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ABSTRACT OF DISSERTATION 

 
 

BIOGEOMORPHOLOGY OF BEDROCK FLUVIAL SYSTEMS: EXAMPLE FROM 
SHAWNEE RUN, KENTUCKY, USA 

 
The dynamic interactions between fluvial processes and vegetation vary in different 
environments and are uncertain in bedrock settings. Bedrock streams are much less studied 
than alluvial in all aspects, and in many respects act in qualitatively different ways. This 
research seeks to fill this lacuna by studying bedrock streams from a biogeomorphic 
perspective. The first part of this research aims to identify the impacts of woody vegetation 
that may be common to fluvial systems and rocky hillslopes in general, or that may be 
unique to bedrock channels. A review of the existing literature on biogeomorphology — 
mostly fluvial and rocky hillslope environments — was carried out, and field examples of 
biogeomorphic impacts (BGIs) associated with fluvial systems of six various bedrock 
environments were then examined to complement the review. This research shows that 
bedrock streams exhibit both shared and highly concentrated BGIs in relation to alluvial 
streams and bedrock hillslope environments. It shows that while no BGIs associated with 
bedrock streams are unique to the environment, the bioprotective function related to root-
banks (when the root itself creates the stream bank) and the processes related to 
bioweathering and erosion are rarely addressed in alluvial fluvial literature, despite their 
importance in bedrock fluvial environments. The second part of the dissertation is largely 
grounded upon the important BGIs associated with bedrock fluvial environments identified 
in the first part. Drawing from ecological lexicon, this part introduces some biogeomorphic 
concepts, most importantly biogeomorphic keystone species and equivalents, with respect 
to different biotic impacts on surface processes and forms. Later, it explores these concepts 
by examining the general vs. species-specific BGIs of trees on a limestone bedrock-
controlled stream, Shawnee Run, in central Kentucky. Results suggest that Platanus 
occidentalis plays a keystone role by promoting development of biogeomorphic pools in 
the study area. Further, some species play equivalent roles with respect to surface processes 
and landforms by promoting development of avulsion-associated islands and can be 
recognized as biogeomorphic equivalents. Finally, this dissertation also examines the 
relative importance of systematic up-to downstream vs. local scale variation explaining 
channel morphology and biogeomorphological phenomena in Shawnee Run. Results show 



     
 

that local scale variation − primarily attributable to the local scale structural controls, 
incision status and edaphic variation − largely explains channel morphology and vegetation 
patterns. These patterns may therefore be common in bedrock rivers strongly influenced 
by geological controls. 
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Tasnuba Jerin 
   (Name of Student) 
 

 
05/01/2020 

            Date 



 
 

 
 
 
 
 
 
 
 

BIOGEOMORPHOLOGY OF BEDROCK FLUVIAL SYSTEMS: EXAMPLE FROM 
SHAWNEE RUN, KENTUCKY, USA 

 
 
 

By 
 

Tasnuba Jerin 
 
 
 
 
 
 

 

 

 
Dr. Jonathan D. Phillips 
Director of Dissertation 

 
Dr. Tad Mutersbaugh 

Director of Graduate Studies 
 

05/01/2020 
               Date 



 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
DEDICATION 

 
To my parents, brothers, husband and Professor Phillips



iii 
 

ACKNOWLEDGMENTS 

 I am immensely grateful to my Dissertation Chair, Dr. Jonathan D. Phillips, for 

his encouragement, support, comments and evaluation at every stage of this dissertation 

process, which allowed me to complete this research on time. While reviews, comments 

were vital for the successful completion of this dissertation work, his insight about 

landscapes that I was able to receive during fieldworks was the most important 

knowledge for me during the course this dissertation process.  

Next, I wish to thank the complete Dissertation Committee, and outside reader, 

respectively: Dr. Daehyun Kim, Dr. Alice Turkington, Dr. Jon Anthony Stallins, Dr. Ole 

Wendroth, and Dr. Andrea Erhardt. Each individual provided insights that guided me to 

improve my dissertation.  

In addition to the assistance above, I received immense support from my husband, 

Dr. Asif Ishtiaque. The successful completion of this dissertation work largely indebted 

to his assistance during fieldwork and on-going encouragement throughout the 

dissertation process. I am also very thankful to my friends including Lorrayne Miralha,  

Marissa DeFratti, Jaeyeon Lee, MyungIn Ji and Lacin Tutalar for their ongoing 

encouragement, and support .   

Lastly, I am indebted to my parents for having their faith in me. Without their 

support, I would not be able to be in this position. 



iv 
 

TABLE OF CONTENTS 

 

Acknowledgments.............................................................................................................. iii 

List of Tables .................................................................................................................... vii 

List of Figures .................................................................................................................. viii 

Chapter 1:  Introduction ...................................................................................................... 1 

1.1 Biogeomorphology and Fluvial Systems ................................................................ 1 

1.2 Effects of Fluvial Process-Forms on Vegetation Pattern and Distribution ............. 2 

1.3 Biogeomorphic Effects of Vegetation on Fluvial Process-Landforms ................... 3 

1.4 Reciprocal Interactions between Vegetation and Geomorphic Processes .............. 4 

1.5 Importance of Scale in Fluvial Biogeomorphic Systems ........................................ 5 

1.6 Bedrock Streams and Biogeomorphology .............................................................. 6 

1.7 Dissertation Objectives and Structure ..................................................................... 9 

Chapter 2: Biogeomorphic Effects of Woody Vegetation on Bedrock Streams .............. 11 

2.1 Introduction ........................................................................................................... 12 

2.2 Fluvial Biogeomorphology and Biogeomorphic Impacts ..................................... 15 
2.2.1 Biogeomorphic Impcats of Vegetation on Alluvial Rivers........................... 17 
2.2.2 Biogeomorphic Impacts of Vegetation on Hillslopes ................................... 19 
2.2.3 Reciprocal Interactions between Vegetation and Geomorphic Processes .... 22 

2.2.3.1 Ecosystem State Transitions ................................................................. 24 
2.2.3.2 Diversity of Landforms and Species ..................................................... 25 

2.3 Biogeomorphology of Bedrock Streams ............................................................... 27 
2.3.1 Bedrock vs. Alluvial Streams ....................................................................... 27 

2.3.1.1 Bioconstruction/modification ............................................................... 29 
2.3.1.2 Bioprotection......................................................................................... 33 
2.3.1.3 Bioweathering and erosion ................................................................... 34 

2.3.2 Bedrock vs. Rocky Hillslopes ....................................................................... 36 

2.4 Fluvial Biogeomorphic Imapcts ............................................................................ 38 
2.4.1 Distinct versus Shared Biogeomorphic Impacts: the BGI triangles ............. 38 
2.4.2 Fluvial Biogeomorphic Impacts and Channel Forms and Processes ............ 42 

2.5 Summary and Future Research ............................................................................. 45 

 



v 
 

Chapter 3: Biogeomorphic Keystones and Equivalents: Examples from a Bedrock Stream 
……….…………………………………………………………………………………...48 

3.1 Introduction ........................................................................................................... 49 
3.1.1 Biogeomorphic Roles.................................................................................... 51 
3.1.2 Potential Biogeomorphic Keystones ............................................................. 55 

3.2 Biogeomorphic Effects of Trees in Bedrock Streams ........................................... 56 
3.2.1 Bioconstruction/modification ....................................................................... 59 
3.2.2 Bioprotection................................................................................................. 59 
3.2.3 Bioweathering and Erosion ........................................................................... 60 

3.3 Study Area  ........................................................................................................... 61 

3.4 Methods................................................................................................................. 63 
3.4.1 Samplig Scheme............................................................................................ 63 
3.4.2 Geomorphic Survey ...................................................................................... 66 
3.4.3 Vegetation Survey ......................................................................................... 67 
3.4.4 Biogeomorphic Survey ................................................................................. 67 
3.4.5 Statistical Analysis ........................................................................................ 67 

3.5 Results ................................................................................................................... 68 
3.5.1 Riparian Vegetation and Spatial Distribution ............................................... 68 
3.5.2 Biogeomorphic Impacts ................................................................................ 71 
3.5.3 Species-specific and General Biogeomorphic Impacts ................................. 72 
3.5.4 Biogeomorphic Pool Formation .................................................................... 73 
3.5.5 Avulsion-associated Island Formation .......................................................... 80 
3.5.6 Root Banks .................................................................................................... 83 
3.5.7 Biogeomorphic Sediment Source ................................................................. 84 

3.6 Discussion ............................................................................................................. 85 
3.6.1 Biogeomorphic Keystone Species ................................................................ 85 
3.6.2 Bioconstructors ............................................................................................. 88 
3.6.3 Biogeomorphic Equivalents .......................................................................... 89 
3.6.4 Other Biogeomorphic Roles ......................................................................... 90 

3.7 Conclusions ........................................................................................................... 90 

Chapter 4: Scale associated coupling between channel morphology and riparian 
vegetation in a bedrock-controlled stream ………………………………………………93  

4.1 Introduction ........................................................................................................... 94 

4.2 Study Area ............................................................................................................ 98 

4.3 Methods............................................................................................................... 100 
4.3.1 Sampling method ........................................................................................ 100 
4.3.2 Geomorphic Survey .................................................................................... 102 
4.3.3 Vegetation Survey ....................................................................................... 104 



vi 
 

4.3.4 Biogeomorphic Survey ............................................................................... 104 
4.3.5 Statistical Analysis ...................................................................................... 105 

4.4 Results ................................................................................................................. 107 
4.4.1 Channel Morphology .................................................................................. 107 

4.4.1.1 Slope ................................................................................................... 109 
4.4.1.2 Bankfull Width, Depth and Width-depth ratio ................................... 111 
4.4.1.3 Cross section area and Hydraulic Radius ............................................ 112 

4.4.2 Substrate Characteristics ............................................................................. 115 
4.4.3 Vegetation Pattern and Distribution............................................................ 118 

4.5 Discussion ........................................................................................................... 122 
4.5.1 Local Scale Controls of Hydraulic Geometry on Fluvial Systems ............. 122 
4.5.2 Local Scale Controls of Riparian Vegetation on Fluvial Systems .............. 126 
4.5.3 Local Scale Interactions in Fluvial Biogeomorphology ............................. 127 

4.6 Conclusions ......................................................................................................... 128 

Chapter 5: Conclusions ................................................................................................... 130  

5.1 Research Synthesis.............................................................................................. 130 

5.2 Implications for Management and Future Research ........................................... 136 

Appendices ...................................................................................................................... 139 
Appendix 1. Hydraulic units (HUs) sampled from up-to-downstream  ..................... 139 
Appendix 2. Hydraulic unit (HU) based channel morphology dataset ...................... 144 
Appendix 3. Riparian vegetation and associated biogeomorphic impact dataset  ..... 149 

References ....................................................................................................................... 154 

Vita…... ........................................................................................................................... 182 
 

 

 

 

 

 

 
 



vii 
 

LIST OF TABLES 

 
Table 2.1 Biogeomorphic functions/roles, terms, and definitions ……………. 16 
Table 2.2 Example studies demonstrating biogeomorphic feedbacks 

associated with alluvial streams ……………………………………. 19 
Table 2.3 Example studies demonstrating biogeomorphic impacts associated 

with rocky or thin-soil hillslopes …................................................... 21 
Table 2.4 Evidence of biogeomorphic impacts and roles of vegetation on 

fluvial geomorphic processes and forms in bedrock environments ... 35 
Table 2.5 Shared and highly concentrated biogeomorphic impacts ………….. 42 
Table 2.6 Potential biogeomorphic impacts of woody vegetation on bedrock 

streams ……………………………………………………………... 43 
Table 3.1 Biogeomorphic Roles ……………………………………………… 54 
Table 3.2 Biogeomorphic impacts, the corresponding biogeomorphic 

functions and the associated field criteria identified in bedrock 
streams ……………………………………………………………... 58 

Table 3.3 Morphological characteristics of Shawnee Run …………………… 65 
Table 3.4 Species composition and their basic characteristics ……………….. 68 
Table 3.5 Types of pools in the study area and their process of development 73 
Table 3.6 Number of different hydraulic units associated with P. occidentalis 

(American sycamore) and Q. muehlenbergii (chinquapin oak) ……. 79 
Table 3.7 Channel width comparison between island reaches and reaches just 

upstream and downstream of them ………………………………… 81 
Table 4.1 Descriptive statistics of geomorphic data block by reaches ……….. 108 
Table 4.2 Descriptive statistics of geomorphic data block by domains ………. 109 
Table 4.3 Results from three factor nested ANOVA for slope variation ……... 111 
Table 4.4 Results from three factor nested ANOVA for bankfull channel 

width and width-depth ratio ………………………………………... 112 
Table 4.5 Results from three factor nested ANOVA for channel cross-section 

area ………………………………………………………………… 114 
Table 4.6 Results from three factor nested ANOVA for proportion of three 

different substrates including intact bedrock, fine-grained alluvium 
and mixed substrate ………………………………………………... 117 

Table 4.7 Descriptive statistics of vegetation and biogeomorphic data block 
by reach …………………………………………………………….. 119 

Table 4.8 Descriptive statistics of vegetation and biogeomorphic data block 
by domain ………………………………………………………….. 120 

Table 4.9 Results from three factor nested ANOVA for species richness, total 
number of individuals, proportion of Platanus occidentalis and 
total number of BGIs ………………………………………………. 121 

Table 5.1 Relationship between dissertation objectives, research approach 
and data chapters …………………………………………………… 130 

 
 
 



viii 
 

 
LIST OF FIGURES 

 
Figure 1.1 Location of the Study Area, Shawnee Run, in central Kentucky.. 7 
Figure 2.1 Potential overlap of BGIs on alluvial streams, bedrock streams, 

and rocky hillslopes ……………………………………………... 13 
Figure 2.2 Tree growing in limestone bedrock channel, trapping sediment 

and wood, Shawnee Run, KY; tree growing in sandstone 
bedrock stream, trapping sediment and wood, Ouachita 
Mountains, AR ………………………………………………….. 29 

Figure 2.3 Island formation, anchoring, and modification in Shawnee Run, 
KY ………………………………………………………………. 30 

Figure 2.4 Tree growing in-channel and at bank edge in a limestone 
bedrock channel, trapping sediment and wood, Shawnee Run, 
KY ………………………………………………………………. 32 

Figure 2.5 Large wood in-channel associated with an alluvial reach; large 
wood on floodplain (middle); large wood at bank edge in a 
limestone bedrock channel, Shawnee Run, KY ………………… 33 

Figure 2.6 Root bank in limestone bedrock channels: Raven Run, KY; San 
Marcos River, TX ……………………………………………….. 34 

Figure 2.7 Bedrock weathering due to trunk growth along the bank of 
limestone bedrock rivers: Raven Run, KY; Dix River, KY …….. 36 

Figure 2.8 Bedrock weathering due to root growth along the bank of 
bedrock rivers: Granite bedrock, Union County, SC; limestone 
bedrock, Shawnee Run, KY …………………………………… 37 

Figure 2.9 Bedrock mining due to tree uprooting along the bank of a 
limestone bedrock river, Shawnee Run, KY ……………………. 37 

Figure 2.10 Examples of BGIs concentrated in bedrock or alluvial stream or 
rocky hillslope settings ………………………………………….. 40 

Figure 2.11 Examples of BGIs common in multiple environmental settings ... 41 
Figure 3.1 Location of the study area in Mercer County, Kentucky ……….. 61 
Figure 3.2 The geologic map of Shawnee Run where (a) displays unincised 

portion, (b) displays moderately incised portion, and (c) displays 
strongly incised portion …………………………………………. 63 

Figure 3.3 The classification scheme of hydraulic units at each reach …….. 65 
Figure 3.4 Species richness and stem density (number of individuals/length 

of hydraulic unit) per HU from upstream to downstream ………. 69 
Figure 3.5 Spatial distribution of riparian species in Shawnee Run where (a) 

shows HU-scale spatial distribution and (b) shows regime-scale 
distribution from upstream to downstream ……………………... 70 

Figure 3.6 (a) Proportion of individuals contributing to different 
biogeomorphic impacts; (b) Percentage contribution of each 
species to total biogeomorphic impacts and percentage of 
individual species out of total individuals ………………………. 72 

Figure 3.7 Example of a log-dam pool and the corresponding cross-section . 74 



ix 
 

Figure 3.8 Example of a geomorphic pool and the corresponding cross 
section, where the thalweg is on the left side of the bank. Despite 
the presence of vegetation near the bank, there is no evident 
impact of vegetation on pool formation ………………………… 74 

Figure 3.9 Examples of a biogeomorphic pool: (a, b) the American 
sycamore (P. occidentalis) tree root impact is within the bankfull 
channel and root extending to the channel bed; (c, d) two dead P. 
occidentalis associated with their pools; (e) a P. occidentalis 
root-induced biogeomorphic pool – looking upstream  ………… 77 

Figure 3.10 Two example cross-sections of biogeomorphic pools (with depth 
of the thalwegs demarcated), where (a) corresponds with the 
image displayed in Figure 9e …………………………………… 78 

Figure 3.11 Block displacement mechanism by American sycamore (P. 
occidentalis) root penetration …………………………………… 79 

Figure 3.12 Example of an avulsion-originated island located at the 
midstream section of Shawnee Run (looking upstream) ………... 80 

Figure 3.13 Example of channel cross-sections located at an island section, 
and just upstream and downstream of the island section ……….. 82 

Figure 3.14 Root banks forming the bank of the channel and their 
distribution ……………………………………………………… 84 

Figure 3.15 Evidence of bedrock weathering caused by root penetration 
across Shawnee Run …………………………………………….. 85 

Figure 3.16 Conceptual model of biogeomorphic pool formation …………... 86 
Figure 4.1 Location of the study area in Mercer County, Kentucky ……….. 99 
Figure 4.2 The slope map (left) and elevation map of Shawnee Run with 

sampling sites demarcated in the elevation map. The dotted 
boxes display (a) unincised (or mildly incised) portion and 
reaches 1-3;  (b) moderately incised portion and reaches 4-6; (c) 
strongly incised portion and reaches 7-9 ………………………... 101 

Figure 4.3 The classification scheme of hydraulic units (HUs) at each reach  102 
Figure 4.4 Longitudinal profile of nine reaches where 1-3 represents 

upstream reaches, 4-6 represents midstream reaches and 7-9 
represents downstream reaches …………………………………. 110 

Figure 4.5 Bankfull width, maximum depth and width-depth ratio at 
hydraulic unit scale where 1, 31 and 61 mark the beginning of 
unincised, incising and strongly incised domain respectively ….. 111 

Figure 4.6 Bankfull width, maximum depth and cross-section area per HU 
scale where 1, 31 and 61 mark the beginning of unincised, 
incising and strongly incised domain respectively ……………… 113 

Figure 4.7 Hydraulic radius per HU along the longitudinal profile of 
Shawnee Run ……………………………………………………. 114 

Figure 4.8 Variation of substrate characteristics at HU scale (a) and domain 
scale (b) …………………………………………………………. 116 

Figure 4.9 Species richness and total number individuals at hydraulic unit 
scale where 1, 31 and 61 mark the beginning of unincised, 
incising and strongly incised domain respectively ……………… 121 



x 
 

Figure 4.10 Comparison of variance components explained at three 
hierarchical levels for geomorphic, vegetation and 
biogeomorphic variables ………………………………………... 123 

Figure 4.11 Local structural controls of bedding planes and joints on 
Shawnee Run; looking upstream (images obtained at incising 
and strongly incised domains) …………………………………... 124 

Figure 4.12 Karst spring influencing patchiness and discontinuities in 
Shawnee Run ……………………………………………………. 126 

Figure 5.1 Organization of the research and the relationship between 
dissertation objectives and associated findings …………………. 132 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 
 

CHAPTER 1. INTRODUCTION 

 

1.1 Biogeomorphology and Fluvial Systems 

Biogeomorphology, an emergent subdiscipline at the interface between 

geomorphology and ecology (Viles 1988; Naylor et al. 2002), has developed extensively 

in recent decades. Geomorphology and ecology developed as distinct disciplines, and 

different concepts developed independently in each of these fields (Corenblit et al. 2007). 

Over time, the concept of biogeomorphology evolved as an interdisciplinary domain 

between ecology and geomorphology. Biogeomorphology studies the bi-directional 

linkage between geomorphic and ecological structures and processes, while considering 

multiple casualties and scale dependencies (Phillips, 1999) for understanding the complex 

emergent landscape patterns linked to active or passive bio-processes (e.g., bioerosion, 

bioprotection, bioconstruction and bioturbation) (Naylor et.al. 2002; Phillips 2006; Stallins 

2006).  The key  components of fluvial biogeomorphology – a domain of 

biogeomorphology − are the riparian zone and the associated flow regime (flow intensity, 

duration and frequency) that drive hydrogeomorphic processes. Riparian zones are part of 

bottomland surfaces that are often inundated or saturated at least once a year, while 

bottomland includes all fluvially generated landforms and vegetation extends from terraces 

to the channel bed, in descending order, within the valley section (Hupp and Osterkamp, 

1996). The term fluvial corridors is used here, consisting of river channels, their margins, 

and the zone of frequent floods occupied by riparian vegetation (Corenblit et al. 2010). 
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Fluvial corridors  encompass  river channels, their margins and the zone of 

expansion of frequent floods occupied by riparian vegetation (Corenblit et al. 2010). They 

undergo hydrogeomorphological processes that exhibit variation in intensity, frequency 

and duration, and consequently alter the feedback mechanisms exist between the 

continuum of flow regimes and riparian plant communities. Extensive empirical research 

has been conducted on fluvial biogeomorphology to understand the complex nature of the 

association between riparian vegetation and hydrogeomorphic processes (e.g., Everitt 

1968; Hupp and Osterkamp 1985; Harwood and Brown 1993; Marston et al. 1995; Hupp 

and Osterkamp 1996; Bendix and Hupp 2000; Gurnell et al. 2001; Hughes et al. 2001; 

Oswalt and King, 2005; Gurnell and Petts 2006; Hupp and Rinaldi 2007; Bertoldi et al. 

2009; Stotts et al. 2015; Wohl and Scott 2017). However, the nature of dynamic 

interactions between riparian vegetation and hydrogeomorphological processes vary in 

diverse environmental settings (Gurnell et al. 2001; Gurnell 2014) and bedrock streams 

have rarely been studied from this context. This research presented here seeks to fill this 

knowledge gap by exploring the relationships between geomorphic processes and 

associated forms, and riparian vegetation in bedrock-controlled streams from the context 

of biogeomorphology. 

1.2 Effects of Fluvial Process-Forms on Vegetation Pattern and Distribution 

Fluvial corridors are typically characterized by intense reciprocal adjustments 

between hydrogeomorphic processes and landforms and vegetation communities 

(Tsujimoto 1999; Steiger et al. 2005; Tabacchi et al. 2005). Thus, fluvial processes and 

landforms influence vegetation establishment, pattern and distribution along the fluvial 

corridors. The distribution pattern of woody vegetation within the bottomland forest is a 
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function of channel geometry, streamflow characteristics and sediment size characteristics 

(Hupp and Osterkamp 1985), and elevation above the stream channel (e.g. Sigafoos 1961; 

Hosner and Minckler 1963; Everitt 1968; Chambless and Nixon, 1975; Nixon et al. 1977; 

Hupp 1983). Independent hydrologic factors such as flood frequency, flow duration, and 

period of inundation exert influence on vegetation patterns (Hack and Goodlett 1960; 

Sigafoos 1961; Hupp 1983) by affecting most aspects of their life histories within the 

fluvial corridors (Hupp and Osterkamp 1996). Disturbance by floods can also affect the 

diversity of plant species (Decamps and Tabacchi 1994) while some studies emphasized 

on dispersal patterns and history than on disturbance (Nilsson et al. 1991; 1994). Many 

others summon the intermediate disturbance hypothesis introduced by Connell (1978), 

which suggests that diversity is higher when disturbances are intermediate on the scales of 

frequency and intensity. Connell (1978) also demonstrated that plants are also specialized 

according to differences in habitats (habitat diversity) caused by variations in the frequency 

and intensity of disturbances. Recognizing these aspects, several authors have suggested 

that riparian communities should be considered compositionally stable, maintained by 

periodic flooding, rather than successional, recovering from floods (Sigafoos 1961; 

Yanosky 1982; Hupp 1983; Bendix 1998). Further, the impact of fluvial geomorphic 

processes and forms on riparian vegetation also varies in differential environmental settings 

characterized by two vital, external, independent variables: climate (e,g. Hupp and 

Osterkamp 1996) and lithology (Bendix 1999).  

1.3 Biogeomorphic Effects of Vegetation on Fluvial Process-Landforms 

Both living and dead vegetation influence fluvial hydrodynamics (Green 2005), 

morphogenesis (Hupp and Osterkamp 1996) and landscape dynamics (Ward et al. 2002; 
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Pettit and Naiman 2005). Riparian vegetation influences fluvial processes in several ways. 

Living vegetation influences flow regime via (i) imposing roughness to hydraulic shear, 

(ii) increasing both flow and mechanical resistance of beds, banks, and floodplain surfaces 

(e.g. Thorne 1990; Hupp 1982), (iii) trapping sediment in channels and on floodplains (e.g. 

Gurnell et al. 2001; 2014) and (iv) initiating or stabilizing bars and islands (e.g. Page and 

Nanson, 1982). Some studies emphasized on the species-specific impacts of vegetation − 

from the context of ecosystem engineering (e.g. Gurnell and Petts 2006, Corenblit et al. 

2009b), and on different fluvial environments (Gurnell et al. 2019).   

In addition to riparian plants, woody debris intercepts water and sediment during 

floods, and thus can drive the physical creation, modification or maintenance of habitat 

(e.g. islands, bars etc.) mainly through biostabilization and bioconstruction (Gurnell et al. 

2005). Reviews of wood-sediment dynamics along river corridors can be found in Gurnell 

et al (2001), Wohl (2013) and Wohl and Scott (2017). Gurnell et al. (2001) developed a 

conceptual model of island development recognizing the active role of dead wood on the 

evolution of fluvial features, for instance, the core of scroll bars (Nanson 1981), bar apex 

jams (Abbe and Montgomery 1996) and lateral jams (Fethetston et al. 1995) behind which 

sediment and organic matter accumulate where riparian trees can further establish.  

1.4 Reciprocal Interactions between Vegetation and Geomorphic Processes  

The effect of hydrogeomorphic processes and forms on vegetation, and vice versa 

function together in a feedback loop, which develop fluvial biogeomorphic systems. While 

riparian vegetation influences flow-sediment dynamics and the hydraulic and mechanical 

properties of the substrate, the distribution and vigor of many riparian species (and woody 

debris) are determined by flow dynamics and water availability (Gurnell 2014). Further, 
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biogeomorphic feedbacks between vegetation growth and sedimentation promote island 

development and self-assembly (Francis et al. 2009). Thus, riparian ecology and fluvial 

geomorphology are causally connected via bidirectional linkages  (Bendix and Cowell 

2010). A number of biogeomorphic studies demonstrating the reciprocal linkages between 

fluvial landforms and riparian ecosystems from the context of intertwined biotic-abiotic 

interactions include e.g. Corenblit et al. (2007, 2009a, 2009b, 2015),  Gurnell et al. (2001, 

2005, 2012), Stoffel and Wilford (2012), Bertoldi et al. (2009), Jerin and Phillips (2020).  

1.5 Importance of Scale in Fluvial Biogeomorphic Systems 

Geomorphic patterns and processes are interlinked and typically scale dependent. 

Thus, selection of appropriate spatial scale has substantial impacts on result interpretation. 

If patterns vary in a discontinuous manner across scales, this usually indicates that different 

processes are acting to produce the pattern (Thorp et al. 2008). For example, the 

hydrogeomorphic process-form determinants influencing vegetation patterns vary at 

different (spatial) scales.  Hughes et al. (2001) suggested that in riparian systems, site scale 

researches are concentrated on the influence of hydrology and sediments on vegetation 

regeneration. Tolerance to drought or flooding and to sedimentation are the key factors 

explaining vegetation regeneration patterns at the site scale. Moreover, at the drainage 

basin scale, drainage area and valley characteristics regulate vegetation functions 

(McKenney et al. 1995). Thus, fluvial biogeomorphic systems are characterized by 

complexity, caused by multi-causality and variable process-form linkages at different 

scales (e.g. Smiley and Dibble 2005; Parsons and Thoms 2006). This, as a result, limits the 

practicality of the reductionism approach in such systems (Thorp et al. 2008). 
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1.6 Bedrock Streams and Biogeomorphology 

Bedrock rivers are more common that is generally supposed (Montgomery et al. 

