
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2015

Explorations for Efficient Reversible Barrel Shifters and Their Explorations for Efficient Reversible Barrel Shifters and Their

Mappings in QCA Nanocomputing Mappings in QCA Nanocomputing

Ke Chen
University of Kentucky, kch246@g.uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Chen, Ke, "Explorations for Efficient Reversible Barrel Shifters and Their Mappings in QCA
Nanocomputing" (2015). Theses and Dissertations--Electrical and Computer Engineering. 73.
https://uknowledge.uky.edu/ece_etds/73

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering
by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Ke Chen, Student

Dr. Himanshu Thapliyal, Major Professor

Dr. Caicheng Lu, Director of Graduate Studies

EXPLORATIONS FOR EFFICIENT REVERSIBLE BARREL SHIFTERS AND THEIR
MAPPINGS IN QCA NANOCOMPUTING

THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in Electrical Engineering

in the College of Engineering
at the University of Kentucky

By
Ke Chen

University of Kentucky
Lexington, Kentucky

Director: Dr. Himanshu Thapliyal, Professor of Electrical and Computer Engineering
University of Kentucky
Lexington, Kentucky

2015
Copyright c© Ke Chen 2015

ABSTRACT OF THESIS

EXPLORATIONS FOR EFFICIENT REVERSIBLE BARREL SHIFTERS AND THEIR
MAPPINGS IN QCA NANOCOMPUTING

This thesis is based on promising computing paradigm of reversible logic which generates
unique outputs out of the inputs and. Reversible logic circuits maintain one-to-one mapping
inside of the inputs and the outputs. Compared to the traditional irreversible computation,
reversible logic circuit has the advantage that it successfully avoids the information loss
during computations. Also, reversible logic is useful to design ultra-low-power nanocom-
puting circuits, circuits for quantum computing, and the nanocircuits that are testable in
nature. Reversible computing circuits require the ancilla inputs and the garbage outputs.
Ancilla input is the constant input in reversible circuits. Garbage output is the output for
maintaining the reversibility of the reversible logic but is not any of the primary inputs nor
a useful bit. An efficient reversible circuit will have the minimal number of garbage and
ancilla bits.

Barrel shifter is one of main computing systems having applications in high speed digital
signal processing, floating-point arithmetic, FPGA, and Center Processing Unit (CPU). It
can operate the function of shifting or rotation for multiple bits in only one clock cycle.
The goal of this thesis is to design barrel shifters based on the reversible computing that are
optimized in terms of the number of ancilla and garbage bits. In order to achieve this goal, a
new Super Conservative Reversible Logic Gate (SCRL gate) has been used. The SCRL gate
has 1 control input depending on the value of which it can swap any two n-1 data inputs. We
proved that the SCRL gate is superior to the existing conservative reversible Fredkin gate.
This thesis develops 5 design methodologies for reversible barrel shifters using SCRL gates
that are primarily optimized with the criteria of the number of ancilla and garbage bits.
The five proposed methodologies consist of reversible right rotator, reversible logical right
shifter, reversible arithmetic right shifter, reversible universal right shifter and reversible
universal bidirectional shifter. The proposed reversible barrel shifter design is compared
with the existing works in literature and have shown improvement ranging from 8.5% to
92% by the number of garbage and ancilla bits. The SCRL gate and design methodologies of
reversible barrel shifter are mapped in Quantum Dot Cellular Automata (QCA) computing.
It is illustrated that the SCRL-based designs of reversible barrel shifters have less QCA cost
(cost in terms of number of inverters and majority voters) compared to the Fredkin gate-
based designs of reversible barrel shifters.

KEYWORDS: Reversible logic, SCRL gates, QCA computing, Barrel shifter

Ke Chen

May 17, 2015

EXPLORATIONS FOR EFFICIENT REVERSIBLE BARREL SHIFTERS AND THEIR
MAPPINGS QCA NANOCOMPUTING

By

Ke Chen

Himanshu Thapliyal

(Director of Thesis)
Caicheng Lu

(Director of Graduate Studies)
May 18, 2015

(Date)

ACKNOWLEDGMENTS

I would like to thank my thesis director Dr. Himanshu Thapliyal for all his guidance and
support. And I would like to thank my parents for their support throughout my life. Also
I would like to thank Jie Chen for her love.

iii

Table of Contents

Table of Contents . iv
List of Figures . vi
List of Tables . viii

1 Introduction 1
1.1 Motivation . 2
1.2 Contribution of Thesis . 2
1.3 Outline of Thesis . 3

2 Background and Related Work 4
2.1 Basics of QCA Computing . 4
2.2 Reversible Logic Gates and Their QCA Implementations 7

2.2.1 Feynman Gate . 7
2.2.2 Fredkin Gate . 9

2.3 Barrel Shifter . 13
2.4 Related Work . 14

3 Super Conservative Reversible Logic Gate 16
3.1 Introduction to SCRL Gate . 16
3.2 SCRL Gate Implementation in Field Coupled Nanocomputing 17
3.3 Comparison with Fredkin Gate . 21

4 Barrel Shifter Designs 23
4.1 Design Methodology of Right Rotator and Implementation in SCRL Gates 23
4.2 Design Methodology of Logical Right Shifter and Implementation in SCRL

Gates . 27
4.3 Design Methodology of Arithmetic Right Shifter and Inplementation in SCRL

Gates . 33
4.4 Design Methodology of Universal Right Shifter and Implementation in SCRL

Gates . 40
4.5 Design Methodology of Universal Bidirectional Shifter and Implementation

in SCRL Gates . 48

5 Evaluations 54
5.1 Garbage Outputs . 54

5.1.1 Garbage Outputs in SCRL Reversible Right Rotator 54
5.1.2 Garbage Outputs in SCRL Reversible Logical Right shifter 55
5.1.3 Garbage Outputs in SCRL Reversible Arithmetic Right Shifter . . . 56
5.1.4 Garbage Outputs in SCRL Reversible Universal Right Shifter 56

iv

5.1.5 Garbage Outputs in SCRL Reversible Universal Bidirectional Shifter 57
5.2 Comparison of Garbage Outputs . 58
5.3 Ancilla Inputs . 59

5.3.1 Ancilla Inputs in SCRL Reversible Right Rotator 59
5.3.2 Ancilla Inputs in SCRL Reversible Logical Right Shifter 59
5.3.3 Ancilla Inputs in SCRL Reversible Arithmetic Right Shifter 60
5.3.4 Ancilla Inputs in SCRL Reversible Universal Right Shifter 60
5.3.5 Ancilla Inputs in SCRL Reversible Universal Bidirectional Shifter . 61

5.4 Comparison of Ancilla Inputs . 62
5.5 QCA Cost Evaluation . 63

5.5.1 Right Rotator Cost . 63
5.5.2 Logical Right Shifter Cost . 65
5.5.3 Arithmetic Right Shifter Cost . 66
5.5.4 Universal Right Shifter Cost . 66
5.5.5 Universal Bidirectional Shifter Cost 68

6 Conclusion 70
References . 71

VITA 75

v

List of Figures

1.1 Irreversible and reversible XOR gates . 1

2.1 QCA cells and states . 4
2.2 45 degree QCA cell . 5
2.3 QCA wires . 5
2.4 Majority gate . 6
2.5 QCA inverter designs . 7
2.6 Information flow process . 7
2.7 Feynman gate . 7
2.8 QCA design of Feynman gate . 8
2.9 Feynman gate QCA implementation . 9
2.10 Fredkin gate . 10
2.11 QCA design of Fredkin gate . 11
2.12 Fredkin gate QCA implementation . 12
2.13 (n, k) barrel shifter block diagram . 13

3.1 n× n SCRL gate . 16
3.2 QCA design of SCRL-n gate in four-phase clocking scheme 18
3.3 QCA design of 4× 4 SCRL gate in four-phase clocking scheme 19
3.4 4× 4 SCRL gate . 20
3.5 Fredkin based SCRL gate . 21

4.1 Reversible (8, 3) SCRL right rotator . 26
4.2 Simulation result of SCRL right rotator . 27
4.3 Selection unit of an (8, 3) logical right shifter 28
4.4 (8, 3) SCRL logical right shifter (FR: Frdkin gate, G: garbage outputs) . . . 32
4.5 Simulation result of SCRL logical right shifter 33
4.6 Example of copy-selection unit (FE: Feynman gate, FR: Fredkin gate, G:

garbage outputs) . 34
4.7 (8, 3) SCRL arithmetic right shifter (FR: Frdkin gate, FE: Feynman gate, G:

garbage outputs) . 39
4.8 Simulation result of SCRL arithmetic right shifter 40
4.9 Selection unit of (8, 3) universal right shifter (FR: Fredkin gate, FE: Feynman

gate, G: Garbage outputs) . 42
4.10 An SCRL (8, 3) universal right shifter (FR: Fredkin gate, FE: Feynman gate,

G: garbage outputs) . 46
4.11 Simulation result of SCRL universal right shifter 48
4.12 Reverse unit . 49

vi

4.13 An (8, 3) universal bidirectional shifter (FR: Fredkin gate, FE: Feynman gate,
G:garbage outputs) . 52

4.14 Simulation result of SCRL universal bidirectional shifter 53

5.1 Garbage outputs in reversible right rotators 55
5.2 Garbage outputs in reversible logical right shifters 56
5.3 Garbage outputs in reversible universal right shifters 57
5.4 Garbage outputs in reversible universal bidirectional shifters 58
5.5 Ancilla inputs in reversible logical right shifters 60
5.6 Ancilla inputs in reversible universal right shifters 61
5.7 Ancilla inputs in reversible bidirectional right shifters 62
5.8 Inverter cost comparison of right rotator . 64
5.9 Majority voters comparison of right rotator 64
5.10 Inverter cost comparison of logical right shifter 65
5.11 Majority voter cost comparison of logical right shifter 66
5.12 Inverter cost comparison of universal right shifter 67
5.13 Majority voter cost comparison of universal right shifter 68
5.14 Inverter cost comparison of universal bidirectional shifter 69
5.15 Majority voter cost comparison of universal bidirectional shifter 69

vii

List of Tables

1.1 Truth table for irreversible XOR gate . 2
1.2 Truth table for reversible XOR gate . 2

2.1 Truth table for majority gate . 6
2.2 Truth table for Feynman gate . 8
2.3 Truth table of Fredkin gate . 10
2.4 Operation functions and outputs . 14

3.1 Truth table for 4× 4 SCRL gate . 17
3.2 Cost analysis of the SCRL gate . 21
3.3 A comparison of 5× 5 Fredkin based SCRL gate and proposed SCRL gate . 22

4.1 Rotating bits and corresponding states of control signals 26
4.2 Shifting bits and corresponding states of control signals 31
4.3 Possible operations . 38
4.4 Different operations of universal right shifter 41
4.5 Operations of all possible bits in (8, 3) universal right shifter 47
4.6 Operations of the universal bidirectional shifter 49

5.1 Garbage outputs in right rotators . 54
5.2 Garbage outputs in logical right shifters . 55
5.3 Garbage outputs in arithmetic right shifter 56
5.4 Garbage outputs in universal right shifters 57
5.5 Garbage outputs in universal bidirectional shifter designs 58
5.6 Ancilla inputs in logical right shifters . 59
5.7 Ancilla inputs in arithmetic right shifters 60
5.8 Ancilla inputs in universal right shifters . 61
5.9 Ancilla inputs in universal bidirectional shifters 62
5.10 Cost evaluation of right rotator . 63
5.11 Cost evaluation of logical right shifter . 65
5.12 Cost evaluation of arithmetic right shifter 66
5.13 Cost evaluation of universal right shifter . 67
5.14 Cost evaluation of universal bidirectional shifter 68

viii

Chapter 1

Introduction

Reversible logic is a promising technology that can be applied in a wide technology domain
such as quantum computing, optical computing, molecular computing and DNA computing,
etc. [41]. Reversible logic makes it possible for no information loss during computations.
Reversible logic circuits have one-to-one mapping between the inputs and the outputs, and
yield unique output out of the inputs. Researchers have proved that in irreversible logic
computations, the information loss of 1 bit causes KT ln 2 Joules of energy dissipation [20].
Bennett proved that this KT ln 2 J of energy dissipation will not appear in reversible logic
[3]. The inputs of reversible logic can be derived from the outputs while this is impossible in
irreversible logic circuits since the inputs and outputs are not uniquely corresponded. Let’s
take an example of classical irreversible XOR gates. Figure 1.1(a) shows the irreversible
XOR gate and its truth table is shown in Table 1.1. As we can observe from Table 1.1,
it is impossible to derive the inputs from the outputs since there are two possible inputs
AB = (00, 11) that can yield the output 0. However, a reversible XOR gate shown in
Figure 1.1(b) is an example of one-to-one mapping. As shown in Table 1.2, each output is
generated from a unique input. F = A⊕B, P = A, Q = A⊕B.

A

B

F

(a) Irreversible XOR gate

A

B

P

Q

(b) Reversible XOR gate

Figure 1.1: Irreversible and reversible XOR gates

1

Table 1.1: Truth table for irreversible XOR gate
A B F

0 0 0

0 1 1

1 0 1

1 1 0

Table 1.2: Truth table for reversible XOR gate
A B P Q

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

1.1 Motivation

Reversible logic successfully avoid the energy loss during circuits computations. Barrel
shifter is one of main computing systems having applications in high speed digital signal
processing, floating-point arithmetic, FPGA, and Center Processing Unit (CPU)[29]. Barrel
shifter can operate the function of shifting and rotation for any possible bits within one clock
cycle. In the existing literature, researchers have proposed several designs of barrel shifter.
The existing reversible barrel shifter designs have the limitations that they have unexpected
amount of ancilla and garbage bits [17, 19, 26]. Ancilla input is the constant input in the
reversible circuit. Garbage output is only used for maintaining the reversibility but is not
primary nor useful in circuits. Reversible circuits generate a lot of bits of garbage outputs to
maintain the reversibility. The increasing number of garbage outputs have several penalties
such as increasing circuits size, extra interconnections, more heat generation and increasing
number of I/O pins. Another significant reason for minimizing the garbage and ancilla
bits is that the several emerging technologies having application of reversible logic are in
premature stage. Hence large reversible circuits in emerging technologies are difficult to
fabricate[34]. The existing reversible barrel shifters were entirely constructed from the
Fredkin and Feynman gates. The use of the Fredkin gate to design the barrel shifter was
the cause of enormous amount of garbage bits. In this thesis, we have investigated the
application of super consevative reversible logic gate (SCRL) to minimize the ancilla and
garbage bits in the design of barrel shifters. Because of the several advantages of QCA
technology, the SCRL gate and corresponding reversible barrel shifter designs have been
mapped in field coupled QCA computing.

