ 𝑁𝑦(𝑧)Dfb(𝑧, 𝛽)𝜈(𝑧)𝑥 ∈ R[𝑧]. Thus, (19) implies that 0 = 𝜅(𝜎𝑘)∕[𝜎
𝑛f f−𝛾
𝑘 D̃(𝜎𝑘, 𝛽, 𝛾)], which

implies that 𝜅(𝜎𝑘) = 0. Since deg 𝜈(𝑧)𝑥 ≤ 𝑛f f , it follows from (A3) that deg 𝜅 ≤ 𝑛𝑦 + 𝑑fb + 𝑛f f < 𝑁 . Since 𝜅(𝜎1) = ⋯ = 𝜅(𝜎𝑁 ) = 0
and deg 𝜅 < 𝑁 , it follows that 𝜅 = 0. Since, in addition, 𝑁𝑦 ≠ 0 and Dfb ≠ 0, it follows that 𝜈(𝑧)𝑥 ≡ 0. Finally, the structure of 𝑣
implies that 𝑥 = 0, which is a contradiction. Thus, Re∑𝑁

𝑘=1 𝐴
∗
𝑘(𝛽, 𝛾)𝐴𝑘(𝛽, 𝛾) is positive definite, and it follows from (14) that 𝛺2(𝛽, 𝛾)

is positive definite. □

Proof of Proposition 2. Let 𝛼 ∈ R𝑎, 𝜓 ∈ N, 𝛽 ∈ R𝑏, and 𝛾 ∈ N. Define O,P, 𝑃 ,H∶ C → C by

O(𝑧) ≜ G̃(𝑧, 𝛼, 𝜓, 𝛽, 𝛾) − 𝐺̃(𝑧),

P(𝑧) ≜ 𝑁𝑦(𝑧)[Nfb(𝑧, 𝛽) + 𝑧𝛾−𝜓−𝑛f fDfb(𝑧, 𝛽)Nf f (𝑧, 𝛼)],

𝑃 (𝑧) ≜ 𝑁𝑦(𝑧)[𝑁fb(𝑧) + 𝑧𝜏fb−𝜏f f−𝑛f f𝐷fb(𝑧)𝑁f f (𝑧)],

H(𝑧) ≜ 𝑧𝜚P(𝑧)𝐷̃(𝑧) − 𝑧𝜚𝑃 (𝑧)D̃(𝑧, 𝛽, 𝛾),

where 𝜚 ≜ max {𝑛f f + 𝜏f f − 𝜏fb, 𝑛f f + 𝜓 − 𝛾, 0}. It follows from (A2) that deg 𝐷̃(𝑧) ≤ 𝜏fb + 𝑑 + 𝑑fb and deg D̃(𝑧, 𝛽, 𝛾) ≤ 𝛾 + 𝑑 + 𝑑fb. Since,
in addition, degP ≤ 𝑛𝑦 + max {𝑛fb, 𝛾 − 𝜓 + 𝑑fb} and deg𝑃 ≤ 𝑛𝑦 + max {𝑛fb, 𝜏fb − 𝜏f f + 𝑑fb}, it follows that

degH ≤ 𝜚 + max {degP + deg 𝐷̃, deg𝑃 + deg D̃(𝑧, 𝛽, 𝛾)}

≤ 𝑑 + 𝑑fb + 𝑛𝑦 + 𝑛f f + max {𝑛fb, 𝑑fb} + max {𝜏f f , 𝜏fb} + max {𝜓max, 𝛾max},

which combined with (A7) implies that degH < 𝑁 . Since ∑𝑁
𝑘=1 |O(𝜎𝑘)| = 0, it follows that for all 𝑘 ∈ N, O(𝜎𝑘) = 0, which implies

that H(𝜎𝑘) = 0. Since, in addition, degH < 𝑁 , it follows that H = 0, which implies that O = 0. Thus, G̃(𝑧, 𝛼, 𝜓, 𝛽, 𝛾) ≡ 𝐺̃(𝑧). □

Appendix B. Proofs of Theorems 1 and 2

For notational simplicity, we prove Theorems 1 and 2 under the assumption that the weights are 𝑤1 = ⋯ = 𝑤𝑁 = 1; however, the
generalization to arbitrary weights is straightforward. The following notation is needed in the proofs of Theorems 1 and 2. Define
𝛺̂1 ∶ S × C𝑁 → C𝑎×𝑁 by