1996). Knowledge from alluvial and gravel-bed systems cannot be directly translated to 

bedrock rivers (Tinkler and Wohl, 1998); such attempts have already fallen into difficulties 

(e.g. Vaughn 1990; Tinkler and Parish 1998). While a comprehensive review of bedrock 

stream geomorphology is beyond the scope of this research, it will focus on recent reviews, 

summaries and syntheses that include the salient characteristic of bedrock streams and 

distinguish them from the alluvial ones. Important differences with respect to alluvial 

streams are often attributable to slower change (Schumm and Chorley 1983; Whipple 

2004), unidirectional change (Tinkler and Wohl 1998), greater role of bed/bank resistance, 

more direct influence of lithology and structure (Miller 1991; Tinkler and Wohl 1998; 

Whipple 2004), and the role of processes such as dissolution, abrasion, cavitation and 

plucking (Miller 1991; Wohl et al. 1994; Wohl and Ikeda 1998; Tinkler and Wohl 1998; 

Whipple et al. 2000). Bedrock channels occur mainly, but not solely, in actively incising 

portions of landscapes where channels are cut into resistant rock units, most often in 

actively uplifting areas (Whipple 2004). This explains the greater influence of lithology 

and structure, greater role of bed/bank resistance and therefore, the dominant erosion 

processes, and slower change of bedrock channels than that of alluvial rivers (Jerin 2019). 

In contrast to alluvial streams, the morphological change of bedrock rivers is unidirectional 

— rock removed from the bed of channels lowers the local base level for all upstream 

points. Similarly, rock removed from the walls is irreplaceable (Tinkler and Wohl 1998). 

While some geomorphologists do not consider bedrock streams self-formed, Whipple 

(2004) argued that flow, sediment flux, substrate properties, and base level conditions 
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dictate self-adjusted combinations of channel gradient, width, and bed morphology in 

bedrock channels (e.g. Wohl and Ikeda 1998; Wohl et al. 1999; Wohl and Merritt 2001).  

The research presented here is conducted on a limestone bedrock-controlled stream, 

Shawnee Run, located in the Kentucky River gorge area of the Inner Bluegrass karst region 

in central Kentucky (Figure1). It is a tributary of the Kentucky River (note: on U.S. 

Geological Survey maps, Shawnee Run is incorrectly shown as Shaker Creek) draining 

about 43.5 km2 of surface drainage area with a total length of about 20 km. Shawnee Run 

is a bedrock-controlled stream dominated by limestone lithology with discontinuous coarse 

alluvial cover. The study area was selected because it is part of a nature preserve and has 

been minimally disturbed along the fluvial corridor.  

 

Figure 1.1: Location of the Study Area, Shawnee Run, in central Kentucky. 

A number of studies have been conducted on the fluviokarst landscapes of central 

Kentucky dissected by bedrock streams. Several studies attempt to explain the evolution 

of fluviokarst landscapes driven by highly localized structural and topographic constraints 
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related to slope changes (e.g. Phillips and Walls 2004; Phillips et al. 2004; Phillips 2015; 

Jerin and Phillips 2017). Further, Phillips and Lutz (2008) examined the longitudinal 

profiles of bedrock streams in this region, and related profile convexities to environmental 

controls structure, lithology, and recent geomorphic processes. Andrews (2004), who 

studied the Plio-Pleistocene history of the Kentucky River, provided a broader 

understanding of landscape evolution and controls on fluvial system associated with 

bedrock settings. Parola (2007) provided a quantitative description of the expected values 

and the variation of the parameters of hydraulic geometries as a function of upstream 

drainage area within the Bluegrass Region of Kentucky.  Nevertheless, none of these 

studies integrated biotic influences on bedrock streams.  

Biotic influences have rarely been integrated in studies dealing with landscape 

dynamics associated with the nature of bedrock rivers; only a few studies attempted to 

explore this phenomenon. Rittle (2015) focused on the relationships between flow regime 

and algae. Furthermore, Russo and Fox (2010) developed a model that examines the fate 

and transport of the surface fine-grained laminae; here they included biological influences, 

along with the geomorphic controls, as a model component to depict the processes.  Ford 

and Fox (2017) also quantified carbon sequestration due to algal stabilization in bedrock-

controlled stream ecosystems. Some other studies incorporated vegetation impacts on 

geomorphic processes, but dealt with hillslope hydrology rather than fluvial corridors (e.g. 

Martin 2006).  

The bed and banks of bedrock rivers are not composed of transportable sediments, 

but are erodible (Whipple 2004). As bedrock streams often do transport appreciable 

sediment, some biogeomorphic impacts observed in alluvial ones are likely to be important 
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in bedrock rivers too. While the role of vegetation in bed and bank resistance might be 

minimal, vegetation could still influence flow hydraulics, and work on tree-bedrock 

interactions in terrestrial settings. This suggests that biogeomorphic impacts on bedrock 

banks and channels could be significant (Pawlik et al. 2016), and needs to be taken into 

account. 

1.7 Dissertation Objectives and Structure 

The overarching goal of this research is to understand the biogeomorphic 

interactions between fluvial processes and forms, and riparian vegetation in a limestone 

bedrock controlled stream. To accomplish this goal three specific objectives have been 

developed: 

Objective 1: Explore the biogeomorphic impacts of vegetation associated with 

bedrock streams and contrast these impacts with other geomorphic environments. 

Objective 2: Investigate the species-specific vs. the general biogeomorphic 

impacts of vegetation on fluvial process-forms from the context of biogeomorphic keystone 

species. 

Objective 3: Identify the most important spatial scale of variation of channel 

morphology and biogeomorphological phenomena. 

This dissertation is comprised of three data chapters − Chapter 2 through Chapter 

4 − addressing these objectives. Chapter 2 and 3 are published in Progress in Physical 

Geography: Earth and Environment, and Earth Surface Processes and Landforms 

respectively. Chapter 4 is currently under review in the journal Geomorphology. A 
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conclusions section (Chapter 5) integrates the findings from earlier chapters, and points out 

the important aspects of biogeomorphology of bedrock fluvial systems.  
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CHAPTER 2. BIOGEOMORPHIC EFFECTS OF WOODY VEGETATION ON 

BEDROCK STREAMS 

 

Abstract  

The dynamic interactions between fluvial processes and vegetation vary in different 
environments and are uncertain in bedrock settings. Bedrock streams are much less studied 
than alluvial in all aspects, and in many respects act in qualitatively different ways. This 
research seeks to fill this lacuna by studying bedrock streams from a biogeomorphic 
perspective. It aims to identify the impacts of woody vegetation that may be common to 
fluvial systems and rocky hillslopes in general, or that may be unique to bedrock channels. 
A review of the existing literature on biogeomorphology — mostly fluvial and rocky 
hillslope environments — was carried out, and field examples of biogeomorphic impacts 
associated with fluvial systems of various bedrock environments were then examined to 
complement the review. Results indicate that bedrock streams exhibit both shared and 
highly concentrated biogeomorphic impacts in relation to alluvial streams, and rocky 
hillslopes. Bedrock streams display a bioprotective geomorphic form — root banks (when 
the root itself forms the stream bank) —which is distinctive, but not exclusive to this 
setting. On the other hand, shared biogeomorphic impacts with alluvial streams include 
sediment and wood trapping, and bar and island development and stabilization (i.e. 
bioconstruction/modification and protection). Shared impacts with rocky hillslopes also 
include bioprotection, as well as displacement of bedrock due to root and trunk growth, 
and bedrock mining caused by tree uprooting (i.e. bioweathering and erosion). Two 
biogeomorphic impact (BGI) triangles were developed to graphically display these 
relationships. Finally, this paper concludes that bedrock streams exhibit some 
biogeomorphic impacts that also occur either in alluvial channels or on rocky hillslopes. 
Therefore, no biogeomorphic impacts were identified that are absolutely unique to bedrock 
fluvial environments.   

 

Keywords: Biogeomorphology, bedrock streams, alluvial streams, biogeomorphic impacts, 
rocky hillslopes. 

 

Chapter published as: 

Jerin, T., 2019. Biogeomorphic effects of woody vegetation on bedrock streams. Progress 
in Physical Geography: Earth and Environment, 43(6), pp.777-800. 
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2.1 Introduction 

Very little research has been done on biogeomorphic effects of woody vegetation 

in bedrock-controlled streams. The likely reasons for this neglect are threefold. First, 

influence of plants on bedrock streams may be assumed to be minimal because 

bioprotection effects are less important in bedrock owing to greater bed/bank resistance 

(Miller 1991; Tinkler and Wohl 1998; Whipple 2004). Second, effects of sediment trapping 

are less significant because of bed load or dissolved load domination, and bed and banks 

composed of material that is not readily transportable (Whipple 2004). Third, some 

researchers may have assumed insignificant biogeomorphic impacts owing to a lack of 

vegetation in-channel and less dense vegetation cover on exposed rocks. However, as 

biogeomorphic impacts are significant in alluvial streams and on exposed bedrock of 

hillslopes, the possibility of these impacts in bedrock streams is worth investigating. The 

purpose of this paper is to identify the impacts of woody vegetation that may be common 

to fluvial systems and rocky hillslopes in general, or that may be unique to bedrock streams 

(Figure 2.1).  
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Figure 2.1: Potential overlap of biogeomorphic impacts (BGIs) on alluvial streams, 
bedrock streams and rocky hillslopes.  

 

Fluvial corridors are comprised of river channels, their margins, and the zone of 

expansion of frequent floods occupied by riparian vegetation (Corenblit et al. 2010; 

Gurnell et al. 2016).  They are characterized by intense reciprocal adjustments between 

hydrogeomorphic processes, landforms, and vegetation (Tsujimoto 1999; Tockner and 

Stanford 2002; Steiger et al. 2005; Tabacchi et al. 2005; Gurnell et al. 2005; 2012; 2016; 

Gurnell and Petts 2006). Hydrogeomorphic processes greatly affect habitat diversity, 

vegetation regeneration and thus, biodiversity (Hughes et al. 2001). Furthermore, 

independent hydrologic factors (e.g. flood frequency, flow duration and period of 

inundation) exert influence on vegetation patterns (Hack and Goodlett 1960; Sigafoos 

1961; Hupp 1983) by affecting most aspects of the life histories of plant species within the 

fluvial corridors (Hupp and Osterkamp 1996). Conversely, vegetation –  both living and 
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dead –  influences fluvial hydrodynamics (Green 2005), morphogenesis (Hupp and 

Osterkamp 1996) and landscape dynamics (Ward et al. 2002; Pettit and Naiman 2005). 

Riparian species also play vital roles in ecosystem engineering, i.e. modifying the physical 

characteristics of riparian zones (Gurnell and Petts 2006). Absence of these species referred 

to as biogeomorphic ecosystem engineers may limit the diversity of riparian corridors (e.g. 

Francis et al. 2009). However, while hydrogeomorphic processes and fluvial landforms are 

important for vegetation establishment, pattern and diversity, this paper primarily 

concentrates on the biogeomorphic impacts of vegetation on bedrock streams and how such 

impacts can initiate and grow into reciprocal effects. 

The interactions between fluvial landforms and riparian vegetation respond 

differently in distinct environmental settings (Gurnell et al. 2001; Gurnell 2014), and the 

relationships are uncertain in bedrock settings. Polvi et al. (2014) show that significant 

differences exist between woody and non-woody vegetation with respect to reinforcing 

root-associated cohesion and stream bank stability, and indicate a need for future 

investigation considering different streambank types at the reach and watershed scales.  

Furthermore, a recent study by Gurnell et al. (2018) on the differences in root strength 

between and within species associated with different European river environments 

indicates that biogeomorphic impacts associated with specific species are variable within 

and between rivers of different geographical regions, and suggests a need for future 

research on species in different fluvial environments. By identifying distinctive and shared 

biogeomorphic impacts associated with bedrock and alluvial fluvial settings this research 

contributes to these future research concerns.   
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Bedrock streams are much less studied than alluvial in all aspects and in many 

respects act in qualitatively different ways. This research aims to identify how bedrock 

river systems are different or similar to alluvial ones and rocky hillslopes from a 

biogeomorphic perspective. To fulfill the goal of this research, a review of the existing 

literature on biogeomorphology — mostly fluvial and rocky hillslope environments — was 

carried out. Field examples of biogeomorphic impacts associated with fluvial systems of 

six various bedrock environments were then examined to complement the review. Thus, 

this research identifies influences of woody vegetation that may be common to fluvial 

systems in general, or that may be distinctive to bedrock streams.  

2.2 Fluvial biogeomorphology and biogeomorphic impacts  

Fluvial biogeomorphology studies the bi-directional linkage between 

hydrogeomorphic and ecological structures and processes. This includes multiple 

causalities and scale dependencies of the complex emergent patterns along the fluvial 

corridor linked to active or passive bio-processes (e.g.,  bioerosion, bioprotection, 

bioconstruction and bioturbation) (for example, Butler 1995; Naylor et al. 2002;Corenblit 

et al. 2007; Viles et al. 2008; Wilkinson et al. 2009). The vital components of fluvial 

biogeomorphology are interactions between the flow regime (flow intensity, duration and 

frequency), sediment and vegetation, particularly those within the riparian zone that can 

greatly influence the form and dynamics of the river margin. In this context, riparian zones 

are part of the valley floor that are often inundated by the river whereas the term valley 

bottomland has been used to refer to a larger area enclosing all fluvially generated 

landforms and vegetation, potentially extending from terraces to the channel bed (Hupp 

and Osterkamp, 1996). Thus, valley bottomlands encompass an enormous diversity of 
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physical configurations and species life-forms and assemblages reflecting the regional and 

local geological, geomorphic and bioclimatic settings (Corenblit et al. 2015). Riparian and 

in-channel vegetation responds to and influences fluvial processes. The outcomes of these 

plant-physical process interactions vary widely across different bioclimatic, 

biogeographical and hydrogeomorphological settings. These interactions drive shifting 

mosaics of landforms and their associated aquatic and terrestrial ecological communities 

along longitudinal and transverse gradients within fluvial corridors (Poff et al. 1997; Thorp 

et al. 2010; Gurnell et al. 2016). The interactions between vegetation (both in-stream and 

riparian) and fluvial geomorphic processes and forms can be expressed with three types of 

biogeomorphic functions/roles summarized in Table 2.1. 

Table 2.1: Biogeomorphic functions/roles terms and definitions 

Biogeomorphic 
function/role 

Definition Examples of 
Biogeomorphic impact  

Bioconstruction/modification Construction of 
landforms, or net 
accretion or accumulation 
associated with direct or 
indirect biotic effects 

Sediment trapping by 
wood accumulations or 
plants; dam formation by 
wood accumulations 

Bioprotection Biotic effects that increase 
resistance to erosion (and 
weathering or mass 
movement) 

Vegetation anchoring of 
bars and islands; root 
buttressing of banks 

Bioweathering & erosion Biotic effects that result in 
or facilitate entrainment 
and removal of rock, soil, 
and sediment. Biotic 
effects on weathering and 
mass wasting are typically 
included in this category.  

Soil displacement by tree 
uprooting; scour induced 
by wood accumulation; 
bedrock weathering effects 
of tree roots 
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2.2.1 Biogeomorphic impacts of vegetation on alluvial rivers 

Vegetation influences fluvial processes in several ways. These include increasing 

roughness, flow and mechanical resistance of beds, banks and floodplain surfaces (e.g. 

Thorne 1990; Hupp 1992), trapping sediment in channels and on floodplains (e.g. Gurnell 

et al. 2001; 2014), and initiating or stabilizing bars and islands (e.g. Page and Nanson, 

1982). In addition to riparian plants, large wood that has been retained in the river channel 

also intercepts water and sediment, and thus can influence fluvial landforms (e.g. islands, 

bars etc.) mainly through the process of biostabilization and bioconstruction (Gurnell et al. 

2005).  

Living vegetation provides resistance to the forces of fluvial processes, and this role 

of vegetation as a vital mediating agent of hydrogeomorphic processes within the fluvial 

corridor has been acknowledged in several studies (Gurnell and Petts 2006, 2014; Gurnell 

et al. 2001, 2012) (Table 2.2). Furthermore, living vegetation increases cohesion via root 

mass, and therefore increases resistance of vegetated landforms (Gran et al.  2015). 

McKenney et al. (1995) quantified the Manning’s roughness coefficient incorporating 

vegetation, and showed how vegetation roughness and resistance affect fluvial 

hydrodynamics and morphogenesis in gravel-bed streams. Vegetation also has substantial 

influence in trapping and stabilizing fluvially transported sediment. These impacts can 

foster construction of distinct landforms and accelerate the development of larger 

landforms such as river banks, vegetated islands and floodplains (e.g. Gurnell et al. 2016).  

Many studies have focused on deposited wood and its influence on process-form 

dynamics along the fluvial corridor (Table 2.2). Gurnell et al. (2005) discussed the role of 

wood, particularly when the deposited trees are able to sprout and anchor themselves to bar 
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surfaces, in relation to the formation and dynamics of island-braided rivers. Reviews of 

wood-sediment dynamics along river corridors include Gurnell et al (2001), Wohl (2013) 

and Wohl and Scott (2017). Gurnell et al. (2001) incorporated both the impact of wood and 

living vegetation in their conceptual model of island development within fluvial systems. 

Studies have also identified the association of dead wood with the initiation of specific 

types of fluvial landform such as reinforcing the core of scroll bars (Nanson 1981), or 

building bar apex jams (Abbe and Montgomery 1996) and lateral jams (Fetherston et al. 

1995) behind which sediment and organic matter accumulate to provide a substrate on 

which riparian trees may establish. Kramer and Wohl (2015) describe an extreme example 

of this phenomenon, driftcretion, where large concentrations of driftwood contribute to 

sedimentation influencing shoreline morphology and evolution by interacting with 

vegetation. Furthermore, Fetherston et al. (1995) suggested that dead wood plays a vital 

role in reducing mean boundary shear stress, and thus protects the surfaces and margins of 

islands and bars. However, while large wood plays a key role in promoting landform 

protection and stability, they can also destabilize fluvial landforms by promoting erosion. 

For example, a study of forested and grassed stream banks by Trimble (1997) suggested 

that forested stream banks, relative to grassed ones, can destabilize stream channels by 

promoting erosion. Mature forests produce large wood, which may destabilize streams 

locally by affecting the distribution of stream power via diverting flow against banks 

(Gregory and Davis, 1992; Gurnell and Gregory 1995).    
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Table 2.2: Example studies demonstrating biogeomorphic feedbacks associated with 
alluvial streams. 

Type of study or 
evidence 

Example References 

Bar and island formation 
and evolution 

Nanson 1981; Page and Nanson 1982; Fethetston et al. 1995; 
Hardwood and brown 1993; Abbe and Montgomery 1996; 
Gurnell et al. 2001; Gurnell et al. 2005; Gurnell and Petts 
2006;  Francis et al. 2006; Francis et al. 2008; Francis et al. 
2009; Corenblit et al. 2011; Gurnell et al. 2012; Gurnell 
2014. 

Floodplain-wood 
dynamics 

Gurnell et al. 2001; Gurnell et al. 2002; Collins et al. 2012; 
Wohl 2013; Wohl and Scott 2017. 

Hotspot zones of species 
modifying landforms — 
ecosystem engineering 

Collins et al. 2012; Gurnell 2014. 

Fluvial biogeomorphic 
succession 

Corenblit et al. 2007; Corenblit et al. 2009a; Corenblit et al. 
2010. 

 

Finally, there are studies on the effects of fluvial hydrodynamics and forms on 

vegetation germination and their successful establishment, growth, survival and 

distribution. These are based on the details of how boundary conditions for vegetation –  

including flow regime, substrate and channel geometry –  are likely to govern vegetation 

distribution and their influences within fluvial corridors (e.g., Hupp and Osterkamp 1985, 

1996; McBride and Strahan 1984; Shafroth et al. 1998; Bendix 1998,1999; Corenblit et al. 

2007; 2009b; Hupp and Rinaldi 2007).  However, no comparable studies of these dynamics 

have been conducted on fluvial systems that are characterized by bedrock controlled 

channels. 

2.2.2 Biogeomorphic impacts of vegetation on hillslopes  

Biogeomorphic impacts of vegetation on hillslopes are similar to those of fluvial 

corridors in a number of cases. Many biogeomorphic and pedologic studies have 

emphasized the importance of tree root systems in which roots play a primary role in soil 
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development, regolith disturbance, bedrock mining by tree uprooting, and soil 

displacement by growing roots (Pawlik et al. 2016). Pawlik (2013) specified three 

biogeomorphic impacts of trees on bedrock hillslopes that can be potentially important for 

bedrock streams as well— (i) growing root systems: these disintegrate rock fragments and 

widen fissures in bedrock; (ii) growing trunks: physical displacement of bedrock and (iii) 

tree uprooting: direct bedrock disruption via mining (see Table 2.3 for example studies). 

Growing root systems can have immense impact on physical and chemical weathering. The 

radial pressure exerted by tree root systems can reach 0.91 MPa and axial pressures as high 

as 1.45 MPa (Bennie 1991) which is sufficient to break up bedrock. The roots inevitably 

increase in length and girth and split the rocks apart slowly (Matthes-Sears and Larson 

1995). Phillips (2015) showed that about 90% of the examined trees of his study conducted 

on limestone bedrock hillslopes exhibited evidence of : i) joint widening both horizontally 

and vertically by root penetration, ii) mechanical displacement of bedrock along bedding 

planes and iii) root exposure indicating removal of material at the tree base (Table 2.3). 

Phillips (2016) further explained how the widening of joints can promote chemical 

weathering in such karst associated bedrock environments. A combination of root growth 

in joints, trunk expansion and development of basal flares near the tree-ground interface 

can displace rock fragments both vertically and horizontally (Phillips 2015). Thus, trees 

can promote weathering of bedrock and displace mass via root and trunk growth (Lutz and 

Griswold 1939; Gabet and Mudd 2010) (Table 2.3).  

Uprooting of trees usually occurs during storms with strong winds, ice storms or 

excessive rainfall. Uprooted trees can break down bedrock, transport soil downslope and 

hinder soil horizonation (Gabet et al. 2003). In bedrock settings, uprooting results in 
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bedrock mining as opposed to thicker soils where bioturbation is the key consequence. 

Uprooting has been characterized as one of the primary mechanisms of downslope mass 

movement process (Schaetzl et al. 1989; Small et al. 1990) (Table 2.3), which in turn 

promotes weathering and erosion of exposed bare soil/rock and slope destabilization(e.g., 

Phillips et al. 2017). 

Table 2.3: Example studies demonstrating biogeomorphic impacts associated with rocky 
or thin-soil hillslopes. 

Type of study or evidence References 

Displacement and movement 
of soil and rock fragments by 
tree uprooting 

Lutz 1960; Schaetzl et al. 1989; Small et al. 1990; 
Phillips and Marion 2006; Martin 2006; Phillips et al. 
2008; Pawlik 2013. 

Bedrock mining associated 
with tree uprooting 

Pawlik 2013; Phillips 2015; Phillips et al. 2016. 

Displacement of bedrock by 
root and trunk growth 

Lutz and Griswold 1939; Jackson and Sheldon 1949; 
Matthes-Sears and Larson 1995; Roering et al. 2003; 
Gabet et al. 2003; Birot 1966; Gabet and Mudd 2010; 
Phillips 2015. 

Accelerated weathering 
along joints and bedding 
planes 

Gabet et al. 2003; Bormann et al. 1998; Yatsu 1988; 
Phillips and Marion 2005, 2006; Phillips 2015. 

 

Finally, infilling of stump holes and trapping of sediments from upslope are 

distinctive biogeomorphic impacts within rocky hillslopes (Pawlik 2013; Phillips 2015; 

Shouse and Phillips 2016) as bedrock stream environments have limited potential to 

display such impacts. Additionally, within hillslope environments, tree growth may 

enclose (or partly enclose) rock fragments and prevent downslope movement of sediments 

until the death of the tree and wood decomposition (Phillips 2015). However, this may also 

occur along fluvial environments.  
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2.2.3 Reciprocal interactions between vegetation and geomorphic processes  

Vegetation within fluvial corridors influences the flow hydraulics and landforms 

by increasing shear strength, retaining sediment and affecting the hydraulic and mechanical 

properties of the substrate. Similarly, fluvial dynamics, water availability and sediment 

erosion, transportation and deposition determine the distribution and vigor of many species 

(Gurnell 2014). Thus, vegetation, and fluvial processes and forms are connected with each 

other via reciprocal effects that grow or diminish by biogeomorphic feedbacks. For 

example, Francis et al. (2009) explained how biogeomorphic feedbacks between 

vegetation growth and sedimentation influence island formation and self-assembly. 

Another example illustrated how feedback relationships between pioneer species and a 

high magnitude disturbance (i.e. flood) lead to the development of a highly resilient fluvial 

landscape. Landform accretion, vegetation succession and increasing geomorphic stability 

governed the development of such resilient landforms (Corenblit et al. 2010). In a related 

context, Gurnell (2014) introduced the idea of hotspots (Table 2.2). Hotspots are 

environmental envelopes within which ‘engineer’ plant species interact strongly with 

fluvial processes. They are enclosed within areas where fluvial processes or interspecies 

competition dominate. The location of hotspots shifts through time, corresponding to 

periods of relatively higher or lower fluvial disturbance. Within the hotspots certain 

‘engineer’ species are able to interact with fluvial processes by retaining and reinforcing 

sediments to build landforms (riverbanks, islands, floodplains) and habitat that are then 

colonized by other plant species. All these examples indicate that the relationships between 

riparian vegetation and hydrogeomorphic processes are driven by complex feedback 

mechanisms, which determine the spatial structure and dynamics of riparian ecosystems 
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(Hastings et al. 1993; Phillips 1999). Moreover, Bendix and Cowell (2010) discussed the 

effects of wood accumulation on channel hydraulics and morphogenesis where wood 

accumulation was triggered by post wildfire flooding events. Thus, they showed how 

riparian ecology and fluvial geomorphology are causally connected with bidirectional 

influences.  

Hillslope environments also exhibit biogeomorphic feedback associated 

interactions. One example of positive biogeomorphic feedbacks includes development of 

dissolutional grooves at the root-limestone bedrock interface. Dissolutional activity is 

enhanced along the roots that penetrate joints and extend across boulder and exposed 

bedrock surfaces. Thus, root growth promotes further development of solutional grooves 

in many karst environments (Phillips 2015). Phillips (2015) also showed how root 

penetration along vertical and horizontal joints can enhance weathering and moisture flux, 

and increase the susceptibility to bedrock mining. This leads to locally thicker regolith. 

Literature on root-rock interactions suggests that locally deepened regolith provides 

favorable sites for future tree establishment, and root-channels and root widened fissures 

are favored sites for future root penetration (Stone and Kalisz 1991; Martin 2006; Phillips 

2008; Estrada-Medina et al. 2013; Shouse 2014). Thus, biogeomorphic effects can extend 

beyond the lifetime of a single tree, and repeated reoccupation can lead to continued 

localized modification. Crowther (1987), in karst systems in peninsular Malaysia, also 

found that most chemical activity is associated with bedrock in contact with roots, which 

indicates the presence of the positive feedback relationships discussed above. Further, in a 

similar bedrock environment, Phillips (2016) showed how Chinquapin oak roots exert 

direct impacts on the surrounding trees by creating dissolutional grooves and channels, and 



24 
 

lifting and displacing rock plates. Thus he illustrated the reciprocal interactions between 

vegetation and hillslope processes from an ecosystem engineering perspective.  

Biogeomorphic feedbacks influence two aspects of fluvial and hillslope 

ecosystems: i) state transitions and ii) diversity of landforms and plant species.  