1.2 Contribution of Thesis

This thesis develops 5 design methodologies for reversible barrel shifters using SCRL
gates that are primarily optimized by reducing the amount of ancilla and garbage bits.
The proposed design of reversible barrel shifters are compared with the existing works in

2

literature and have shown improvement ranging from 8.5% to 92% in terms of number of
ancilla inputs and the garbage outputs. The design methodologies of reversible barrel shifter
are mapping in field coupled QCA computing. The contributions can be summarized as
follows:

1. Reversible right rotator using SCRL gates

2. Reversible logical right shifter using SCRL gates

3. Reversible arithmetic right shifter using SCRL gates

4. Reversible universal right shfiter using SCRL gates

5. Reversible universal bidirectional shifter using SCRL gates

6. Mapping of SCRL gate in field coupled QCA computing

7. Design evaluation of reversible barrel shifters in QCA computing

1.3 Outline of Thesis

Chapter 2 is the background of reversible logic and QCA computing. Some common and
widely used reversible logic gates are also introduced in Chapter 2. Chapter 3 briefly ex-
plains the main theory of the SCRL gate and how it can be realized using QCA technology.
Chapter 4 introduces the main theory of barrel shifters. The 5 design methodologies of
barrel shifters are proposed in this chapter. Section 4.1 introduces the design methodology
for right rotators; Section 4.2 introduces the design methodology for logical right shifters;
Section 4.3 introduces the design methodology for arithmetic right shifter; Section 4.4 intro-
duces the design methodology for universal right shifters; Section 4.5 introduces the design
methodology for universal bidirectional shifters. Chapter 5 shows the evaluations of the
proposed methodologies by the amount of garbage and ancilla bits and the devices used in
QCA implementation. Chapter 6 is a conclusion of this thesis.

3

Chapter 2

Background and Related Work

2.1 Basics of QCA Computing

Quantum dots cellular automata computing (QCA computing) uses QCA cells which can
be considered as a box with 4 dots at the four vertices of the box (shown as Figure 2.1(a)).
An electron pair is brought into the box and placed in two of the quantum dots to form
different states of circuits [22, 27]. Due to electrostatic repulsion, the two electrons of the
electron pair would automatically occupy locations to be far from each other, which are the
two diagonals. By providing tunneling junctions with potential barriers, the electrons are
prevented from escaping from the cell. In this way, a QCA cell forms two different states
representing logic 0 and 1. In QCA logic, the two states are represented as P = 1 and
P = −1 as shown in Figure 2.1(b) and Figure 2.1(c).

Quantum dot

(a) QCA cell

(b) Logic 0

(c) Logic 1

Figure 2.1: QCA cells and states

Due to to electrostatic interactions a cell will always keep the same state as the one next
to it when arranged in linear array as shown in Figure 2.3(a), [27]. This is called binary
wire. Hence, the signal is propagated and the information is transmitted from the input to
the output.
Figure 2.2 shows a 45 degree QCA cell. When several this QCA cells are aligned in an
array as shown in Figure 2.3(b), each cell has the opposite state of its neighbors. This
propagation of information is called inverter chain. A binary wire and inverter chain can
cross each other without interaction in crossing wires(Figure 2.3(c)).

4

Figure 2.2: 45 degree QCA cell

(a) Binary wire

(b) Inverter chain

(c) Crossing connection

Figure 2.3: QCA wires

1. Majority gate.

Majority gate is one of the frequently used gates in QCA designs. As shown in Figure
2.4, majority gate can be considered as a crossing wire of same type of cells (binary
wire) with five QCA cells. It has the equation as follows:

F = AB + AC + BC (2.1)

Table 2.1 shows the truth table of majority gate.

5

A

B

C

F

Figure 2.4: Majority gate

Table 2.1: Truth table for majority gate
A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

If one of the inputs is set to −1, which is logic 0, for example C is set to logic 0, a
majority gate will then turn into an AND gate. Since:

F = AB + A · 0 + B · 0 = AB (2.2)

In another case, if C is set to logic 1, it will then become an OR gate. Since:

F = AB + A · 1 + B · 1 = A(B + 1) + B = A + B (2.3)

2. Inverters.
There are two kinds of inverter designs as shown in Figure 2.5(a) and Figure 2.5(b).
The first inverter is more stable in nature than the second one. But the second one is
more frequently used in QCA computing because it is simpler and saves cells.

QCA clock zones contribute to successively transmitting the information from one clock
zone to the next [14]. The information flows in a pipeline from the input to the output.
Figure 2.6(a) shows the different functions of a cell in 4 different clock zones. A cell in a
certain clock accepts the information from the cell in previous clock zone upon a switch
excitation. After holding the information for a quarter clock cycle, this cell releases the

6

A A

(a) Inverter

A

A

(b) Inverter

Figure 2.5: QCA inverter designs

current information to clear the memory for next information. Then it relaxes for another
quarter clock cycle. The procedure is shown as Figure 2.6(b).

(a) Clock zones

(b) Four phase clocking

Figure 2.6: Information flow process

2.2 Reversible Logic Gates and Their QCA Implementations

2.2.1 Feynman Gate

Feynman gate (FE) is a 2 by 2 reversible logic gate with the outputs P = A,Q = A⊕B
[41]. The block diagram is shown in Figure 2.7. Table 2.2 is the truth table for Feynman
gate.

Figure 2.7: Feynman gate

7

Table 2.2: Truth table for Feynman gate
A B P Q

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Feynman gates are frequently used for data copying while avoiding fanouts. When
B = 0, the Feynman gate performs an operation of copying since P = A and Q = A⊕0 = A.
Figure 2.8 shows the QCA design of Feynman gate in four-phase clocking scheme.

clk2

clk2

Figure 2.8: QCA design of Feynman gate

”clk0” means that the current wire is set to clock zone 0. Similarly ”clk1, clk2, clk3”
means that the current wire is set to clock zone 1, 2 and 3 respectively. The triangle
represents an inverter. The pentagon represents a majority voter. When one input in a
majority voter is set to −1 which represents a logic 0, the majority voter performs as an
AND gate and when one of the inputs of the majority voter is set to 1, the majority voter
performs as an OR gate. The QCA implementation is shown in Figure 2.9

8

Figure 2.9: Feynman gate QCA implementation

2.2.2 Fredkin Gate

Fredkin gate (FR) is a 3 by 3 logic gate. It has the function of P = A, Q = AB + AC,
R = AC + AB [41]. The block diagram is shown in Figure 2.10, and the truth table is
shown in Table 2.3.

9

Figure 2.10: Fredkin gate

Table 2.3: Truth table of Fredkin gate
A B C P Q R

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 1 1 1

As can be observed in Table 2.3, the input A is a control signal of the Fredkin gate.
When A = 0, the Fredkin gate performs an operation of swapping data of B and C. When
A = 1, the outputs are the same as the inputs. This is similar to a 2 : 1 multiplexer. Figure
2.11 shows the QCA design of Fredkin gate. The QCA implementation is shown in Figure
2.12.

10

clk2

clk2

clk2

clk2

R

Q

Figure 2.11: QCA design of Fredkin gate

11

A B

-1.00

C

-1.00

1.00

Q

-1.00

1.00

R

-1.00

P

Figure 2.12: Fredkin gate QCA implementation

12

2.3 Barrel Shifter

Barrel shifter is a functional logic circuit with any designed inputs and same number of
outputs [29]. The function of a barrel shifter is to shift the inputs information in a certain
order to left or right for any possible bits. A well designed barrel shifter is able to implement
bidirectional information shifting. Researchers have proposed various barrel shifter designs.
Among these designs, logarithmic barrel shifter is one of the most popular designs since it
saves area for the circuit and it is simple to implement. As it is shown in Figure 2.13 [36],
a barrel shifter with q stages and n inputs is called an (n, q) barrel shifter. Microscopically
into each stage, the pth stage shifts the information for 2q−p bits where q = log2 n. With a
control signal which is used for either executing or shutting down the shifting mode. The
shifting mode can be executed when the control signal is at logic 1 and can be shut down
when the control signal is at logic 0. Hence, the information can be shifted from 0 bit (all
control signals set to logic 0) to n− 1 bits (all control signals set to logic 1). Logical right
shifter, logical left shifter, right rotator, left rotator, arithmetic left shifter and arithmetic
right shifter are the different functions that can be implemented using the barrel shifter.
Suppose there is an (8, 3) barrel shifter with the inputs as a7, a6, a5, a4, a3, a2, a1, a0, the six
functions are shown in Table 2.4 [19].

.

.

.

Figure 2.13: (n, k) barrel shifter block diagram

13

Table 2.4: Operation functions and outputs

Operation functions Outputs

Logical right shifer 0, 0, 0, a7, a6, a5, a4, a3
Right rotator a2, a1, a0, a7, a6, a5, a4, a3

Logical left shifter a4, a3, a2, a1, a0, 0, 0, 0

Left rotator a4, a3, a2, a1, a0, a7, a6, a5
Arithmetic right shifter a7, a7, a7, a7, a6, a5, a4, a3
Arithmetic left shifter a7, a3, a2, a1, a0, 0, 0, 0

1. Logical right/left shifters: A logical right/left shifter is functioned to make any re-
quired bits of displacement of the inputs while change the same bits of the first or
last bits to 0. Table 2.4 shows an example for 3 bits shifting of an 8-inputs barrel
shifters. After a 3 bits logical right shifting, the outputs are changed to a serial data
of 0, 0, 0, a7, a6, a5, a4, a3. The inputs are right translated for 3 bits while the first 3
bits are changed to 0. One the contrary, after a 3 bits logical left shifting, the outputs
are changed to a4, a3, a2, a1, a0, 0, 0, 0, which makes the inputs left translated for 3 bits
while change the last 3 bits to 0.

2. Right/left rotators: Compared to logical shifters, rotators generally do the func-
tion of displacement. After a 3 bits right rotation, the outputs are changed to
a2, a1, a0, a7, a6, a5, a4, a3. The last 3 bits are rotated into the front. After a 3 bits
left rotation, the outputs are changed to a4, a3, a2, a1, a0, a7, a6, a5. The first 3 bits
are rotated to the back of the serial data.

3. Arithmetic shifters: Different from logical shifters, arithmetic right shifters always
keep the leftmost shifting bits as same as the sign bit, which is i7 in this example.
Arithmetic left shifters always keep the leftmost 1 bit as sign bit, while the remaining
bits are doing the function of inputs logical left shifting.

2.4 Related Work

Reversible logic has attracted many meaningful attempts in proposed works such as [10–
12, 15, 23, 24, 44]. Minimizing the garbage outputs and ancilla inputs is the common
goal for the researchers to optimize the reversible logic circuits designs. We observed that
some new technologies have been proposed and have contributed to reducing the ancilla
inputs and garbage outputs [25, 31, 37, 40, 40, 43]. Some of the practical designs are flip-
flops, fast fourier transform, perfect shuffle, etc [2, 7]. Some researches also included binary
calculations such as half adders, full adders, ripple carry adders, carry look-ahead adder,
etc.[6, 9, 16, 28, 38, 39]. Researchers have proposed new designs of ripple carry adder
without ancilla inputs and optimized the operation delay in [34, 35]. We also observed
several recent designs of reversible barrel shifters[17, 19, 26]. Among these designs, Mitra
design [26] is the newest which was proposed in March 2015. However, there is still space
to improve these designs. This thesis has done the work to optimize the barrel shifter
designs including right rotator, logical right shifter, arithmetic right shifter, universal right
shifter and unvisal bidirectional shifter by reducing the number of ancilla inputs and garbage
outputs. What’s more, many of the current barrel shifter designs focused on the universal

14

bidirectional shifters. This thesis work covers all 6 functions of the barrel shifters (right/left
rotator, logical right/left shifter and arithmetic right/left shifter)and optimized them in a
satisfying range compared to the most recent design. Also, a combined circuit that can
implement all the six functions has been proposed in this thesis work.

15

Chapter 3

Super Conservative Reversible
Logic Gate

3.1 Introduction to SCRL Gate

As we have discussed in previous chapter (2.2), Fredkin gate is a 3 by 3 reversible logic
gate with one control input, two data inputs and three outputs. Recently, researchers have
proposed a new n×n reversible logic gate named Super Conservative Reversible Logic Gate
(SCRL gate). The SCRL gate has n inputs that includes one control bit input and n − 1
data inputs [36]. An n× n SCRL gate is shown in Figure 3.1.

.

.

.

c0

SCRL-N

a0

a1

c0

�0 a0 + c0a1

�0 a1 + c0a2

an-3

an-2

�0 an-3 + c0an-2

2

�0 an-2 + c0a0

.

.

.

Figure 3.1: n× n SCRL gate

Define the n inputs of SCRL gate as c0, a0, a1, a2, ...an−2, where c0 is the control bit
input and a0 to an−2 are the normal inputs. The SCRL gate outputs are defined as
o0, o1, o2, ...on−1. The outputs function can be defined as:

o0 = c0 (3.1)

oi = c0ai + c0aj (3.2)

on−1 = c0an−2 + c0a0 (3.3)

16

where ai is the ith input, aj is the jth input, i ≤ n − 3, j = i + 1. The outputs depend
on the control input c0. When c0 = 0, the outputs are c0, a0, a1, a2...an−2. When c0 = 1,
the outputs are c0, a1, a2...an−2, a0. However, the outputs function is not unique and there
can be more than one version of the SCRL gates. The diversity of the output functions
in SCRL gate allows it to implement different functions in reversible computing. Under a
special condition where n = 3, the 3 × 3 SCRL gate is similar to Fredkin gate. However,
the 3×3 Fredkin gate is functionally limited compared to the generalized n×n SCRL gate.

3.2 SCRL Gate Implementation in Field Coupled Nanocom-
puting

QCA computing is ultra low power in nature. It is an ideal technology to implement the
SCRL gate. A QCA design of SCRL-n gate is shown in Figure 3.2. Table 3.1 is the truth
table for a 4× 4 SCRL gate. The function equations are:

o0 = c0 (3.4)

o1 = c0a0 + c0a1 (3.5)

o2 = c0a1 + c0a2 (3.6)

o3 = c0a2 + c0a0 (3.7)

If c0 = 0, the outputs are c0, a0, a1, a2. Else if c0 = 1, the outputs are c0, a1, a2, a0. This
function is called barrel rotator, which will be discussed in the next chapter. A 4× 4 SCRL
gate is shown in Figure 3.3. Figure 3.4 is a QCA layout of 4× 4 SCRL gate.

