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ARTICLE

Fluid separation and network deformation in
wetting of soft and swollen surfaces
Zhuoyun Cai1, Artem Skabeev 2, Svetlana Morozova3 & Jonathan T. Pham 1✉

When a water drop is placed onto a soft polymer network, a wetting ridge develops at the

drop periphery. The height of this wetting ridge is typically governed by the drop surface

tension balanced by elastic restoring forces of the polymer network. However, the situation is

more complex when the network is swollen with fluid, because the fluid may separate from

the network at the contact line. Here we study the fluid separation and network deformation

at the contact line of a soft polydimethylsiloxane (PDMS) network, swollen with silicone oil.

By controlling both the degrees of crosslinking and swelling, we find that more fluid separates

from the network with increasing swelling. Above a certain swelling, network deformation

decreases while fluid separation increases, demonstrating synergy between network defor-

mation and fluid separation. When the PDMS network is swollen with a fluid having a

negative spreading parameter, such as hexadecane, no fluid separation is observed. A simple

balance of interfacial, elastic, and mixing energies can describe this fluid separation behavior.

Our results reveal that a swelling fluid, commonly found in soft networks, plays a critical role

in a wetting ridge.

https://doi.org/10.1038/s43246-021-00125-2 OPEN
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The wetting of soft solids plays a central role in a variety of
natural functions, from the spreading of cellular aggre-
gates1 to the adhesion of walking insects2. The ability to

control wetting of soft materials is also of practical importance,
for example in coatings3 and 3D printing4. Motivated by these
biological and engineering applications, the concept of soft wet-
ting has been given significant attention5–14. Yet, a fundamental
understanding remains incomplete, especially when the soft
polymeric surfaces are swollen with fluid.

When a water drop is placed onto a soft crosslinked solid, a
wetting ridge develops around the drop periphery (Fig. 1a, b). The
formation of the wetting ridge is driven by the drop’s surface
tension while being resisted by the elasticity of the crosslinked
network. However, if the soft solid is replaced by an immiscible
fluid (e.g., oil), both liquids deform until they adopt the appro-
priate contact angles, defined by their interfacial tensions15,16.
This liquid–liquid contact is commonly observed in slippery,
lubricant-infused porous surfaces (SLIPS)17–19, which are tradi-
tionally textured surfaces infiltrated with an oil. Although many
efforts have focused on the wetting of soft crosslinked solids and
of SLIPS, less attention has been given to swollen networks, also
known as gels or infused elastomers. These materials are cross-
linked polymers swollen with a compatible fluid. When a drop is
placed onto a swollen network, it is unclear if the surface creates a
homogeneous wetting ridge, like for soft solids (Fig. 1b), or if the
fluid interfacial tensions define the contact line, like for SLIPS
(Fig. 1c). This illuminates a critical gap in our knowledge of soft
wetting, given the fact that swollen networks are commonly
implemented for soft (bio)materials applications. Moreover,
wetting of soft surfaces is important for the development of
slippery surfaces3,19–21, anti-icing surfaces22, self-lubricating
surfaces23,24, surfaces for cell25,26 or drop27 patterning, and sur-
faces for controlling drop dynamics or coalescence28,29.

To study soft wetting, silicone elastomers (e.g., crosslinked
polydimethylsiloxane, PDMS) with moduli on the order of a few
kPa are often employed6,9,10,28–30. The mechanical properties are
obtained by macroscopic rheological measurements and the
material is assumed to behave as a homogenous solid6,27. However,
this may not be sufficient for describing the wetting of swollen
networks. PDMS elastomers typically possess uncrosslinked

molecules inside the crosslinked network, which are effectively a
fluid silicone oil that swells the network. This oily fluid is left over
after crosslinking, and is likely a mix of linear, cyclic, and branched
chains of unknown molecular weight31. Recently, Hourlier–Fargette
et al. deposited water drops on vertical surfaces of stiff PDMS and
measured their downward sliding velocity32. They found that the
velocity drastically increases after a certain distance, and suggest
that trace amounts of oily fluid inside the elastomer are pulled from
the surface and encapsulate the drop; this effectively lubricates the
drop. Others have also demonstrated that upon removing a water
drop from a soft silicone surface, the wetting ridge relaxes and the
dynamics appear to be affected by this oily fluid7,8. Moreover, the
contact mechanics of soft silicone elastomers are also complicated
by oily fluids in the material9,33,34. Despite progress in character-
izing how drops interact with soft surfaces, a quantitative under-
standing of how crosslinking and swelling governs the wetting
behavior is lacking.