2.2.3.1 Ecosystem state transitions 

Biogeomorphic interactions may result in ecosystem state transitions (Dent et al. 

2002 and Francis 2009). In the case of natural fluvial ecosystems state transitions are 

influenced not only by the disruption of key hydrogeomorphological drivers, but also 

feedbacks between flow regimes and sediments, and vegetation dynamics (Francis 2009). 

These feedbacks result in characteristic biogeomorphic patterns and strongly affect 

ecosystem functioning and biodiversity. The fluvial biogeomorphic succession model 

suggested by Corenblit et al. (2007) is one example. This model illustrates how riparian 

plant communities and landforms co-evolve via bi-directional linkages associated with 

feedback mechanisms. It is comprised of four phases: geomorphic, pioneer, 

biogeomorphic, and ecologic phase, characterized by progressive changes in the relative 

dominance of hydrogeomorphic and ecological processes. The first stage is characterized 

by geomorphic systems that are exclusively driven by interactions between flow and 

sediment or substrate, with a successive amplification of vegetation influence in the next 

three phases. Gurnell et al. (2016)’s model is another example in this context, which 

conceptualized the nature of vegetation-hydrogeomorphology interactions in the absence 

of human influences for different European biogeographical settings. This model is 

founded upon some hydrogeomorphologically centered prior models, most importantly  the 

island development model (Gurnell et al. 2001), the large-wood cycle concept (Collins et 
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al. 2012) and the fluvial biogeomorphic succession model (Corenblit et al. 2007).  Gurnell 

et al. (2016)’s model explains how hydrogeomorphological constraints vary spatially and 

temporally within fluvial corridors giving rise to five distinct lateral zones where particular 

subsets of plant-physical processes prevail. However, because this model considers the 

distribution of these zones according to valley confinement (i.e. longitudinal variability 

from confined headwaters to unconfined floodplain reaches) and river types therefore, it is 

potentially relevant to bedrock streams. In addition to these models, Van Dyke (2016) 

explicitly discussed biogeomorphic feedback associated channel adjustment and 

consequent evolution under the framework of a state-and-transition model. His study 

established that the complex evolutionary pattern of a fluvial corridor is a function of the 

interactions between bio-hydro-geomorphic fluxes and landscape that vary across space 

and time. Other biogeomorphic studies demonstrating reciprocal linkages include Bertoldi 

et al. (2009), Corenblit et al. (2009a, 2009b, 2015), Gurnell et al. (2001, 2005, 2012), and 

Stoffel and Wilford (2012). In the context of forested hillslopes, Phillips et al. (2017) 

suggested that biogeomorphic succession may be more varied than the linear sequential 

fluvial biogeomorphic succession model, and may include pathways where biogeomorphic 

feedbacks are more persistent.  

2.2.3.2 Diversity of landforms and species 

Biogeomorphic feedbacks may also influence ecosystem diversity within fluvial 

and hillslope environments. For example, in case of fluvial systems, the engineering 

activity of some riparian species rooted into the bank toe can develop ‘hotspot’ zones (see 

above), which may promote the future colonization of other plant species (Gurnell 2014). 

Gurnell et al. (2005) discussed how water and sediment interception by wood during floods 
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can foster landform diversity by initiating the physical creation, modification or 

maintenance of habitats (e.g. islands, bars etc.), which in turn can increase biodiversity. 

Hupp and Rinaldi (2007) denoted riparian zones as the potentially most diverse ecosystems 

worldwide where species richness substantially increases along the transverse gradient 

from channel bed to terraces. Other studies relating the idea of biogeomorphic feedbacks 

and biodiversity includes Gurnell and Petts (2006), Gurnell et al. (2007), Bertoldi et al. 

(2009), Francis et al. (2009) etc. Moreover, Shouse and Phillips (2016) showed an instance 

of increasing diversity of geomorphic forms for a non-fluvial hillslope environment. Here, 

they discussed how vegetation induced regolith thickening driven by mechanisms 

associated with root penetration in bedrock can promote landform diversity.  

Biogeomorphic feedbacks and associated ecosystem engineering by plants do not 

always increase diversity in geomorphic forms or in the plant species that are present (e.g. 

Tickner et al. 2001; An et al. 2007; Fei et al. 2014). For example, Tamarix –  a riparian 

invasive species, can negatively affect two aspects of fluvial systems – i) channel geometry 

(e.g. Graf 1978) and ii) diversity of in-stream landforms (e.g. Busby and Schuster 1973). 

First, Tamarix species foster aggradation and build stable floodplains and riverbanks by 

increasing roughness to hydraulic shear, trapping and stabilizing transported sediment and 

debris (Birkeland 1996). Aggradation in turn leads to a narrowing of the river channel 

(Tickner et al. 2001). A similar study on the Green River, Utah, showed that invasion of 

the same species promoted an average reduction in channel width of 27% (Graf 1978). 

Second, Busby and Schuster (1973) identified a negative relationship between Tamarix 

invasion and the extent of sandbar and gravel cover within streams in Texas. Thus, in 

addition to channel geometry, Tamarix can adversely influence the diversity of landforms 
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within channel. Moreover, Tamarix can also affect species diversity by deteriorating the 

habitat characteristics for other species. The phreatophytic nature of Tamarix species and 

their rapid establishment along river margins can significantly depress riparian water-table 

levels in arid regions. Depletion of watertables is caused by the ability of Tamarix to root 

directly into the groundwater (Loope et al. 1988; Vitousek 1990). Thus, Tamarix can 

decrease species diversity by reducing the available water for other species.   

2.3. Biogeomorphology of bedrock streams 

2.3.1 Bedrock vs. alluvial streams 

Whipple (2004) defined bedrock streams as channels that lack continuous cover of 

alluvial sediments, even at low flow, and exist only where transport capacity exceeds 

bedload sediment flux over a long period of time. Tinkler and Wohl (1998) characterized 

a bedrock channel as one with 50% bedrock exposed in the bed and banks, or covered by 

an alluvial veneer which is largely mobilized during high flow events such that the 

underlying bedrock geometry strongly influences patterns of flow hydraulics and sediment 

movement. Channels that are not confined by bedrock or terraces, but are flanked by 

floodplains are called alluvial channels (Schumm 2005). Alluvial channels are those that 

have formed their channel in bed and bank sediment that the stream can readily entrain and 

transport for a wide range of flows (Leopold and 

Maddock 1953; Schumm 1977; Schumm and Winkley 1994).  

Knowledge from alluvial and gravel-bed systems cannot be directly transferred to 

bedrock rivers (Tinkler and Wohl, 1998) as such attempts have already fallen into 

difficulties (e.g. Vaughn 1990; Tinkler and Parish 1998). Key differences with respect to 
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alluvial streams are often attributable to slower change (Schumm and Chorley 1983; 

Whipple 2004), unidirectional change (Tinkler and Wohl 1998), greater role of bed/bank 

resistance, more direct influence of lithology and structure (Miller 1991; Tinkler and Wohl 

1998; Whipple 2004), and an enhanced role of processes such as dissolution, abrasion and 

plucking (Wohl and Ikeda 1998; Tinkler and Wohl 1998; Whipple et al. 2000). Bedrock 

channels occur mainly, but not exclusively, in actively incising portions of landscapes 

where channels are cut into resistant rock units (Whipple 2004). This explains greater 

influence of lithology and structure, greater role of bed/bank resistance and therefore, the 

dominant erosion processes and slower change of bedrock channels than that of alluvial 

rivers. The bed and banks of bedrock rivers are not composed of transportable sediments, 

but are erodible (Whipple 2004). As bedrock streams often do transport appreciable 

sediment, some biogeomorphic impacts observed in alluvial streams are likely important 

in bedrock systems too, such as sediment trapping and initiating or anchoring bars and 

islands. While the role of vegetation in enhancing bed and bank resistance might be 

minimal, vegetation could still influence flow hydraulics and work on tree-bedrock 

interactions in terrestrial settings indicates vegetation could be important in weathering and 

the reduction of resistance of bedrock (Pawlik et al. 2016). This suggests that 

biogeomorphic impacts on bedrock banks and channels could be significant and need to be 

recognized. 

In this section, I will discuss the biogeomorphic impacts of woody vegetation on 

bedrock streams from the context of different biogeomorphic roles (i.e. bioconstruction & 

modification, bioprotection, and bioweathering & erosion) (see Table 2.1) played by 
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vegetation. In addition, I will address which impacts are common to fluvial systems and 

rocky hillslopes in general, and which are unique to bedrock channels. 

2.3.1.1. Bioconstruction/modification 

Effects of vegetation related to the role of bioconstruction and habitat modification 

are widely documented in the fluvial biogeomorphic literature, but from the alluvial stream 

perspective (see Table 2.2). However, examples of these biogeomorphic impacts can also 

be found in bedrock streams (Figure 2.2 & 2.3).  

 

Figure 2.2: Tree growing in limestone bedrock channel, trapping sediment and wood , 
Shawnee Run, KY (Left); Tree growing in sandstone bedrock stream, trapping sediment 
and wood, Ouachita Mountains, AR (Right). 
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Figure 2.3: Island formation, anchoring and modification in Shawnee Run, KY  

Sediment can be transported in bedrock channels and subsequently trapped by 

vegetation. Again, an alteration of flow hydraulics can facilitate riparian vegetation 

establishment and survival, which in turn can reinforce sediment trapping in bedrock 

streams (for example Auble et al. 1994). Many bedrock streams, such as Shawnee Run 

(Figure 2.2 left, Figure 2.3 and Figure 2.4), are mixed bedrock and alluvial (cobble, gravel, 

boulders). Riparian and in-channel plants and large wood associated with bedrock streams 

have the potential to trap these sediments and thus can create local alluvial reaches. 

However, these bioconstructive roles played by vegetation and wood are also common in 

alluvial reaches exemplified in several studies referred in Table 2.2 (floodplain-wood 

dynamics, hotspot zone studies etc.) Furthermore, in-channel sediment trapping can lead 

to the development of bars and islands (Figure 2.2 and 2.3) both in bedrock and alluvial 
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streams. The process of bar and island formation, stabilization and modification in bedrock 

streams can be hypothesized in two ways: 

• Initiation, stabilization and development of bars (Figure 2.2) and islands via 

deposition caused by in-channel live vegetation or log jams (Page and Nanson 

1982; Fetherston et al. 1995, Gurnell and Petts 2006). 

• High flow or secondary channels parallel to the main channel can develop during 

floods and sometimes expand. More resistant patches with larger trees between the 

secondary and main channel are not eroded and may remain as islands if the 

secondary channel persists and grows.  

In addition to landform construction, sediment and wood trapping by riparian 

vegetation has the potential to modify the characteristics of the stream bed, riparian zones 

and floodplains. Examples of vegetation induced landform modification in alluvial streams 

can be found in many biogeomorphic literature including Gurnell et al. (2002, 2005), Wohl 

and Scott (2013), and Gurnell (2014). However, sediment and wood trapping by vegetation 

in bedrock streams also exhibits comparable biogeomorphic outcomes, for example, 

substrate modification by vegetation induced sediment trapping and subsequent deposition 

(Figure 2.4, right).  
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Figure 2.4: Tree growing in-channel (right) and at bank edge (left) in a limestone bedrock 
channel, trapping sediment and wood, Shawnee Run, KY. 

 

Large wood (LW) in the channel and on the floodplain also contributes to 

bioconstruction and modification (Table 2.4). Evidence of these biogeomorphic impacts is 

also found in bedrock rivers (Figure 2.5 & 2.6) – many of which have reaches with small 

floodplains. LW contributes to flow dynamics via flow diversion, backwater effects, and 

substrate modification and construction via sediment and wood trapping. For example, 

large wood pieces or log jams have the potential to alter bedrock reaches into alluvial ones. 

They can reduce the differences in elevation (thus decreasing slope), which as a result can 

reinforce deposition and modify substrate characteristics (Massong and Montgomery 

2000). Thus, bedrock reaches can be forced into alluvial ones by large wood (Figure 2.5, 

left).  
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Figure 2.5: LW in-channel (left) associated with an alluvial reach; LW on floodplain 
(middle); LW at bank edge (right) in a limestone bedrock channel, Shawnee Run, KY. 

 

2.3.1.2. Bioprotection 

The bioprotective role of vegetation is well documented in the biogeomorphic 

literature. However, bedrock streams intrinsically have greater bed/bank resistance than 

alluvial channels (Miller 1991; Tinkler and Wohl 1998; Whipple 2004). Therefore, the role 

of bioprotection is ambiguous  for bedrock streams to some extent as they are inherently 

resistant.  

Bioprotective functions in bedrock streams were detected in the form of root banks 

– when the root itself creates the stream bank (Figure 2.6 and Table 2.4). Hydraulic shear 

seems to be not capable of eroding root banks just as it cannot erode intact bedrock. Thus, 

where root banks occur directly overlying bedrock, as has been observed in the field, there 

may be little or no increase in resistance. Nevertheless, root banks can entrap fine sediment 

and lead to the formation of extensive fine sediment benches. In such cases, root banks will 

protect an extended area surrounding them from fluvial erosion, and thus can considerably 

contribute to bioprotection.  On the other hand, root banks along alluvial banks in a 

bedrock-controlled or alluvial stream considerably increase bank resistance.  



34 
 

While the root bank may be physically bioprotective, in bedrock controlled streams 

they may enhance chemical and biomechanical weathering of the underlying rock. 

Therefore, the roots undoubtedly affect the resistance of the banks in the form of protection 

while the tree is alive, but exposing more weathered and less resistant rock when the root 

bank is gone. This suggests that the relative importance of bioprotection along bedrock vs. 

alluvial streams and the protective vs. erosive effects of root banks needs further 

investigation.   

 
Figure 2.6: Root bank in limestone bedrock channels: Left-Raven Run, KY; Right-San 
Marcos River, TX. 

 

2.3.1.3 Bioweathering and erosion 

Bioweathering and erosion, to some extent, have received less attention in the 

fluvial biogeomorphic literature. However, widespread evidence of this biogeomorphic 

role can be seen in bedrock streams (Figure 2.7, 2.8 & 2.9). Even though effects of 

bioweathering and erosion are widely overlooked in fluvial (more specifically alluvial) 

biogeomorphic studies, they are frequently addressed in studies associated with hillslopes 

of rocky environments (see section 2.2.2). Examples of bioweathering and erosion 

associated with bedrock streams are discussed in section 2.3.2.  
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Table 2.4: Evidence of biogeomorphic impacts and roles of vegetation on fluvial 
geomorphic processes and forms in bedrock environments. 

Forms of 
biogeomorphic impacts 

Processes Biogeomorphic 
roles 

Wood accumulation in 
channel  

Flow diversion, backwater effects, 
sediment and wood trapping, potential 
for channel narrowing, habitat 
creation, island and bar formation 

Bioconstruction 
Bioerosion 

Wood accumulation - 
sediment trapping- on 
floodplain  

Habitat creation and modification, and 
potential for channel narrowing 

Bioconstruction  

Live vegetation - wood 
and sediment trapping – 
on floodplain  

Habitat creation and modification, and 
potential for channel narrowing 

Bioconstruction  

Live vegetation - wood 
and sediment trapping— 
at bank edge  

Development of bars, potential for 
channel narrowing 

Bioconstruction  

Live vegetation in- 
channel  

Flow diversion, backwater effects, 
sediment and wood trapping, potential 
for habitat creation in the form of bars 
or islands 

Bioconstruction 
Bioprotection 
Bioerosion 

Live vegetation - 
bar/island anchoring  

Reinforced deposition, habitat creation 
and modification, and increasing 
resistance to erosion 

Bioprotection 
Bioconstruction 

Root banks/buttresses  

Increasing roughness to hydraulic 
shear and mechanical resistance,  wood 
and sediment trapping, and potential 
for accelerated biochemical 
weathering 

Bioprotection 
Bioprotection 
Bioweathering 

Live vegetation–in 
channel and on floodplain 

Displacement of bedrock by root and 
trunk growth 
Accelerated weathering along joints 
and bedding planes 

Bioweathering and 
erosion 

Uprooting of vegetation –
bank edge, in-channel, 
and on floodplain 

Bedrock mining Bioweathering 
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2.3.2 Bedrock streams vs. rocky hillslopes 

Biogeomorphic impacts of vegetation on rocky hillslope are similar to those of 

bedrock dominated fluvial corridors in a number of cases (section 2.2.2. and Table 2.3). 

All these impacts eventually contribute to the role of bioweathering and erosion.  

Root and trunk growth causes weathering and subsequent erosion in bedrock river 

systems, and the identified examples are analogous to those of rocky hillslopes. 

Displacement and disintegration of bedrock via root and trunk growth, accelerated 

weathering along joints and bedding plains are common biogeomorphic impacts of 

vegetation on bedrock streams (Figure 2.7 and 2.8). These processes can promote supply 

of sediment in bedrock streams, which in turn can affect channel morphogenesis.   

 
Figure 2.7: Bedrock weathering due to trunk growth along the bank of limestone bedrock 
rivers: Left- Raven Run, KY; Right- Dix River, KY. 
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Figure 2.8: Bedrock weathering due to root growth along the bank of bedrock rivers: Left- 
Granite bedrock, Union County, SC; Right and middle- limestone bedrock, Shawnee Run,  
KY. 

Impacts of tree uprooting on bedrock rivers are similar to those of rocky hillslopes. 

Biogeomorphic and pedologic studies have emphasized the importance of tree uprooting 

in which roots play a significant role in soil development, regolith disturbance and bedrock 

mining (Pawlik et al. 2016). Tree uprooting in bedrock controlled streams primarily causes 

disintegration and mining of bedrock (Figure 2.9). In addition, tree uprooting can 

potentially weaken the contiguous joints and bedding planes along stream banks, and thus 

can promote further bank erosion. I observed one case of uprooting and bedrock mining 

within a channel bed, but it is unknown whether this is common in bedrock fluvial 

environments.  

 
Figure 2.9: Bedrock mining due to tree uprooting along the bank of a limestone bedrock 
river, Shawnee Run,  KY. 
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2.4 Fluvial biogeomorphic impacts 

2.4.1 Distinct vs. shared biogeomorphic impacts: The BGI triangles 

Biogeomorphic impacts (BGIs) associated with bedrock streams can be highly 

concentrated or common in other environmental settings (e.g. alluvial and hillslope 

settings). Here, highly concentrated refers to those BGIs that are not unique to alluvial 

streams, bedrock streams or rocky hillslope environments, but are uncommon in the other 

settings. Figure 2.10 illustrates BGIs that are strongly associated with a specific 

environmental setting and thus highly concentrated in either alluvial streams, bedrock 

streams, or rocky hillslopes. In contrast, Figure 2.11 illustrates shared BGIs i.e., impacts 

that are not restricted to a specific environmental setting and are likely to occur in all three 

environments of bedrock streams, alluvial streams and rocky hillslopes.   

The top corner of the BGI triangle in Figure 2.10 illustrates the biogeomorphic 

impact that is highly concentrated in bedrock streams — development of root banks along 

fluvial corridors. Evidence of root banks in bedrock streams was identified during field 

reconnaissance surveys. Root banks are more common in bedrock streams than alluvial 

ones, and the likely reason for this is primarily attributable to the geological contrasts 

between bedrock and alluvial streams. The bed and banks of bedrock rivers are more 

resistant than alluvial ones (Tinkler and Wohl 1998; Whipple 2004) and are not composed 

of transportable sediments (Whipple 2004). Thus, bank roots are less likely to be either 

exposed by erosion or covered by deposition in bedrock streams. Again, owing to the 

greater resistance of bedrock stream banks, the bank line probably largely controls the trees 

and the root growth in contrast to alluvial streams where roots gradually evolve with tree 

growth and stabilize the bank. Thus, in the bedrock case, roots become exposed on the river 
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bank partly to stabilize the tree and partly to spread the root system so that side roots can 

penetrate gaps in the rock to find water and nutrients. All these indicate that root banks are 

likely to be more concentrated in bedrock streams than alluvial ones. Field reconnaissance 

work on bedrock streams in Kentucky shows that root banks commonly occur where 

bedrock is exposed, whereas alluvial banks of the same streams rarely offer any evidence 

of this feature. However, though root banks may be highly concentrated in bedrock 

streams, they also occur along alluvial stream banks.  

The left corner of the triangle (Figure 2.10) shows the BGIs concentrated in alluvial 

streams. The impacts include initiation and development of bars and islands 

(bioconstruction), and root-reinforced deposition of sediment and wood within channels 

and on floodplains (bioconstruction and protection). Although evidence of these 

biogeomorphic impacts can be found in bedrock streams as well, mid-channel island and 

bar creation owing to the presence of live vegetation or wood-reinforced deposition are 

more concentrated in alluvial streams (e.g. Gurnell 2014; Gurnell et al. 2012; Gurnell and 

Petts 2002, 2006; Gurnell et al. 2001). The right corner of the triangle indicates 

biogeomorphic impacts that are highly concentrated in bedrock hillslopes. Infilling of 

stump holes and trapping of sediments from upslope (bioconstruction & modification) 

(Pawlik 2013, Shouse and Phillips 2016) are distinctive biogeomorphic impacts within 

rocky hillslopes while fluvial environments have limited potential to display such impacts.  
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Figure 2.10: Examples of BGIs concentrated in bedrock or alluvial stream or rocky 
hillslope settings.  

 

Conversely, trapping of sediments and rock fragments on floodplain and in-channel 

by vegetation (i.e. bioconstruction/modification) is common in all fluvial systems. 

Therefore, these impacts can be placed in both the top (i.e. bedrock streams) and the left 

(i.e. alluvial streams) corners of the BGI triangle in Figure 2.11. Again, while evidence of 

bedrock displacement  owing to tree root and trunk growth, and bedrock mining caused by 

tree uprooting (examples of bio-weathering and erosion) were identified within bedrock 

fluvial environments, they are also common in  bedrock hillslopes  (see Table 2.3). As a 

result, such impacts fit at both the top (bedrock streams) and the right (rocky slopes) corners 

of the BGI triangle. It is noteworthy that the most common biogeomorphic role played by 

vegetation is bioprotective in nature (referred as inherent bioprotection in Figure 2.11). In 

fluvial systems and hillslope environments, vegetation stabilizes and protects landforms 

from erosion via root cohesion and sediment trapping and deposition. Thus, these 
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biogeomorphic impacts are common in all three geomorphic settings i.e. bedrock streams, 

alluvial streams and rocky hillslopes. 

 
Figure 2.11: Examples of BGIs common in multiple environmental settings where 1could 
also occur in cobble and boulder bed alluvial streams but more common in bedrock 
streams; 2,3important in bedrock streams as well; 4resisting erosion via increasing cohesion 
and imposing roughness.  

 

Bedrock streams share biogeomorphic impacts both with alluvial streams and rocky 

hillslopes. Shared BGIs of bedrock and alluvial streams (that do not occur in bedrock 

hillslopes) are caused by the nature of geomorphic work done by fluvial systems and biota 

regardless of the environmental settings. On the other hand, bedrock streams and rocky 

hillslopes exhibit common BGIs (that do not occur in alluvial streams) owing to the 

comparable geological controls maintained in these settings. It is noteworthy that no such 

BGIs have been identified so far that are common in alluvial streams and rocky hillslope 

environments, but not present (at least potentially) in bedrock fluvial systems. Further, 

shared BGIs associated with all three environmental settings (see Table 2.5 and Figure 
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2.11) indicate entangled relationships among vegetation, geomorphic process-form 

linkages and environmental settings. While the BGIs of vegetation associated with these 

three different settings are not similar in all cases, the biogeomorphic roles (i.e. 

bioconstruction, bioprotection, bioerosion) played by them are analogous. 

Table 2.5: Shared and highly concentrated biogeomorphic impacts  

Environmental 
settings 

Biogeomorphic impacts (BGIs) 

Bedrock  Root banks 

Alluvial Rivers Island and bar creation by reinforcing deposition 

Hillslopes Infilling of stump holes; triggering and reinforcing mass 
movement caused by bioweathering  

Alluvial and bedrock 
rivers 

Sediment and wood trapping at bank edge, in-channel and 
floodplain; island and bar stabilization by reinforced 
deposition; island and bar creation and stabilization causing 
channel avulsion 

Bedrock hillslopes and 
bedrock Rivers 

Displacement of bedrock due to root and trunk growth; 
Bedrock mining caused by tree uprooting 

Alluvial rivers and 
bedrock hillslopes 

No common impacts that do not also occur on bedrock rivers 

Bedrock rivers, alluvial 
rivers and hillslopes 

Trapping upslope sediments and wood; resisting erosion via 
increasing cohesion  

 

2.4.2 Fluvial biogeomorphic impacts and channel forms and processes 

While very few studies specifically address biogeomorphic impacts of vegetation 

in bedrock streams, some reasonable speculations can be made about the channel form and 

process dynamics facilitated by them. The possible scenarios for bedrock streams are 

summarized in Table 2.6 with explanations discussed below.   
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Table 2.6: Potential biogeomorphic impacts of woody vegetation on bedrock streams; 
Here, W: channel widening, N: channel narrowing, I: channel incision, A: channel bed 
aggradation; D: flow divergence (channel splitting) and +, -, 0 = positive, negative, and no 
direct impacts respectively. 

Biogeomorphic impacts of woody vegetation W N I A D 
Root bioweathering of bedrock banks + 0 0 0 0 
Root bioweathering of bedrock bed 0 0 + 0 0 
Uprooting  + + + + + 
Sediment trapping--bank - + 0 0 0 
Sediment trapping--channel 0 + - + + 
Sediment trapping--floodplain surface 0 0 + - 0 
Bar stabilization +, - +, - 0 0 +, 0 
Bioprotection (increased bank resistance) - 0, - 0 0 0 
Bioprotection (energy dissipation via roughness 
effects) 

- 0, - 0 0 0 

Hydraulic effects (flow diversion, turbulence) +,0,- +,0,- +,0,- +,0,- 0 
Island formation + - 0 0 + 
Large wood dams/jams + - 0 + + 

 

• Root associated bioweathering of bedrock channel bed and banks can potentially 

influence channel incision and widening, whereas such effects are may be 

insignificant in alluvial streams.  

• Bedrock mining caused by tree uprooting can locally influence channel widening 

and deepening in bedrock streams, however effects will largely depend on whether 

the trees are located on bank or in-channel. Other impacts, i.e. channel narrowing, 

aggradation and flow divergence, will vary not only by the location of the uprooted 

tree/s but also by their extent to which rootwad and wood impede flow and block 

channels. However, these impacts occur in all fluvial systems.  

• Vegetation induced sediment trapping on banks and in-channel can potentially 

contribute to channel narrowing for all fluvial systems. Further, in-channel 

sediment trapping can promote aggradation and subsequent development of islands 

or mid-channel bars. Thus, these impacts and processes can change single thread 
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channels to multiple-thread ones. Furthermore, sediment trapping on floodplain 

surfaces can increase the bank height, which can alter the channel geometry by 

lowering the width/depth ratio.  

• Bar stabilization by woody vegetation in all fluvial systems can influence channel 

widening and narrowing both positively and negatively. These impacts will largely 

depend on two factors: i) the relative magnitudes of bar width vs. erosion of 

adjacent banks triggered by the bars and ii) location of the bars, i.e. whether a bar 

is attached to the bank or in mid-channel.  

• Bioprotection plays a negative role on channel widening and narrowing in all river 

systems. It amplifies bank resistance via root cohesion, and aids energy dissipation 

via roughness effects. Thus, bioprotective impacts of vegetation offset hydraulic 

stresses.   

• Vegetation induced hydraulic effects, most importantly flow diversion and 

turbulence, can result in heterogeneous impacts on channel forms and processes – 

for example, island stabilization and/or expansion by inducing deposition, or 

channel incision by triggering local scour of the channel bed. These impacts will 

largely depend on the environmental settings and the boundary conditions of the 

fluvial systems.  

• Vegetation can stimulate island formation by promoting in-channel sediment 

trapping and aggradation. Island formation accompanied by channel splitting 

further has the potential to foster bank erosion caused by island associated flow 

deflection. Thus, vegetation can passively promote channel widening.   