Table 3.1: Truth table for 4× 4 SCRL gate
c0 a0 a1 a2 o0 o1 o2 o3
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 1 0 0 1 1
0 1 0 0 0 1 0 0
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0
1 0 0 1 1 0 1 0
1 0 1 0 1 1 0 0
1 0 1 1 1 1 1 0
1 1 0 0 1 0 0 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1

17

1

clk1

clk1

clk1

clk1

clk3

clk3

a2

-1

-1

-1

1

1

On-2

On-1

an-2 an-1

-1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

clk0 clk0 clk0 clk0 clk0

clk2

clk2

clk2

clk2

clk2

clk2

clk2

clk2

O0

2

Figure 3.2: QCA design of SCRL-n gate in four-phase clocking scheme

18

clk2

clk2

clk2

clk2

clk2

clk2

clk0 clk0 clk0 clk0

O1

O3

Figure 3.3: QCA design of 4× 4 SCRL gate in four-phase clocking scheme

19

C0 A0

-1.00

A1

-1.00

1.00

O1

-1.00

-1.00

1.00

O2

A2

-1.00

-1.00

O3

1.00

Inverter

Majority gate as AND gate

Majority gate as OR gate

Binary wire

Inverter chain

Crossing wire

Figure 3.4: 4× 4 SCRL gate

As it is shown, the two cells with misalignment perform as an inverter. The purple
crossing wires are majority voters as AND gates and the white ones are majority voters as
OR gates. The binary wire, inverter chain and the crossing wire are also shown in Figure
3.4. Table 3.2 is a cost analysis of the SCRL gate.

20

Table 3.2: Cost analysis of the SCRL gate
3 inputs 4 inputs 5 inputs . . . n inputs

Inverters 2 3 4 . . . n− 1

Majority voters 6 9 12 . . . 3× (n− 1)

3.3 Comparison with Fredkin Gate

Fredkin gate has a limited functionality compared to the SCRL gate. Since a Fredkin
gate has 1 control signal and 2 inputs, there are always 1 control signal and 2 × n data
inputs. If n Fredkin gates are cascaded in series, the total inputs are 2n + 1. Hence, it
is not possible to implement SCRL gates of even inputs using Fredkin gates. The odd
inputs SCRL gates using Fredkin gates are also limited in functionality. They can only
swap the inputs in pairs while the proposed SCRL gate is able to swap the inputs globally.
Figure 3.5(a) shows the Fredkin gate based SCRL gate design and Figure 3.5(b) shows the
swapping operation. It can be observed that the Fredkin gate is limited to producing only
the odd inputs. Furthermore, the proposed SCRL gate is able to swap the inputs globally.
On the other hand, since cascading Fredkin gates in series will require transmitting the
control signal, it brings another problem that the operation delay can be high with large
number of inputs. However the control signal in the proposed SCRL gate does not need to
be propagated serially hence the delay will be constant. This shows that the SCRL gate is
functionally more powerful than the Fredkin gate [36].

(a) Fredkin based design of 5× 5 SCRL gate

(b) Swapping by Fredkin gate based SCRL gate

Figure 3.5: Fredkin based SCRL gate

Table 3.3 is a comparison of 5 × 5 Fredkin based SCRL gate and the proposed SCRL
gate. The proposed SCRL design reduced the total cells by 101 and reduce the area by
0.27um2. Hence the SCRL gate has benefits of implementing in QCA compared to the
Fredkin gate.

21

Table 3.3: A comparison of 5× 5 Fredkin based SCRL gate and proposed SCRL gate
Fredkin Proposed

Inverters 4 4

Majority voters 12 12

Clock zones 4 4

Total cells 474 373

Area 0.75um2 0.48um2

22

Chapter 4

Barrel Shifter Designs

4.1 Design Methodology of Right Rotator and Implementa-
tion in SCRL Gates

A previous irreversible right rotator design is using 2 : 1 multiplexers for switching inputs
to achieve rotation. Referring to Chapter 2.1, an SCRL gate is similar to a multiplexer and
a normal SCRL gate can rotate the inputs in a certain order with a preset outputs func-
tion. In the existing literature [17, 19, 33], barrel shifters are designed with the Fredkin and
Feynman gates. Using the Fredkin and the Feynman gates produces considerable QCA cost
(the implementation in QCA costly), the amount of garbage and ancilla bits. Since SCRL
gate can swap any of the two inputs, the reversible barrel shifter including the reversible
rotator has less QCA cost, garbage outputs, and ancilla inputs. Hence, SCRL gate is an
ideal platform to design a barrel shifter.

As discussed previously, a logical right rotator function is to right rotate the bits
depending on the control signals. Table 2.4 shows an example of an (8, 3) reversible
right rotator. For an (n, q) reversible right rotator, suppose the inputs are defined as
an−1, an−2,a2, a1, a0, it can be designed with q stages, where q = log2 n. For the pth

stage, with a control signal bq−p, it can do either no rotation (with control signal set to
0) or 2q−p bits rotation (with control signal set to 1). Also, define the final outputs as
Oq,n−1, Oq,n−2,Oq,2, Oq,1, Oq,0. Correspondingly, the pth stage will have the outputs as
Op,m, where m = 0, 1, 2......n−1. The methodology that can implement the reversible right
rotator is as follows:

1. Stage 1
For the first stage of an (n, q) right rotator, the inputs are an−1,an−2,...... a2, a1, a0,
and the outputs have the equation of:

O1,m =


b(q−1)am + b(q−1)a(m+2q−1−n) if m ≥ n− 2q−1

b(q−1)am + b(q−1)a(m+2q−1) if m < n− 2q−1

(4.1)

23

where bq−1 is the control signal of the first stage, and m is the mth input or output in
this stage. If bq−1 = 0, the outputs of the first stage will keep the same as the inputs:

O1,m = am (4.2)

else if bq−1 = 1, the outputs of the first stage will rotate for 2q−1 bits to the right.
That is:

O1,m =


am+2q−1−n if m ≥ n− 2q−1

am+2q−1 if m < n− 2q−1

(4.3)

2. Stage p (1 ≤ p ≤ q)
For the pth stage of an (n, q) right rotator, the inputs are the outputs of the (p− 1)th

stage, Op−1,n−1, Op−1,n−2,Op−1,2, Op−1,1, Op−1,0. The outputs of the pth stage are:

Op,m =


bq−pOp−1,m + bq−pOp−1,m+2q−p−n if m ≥ n− 2q−p

bq−pOp−1,m + bq−pOp−1,m+2q−p if m < n− 2q−p

(4.4)

where bq−p is the control signal of the pth stage, and m is the mth input or output in
this stage. If bq−p = 0, the outputs of the first stage will keep the same as the inputs:

Op,m = Op−1,m (4.5)

else if bq−p = 1, the outputs of the first stage will rotate for 2q−p bits to the right.
That is:

Op,m =


Op−1,m+2q−p−n if m ≥ n− 2q−p

Op−1,m−2q−p if m < n− 2q−p

(4.6)

Then at the outputs side of the qth stage (the last stage), the final outputs Oq,n−1,
Oq,n−2, Oq,2, Oq,1, Oq,0 can be rotated from 0 to n−1 bits. Using the SCRL gate, each
stage of the (n, q) reversible right rotator needs one (n + 1)× (n + 1) SCRL gate. Thus in
total, the number of n× n SCRL gates is n.

24

Throughout the designs of all the 6 functions in the reversible barrel shifter, an (8, 3) logic
circuit is primarily designed, thereafter the methodology is extended to design (n, q) logic
circuit. Figure 4.1 is an example of (8, 3) reversible right rotator in 9× 9 SCRL gates. An
(8, 3) right rotator has 3 rotation stages. The first stage will either right rotate the inputs
a7, a6, a5, a4, a3, a2, a1, a0 for 4 bits with the control signal b2 = 1 or keep them unchanged
with b2 = 0. For convenience, the outputs from the first stage, which are also the inputs
of the second stage, are defined as k7, k6, k5, k4, k3, k2, k1, k0. Stage 2 will either rotate its
inputs for 2 bits with b1 = 1 or keep them unchanged with b1 = 0. The outputs from stage
2, which are also the inputs of the third stage, are defined as j7, j6, j5, j4, j3, j2, j1, j0. Stage
3 will either rotate its inputs for 1 bits with b0 = 1 or keep them unchanged with b0 = 0.
The final outputs are defined as O7, O6, O5, O4, O3, O2, O1, O0. To implement the rotation
in SCRL gates, the following equations are defined for each stage, respectively:

ki =


b2ai + b2ai−4 if i ≥ 4

b2ai + b2ai+4 if i < 4

(4.7)

ji =


b1ai + b1ai−6 if i ≥ 6

b1ai + b1ai+2 if i < 6

(4.8)

Oi =


b0ai + b0ai−7 if i ≥ 7

b0ai + b0ai+1 if i < 7

(4.9)

In this way, a reversible (8, 3) right rotator is designed using three 9 × 9 SCRL gates.
Table 4.1 shows all possible rotating bits and the corresponding states of the 3 control sig-
nals. It is interesting that the serial binary number of the control signals are corresponding
to the decimal number of the rotating bits. Compared to a previous design with Fredkin
gates and Feynman gates, [17, 19, 33] this design with SCRL gates uses less QCA gates
which considerably minimize the transmission delay. Also the SCRL design has no garbage
outputs which extremely improve the efficiency.

25

Table 4.1: Rotating bits and corresponding states of control signals

b2 b1 b0 Rotating Bits

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

�2

a7 a6 a5 a4 a3 a2 a1 a0

� a7+b2a3 � a6+b2a2 � a5+b2a1 � a4+b2a0 � a3+b2a7 � a2+b2a6 � a1+b2a5 � a0+b2a4

SCRL-8

�1

k7 k6 k5 k4 k3 k2 k1 k0

� k7+b1k1 � k6+b1k0 � k5+b1k7 � k4+b1k6 � k3+b1k5 � k2+b1k4 � k1+b1k3 � k0+b1k2

SCRL-8

�0

j7 j6 j5 j4 j3 j2 j1 j0

�0j7+b0j0 �0j6+b0j7 �0j5+b0j6 �0j4+b0j5 �0j3+b0j4 �0j2+b0j3 �0j1+b0j2 �0j0+b0j1

SCRL-8

2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

Figure 4.1: Reversible (8, 3) SCRL right rotator

Simulations in Verilog HDL has been made to verify that the design methodology is
correct. Each simulation applies different clock cycles for different inputs with a7 having
the shortest clock cycle and a0 having the longest clock cycle so that it can clearly show
the results whether the barrel shifter operates correctly or not. In all the simulation of
reversible barrel shifter 3 bits rotation or shift operation is assumed. Figure 4.2 is the
simulation result for SCRL right rotator.

26

0 ns+4 200 ns 400 ns 600 ns 800 ns 1000 ns 1200 ns 1400 ns 1600 ns 1800 ns 2000 ns 2200 ns 2400 ns

/first/o7

/first/o6

/first/o5

/first/o4

/first/o3

/first/o2

/first/o1

/first/o0

Entity:first Architecture:fast Date: Thu Apr 09 3:41:13 AM Eastern Daylight Time 2015 Row: 1 Page: 1

Figure 4.2: Simulation result of SCRL right rotator

4.2 Design Methodology of Logical Right Shifter and Imple-
mentation in SCRL Gates

A logical right shifter has the function of shifting the inputs to the right for n bits and set
the leftmost n bits to 0. Table 2.4 shows an example of 3 bits logical right shifting, which
yields the outputs 0, 0, 0, a7, a6, a5, a4, a3 from a7, a6, a5, a4, a3, a2, a1, a0. Designing an (n, q)
reversible logical right shifter having the inputs of an−1, an−2,a2, a1, a0 requires q stages
of shifting, where q = log2 n. Each shifting stages is operating with a control signal bq−p,
where 1 ≤ p ≤ n. Thus with bq−p set to 0, the shifting mode is off so that the pth shifting
stage will not operate a logical right shift. With the control signal bq−p set to 1, the right
shifting mode is on and the pth shifting stage will operate a 2q−p bits logical right shifting.
Some existing reversible designs of logical right shifters are using Fredkin gates as reversible
multiplexers and Feynman gates as reversible data copiers. The use of Fredkin gates and
Feynman gates will produce a large numbers of garbage outputs and ancilla inputs. Since
SCRL gate can swap any of the two inputs, the reversible barrel shifter including the re-
versible logical right shifter has less QCA cost, garbage outputs, and ancilla inputs. Hence,
SCRL gate is an ideal platform to design a barrel shifter.
The difference between logical right shifter and right rotator is that a logical right shifter

27

will set the leftmost shifted bits to 0 while a right rotator will not. As a result, it requires
several selecters to select an input from 0 and any other original inputs. For example, the
pth stage requires a total number of 2q−p selecters to achieve a 2q−p bits right shifting. In
this design, Fredkin gates are used to construct the selection unit so that the design will
keep reversible. Figure 4.3 is an example for an (8, 3) selection unit of logical right shifter.