𝛺̂1(𝜙, 𝜂) ≜ 2
𝑁
∑

𝑘=1
𝛶 T
2 (𝛽, 𝛾)

⎛

⎜

⎜

⎜

⎝

diag

⎡

⎢

⎢

⎢

⎣

𝑁𝑦(𝜎1)Nfb(𝜎1 ,𝛽)
D̃(𝜎1 ,𝛽,𝛾)

− 𝐺̃(𝜎1) − 𝜂1
⋮

𝑁𝑦(𝜎𝑁 )Nfb(𝜎𝑁 ,𝛽)
D̃(𝜎𝑁 ,𝛽,𝛾)

− 𝐺̃(𝜎𝑁 ) − 𝜂𝑁

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

∗

,

where 𝜂1,… , 𝜂𝑁 ∈ C and 𝜂 ≜ [ 𝜂1 ⋯ 𝜂𝑁 ]T ∈ C𝑁 is the vector of noise. Note that 𝛺̂1(𝜙, 𝜂∗) = 𝛺1(𝐸𝛽𝜙,𝐸𝛾𝜙). Thus, 𝛺̂1 is a
function not only of 𝜙 but also the noise 𝜂.

Define 𝐽 ∶ R𝑎 × 𝛹 × S × C𝑁 → [0,∞), 𝛼̂∶ 𝛹 × S × C𝑁 → R𝑎, and 𝑄̂∶ 𝛹 × S × C𝑁 → [0,∞) by

𝐽 (𝛼, 𝜓, 𝜙, 𝜂) ≜
𝑁
∑

𝑘=1

|

|

|

G̃(𝜎𝑘, 𝛼, 𝜓, 𝐸𝛽𝜙,𝐸𝛾𝜙) − 𝐺̃(𝜎𝑘) − 𝜂𝑘
|

|

|

2
, (30)

𝛼̂(𝜓, 𝜙, 𝜂) ≜ −1
2
𝛺−1

2 (𝐸𝛽𝜙,𝐸𝛾𝜙)
[

Re 𝛺̂1(𝜙, 𝜂)𝛤 (𝜓)
]

, (31)

𝑄̂(𝜓, 𝜙, 𝜂) ≜ 𝐽 (𝛼̂(𝜓, 𝜙, 𝜂), 𝜓, 𝜙, 𝜂). (32)

Note that 𝐽 (𝛼, 𝜓, 𝜙, 𝜂∗) = 𝐽 (𝛼, 𝜓, 𝐸𝛽𝜙,𝐸𝛾𝜙). It follows from (10), (19), (20), and (30)–(32) that

𝛼̂(𝜏f f , 𝜙∗, 0) = −1
2
𝛺−1

2 (𝐸𝛽𝜙∗, 𝐸𝛾𝜙∗)
[

Re 𝛺̂1(𝜙∗, 0)𝛤 (𝜏f f )
]

= 𝛼∗, (33)

𝑄̂(𝜏f f , 𝜙∗, 0) = 𝐽 (𝛼∗, 𝜏f f , 𝜙∗, 0) = 0. (34)

Proof of Theorem 1. To prove (i), let 𝜓 ∈ 𝛹 and 𝜙 ∈ 𝛷 such that (𝜓, 𝜙) ≠ (𝜏f f , 𝜙∗). It follows from (30)–(32), Proposition 2, and
(A7) that 𝑄̂(𝜓, 𝜙, 0) > 0. Define

𝑄̂min ≜ min
(𝑥,𝑦)∈(𝛹×𝛷)∖{(𝜏f f ,𝜙∗)}

𝑄̂(𝑥, 𝑦, 0) > 0.
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It can be shown that, for each (𝑗, 𝑘) ∈ T×M, 𝑄̂(𝜓𝑗 , 𝜙𝑘, ⋅) is continuous on C𝑁 , which implies that for each (𝑗, 𝑘) ∈ T×M, there exists
𝛿𝑗,𝑘 > 0 such that for all 𝜂 ∈ B𝛿𝑗,𝑘 (0), |𝑄̂(𝜓𝑗 , 𝜙𝑘, 𝜂) − 𝑄̂(𝜓𝑗 , 𝜙𝑘, 0)| < 𝑄̂min∕2. Define 𝛿0 ≜ min(𝑗,𝑘)∈T×M 𝛿𝑗,𝑘, and assume that ‖𝜂∗‖ < 𝛿0.
Since 𝑄̂(𝜏f f , 𝜙∗, 0) = 0, it follows that 𝑄̂(𝜏f f , 𝜙∗, 𝜂∗) = |𝑄̂(𝜏f f , 𝜙∗, 𝜂∗) − 𝑄̂(𝜏f f , 𝜙∗, 0)| < 𝑄̂min∕2.