45 
 

• Large wood accumulations or wood dams/jams have a positive influence on 

channel widening, aggradation and divergence. For example, a partial blockage of 

the channel can lead to flow divergence and subsequent channel widening. Such 

blockages can also induce turbulence associated local scour (Thomson 2006), 

which can lead to pool formation i.e. channel deepening. A complete blockage of 

the channel by wood dam can reduce the local slope, and thus can reinforce channel 

aggradation (Massong and Montgomery 2000).  

The discussion noted above suggest that while bedrock and alluvial fluvial systems exhibit 

comparable biogeomorphic influences in most cases, they are dissimilar in terms of 

processes related to bioweathering and erosion. However, as the scenarios discussed above 

are largely inferential, future field based research should explore bedrock fluvial systems 

from biogeomorphic perspectives.   

2.5. Summary and future research 

 Bedrock streams are understudied compared to alluvial ones in many aspects. This 

research seeks to fill this lacuna by studying bedrock streams from a biogeomorphic 

context. It shows that bedrock streams exhibit both shared and highly concentrated 

biogeomorphic impacts (defined in section 2.4) in relation to alluvial streams and bedrock 

hillslope environments (Table 2.5). The relations are graphically illustrated via two 

biogeomorphic triangles (Figure 2.10 & 2.11). Analysis reveals that bedrock streams 

display a bioprotective geomorphic form — root banks (when the root itself forms the 

stream bank), which is distinctive, but not exclusive, to this setting. On the contrary, shared 

biogeomorphic impacts include: i) sediment and wood trapping, and bar and island 

development and stabilization i.e. bioconstruction/ modification with alluvial streams; ii) 
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displacement of bedrock due to root and trunk growth, and bedrock mining caused by tree 

uprooting i.e. bioweathering and erosion with bedrock hillslopes. This study concludes 

that bedrock streams exhibit some biogeomorphic impacts that also occur either in alluvial 

channels or on rocky hillslope environments. Therefore, no biogeomorphic impacts were 

identified that are absolutely unique to bedrock fluvial environments. Further, this research 

brings forth some important research queries related to bioprotection and 

bioweathering/erosion. Field evidence shows that where bedrock is exposed within the 

channel or along the bank, the bioprotective roles are minimal at best while bioweathering 

and erosion related impacts are probably more prominent (e.g. bedrock displacement by 

root and trunk growth). On the other hand, where bedrock is not exposed, the role of 

bioprotection associated with bedrock streams appears to be analogous to that of alluvial 

streams (except for the root bank case). However, further field based investigations are 

required to understand these relationships by answering the following research questions: 

i. what is the relative importance of bioprotection along alluvial and bedrock streams, 

as bedrock ones are quite resistant anyway?  

ii. what is the role of bioweathering and erosion along stream banks in bedrock 

channel evolution?   

Finally, future research needs to look at larger samples of bedrock rivers, including the 

alluvial-bedrock transitional streams, that are influenced by different types of geology. The 

following aspects of bedrock streams are worthy of further investigation: 

• The ideas presented in this research are relevant to reinforced (human-controlled) 

river channels where woody vegetation may colonize hard reinforcement such as 

concrete, laid brick and stone rip-rap. Therefore, future work related to stream 
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restoration and river bank protection should address these ideas, most importantly 

bioprotection and bioweathering/erosion.  

• Biogeomorphic impacts and related processes associated with bedrock streams 

almost certainly vary spatially and temporally. Future studies should attempt to 

quantify these variations for different types of bedrock streams. 

• This research will allow some assessment of the contrasting biogeomorphic impacts 

across soil covered vs. bedrock/thin soil hillslopes, and bedrock – transitional – 

alluvial channels in different biogeographical and energy environments.  

• Finally, bedrock channels are present from deserts to wet tropics with a broad range 

of tree species that exhibit different growth rates, resilience to mechanical 

disturbance and tolerances for inundation. Therefore, future research should 

explore the following questions:   

i. are there some biomes or hydroclimatic regions where woody vegetation is more 

likely to influence bedrock channel processes or forms?  

ii. does the influence of vegetation depend on factors associated with boundary 

conditions such as lithology, joint geometry, flow regime and channel geometry 

that limit the ability of trees to germinate and survive? 
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CHAPTER 3. BIOGEOMORPHIC KEYSTONES AND EQUIVALENTS: 

EXAMPLES FROM A BEDROCK STREAM 

 
 
Abstract 
 
Biogeomorphic keystone species profoundly impact landscapes, such that their introduction 
or removal would cause fundamental changes in geomorphic systems. This paper explores 
the concept of biogeomorphic keystone species by examining the general vs. species-
specific biogeomorphic impacts (BGIs) of trees on a limestone bedrock-controlled stream, 
Shawnee Run, in central Kentucky. Field investigation identified three strong BGIs: i) 
biogeomorphic pool formation via bioweathering; ii) root-bank associated bioprotection; 
and iii) avulsion-originated island development linked to bioprotection. This research 
evaluates these impacts in the context of keystone or other biogeomorphic roles. Field 
survey was conducted on nine stream reaches, each consisting of 10-12 hydraulic units of 
riffle, pool and run. Results suggest that American sycamore (Platanus occidentalis) plays 
a keystone role by promoting development of ~42% of pools of the study area. While 
geomorphic pools are formed by fluvial process-form linkages, these biogeomorphic pools 
are developed by sycamore root induced channel bed bioweathering. Only American 
sycamore and chinquapin oak (Quercus muehlenbergii) exhibited root-bank development 
amongst 15 different species identified – and thus play a vital role in bank bioprotection. 
Lastly, trees can promote avulsion-originated island formation by creating erosion-resistant 
bioprotective patches. Mature trees (in terms of size), particularly large American 
sycamore and chinquapin oak, dominate Shawnee Run islands with a mean diameter at 
breast height (DBH) > 40 cm. However, other trees can provide comparable bioprotection, 
particularly at mature stages. Because its absence would result in fundamentally different 
stream morphology, sycamore can be considered a biogeomorphic keystone species in 
Shawnee Run.  
 
 
Keywords: Biogeomorphic keystone species, biogeomorphic impacts, species-specific, 
biogeomorphic pool, bedrock streams. 
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3.1 Introduction 

Increasing recognition of the importance of biogeomorphic ecosystem engineering 

from geomorphological and ecological perspectives has raised questions about the relative 

importance of specific species or higher taxa. For example, dams and ponds created by the 

North American beaver (Castor canadensis) result in local landscape metamorphosis and 

have profound hydrogeomorphological and ecological impacts. Further, those particular 

impacts are specific to beaver. A counter-example is the role of woody vegetation in 

channel planform change – from braided to single-thread or meandering rivers (Thorne, 

1990; Gran & Paola, 2001; Gurnell et al.2001; Murray & Paola, 2003; Tal et al., 2004; Tal 

& Paola, 2007, 2010; Braudrick et al., 2009; Bertoldi et al., 2011; Gurnell et al., 2012; 

Gran et al. 2015). The biogeomorphic effects are certainly extensive, but are not species 

specific. Here we explore the concept of biogeomorphic keystone species by examining the 

general vs. species-specific biogeomorphic effects of trees on a limestone bedrock-

controlled stream in central Kentucky. 

This paper consists of two key parts. First, we describe the potential biogeomorphic 

roles of vegetation in bedrock fluvial systems, which are understudied. Drawing from 

ecological lexicon, we introduce some biogeomorphic concepts with respect to different 

biotic impacts on surface processes and forms. The second part of this paper explores 

different biogeomorphic roles of vegetation from the empirical evidence obtained from a 

bedrock fluvial system in central Kentucky.  

The keystone species concept in ecology has been around since 1969 (Paine, 1969). 

Power et al. (1996) defined a keystone species as one whose impact on its community or 

ecosystem is extensive, and disproportionately large relative to its abundance. Keystone 
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species are often understood to be organisms whose removal from (or addition to) a 

community would result in wholesale changes. Ecologists have critiqued the concept 

because it has been variously and vaguely defined over the years (Mills et al., 1993; Paine, 

1995; Power et al., 1996), but it remains a key idea in ecology. Drawing from this tradition, 

we consider that biogeomorphic keystone species have major and disproportionately large 

impacts relative to their abundance on geomorphic processes, landforms, or material 

properties, such that addition or removal of the species would result in fundamental 

changes. Further, the impacts should be species-specific.  

The term biogeomorphic equivalent is also drawn from the ecological lexicon— 

‘ecological equivalents’. Ecologically equivalent species play similar functions in different 

communities (Lincoln et al. 1998), especially ecologically similar communities that are 

widely separated (Biggins et al. 2011). Similarly, biogeomorphic equivalents are species 

that have similar biogeomorphic impacts (major or minor) with respect to surface processes 

and landforms. In both cases, they are essentially interchangeable with each other owing 

to their similar functionality (after Lincoln et al. 1998). Two other ecological concepts 

similar to ecological equivalents are ‘functional equivalents’ and ‘functional redundancy’. 

While functional equivalency stands for equivalency in terms of per capita impact, 

functional redundancy means equivalent impacts at the population-level i.e. within a 

community or ecosystem (Resenfeld 2002). We use the term ‘biogeomorphic equivalents’ 

after the more general term ‘ecological equivalent’.  
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3.1.1 Biogeomorphic Roles 

Based on the literature, we can identify several potential biogeomorphic roles—

categories of influence—for a given species in a given environment. Biogeomorphic 

ecosystem engineering is sometimes contingent on specific environmental conditions 

(Phillips, 2016) and may be self-limiting (Phillips, 2018). Further, species roles as 

ecosystem engineers and as keystone or non-keystone species are also often context-

dependent (Mills et al., 1993; Power et al., 1996; Matthews et al., 2014). Thus, one cannot 

designate a particular role for a species independently of a specific environment. Even the 

archetype biogeomorphic ecosystem engineer, the beaver, does not always build dams and 

block streams—in settings with existing deep pools or runs they do not construct dams 

(e.g., Meentemeyer et al.,1998). The roles are summarized in Table 2.1. They range from 

neutral species with no direct geomorphic impacts to bioconstructor organisms that 

actively construct landforms, or from which landforms are constructed.  

Influencer organisms have direct biogeomorphic impacts, but these are not 

sufficient to qualify as keystone or separator species. For example, most living vegetation 

augments river bank strength and thus, inhibits erosion by their root systems (e.g. Millar & 

Quick, 1993; Millar, 2000, 2005; Pollen-Bankhead & Simon, 2010; Gurnell et al., 2012). 

Another instance includes riparian and aquatic plants, which in general can alter the 

landform dynamics by trapping and stabilizing sediments, organic matter and the 

propagules of other plant species (Gurnell et al., 2012). Biogeomorphic equivalents – a 

particular form of influencers – are taxa that have highly similar impacts, such that they 

are interchangeable with each other, from a geomorphic perspective. For example, the 

bioprotective roles of root systems of any live vegetation can significantly reduce bank 
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failure and erosion susceptibility by increasing substrate cohesion (Abernethy & 

Rutherfurd, 2001; Corenblit et al., 2007). Therefore, many species of vegetation are 

biogeomorphic equivalents from this perspective. Another example is tree uprooting that 

can lead to bioweathering caused by bedrock mining (Gabet et al., 2003; Gabet & Mudd, 

2010) and thus can promote erosion. Species that can cause bedrock mining by their 

uprooting can be designated as biogeomorphic equivalents. Impacts of keystone species are 

specific to certain taxa. Their influence determines or profoundly impacts landscapes such 

that their introduction or removal would result in fundamental changes in surface 

processes, morphology, or material properties. A different set of process-form relationships 

will be established owing to these changes.  For example, introduction of invasive salt 

marsh cordgrass (Spartina alterniflora and Spartina anglica) in China converted tidal flats 

to salt marshes (An et al., 2007, Liao et al., 2007), including changes in elevation, 

topography, substrate, mass flux regimes, hydrology, and both geomorphic and ecological 

functioning (Wang et al., 2006). In fluvial systems, the reach-scale configuration of 

geomorphic attributes will be transformed in response to the changes caused by keystone 

species. Biogeomorphic foundation species are those that are locally abundant and 

regionally common, and help the formation of locally stable landforms that may be 

required by many other species (after Ellison et al., 2005). A foundation species can either 

be an influencer or a keystone species determined by their ‘disproportionate impacts’ 

relative to their abundance. Because we are interested in the specific biogeomorphic roles 

of species in this paper, we deal with biogeomorphic keystones and influencer organisms 

separately, and do not treat foundation species as a separate biogeomorphic category. 

Biogeomorphic separators are organisms that can potentially occupy the same original 
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habitat, whose biogeomorphic effects result in different landform or landscape evolution 

trends or trajectories. For example, the topographic configuration and development pattern 

of Atlantic coast barrier dunes depends on the types of plant species established on them 

(Stallins, 2005). Three dune plant types can be identified based on their function (Hosier, 

1973; Woodhouse, 1982; Ehrenfeld, 1990), which include i) dune builders, ii) burial-

tolerant stabilizers, and iii) burial-intolerant stabilizers. Dune builders are burial tolerant, 

and promote vertical dune development. Further, while burial tolerant stabilizers can 

survive burial, their decumbent growth does not boost vertical dune development. Finally, 

the burial intolerant stabilizers do not support vertical dune development, but do facilitate 

effective binding of substrates (Harper, 1977; Fahrig et al., 1994). Thus, for a given habitat 

type, there may be different biogeomorphic trajectories depending on which types of dune 

plant establishes. Biogeomorphic separators may also be influencer or keystone species. 

Bioconstructors are organisms that construct the landform, or from which the landform is 

constructed – they can be either active or passive constructors (Naylor et al., 2002). While 

active constructors create landforms for their own benefit and in many cases purposefully, 

the passive ones create landforms without deliberate intent. Coral reef formation and ant 

mounding are examples of active bioconstruction. As coral reefs are constructed by their 

own hard skeletons (i.e. by calcium carbonate secretion) of corals – primarily by the 

scleractinian corals (Daly, 1915; Stoddart, 1969) such as Diploria labyrinthiformis, they 

can be termed as autogenic bioconstructors. On the other hand, while ant mounds are 

created purposefully for the benefit of the ants, they primarily consist of soil particles, and 

ants are thus allogenic bioconstructors. Formation of landforms via sediment and wood 

trapping by tree roots is an example of passive, allogenic bioconstruction. Note that we do 
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not seek to be able to classify all species/environment situations definitively in one 

category or other, but simply to identify a range of possible roles. With respect to trees in 

fluvial corridors, we are particularly interested in potential keystone species that 

fundamentally shape fluvial landforms and landscapes via species-specific impacts, vs. 

equivalents, in which multiple trees may perform the same biogeomorphic function.  

Table 3.1:  Biogeomorphic Roles 

Term Definition Examples 
Biogeomorphically 
neutral species 

No detectable direct impacts on 
surface processes and 
landforms. 

Most birds. 

Biogeomorphic 
influencers 

Significant direct impacts, but 
not sufficient to qualify as 
keystone or separator species. 

All living vegetation that protects 
landforms from erosion (e.g., 
Millar, 2000, 2005; Gurnell et al., 
2012). 

Biogeomorphic 
keystone species 

Impacts of these species 
determine or profoundly impact 
landscapes, such that their 
introduction or removal would 
result in fundamental changes in 
surface processes, morphology, 
or material properties. 

Salt marsh cordgrass converting 
mudflats to salt marsh (e.g. An et 
al., 2007); dams constructed by 
beavers (Castor canadensis and 
Castor fiber) (e.g. Gurnell, 1998; 
Butler & Malanson, 2005). 

Biogeomorphic 
separators 

Species (potentially) occupying 
the same habitat whose 
biogeomorphic effects result in 
different landscape evolution 
pathways. 

Differential topographic pattern of 
the Atlantic barrier island dunes 
caused by establishment of 
various types of plants (Stallins, 
2005). 

Biogeomorphic 
equivalents 

Species that have similar 
biogeomorphic impacts (major 
or minor), such that they are 
essentially interchangeable with 
each other with respect to 
surface processes and landforms 

Bioweathering by tree uprooting 
(Gabet & Mudd, 2010; Gabet et 
al., 2003).  
 

Bioconstructors Organisms that construct the 
landform, or from which the 
landform is constructed. 

Sphagnum spp. and peat bogs 
(e.g., van Breemen 1995); corals 
and reefs (Wicander and Wood, 
1981); mussels and shell bars (e.g. 
Crooks & Khim, 1999; Ruesink et 
al., 2005; Vander Zanden et al., 
1999).   
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Many concepts in this paper are linked to studies that concentrate on wider 

biogeomorphic concepts and theories (e.g. Naylor et al. 2002; Ellison et al. 2005; Naylor 

2005; Viles et al. 2005; Wright & Jones 2006; Jones 2012; Naylor et al. 2012; Coombes et 

al. 2013; Coombes 2016). The ecological literature on keystone species has focused on 

their effects on trophic webs and biodiversity, though ecosystem engineering is sometimes 

considered (Jones et al. 1994; Lawton 1994; Lawton & Jones 1995). However, geomorphic 

processes and landforms are often recognized as important context factors—that is, factors 

such as wave forces, turbulent flows, and substrate characteristics may determine whether 

a species is a keystone or not (Power et al., 1996: Table 3.2). As far as we know this is the 

first study to explicitly consider potential keystone roles from a geomorphic perspective, 

though some previous studies (e.g. Fei et al., 2014, Allen 1998) could be interpreted in this 

context.  

 

3.1.2 Potential biogeomorphic keystones 

Although a plethora of research considered the biogeomorphic effects of vegetation 

on landform dynamics and evolution (e.g. Page & Nanson 1982; Thorne 1990; Hupp & 

Rinaldi 2007; Gurnell et al. 2001; 2012), very few discussed the species specific 

biogeomorphic impacts that may provide insight about biogeomorphic keystones (e.g. 

Corenblit 2018; Hortobágyi et al., 2018; Schwarz et al., 2018). The literature on the 

biogeomorphic impacts of invasive species shows that introduction of some taxa can result 

in major geomorphic transformations (landscape metamorphosis; Fei et al., 2014). For 

example, Tamarix – in the southwest United States – has extensive root systems that resists 

bank erosion and increases sedimentation in fluvial systems, which in turn changes channel 
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dimensions, width/depth ratios (decreases channel width), and flow regimes (Graf 1978; 

Di Tomaso 1998). Allen (1998) documented another example of landform metamorphosis, 

which showed instances of reduced erosion and thereby mudflat conversion to 

monocultural mangrove forests in Hawaii by the invasion of mangroves, Rhizophora 

mangle. Other examples of invasive species causing geomorphic transformation of 

landforms can be found in Fei et al. (2014)’s review.  

The field component of this study was designed to link the notion of biogeomorphic 

keystone species and related concepts to a specific biogeomorphic setting. Reconnaissance 

survey based field observation identified three important biogeomorphic impacts: 

i. Biogeomorphic pool formation linked to bioweathering. 

ii. Development of avulsion associated islands related to bioprotection. 

iii. Root banks associated with bioprotection. 

The goal of this research is to evaluate these biogeomorphic impacts with respect to 

biogeomorphic keystone species or other biogeomorphic roles (summarized in table 3.1). 

 

3.2 Biogeomorphic effects of trees in bedrock streams  

Tinkler and Wohl (1998) characterized a bedrock channel as one with 50% bedrock 

exposed in the bed and banks, or covered by an alluvial veneer which is largely mobilized 

during high flow events such that the underlying bedrock geometry strongly influences 

patterns of flow hydraulics and sediment movement. Knowledge from alluvial systems 

cannot be directly transferred to bedrock rivers (Tinkler & Wohl, 1998), as they are 

fundamentally different in many aspects (e.g. Vaughn 1990; Tinkler & Parish 1998). The 

distinguishing attributes of bedrock vs. alluvial streams include:  
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• Bedrock streams undergo slower change (Schumm & Chorley 1983; Whipple 

2004).  

• The bed/bank of bedrock streams are more resistant (Tinkler & Wohl 1998). 

• Bedrock streams have more direct influence of lithology and structure (Miller 1991; 

Tinkler & Wohl 1998; Whipple 2004).  

• Bedrock streams experience an enhanced role of processes such as dissolution, 

abrasion, and plucking (Wohl & Ikeda 1998; Tinkler & Wohl 1998; Whipple et al. 

2000).  

Bedrock channels occur mainly, but not exclusively, in actively incising portions of 

landscapes where channels are cut into resistant rock units (Whipple 2004). This explains 

greater influence of lithology and structure, greater role of bed/bank resistance and 

therefore, the dominant erosion processes, and slower change of bedrock channels 

compared to alluvial rivers. As the bed and banks of bedrock rivers are not composed of 

transportable sediment (Whipple 2004) and are more resistant than alluvial ones (Tinkler 

& Wohl 1998), they are less erodible than alluvial rivers. However, as bedrock streams 

often do transport appreciable sediment, some biogeomorphic impacts observed in alluvial 

streams are likely important in bedrock systems, too, such as sediment trapping and 

initiating or anchoring bars and islands.  

While many studies have recognized the importance of biogeomorphic impacts (BGIs) 

in alluvial systems, bedrock river systems remain less understood. Due to lack of literature 

specifically addressing the effects of vegetation on bedrock streams, field reconnaissance 

surveys were carried out for collecting real world instances of BGIs associated with 
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bedrock streams.  An inventory of the evidence of BGIs identified in bedrock streams is 

summarized in Table 3.2 (see also Jerin, 2019), and discussed in detail later in this section. 

Table 3.2: Biogeomorphic impacts, the corresponding biogeomorphic functions and the 
associated field criteria identified in bedrock streams.  
 
Identified BGIs associated 
with bedrock streams 

Biogeomorphic function Observed field criteria 

1. Sediment trapping 
 

Bioconstruction 1. Observed sediment 
accumulation upstream of 
trunk and/or roots 

2. Trapping woody debris 
and large woody debris 
(LWD) 
 

2. Observed wood 
accumulation upstream of 
trunk and/or roots 

3. Root bank Bioprotection 3. Identified when ~100% 
of the bank surface consists 
of tree root.  

4. Vegetation anchoring 
bars and islands 

4. When >50% living 
vegetation cover is 
identified with limited 
evidence of erosion or 
sediment mobility. 

5. Bedrock weathering Bioweathering 5. Bedrock displacement 
(and disintegration in 
cases) by root penetration 
along joints, fractures, and 
bedding; observed bedrock 
displacement by trunk and 
root growth. 

6. Bedrock mining 6. Excavation of bedrock 
by tree uprooting (i.e., 
bedrock fragments within 
root wads) 
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3.2.1 Bioconstruction/modification  

Examples of vegetation-induced bioconstruction identified in fluvial 

biogeomorphic literature are predominantly passive, allogenic. Passive, allogenic 

bioconstruction in bedrock streams can occur in several ways. Sediment can be transported 

in bedrock channels and subsequently trapped by vegetation. Alteration of flow hydraulics 

can facilitate riparian vegetation establishment and survival, which in turn can reinforce 

sediment trapping in bedrock streams (e.g. Auble et al. 1994). Furthermore, in-channel 

sediment trapping can lead to the development of bars and islands both in bedrock and 

alluvial streams (e.g. Gurnell et al. 2001; Gurnell & Petts 2002, 2006).  

Live vegetation in-channel and on floodplains can lead to substrate modification 

and construction in alluvial streams (Wohl & Scott 2017, Gurnell 2014). Riparian 

vegetation and wood intercept water and sediment during high flow events, and thus drive 

the physical creation, modification or maintenance of habitat such as islands and bars 

through biostabilization and construction (Gurnell et al. 2005). Bedrock streams also 

exhibit these biogeomorphic impacts, which can eventually convert a bedrock reach into 

an alluvial segment, modify habitat characteristics promoting further growth of vegetation, 

and facilitate the development of bars and islands. Large wood in channels and on 

floodplains also contributes to bioconstruction and modification in bedrock rivers.  

 

3.2.2 Bioprotection 

The bioprotective roles of vegetation are well documented in the literature. 

Frequently referenced forms of bioprotection in rivers include the role of vegetation in i) 

imposing roughness to hydraulic shear and ii) mechanical resistance of beds, banks and 
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floodplain surface (e.g. Gurnell et al. 2001, 2014; McKenney et al. 1995).  Bioprotective 

function of vegetation in bedrock streams was also detected in the form of root banks – 

when the root itself creates the stream bank (Jerin, 2019). Root banks directly impact flow 

dynamics via increasing roughness, can entrap wood and sediment, and probably can 

accelerate biochemical weathering. The biophysical form of root banks plays a 

bioprotective role along the fluvial corridors, as hydraulic shear seems to be not capable of 

eroding root banks, just as it cannot erode intact bedrock. Thus, where root banks occur 

directly overlying bedrock, as has been observed in the field, there may be little or no 

increase in resistance, as bedrock streams are intrinsically more resistant than alluvial ones. 

(Miller 1991; Tinkler and Wohl 1998; Whipple 2004). However, by entrapping sediment 

root banks can lead to the formation of extensive fine sediment benches. In such cases, root 

banks will protect an extended area surrounding them from fluvial erosion, and thus can 

considerably contribute to bioprotection.  

 

3.2.3 Bioweathering and erosion 

Bioweathering and erosion have received less attention than other biogeomorphic 

effects on streams in the geomorphic literature. However, numerous examples of 

bioweathering and erosion were identified in the study area and are likely present in other 

bedrock streams (Jerin, 2019). Biogeomorphic impacts of vegetation identified in bedrock 

dominated fluvial corridors are similar to those of rocky hillslope settings in a number of 

cases — (i) impact of growing root systems: disintegrate rock fragments and widen fissures 

in bedrock (ii) impact of growing trunk: physical displacement of bedrock (iii) impact of 
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tree uprooting: direct bedrock disruption via mining (e.g. Gabet & Mudd, 2010; Pawlik 

2013; Pawlik et al. 2016).  

 

3.3 Study area 

The study area, Shawnee Run, is located in the Kentucky River gorge area of the 

Inner Bluegrass karst region within Mercer County in central Kentucky, USA (Figure 3.1). 

It is a bedrock-controlled stream dominated by limestone lithology with discontinuous 

coarse alluvial cover. Shawnee Run is within a nature preserve, and has been minimally 

disturbed along the fluvial corridor.  It is a tributary of the Kentucky River (note: on U.S. 

Geological Survey maps, Shawnee Run is incorrectly shown as Shaker Creek) draining 

about 43.5 km2 of surface drainage area with a total length of 19.84 km.  

 
 
Figure 3.1:  Location of the study area in Mercer County, Kentucky. (base map: Kentucky 
Geologic Map Information Service). 
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The Inner Bluegrass region has a topography characterized by low relief and gentle 

ridges, except in the Kentucky River gorge area. Local relief of 100 m is common there, 

and river-to-cliff or bluff top relief ranges from 61 to 131 m. The bedrock in the area is 

comprised of the High Bridge Group and the Lexington Limestone (Sparks et al., 2001). 

The High Bridge Group further consists of three formations: in ascending order, the Camp 

Nelson Limestone, the Oregon Formation (dolomite interbedded with limestone), and the 

Tyrone Limestone.  

The Kentucky River and its tributaries are strongly incised. Incision from the former 

course to the modern channel apparently was triggered by base-level changes, a result of 

glacial modification of the Ohio River drainage system ca. 1.3 to 1.8 Ma (Teller & 

Goldthwait, 1991; Andrews, 2004). The evidence of headward incision via slope is 

reflected in three distinct incision zones (see figure 3.2):  

i) Strongly incised: The downstream reaches where incision has reached the 

Kentucky River base level; Camp Nelson Limestone is exposed. 

ii) Incising: Middle reaches that are still incising, and have yet to reach the Camp 

Nelson formation; younger Tyrone Limestone and Oregon Formation are 

exposed.  

iii) Unincised: The upstream portion is not noticeably incised; youngest Lexington 

Limestone is dominantly exposed.  

The climate is humid subtropical, and mean annual precipitation is about 1200 mm. 

The dominant land use in the the study area is pasture (cattle and horse grazing) and forest. 