Figure 4.3: Selection unit of an (8, 3) logical right shifter

1. Stage 1
The first stage has the inputs of a selected n bits data from 0, an−1, an−2,a2, a1,
and a control signal bq−1. The first stage requires a total number of 2q−1 Fred-
kin gates to select the input and 1 n × n SCRL gate. Define the final outputs as
Oq,n−1, Oq,n−2,Oq,2, Oq,1, Oq,0. Correspondingly, the pth stage has the outputs ex-
pressed by Op,m, where m is the mth output of this stage. Thus for stage 1, define
the selected inputs as sn−1−2q−1 ,s2, s1, s0. They have the following equation:

sm = bq−1am for 0 ≤ m ≤ n− 1− 2q−1 (4.10)

where bq−1 is the control bit for all the Fredkin gate. When bq−1 is set to 0, sm = am
, the actual inputs will keep unchanged as the primary inputs an−1, an−2,a2, a1.
If bq−1 is set to 1, then sm = 0, it allows this SCRL design of logical right shifter
to set the leftmost shifted bits as 0. Then the actual inputs are sn−1−2q−1 ,
s2, s1, s0, an−1, an−2,an−2q−1 . The outputs have the following equation:

O1,m =


bq−1am + bq−1sm+2q−1−n if m ≥ n− 2q−1

bq−1sm + bq−1am+2q−1 if m < n− 2q−1

(4.11)

where bq−1 is the control signal of the first stage, and m is the mth input or output in
this stage. If bq−1 = 0, the outputs of the first stage will keep the same as the inputs:

28

O1,m =


am if m ≥ n− 2q−1

sm if m < n− 2q−1

(4.12)

else if bq−1 = 1, the outputs of the first stage will rotate for 2q−1 bits to the right.
That is:

O1,m =


sm+2q−1−n if m ≥ n− 2q−1

am+2q−1 if m < n− 2q−1

(4.13)

2. Stage p (1 ≤ p ≤ q)
At the pth stage of an SCRL logical right shifter, the primary inputs are Op−1,n−1,
Op−1,n−2, Op−1,2, Op−1,1, Op−1,0, which are from the previous stage. The pth stage
requires the total number of 2q−p Fredkin gates as selecters, allowing the stage to select
the actual inputs from 0 and the rightmost 2q−p primary inputs, Op−1,2q−p−1, Op−1,2q−p−2,
...... Op−1,2, Op−1,1, Op−1,0. Now define the selected inputs as s2q−p−1, s2q−p−2,s2, s1, s0.
The selected inputs have the following equation:

sm = bq−pOp−1,m for 0 ≤ m ≤ n− 1− 2q−p (4.14)

When bq−p is set to 0, sm = Op−1,m , the actual inputs will keep unchanged as
the primary inputs Op−1,n−1, Op−1,n−2, Op−1,2, Op−1,1, Op−1,0. If bq−p is set
to 1, then sm = 0, it allows this SCRL design of logical right shifter to set the
leftmost shifted bits as 0. Then the actual inputs are sn−1−2q−p , s2, s1, s0,
Op−1,n−1, Op−1,n−2,Op−1,n−2q−p . Then the outputs equation is as the following:

Op,m =


bq−pOp−1,m + bq−psm+2q−p−n if m ≥ n− 2q−p

bq−psm + bq−pOp−1,m+2q−p if m < n− 2q−p

(4.15)

where bq−p is the control signal of the pth stage, and m is the mth input or output in
this stage. If bq−p = 0, the outputs of the pth stage will keep the same as the inputs:

Op,m =


Op−1,m if m ≥ n− 2q−p

sm if m < n− 2q−p

(4.16)

29

else if bq−p = 1, the outputs of the pth stage will rotate for 2q−p bits to the right. That
is:

Op,m =


sm+2q−p−n if m ≥ n− 2q−p

Op−1,m+2q−p if m < n− 2q−p

(4.17)

Therefore, at the final outputs side of the logical right shifter, the primary inputs can be
right shifted from 0 to n− 1 bits according to the different settings of the control bits bm.
In SCRL design of an (n, q) logical right shifters, it requires q SCRL gates, n − 1 Fredkin
gates. As it is shown in Figure 4.4, an (8, 3) logical right shifter has 3 shifting stages
with the primary inputs as a7, a6, a5, a4, a3, a2, a1, a0. The corresponding final outputs are
O7, O6, O5, O4, O3, O2, O1, O0. To simplify the design, define the outputs for the first stage
as k7, k6, k5, k4, k3, k2, k1, k0, define the outputs for stage 2 as j7, j6, j5, j4, j3, j2, j1, j0. And
to separate the selected inputs from each stage, define the selected input for stage 1 as
s3, s2, s1, s0, the selected inputs for stage 2 as x1, x0, the selected inputs for stage 3 as y0.
The selected inputs are selected by the following equtions:

sm = b2am for 0 ≤ m ≤ 3 (4.18)

xm = b1km for 0 ≤ m ≤ 1 (4.19)

ym = b0jm for m = 0 (4.20)

The first stage will either right shift the actual inputs a7, a6, a5, s4, s3, s2, s1, s0 for 4 bits
with the control signal b2 = 1 or keep them unchanged with b2 = 0. Stage 2 will either
right shift its inputs for 2 bits with b1 = 1 or keep them unchanged with b1 = 0. Stage 3
will either right shift its inputs for 1 bits with b0 = 1 or keep them unchanged with b0 = 0.
For each stage, the outputs are shown in the following equations:

ki =


b2ai + b2si−4 if i ≥ 4

b2si + b2ai+4 if i < 4

(4.21)

ji =


b1ai + b1xi−6 if i ≥ 6

b1xi + b1ai+2 if i < 6

(4.22)

30

Oi =


b0ai + b0yi−7 if i ≥ 7

b0yi + b0ai+1 if i < 7

(4.23)

In this way, a reversible (8, 3) logical right shifter can be worked out using 3 SCRL
gates and 7 Fredkin gates. The use of 7 Fredkin gates produces 7 garbage outputs in this
reversible logical right shifter design, which has reduced much more garbage outputs than
the reversible designs in existing literature. Also, the operation delay is optimized since this
design use less 2 × 2 logic gates. Table 4.2 shows the possible right shift operations with
the different control signal values. And Figure 4.5 is the simulation result of SCRL logical
right shifter.

Table 4.2: Shifting bits and corresponding states of control signals

b2 b1 b0 Shifting Bits

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

31

�2

a7 a6 a5 a4 s3 s2 s1 s0

� a7+b2s3 � a6+b2s2 � a5+b2s1 � a4+b2s0 � s3+b2a7 � s2+b2a6 � s1+b2a5 � s0+b2a4

SCRL-8

FR b2

a3 0

FR

a2 0

FR

a1 0

FR

a0 0

�1

k7 k6 k5 k4 k3 k2 x1 x0

� k7+b1x1 � k6+b1x0 � k5+b1k7 � k4+b1k6 � k3+b1k5 � k2+b1k4 � x1+b1k3 � x0+b1k2

SCRL-8

FR b1

k1 0

FR

k0 0

�0

j7 j6 j5 j4 j3 j2 j1 y0

� j7+b0y0 � j6+b0j7 � j5+b0j6 � j4+b0j5 � j3+b0j4 � j2+b0j3 � j1+b0j2 � j0+b0j1

SCRL-8

FR b0

j0 0

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

G G G G

G G

G

Figure 4.4: (8, 3) SCRL logical right shifter (FR: Frdkin gate, G: garbage outputs)

32

+4 2600 ns 2800 ns 3000 ns 3200 ns 3400 ns 3600 ns 3800 ns 4000 ns 4200 ns 4400 ns 4600 ns 4800 ns 5000 ns

/logical/o7

/logical/o6

/logical/o5

/logical/o4

/logical/o3

/logical/o2

/logical/o1

/logical/o0

Entity:logical Architecture:fast Date: Thu Apr 09 3:47:17 AM Eastern Daylight Time 2015 Row: 1 Page: 1

Figure 4.5: Simulation result of SCRL logical right shifter

4.3 Design Methodology of Arithmetic Right Shifter and In-
plementation in SCRL Gates

An arithmetic right shifter has the function to shift the inputs to the right for n bits and
always keep the leftmost n bits as same as the sign bit an−1. Table 2.4 shows an example
of 3 bits arithmetic right shifting, it changes the inputs a7, a6, a5, a4, a3, a2, a1, a0 into the
outputs a7, a7, a7, a7, a6, a5, a4, a3. In order to design an (n, q) reversible arithmetic right
shifter with the initial inputs as an−1, an−2,...... a2, a1, a0 in SCRL gates. It requires q stages
of shifting operations, where q = log2 n. Each one of the q shifting stages is operating with
a control signal bq−p, where p is the pth stage, p = 1, 2......q. Thus with bq−p set to 0, the
shifting mode is off so that the pth shifting stage will not shift the inputs data. With the
control signal bq−p set to 1, the right shifting mode is excited and now the pth shifting stage
will operate a 2q−p bits right shifting. Different form the logical right shifter, the arithmetic
right shifter always keep the leftmost shifting bits as same as the sign bit an−1 instead of
0. Therefore, in the SCRL design of the arithmetic right shifter, the main difference from
the logical right shifter is that the arithmetic right shifter will use Fredkin gates to select
from an inputs ofan−1 and the remaining initial inputs, while the logical shifter selects from
0 and the initial inputs. Another difference is that in the design of the SCRL arithmetic

33

right shifter, there will be a certain number of Feynman gates used in each stage to copy
the sign bit an−1. Since Feynman gates do not have any garbage outputs, the amount of
garbage outputs is the same in reversible SCRL logical right shifter. Figure 4.6 shows the
operation of the copy and selection of the first stage in an (8, 3) arithmetic right shifter.
As discussed in Chapter 2, when input B of a Feynman gate is at 0, this Feynman gate
performs as a copier. The two outputs of this Feynman gate are both the same as the first
input. The copy-selection unit shown in Figure 4.6 uses the Feynman gates to achieve the
copy function and then pass the copied sign bit to the Fredkin gate to be selected from.
The rightmost output of the Feynman gate is not in use in as shown, but actually it will
be used in the next stage. The selection part of the arithmetic right shifter will either pass
the sign bit (when the control signal is at 1) or the initial inputs (when the control bit is
at 0) to the shifting operation unit.

Figure 4.6: Example of copy-selection unit (FE: Feynman gate, FR: Fredkin gate, G: garbage
outputs)

The previous reversible design in [19] is using all Fredkin gates and Feynman gates.
This will produce a large numbers of garbage outputs. A number of n garbage outputs
will be yielded for each stage. From another point of view, the two-bits-in-a-group way of
switching data requires much more time passing the control signals. In this design using
less Fredkin gates and Feynman gates, a great improvement in reducing garbage outputs
and minimizing operation delay can be achieved.

1. Stage 1
As usual, define the initial inputs of the first stage of an arithmetic right shifter as
an−1, an−2,...... a2, a1, a0 with a control signal bq−1. Since there are 2q−1 selected
inputs in the first stage, then define the selected inputs as sn−1−2q−1 , s2, s1, s0.
Hence, to select the 2q−1 bits of inputs, a total number of 2q−1 Fredkin gates are

34

required. And to make copies of the sign bit an−1 for the Fredkin gates, a total
number of 2q−1 Feynman gates are also required. If the final outpus are defined
as Oq,n−1, Oq,n−2, Oq,2, Oq,1, Oq,0, correspondingly, the pth stage will have the
outputs expressed by Op,m, where 0 ≤ m ≤ n − 1. For bq−1 = 0, the selection unit
will select a serial inputs of an−1−2q−1 , a2, a1, a0, and the shifting unit will not
be exited thus the first stage of the arithmetic right shifter will not perform shifts.
For bq−1 = 1, the selection unit will select a serial inputs of sn−1−2q−1 , s2, s1, s0,
and the shifting unit is turned on to make a 2q−1 bits right shift. In this way, the
arithmetic right shifter performs an arithmetic right shift. The selection inputs have
the following equation:

sm = bq−1am + bq−1an−1 for 0 ≤ m ≤ n− 1− 2q−1 (4.24)

When bq−1 is set to 0, sm = am , the actual inputs will keep unchanged as the primary
inputs an−1, an−2, a2, a1. If bq−1 is set to 1, then sm = an−1, it allows this SCRL
design of logical right shifter to set the leftmost shifted bits as the sign bit an−1. Then
the actual inputs are sn−1−2q−1 , s2, s1, s0, an−1, an−2, an−2q−1 . The outputs
have the following equation:

O1,m =


bq−1am + bq−1sm+2q−1−n if m ≥ n− 2q−1

bq−1sm + bq−1am+2q−1 if m < n− 2q−1

(4.25)

If bq−1 = 0, the outputs of the first stage will keep the same as the inputs:

O1,m =


am if m ≥ n− 2q−1

sm if m < n− 2q−1

(4.26)

else if bq−1 = 1, the outputs of the first stage will rotate for 2q−1 bits to the right.
That is:

O1,m =


sm+2q−1−n if m ≥ n− 2q−1

am+2q−1 if m < n− 2q−1

(4.27)

2. Stage p (1 ≤ p ≤ q)
At the pth stage of an SCRL logical right shifter, the initial inputs are the outputs
from the previous stage Op−1,n−1, Op−1,n−2, Op−1,2, Op−1,1, Op−1,0. The pth stage
requires the total number of 2q−p Fredkin gates as selecters, and 2q−p Feynman gates

35

to achieve the function to select the actual inputs from the sign bit an−1 and the
rightmost 2q−p initial inputs, Op−1,2q−p−1, Op−1,2q−p−2, Op−1,2, Op−1,1, Op−1,0.
If the selected inputs are defined as s2q−p−1, s2q−p−2, s2, s1, s0, they have the
following equation:

sm = bq−pOp−1,m + bq−pan−1 for 0 ≤ m ≤ n− 1− 2q−p (4.28)

When bq−p is set to 0, sm = Op−1,m , the actual inputs will keep unchanged as
the primary inputs Op−1,n−1, Op−1,n−2, Op−1,2, Op−1,1. If bq−p is set to 1, then
sm = an−1. Therefore the leftmost shifted bits can be set to either the initial in-
puts or the sign bit an−1. Then the actual inputs are sn−1−2q−p , s2, s1, s0,
Op−1,n−1, Op−1,n−2,Op−1,n−2q−p . The outputs equation can be expressed as the
following:

Op,m =


bq−pOp−1,m + bq−psm+2q−p−n if m ≥ n− 2q−p

bq−psm + bq−pOp−1,m+2q−p if m < n− 2q−p

(4.29)

If bq−p = 0, the outputs of the pth stage will keep the same as the inputs:

Op,m =


Op−1,m if m ≥ n− 2q−p

sm if m < n− 2q−p

(4.30)

else if bq−p = 1, the outputs of the pth stage will right shift for 2q−p bits to the right.
That is:

Op,m =


sm+2q−p−n if m ≥ n− 2q−p

Op−1,m+2q−p if m < n− 2q−p

(4.31)

As a result, at the final outputs side of the arithmetic right shifter, the initial inputs can
be right shifted from 0 to n − 1 bits according to the different settings of the control
bits bm. It is also mentioned in the previous section that if considering all the different
states of the combinations of the control bits as binary numbers, the corresponding decimal
numbers are the right shifting bits from 0 to n− 1. In SCRL design of an (n, q) arithmetic
right shifters, it requires q SCRL gates, n − 1 Fredkin gates and n − 1 Feynman gates.
To make it intuitional, a design of (8, 3) SCRL-based arithmetic right shifter is shown in
Figure 4.7. It has 3 shifting stages with the initial inputs as a7, a6, a5, a4, a3, a2, a1, a0. The
corresponding final outputs are O7, O6, O5, O4, O3, O2, O1, O0. To simplify the expressions,