In addition to materials aspects, being able to measure the shape
of the wetting ridges is a prerequisite for understanding soft wetting.
To visualize wetting ridges, several microscopy methods have been
implemented, including high-speed optical imaging35, schlieren
optics36, x-ray microscopy10, and confocal microscopy6,30. How-
ever, since the crosslinked network and the swelling fluid typically
have similar chemical makeup, visualizing them separately is a non-
trivial task. Moreover, wetting studies with in-situ visualization
combined with control over both the degrees of crosslinking and
swelling have not been reported, likely due to the combined chal-
lenges in imaging and sample preparation.

Here, we investigate the influence of both the degrees of
crosslinking and swelling on the static wetting ridge of a soft and
swollen network. Our study focuses on PDMS networks swollen
with a low molecular weight fluid silicone oil or with hexadecane.
By using confocal microscopy and fluorescent dyes, we show
conclusively that fluid silicone oil can separate near the contact
line of a water drop and a swollen network, while the network is
also pulled up. This generates a pure liquid tip at a three-phase
contact line of the drop, fluid, and air. We call the phenomenon
where fluid separates from the network “fluid separation”. This
fluid separation allows for mitigating the elastic energy penalty
associated with pulling up the network, while still accommodat-
ing the surface tension of the water drop. We propose that fluid
separation is driven by the spreading parameter (interfacial ten-
sions), balanced by network elasticity and osmotic pressure. A
simplified model suggests that fluid separation occurs in all cases
of PDMS networks swollen with fluid silicone oil, even at mod-
erate levels of swelling. However, when the network is swollen
with hexadecane, which has a negative spreading parameter, fluid
separation is not observed.

Results
Preparation of soft swollen surfaces. In our experiments, a water
drop with a volume of V ~ 4 µl is placed onto soft PDMS surfaces
with varying degrees of crosslinking (e.g., modulus) and swelling
(i.e., the amount of fluid inside the network). To prepare our
surfaces, we start with Sylgard 184 as our material system and
modify the crosslinking by controlling the silicone base to the
crosslinking agent mixing ratio. Surfaces are prepared with base
to crosslinker ratios of 60:1 (lower modulus), 50:1, 40:1, and 30:1
(higher modulus). As with most soft commercial silicones, a
significant fraction of poorly defined, oily fluid remains in the
material after curing (as high as ~60% for 60:1). These oils are
removed from the as-prepared state to obtain a dry network using
a solvent extraction method37. To retain the thin film geometry
required for wetting experiments, the extraction process is con-
ducted on a bath of water using hexanes as a washing solvent, as

Fig. 1 Schematic illustration of possible outcomes for soft wetting on
a swollen network. a Prior to drop deposition, the surface is homogeneous
and flat. b, c Schematic of two possible wetting ridges upon placing a
water drop on the surface: (b) a homogeneous ridge and (c) a fluid
separating ridge.
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described elsewhere (Supplementary Fig. 1)37. Briefly, PDMS is
spin-coated onto a glass slide, which has already been coated with
a water-soluble sacrificial layer. After curing, the PDMS film is
released onto a bath of water and then submerged in excess
hexane to allow for the oily fluid to migrate out of the network.
After multiple washing steps, the hexanes are left to evaporate,
leaving a thin, extracted, PDMS film. While it is possible that
there is a minor amount of oil left in the network after extraction,
it is expected to be negligible and play little role37,38. Therefore,
we define the extracted PDMS film as the dry network.