Potential natural vegetation is dominantly forest, though savanna and grassland ecosystems 

existed (and some still persist) in the Bluegrass Region (Campbell, 1989). 
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Figure 3.2: The geologic map of Shawnee Run where (a) displays unincised portion, (b) 
displays moderately incised portion and  (c) displays strongly incised portion (base map: 
Kentucky Geologic Map Information Service). 
 

3.4 Methods 

3.4.1 Sampling Scheme 

The field survey is based on a hierarchical scheme, with smaller spatial scales 

nested within higher-level scales. It was conducted between April and July 2018. The study 

area was divided into three hierarchical scales: domains, reaches and hydraulic units, where 

hydraulic units were nested within reaches, and reaches were within domains. Domains 
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were designated based on a morphological distinction between unincised, incising and 

strongly incised channels. The distinctions were based on the valley side relief of 

approximately 5-15 m in unincised (or mildly incised) portion vs. ~ 25-35 m in incising 

portion vs. ~50-70 m in strongly incised section. These also correspond with the exposure 

of the deeper strata as reflected in the geologic map (Figure 3.2). These three domains were 

termed unincised, moderately incised or incising, and strongly incised regime (see section 

3.3 and figure 3.2) with lengths of 461 m, 472 m and 410 m respectively. Further, three 

reaches were selected from each of the three defined domains and each reach consisted of 

ten to twelve hydraulic units (HUs). The cumulative length of the HUs of a reach defined 

the length of each reach, which ranged from 117 to 177 m (see table 3.3). The starting point 

of each reach was selected randomly from each domain. Therefore, a stratified random 

sampling method was undertaken for this field survey (Rice 2010) in which each domain 

was equivalent to a stratum from where the reaches were selected randomly.  

Hydraulic units (HUs) are the smallest spatial units of this research and are spatially 

distinct patches of relatively homogenous surface flow and substrate character (Fryirs & 

Brierley, 2012). The average length of hydraulic units measured in the unincised, incising, 

and strongly incised domains are 13.6, 15.2 and 13.7 m, respectively. Four distinct 

categories of hydraulic units were identified during the field reconnaissance survey: high 

gradient riffle (HGR), low gradient riffle (LGR), pool and run (Figure 3.3).  
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Table 3.3: Morphological characteristics of Shawnee Run (based on field measurements). 

 Domains Reaches Total length (m) Average 
bankfull 
width (m) 

Up-
stream 

Unincised  
(Upstream) 

Reach 1 176.9 6.5 

Reach 2 116.8 6.5 

 Reach 3 167.4 8.8 

Moderately Incising 
(Midstream) 

Reach 1 153.3 10.5 

Reach 2 174.1 12.7 

Reach 3 144.61 13.74 

Strongly Incised 
(Downstream) 

Reach 1 136.3 10.7 

Down-
stream 

Reach 2 124.4 13.7 

Reach 3 149.6 10.5 

 

 

Figure 3.3: The classification scheme of hydraulic units (HUs) at each reach. 
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The irregularity of the water surface within a reach, which separates the runs and 

pools from riffles, is caused by slope and roughness variations. Furthermore, the 

classification scheme (Figure 3.3) reflects that while the pools and the runs are 

distinguishable based on width and depth variability, the HGR and LGR are differentiated 

based on variability in slope. Based on reconnaissance survey results, the threshold value 

of slope steepness to distinguish HGR and LGR in the study area is 0.02 m/m.   

 

3.4.2 Geomorphic survey 

Cross section data were acquired with a measuring tape and a rod at the mid-point 

of each HU, totaling 95 cross-sections. Bankfull channel width and depth were measured 

at the approximate mid-point of each hydraulic unit. Bankfull channel depth was measured 

at 0.5 m intervals or less. These measurements were used to calculate bankfull average 

depth, maximum and minimum depth, and width/depth ratio. Bankfull flow elevations 

were identified based on the floodplain surface following methods described by Stream 

Systems Technology Center (2002). The key to identify the bankfull elevation is to locate 

the relatively flat depositional surface of the floodplain as bankfull stage occurs when water 

just begins to overtop the floodplain. Best locations for demarcating bankfull elevations 

are along the inside of meander bends (the level top of a point bar is a reliable indicator of 

bankfull elevation), and along both sides of  straight reaches where the floodplain is easily 

detectable. The longitudinal profile was measured using a laser level and prism along the 

thalweg, which was used to determine the HU and reach scale slopes. The HU scale slope 

values were further used for discerning HGR and LGR.  
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3.4.3 Vegetation survey 

The vegetation survey was conducted within the riparian zone of each HU. Any 

tree with a portion of trunk within 2 m of the banktop, on the bank, or within the channel 

was included. All woody plants with a diameter at breast height (1.37 m above ground 

level) ≥ 5 cm were identified. Circumference at breast was measured using a measuring 

tape to derive diameter at breast height (DBH) and basal area (BA). 

 

3.4.4 Biogeomorphic survey 

A biogeomorphic survey was conducted based on identification of impacts 

associated with vegetation measured during the vegetation survey. An inventory of 

potential BGIs associated with bedrock streams was developed (see table 3.2). BGIs 

observed and recorded during the field survey include sediment trapping by live vegetation, 

wood accumulation, bar and island anchoring, root banks, weathering of bedrock by root 

penetration and trunk growth, and bedrock mining caused by tree uprooting.    

 

3.4.5 Statistical analysis 

Chi-square analysis was used to identify the statistical significance of the 

relationship between tree species and types of hydraulic units. ANOVA was conducted to 

compare the age of island vegetation to the adjacent floodplain vegetation linked to 

avulsion-originated island formation.  Linear regression was carried out to explore the 

relationship between species richness and stem density. 

 

 



68 
 

3.5 Results  

3.5.1 Riparian vegetation and spatial distribution 

Field data were collected from 95 hydraulic units (HUs) -- 29 HGRs, 19 LGRs, 26 

Pools and 21 Runs. The vegetation survey provided data about the riparian species 

composition, richness, basal area, and stem density (Table 3.4, figure 3.4).  

Table 3.4: Species composition, and their basic characteristics.  

Species Scientific name # of 
indivi-
duals 

Total 
basal 
area  
(m2) 

Mean 
DBH 
(cm) 

Min 
DBH 
(cm) 

Max 
DBH 
(cm) 

Chinquapin 
oak 

Quercus 
muehlenbergii 

209 8.05 19.0 5 66 

American 
sycamore 

Platanus 
occidentalis 

109 35.18 55.2 4 140 

Red maple Acer rubrum 67 3.51 22.5 5 71 
Osage 
orange 

Maclura 
pomifera 

39 3.38 27.7 6 73 

Green ash Fraxinus 
pennsylvanica 

24 0.38 12.8 2 25 

Ohio 
buckeye 

Aesculuc glabra 16 0.11 9.1 4 18 

Japanese 
honey 
suckle 

Lonicera 
japonica 

15 0.10 8.8 5 14 

Elm Ulmus 
americana 

13 0.55 21.8 7 37 

Hickory Carya ovata 11 0.87 27.8 11 70 
Red cedar Juniperus 

virginiana 
6 0.30 22.9 6 35 

Others (5 species) 13 1.00 29.9 8 60 
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Figure 3.4: Species richness and stem density (number of individuals/length of HU) per 
hydraulic unit from up to downstream. 
 

15 different tree species occur along the riparian corridor of Shawnee Run, and all 

species are common in central KY forests. Chinquapin oak (Quercus muehlenbergii) is the 

most common, representing more than 40% of all trees. American sycamore (Platanus 

occidentalis) is dominant with respect to basal area, accounting for ~21% of the total. Red 

maple (Acer rubrum), osage orange (Maclura pomifera) and green ash (Fraxinus 

pennsylvanica) are less common than sycamore and chinquapin oak, but are more abundant 

than the remainder. Therefore, the remainder of the species are grouped together and 

labelled as ‘others’. The invasive Japanese honeysuckle (Lonicera japonica), included in 

the ‘others’ group, was common at some sites, but generally below 5 cm threshold DBH.  

During fieldwork, BGIs of all 15 species were noted separately. While chinquapin oak is 

the most abundant species, its total basal area, and mean and maximum DBH is 

substantially lower than American sycamore.  Furthermore, although red maple and osage 

orange have smaller total basal area compared to chinquapin oak, attributable to their 
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smaller numbers in total, their mean and maximum DBH is larger. While there were no 

apparent trends relating the vegetation variables to hydraulic units, simple linear regression 

indicates linkage between stem density and species richness (R2 = 0.44, p < 0.000, N = 95).  

The spatial distribution of species (Figure 3.5a) shows no definite pattern in species-

distribution across different types of hydraulic units, with chinquapin oak and American 

sycamore the dominant ones in most cases. On the contrary, at the regime scale, reflecting 

upstream to downstream patterns, (Figure 3.5b) a pattern in species distribution is evident. 

Chinquapin oak and American sycamore are substantially more common at the midstream 

reaches. By contrast, red maple exhibits an increasing, and osage orange and green ash 

show a decreasing, up to downstream trend in Shawnee Run.  

 
Figure 3.5: Spatial distribution of riparian species in Shawnee Run where a) shows 
hydraulic unit scale spatial distribution; b) shows regime scale distribution up- to 
downstream. 
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3.5.2 Biogeomorphic impacts  

Biogeomorphic impacts (BGIs) associated with riparian vegetation recorded during 

the field survey includes evidence of trapping sediment, trapping woody debris (small 

branches, twigs etc.), trapping large woody debris (part of trunk of a large tree), 

displacement of bedrock due to root penetration and trunk growth, and root banks. While 

bedrock mining associated with tree uprooting was observed in the vicinity, no cases were 

recorded at our field sites.  

 

Figure 3.6 (a) shows proportion of individuals contributing to different BGIs across 

Shawnee Run. Among the listed impacts, any live vegetation of a fluvial system could trap 

sediment and woody debris (small and large). Therefore, these impacts can be considered 

as generalized BGIs for all fluvial systems. Our results show that all the identified trees of 

our study area contribute in proportion to their numbers to these generalized BGIs (Figure 

3.6). On the other hand, vegetation that can grow and develop on bedrock contributes to 

root and trunk bedrock weathering. About 44% of American sycamore contributed to 

bedrock weathering caused by root penetration and trunk growth – the highest among all 

species. However, only 22% of chinquapin oak took part in bedrock weathering in spite of 

their highest abundance amongst all species (Figure 3.6a). Further, figure 3.6(b) shows that 

the percent contribution of each species to total BGIs approximately coincides with the 

proportion of individual species out of total individuals. For example, chinquapin oak 

comprises ~40% of total individuals and its contribution to total BGIs is 38%. Thus, this 

figure clearly indicates that the contribution to total BGIs is related to species abundance. 
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However, the largest anomaly is American sycamore – while they represent ~21% of total 

individuals their contribution to total BGIs is around 30%.  

 
 
Figure 3.6: a) Proportion of individuals contributing to different biogeomorphic impacts ; 
for example, the first column indicates that 13% of chinquapin oak (Q. muehlenbergii were 
observed trapping woody debris, and b) percent contribution of each species to total 
biogeomorphic impacts and percent of individual species out of total individuals.  
Note: One individual may have contributed to multiple biogeomorphic impacts, whereas 
some individuals may not contribute at all. Therefore, the sum of the proportion for each 
species may not yield a result of 1.  
 

3.5.3 Species specific and general biogeomorphic impacts 

Field observations suggest that trapping sediment and wood, and bedrock 

weathering are general biogeomorphic impacts, not closely linked to specific trees. Any 

species that can trigger bedrock weathering along the channel bed may play a distinct 

biogeomorphic role along bedrock fluvial corridors. Sediment trapping may occur in any 
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vegetated stream. Field evidence identified three biogeomorphic outcomes that represent 

strong biogeomorphic influences not necessarily common in fluvial systems in general:  

1. Biogeomorphic pool formation associated with bioweathering. 

2. Development of avulsion associated islands related to bioprotection 

3. Root banks 

In addition, trees can also facilitate supply of sediment along the fluvial corridor 

via bioweathering.  

3.5.4 Biogeomorphic pool formation  

Pools can be formed by a diversity of mechanisms. Three distinct types of pools 

were identified in our study area, summarized in table 3.5, formed by variable process-

form linkages.  

Table 3.5: Types of pools in the study area, and their process of development 

Pool Types Process of development # of pools 
identified 

Log-dam pools Blockage of flow by log jams or dams (e.g.  Andrus et 
al. 1988; Figure 3.7) 

2 

Geomorphic 
Pools* 

 

Formed by fluvial process-form linkage; for example 
helical hydraulics driven lateral migration (Thomson 
1986); differential scour due to differences in sediment 
size distributions along a channel (De Almeida & 
Rodriguez, 2012; figure 3.8).  

13  
(2 with no 

vegetation) 

Biogeomorphic 
pools 

Vegetation induced bioweathering of channel beds (P. 
occidentalis for our study area) can initiate local depth 
variation. Subsequent flow-convergence routing driven 
by locally varying cross-sectional areas (MacWilliams 
et al. 2006) thus can lead to the development of pools 
(Figure 3.9, 3.10).  

11 

*Pools without any evident impact of vegetation on their formation are considered as 
geomorphic. 
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Figure 3.7: Example of a log-dam pool and the corresponding cross-section. 

 
 
Figure 3.8: Example of a geomorphic pool and the corresponding cross-section, where the 
thalweg is on the left side of the bank. Despite presence of vegetation near bank, there is 
no evident impact of vegetation on pool formation. 
 

Biogeomorphic pools can be defined as pools formed by direct impacts of biota induced 

channel bed weathering, which may subsequently evolve by fluvial erosion. In our study 

area biogeomorphic pools were only associated with American sycamore located on the 
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bank top near the channel margin or within the channel. We set out two criteria for 

designating a pool as biogeomorphic: 

1. A portion of the tree root impact should be within the bankfull channel, and roots 

must extend to the channel bed (Figure 3.9). 

2. Thalweg should be close to the tree side of the channel (Figure 3.10). 

Tsukahara and Kozlowski (1985) found that flooding of soil with standing water for 50 

or 110 days drastically reduced growth of American sycamore  seedlings, with longer 

flooding duration resulting in more growth inhibition. Sycamores typically responded to 

inundation by production of adventitious roots and hypertrophied lenticels (raised pores 

assisting in gas exchange) on saturated or submerged roots.  Bonner (1966) also found that 

prolonged saturation caused severe growth reductions in sycamore. Tang and Kozlowski 

(1982) showed that flooding of American sycamore inhibited root elongation and led to 

root death. Conversely, American sycamore is more productive on well-drained sites and 

tolerates, but does not thrive, in hypoxic conditions (Bryan et al., 2010). Field observation 

also supports this statement, as in several cases dead roots were identified within the 

hollows created by the sycamore roots. Additionally, in two instances, two dead sycamores 

were found in association with biogeomorphic pools (Figure 3.9).  

This evidence suggests that American sycamore is extremely unlikely to extend roots 

into bedrock joints that are perpetually saturated, as is the case of pools of all types in 

Shawnee Run. This supports the suggestion that root extension into the channel bed 

occurred before pool formation. In many reaches, particularly riffles, channels are partially 

or fully dry (or flow is confined to the thalweg) during low flow periods all year long, and 

often for extensive periods during summer and early fall— this can potentially allow root 
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penetration. After root-induced weathering initiates pool formation, adaptations such as 

adventitious roots and hypertrophied lenticels would allow roots to persist in the saturated 

rock.  

However, none of the other tree species found in the study area exhibit these particular 

adaptations to saturated conditions (Tiner, 2016: ch. 6). Thus, even though chinquapin oak 

often penetrates bedrock and red maple is adapted to saturated soils, no other tree in the 

study area has the particular traits that would allow significant weathering of bedrock on 

the channel bed that could create or expand pools.   

 



77 
 

 

Figure 3.9: Examples of a biogeomorphic pool where (a,b) the American sycamore (P. 
occidentalis) tree root impact is within the bankfull channel and root extending to the 
channel bed; (c,d) two dead P. occidentalis  associated with their pools; (e) a P. occidentalis 
root induced biogeomorphic pool— looking upstream (the corresponding cross section of 
this pool is displayed in figure 3.10a). 
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Figure 3.10: Two example cross-sections of biogeomorphic pools (with depth of the 
thalwegs demarcated) where (a) corresponds with the image displayed in figure 3.9e.  
 

Identification of biogeomorphic pools was based on specific field observations – 

the criteria described above, plus visible evidence of sycamore root penetration of channel 

bed limestone and of displaced blocks in mid-channel (Figure 3.11 shows block 

displacement mechanism by sycamore root penetration comparable to areas where 

biogeomorphic pools were formed). For a more general test, a Chi-square analysis was 

performed to test relationships between dominant tree species and hydraulic units. The 

contingency table entries consisted of the number of sites of each HU (with riffles 
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combined) with either American sycamore only, chinquapin oak only, both species, or 

neither (see table 3.6). The Chi-square test ( Chi-square = 18.692, p-value <0.05, N = 95) 

indicates that there is a statistically significant relationship between the presence of 

sycamore and chinquapin oak, and the occurrence of pools, riffles and runs in the study 

area.  

 
 
Figure 3.11: Block displacement mechanism by American sycamore (P. occidentalis) root 
penetration. 
 

Table 3.6: Number of different hydraulic units associated with P. occidentalis (American 
sycamore) and Q. muehlenbergii (chinquapin oak).  
 

Presence of  
species 

# of pools  
(%) 

# of riffles 
(%)  

# of runs  
(%) 

P. occidentalis only 9  
(35%) 

5 
(10%) 

2 
(10%) 

Q. muehlenbergii only 1 
(4%) 

18 
(38%) 

11 
(52%) 

Both 13 
(50%) 

18 
(38%) 

5 
(24%) 

None 3 
(12%) 

7 
(15%) 

3 
(14%) 

 



80 
 

3.5.5 Avulsion associated island formation  

The bioprotective role of vegetation may lead to the development of islands. Four 

such islands (three in the incising domain and one in the incised domain) were identified 

during the field survey. Field evidence indicates that these identified islands are of avulsion 

origin rather than that of newly accreted bar origin. Figure 3.12 shows an example of an 

avulsion-originated island recorded in our study area.  

 

Figure 3.12: Example of an avulsion originated island located at the midstream section of 
Shawnee Run (looking upstream). 
 

The proposed scenario is that a high-flow channel across the floodplain or valley 

bottom becomes incised and persists, and rejoins the main channel downstream. High 

resistance attributable to trees prevents erosion of the island area (McKenney et al. 1995). 

If this is the case, then there should be a total widening of the channel (width of the two 

channels minus island width) relative to upstream and downstream reaches. The substrate 

and vegetation characteristics should also be similar between the island and the adjacent 
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riparian area. Thus the idea of avulsion-originated islands was grounded upon the following 

field evidence: 

• Distinct outer-bank-to-outer bank widening relative to upstream and downstream 

sections: Field data show that the bankfull channel width increases noticeably at 

the island section compared to the channel width measured just upstream and/or 

downstream section without island (Figure 3.13). The data are presented in table 

3.7. 

• Substrate characteristics: Field observation indicates similar substrate 

characteristics between island surface and the adjacent floodplain surface. 

• Vegetation composition: Vegetation composition between island and adjacent 

floodplain surface were similar – common species include American sycamore, 

chinquapin oak, red maple and honeysuckle.  

Table 3.7: Channel width comparison between island reaches, and reaches just up and 
downstream of them.  
 

Location of the 
island 

Channel 
width (m) at 
the island 
section1 

Channel width (m) 
just upstream of 
the island section 

Channel width (m) 
just downstream of 
the island section 

Midstream 
section-LGR 

16.5 10-122 14.2 

Midstream 
section-LGR  

16.5 9.5 11.5 

Midstream- 
section-LGR & 
HGR 

21.0 13.5 8-10.52 

Downstream- 
section-HGR 

18.0 14.2 10-122 

1Not including island width. 
2Indicates estimated value based on field photographs and Google EarthTM images. 
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Figure 3.13: Example of channel cross-sections located at an island section, and just 
upstream and downstream of the island section. 
 

Based on the field evidence, supporting our premise of the recorded islands having 

an avulsion origin, we hypothesized that the DBH of the dominant trees – a surrogate for 

the age (Gibbs 1963; Leak 1985) – located on the islands and the adjacent floodplains are 

equivalent. It is important to note that, the size (i.e., DBH) of a tree does not necessarily 

reflect its age because of site variation and history (Gibbs 1963; Leak 1985). However, in 

our case we choose to retain DBH as the surrogate of age because the site variation was 

insignificant. In addition, we were interested in the relative age difference rather than the 

true age variability.  

The two most dominant species identified in the islands and the adjacent 

floodplains are American sycamore and chinquapin oak, making up ~81% and ~68% of 

the island and floodplain species respectively. Therefore, we carried out one-way ANOVA 

analysis, one for American sycamore and another for chinquapin oak, to test whether the 
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mean DBH of the island and adjacent floodplain trees are significantly different. One-way 

ANOVA shows that there is no significant difference in DBH between island and adjacent 

floodplain trees (for sycamore F (1, 10) = 0.181, P = 0.679, N =12; for chinquapin oak (F 

(1, 9) = 0.457, P = 0.516, N =11). This confirms that the age of the island trees is 

comparable to that of floodplain trees, consistent with the islands being of avulsion rather 

than bar origin.  

The species composition of the islands shows that about 48.5% of the island species 

are American sycamore, and about 33.3% is chinquapin oak. While these two species 

together make up about 81% of the island species, they constitute 61% (chinquapin oak ~ 

40.2% and sycamore 21%) of the total species. Red maple, honeysuckle, and black walnut 

comprise the rest of the 18% of the island species. Results also show that mature trees, in 

terms of DBH, particularly large sycamore and chinquapin oak, dominate our study area 

islands with a mean and maximum DBH of ~43.40 and ~100 cm respectively. Grounded 

upon the above discussion of islands being of avulsion origin and species composition 

primarily dominated by mature American sycamore and chinquapin oak, we suggest that 

the bioprotective role of trees can lead to the development of avulsion-associated islands. 

While any woody vegetation might provide comparable bioprotection, large trees may play 

this role better. 

 

3.5.6 Root banks 

In our study area, root banks (Figure 3.14) commonly occur where bedrock is 

exposed, whereas alluvial banks rarely show evidence of this feature. The few examples of 

root banks in alluvial banks were associated with shallow soil covering the bedrock. Only 
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chinquapin oak and American sycamore formed root banks (Figure 3.6), and only 14 

individuals had this form out of 520 recorded  

 
 
Figure 3.14: Root banks forming the bank of the channel and their distribution. Here, BP 
indicates bioprotection 
 
 
 
3.5.7 Biogeomorphic sediment source 

While bedrock weathering of channel beds caused by American sycamore can lead 

to the development of biogeomorphic pools, bedrock weathering across the riparian 

corridor can be a significant source of sediment in bedrock streams. Ample evidence of 

bedrock weathering triggered by root penetration (and also trunk growth) was identified 

during the field survey (Figure 3.15; also see figure 3.11). 
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Figure 3.15: Evidence of bedrock weathering caused by root penetration across Shawnee 
Run. 

Results show that except for green ash, all other species significantly contributed 

to bedrock weathering associated with root penetration (see section 3.5.2 and figure 3.6). 

About 32% of the total BGIs recorded were associated with root-induced bedrock 

weathering. This BGI can potentially supply an extensive amount of sediment to a bedrock 

fluvial system, and thus can affect fluvial process-form dynamics.  

 

3.6 Discussion 

We conceptualized different biogeomorphic roles of live vegetation in table 3.1. In 

this section, we provide examples of these roles played by vegetation in our study area.  

 

3.6.1 Biogeomorphic keystone species 

Certain species can lead to biogeomorphic pool development by channel bed 

weathering along bedrock fluvial corridors (see section 3.5.4). Based on field evidence, 

this is a species-specific biogeomorphic impact, as it was exclusively associated with 

American sycamore in our study area. We developed a conceptual model consisting of 

three stages (Figure 3.16).  
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Stage 1 — Sycamore establishment and root penetration during dry/low flow period:  

During the dry periods many riffles/runs dried out with minimal or no flow occurrence. 

During these periods, the sycamore (esp. those located near the channel margin) root can 

penetrate along the joints/bedding planes of the channel bed and bank.  

Stage 2 — Local channel deepening due to root effects: 

Penetration of sycamore roots and their subsequent growth along the channel bank margin 

and bed can promote bedrock displacement, detachment and/or disintegration, and 

weakening of resisting force of bedrock (e.g. Naylor et al. 2012). Thus, root penetration 

initiates the process of pool formation.  

Stage 3 — Erosion and root persistence during high flows:  

Greater shear stresses allowed weakened, detached, disintegrated bedrock from stage 2 to 

be removed by fluvial erosion. This can promote further root penetration and development 

during the later dry periods, and therefore pool growth and expansion. Meanwhile, existing 

roots persist. Though sycamore root growth is inhibited during wet conditions, adaptations 

such as adventitious roots and hypertrophied lenticels would allow roots to persist in the 

saturated rock during high flow conditions (Tsukahara & Kozlowski 1985).  

Figure 3.16: Conceptual model of biogeomorphic pool formation. 

This model of biogeomorphic pool development shows how biotic influences can 

have a destabilizing effect on by promoting fluvial erosion. Such destabilization via root 
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growth produces positive feedbacks fostering the development of biogeomorphic pools. 

Thus, this model indicates that feedback relationships between biotic and landform 

processes are needed to operate before a species becomes a biogeomorphic keystone. These 

feedbacks on biogeomorphic pool development occur in a specific envelope of conditions, 

which depend on the fluvial process magnitude and plant species traits that determine 

species response to wet and dry conditions (c.f. Eichel et al. 2015). 

  Biogeomorphic pool development brings about a local scale transformation of the 

stream channel caused by hydraulic unit modification. Thus, removal of American 

sycamore would result in fundamental changes in surface processes and morphology of the 

fluvial corridor. Therefore, we propose that American sycamore is a biogeomorphic 

keystone species in Shawnee Run, and perhaps more broadly in bedrock-controlled streams 

that are associated with well-defined bedding planes, joints and fractures – for example, 

limestone. Our field evidence, in the context of Power et al.’s (1996) concepts of ecological 

keystone species, suggests the following: 

• Biogeomorphic pool development has considerable impact in the evolution of 

fluvial systems, and its development is linked to American sycamore in our study 

area. Further, American sycamore is not the most abundant species in our riparian 

system. A keystone species is one whose impact on its community or ecosystem (in 

our case on its fluvial system) is disproportionately large relative to its abundance 

(Power et al. 1996), and in our case American sycamore meets this criterion.   

• According to Power et al. (1996), keystone species are context dependent, and not 

dominant in all parts of their range or at all times, but only play keystone roles 

under certain conditions. Further, Mills et al. (1993) indicated that the idea of 
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keystone species is often misleading as it may indicate the existence of a species-

specific property of an organism; in reality the keystone role depends on many other 

factors, of which a particular environmental setting is crucial (Gautier-Hion & 

Michaloud 1989, Jackson & Kaufmann 1987, Levey 1988, Palumbi & Freed 1988). 

Similarly, American sycamore plays its keystone role  when they are: 

i)  established on exposed bedrock or shallow soil/sediment along a fluvial 

corridor; otherwise root penetrating biophysical weathering would not be 

possible. 

ii)  located along stream banks (near channel margin), or in-channel, so that 

root-induced weathering directly affects the channel. 

iii) larger with higher basal areas (threshold DBH > 60 cm based on field 

data), i.e. they are at the mature stage of their life. 

iv) given enough time of dry periods (i.e. the windows of opportunity, after 

Balke 2014), for the root penetration and growth along the joints, fractures 

and bedding planes of channel bed.  

The conversion of a riffle/run to a pool by American sycamore signposts that 

removal of this species would fundamentally change fluvial processes and morphology. 

Biogeomorphic pool formation by American sycamore thus demonstrates a new process of 

bed degradation. Therefore, it can be considered as a biogeomorphic keystone species. 