36

define the outputs for the first stage as k7, k6, k5, k4, k3, k2, k1, k0, and define the outputs
for stage 2 as j7, j6, j5, j4, j3, j2, j1, j0. And also to separate the selected inputs from each
stage, define the selected input for stage 1 as s3, s2, s1, s0, the selected inputs for stage 2 as
x1, x0, the selected inputs for stage 3 as y0. The selected inputs are selected by the following
equations:

sm = b2am + b2a7 for 0 ≤ m ≤ 3 (4.32)

xm = b1km + b1a7 for 0 ≤ m ≤ 1 (4.33)

ym = b0jm + b0a7 for m = 0 (4.34)

The first stage shift unit will either right shift the actual inputs a7, a6, a5, s4, s3, s2, s1, s0
for 4 bits with the control signal b2 = 1 while it keeps the leftmost 4 bits of outputs as same
as the sign bit a7 or keep them unchanged with b2 = 0. The shift unit of stage 2 will either
right shift its inputs for 2 bits with b1 = 1 while it keeps the left most 2 bits of outputs as
same as the sign bit a7 or keep them unchanged with b1 = 0. At last the shift unit of stage
3 will either right shift its inputs for 1 bits with b0 = 1 while it keeps the leftmost 1 bit of
output as same as the sign bit a7 or keep them unchanged with b0 = 0. For each stage, the
outputs are shown in the following equations:

ki =


b2ai + b2si−4 if i ≥ 4

b2si + b2ai+4 if i < 4

(4.35)

ji =


b1ai + b1xi−6 if i ≥ 6

b1xi + b1ai+2 if i < 6

(4.36)

Oi =


b0ai + b0yi−7 if i ≥ 7

b0yi + b0ai+1 if i < 7

(4.37)

Thus, a reversible (8, 3) arithmetic right shifter function is achieved. As it is shown
in Figure 4.7, this design totally yields 7 garbage outputs, which has reduced much more
garbage outputs than the previous reversible designs. This design applies 7 Fredkin gates
and 7 Feynman gates in total. The reduced requirement of the 2 : 2 logic gates also
contributes to the optimization of the operation delay. Table 4.3 shows the possible right
shift operations and the different combinations of the control signals. And Figure 4.8 is the
simulation result of SCRL arithmetic right shifter.

37

Table 4.3: Possible operations

b2 b1 b0 Shifting Bits

0 0 0 a7, a6, a5, a4, a3, a2, a1, a0
0 0 1 a7, a7, a6, a5, a4, a3, a2, a1
0 1 0 a7, a7, a7, a6, a5, a4, a3, a2
0 1 1 a7, a7, a7, a7, a6, a5, a4, a3
1 0 0 a7, a7, a7, a7, a7, a6, a5, a4
1 0 1 a7, a7, a7, a7, a7, a7, a6, a5
1 1 0 a7, a7, a7, a7, a7, a7, a7, a6
1 1 1 a7, a7, a7, a7, a7, a7, a7, a7

38

0

0

0

b1

b0

Figure 4.7: (8, 3) SCRL arithmetic right shifter (FR: Frdkin gate, FE: Feynman gate, G:
garbage outputs)

39

0 ns+5 500 ns 1000 ns 1500 ns 2000 ns 2500 ns

/arithmetic/o7

/arithmetic/o6

/arithmetic/o5

/arithmetic/o4

/arithmetic/o3

/arithmetic/o2

/arithmetic/o1

/arithmetic/o0

Entity:arithmetic Architecture:fast Date: Thu Apr 09 3:50:31 AM Eastern Daylight Time 2015 Row: 1 Page: 1

Figure 4.8: Simulation result of SCRL arithmetic right shifter

4.4 Design Methodology of Universal Right Shifter and Im-
plementation in SCRL Gates

Looking back to the previous three sections of the final implementations, it is not difficult
to find out that there are similarities in the designs. The rotation or shift units are very
similar to each other. A universal right shifter combines the similarities and develop another
function unit to achieve the three different functions: right rotation, logical right shift and
arithmetic right shift. The operations are shown in Table 2.4. The new function unit
is capable to deal command to make a decision to complete a right rotation or a logical
right shift or an arithmetic right shift. Thus it requires some Fredkin gates to achieve the
selection function, and some Feynman gates to copy the selected outputs to transmit to the
shifting units. Similarly to the previous designs, for an (n, q) universal right shifter, there
are 2q−1 shifting stages of the shifting unit. In Stage 1, the rightmost 2q−1 bits of inputs are
involved in the selection unit and the same bits of inputs may be shifted after the selection.
Different form the previous selection units of the logical right shifter and the arithmetic
right shifter, the selection unit of the universal right shifter will select the inputs for two
times, first select from 0 and the sign bit an−1 to decide whether the universal right shifter
is a logical right shifter (select 0 as the inputs) or an arithmetic right shifter (select an−1 as

40

the inputs). Then in the next selection, the selection unit will select from the initial inputs
a2q−1−1, a2q−1−2,a2, a1, a0 and the outputs of the previous selection. Then as a result
the selection unit is functioned to complete a selection from the three different functions,
right rotation, logical right shift and arithmetic right shift. The control signals c0, bq−1 are
responsible for selecting the operations. c0 controls the selection from logical right shift
and arithmetic shift while tq−1 controls the selection of the right rotation and the previous
selected function. Table 4.4 shows the different operations selected by the different states
of the two control signals above.

Table 4.4: Different operations of universal right shifter
c0 tq−1 Operations

0 0 Right rotation

0 1 Arithmetic

1 0 Right rotation

1 1 Logical right shift

1. Selection unit
There are two parts of the selection unit. The first part is responsible for selecting
from the sign bit an−1 and 0 so that the logic circuit is capable to select an operation
of logical right shift or an arithmetic right shift. Define the output of the first part of
the selection unit as F , it has the following equation:

F = c0an−1 (4.38)

in this way the Fredkin gate selects the input an−1 when c0 = 1 so that the first part of
the selection unit selects the operation mode of arithmetic right shift. In another way,
the Fredkin gate selects the input 0 when c0 = 0, so that the logic circuit selects the
operation mode of logical right shift. Then the second selection part of the selection
unit will select from the initial inputs a2q−1−1, a2q−1−2,a2, a1, a0 and the primarily
selected input F . It requires 2q−1 Feynman gates to make copies of F for the second
selection part of the unit. The final selected inputs s2q−1−1, s2q−1−2, s2, s1, s0 are
selected by:

sm = tq−1am + tq−1F for m = 0, 1, 2,2q−1 − 1 (4.39)

When tq−1 = 0, the selection unit selects the inputs as it is selected in by the first
Fredkin gate so that the logic circuit performs as either a logical right shifter or an
arithmetic right shifter depending on the value of F . When tq−1 = 1, the selection unit
selects the inputs as the initial inputs so that the logic circuit performs an operation
of a right rotator. To make a more visualized explanation, an example for a selection
unit of an (8, 3) universal right shifter is shown in Figure 4.9.

41

FE

FE

FE

FR

a3

c1

s3 G

FR

a2

s2 G

FR

a1

s1 G

FR

a0

s0 G

FR

0 a7

c0

G

0

0

0

FE

0

F

Figure 4.9: Selection unit of (8, 3) universal right shifter (FR: Fredkin gate, FE: Feynman
gate, G: Garbage outputs)

F is the output of the first Fredkin gate. It has the equation as:

F = c0a7 (4.40)

For c0 = 0, F = 0, the first Fredkin gate selects the input 0 and for c0 = 1, F = a7,
the first Fredkin gate selects the input a7, which is the sign bit. Therefore, the first
selection process of the selection unit achieved the function to make a selection from
logical right shift or arithmetic right shift. Then the selected input F is propagated
to the next Feynman gate, this Feynman gate together with the other three Feynman
gates yields a total number of 5 copies of F . Four out of them will be used in the next
progress of the selection unit to complete the overall selection of the three operations
and the other one will be used for the next stage selection. The second progress of the
selection unit will select the inputs from F and the initial inputs a3, a2, a1, a0. The
final selected inputs are defined as s3, s2, s1, s0. For m = 0, 1, 2, 3 the final selected
inputs have the following equation:

sm = t2am + t2F (4.41)

Thus for t2 = 0, sm = F , the selection unit then selects either the logical right shift
or the arithmetic right shift depending on the the value of F . For t2 = 1, sm = am,
then the selection unit selects the operation of right rotation.

2. Stage 1
For the first stage, the inputs are the selected inputs by the selection unit an−1, an−2,
...... a2q−1 , s2q−1−1, s2q−1−2, s2, s1, s0. The outputs of the first stage are defined
as O1,m:

42

O1,m =


bq−1am + bq−1sm+2q−1−n if m ≥ 2q−1 − 1

bq−1sm + bq−1am+2q−1 if m < 2q−1 − 1

(4.42)

bq−1 is the control signal of the first stage. The outputs are:

O1,m =


am if m ≥ n− 2q−1

sm if m < n− 2q−1

(4.43)

If bq−1 = 0. Else if bq−1 = 1, the outputs of the first stage will rotate for 2q−1 bits to
the right. That is:

O1,m =


sm+2q−1−n if m ≥ 2q−1 − 1

am+2q−1 if m < 2q−1 − 1

(4.44)

3. Stage p (1 ≤ p ≤ q)
For the pth stage of the design of a universal right shifter, the initial inputs are the
outputs from the previous stage Op−1,n−1, Op−1,n−2, Op−1,2, Op−1,1, Op−1,0. Since
the primarily selected input F can be applied as a global variable and can be copied
by Feynman gates, the pth stage does not require a double selection unit as the first
stage. The selection unit of the pth stage (p 6= 1) will only select from F and the inputs
Om, where 0 ≤ m ≤ n− 2q−p. It requires 2q−p Fredkin gates and 2q−p Feynman gates
to achieve the selection. The selected inputs are defined as s2q−p−1, s2q−p−2,
s2, s1, s0:

sm = tq−pOp−1,m + tq−pF for 0 ≤ m ≤ n− 1− 2q−p (4.45)

When tq−p is set to 0, sm = Op−1,m , the actual inputs will keep unchanged as the
previous outputs Op−1,n−1, Op−1,n−2, Op−1,2, Op−1,1. If tq−p is set to 1, then
sm = F . So that there are three possibilities for the leftmost 2q−p bits: 0, an−1,
Op−1,m. The outputs are defined as:

Op,m =


bq−pOp−1,m + bq−psm+2q−p−n if m ≥ n− 2q−p

bq−psm + bq−pOp−1,m+2q−p if m < n− 2q−p

(4.46)

If bq−p = 0, the outputs of the pth stage will keep the same as the inputs:

43

Op,m =


Op−1,m if m ≥ n− 2q−p

sm if m < n− 2q−p

(4.47)

else if bq−p = 1, the outputs of the pth stage will right shift for 2q−p bits to the right.
That is:

Op,m =


sm+2q−p−n if m ≥ n− 2q−p

Op−1,m+2q−p if m < n− 2q−p

(4.48)

Thus at the final outputs side, as it is shown in Table 4.4, the three different operations
can be realized. And for different states of the control signals fro each stage, the universal
right shifter can complete the three operations for any bits from 0 to n − 1 according to
the different settings of all the control signals. To make it visualized, a design of (8, 3)
SCRL-based universal right shifter is shown in Figure 4.10. It has 3 shifting or rotating
stages with the initial inputs as a7, a6, a5, a4, a3, a2, a1, a0. The corresponding final outputs
are O7, O6, O5, O4, O3, O2, O1, O0. To simplify the expressions and equations, the outputs
for the first stage are defined as k7, k6, k5, k4, k3, k2, k1, k0, and the outputs for stage 2 are
defined as j7, j6, j5, j4, j3, j2, j1, j0. And also to separate the selected inputs from each stage,
define the selected input for stage 1 as s3, s2, s1, s0, the selected inputs for stage 2 as x1, x0,
the selected inputs for stage 3 as y0. The selected inputs are selected by the following
equations:

si = t2ai + t2F for 0 ≤ m ≤ 3 (4.49)

xm = t1km + t1F for 0 ≤ m ≤ 1 (4.50)

ym = t0jm + t0F for m = 0 (4.51)

The first stage shift unit will either right shift the initial inputs a7, a6, a5, s4, s3, s2, s1, s0
for 4 bits with the control signal b2 = 1 or keep them unchanged with b2 = 0. The shift unit
of stage 2 will either right shift its inputs for 2 bits with b1 = 1 or keep them unchanged
with b1 = 0. At last the shift unit of stage 3 will either right shift its inputs for 1 bits with
b0 = 1 or keep them unchanged with b0 = 0. For each stage, the outputs are defined as:

ki =


b2ai + b2si−4 if i ≥ 4

b2si + b2ai+4 if i < 4

(4.52)

44

ji =


b1ai + b1xi−6 if i ≥ 6

b1xi + b1ai+2 if i < 6

(4.53)

Oi =


b0ai + b0yi−7 if i ≥ 7

b0yi + b0ai+1 if i < 7

(4.54)

45

t2

t1

t0

0

0

0

G

F

Figure 4.10: An SCRL (8, 3) universal right shifter (FR: Fredkin gate, FE: Feynman gate,
G: garbage outputs)

Table 4.5 is a list of all possible bits data movement of three different operations.