After the extraction process, the dry network is swollen with a
nonfunctional, low molecular weight (770 gmol−1) trimethylsiloxy-
terminated linear silicone oil as our swelling fluid. There are several
reasons for using this fluid to swell the crosslinked PDMS network.
First, the network can be highly swollen in this fluid, due to its
chemical compatibility. Second, the low molecular weight (and low
viscosity) allows the system to reach an effective equilibrium more
quickly than higher molecular weight oils. Third, silicone oil does
not readily evaporate compared to other good solvents for PDMS
(e.g., toluene). Finally, our work is motivated by wetting studies on
soft silicone surfaces, which typically possess poorly-defined fluid
silicone oil. The volumetric swelling ratio, defined as the swollen
volume over the dry volume Q ¼ Vswell=Vdry, is controlled by
adjusting the amount of fluid swollen into the network. The volume
of the thin films is determined by capturing top-view images and
measuring the areas, which is confirmed to be consistent with
swelling experiments on macroscopic samples. To characterize the
mechanical properties of the materials, rheological measurements
on bulk samples are taken for the different degrees of crosslinking
and swelling (Supplementary Fig. 2). For all the degrees of
crosslinking, the measured moduli decrease with increasing
swelling. These moduli are taken as the storage moduli at low
frequency, where the rate-dependence is neglected (Supplementary
Fig. 3). Note that we use Young’s modulus E to describe the
modulus throughout this study. This is calculated from the shear
storage modulus by assuming a Poisson’s ratio of v= 0.5, which is
common for PDMS37,39–41.

In addition to the preparation and characterization of the
materials, an important variable in soft wetting is the sample
thickness. On the one hand, the underlying glass substrate can
play a role in the wetting ridge when the film is thin6,42. On the
other hand, a sample thickness of around 120 µm or less is best
for obtaining high-resolution images with our confocal micro-
scope. Therefore, the samples must be thin enough for quality
imaging and thick enough to neglect the underlying glass
substrate. By measuring the wetting ridge heights as a function

of sample thickness using as-prepared 60:1 and 50:1 samples, we
find that the thickness should be at least 50 µm to exclude sample
thickness effects for a large 4 µl drop (Supplementary Fig. 4); this
is in the range of others30,42. Since the film thicknesses decrease
after extraction and increase after swelling, the initial spin-coating
thickness must be chosen depending on the degree of crosslinking
and the final desired swelling ratio (Q), noting that the maximum
swelling ratio is a function of crosslinking (Supplementary Fig. 2).
Accordingly, as-prepared films are first spin-coated to an initial
thickness of ~25 to 90 µm and the final sample thicknesses for our
wetting studies range from 50 to 110 µm.

Visualizing the wetting ridge. To visualize the swelling fluid and
the crosslinked network at the wetting ridge, fluorescent dyes are
incorporated into the material (Fig. 2a, b) and confocal micro-
scopy is used to capture cross-sectional images. To capture these
images, our confocal microscope scans an xz plane slice directly
(where z is the vertical direction through the sample thickness),
enabled by a piezo-driven objective. Confocal microscopy uses a
laser with a particular wavelength to excite fluorophores and
subsequently collects the emission by a photodetector within a
specified wavelength range; this allows for precise control over
which fluorophores are being excited and captured by the
detectors. To visually separate the swelling fluid from the cross-
linked network, two dyes with distinct emission spectra and no
overlap are implemented. Independent, high sensitivity photo-
detectors are used to collect the emission of the two different dyes
in two separate channels. Therefore, it is important that the two
dyes do not have any overlap in the emission wavelength range,
such that only one fluorophore is captured in each channel.
Because the crosslinked network and the fluid molecules have
near-identical chemical makeup, one dye is attached to the net-
work. Bonding the fluorophore to the network prohibits the dye
from dispersing into the fluid part of the material in the swollen
state. A commercial fluorescein diacrylate is used as a green
fluorophore (emission wavelength: λem ~ 520 nm in PDMS, Sup-
plementary Fig. 5), which incorporates itself into the silicone
network during crosslinking43. For the swelling fluid, we use a
perylene monoimide (PMI) dye. The PMI is chemically modified
to have a strong red shift in its absorption and emission (λem ~
700 nm in PDMS, Supplementary Fig. 5), such that it does not
overlap with the fluorescein. Spectra of the dyes in PDMS,
obtained directly on the microscope, confirm the emission ranges
of the fluorescein and PMI dyes in the actual PDMS environment
of our experiment (Supplementary Fig. 5). Using this dye com-
bination, we can simultaneously visualize the network (channel 1,