   

3.6.2 Bioconstructors 

Bioconstructors are organisms that construct the landform, or from which the 

landform is constructed. Root banks are developed when the root system of a living 
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vegetation itself form the bank of the channel – a biophysically originated geomorphic 

form. They function as a bioprotective form that are resistant to fluvial erosion and thus 

equivalent to intact bedrock (Figure 3.13). As American sycamore, and chinquapin oak 

exhibit the form of root banks in our study area, therefore they can be designated as 

bioconstructors. Furthermore, they are autogenic bioconstructors as the root banks are 

comprised of the root system of these species. However, while this autogenic 

bioconstruction also appears to be passive bioconstruction i.e. the root banks are not formed 

for the benefit of that vegetation, it is unclear that in which situation these trees tend to 

form root banks.  

 

3.6.3 Biogeomorphic equivalents 

Biogeomorphic equivalents are species that have similar BGIs, such that they are 

essentially interchangeable with respect to surface processes and landforms. The proposed 

idea of avulsion originated island formation is an example of biogeomorphic roles caused 

by biogeomorphic equivalents. The development of resistant patches of landforms, caused 

by bioprotective function of vegetation, promotes island growth – a process equivalent to 

geomorphic processes and forms. As American sycamore and chinquapin oak dominated 

the avulsion originated islands, therefore they can be designated as biogeomorphic 

equivalents for our study area. However, any live vegetation, particularly larger mature 

trees, are likely to be able to play this bioprotective role. Thus, the role of biogeomorphic 

equivalents are linked to the generalized BGIs of vegetation rather than that of species-

specific. 
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3.6.4 Other biogeomorphic roles 

Live vegetation can play role as biogeomorphic influencers and/or separators. 

Separators may also be influencer or keystone species based on the effectiveness of their 

role on geomorphic forms. Biogeomorphic influencers, although exhibit significant direct 

impacts on surface processes and landforms, but not sufficient to bring fundamental 

changes. For example, we identified osage orange and red maple in our study area that have 

substantial impact on bioweathering caused by root penetration along the joints and 

fractures of bedrock. However, we could not designate them as ‘keystone separator 

species’ since the root system of osage orange and red maple do not cause weathering of 

channel bed such that it would bring any significant alteration of the fluvial system. Hence, 

other than chinquapin oak and American sycamore, the rest of the thirteen species of our 

study area (table 3.4) can be classified as biogeomorphic influencers. Moreover, osage 

range and red maple, are also biogeomorphic equivalents (a particular form of influencer) 

as they play interchangeable biogeomorphic role by promoting bedrock bioweathering.  

 

3.7 Conclusions  

This research deals with species-specific and general BGIs from the context of 

keystone and other biogeomorphic roles. Our empirical study on a bedrock controlled 

stream in Kentucky identified that American sycamore is exclusively associated with 

biogeomorphic pool development via bioweathering. . These pools can substantially alter 

the fluvial-process-form dynamics, and the absence of American sycamore would result in 

fundamentally different channel morphology. Further, we found that certain species, 

American sycamore and chinquapin oak, can play the role of autogenic bioconstructors by 
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developing a distinct bioprotective forms, root banks – a biophysically originated 

geomorphic form. We also identified that trees can promote avulsion-originated island 

formation by creating erosion-resistant bioprotective patches. While any live vegetation 

can play comparable bioprotective roles (i.e. a generalized BGI), certain species may play 

this role better than others, particularly at the mature stage. We found that large (in terms 

of DBH) American sycamore and chinquapin oak dominated the islands of our study area 

and play comparable roles with respect to avulsion-originated island development via 

bioprotection. Thus they are designated as biogeomorphic equivalents. Lastly, we 

discovered that vegetation-induced bedrock weathering functions as an important source 

of sediment in bedrock streams. However, just about all species identified in our study area 

can play this biogeomorphic role, and thus can be recognized as biogeomorphic influencers 

that are also equivalents.  

Our research brings forth some important future research concerns. The 

biogeomorphic pool formation analysis needs further investigation in other bedrock fluvial 

environments. Future research should examine whether biogeomorphic pools are 

exclusively associated with American sycamore  in other fluvial systems. Further, while 

root-banks are characterized as important bioprotective form in our study area, a key 

question is whether root banks, in the long term, actually facilitate bank erosion over 

protection. While living roots are highly resistant and shield bedrock from hydraulic forces, 

the roots probably facilitate dissolution, rock slab displacement, and other forms of 

weathering. When the tree dies, the exposed bank may be more weathered and erodible 

than bedrock banks that have not had root banks. This deserves further research (Jerin 

2019).  
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Finally, while we did not find any examples of biogeomorphic separators in our 

study area, the existence of keystone species at least suggests that possibility. Thus, the 

identification of biogeomorphic separators and keystone species can potentially facilitate 

the recognition of critical points in the coevolution of geomorphological and ecological 

systems.  
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CHAPTER 4. SCALE ASSOCIATED COUPLING BETWEEN CHANNEL 

MORPHOLOGY AND RIPARIAN VEGETATION IN A BEDROCK-

CONTROLLED STREAM 

 
Abstract  
Most fluvial systems exhibit systematic, continuous upstream-to-downstream variations in 
channel morphology and related ecological and hydrological parameters (emphasized by 
conceptual frameworks such as downstream hydraulic geometry and the river continuum 
concept), and discontinuous, shorter range variations (emphasized by hierarchical patch 
dynamics). This study investigates the relative importance of broader-scale up-to-
downstream variation and local variation at the hydraulic unit scale in a bedrock-controlled 
stream in central Kentucky. A nested ANOVA analytical approach was used to determine 
the relative importance of three nested spatial scales in explaining variations in channel 
morphology and riparian trees. Results show that channel morphology is largely controlled 
by local-scale variation explaining about 92% of slope, 46% of bankfull width, 99% of 
average depth, 54% of width-depth ratio, 86% of channel cross-section area, and 100% of 
the hydraulic radius of the channel. Different categories of substrate characteristics, 
however, represent anomaly with respect to variance explained at different levels. 
Furthermore, local-scale controls explain 60% variations in species richness, 59% 
variations in the total number of individual trees, 68% variation in the proportion of 
Platanus occidentalis basal area and 43% of variation in the total number of biogeomorphic 
impacts. These results are consistent with the idea of tight coupling between channel 
morphology and riparian vegetation, although they do not, by themselves, prove such 
interactions. The morphological variation of the channel at the local scale is primarily 
attributable to the geological controls (e.g. faults, bedding planes, joints and fractures) and 
incision status associated with the study area. The local scale variation in vegetation pattern 
can be explained by the highly local edaphic differences along the riparian corridor which 
is likely to be related to the local scale fluvial process-form variations, and biogeomorphic 
impacts and feedbacks. These patterns may therefore be common in bedrock rivers strongly 
influenced by geological controls. 
 
Keywords: Bedrock rivers; channel morphology; riparian vegetation; local scale. 
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Jerin, T., 2020. Scale associated coupling between channel morphology and riparian 
vegetation in a bedrock-controlled stream. Geomorphology (under review).  
 

 

 

 



94 
 

4.1 Introduction 

The interplay of physical forms and processes and biota in a fluvial system 

generates a complex network of interactions. These interactions have traditionally been 

construed under the framework of the River Continuum Concept (RCC). RCC considers a 

river system as a continuous gradient of physical conditions from up- to downstream 

resulting in a continuum of biotic adjustments and consistent patterns of loading, transport, 

utilization, and storage of organic matter along its length (Vannote et al. 1980). While RCC 

remained a dominant idea in stream ecology through the twentieth century (Thorp et al. 

2008), divergence from this continuum assumption is reflected in many biogeomorphic 

and ecological studies (e.g. Statzner and Higler 1985, 1986; Townsend 1996; Montgomery 

1999; Rice et al. 2001; Benda et al. 2004; Parsons and Thoms 2007). New perspectives on 

riverine environments emphasize discontinuity and patchiness (Thorp et al. 2008) and 

focus on the importance of fine-scale functional units – hydrogeomorphic patches. Local 

controls can lead to the development of spatially distinct patches of relatively homogenous 

surface flow and substrate characteristics (defined as hydraulic units; see Kemp et al., 2000; 

Newson and Newson, 2000; Thomson et al., 2001). Studies on the spatial arrangement of 

river systems have shown that rivers exhibit abrupt changes in hydraulic character, 

morphology, and biology, rather than displaying a gradient of change reinforced by the 

notion of continuum (Townsend 1989; Montgomery 1999; Poole 2002). According to 

Weins (2002) rivers have an internal structure of their own, and the spatial pattern of this 

heterogeneity within rivers comprises a landscape that is quite dynamic, varying in patch 

composition and configuration in response to changes in hydrologic flow regimes (Marald 

et al. 2002). Belletti et al. (2017) pointed out the importance of patch scale for linking the 
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physical and biological conditions in a river system. According to them hydrogeomorphic 

patches, for instance riffles, pools, bars, islands etc. create distinct habitats for aquatic and 

riparian biota. Thus, they provide physical template that supports the delivery of the key 

environmental conditions required to support life in rivers (Belletti et al. 2017). However, 

most (if not all) fluvial systems display both systematic up- vs. downstream differences 

and hydrogeomorphic patches. What is the relative importance of these in explaining 

spatial variation of channel morphology and biogeomorphological phenomena? In this 

paper, I explore a limestone bedrock-controlled stream, Shawnee Run — located in central 

Kentucky, USA. The aim is to identify the most important scale of variation controlling 

geomorphic, vegetation and biogeomorphic components.  

The river continuum concept depicts riverine systems, together with their biotic elements, 

as intergrading, linear networks from headwaters to the mouth (Vannote et al. 1980). It is 

related to the classical downstream hydraulic geometry (DHG) theory. DHG was first 

described qualitatively by Leonardo da Vinci (Shepherd and Ellis, 1997) and later analyzed 

quantitatively by Leopold and Maddock (1953). DHG states that as discharge increases in 

the downstream direction, channel morphology increases consistently to accommodate the 

discharge.  However, the river continuum concept is founded on the premise that physical 

river environment provides energy, organic matter, and habitat to organisms such that 

ecological patterns in the downstream direction are established by the DHG. Thus, 

distributions of biotic communities in the downstream direction parallel the physical 

changes in the fluvial geomorphology (Rosenfeld et al. 2007; Fonstad and Marcus 2010). 

The key question is then the extent to which the latter vary continuously upstream-to-

downstream, versus a more complex, patchy spatial pattern. 
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The river continuum concept is currently the dominant theory used deliberately or 

de facto by riverine ecologists or environmental scientists/managers (Thorp et al. 2008). 

However, several researchers have argued that while predictable downstream patterns may 

exist from a large spatial-scale context, fluvial systems are not characterized by gradual 

physical and biotic adjustments. For example, Statzner and Higler (1985, 1986) contended 

that hydraulics were the most important factors controlling stream benthonic zonation on 

a worldwide scale. They argued that rather than a steady gradient of stream hydraulics (i.e. 

river as a continuum), discontinuities associated with transition zones in flow and resulting 

substrate size were the critical determinants of changes in species assemblages. A study 

carried out on the network scale has shown that while relationships between width, depth, 

velocity, slope and other variables often show general trends with increasing discharge area 

in a fluvial system, they are overlaid by massive variability that is not at all consistent with 

DHG (Fonstad and Marcus 2010) — and therefore RCC. Other studies that depict rivers as 

a compounding system of broad scale trends in energy, matter, and habitat structure, in 

addition to local discontinuous zones and patches, include Fausch et al. (2002), Poole 

(2002), Ward et al. (2002), Wiens (2002), and Carbonneau et al. (2012). 

Several studies promoted the use of the framework of hydrogeomorphic patches for 

studying the spatial arrangement of river systems (Belletti et al. 2017; Phillips 2017; Eros 

and Grant 2015; Milan et al. 2010; Shoffner and Royall 2008; Wiens 2002; Newson and 

Newson 2000). According to Belletti et al. (2017), the analysis of relationships between 

patch scale geomorphic units i.e., physical habitats and biota, can provide a physical basis 

for biological surveys with respect to habitat heterogeneity, composition, and attributes at 

a scale that is geomorphologically meaningful. Phillips (2017) points out the importance 
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of patch scale over the repeated sequence of patches (e.g. riffles, pools and runs) by 

examining richness and diversity of hydraulic units along a river corridor.  

Further, some researchers have pointed out potential circumstances fostering 

deviations from the RCC predictions. For example, Minshall et al. (1983) noted that 

divergence from the RCC predictions occur owing to the disparate influence of watershed 

climate and geology, riparian conditions, tributaries, and location-specific lithology and 

geomorphology. While some researchers consider any divergence from RCC as exceptions, 

some others (e.g. Poole 2002, Thorp et al. 2006), contend that these exceptions are in fact 

the rule (after Thorp et al. 2008).  

River systems often display abrupt changes in hydraulic character, morphology, 

and biology, and thus can contradict with the idea of exhibiting gradual changes purported 

by DHG and RCC. For example, in large floodplain settings, river systems are largely 

influenced by the lateral exchanges of water, sediment, and nutrients in addition to 

upstream processes (Junk et al. 1989). Further, Ward and Stanford (1983) point out how 

dams can reset the longitudinal continuum of a river via abrupt transition. Carbonneau et 

al. (2012) indicate that discrete hydraulic barriers such as waterfall and hydraulic jumps 

can hinder the upstream-downstream connectivity, and consequently organisms’ mobility. 

As a result, alternative perspectives were developed emphasizing discontinuity and 

patchiness of the spatial organization (Thorp et al. 2008). Discontinuities are often linked 

to regional and local variations in climate, geology, riparian conditions, tributaries, 

lithology, and/or geomorphology, or with human interruptions disrupting the flow, 

sediment, and/or disturbance regimes. Thus, discontinuities and deviations indicate a break 
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in the contiguous up- to downstream network, whereas RCC is primarily dependent on the 

idea of all components being strongly connected with each other (Callum et al. 2009). 

Fluvial biogeomorphic systems are characterized by complexity, caused by multi-

causality and variable process-form linkages at different scales (e.g. Smiley and Dibble 

2005; Parsons and Thoms 2006), which limits the practicality of the reductionism approach 

in such systems (Thorp et al. 2008). However, studying the spatial arrangements of river 

systems under the framework of hydrogeomorphic patches can be a useful approach for 

interpreting system complexity.  Many studies in ecology and Earth sciences have adopted 

this approach for understanding complexity in their system (e.g. Clifford et al. 2006; Milan 

et al. 2010; Eros and Grant 2015, Belletti et al. 2017). 

 

4.2 Study area 

The study area, Shawnee Run, is located in the Kentucky River gorge area of the 

Inner Bluegrass karst region in central Kentucky (figure 4.1). It is a tributary of the 

Kentucky River (note: on U.S. Geological Survey maps, Shawnee Run is incorrectly shown 

as Shaker Creek) draining about 43.5 km2 of surface drainage area with a total length of 

about 20 km. Shawnee Run is a bedrock-controlled stream dominated by limestone 

lithology with discontinuous coarse alluvial cover. The study area was selected because it 

is part of a nature preserve and has been minimally disturbed along the fluvial corridor.  
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Figure 4.1:  Location of the study area in Mercer County, Kentucky.  

 

The Inner Bluegrass region has a topography characterized by low relief and gentle 

ridges, except in the Kentucky River gorge area. Local relief of 100 m is common there, 

and river-to-cliff or bluff top relief ranges from 61 to 131 m. The bedrock in the area is 

comprised of the High Bridge Group and the Lexington Limestone, both Middle 

Ordovician (Sparks et al., 2001). The High Bridge Group further consists of three 

formations: in ascending order, the Camp Nelson Limestone, the Oregon Formation, and 

the Tyrone Limestone.  

The Kentucky River and its tributaries are strongly incised. Incision from the 

former course to the modern channel apparently was triggered by base-level changes, a 

result of glacial modification of the Ohio River drainage system ca. 1.3 to 1.8 Ma (Teller 

and Goldthwait, 1991; Andrews, 2004). The evidence of headward incision via slope 

adjustment is conspicuously detectable in Shawnee Run. The downstream, strongly incised 

section has reached the base level of the Kentucky River and exposed the relatively older 

Camp Nelson Limestone formation. The mid-stream) section is still incising, and has yet 

to reach the Camp Nelson formation; this part has uncovered the younger Tyrone 
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Limestone and Oregon Formation. The upstream part displays little or no prominent 

incision; the youngest Lexington Limestone is predominantly exposed, with partial 

exposure of Tyrone Limestone and Oregon formation near the end of this section.  

The climate is humid subtropical, and mean annual precipitation is about 1200 mm. 

The dominant land use in the vicinity of the study area is pasture (cattle and horse grazing) 

and forest. Potential natural vegetation is dominantly forest, though savanna and grassland 

ecosystems existed (and some still persist) in the Bluegrass Region (Campbell, 1989). 

 

4.3 Methods 

4.3.1 Sampling method  

This research is based on a hierarchical sampling method where smaller spatial 

scales are nested within larger scales. Field data was collected between April and July 

2018.   

The study areawas divided into three hierarchical scales: domains, reaches and hydraulic 

units. Domains were the broadest spatial scale, and classified as unincised, incising and 

incised based on the morphological contrasts related to the incision status and valley side 

relief of the channel. The unincised domain located at the upstream portion exhibited ~ 5-

15 m of valley side relief while valley side relief of the incised domain displayed was ~ 

50-70 m at the downstream section of Shawnee Run. In between, the incising domain 

ranges has ~ 25-35 m of valley side relief. From each domain, three reaches were surveyed 

where the starting point of each reach was selected randomly. Thus, a stratified random 

sampling method was used. Each reach consisted of ten hydraulic units, the smallest spatial 

scale of this study, and the total length of the HUs of a reach determined the reach length, 



101 
 

which ranged from 117 to 177 m. The locations of the domains, reaches and hydraulic units 

are shown in Figure 4.2. 

 

Figure 4.2: The slope map (left) and elevation map of Shawnee Run with sampling sites 
demarcated in the elevation map. The dotted boxes display (a) unincised portion and 
reaches 1-3;  (b) moderately incised portion and reaches 4-6; (c) strongly incised portion 
and reaches 7-9  (base map: Kentucky Geologic Map Information Service). 
 
 

Hydraulic units are spatially distinct patches of relatively homogenous surface flow 

and substrate character (Fryirs & Brierley, 2012). Four distinct categories of hydraulic units 

were identified: high gradient riffle (HGR), low gradient riffle (LGR), pool and run (Figure 

4.3). The average lengths of hydraulic units are 13.6, 15.2 and 13.7 m surveyed in the 

unincised, incising, and strongly incised domains, respectively.  



102 
 

 

Figure 4.3: The classification scheme of hydraulic units (HUs) at each reach. (redrawn 
after Jerin and Phillips 2020). 
 

The classification scheme of HUs (Figure 4.3) is primarily based on the channel 

morphological variation associated with channel bed slope, and width and depth. The 

irregularity of the water surface within a reach, caused by channel slope and roughness 

variations, distinguishes the runs and pools from the riffles. Further, pools and runs were 

separated based on the width and depth variability within a reach. The distinction between 

low and high gradient riffles were based on the variation in steepness of the slope. The 

threshold value of slope steepness separating HGR and LGR in the study area is 0.02 m/m, 

determined based on the field reconnaissance results. As the determination of HUs is 

unavoidably influenced by streamflow and stage, they were demarcated at flows below 

bankfull, but well above summer low-flow levels. 

 

4.3.2 Geomorphic survey 

The geomorphic field data obtained via field survey includes channel bed elevation 

and cross-section data. The longitudinal profile of each reach was developed using the bed 

elevation values measured using a laser level and prism along the thalweg of the channel. 
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The longitudinal profiles were used to determine the HU and reach scale slopes. The HU 

values were further used for discerning HGR and LGR.  

A total of 90 channel cross sections were measured. Bankfull channel width and 

depth were measured at the approximate mid-point of each HU using a measuring tape and 

a rod. Bankfull channel depth was measured at 0.5 m intervals or less. These measurements 

were used to calculate bankfull average depth, maximum and minimum depth, and 

width/depth ratio. Bankfull flow elevations were identified based on the floodplain surface 

following methods described by Stream Systems Technology Center (2002). The key to 

designate the bankfull elevation is to identify the relatively flat depositional surface of the 

floodplain, as bankfull stage occurs when water just begins to overtop the floodplain. Along 

the inside of meander bends (the level top of a point bar is a reliable indicator of bankfull 

elevation), and along both sides of straight reaches where the floodplain is easily detectable 

are optimal locations for delineating bankfull elevations. 

For each hydraulic unit, dominant substrate characteristics was determined. While 

channel width and depth data were collected for each hydraulic unit, substrate 

characteristics per interval (≤0.5 m) of the channel width was recorded. The substrates were 

categorized as intact bedrock; fine grained alluvium (FGA); cobbles; boulders; gravels; 

mixture of gravel, cobbles, boulders and FGA; mixture of bedrock, fine grained alluvium 

and others; tree roots.  
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4.3.3 Vegetation survey 

The vegetation survey was conducted within the riparian zone of each HU. Any 

tree with a portion of trunk within 2 m of the banktop, on the bank, or within the channel 

was included. All woody plants with a diameter at breast height (1.37 m above ground 

level) ≥ 5 cm were identified. Circumference at breast was measured using a measuring 

tape to derive diameter at breast height (DBH) and basal area (BA). Also determined from 

the vegetation survey were species richness, total number of individuals, and proportion of 

American sycamore (Platanus occidentalis) basal area. American sycamore, in comparison 

to other identified species, exhibits larger contribution to biogeomorphic impacts relative 

to their proportion (Jerin and Phillips 2020). Further, their total basal area is larger than 

that of any other species identified in the study area. 

 

4.3.4 Biogeomorphic survey 

The biogeomorphic survey scheme is based on the designation of impacts of 

vegetation on channel forms and processes measured during the vegetation survey. An 

inventory of important biogeomorphic impacts associated with bedrock streams was 

developed based on the field reconnaissance survey and after Jerin (2019). The 

biogeomorphic impacts observed include live vegetation associated sediment and wood 

trapping, anchoring of bars and islands, root banks promoting bioprotection, root and trunk 

growth fostering bioweathering, and bedrock mining caused by tree uprooting. Individual 

trees may be associated with multiple biogeomorphic impacts. Therefore, the number of 

biogeomorphic impacts associated with each riparian tree was recorded too. 
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4.3.5 Statistical analysis 

The spatial variability of geomorphic, vegetation and biogeomorphic variables was 

investigated using nested or hierachical ANOVA, which allows evaluation of the 

contributions of multiple spatial scales to overall variance. While ANOVA is a common 

statistical method used to analyze differences between group means, nested ANOVA is a 

special case of ANOVA that allows for the variance of the lowest level of a hierarchy to 

be used to estimate the variance of all other levels. Nested ANOVA procedures have been 

an accepted statistical analysis method in geography dating back at least to 1965 (Haggett 

et al. 1965; Phillips 1986). While this method lacks the resolution of geostatistics and 

autocorrelation (Campbell 1978), it provides information about key scales of variation and 

has been successfully implemented in several geographic applications (e.g.  Jamieson et al. 

1983; Nortcliff 1978; Shouse 2014). The nested ANOVA procedure provides important 

clues about the key scale of variation via variance partitioning; i.e. it allows determination 

of the percent of variance attributable to each hierarchical level. For this research, a nested 

analysis of variance is performed at three levels: i) among domain locations based on valley 

side relief and incision status, ii) among reaches nested within each domain, and iii) among 

hydraulic units nested in each reach. For each level, two sets of hypotheses were 

formulated; one for the channel morphology data block (set A), and another for vegetation 

and biogeomorphology (set B).  

 

Classical notions of downstream hydraulic geometry (Leopold and Maddock 1953) 

as well as the RCC produce a hypothesis (H1A) that variation of channel morphology is 

controlled and explained mainly by systematic upstream to downstream variation. Two 
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alternatives linked to more spatially complex hierarchical patterns of variability are: H2A-

-variation of channel morphology is controlled and explained mainly by reach-scale 

variations related to local variations in geomorphic controls superimposed on general 

upstream to downstream trends; and H3A--channel morphology variability is linked 

mainly to highly local variations related to local lithological and structural controls. 

These are associated with analogous hypotheses regarding riparian trees. These are 

that variation of riparian trees is controlled and explained mainly by: systematic upstream 

to downstream variation (H1B); reach-scale variations related to local variations in habitat 

superimposed on general upstream to downstream trends (H2B); or highly local edaphic 

variations related to the hydraulic unit scale (H3B). Variation in riparian trees refers to 

variation in species richness, total number of individuals, proportion of American sycamore 

basal area, and total number of biogeomorphic impacts associated with vegetation. Further, 

this study aimed to identify at which scale the spatial patterns and distribution of channel 

morphology and riparian trees are most tightly coupled. The hypotheses are: 

Ho: Spatial patterns and distributions of channel morphology and riparian trees are only 

loosely coupled, such that their variation occurs at different scale levels.  

HA: Spatial patterns and distributions of channel morphology and riparian trees are tightly 

coupled, such that their variation occurs at the same scale level.  

Results of the hierarchical ANOVA are also directly comparable to semivariance analysis 

(Miesch 1975). Data transformation was conducted for maintaining the normality 

assumption required for ANOVA analysis.  
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4.4 Results 

4.4.1 Channel morphology  

The geomorphic data block, representing channel morphology, includes eight 

variables: channel slope, bankfull width, bankfull average and maximum depth, width-

depth ratio, channel cross-section area, wetted perimeter and hydraulic radius. Nested 

ANOVA was carried out on six of these variables excluding maximum depth and wetted 

perimeter, as maximum and mean depth, and wetted perimeter and channel width are 

closely related.  

Results show that slope values vary considerably at local hydraulic unit scale while 

the reach-scale slope values are similar at each domain.  The mean slope value of the 

unincised reaches is 0.01, and of incising and incised reaches is 0.02. For all reaches, the 

minimum slope is zero and the maximum slope values can be found in midstream reaches. 

Bankfull channel width increases from up- to midstream. However, from mid- to 

downstream a decreasing pattern is  observed. A similar trend can be observed for the 

channel cross-section area and the width-depth ratio variables. Width-depth ratio also 

shows the largest standard deviation in all nine reaches (table 1) and all three domains 

(table 2) among all variables. While the bankfull average depth and hydraulic radius 

variables locally vary considerably, the mean values of these two variables at reach and 

domain scale remain more or less consistent. However, the maximum values of the bankfull 

average depth and hydraulic radius can be found at the midstream-incising reaches, while 

the lowest values are in upstream unincised reaches. A summary of the data is presented in 

tables 4.1 and 4.2, and results are discussed in more detail below.  
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Table 4.1: Descriptive statistics of geomorphic data block by reaches. 