46

Table 4.5: Operations of all possible bits in (8, 3) universal right shifter
t2 t1 t0 c0 b2 b1 b0 Operations

0 0 0 0 0 0 0 0 bit arithmetic right shift

0 0 1 0 0 0 1 1 bit arithmetic right shift

0 1 0 0 0 1 0 2 bit arithmetic right shift

0 1 1 0 0 1 1 3 bit arithmetic right shift

1 0 0 0 1 0 0 4 bit arithmetic right shift

1 0 1 0 1 0 1 5 bit arithmetic right shift

1 1 0 0 1 1 0 6 bit arithmetic right shift

1 1 1 0 1 1 1 7 bit arithmetic right shift

0 0 0 1 0 0 0 0 bit logical right shift

0 0 1 1 0 0 1 1 bit logical right shift

0 1 0 1 0 1 0 2 bit logical right shift

0 1 1 1 0 1 1 3 bit logical right shift

1 0 0 1 1 0 0 4 bit logical right shift

1 0 1 1 1 0 1 5 bit logical right shift

1 1 0 1 1 1 0 6 bit logical right shift

1 1 1 1 1 1 1 7 bit logical right shift

0 0 0 / 0 0 0 0 bit right rotation

0 0 0 / 0 0 1 1 bit right rotation

0 0 0 / 0 1 0 2 bit right rotation

0 0 0 / 0 1 1 3 bit right rotation

0 0 0 / 1 0 0 4 bit right rotation

0 0 0 / 1 0 1 5 bit right rotation

0 0 0 / 1 1 0 6 bit right rotation

0 0 0 / 1 1 1 7 bit right rotation

Thus if the control signal c0 = 0, t2 + t1 + t0 6= 0 the universal performs as an arithmetic
right shifter and if c0 = 1, t2 + t1 + t0 6= 0 it performs as a logical right shifter. If
t2 + t1 + t0 = 0, no matter what state c0 is at, the universal right shifter will perform as a
right rotator. And Figure 4.11 is the simulation result of SCRL universal right shifter.

47

0 ns 500 ns 1000 ns 1500 ns 2000 ns 2500 ns 3000 ns

/universal/o7

/universal/o6

/universal/o5

/universal/o4

/universal/o3

/universal/o2

/universal/o1

/universal/o0

Entity:universal Architecture:fast Date: Thu Apr 09 3:59:53 AM Eastern Daylight Time 2015 Row: 1 Page: 1

Figure 4.11: Simulation result of SCRL universal right shifter

4.5 Design Methodology of Universal Bidirectional Shifter
and Implementation in SCRL Gates

In the previous sections, the involved designs are exclusively right directional. Recall that
in Table 2.4, left directional operations are also mentioned. However, the only difference
between the two directional rotators is the operating direction. And there is the same
difference between the two directional operations of logical shifter. For the arithmetic right
shifter and the arithmetic left shifter, there is another difference other than the shifting
direction. The left shifted bits of data are replaced by 0 while the leftmost bit is kept as the
sign bit. Designing a logic circuit that is capable of operating all the 6 functions in Table
2.4 is another goal of this thesis. The main purpose is to design a unit that can realize a
order reverse operation. Thinking that if the order of the initial inputs are reversed and
then reversed back after the right directional operation unit, the final output will be just the
same as the ones of left directional operation except the arithmetic shift. It is not difficult to
find out that ignoring the first bit of data, the arithmetic left shifter is operating an logical
left shifter. So that it is executable to include the bidirectional arithmetic shifter in the
double-reverse design universal shifter by adding another Fredkin gate to the second reverse
operation to make a selection from the sign bit an−1 and the output of the last function

48

operation stage f0. Figure 4.12 is an example for a reverse unit of a universal shifter.

z

Figure 4.12: Reverse unit

The variable r is the control signal of the reverse unit. Suppose the inputs to the
reverse unit are an−1, an−2, an−3, a2, a1, a0, with the control signal r = 1, the first
reverse operation will reverse them into the order of a0, a1, a2, an−3, an−2, an−1 and the
second reverse operation will reverse the data from the last operation stage fn−1, fn−2, fn−3,
...... f2, f1, f0 to f0, f1, f2, fn−3, fn−2, fn−1. With r = 0, the reverse unit will not
operate reverse function. Thus the logic circuit is enabled to make bidirectional operations.
When r = 1, it performs a left operation and when r = 0, it performs a right operation.
Table 4.6 is a list of the different operations with different states of the control signals.
T = tq−1 + tq−2 + ... + t1 + t0.

Table 4.6: Operations of the universal bidirectional shifter
z r T c0 Operations

0 0 0 0 Right rotation

0 0 0 1 Right rotation

0 0 1 0 Arithmetic right shift

0 0 1 1 Logical right shift

0 1 0 0 Left rotation

0 1 0 1 Left rotation

0 1 1 1 Logical left shift

1 1 1 1 Arithmetic left shift

The control signal z is a switch to turn on the arithmetic left shift mode. It always work

49

at with r = 1, t2 + t1 + t0 = 1, c0 = 1, which is a logical right shift in the previous function
operation.

1. Right rotation
When the control bits are at the state of all 0s, the control signal r will not turn
the reverse unit on, so that the logic circuit is a right directional operator. And
then the selection unit selects a operation of right rotator with T = 0. The contol
signals will always select the initial inputs. As a result, the universal bidirectional
shifter performs right rotate operation. Suppose there is a serial inputs an−1, an−2,
...... a2, a1, a0. After the first part of the reverse unit, this serial inputs will keep
unchanged since the reverse unit is off (r = 0). The selection unit selects an operation
of right rotation, so that for each stage, the inputs will always be the same as the
outputs from the upper stage. The rotating bit is controlled by bq−1, which is discussed
in the previous designs.

2. Arithmetic right shift
While T = 1, T = tq−1 + tq−2 + ...+ t1 + t0, it means that at least one of tq−1, tq−2,
t1, t0 is set to 1. So that at least one of the shifting stages will have the input from
the first Fredkin gate which select the input form 0 and the sign bit an−1. Then with
c0 = 0, the first Fredkin gate in the selection unit selects the input as the sign bit
an−1. Thus the universal bidirectional shifter performs as an arithmetic right shifter.

3. Logical right shit
As it is mentioned previously, when T = 1, at least one of the shifting stages will
obtain the input from the first Fredkin gate which will be either 0 or an−1. At c0 = 1,
the first selection part of the selection unit will select 0 as the input. Then controlled
by bq−1, at least one of the shifting operation stage will have a certain number of
inputs as 0. Therefore, the universal bidirectional shifter performs as a logical right
shifter.

4. Left rotation
To make a left rotation, it is required that r = 1 so that the reverse unit is turn on
to make a left directional rotation. If the initial inputs are an−1, an−2, a2, a1, a0,
after the first part of the reverse unit, they are reversed to a0, a1, a2, an−2, an−1.
Suppose that the logic circuit will perform a 2 bits left rotation, then after the oper-
ation unit, the outputs are an−2, an−1, a0, a1, an−4, an−3. After reversed by the
second part of the reverse unit, the final outputs are an−3, an−4, a1, a0, an−2, an−1.
Thus the circuit operates a 2 bits left rotation.

5. Logical left shift
For a logical left shift, the direction control signal is required to be set to 1. Similarly
to left rotation, the operation unit should perform a logical right shift so that T = 1
and c0 = 1. For the same inputs as left rotation, suppose the logic circuit is going
to perform a 2 bits logical left shift, they are reversed by the first part of the reverse
unit. The operation unit yields the outputs as 0, 0, a0, a1, an−4, an−3. At last the
reverse unit yields the final outputs as an−3, an−4, a1, a0, 0, 0. The logic circuit
then realizes an operation of 2 bits logical left shift.

6. Arithmetic left shift
Arithmetic left shift is different from left rotation and logical left shift. The operation

50

unit is not an arithmetic right shifter but a logical right shifter so that there are
0s yielded from the operation unit. For an arithmetic left shift, control signal z is
required to be set to 1 so that at prior to the last reverse, the Fredkin gate selects the
fist last bit, which will be reversed to the first after the reverse, as the sign bit an−1.
Again, suppose the logic circuit is going to perform a 2 bits arithmetic left shift with
the same inputs, after reversed by the first part of the reverse unit, the operation unit
performs a logical right shift and yields the outputs as 0, 0, a0, a1, an−4, an−3.
Then the z controlled Fredkin gate selects the last bits as an−1. After the second
reverse, the final outputs are an−1, an−4, an−5, a1, a0, 0, 0. Thus the universal
bidirectional shifter realizes a 2 bits arithmetic left shift.

Figure 4.13 is an example of an (8, 3) universal bidirectional shifter. The initial inputs are
i7, i6, i5, i4, i3, i2, i1, i0. The first reverse yields a7, a6, a5, a4, a3, a2, a1, a0. And the operation
unit yields f7, f6, f5, f4, f3, f2, f1, f0. The z controlled Fredkin yields h. And Figure 4.14 is
the simulation result of SCRL universal bidirectional shifter.

51

Figure 4.13: An (8, 3) universal bidirectional shifter (FR: Fredkin gate, FE: Feynman gate,
G:garbage outputs)

52

0 ns 500 ns 1000 ns 1500 ns 2000 ns 2500 ns 3000 ns 3500 ns 4000 ns 4500 ns

/bidirectional/o7

/bidirectional/o6

/bidirectional/o5

/bidirectional/o4

/bidirectional/o3

/bidirectional/o2

/bidirectional/o1

/bidirectional/o0

Entity:bidirectional Architecture:fast Date: Thu Apr 09 4:09:26 AM Eastern Daylight Time 2015 Row: 1 Page: 1

Figure 4.14: Simulation result of SCRL universal bidirectional shifter

53

Chapter 5

Evaluations

In this thesis, we have evaluated the proposed designs of the SCRL-based reversible barrel
shifter in terms of the amount of garbage and ancilla bits and the qca cost.

5.1 Garbage Outputs

Garbage outputs is one of primary metric that needs to be optimized when designing the
reversible logic circuits. Garbage outputs are the outputs that are needed for reversibility
but are not responsible for any useful operations.

5.1.1 Garbage Outputs in SCRL Reversible Right Rotator

As it is shown in Figure 4.1, the SCRL-based reversible right rotator do not yield any
garbage outputs. Hence, the SCRL reversible right rotator is a circuit that is free of garbage
outputs. To the best of our knowledge, the existing design in [33] is the most efficient design
of reversible right rotator. Hence, we have compared our proposed SCRL-based right rotator
with the design in [33]. Figure 5.1 plots of the number of the garbage outputs in [33].

Table 5.1 is a comparison of the garbage outputs between the SCRL-based design of
reversible right rotator and the existing design in [33].

Table 5.1: Garbage outputs in right rotators

(4, 2) (8, 3) (16, 4) (32, 5) (64, 6) . . . (n, q)

SCRL design 0 0 0 0 0 . . . 0

Shamsujjoha design 2 3 4 5 6 . . . q

Improvement ratio S% 100 100 100 100 100 . . . N/A

Improvement ratio S% is the improvement ratio compared to Shamsujjoha design [33].

The comparison results shows that the proposed SCRL-based design of right rotator is
a great improvement compared to the design in [33].

54

Figure 5.1: Garbage outputs in reversible right rotators

5.1.2 Garbage Outputs in SCRL Reversible Logical Right shifter

As mentioned in the design methodology of the SCRL-based reversible logical right shifter,
for the pth of an (n, q) circuit, a number of 2q−p Fredkin gates are required to form the
selection unit and each Fredkin gate will produce one garbage output. We have compared
the proposed SCRL-based reversible logical right shifter with the existing reversible designs
in [19, 33]. Table 5.2 is a comparison of the garbage outputs of different designs, SCRL
design, Kotiyal design and Shamsujjoha design [19, 33].

Table 5.2: Garbage outputs in logical right shifters
(4, 2) (8, 3) (16, 4) (32, 5) (64, 6) . . . (n, q)

SCRL design 3 7 15 31 63 . . . n-1

Kotiyal design 10 27 68 165 390 . . . (n + 1)× q

Shamsujjoha design 8 24 64 160 384 . . . n× q

Improvement ratio K% 70.00 74.07 77.94 81.12 83.84 . . . N/A

Improvement ratio S% 62.50 70.83 76.56 80.62 83.59 . . . N/A

Figure 5.2 is a chart that shows the increasing trend of garbage outputs as n, q increases.

55

Figure 5.2: Garbage outputs in reversible logical right shifters

5.1.3 Garbage Outputs in SCRL Reversible Arithmetic Right Shifter

The SCRL-based design of reversible arithmetic right shifter requires the same number
of Fredkin gates as the logical right shifter. Since Feynman gates do not yields any garbage
outputs, the SCRL reversible arithmetic right shifter has the same bits of garbage outputs
as the logical right shifter. Table 5.3 shows the garbage outputs of the arithmetic right
shifter in a detailed to stage measurement.

Table 5.3: Garbage outputs in arithmetic right shifter
n = 4 n = 8 n = 16 n = 32 n = 64

k = 2 3 6 12 24 48

k = 3 NA 7 14 28 56

k = 4 NA NA 15 30 60

k = 5 NA NA NA 31 62

k = 6 NA NA NA NA 63

5.1.4 Garbage Outputs in SCRL Reversible Universal Right Shifter

The SCRL-based design of reversible universal right shifter requires an additional Fredkin
gate to construct the three variables selection unit. Thus for the whole circuit, it yields
one more garbage outputs. As a result, there are n Fredkin gates in a SCRL reversible
universal right shifter and meanwhile n garbage outputs are yielded in total. We have the
comparisons between SCRL-based design and the existing design in [19]. Table 5.4 is a

56

comparison of the garbage outputs in reversible universal right shifters in SCRL design and
existing Kotiyal design [19].

Table 5.4: Garbage outputs in universal right shifters
(4, 2) (8, 3) (16, 4) (32, 5) (64, 6) . . . (n, q)

SCRL design 4 8 16 32 64 . . . n

Kotiyal design 16 37 86 199 456 . . . (n + 1)× q + n + 2

Impv ratio K% 75.00 78.38 81.40 83.92 85.96 . . . N/A

Improvement ratio K% is the improvement ratio compared to Kotiyal design [19].

Figure 5.3 has a direct view of the increasing trend of garbage outputs with the increasing
n, q values.

Figure 5.3: Garbage outputs in reversible universal right shifters

5.1.5 Garbage Outputs in SCRL Reversible Universal Bidirectional Shifter

The SCRL-based reversible universal bidirectional shifter has an additional reverse unit
for direction reversing. To make an arithmetic left shift, an additional Fredkin gate is
required at the second reverse of the reverse unit as shown in Figure 4.13. Hence, the
SCRL-based reversible universal bidirectional shifter has (n + 1) garbage outputs in total.
We have compared the SCRL-based universal bidirectional shifter with the existing designs
in [17, 19, 26]. Table 5.5 shows the comparison of garbage outputs of the SCRL design and
some other existing designs [17, 19, 26] (M is the Mitra design [26], K is the Kotiyal design
[19] and H is the Hosseininia design [17]).