Let (𝑗, 𝑘) ∈ T × M be such that (𝜓𝑗 , 𝜙𝑘) ≠ (𝜏f f , 𝜙∗), and it follows that −𝑄̂min∕2 < 𝑄̂(𝜓𝑗 , 𝜙𝑘, 𝜂∗) − 𝑄̂(𝜓𝑗 , 𝜙𝑘, 0), which implies
that 𝑄̂(𝜓𝑗 , 𝜙𝑘, 𝜂∗) > 𝑄̂(𝜓𝑗 , 𝜙𝑘, 0) − 𝑄̂min∕2. Since, in addition, 𝑄̂(𝜓𝑗 , 𝜙𝑘, 0) ≥ 𝑄̂min, it follows that 𝑄̂(𝜓𝑗 , 𝜙𝑘, 𝜂∗) > 𝑄̂min∕2. Thus,
𝑄̂(𝜏f f , 𝜙∗, 𝜂∗) < 𝑄̂(𝜓𝑗 , 𝜙𝑘, 𝜂∗). Let 𝑖 ∈ M be such that 𝜙𝑖 = 𝜙∗, which exists because 𝜙∗ ∈ 𝛷. Thus, 𝑄̂(𝜏f f , 𝜙𝑖, 𝜂∗) < 𝑄̂(𝜓𝑗 , 𝜙𝑘, 𝜂∗),
which combined with (24)–(27) and (30)–(32) implies that J𝑖(𝛼𝑖(𝜏f f ), 𝜏f f ) < J𝑘(𝛼𝑘(𝜓𝑗 ), 𝜓𝑗 ). Therefore, Algorithm 1 yields 𝜏+ff = 𝜏f f ,
𝛽+ = 𝐸𝛽𝜙∗ = 𝛽∗, 𝜏+fb = 𝐸𝛾𝜙∗ = 𝜏fb, and 𝛼+ = 𝛼̂(𝜏f f , 𝜙∗, 𝜂∗).

To prove the last sentence of (i), note that 𝛼̂(𝜏f f , 𝜙∗, ⋅) is continuous on C𝑁 . Let 𝜖 > 0. Since 𝛼̂(𝜏f f , 𝜙∗, ⋅) is continuous on C𝑁 ,
there exists 𝛿 ∈ (0, 𝛿0) such that for all 𝜂 ∈ B𝛿(0), 𝛼̂(𝜏f f , 𝜙∗, 𝜂) ∈ B𝜖(𝛼̂(𝜏f f , 𝜙∗, 0)). Assume ‖𝜂∗‖ < 𝛿. Since 𝛼+ = 𝛼̂(𝜏f f , 𝜙∗, 𝜂∗), it follows
from (33) that 𝛼+ ∈ B𝜖(𝛼∗), which confirms (i).

To prove (ii), assume 𝜂∗ = 0. Thus, ‖𝜂∗‖ = 0 < 𝛿0 and part (i) implies that 𝜏+ff = 𝜏f f , 𝛽+ = 𝛽∗, and 𝜏+fb = 𝜏fb. Since 𝜂∗ = 0, it follows
from (33) that 𝛼+ = 𝛼̂(𝜏f f , 𝜙∗, 0) = 𝛼∗. □

Proof of Theorem 2. Let 𝜖 > 0, and note that for all 𝜓 ∈ 𝛹 ⊂ N, 𝛼̂(𝜓, ⋅, ⋅) is continuous on R𝑏+1 × C𝑁 . Since S × C𝑁 is a subset of
R𝑏 × N × C𝑁 , which is a subspace of R𝑏+1 × C𝑁 , it follows from [29, Chap. 2] that for all 𝜓 ∈ 𝛹 , 𝛼̂(𝜓, ⋅, ⋅) is continuous on S × C𝑁 .
Similarly, for all 𝜓 ∈ 𝛹 , 𝑄̂(𝜓, ⋅, ⋅) is continuous on S × C𝑁 .