R
ea

ch
 

ID
 

Descriptive 
Statistics 

Slope 
(m/m) 

Bank-
full 

Width 
(m) 

Bankfull 
Ave 

Depth 
(m) 

Width-
depth 
ratio 

Cross-
section 

area  
(sq. m) 

Hydr-
aulic 

radius 
(m) 

1 Mean 0.01 6.54 0.55 13.23 3.49 0.50 
Max 0.03 8.90 0.76 23.62 4.17 0.64 
Min 0.00 4.60 0.30 6.68 2.19 0.30 
Standard deviation 0.01 1.39 0.15 6.13 0.69 0.10 

2 Mean 0.01 6.55 0.44 15.99 2.95 0.44 
Max 0.05 8.00 0.66 30.60 5.25 0.66 
Min 0.00 5.60 0.19 11.97 1.10 0.19 
Standard deviation 0.02 0.71 0.12 5.73 1.04 0.12 

3 Mean 0.01 8.53 0.50 17.35 4.31 0.50 
Max 0.04 10.50 0.60 24.15 5.92 0.60 
Min 0.00 6.00 0.37 13.40 2.41 0.37 
Standard deviation 0.02 2.81 0.24 9.61 3.06 0.22 

4 Mean 0.02 10.76 0.52 23.80 5.74 0.51 
Max 0.06 14.60 1.02 44.48 11.58 0.91 
Min 0.00 6.55 0.23 8.82 1.49 0.23 
Standard deviation 0.02 2.81 0.24 9.61 3.06 0.22 

5 Mean 0.02 12.72 0.47 31.61 6.04 0.47 
Max 0.04 16.50 0.85 73.53 11.02 0.85 
Min 0.00 8.15 0.22 15.34 2.93 0.22 
Standard deviation 0.01 2.71 0.19 17.61 2.87 0.19 

6 Mean 0.02 13.74 0.39 40.44 5.24 0.38 
Max 0.06 21.70 0.82 80.77 9.22 0.73 
Min 0.00 7.00 0.18 8.51 1.84 0.18 
Standard deviation 0.02 5.28 0.18 19.17 2.53 0.15 

7 Mean 0.02 10.67 0.47 24.18 5.17 0.47 
Max 0.04 20.00 0.68 48.24 10.32 0.68 
Min 0.00 5.80 0.23 12.55 2.51 0.23 
Standard deviation 0.01 3.89 0.13 11.15 2.69 0.13 

8 Mean 0.01 13.66 0.44 33.60 6.16 0.44 
Max 0.02 16.00 0.67 52.84 9.78 0.67 
Min 0.00 12.00 0.24 21.50 3.00 0.24 
Standard deviation 0.01 1.48 0.15 9.53 2.49 0.15 

9 Mean 0.02 10.65 0.46 25.92 4.88 0.46 
Max 0.05 12.20 0.67 38.86 7.25 0.67 
Min 0.00 8.30 0.27 13.67 2.30 0.27 
Standard deviation 0.02 1.31 0.15 8.49 1.74 0.15 
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Table 4.2: Descriptive statistics of geomorphic data block by domains. 

Domain Descriptive 
Statistics 

Slope 
(m/m) 

Bankfull 
Width 

(m) 

Bankfull 
Ave 

Depth 
(m) 

Width-
depth 
ratio 

Cross-
section 

area 
(sq. m) 

Hydrauli
c radius 

(m) 

Unincised Mean 0.01 7.21 0.50 15.52 3.58 0.48 
Max 0.05 10.50 0.76 30.60 5.92 0.66 
Min 0.00 4.60 0.19 6.68 1.10 0.19 
Standard 
deviation 

0.01 1.54 0.13 5.27 1.16 0.10 

Incising Mean 0.02 12.41 0.46 31.95 5.67 0.45 
Max 0.06 21.70 1.02 80.77 11.58 0.91 
Min 0.00 6.55 0.18 8.51 1.49 0.18 
Standard 
deviation 

0.02 3.87 0.20 16.93 2.75 0.19 

Strongly 
Incised 

Mean 0.02 11.60 0.46 27.40 5.44 0.46 
Max 0.05 20.00 0.68 52.84 10.32 0.68 
Min 0.00 5.80 0.23 12.55 2.30 0.23 
Standard 
deviation 

0.01 2.85 0.14 10.44 2.32 0.14 

 

4.4.1.1 Slope  

Slope is represented via the channel longitudinal profile of the nine reaches (Figure 

4.4). The longitudinal profile shows that the local scale slope can substantially. Even 

elevation values in several cases increase downstream; these locations primarily indicate 

the presence of pools. Large drop in elevation downstream at local scale largely manifests 

riffles (high or low gradient) while minor or zero slope exhibits runs. Drop in elevation at 

the reach scale is larger in the midstream and downstream reaches than the upstream 

reaches.   
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Figure 4.4: Longitudinal profile of nine reaches where 1-3 represents upstream reaches, 
4-6 represents midstream reaches and 7-9 represents downstream reaches. (Note: initial 
elevation data for each longitudinal profile was approximated from the elevation map in 
figure 4.2) 
 

Channel slope value of each hydraulic unit was used for conducting nested 

ANOVA. Results (Table 4.3) indicate that slope variation is predominantly explained at 

the local hydraulic unit (HU) scale. The between HU and within HU slope variations 

accounts for ~93% of total variance of the dataset. Further, while the domain scale slope 

variation explains ~7% of the total variance, reach scale slope explains no variance at all. 

While this is partially expected, given that HUs are defined, indirectly at least, on the basis 

of slope, the minimal influence of upstream-downstream trends is contrary to expectations.  
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Table 4.3: Results from three factor nested ANOVA for slope variation. 

Variance source DF F value P value Variance component Percent of Total 

Total 89   0.0039 100.00 

Domains 2 10.43 0.011 0.0003 7.30 

Reaches 6 0.25 0.958 -0.0003 0.00 

HUs  81   0.0036 92.70 

 

4.4.1.2 Bankfull width, depth and width-depth ratio 

Bankfull channel width, depth and width-depth ratio display an overall increasing 

trend from upstream to midstream, and then a decreasing trend from midstream to 

downstream (Figure 4.5). Channel width ranges from ~5 m – 10.5 m in upstream reaches 

(Fig. 6:1-30), ~6 m – 24.5 m in midstream reaches (Figure 4.5: 31-60) and ~6 m -16 m in 

downstream reaches (Figure 4.5: 61-90).  

 

 
Figure 4.5: Bankfull width, maximum depth and width-depth ratio at hydraulic unit scale 
where 1, 31 and 61 mark the beginning of unincised, incising and strongly incised 
domain respectively.  
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Nested ANOVA on channel width shows that about 46% of width variation is explained at 

the HU scale, while the domain scale accounts for ~44% (Table 4.4).  

Because bankfull average depth and maximum depth are closely related, nested 

ANOVA was conducted only for average depth. More than 99% of average depth variation 

is explained at the HU scale. Nested ANOVA on channel width-depth ratios show that 

~54% of variance is explained at local HU scale, while ~36.5% and 9.5% is explained at 

domain and reach scale respectively (Table 4.4). 

Table 4.4: Results from three factor nested ANOVA for bankfull channel width and 
width-depth ratio. 
 

Variable Variance 
source 

DF F value P value Variance 
component 

Percent of 
Total 

Channel 
width 

Total 89   16.0368 100.00 

Domains 2 10.36 0.011 7.0742 44.11 

Reaches 6 3.05 0.010 1.5234 9.50 

HUs  81   7.4391 46.39 

Average 
depth 

Total 89   0.0239 100.00 

Domains 2 1.19 0.366 0.0001 0.59 

Reaches 6 0.91 0.493 -0.0002 0.00 

HUs  81   0.0237 99.41 

Width-
depth 
ratio 

Total 89   0.0562 100.00 

Domains 2 8.39 0.018 0.0205 36.50 

Reaches 6 2.74 0.018 0.0053 9.41 

HUs  81   0.0304 54.09 

 

4.4.1.3 Cross section area and hydraulic radius 

Channel cross-section area for each hydraulic unit was determined from bankfull 

channel width and average depth measured during field survey. Further, hydraulic radius 

for each hydraulic unit was determined using the cross-sections. While channel width, and 
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bankfull average and maximum depth depict an increasing trend from upstream to 

downstream (Figure 4.5 & Figure 4.6), local scale variations of these variables are 

important in influencing the cross-section area (Figure 4.6). 

 
Figure 4.6: Bankfull width, maximum depth and cross-section area per HU scale where 1, 

31 and 61 mark the beginning of unincised, incising and strongly incised domain 

respectively.  

 

Again, while the hydraulic radius values display no discernable distribution pattern 

at HU scale, it is noticeable that incising domain shows greater values compared to the 

unincised and strongly incised domain (Figure 4.7).  
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Figure 4.7: Hydraulic radius per HU along the longitudinal profile of Shawnee Run 

 

Nested ANOVA results of channel cross-section area (Table 5) show that ~86% of 

the cross-section variation is explained at local hydraulic unit scale. The remaining 14% is 

explained at the domain scale. However, for the hydraulic radius 100% of its variation is 

explained at local hydraulic unit scale (Table 4.5).  

 

Table 4.5:  Results from three factor nested ANOVA for channel cross-section area. 
 

Variable Variance 
source 

DF F value P value Variance 
component 

Percent of 
Total 

Cross-
section 
area 

Total 89   6.1444 100.00 

Domains 2 5.27 0.048 0.8206 13.35 

Reaches 6 1.09 0.374 0.0491 0.80 

 HUs  81   5.2747 85.85 

Hydraulic 
radius 

Total 89   0.0225 100.00 

Domains 2 0.27 0.770 000.00 000.00 

Reaches 6 0.82 0.559 000.00 000.00 

HUs  81   0.0225 100.00 

 

 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80 90

Hy
dr

au
lic

 ra
di

us
 (m

)

Hydraulic units (up- to downstream)

Uniincised Incising Strongly Incised



115 
 

4.4.2 Substrate characteristics 

The geomorphic data block, representing substrate characteristics, includes 

variation in intact bedrock, fine grained alluvium and mixed substrates of gravels, cobbles, 

boulders, fine grained alluvium, bedrock and others. While Shawnee Run is a bedrock-

controlled stream, local scale variations in substrate characteristics were evident. Field data 

shows variability in substrate characteristics at hydraulic unit scale (Figure 4.8a). By up-

scaling substrate characteristics from the local HU to domain scale, dominant substrates 

for each incision domain were determined (Figure 4.8b). Figure 4.8b shows that upstream 

(unincised) reaches were predominantly FGA, and a mixture of FGA, gravels, cobbles and 

boulders. On the other hand, incising reaches were dominated by mixture of FGA, gravels, 

cobbles and boulders with secondary dominance of bedrock, particularly near the end of 

the incising domain. The substrate of the strongly incised reaches is largely comprised of 

intact bedrock (Figure 4.8).  
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Figure 4.8: Variation of substrate characteristics at HU scale (a) and domain scale (b) 
where BR = bedrock, FGA = fine grained alluvium, C = cobble, B = boulder, G = gravel, 
TR = tree root, Mixed Substrate = G,C,B,FGA,BR and others. (Note: Fig. 8a only 
contains the three main categories of substrates; thus total substrate per HU may not yield 
a result of 100) 
 

Nested ANOVA results shows that variation of proportion of intact bedrock 

variable is largely explained at reach scale (~40% variance explained) and hydraulic unit 

scale (~33%). Domain scale also explains ~27% of variation of proportion of intact bedrock 

(BR) variable. In contrast, variation of proportion fine grained alluvium (FGA) variable is 
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dominantly explained at domain scale, while reach scale is the least important, accounting 

for only ~2% of variance of this variable. Proportion of mixed substrate variable is 

primarily explained at HU scale (~58% variance explained) and reach scale (~42% 

variance explained); domain scale explains no variance (Table 4.6).  

Table 4.6: Results from three factor nested ANOVA for proportion of three different 
substrates including intact bedrock, fine-grained alluvium and mixed substrate. 
 
Variable Variance 

source 
DF F 

value 
P value Variance 

component 
Percent of 

Total 
Intact Bedrock 
(BR) 

Total 89   0.1048 100.00 

Domains 2 2.89 0.132 0.0283 27.10 

Reaches 6 12.91 0.000 0.0415 39.63 

HUs  81   0.0349 33.27 

Fine grained 
alluvium (FGA) 

Total 89   0.0452 100.00 

Domains 2 40.09 0.000 0.0291 64.56 

Reaches 6 1.46 0.201 0.0007 1.57 

HUs  81   0.0153 33.87 

Mixed substrate 
(G,C,B,FGA,BR 
and others) 

Total 89   0.0672 100.00 

Domains 2 0.86 0.469 -0.0014 00.00 

Reaches 6 8.30 0.000 0.0283 42.20 

HUs  81   0.0389 57.80 

 

Results shows some anomaly with respect to variance explained at three different 

levels for the proportion of three different categories of substrates (Table 7). While 

variation in proportion of FGA is dominantly explained at domain scale, variation in 

proportion of intact BR and mixed substrate is dominantly explained at reach and hydraulic 

unit scale respectively. 
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4.4.3 Vegetation pattern and distribution 

The vegetation and biogeomorphic data block consists of four variables: species 

richness, total number of individuals, total number of biogeomorphic impacts, and 

proportion of total basal area accounted for by American sycamore (Platanus occidentalis). 

Field investigation identified 15 different species, of which Quercus muehlenbergii and P. 

occidentalis are the two most dominant. However, the total basal area of P. occidentalis 

sampled is 35.18 m2, while the second highest total basal area is 8.05 m2 (Q. 

muehlenbergii). As a result, I wanted to specifically investigate P. occidentalis. For details 

of the impacts of P. occidentalis,a biogeomorphic keystone species in Shawnee Run,  see 

Jerin and Phillips (2020). 

Results show that the largest species richness values can be identified in midstream 

reaches. About 13% of HUs in the upstream reaches and 3% of HUs in the downstream 

reaches exhibit absence of any riparian tree, while all HUs in the midstream reaches include 

at least one riparian tree. The mean species richness, however, shows no definite pattern 

from up-to-downstream reaches. In contrast, the mean total number of individuals show an 

increasing pattern from up- to midstream, and then a declining pattern from mid- to 

downstream. This trend closely parallels to the mean total number of biogeomorphic 

impacts indicating that if the number of trees increases, more biogeomorphic impacts are 

likely. However, species-specific impacts are important too, particularly biogeomorphic 

impacts associated with American sycamore in bedrock-controlled streams (see Jerin and 

Phillips 2020). In our study, while American sycamore was not present in every reach, it 

accounted for all tree basal area in one HU. Mean proportion of basal area occupied by 

sycamore was about 20 percent in upstream, unincised reaches, 63 percent in the middle 
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reaches, and 32 percent in the downstream, incised reaches. Further, biogeomorphic 

impacts per tree − derived from total BGIs and total number of individuals – increases from 

up to midstream and declines  from mid to downstream at reach scale. However, the lowest 

mean occurs in an unincised reach. A similar pattern is observed at the domain scale. The 

descriptive statistics are reported in Table 4.7 and 4.8.  

Table 4.7: Descriptive statistics of vegetation and biogeomorphic data block by reach.  
 

R
ea

ch
 

ID
 

Descriptive 
Statistics 

Species 
richness 

Total # 
of 

individua
ls 

Proportion 
of Platanus 
occidentalis 

basal area  

Total 
BGIs 

BGIs 
per tree 

 

1 Mean 3.30 6.90 0.122 5.80 0.841 
Max 4.00 10.00 0.780 10.00 1.000 
Min 2.00 3.00 0.000 2.00 0.667 
Standard deviation 0.67 2.56 0.269 3.68 1.438 

2 Mean 2.10 4.10 0.234 1.00 0.244 
Max 3.00 6.00 0.989 5.00 0.833 
Min 0.00 0.00 0.000 0.00 0.000 
Standard deviation 1.20 2.51 0.336 1.63 0.649 

3 Mean 1.60 2.40 0.229 0.80 0.333 
Max 3.00 5.00 0.976 3.00 0.600 
Min 0.00 0.00 0.000 0.00 0.000 
Standard deviation 0.82 3.63 0.413 3.28 0.904 

4 Mean 2.30 6.40 0.555 5.90 0.922 
Max 3.00 12.00 1.000 10.00 0.833 
Min 1.00 1.00 0.000 1.00 1.000 
Standard deviation 0.82 3.63 0.413 3.28 0.904 

5 Mean 4.00 10.20 0.577 10.80 1.059 
Max 6.00 15.00 0.896 21.00 1.400 
Min 2.00 3.00 0.000 1.00 0.333 
Standard deviation 1.33 4.08 0.360 5.94 1.456 

6 Mean 2.90 7.30 0.752 8.20 1.123 
Max 4.00 14.00 0.947 19.00 1.357 
Min 2.00 2.00 0.126 3.00 1.500 
Standard deviation 0.74 3.23 0.273 4.98 1.542 

7 Mean 2.20 5.00 0.548 4.20 0.840 
Max 3.00 11.00 0.960 7.00 0.636 
Min 1.00 3.00 0.000 1.00 0.333 
Standard deviation 0.79 2.40 0.473 2.53 1.054 
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Table 4.7 (continued) 

R
ea

ch
 

ID
 

Descriptive 
Statistics 

Species 
richness 

Total # 
of 

individua
ls 

Proportion 
of Platanus 
occidentalis 

basal area  

Total 
BGIs 

BGIs 
per tree 

 

8 Mean 1.90 4.50 0.000 2.90 0.644 
Max 4.00 13.00 0.000 7.00 0.538 
Min 1.00 1.00 0.000 1.00 1.000 
Standard deviation 1.10 4.25 0.000 1.97 0.464 

9 Mean 1.64 2.73 0.368 2.36 0.864 
Max 3.00 6.00 0.981 5.00 0.833 
Min 0.00 0.00 0.000 0.00 0.000 
Standard deviation 0.84 1.77 0.443 1.84 1.040 

 
 
Table 4.8: Descriptive statistics of vegetation and biogeomorphic data block by domain. 
Domain Descriptive 

Statistics 
Species 
richness 

Total # of 
individuals 

Proportion 
of Platanus 
occidentalis 

basal area  

Total 
BGIs 

BGIs per 
tree 

Unincised Mean 2.33 4.47 0.195 2.53 0.566 
Max 4.00 10.00 0.989 10.00 1.000 
Min 0.00 0.00 0.000 0.00 0.000 
Standard 
deviation 

1.24 2.92 0.326 3.31 1.134 

Incising Mean 3.07 7.97 0.628 8.30 1.041 
Max 6.00 15.00 1.000 21.00 1.400 
Min 1.00 1.00 0.000 1.00 1.000 
Standard 
deviation 

1.20 3.90 0.352 5.11 1.310 

Strongly 
Incised 

Mean 1.90 4.07 0.318 3.17 0.779 
Max 4.00 13.00 0.981 7.00 0.538 
Min 0.00 0.00 0.000 0.00 0.000 
Standard 
deviation 

0.92 3.06 0.431 2.20 0.719 

 

Species richness and total number of individuals show no evident trends by HUs 

(Figure 4.9). Nested ANOVA on species richness and total number of individuals show 

that about 59% of variance is explained at HU scale for both of these variables. Domain 

scale accounts for~10% and ~22% variance of species richness and total number of 
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individuals respectively. Further, proportion of P. occidentalis basal area and total 

biogeomorphic impacts (BGIs) are dominantly explained at local HU scale (Table 4.9).  

 
Figure 4.9: Species richness and total number individuals at hydraulic unit scale where 1, 

31 and 61 mark the beginning of unincised, incising and strongly incised domain 

respectively. 

 
Table 4.9: Results from three factor nested ANOVA for species richness, total number of 
individuals, proportion of Platanus occidentalis and total number of BGIs. 
 
Variable Variance 

source 
DF F value P value Variance 

component 
Percent of 

Total 
Species richness Total 89   1.6052 100.00 

Domains 2 1.82 0.241 0.1607 10.01 

Reaches 6 6.14 0.000 0.4901 30.53 

HUs  81   0.9543 59.45 

Total number of 
individuals 

Total 89   15.5415 100.00 

Domains 2 3.73 0.089 3.4748 22.36 

Reaches 6 4.16 0.001 2.9000 18.66 

HUs  81   9.1667 58.98 
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Table 4.9 (continued) 

Variable Variance 
source 

DF F value P value Variance 
component 

Percent 
of Total 

Proportion of 
Platanus 
occidentalis 

Total 89   0.1841 100.00 

Domains 2 4.64 0.061 0.0391 21.22 

Reaches 6 2.57 0.025 0.0196 10.67 

HUs 81   0.1254 68.11 

Total number of 
BGIs 

Total 89   0.1581 100.00 

Domains 2 4.63 0.061 0.0532 33.67 

Reaches 6 6.51 0.000 0.0372 23.56 

HUs  81   0.0676 42.77 

   

4.5 Discussion 

4.5.1 Local scale controls of hydraulic geometry on fluvial systems 

Patterns and process are interlinked and almost always scale-dependent (Thorp et 

al. 2008). Despite the importance of the domain scale, the local hydraulic unit scale 

predominantly explains the variation of geomorphic variables controlling the channel 

morphology of the study area (Figure 4.10). This indicates that the fundamental processes 

creating the pattern can be understood best at the local scale. Because channel morphology 

variability is linked primarily to local hydraulic unit scale variations, hypothesis H3A (see 

section 4.3.5) was accepted and hypotheses H1A and H2B rejected. This indicates a 

deviation from the river continuum concept and downstream hydraulic geometry 

framework widely used in fluvial studies. 
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Figure 4.10: Comparison of variance components explained at three hierarchical levels 
for geomorphic, vegetation and biogeomorphic variables. 
 

The local scale variation of channel morphology is largely attributable to the local 

geological controls, along with the inherent differences among pools, runs, and high- and 

low-gradient riffles. Bedrock channels occur mainly, but not exclusively, in actively 

incising portions of landscapes where channels are cut into resistant rock units (Whipple 

2004). As a result, they undergo greater influence of lithology and structure compared to 

alluvial rivers. Similarly, Shawnee Run is evolving via incision. As the dominant lithology 

is limestone (see section 4.2), lithological control is likely to be less important influencing 

the local scale geomorphic variations of Shawnee Run. However, local structural controls 

(see Figures 4.2 and 4.11) can play vital roles prompting the local scale hydraulic geometry 

variations. While Figure 4.2 confirms presence of fault lines dissecting Shawnee Run, 

Figure 4.11 shows structural controls of bedding planes and joints controlling the hydraulic 

geometry of the river.   
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Figure 4.11: Local structural controls of bedding planes and joints on Shawnee Run; 

looking upstream (images obtained at incising and strongly incised domains) 

 

Further, results show differences with respect to variance explained at three 

different levels for the proportion of three different categories of substrates (Table 4.6, 

Figure 4.10). Distribution of FGA is largely controlled at the domain scale, which aligns 

with the field observation indicating a gradient of lesser FGA domination downstream. 

This is largely attributable to the incision status defining the domains of this research, 

which in turn is likely related to the frequency of overbank flow and thus alluvial 

deposition. Further, as the dominant substrate characteristics largely varies at different 

domains (Figures 4.8 and 4.10) therefore, incision status is an important control on 

substrate variation.    

 



125 
 

While variation in the proportion of intact BR is dominantly explained at the reach scale, 

the other two scales are important too. Structural controls e.g. bedding planes, joints, faults 

(Figure 4.11) create discontinuities, which may control the distribution of bedrock along 

the longitudinal gradient of the stream. However, this deserves future research. 

Variation in the proportion of mixed substrates (gravels, cobbles, boulders, FGA, 

BR and other) is largely controlled at the hydraulic unit scale, paralleling results associated 

with all channel morphology variables. At the same time, nested ANOVA results show that 

local scale variation is important for the proportion of all three substrate categories. This is 

because local scale dissimilarities in substrate characteristics (Figure 4.8a) are largely 

controlled by local scale hydraulic geometry and channel morphological variations, which 

in turn are closely linked to structural controls and incision status. Nevertheless, localized 

incision itself functions as a crucial factor controlling channel morphology and its 

association with riparian trees. This idea aligns with Shoffner and Royall (2008) who 

showed localized incision as an important control on the variability of hydraulic unit scale 

biotope (hydraulically homogenous abiotic environments of communities) composition. 

Substrate disparity influences hydraulic roughness − important for variation in flow 

velocity along a stream.  Therefore, local scale geomorphic processes creating the pattern 

is reflected via feedback relationships whereby local structural controls and incision 

influence channel morphology, which again influence substrate characteristics. Substrate 

characteristics further impacts flow velocities and thus channel morphology.  

Local scale variation in structural controls and substrate characteristics can create 

discontinuity and patchiness in fluvial systems. According to Thorp et al. (2008), 

discontinuities are often related to regional and local variations in climate, geology, 
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riparian conditions, tributaries, lithology, and/or geomorphology, or with human 

interruptions disrupting the flow, sediment, and/or disturbance regimes. Local variations 

in structural controls (Figure 4.11), substrate characteristics (Figure 4.8), riparian 

vegetation, and presence of karst springs (Figure 4.12) and tributaries are evident controls 

influencing discontinuities and patchiness in Shawnee Run.  As a result, the geomorphic 

and biotic components determined in the Shawnee Run system are primarily explained at 

hydraulic unit scale (or patch scale). Thus, the study stream does not conform to the RCC 

or DHG expectations, and more closely corresponds to discontinuity-based frameworks.  

 
Figure 4.12: Karst spring influencing patchiness and discontinuities in Shawnee Run 

 

4.5.2 Local scale controls of riparian vegetation on fluvial systems 

Variation of riparian tree numbers and richness is largely controlled and explained 

at the local hydraulic unit scale (Figure 4.9) — results equivalent to that of hydraulic 

geometry variation (see section 4.5.1). This local scale variation can be explained by the 
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highly local edaphic differences along the riparian corridor. Local edaphic variation is 

likely to be related to the local scale fluvial process-form variations, and biogeomorphic 

impacts and feedbacks. For instance, Jerin and Phillips (2020) show that pools can be 

formed via species-specific biogeomorphic impacts and feedbacks along a fluvial corridor, 

and thus can develop edaphic heterogeneity in bedrock-controlled flowing channels. 

Further, riparian vegetation controls sediment transport and cohesiveness, and thus 

influences the size, shape and stability of resulting landforms. These landforms, further, 

determine habitat conditions mediating micro-scale plant species interactions and 

vegetation dynamics (e.g. Bendix and Hupp 2000; Stallins 2006; Corenblit et al. 2007; Kim 

2012). Additionally, some trees (particularly Q. muehlenbergii and P. occidentalis) more 

readily adapt to exposed rock and thin-soil sites by exploiting rock joints with their roots; 

while FGA sites may support these and other species. Because variation of riparian trees is 

dominantly explained at local HU scale, hypothesis H3A was accepted (see section 4.3.5). 

This further signposts a divergence from the river continuum concept and affinity to 

discontinuity-based frameworks.  

 

4.5.3 Local scale interactions in fluvial biogeomorphology 

If an Earth surface system is hierarchically structured, system components can be 

disparately explained at different levels—that is, the dominant controls of process-response 

relationships vary with spatial scale (e.g. Sherman 1995; Bergkamp 1998; Parsons and 

Thoms 2007; Phillips 2008;  Reuter et al. 2010). This is also reflected in the results obtained 

from nested ANOVA analysis for the geomorphic, vegetation and biogeomorphic data 

blocks (Figure 4.9). Channel morphology and vegetation patterns are primarily controlled 
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and explained by local scale variations rather than systematic upstream to downstream 

variation or reach scale variation in Shawnee Run. These results are consistent with the 

idea of tight coupling between channel morphology and riparian vegetation, although they 

do not, by themselves, prove such interactions. This suggests that Shawnee Run is 

potentially a strongly coupled fluvial biogeomorphic system evolving via local scale 

interactions between fluvial process-form and biogeomorphic impacts and feedbacks. 

However, this deserves future research. 

Hydraulic units and domains were selected based on observed morphological 

differences, while reaches were randomly selected within domains as aggregation of HUs. 

The majority of the geomorphic, vegetation and biogeomorphic variables associated with 

this research were primarily explained at HU scale and secondarily the domain scale, and 

little variation was explained at reach scale (Figure 4.10). If systematic, more-or-less 

continuous variation were dominant, the domain scale would have accounted for most of 

the variation. Conversely, if (as turned out to be the case) local patch-scale variation is 

dominant, most variation would be associated with the HU scale. The inclusion of reaches 

in this study, and their general unimportance in contributing to variation in channel 

morphology, tree, and biogeomorphic variables, indicates that, at least in Shawnee Run, 

the highly localized variations and the broader up-to-downstream context are indeed the 

critical scales.  

  

4.6 Conclusions  

Most fluvial systems depict systematic, continuous upstream-to-downstream 

variations in channel morphology and linked ecological and hydrological parameters, 
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emphasized by conceptual frameworks including the downstream hydraulic geometry and 

the river continuum concept. While this conception has been widely used in many 

geomorphological, hydrological, and ecological studies, this research presents divergence 

from it by investigating the relative importance of broader-scale up-to-downstream 

variation vs. local hydraulic unit scale variation in a bedrock-controlled stream. 