57

Table 5.5: Garbage outputs in universal bidirectional shifter designs
(4, 2) (8, 3) (16, 4) (32, 5) (64, 5)

SCRL design 5 9 17 33 65
Kotiyal design 17 38 87 200 457

Mitra design 11 17 27 45 79

Hosseininia design 32 74 164 358 776

Impv ratio K% 70.59 76.32 80.46 83.50 85.78

Impv ratio M% 54.54 47.06 37.04 26.67 17.72

Impv ratio H% 84.38 87.84 89.63 90.78 91.62

Figure 5.4 has a direct view of the increasing trend of garbage outputs with the increasing
n, q values.

Figure 5.4: Garbage outputs in reversible universal bidirectional shifters

5.2 Comparison of Garbage Outputs

Table 5.1 shows that the SCRL design reversible right rotator does not yield any garbage
outputs so that the improvement ratios of the Shamsujjoha design are all 100%. Thus the
SCRL design reversible right rotaor is perfect from the garbage outputs evaluation. Table
5.2 is a comparison table of garbage outputs for reversible logical right shifters. Improvement
ratio K% means the improvement ratio of Kotiyal design and Improvement ratio S% means
the impovement ratio of Shamsujjoha design. The improvement ratios show that the SCRL
design has improved the number of garbage outputs in a decent extent. And the ratio grows
as the inputs level grows. It grows from 70.00% at (4, 2) inputs level to 83.84% at (64, 6)

58

inputs level for Kotiyal design. And it grows from 62.50% at (4, 2) inputs level to 83.59% at
(64, 6) inputs level for Shamsujjoha design. So that it is even more efficient when designing
extensive inputs logical right shifters. Table 5.4 shows that the improvement ratio also
grows with the growing inputs level of the reversible universal right shifter. It means that
for the reversible universal right shifter, the SCRL design has also improved quite a lot.
Table 5.5 is the most important comparison since there are multiple designs in reversible
universal bidirectional shifters. The Kotiyal and Hosseininia improvement ratio show that
the SCRL design has improved the garbage outputs. Even for Mitra design, which is the
new 2015 design, the SCRL design has also reduced the garbage outputs. Even though the
improvement ratio of Mitra design is decreasing, the garbage outputs of SCRL design will
always be less than those of Mitra design as it is indicated in the (n, q) inputs level that
n + 2q + 3 is larger than n + 1.

5.3 Ancilla Inputs

Ancilla inputs refer to the constant inputs in the logic circuits. The amount of ancilla
inputs is another important criteria to evaluate the reversible logic. A large number of
ancilla inputs is always a limitation to fabricate a quantum computer with large number of
inputs.

5.3.1 Ancilla Inputs in SCRL Reversible Right Rotator

The SCRL-based reversible right rotator are built by all SCRL gates. All the inputs are
the given variables and control signals that are not considered as ancilla inputs. That is to
say that there are no ancilla inputs in SCRL-based reversible right rotator.

5.3.2 Ancilla Inputs in SCRL Reversible Logical Right Shifter

A logical right shifter requires copies of 0s to replace the shifted bits. As shown in Figure
4.3, the selection unit built by Fredkin gates requires 0s as the constant inputs. As a result,
each Fredkin gates in use is a source of an ancilla input. In an (n, q) SCRL-based reversible
logical right shifter, a number of n− 1 ancilla inputs are produced. We have also compared
the SCRL-based design of reversible logical right shifter with the existing design in [19].
Table 5.6 shows the number of ancilla inputs at different (n, q) values in SCRL and another
existing Kotiyal design [19].

Table 5.6: Ancilla inputs in logical right shifters
(4, 2) (8, 3) (16, 4) (32, 5) (64, 6) . . . (n, q)

SCRL design 3 7 15 31 63 . . . n-1

Kotiyal design 8 24 64 160 384 . . . n× q

Improvement ratio K% 62.50 70.83 76.56 80.625 83.59 . . . N/A

Improvement ratio K% is the improvement ratio compared to Kotiyal design [19].

Figure 5.5 has a direct view of the increasing trend of ancilla inputs with the increasing
n, q values.

59

Figure 5.5: Ancilla inputs in reversible logical right shifters

5.3.3 Ancilla Inputs in SCRL Reversible Arithmetic Right Shifter

In the SCRL-based design of reversible arithmetic right shifter, the source of ancilla inputs
is the Feynman gate. In order to realize an arithmetic right shift, the logic circuit requires
copies of the sign bit. A Feynman gate performs a copy function when the second input is
set to 0. The constant 0s are the ancilla inputs and each Feynman gate in use produces one
ancilla input. The number of Feynman gates in an (n, q) SCRL arithmetic right shifter is
n− 1. As a result, there are (n− 1) ancilla inputs. Table 5.7 shows the numbers of ancilla
inputs at different (n, q) values.

Table 5.7: Ancilla inputs in arithmetic right shifters
(4, 2) (8, 3) (16, 4) (32, 5) (64, 6) . . . (n, q)

SCRL design 3 7 15 31 63 . . . n-1

5.3.4 Ancilla Inputs in SCRL Reversible Universal Right Shifter

The quantity of Feynman gates applied in the SCRL design of an (n, q) reversible universal
right shifter is n − 1. And the first Fredkin gate in the selection unit is used to select the
data from 0 and an−1, where 0 is a constant input. Hence, there are n ancilla inputs in
SCRL-based reversible universal right shifter in total. We have compared the SCRL-based
design of reversible universal right shifter with the existing design in [19]. Table 5.8 shows
the ancilla inputs comparison between the SCRL and Kotiyal design [19].

60

Table 5.8: Ancilla inputs in universal right shifters
(4, 2) (8, 3) (16, 4) (32, 5) (64, 6) . . . (n, q)

SCRL design 4 8 16 32 64 . . . n

Kotiyal design 12 32 80 192 448 . . . n× q + 2q

Improvement ratio K% 66.67 75.00 80.00 83.33 85.71 . . . N/A

Improvement ratio K% is the improvement ratio compared to Kotiyal design [19].

Figure 5.6 has a direct view of the increasing trend of ancilla inputs with the increasing
n, q values.

Figure 5.6: Ancilla inputs in reversible universal right shifters

5.3.5 Ancilla Inputs in SCRL Reversible Universal Bidirectional Shifter

Since the additional Fredkin gate in the reverse unit is used for selecting data from the sign
bit and the previous last bit of outputs, it does not require an ancilla input. As the result,
the total number of ancilla inputs in SCRL-based reversible universal bidirectional shifter
are the same as the number of ancilla inputs in universal right shifter. We have compared
the SCRL-based design of reversible universal bidirectional shifter with the existing designs
in [17, 19, 26]. Table 5.9 shows the number of ancilla inputs in the SCRL design and some
other existing designs of reversible universal bidirectional shifters [17, 19, 26](M is the Mitra
design [26], K is the Kotiyal design [19] and H is the Hosseininia design [17]).

61

Table 5.9: Ancilla inputs in universal bidirectional shifters
(4, 2) (8, 3) (16, 4) (32, 5) (64, 6)

SCRL design 4 8 16 32 64

Kotiyal design 13 33 81 193 449

Mitra design 6 11 20 37 70

Hosseininia design 28 68 156 348 764

Improvement ratio K% 69.23 75.76 80.24 83.42 85.75

Improvement ratio M% 33.33 27.27 20.00 13.51 8.57

Improvement ratio H% 85.71 88.24 89.74 90.80 91.62

Figure 5.7 has a direct view of the increasing trend of ancilla inputs with the increasing
n, q values.

Figure 5.7: Ancilla inputs in reversible bidirectional right shifters

5.4 Comparison of Ancilla Inputs

Table 5.6 shows that the SCRL design reversible logical right shifter has improved quite
a lot in ancilla inputs. It saves 62.50% ancilla inputs at (4, 2) inputs level and this ratio
grows to 83.59% at (64, 6) inputs level. Table 5.8 is a comparison table of ancilla inputs
for reversible universal right shifters. Improvement ratio K% means the improvement ratio
of Kotiyal design . The improvement ratios show that the SCRL design has reduced the
number of ancilla inputs in a decent number. And the ratio grows as the inputs level grows.
It grows from 66.67% at (4, 2) inputs level to 85.71% at (64, 6) inputs level for Kotiyal
design. So that it is even more efficient when designing extensive inputs universal right

62

shifters. Table 5.9 is the most important comparison since there are multiple designs in
reversible universal bidirectional shifters. The Kotiyal and Hosseininia improvement ratio
show that the SCRL design has reduced the number of ancilla inputs. Even for Mitra
design, which is the new 2015 design, the SCRL design has also reduced the ancilla inputs
decently. Even though the improvement ratio of Mitra design is decreasing, the garbage
outputs of SCRL design will always be less than those of Mitra design as it is indicated in
the (n, q) inputs level that n + q is larger than n.

5.5 QCA Cost Evaluation

We have also evaluated the cost of implementing the reversible barrel shifter in QCA
nanotechnology. The QCA cost consists of two parameters: (i) the amount of inverters used
in the design, (ii) the amount of majority voters used in the design. We have compared the
QCA cost of the SCRL-based reversible barrel shifters with the existing design of reversible
barrel shifters.

5.5.1 Right Rotator Cost

An (n, q) reversible SCRL-based right rotator requires q SCRL gates and each n×n SCRL
gate requires n inverters and 3 × n majority voters. Thus an (n, q) reversible SCRL right
rotator requires a total number of n×q inverters and 3×n×q majority voters. Each Fredkin
gate uses 2 inverters and 6 majority voters. We have compared the SCRL-based design of
reversible right rotator with the design in [33]. Table 5.10 shows the cost evaluation of
SCRL right rotator. Figure 5.8 and Figure 5.9 are the comparisons of the inverters and
majority voters of the SCRL-based design of reversible right rotaor with the design in [33].

Table 5.10: Cost evaluation of right rotator
(4, 2) (8, 3) (16, 4) (32, 5) (64, 6) . . . (n, q)

Inverters 8 24 64 160 384 . . . n× q

Majority voters 24 72 192 480 1152 3× n× q

63

Figure 5.8: Inverter cost comparison of right rotator

Figure 5.9: Majority voters comparison of right rotator

64

5.5.2 Logical Right Shifter Cost

An (n, q) reversible SCRL logical right shifter requires q SCRL gates and n − 1 Fredkin
gates. Each n× n SCRL gate requires n inverters and 3× n majority voters. Each Fredkin
gate is using 2 inverters and 6 majority voters. Thus an (n, q) reversible SCRL right rotator
requires a total number of n× q + 2× (n− 1) inverters and 3×n× q + 6× (n− 1) majority
voters. Each Feynman gate requires 2 inverters and 3 majority voters. We have compared
the SCRL-based design of reversible logical right shifter with the designs in [19, 33]. Table
5.11 shows the cost evaluation of SCRL logical right shifter. Figure 5.10 and Figure 5.11
are the comparisons of the inverters and majority voters [19, 33].

Table 5.11: Cost evaluation of logical right shifter
(4, 2) (8, 3) (16, 4) (32, 5) (64, 6) (n, q)

Inverters 14 38 94 222 510 n× q + 2× (n− 1)

Majority voters 42 114 282 666 1530 3× n× q + 6× (n− 1)

Figure 5.10: Inverter cost comparison of logical right shifter

65

Figure 5.11: Majority voter cost comparison of logical right shifter

5.5.3 Arithmetic Right Shifter Cost

An (n, q) reversible SCRL arithmetic right shifter requires q SCRL gates, n− 1 Fredkin
gates and n − 1 Feynman gates. The existing designs do not include the arithmetic right
shifter, so there is no comparison in this part. Each Feynman gate has 2 inverters and 3
majority voters. Each Fredkin gate has 2 inverters and 6 majority voters. Thus there are
4× (n− 1) + n× q inverters and 9× (n− 1) + 3× n× q majority voters in an (n, q) SCRL
arithmetic right shifter. Table 5.12 shows the cost for different levels.

Table 5.12: Cost evaluation of arithmetic right shifter
(4, 2) (8, 3) (16, 4) (32, 5) (64, 6)

Inverters 20 52 124 284 636

Majority voters 51 135 327 759 1719

5.5.4 Universal Right Shifter Cost

An (n, q) reversible SCRL-based reversible universal right shifter requires the same num-
ber of SCRL gates and Feynman gates as arithmetic right shifter. And it requires one more
Fredkin gate than arithmetic right shifter. Thus the number of inverters that an (n, q)
SCRL universal right shifter requires is 4× (n−1) +n× q+ 2. And the number of majority
voters is 9× (n− 1) + 3× n× q + 6. The existing design of reversible universal right shifter
in [19] requires n× (q + 1) + 2 Fredkin gates and (q + 1)×n− 1 Feynman gates. Table 5.13
shows the cost evaluation of SCRL universal right shifter. Figure 5.12 and Figure 5.13 are
the comparisons of the inverters and majority voters between the two designs [19].

66

Table 5.13: Cost evaluation of universal right shifter

(4, 2) (8, 3) (16, 4) (32, 5) (64, 6) . . . (n, q)

Inverters 22 54 126 286 638 . . . 4× (n− 1) + n× q + 2

Majority voters 57 141 333 765 1725 . . . 9× (n− 1) + 3× n× q + 6

Figure 5.12: Inverter cost comparison of universal right shifter

67

87

Table 5.14: Cost evaluation of universal bidirectional shifter
(4, 2) (8, 3) (16, 4) (32, 5) (64, 6)

Inverters 28 72 160 352 768

Majority voters 87 195 435 963 2115

M is the Mitra design, K is the Kotiyal design and H is the Hosseininia design

Figure 5.13: Majority voter cost comparison of universal right shifter

5.5.5 Universal Bidirectional Shifter Cost

An (n, q) reversible SCRL-based reversible universal bidirectional shifter requires the
same number of Feynman gates as universal right shifter. And it requires 1 more Fredkin
gates and 2 more SCRL gate than universal right shifter. Thus the number of inverters that
an (n, q) SCRL universal bidirectional shifter requires is 4× (n− 1) + n× (q + 2) + 4. And
the number of majority voters is 9× (n− 1) + 3× n× (q + 2) + 12. We have compared the
proposed SCRL-based reversible universal bidirectional shifter with the existing designs in
[17, 19, 26]. Table 5.14 shows the cost evaluation of SCRL universal bidirectional shifter.
Figure 5.14 and Figure 5.15 are the comparisons of the inverters and majority voters between
the different designs [17, 19, 26].