Since 𝜙∗ ∈ S, and for all 𝜓 ∈ 𝛹 , 𝛼̂(𝜓, ⋅, ⋅) is continuous on S ×C𝑁 , it follows that there exists 𝛿0 > 0 such that for all 𝜙 ∈ B𝛿0 (𝜙∗)
and all 𝜂 ∈ B𝛿0 (0),

𝛼̂(𝜏f f , 𝜙, 𝜂) ∈ B𝜖(𝛼̂(𝜏f f , 𝜙∗, 0)). (35)

Next, (30)–(32), Proposition 2, and (A7) imply that min𝜓∈𝛹⧵{𝜏f f } 𝑄̂(𝜓, 𝜙∗, 0) > 0. Since, in addition, 𝑄̂(𝜏f f , 𝜙∗, 0) = 0, and for all
𝜓 ∈ 𝛹 , 𝑄̂(𝜓, ⋅, ⋅) is continuous on S × C𝑁 , it follows that there exists 𝛿1 > 0 such that for all 𝜙 ∈ B𝛿1 (𝜙∗) and all 𝜂 ∈ B𝛿1 (0),

𝑄̂(𝜏f f , 𝜙, 𝜂) < min
𝜓∈𝛹⧵{𝜏f f }

𝑄̂(𝜓, 𝜙, 𝜂). (36)

Define 𝜖1 ≜ min {𝜖, 𝛿0, 𝛿1, ‖1‖}, and define 𝛷c ≜ cl (𝛩 ∩ S𝜌), which denotes the closure. Note that 𝛷c ⊆ S is compact. Since 𝛷c is
compact and {𝜙 ∈ S∶ ‖𝜙 − 𝜙∗‖ ≥ 𝜖1} is closed, it follows that 𝛷𝜖1 ≜ 𝛷c∖B𝜖1 (𝜙∗) is compact.

Let 𝑐 > max {𝛿0, 𝛿1}, and define 𝐶 ≜ {𝑥 ∈ C𝑁 ∶ ‖𝑥‖ ≤ 𝑐}. Next, define ϝ∶ 𝐶 → [0,∞) by

ϝ(𝜂) ≜ min
(𝜓,𝜙)∈𝛹×𝛷𝜖1

𝑄̂(𝜓, 𝜙, 𝜂),

where [30, Thm. 7.7] implies that ϝ exists because 𝛹 and 𝛷𝜖1 are compact and for all 𝜓 ∈ 𝛹 , 𝑄̂(𝜓, ⋅, ⋅) is continuous on 𝛷𝜖1 × 𝐶.
Furthermore, Propositions 2 and (A7) imply that ϝ(0) > 0. Since for all 𝜓 ∈ 𝛹 , 𝑄̂(𝜓, ⋅, ⋅) is continuous on 𝛷𝜖1 ×𝐶, and 𝛷𝜖1 and 𝐶 are
compact, it follows from [26, Thm. 9.14] that ϝ is continuous on 𝐶.

Since 𝐹 and 𝑄̂(𝜏f f , 𝜙∗, ⋅) are continuous on 𝐶, it follows that 𝑊 ∶ 𝐶 → R defined by

𝑊 (𝜂) ≜ ϝ(𝜂) − 𝑄̂(𝜏f f , 𝜙∗, 𝜂)

is continuous on 𝐶. Note that (34) implies that 𝑊 (0) = ϝ(0) − 𝑄̂(𝜏f f , 𝜙∗, 0) = ϝ(0) > 0. Therefore, there exists 𝛿2 ∈ (0, 𝑐) such that for
all 𝜂 ∈ B𝛿2 (0), 𝑊 (𝜂) > 0.

Define 𝛿 ≜ min {𝛿0, 𝛿1, 𝛿2} > 0, and assume ‖𝜂∗‖ < 𝛿. Thus, 𝑊 (𝜂∗) > 0. Since, in addition, 𝑄̂(𝜏f f , ⋅, 𝜂∗) is continuous on 𝛷c, it
follows that there exists 𝜖2 > 0 such that for all 𝜙 ∈ 𝛷c ∩B𝜖2 (𝜙∗), |𝑄̂(𝜏f f , 𝜙, 𝜂∗) − 𝑄̂(𝜏f f , 𝜙∗, 𝜂∗)| < 𝑊 (𝜂∗). Thus, for all 𝜙 ∈ 𝛷c ∩B𝜖2 (𝜙∗),
𝑄̂(𝜏f f , 𝜙, 𝜂∗) − 𝑄̂(𝜏f f , 𝜙∗, 𝜂∗) ≤ |𝑄̂(𝜏f f , 𝜙, 𝜂∗) − 𝑄̂(𝜏f f , 𝜙∗, 𝜂∗)| < 𝑊 (𝜂∗) = ϝ(𝜂∗) − 𝑄̂(𝜏f f , 𝜙∗, 𝜂∗), which implies that for all 𝜙 ∈ 𝛷c ∩B𝜖2 (𝜙∗),