Channel morphology and vegetation patterns in the study area are primarily 

controlled and explained by local scale variations rather than systematic upstream to 

downstream variation or reach scale variation. Local scale variation in channel morphology 

is primarily attributable to the local scale structural controls and incision status that can 

potentially develop discontinuity and patchiness in fluvial systems, Furthermore, local 

scale variation in riparian trees is largely controlled by local edaphic differences linked to 

fluvial process-forms, and biogeomorphic impacts and feedbacks. While both up-to-

downstream and local scale variations are common in all fluvial systems, local scale 

controls are probably the most important scale for understanding bedrock-controlled fluvial 

geomorphic systems. 
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CHAPTER 5. CONCLUSIONS 

 

5.1 Research synthesis 

The interactions between fluvial process-forms and riparian vegetation vary 

in different environments and are uncertain in bedrock settings. Bedrock streams 

are much less studied than alluvial in all aspects, and in many respects act in 

qualitatively different ways. This research seeks to fill this lacuna by studying 

bedrock streams from a biogeomorphic perspective. To facilitate this contribution 

this research addresses three research objectives (Table 5.1 and Figure 5.1) that 

help to identify and assess the important biogeomorphic impacts (BGIs) – species-

specific vs. generalized – and feedbacks developing a fluvial biogeomorphic 

system via interactions across scales. 

Table 5.1: Relationship between dissertation objectives, research approach and 
data chapters. 

Research 
objectives 

Research approach Ch. 

1. Explore 
the BGIs of 
vegetation 
associated 
with 
bedrock 
streams. 

• Review the fluvial 
biogeomorphic and rocky 
hillslope environment literature. 

• Identify the biogeomorphic 
impacts of vegetation on bedrock 
streams from six different 
bedrock environments 

• Introduce biogeomorphic impact 
triangles to represent the 
common vs. unique 
biogeomorphic impacts 
associated with alluvial and 
bedrock fluvial environments, 
and rocky hillslopes.   

Ch. 
2 
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Table 5.1 (continued) 

Research 
objectives 

Research approach Ch. 

2. 
Investigate 
the species-
specific vs. 
the general 
BGIs of 
vegetation 
on fluvial 
process-
forms from 
the context 
of biogeo-
morphic 
keystone 
species. 

• Develop the concepts of 
biogeomorphic keystone species 
and equivalents under the 
ecological theoretical framework 
of keystone species and 
ecological equivalents. 

• Relate these concepts with field 
examples obtained from the 
study area Shawnee Run. 

• Introduce a conceptual model of 
biogeomorphic pool 
development in bedrock streams. 

• Introduce an avulsion-originated 
island development framework 
associated with biogeomorphic 
equivalents.  

Ch. 
3 

3. 
 Identify the most 
important spatial 
scale of variation 
of channel 
morphology and 
biogeomor-
phological 
phenomena. 
 

• Understand the relative 
importance of broader-scale up-
to-downstream variation vs. 
local scale variation in a 
bedrock-controlled stream. 

• Relate these findings with the 
River Continuum Concept and 
Downstream Hydraulic 
Geometry Concept. 

• Investigate the importance of 
geological controls on bedrock 
fluvial systems identifying the 
important scale of variation of 
channel morphology and riparian 
vegetation. 

Ch. 
4 
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Figure 5.1: Organization of the research and the relationship between dissertation 
objectives and associated findings.  

 

Biogeomorphic impacts associated with bedrock fluvial systems remain 

understudied, though alluvial fluvial systems have been extensively studied from 

this context. The first part of the dissertation aims to fill this gap. This research 

shows that bedrock streams exhibit both shared and highly concentrated 

biogeomorphic impacts in relation to alluvial streams and bedrock hillslope 

environments. It shows that while no biogeomorphic impacts associated with 

bedrock streams are unique to the environment, the bioprotective function related 

to root banks and the processes related to bioweathering and erosion are rarely 

addressed in alluvial fluvial literature − however important in bedrock fluvial 

environments. Thus, this research not only contributes to the knowledge gap but 

also points out towards some important research questions which are: 
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i) What is the relative importance of bioprotection along alluvial and bedrock 

streams, as bedrock ones are quite resistant anyway? 

ii) What is the role of bioweathering and erosion along stream banks in bedrock 

channel evolution? 

The second part of the dissertation is largely founded upon the 

biogeomorphic impacts identified in the first part. Further, it investigates the 

importance of bioprotection, bioweathering and erosion in bedrock channel 

processes and forms from the context of species-specific vs. generalized BGIs. 

Thus, the second part addresses the research questions raised in the first part of the 

dissertation.  

The second part of the dissertation has two specific goals. First, drawing from 

ecological lexicon, it introduces some biogeomorphic concepts with respect to different 

biotic impacts on surface processes and forms largely identified in the first part of the 

dissertation. Second, it explores different biogeomorphic roles of vegetation from the 

empirical evidence obtained from a bedrock fluvial system in central Kentucky. Field 

investigation of the biogeomorphic impacts associated with bedrock streams identified 

three important biogeomorphic roles of riparian vegetation: 

i. Biogeomorphic pool formation linked to bioweathering. 

ii. Development of avulsion associated islands related to bioprotection. 

iii. Root banks associated with bioprotection. 
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The second part of the dissertation evaluates these biogeomorphic impacts with respect to 

biogeomorphic keystone species or other biogeomorphic roles (Figure 1). This study 

identified that Platanus occidentalis is exclusively associated with biogeomorphic pool 

development via bioweathering – a species-specific biogeomorphic impact – and these 

pools can substantially alter the fluvial-process-form dynamics. Because the absence of 

Platanus occidentalis would result in fundamentally different channel morphology, it is 

designated as biogeomorphic keystone species in Shawnee Run. This study further 

identified that certain species can play the role of autogenic bioconstructors by developing 

a distinct bioprotective forms, root banks – a biophysically originated geomorphic form. 

Moreover, trees can promote avulsion-originated island formation by creating erosion-

resistant bioprotective patches. While any live vegetation can play comparable 

bioprotective roles (i.e. a generalized BGI), certain species may play this role better than 

others, particularly at the mature stage. This research found that large (in terms of DBH) 

Platanus occidentalis and Quercus muehlenbergii dominated the islands of the study area 

and play comparable roles with respect to avulsion-originated island development via 

bioprotection. Thus, they are designated as biogeomorphic equivalents. Lastly, this study 

discovered that vegetation-induced bedrock weathering functions as an important source 

of sediment in bedrock streams. However, just about all species identified in the study area 

can play this biogeomorphic role, and thus can be recognized as biogeomorphic influencers 

that are also equivalents.  

This research brings forth some important future research concerns. The 

biogeomorphic pool formation analysis needs further investigation in other bedrock fluvial 

environments. Future research should examine whether biogeomorphic pools are 
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exclusively associated with Platanus occidentalis in other fluvial systems. Further, while 

root-banks are characterized as important bioprotective form in our study area, a key 

question is whether root banks, in the long term, actually facilitate bank erosion over 

protection. While living roots are highly resistant and shield bedrock from hydraulic forces, 

the roots probably facilitate dissolution, rock slab displacement, and other forms of 

weathering. When the tree dies, the exposed bank may be more weathered and erodible 

than bedrock banks that have not had root banks. This deserves further research (for details 

see Chapter 2). Thus, the identification of biogeomorphic keystone species, equivalents 

and other biogeomorphic roles can potentially facilitate the recognition of critical points in 

the coevolution of geomorphological and ecological systems.  

The first two parts of the dissertation signpost that Shawnee Run is a strongly 

coupled fluvial biogeomorphic system evolving via interactions between fluvial process-

form and biogeomorphic impacts and feedbacks. This also brings forth an important 

research question − what is the most important spatial scale of variation controlling 

geomorphic, vegetation and biogeomorphic components of a bedrock-controlled fluvial 

biogeomorphic system? The third part of the dissertation deals with this research question.  

Most fluvial systems depict systematic, continuous upstream-to-downstream 

variations in channel morphology and linked ecological and hydrological parameters, 

emphasized by conceptual frameworks including the downstream hydraulic geometry and 

the river continuum concept. While this conception has been widely used in many 

geomorphological, hydrological, and ecological studies, this study shows deviation from it 

by investigating the relative importance of broader-scale up-to-downstream variation vs. 

local hydraulic unit scale variation in a bedrock-controlled stream. 
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Channel morphology and vegetation patterns in the study area are primarily 

controlled and explained by local scale variations rather than systematic upstream to 

downstream variation or reach scale variation. Local scale variation in channel morphology 

is primarily attributable to the local scale structural controls and incision status that can 

potentially develop discontinuity and patchiness in fluvial systems, Furthermore, local 

scale variation in riparian trees is largely controlled by local edaphic differences linked to 

fluvial process-forms, and biogeomorphic impacts and feedbacks. The variation of channel 

morphology and riparian trees being controlled at the same scale level is consistent with 

these variables being strongly interconnected, suggesting that Shawnee Run is a strongly 

coupled fluvial biogeomorphic system.  

Lastly, while most, if not all, fluvial systems are characterized by systematic up- to 

downstream variations and local, patchy variability, the relative importance of these almost 

certainly varies with watershed size, environmental context, and other factors. Analogous 

studies are called for on other fluvial systems.  

5.2 Implications for Management and Future Research 

This research points out towards some important aspects that needs to consider 

and investigate in future. Firstly, future research needs to look at larger samples of 

bedrock rivers, including the alluvial–bedrock transitional streams, which are 

influenced by different types of geology. The significance of geological control on 

fluvial process-form and riparian vegetation interactions has been identified in the 

second and third part of the dissertation. The following aspects of bedrock streams 

are worthy of further investigation for river management: 
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• The ideas presented in Chapter 2 and 3 of this research are relevant to reinforced 

(human-controlled) river channels where woody vegetation may colonize hard 

reinforcement such as concrete, laid brick, and stone riprap. Therefore, future 

work related to stream restoration and river bank protection should address 

these ideas, most importantly bioprotection and bioweathering/erosion. 

• Biogeomorphic impacts and related processes associated with bedrock streams 

almost certainly vary spatially and temporally. For example, the third part of 

the dissertation shows that the local hydraulic unit scale is the most important 

spatial scale of variation of channel morphology and biogeomorphological 

phenomena. Future studies should attempt to quantify these variations for 

different types of streams. 

• Bedrock channels are present from deserts to wet tropics, with a broad range of 

tree species that exhibit different growth rates, resilience to mechanical 

disturbance, and tolerances for inundation. Therefore, future research should 

explore the following questions: 

i. Are there some biomes or hydroclimatic regions where woody vegetation is 

more likely to influence bedrock channel processes or forms? 

ii. Does the influence of vegetation depend on factors associated with boundary 

conditions such as lithology, joint geometry, flow regime, and channel 

geometry that limit the ability of trees to germinate and survive? 

The findings of the research presented in this dissertation can provide the 

contextual biogeomorphic understanding necessary to conduct future research in 

fluvial biogeomorphic systems particularly in bedrock-controlled ones. Further, the 
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conceptual framework presented in the second part of the dissertation can be useful 

for biogeomorphic studies in different Earth surface systems. As our understanding 

of improves, future research can investigate other bedrock systems under the 

conceptual framework of biogeomorphic keystone species, equivalents and other 

biogeomorphic roles. Lastly, future research on bedrock streams should be 

conducted with an understanding that local scale variations may well be more 

important than broad scale variation, with data collection and analysis carried out 

accordingly. 

Finally, the key findings of this research point to some future analyses of 

Shawnee Run, which include: 

1. Determining the strength of coupling among channel morphology, vegetation and 

substrate characteristics using a 3-block partial least square analysis following the method 

of Bookstein et al. (2003) and Kim et al. (2015). 

2. Quantifying the configuration of the fluvial biogeomorphic system of Shawnee Run 

under the theoretical and mathematical framework of ‘graph theory’ for understanding the 

complexity, stability, sensitivity, and synchronization properties of the system (after 

Heckmann et al. 2015, Phillips 2012, 2016). 

3. Investigating the species richness-hydraulic unit area relationship to understand 

the relative importance of intrinsic factors (reflected by the types of hydraulic units) 

vs. extrinsic factors (reflected by the size of the riparian corridor) on riparian 

vegetation diversity.  
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APPENDICES 

Appendix 1: Hydraulic units (HUs) sampled from up-to-downstream 

Regime ID Reach ID HU # from up-
to-downstream 

HU category 

Unincised Up1 1 HGR 

Unincised Up1 2 LGR 

Unincised Up1 3 Run 

Unincised Up1 4 Run 

Unincised Up1 5 Pool 

Unincised Up1 6 HGR  

Unincised Up1 7 Run 

Unincised Up1 8 Pool 

Unincised Up1 9 Run 

Unincised Up1 10 LGR 

Unincised Up2 11 Run 

Unincised Up2 12 HGR 

Unincised Up2 13 Pool 

Unincised Up2 14 HGR 

Unincised Up2 15 Pool 

Unincised Up2 16 LGR 

Unincised Up2 17 Pool 

Unincised Up2 18 HGR 

Unincised Up2 19 Run 

Unincised Up2 20 Pool 
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Appendix 1 (table continued) 

Regime ID Reach ID HU # from up-
to-downstream 

HU category 

Unincised Up3 21 HGR 

Unincised Up3 22 Run 

Unincised Up3 23 Pool 

Unincised Up3 24 LGR 

Unincised Up3 25 Run 

Unincised Up3 26 LGR 

Unincised Up3 27 Run 

Unincised Up3 28 Pool 

Unincised Up3 29 Run 

Unincised Up3 30 Pool 

Incising Mid1 31 HGR 

Incising Mid1 32 Pool 

Incising Mid1 33 HGR 

Incising Mid1 34 Pool 

Incising Mid1 35 LGR 

Incising Mid1 36 Pool 

Incising Mid1 37 LGR 

Incising Mid1 38 Pool  

Incising Mid1 39 HGR 

Incising Mid1 40 Pool 

Incising Mid2 41 Run 
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Appendix 1 (table continued) 

Regime ID Reach ID HU # from up-
to-downstream 

HU category 

Incising Mid2 42 HGR 

Incising Mid2 43 Pool 

Incising Mid2 44 Run 

Incising Mid2 45 HGR 

Incising Mid2 46 Pool 

Incising Mid2 47 LGR 

Incising Mid2 48 HGR 

Incising Mid2 49 HGR 

Incising Mid2 50 Pool 

Incising Mid3 51 HGR 

Incising Mid3 52 Pool 

Incising Mid3 53 HGR  

Incising Mid3 54 LGR 

Incising Mid3 55 Run 

Incising Mid3 56 LGR 

Incising Mid3 57 Run 

Incising Mid3 58 Pool 

Incising Mid3 59 LGR 

Incising Mid3 60 HGR 

Incised Down1 61 HGR 

Incised Down1 62 LGR 
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Appendix 1 (table continued) 

Regime ID Reach ID HU # from up-
to-downstream 

HU category 

Incised Down1 63 HGR 

Incised Down1 64 Run 

Incised Down1 65 HGR 

Incised Down1 66 LGR 

Incised Down1 67 LGR 

Incised Down1 68 RUN 

Incised Down1 69 POOL 

Incised Down1 70 HGR 

Incised Down2 71 HGR 

Incised Down2 72 LGR 

Incised Down2 73 RUN 

Incised Down2 74 LGR 

Incised Down2 75 RUN 

Incised Down2 76 LGR 

Incised Down2 77 HGR 

Incised Down2 78 Pool 

Incised Down2 79 HGR 

Incised Down2 80 LGR 

Incised Down3 81 Run 

Incised Down3 82 HGR 

Incised Down3 83 Pool 
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Appendix 1 (table continued) 

Regime ID Reach ID HU # from up-
to-downstream 

HU category 

Incised Down3 84 HGR 

Incised Down3 85 Pool 

Incised Down3 86 LGR 

Incised Down3 87 HGR 

Incised Down3 88 Pool 

Incised Down3 89 HGR 

Incised Down3 90 Pool 
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Appendix 2: Hydraulic unit (HU) based channel morphology dataset  

HU* Slope 
(m) 

Bankfull 
Width (m) 

Bankfull 
Ave 
Depth (m) 

Cross 
section area 
(m sq.) 

W/d 
ration  

Hydraulic 
radius (m) 

1 0.026 8.50 0.412 3.502 20.629 0.412 

2 0.019 8.90 0.456 4.063 19.496 0.456 

3 0.008 7.20 0.305 2.195 23.622 0.305 

4 0.004 5.50 0.450 2.474 12.228 0.450 

5 0.006 7.30 0.484 3.535 15.077 0.484 

6 0.021 6.00 0.604 3.622 9.938 0.498 

7 0.000 4.60 0.688 3.167 6.681 0.514 

8 0.020 5.40 0.756 4.081 7.146 0.621 

9 0.001 5.90 0.707 4.172 8.344 0.636 

10 0.007 6.10 0.667 4.069 9.145 0.594 

11 0.005 6.50 0.369 2.399 17.608 0.369 

12 0.038 6.50 0.469 3.049 13.856 0.469 

13 0.004 6.50 0.483 3.137 13.469 0.483 

14 0.048 5.60 0.430 2.408 13.024 0.430 

15 0.010 8.00 0.657 5.255 12.179 0.657 

16 0.006 6.50 0.434 2.823 14.965 0.434 

17 0.001 6.60 0.531 3.504 12.433 0.531 

18 0.028 5.80 0.190 1.099 30.603 0.190 

19 0.003 7.40 0.373 2.761 19.836 0.373 

20 0.001 6.10 0.509 3.108 11.973 0.509 
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Appendix 2 (table continued) 

HU* Slope 
(m) 

Bankfull 
Width (m) 

Bankfull 
Ave 
Depth (m) 

Cross 
section area 
(m sq.) 

W/d 
ration  

Hydraulic 
radius (m) 

21 0.042 9.00 0.373 3.355 24.145 0.373 

22 0.009 6.00 0.448 2.686 13.405 0.448 

23 0.001 8.20 0.586 4.802 14.002 0.586 

24 0.013 8.20 0.484 3.969 16.942 0.484 

25 0.002 8.00 0.427 3.413 18.754 0.427 

26 0.018 6.35 0.380 2.414 16.704 0.380 

27 0.002 9.20 0.604 5.555 15.238 0.604 

28 0.003 9.40 0.561 5.275 16.749 0.561 

29 0.007 10.40 0.549 5.714 18.929 0.549 

30 0.003 10.50 0.564 5.922 18.617 0.564 

31 0.026 14.30 0.810 11.581 17.658 0.810 

32 0.008 12.55 0.282 3.541 44.484 0.282 

33 0.062 14.60 0.458 6.681 31.904 0.458 

34 0.004 6.90 0.305 2.103 22.638 0.305 

35 0.018 6.55 0.228 1.492 28.759 0.228 

36 0.002 10.20 0.524 5.348 19.453 0.524 

37 0.012 12.00 0.531 6.373 22.597 0.531 

38 0.003 9.50 0.518 4.916 18.357 0.518 

39 0.034 12.00 0.515 6.175 23.319 0.515 

40 0.011 9.00 1.021 9.186 8.818 0.908 
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Appendix 2 (table continued) 

HU* Slope 
(m) 

Bankfull 
Width (m) 

Bankfull 
Ave 
Depth (m) 

Cross 
section area 
(m sq.) 

W/d 
ration  

Hydraulic 
radius (m) 

41 0.010 8.15 0.437 3.563 18.644 0.437 

42 0.042 12.90 0.568 7.324 22.722 0.568 

43 0.001 13.90 0.576 8.003 24.143 0.576 

44 0.008 14.70 0.316 4.645 46.525 0.316 

45 0.022 16.00 0.618 9.895 25.871 0.618 

46 0.011 9.50 0.387 3.677 24.545 0.387 

47 0.011 16.50 0.224 3.703 73.531 0.224 

48 0.031 11.50 0.491 5.649 23.410 0.491 

49 0.022 11.00 0.266 2.928 41.327 0.266 

50 0.040 13.00 0.848 11.019 15.337 0.848 

51 0.056 7.30 0.257 1.877 28.385 0.257 

52 0.001 7.00 0.823 5.761 8.506 0.730 

53 0.043 12.00 0.443 5.316 27.090 0.443 

54 0.011 10.20 0.180 1.837 56.632 0.180 

55 0.001 14.60 0.377 5.503 38.737 0.377 

56 0.017 11.60 0.305 3.536 38.058 0.305 

57 0.005 13.10 0.337 4.412 38.897 0.337 

58 0.009 18.80 0.482 9.067 38.983 0.482 

59 0.016 21.70 0.269 5.830 80.767 0.269 

60 0.051 21.10 0.437 9.218 48.297 0.437 
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Appendix 2 (table continued) 

HU* Slope 
(m) 

Bankfull 
Width (m) 

Bankfull 
Ave 
Depth (m) 

Cross 
section area 
(m sq.) 

W/d 
ration  

Hydraulic 
radius (m) 

61 0.036 8.75 0.334 2.924 26.181 0.334 

62 0.009 9.00 0.492 4.428 18.294 0.492 

63 0.021 9.50 0.610 5.791 15.584 0.610 

64 0.003 5.80 0.462 2.680 12.552 0.462 

65 0.043 7.10 0.376 2.671 18.871 0.376 

66 0.010 11.50 0.573 6.584 20.085 0.573 

67 0.014 12.50 0.683 8.536 18.305 0.683 

68 0.016 11.50 0.461 5.299 24.959 0.461 

69 0.003 11.00 0.228 2.509 48.235 0.228 

70 0.032 20.00 0.516 10.317 38.770 0.516 

71 0.022 12.00 0.361 4.338 33.199 0.361 

72 0.012 12.00 0.300 3.601 39.987 0.300 

73 0.003 13.50 0.376 5.073 35.929 0.376 

74 0.016 13.00 0.548 7.118 23.744 0.548 

75 0.002 16.00 0.462 7.395 34.617 0.462 

76 0.011 15.50 0.568 8.803 27.292 0.568 

77 0.020 14.50 0.674 9.778 21.503 0.674 

78 0.005 12.60 0.238 3.005 52.835 0.238 

79 0.022 15.00 0.581 8.714 25.821 0.581 

80 0.011 12.50 0.304 3.804 41.074 0.304 
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Appendix 2 (table continued) 

HU* Slope 
(m) 

Bankfull 
Width (m) 

Bankfull 
Ave 
Depth (m) 

Cross 
section area 
(m sq.) 

W/d 
ration  

Hydraulic 
radius (m) 

81 0.001 12.20 0.448 5.465 27.237 0.448 

82 0.046 11.50 0.567 6.517 20.292 0.567 

83 0.001 12.20 0.515 6.278 23.708 0.515 

84 0.054 10.60 0.273 2.891 38.860 0.273 

85 0.005 11.00 0.659 7.246 16.698 0.659 

86 0.007 8.30 0.277 2.302 29.921 0.277 

87 0.041 9.45 0.429 4.057 22.015 0.429 

88 0.017 9.20 0.673 6.193 13.668 0.673 

89 0.026 10.60 0.296 3.137 35.815 0.296 

90 0.020 9.60 0.607 5.823 15.827 0.607 

*HUs are numbered along the longitudinal gradient of Shawnee Run 
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Appendix 3: Riparian vegetation and associated biogeomorphic impact dataset  

HU*  Species 
richness 

Species 
abundance 

Total basal 
area (m sq.) 

Number of 
Biogeomorphic 
Impacts 

A. sycamore 
Basal Area  
(m sq.) 

1 3 8 7784.65 10 0.00 

2 4 10 3574.69 10 0.00 

3 4 6 2182.25 3 0.00 

4 3 5 2128.69 2 0.00 

5 3 10 3710.36 8 0.00 

6 3 4 2128.77 3 932.80 

7 2 7 2893.19 2 0.00 

8 3 3 4455.53 2 3476.02 

9 4 10 4365.45 10 0.00 

10 4 6 5200.46 8 0.00 

11 3 6 961.39 2 420.43 

12 0 0 0.00 0 0.00 

13 2 2 181.54 0 97.48 

14 2 4 778.43 0 38.52 

15 0 0 0.00 0 0.00 

16 3 5 1810.96 0 0.00 

17 3 6 5389.21 2 1747.62 

18 2 6 5865.96 5 0.00 

19 3 6 2325.57 1 2299.78 

20 3 6 3661.91 0 13.45 
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Appendix 3 (table continued) 

HU*  Species 
richness 

Species 
abundance 

Total basal 
area (m sq.) 

Number of 
Biogeomorphic 
Impacts 

A. sycamore 
Basal Area  
(m sq.) 

21 3 5 1902.69 0 962.89 

22 0 0 0.00 0 0.00 

23 1 3 331.20 0 0.00 

24 2 3 416.19 0 0.00 

25 1 1 688.26 1 0.00 

26 1 1 2787.11 2 0.00 

27 0 0 0.00 0 0.00 

28 3 4 6346.21 2 5128.76 

29 3 3 1360.85 0 0.00 

30 2 4 17905.21 3 17481.14 

31 3 12 4589.60 6 0.00 

32 1 2 9938.49 4 9938.49 

33 2 3 602.98 1 0.00 

34 3 9 11352.28 7 6692.45 

35 3 6 7073.96 6 3781.83 

36 3 10 25716.99 10 21749.19 

37 2 6 10883.71 9 10264.20 

38 2 6 11758.98 5 11197.00 

39 1 1 4011.01 1 0.00 

40 3 9 21795.34 10 14919.87 
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Appendix 3 (table continued) 

HU*  Species 
richness 

Species 
abundance 

Total basal 
area (m sq.) 

Number of 
Biogeomorphic 
Impacts 

A. sycamore 
Basal Area  
(m sq.) 

41 3 13 20571.25 21 18431.21 

42 4 10 14442.92 16 12041.79 

43 5 11 4474.05 11 0.00 

44 5 11 4234.90 11 1208.78 

45 6 14 6643.13 12 3148.48 

46 5 15 21174.64 8 17655.41 

47 4 13 12472.41 16 10272.87 

48 4 8 9013.98 8 7145.16 

49 2 3 4901.88 4 4066.48 

50 2 4 1274.51 1 0.00 

51 3 6 2204.47 6 277.01 

52 3 5 9831.46 5 9307.68 

53 2 7 7611.51 7 7111.19 

54 2 2 134.01 3 62.39 

55 4 8 11007.71 9 9007.35 

56 2 10 13604.31 15 8188.28 

57 3 9 8050.75 6 7105.54 

58 3 6 6955.37 7 6429.05 

59 4 14 22079.45 19 19663.65 

60 3 6 7349.36 5 6815.48 
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Appendix 3 (table continued) 

HU*  Species 
richness 

Species 
abundance 

Total basal 
area (m sq.) 

Number of 
Biogeomorphic 
Impacts 

A. sycamore 
Basal Area  
(m sq.) 

61 2 4 5191.86 1 4545.53 

62 3 5 13355.77 7 12821.89 

63 3 4 7045.85 4 6699.21 

64 2 5 10968.77 2 9970.48 

65 3 6 9681.15 7 8236.57 

66 2 6 1660.56 7 0.00 

67 1 3 542.74 1 0.00 

68 1 3 848.15 2 0.00 

69 2 3 8146.57 6 7647.38 

70 3 11 1173.57 5 0.00 

71 1 1 89.31 1 0.00 

72 1 1 97.48 1 0.00 

73 1 3 727.50 3 0.00 

74 3 5 1140.50 3 0.00 

75 2 5 1316.29 5 0.00 

76 1 2 1206.25 2 0.00 

77 1 1 97.48 1 0.00 

78 4 13 5432.78 7 0.00 

79 3 11 1987.01 4 0.00 

80 2 3 1202.87 2 0.00 
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Appendix 3 (table continued) 

HU*  Species 
richness 

Species 
abundance 

Total basal 
area (m sq.) 

Number of 
Biogeomorphic 
Impacts 

A. sycamore 
Basal Area  
(m sq.) 

81 2 2 494.75 4 0.00 

82 1 2 6029.99 5 5588.31 

83 2 3 2671.33 1 2024.76 

84 2 2 2565.27 2 0.00 

85 0 0 0.00 0 0.00 

86 1 1 175.79 2 0.00 

87 2 3 3474.74 3 3407.82 

88 3 6 5960.12 2 3130.67 

89 1 3 1674.15 0 0.00 

90 2 5 14251.75 5 12155.91 

*HUs are numbered along the longitudinal gradient of Shawnee Run 
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