Fig. 2 Visualizing the network and fluid parts separately at the contact line. Schematics of (a) a water drop on a swollen surface, and (b) the PDMS
elastomer, where the network is dyed with fluorescein and the silicone oil is dyed with PMI. c–h Schematics and corresponding confocal images of a
wetting ridge for a swollen network with a water drop deposited on the surface. c, d Channel 1 shows the PDMS network (green), (e, f) channel 2 shows
the silicone oil (red), and (g, h) the combination of channels 1 and 2 show both parts (yellow). Scale bars: 20 µm.
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Fig. 2c, d) and the fluid (channel 2, Fig. 2e, f) at the contact line.
In the combined channel, which includes both channel 1 and
channel 2 (Fig. 2g, h), the network appears yellow since the red
and green colors are mixed. For the specific example in Fig. 2, the
surface is a 60:1 material near its saturated swelling ratio and
the macroscopic modulus is E ≈ 3 kPa (Supplementary Fig. 2).
Note that for these cross-sectional images, an objective with a
correction ring is used to correct z-axis distortion. To verify that
confocal microscopy images are quantitative, we compare thick-
ness measurements from confocal microscopy to optical profi-
lometry as a second technique (Supplementary Fig. 6).

Wetting ridge measurements. To study wetting ridges on
swollen networks, the degree of swelling is varied from Q= 1
(dry) to saturation (maximum swelling) for the four different
degrees of crosslinking (Sylgard 184 mixing ratios). Examples of
wetting ridges for varying degrees of crosslinking and swelling are
presented as a qualitative map in Fig. 3. Column A displays the
dry samples that have been fully extracted. Images in the columns
moving rightward display wetting ridges with increasing degrees
of swelling. Column B displays wetting ridges for the maximum
swelling cases. The rows show the different degrees of cross-
linking from the lowest (60:1) in the top row to the highest (30:1)
in the bottom row. Let us first consider the dry cases, where fluid
separation is not possible. Since the surface tension of the water
drop γw remains constant, the amount of network deformation is
expected to be larger for softer networks. This is confirmed in
column A of Fig. 3, illustrating the largest wetting ridge for
60:1 samples, which decreases as the degree of crosslinking
increases toward 30:1. To describe the effect of swelling, consider
the 60:1 samples as a first example (Fig. 3, top row). Upon
swelling the network with lower swelling ratios, the height of the
wetting ridge increases (Q ≈ 2.8 and 7.9). This is not surprising
because E decreases with increasing Q (Supplementary Fig. 2). As
Q is increased further, however, fluid clearly separates from the
network (Q ≈ 13.4). By continuing to increase the degree of
swelling towards saturation (column B), the amount of fluid
separation increases. Qualitatively, the general trend of an initially
increasing wetting ridge height followed by fluid separation is
universal, regardless of the degree of crosslinking; this is illu-
strated in the 50:1, 40:1, and 30:1 rows of Fig. 3.

We also consider the macroscopic apparent contact angle
(θapp) and the wetting ridge tip angle (θtip). The contact angle in
the dry state (Q= 1), measured by a traditional goniometer
(Fig. 4a), is constant at θapp(dry)= 111.9 ± 0.8° for all the degrees
of crosslinking; this illustrates that contact angle is not strongly
influenced by the degree of crosslinking in the dry state. In the
range of the lower swelling ratios Q= 1 to Q ≈ 2, the contact
angle precipitously decreases (Fig. 4b). Above Q ≈ 2, the contact
angle remains nearly constant at θapp(swell)= 101.2 ± 1.1°, regard-
less of the crosslinking ratio (Fig. 4b). This suggests that at Q≳ 2,
a sufficient amount of fluid separates, which may play a
governing role in defining the apparent contact angle. To see if
the tip angle changes for different swelling cases, several xz
profiles are overlaid with aligned tips. As illustrated in Fig. 4c,
which includes 50:1 and 60:1 samples for situations with and
without clear fluid separation, the tip angles θtip remain constant
at around 71.5 ± 6.5°, at least to our level of precision. This is
more clearly displayed in Fig. 4d, where the red data is for no
clear fluid separation, purple is for a small amount of fluid
separation, and green is for significant fluid separation (note that
the network part of the green is out of view). Since θtip appears
constant, regardless of the wetting ridge height, the angle at the
tip is most likely governed by a constant interfacial tension.
However, more experiments with higher resolution would be
useful to better interpret this finding. In particular, the angles
could be interpreted as not constant, if the angles were measured
by extending the vertical length of the measurement zone (in
which θtip would increase as red > purple > green). To attempt to
focus on the very tip, we limit the angle measurement to a 1 µm
zone at the tip. In general, the apparent contact angles (above
Q ≈ 2) and the tip angles appear constant for the different degrees
of crosslinking, pointing to the swelling fluid playing an
important role in the wetting.