𝑄̂(𝜏f f , 𝜙, 𝜂∗) < ϝ(𝜂∗). (37)

Since {𝛷𝑗}∞𝑗=1 converges to (𝛩 ∩ S𝜌) ⊆ 𝛷c, Definition 1 implies that there exists a sequence {𝜙𝑗 ∶ 𝜙𝑗 ∈ 𝛷𝑗}∞𝑗=1 and 𝐿 ∈ Z+ such
that for all 𝑗 > 𝐿, 𝜙𝑗 ∈ Bmin {𝜖1 ,𝜖2}(𝜙∗). Thus, (37) implies that for all 𝑗 > 𝐿,

𝑄̂(𝜏f f , 𝜙𝑗 , 𝜂∗) < ϝ(𝜂∗). (38)

To show that 𝛽+𝑗 ∈ B𝜖(𝛽∗) and 𝜏+fb,𝑗 = 𝜏fb, let 𝑗 ∈ Z+ be such that 𝑗 > 𝐿, and define 𝜙+
𝑗 ≜

[

𝛽+𝑗
𝜏+fb,𝑗

]

. Since 𝜏f f ∈ 𝛹 , it follows from
Algorithm 1, (30)–(32), and (38) that

𝑄̂(𝜏+ff ,𝑗 , 𝜙
+
𝑗 , 𝜂∗) ≤ 𝑄̂(𝜏f f , 𝜙𝑗 , 𝜂∗) < ϝ(𝜂∗).

Assume for contradiction that 𝜙+
𝑗 ∉ B𝜖1 (𝜙∗), which implies that 𝜙+

𝑗 ∈ 𝛷𝜖1 . Thus, ϝ(𝜂∗) = min(𝜓,𝜙)∈𝛹×𝛷𝜖1 𝑄̂(𝜓, 𝜙, 𝜂∗) ≤ 𝑄̂(𝜏+ff ,𝑗 , 𝜙
+
𝑗 , 𝜂∗) <

ϝ(𝜂∗), which is a contradiction. Therefore, 𝜙+
𝑗 ∈ B𝜖1 (𝜙∗), which implies that 𝛽+𝑗 ∈ B𝜖1 (𝛽∗) ⊆ B𝜖(𝛽∗) and 𝜏+fb,𝑗 ∈ B𝜖1 (𝜏fb) ⊆ B

‖1‖(𝜏fb).
Since 𝜏+fb,𝑗 and 𝜏fb are integers, and 𝜏+fb,𝑗 ∈ B

‖1‖(𝜏fb), it follows that 𝜏+fb,𝑗 = 𝜏fb.
To show that 𝜏+ff ,𝑗 = 𝜏f f , it follows from Algorithm 1 and (30)–(32) that

𝑄̂(𝜏+ff ,𝑗 , 𝜙
+
𝑗 , 𝜂∗) = min

𝜓∈𝛹
𝑄̂(𝜓, 𝜙+

𝑗 , 𝜂∗). (39)
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Since 𝜙+
𝑗 ∈ B𝜖1 (𝜙∗) ⊆ B𝛿1 (𝜙∗) and 𝜂∗ ∈ B𝛿(0) ⊆ B𝛿1 (0), it follows from (36) that min𝜓∈𝛹⧵{𝜏f f } 𝑄̂(𝜓, 𝜙

+
𝑗 , 𝜂∗) > 𝑄̂(𝜏f f , 𝜙+

𝑗 , 𝜂∗), which
combined with (39) implies that 𝜏+ff ,𝑗 = 𝜏f f .

To show that 𝛼+𝑗 ∈ B𝜖(𝛼∗), note that 𝜏+ff ,𝑗 = 𝜏f f , 𝜙+
𝑗 ∈ B𝜖1 (𝜙∗) ⊆ B𝛿0 (𝜙∗), and 𝜂∗ ∈ B𝛿(0) ⊆ B𝛿0 (0). Thus, (33) and (35) imply that

𝛼+𝑗 = 𝛼̂(𝜏f f , 𝜙+
𝑗 , 𝜂∗) ∈ B𝜖(𝛼̂(𝜏f f , 𝜙∗, 0)) = B𝜖(𝛼∗). □
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