68

Figure 5.14: Inverter cost comparison of universal bidirectional shifter

Figure 5.15: Majority voter cost comparison of universal bidirectional shifter

69

Chapter 6

Conclusion

In this thesis, the SCRL-based design of reversible barrel shifters are presented. The
methodologies for the design of (n, q) reversible barrel shifters based on SCRL gate are also
proposed. The five proposed methodologies consist of reversible right rotator, reversible
logical right shifter, reversible arithmetic right shifter, reversible universal right shifter and
reversible universal bidirectional shifter. All the proposed design methodologies of reversible
barrel shifters based on SCRL gate have been verified by the Verilog simulation using the
Modelsim software. We proved that the SCRL gate is more powerful compared to the
existing Fredkin gate in implementing the logic functions. The proposed SCRL gate based
designs of reversible barrel shifters are mapped in QCA computing and are compared with
the existing designs according to the number of garbage and ancilla bits and the QCA cost.
The proposed designs of reversible barrel shifters based on SCRL gate have shown significant
improvement compared to the designs existing in literature in the metrics of garbage and
ancilla bits and the QCA cost.

70

References

[1] Mohammad Tanvir Alam, Steven J Kurtz, Mohammad Abu Jafar Siddiq, Michael T
Niemier, Gary H Bernstein, Xiaobo Sharon Hu, and Wolfgang Porod. On-chip clock-
ing of nanomagnet logic lines and gates. Nanotechnology, IEEE Transactions on,
11(2):273–286, 2012.

[2] MS Alam and MA Karim. Programmable optical perfect shuffle interconnection net-
work using fredkin gates. Microwave and Optical Technology Letters, 5(7):330–333,
1992.

[3] Charles H Bennett. Logical reversibility of computation. IBM journal of Research and
Development, 17(6):525–532, 1973.

[4] Sanjukta Bhanja, Marco Ottavi, Fabrizio Lombardi, and Salvatore Pontarelli. Qca
circuits for robust coplanar crossing. Journal of Electronic Testing, 23(2-3):193–210,
2007.

[5] Sanjukta Bhanja and Javier Pulecio. A review of magnetic cellular automata sys-
tems. In Circuits and Systems (ISCAS), 2011 IEEE International Symposium on,
pages 2373–2376. IEEE, 2011.

[6] Ashis Kumer Biswas, Md Mahmudul Hasan, Ahsan Raja Chowdhury, and Hafiz
Md Hasan Babu. Efficient approaches for designing reversible binary coded decimal
adders. Microelectronics journal, 39(12):1693–1703, 2008.

[7] E Oran Brigham and EO Brigham. The fast Fourier transform and its applications,
volume 1. Prentice Hall Englewood Cliffs, NJ, 1988.

[8] M. Cowlishaw. Decimal arithmetic faq part 3 hardware questions.
http://speleotrove.com/decimal/decifaq3.html, 2010.

[9] Bart Desoete and Alexis De Vos. A reversible carry-look-ahead adder using control
gates. INTEGRATION, the VLSI journal, 33(1):89–104, 2002.

[10] James Donald and Niraj K Jha. Reversible logic synthesis with fredkin and peres gates.
ACM Journal on Emerging Technologies in Computing Systems (JETC), 4(1):2, 2008.

[11] Oleg Golubitsky, Sean M Falconer, and Dmitri Maslov. Synthesis of the optimal 4-bit
reversible circuits. In Proceedings of the 47th Design Automation Conference, pages
653–656. ACM, 2010.

[12] Oleg Golubitsky and Dmitri Maslov. A study of optimal 4-bit reversible toffoli circuits
and their synthesis. Computers, IEEE Transactions on, 61(9):1341–1353, 2012.

71

[13] Mariagrazia Graziano, Marco Vacca, and Maurizio Zamboni. Magnetic QCA design:
modeling, simulation and circuits. INTECH Open Access Publisher, 2011.

[14] Pallav Gupta. Circuit design with quantum cellular automata. In Nanoelectronic
Circuit Design, pages 441–477. Springer, 2011.

[15] Pallav Gupta, Abhinav Agrawal, and Niraj K Jha. An algorithm for synthesis of
reversible logic circuits. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 25(11):2317–2330, 2006.

[16] Majid Haghparast, Somayyeh Jafarali Jassbi, Keivan Navi, and Omid Hashemipour.
Design of a novel reversible multiplier circuit using hng gate in nanotechnology. In
World Appl. Sci. J. Citeseer, 2008.

[17] Nayereh Hosseininia, Soudabeh Boroumand, and Majid Haghparast. Novel nanometric
reversible low power bidirectional universal logarithmic barrel shifter with overflow and
zero flags. Journal of Circuits, Systems, and Computers, 2015.

[18] William NN Hung, Xiaoyu Song, Guowu Yang, Jin Yang, and Marek Perkowski. Op-
timal synthesis of multiple output boolean functions using a set of quantum gates
by symbolic reachability analysis. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 25(9):1652–1663, 2006.

[19] Saurabh Kotiyal. Design methodologies for reversible logic based barrel shifters. 2012.

[20] R. Landauer. Irreversibility and heat generation in the computational process. IBM
J. Research and Development, 5:183–191, December 1961.

[21] Weiqiang Liu, S. Srivastava, Liang Lu, M. O’Neill, and E.E. Swartzlander. Are qca
cryptographic circuits resistant to power analysis attack? Nanotechnology, IEEE
Transactions on, 11(6):1239–1251, 2012.

[22] Xiaojun Ma, Jing Huang, Cecilia Metra, and Fabrizio Lombardi. Reversible gates and
testability of one dimensional arrays of molecular qca. Journal of Electronic Testing,
24(1-3):297–311, 2008.

[23] Dmitri Maslov and Gerhard W Dueck. Reversible cascades with minimal garbage.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
23(11):1497–1509, 2004.

[24] Dmitri Maslov, Gerhard W Dueck, and D Michael Miller. Techniques for the synthesis
of reversible toffoli networks. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 12(4):42, 2007.

[25] Dmitri Maslov and Mehdi Saeedi. Reversible circuit optimization via leaving the
boolean domain. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 30(6):806–816, 2011.

[26] Sajib Kumar Mitra and Ahsan Raja Chowdhury. Optimized logarithmic barrel shifter
in reversible logic synthesis. In VLSI Design (VLSID), 2015 28th International Con-
ference on, pages 441–446. IEEE, 2015.

72

[27] Zahra Mohammadi and Majid Mohammadi. Implementing a one-bit reversible
full adder using quantum-dot cellular automata. Quantum Information Processing,
13(9):2127–2147, 2014.

[28] Michael Nachtigal, Himanshu Thapliyal, and Nagarajan Ranganathan. Design of a
reversible floating-point adder architecture. In Nanotechnology (IEEE-NANO), 2011
11th IEEE Conference on, pages 451–456. IEEE, 2011.

[29] Matthew R Pillmeier, Michael J Schulte, and Eugene G Walters III. Design alternatives
for barrel shifters. In International Symposium on Optical Science and Technology,
pages 436–447. International Society for Optics and Photonics, 2002.

[30] Javier F Pulecio and Sanjukta Bhanja. Magnetic cellular automata coplanar cross wire
systems. Journal of applied physics, 107(3):034308–034308, 2010.

[31] Jacqueline E Rice. An introduction to reversible latches. The Computer Journal,
51(6):700–709, 2008.

[32] Bibhash Sen, Manojit Dutta, Samik Some, and Biplab K Sikdar. Realizing reversible
computing in qca framework resulting in efficient design of testable alu. ACM Journal
on Emerging Technologies in Computing Systems (JETC), 11(3):30, 2014.

[33] Md Shamsujjoha, Hafiz Md Hasan Babu, Lafifa Jamal, and Ahsan Raja Chowdhury.
Design of a fault tolerant reversible compact unidirectional barrel shifter. In VLSI
Design and 2013 12th International Conference on Embedded Systems (VLSID), 2013
26th International Conference on, pages 103–108. IEEE, 2013.

[34] Yasuhiro Takahashi. Quantum arithmetic circuits: A survey. IEICE TRANSACTIONS
on Fundamentals of Electronics, Communications and Computer Sciences, 92(5):1276–
1283, 2009.

[35] Yasuhiro Takahashi and Noboru Kunihiro. A linear-size quantum circuit for addition
with no ancillary qubits. Quantum Information & Computation, 5(6):440–448, 2005.

[36] Himanshu Thapliyal, Apeksha Bhatt, and Nagarajan Ranganathan. A new crl gate
as super class of fredkin gate to design reversible quantum circuits. In Circuits and
Systems (MWSCAS), 2013 IEEE 56th International Midwest Symposium on, pages
1067–1070. IEEE, 2013.

[37] Himanshu Thapliyal and Nagarajan Ranganathan. Reversible logic-based concurrently
testable latches for molecular qca. Nanotechnology, IEEE Transactions on, 9(1):62–69,
2010.

[38] Himanshu Thapliyal and Nagarajan Ranganathan. A new design of the reversible
subtractor circuit. In Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on,
pages 1430–1435. IEEE, 2011.

[39] Himanshu Thapliyal and Nagarajan Ranganathan. Design of efficient reversible logic-
based binary and bcd adder circuits. ACM Journal on Emerging Technologies in Com-
puting Systems (JETC), 9(3):17, 2013.

73

[40] Himanshu Thapliyal, Nagarajan Ranganathan, and Ryan Ferreira. Design of a com-
parator tree based on reversible logic. In Nanotechnology (IEEE-NANO), 2010 10th
IEEE Conference on, pages 1113–1116. IEEE, 2010.

[41] Himanshu Thapliyal, Nagarajan Ranganathan, and Saurabh Kotiyal. Reversible logic
based design and test of field coupled nanocomputing circuits. In Field-Coupled
Nanocomputing, pages 133–172. Springer, 2014.

[42] Peng Wang, Mohammed Niamat, and Srinivasa Vemuru. Minimal majority gate map-
ping of 4-variable functions for quantum cellular automata. In Nanotechnology (IEEE-
NANO), 2011 11th IEEE Conference on, pages 1307–1312. IEEE, 2011.

[43] Robert Wille, Oliver Keszocze, and Rolf Drechsler. Determining the minimal number of
lines for large reversible circuits. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2011, pages 1–4. IEEE, 2011.

[44] Guowu Yang, Xiaoyu Song, William NN Hung, and Marek A Perkowski. Bi-directional
synthesis of 4-bit reversible circuits. The Computer Journal, 51(2):207–215, 2008.

[45] R. Zhang, K. Walus, W. Wang, and G.A. Jullien. A method of majority logic reduction
for quantum cellular automata. Nanotechnology, IEEE Transactions on, 3(4):443–450,
2004.

74

VITA

Education:
01/2014-05/2015 Master in Electrical Engineering

Dept. Electrical and Computer Engineering, University of Kentucky
Major: Electrical Engineering

08/2012- 12/2013 Bachelor of Science in Electrical Engineering
Junior and Senior Year
Dept. Electrical and Computer Engineering, University of Kentucky
Major: Electrical Engineering

09/2009- 07/2011 Bachelor of Science in Electrical Engineering
China University of Mining & Technology (Xuzhou)
Freshman and Sophomore Year
Dept. School of Information & Electrical Engineering
Major: Electrical Engineering and Automation

HONORS AND AWARDS:
2013 Be admitted as a member of national honor society ETA KAPPA NU (HKN)
2013 Fall 2012-Spring 2013 UK International Engineering Transfer Student Scholarship
2013 Be admitted as a member of the largest technical professional society IEEE
2010 Fall 2009-Spring 2010 CUMT Outstanding in Learning Progress Scholarship

75

	Explorations for Efficient Reversible Barrel Shifters and Their Mappings in QCA Nanocomputing
	Recommended Citation

	EXPLORATIONS FOR EFFICIENT REVERSIBLE BARREL SHIFTERS AND THEIRMAPPINGS IN QCA NANOCOMPUTING
	ABSTRACT OF THESIS
	ACKNOWLEDGMENTS
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Contribution of Thesis
	1.3 Outline of Thesis

	Chapter 2 Background and Related Work
	2.1 Basics of QCA Computing
	2.2 Reversible Logic Gates and Their QCA Implementations
	2.2.1 Feynman Gate
	2.2.2 Fredkin Gate

	2.3 Barrel Shifter
	2.4 Related Work

	Chapter 3 Super Conservative Reversible Logic Gate
	3.1 Introduction to SCRL Gate
	3.2 SCRL Gate Implementation in Field Coupled Nanocomputing
	3.3 Comparison with Fredkin Gate

	Chapter 4 Barrel Shifter Designs
	4.1 Design Methodology of Right Rotator and Implementation in SCRL Gates
	4.2 Design Methodology of Logical Right Shifter and Implementation in SCRL Gates
	4.3 Design Methodology of Arithmetic Right Shifter and Implementation in SCRL Gates
	4.4 Design Methodology of Universal Right Shifter and Implementation in SCRL Gates
	4.5 Design Methodology of Universal Bidirectional Shifter and Implementation in SCRL Gates

	Chapter 5 Evaluations
	5.1 Garbage Outputs
	5.1.1 Garbage Outputs in SCRL Reversible Right Rotator
	5.1.2 Garbage Outputs in SCRL Reversible Logical Right shifter
	5.1.3 Garbage Outputs in SCRL Reversible Arithmetic Right Shifter
	5.1.4 Garbage Outputs in SCRL Reversible Universal Right Shifter
	5.1.5 Garbage Outputs in SCRL Reversible Universal Bidirectional Shifter

	5.2 Comparison of Garbage Outputs
	5.3 Ancilla Inputs
	5.3.1 Ancilla Inputs in SCRL Reversible Right Rotator
	5.3.2 Ancilla Inputs in SCRL Reversible Logical Right Shifter
	5.3.3 Ancilla Inputs in SCRL Reversible Arithmetic Right Shifter
	5.3.4 Ancilla Inputs in SCRL Reversible Universal Right Shifter
	5.3.5 Ancilla Inputs in SCRL Reversible Universal Bidirectional Shifter

	5.4 Comparison of Ancilla Inputs
	5.5 QCA Cost Evaluation
	5.5.1 Right Rotator Cost
	5.5.2 Logical Right Shifter Cost
	5.5.3 Arithmetic Right Shifter Cost
	5.5.4 Universal Right Shifter Cost
	5.5.5 Universal Bidirectional Shifter Cost

	Chapter 6 Conclusion
	References
	VITA