In addition to these angles, it is interesting to note that a flat
zone develops at the fluid-network interface when fluid separa-
tion occurs, leading to three three-phase contact lines. As can be
seen in the top rightmost image in Fig. 3 and the profiles in
Fig. 4c, the flat zone is not completely horizontal. This is likely
due to a difference in the interfacial tensions at the different
contact lines. Since the water-fluid interfacial tension (right side
of the flat zone, γwf= 43.2 mN m−1, Supplementary Fig. 7) is
greater than the fluid-air surface tension (left side of the flat zone,

Fig. 3 Qualitative map of cross-sectional confocal images of contact line with varying degrees of crosslinking and swelling. Each row of pictures from
top to bottom corresponds to samples with a dry modulus ranging from 17 kPa to 234 kPa, and a base/crosslinker ratio from 60:1 to 30:1, respectively.
Orange numbers inside each image indicate the degree of swelling and blue numbers indicate the macroscopic modulus. Column A and B display the dry
and saturated conditions, respectively. Scale bar: 20 µm.
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γf= 19.7 mN m−1), it more strongly pulls up on the network,
leading to a sloped network-fluid interface.

To quantify the wetting ridge, we measure the heights of both
the network (hn) and the fluid (hf) relative to the unperturbed
surface, as illustrated in Fig. 5a. For simplicity, hn is taken as the
right side network height (i.e., the maximum network height). In
Fig. 5b–d, both heights are plotted as a function of swelling for
the different degrees of crosslinking. For the 60:1 material
(Fig. 5b), hn (filled data points) and hf (open data points) remain
nearly identical from Q= 1 to Q≲ 7. In this lower swelling
regime, the hn and hf both continue to increase as the swelling
ratio is increased, and it is difficult to decern a difference between
them if one exists. At Q ≈ 7, hf starts to clearly deviate from hn. As
the swelling is increased even further, hn reaches a peak at ~15 µm
and then starts to decrease, while hf continues to climb. Notably,
this illustrates that at higher Q, the material expels fluid to allow
the network to relax while accommodating the water drop. For
the 50, 40, and 30:1 materials, the qualitative trends are similar,
consistent with the images in Fig. 3. However, the quantitative
values for both hn and hf differ for the different degrees of
crosslinking. As the degree of crosslinking is increased, the overall
magnitudes of both hf and hn decrease. For example, the peak
network heights are ~15, 7, 3, and 1 µm for the 60:1 to 30:1
mixing ratios, respectively. In addition, the apparent transition of
where clear fluid separation occurs is also shifted to lower
swelling ratios.

Network wetting ridge height. Commonly, the wetting ridge
heights for soft solids are described by hn � γw sin θ=E, where θ is

the contact angle10. Using measured values for the contact angle
(Fig. 4b) and modulus (Supplementary Fig. 2), we overlay this
calculated hn with our experimental results (Fig. 5e). The mod-
ulus is assumed to follow E ¼ Edryϕ

0:56, which is consistent for a
material system where the fluid likes to swell the network (Sup-
plementary Fig. 2)44. Here, Edry is the measured modulus for dry
samples and ϕ= 1/Q is the volume fraction of the polymer net-
work. The calculated values reasonably predict the observed
network height at lower swelling ratios. However, it cannot
capture the network height for the cases where larger amounts of
fluid separation are observed. This is also evident when plotting
hn vs. E (Supplementary Fig. 8). Hence, this common relationship
may be able to capture the wetting ridge heights at lower swelling
ratios, as for prior studies10,45,46, but cannot capture hn when
significant fluid separation occurs.

We propose two possible reasons for the peak in hn as a
function of Q. First consider that when fluid separation does not
occur (e.g., Q= 1), the network is being pulled up as a point load
at the three-phase contact line of water, network, and air (Fig. 6a).
Upon swelling the network, E decreases, such that one should
expect a higher hn. However, if the fluid is expelled, then two
separate forces exist pulling up on either side, which is the fluid-
air surface tension (γf, left) and the water-fluid interfacial tension
(γwf, right) (Fig. 6b, c). Hence, the two forces are separated by a
distance, leading to two weaker forces pulling on the network. At
lower swelling ratios, a very small amount of fluid separates, if at
all. Therefore, the two forces from γf and γwf are close and may
act together; this will lead to a hn that is higher than the dry case
because of the lower modulus. Whereas at higher swelling ratios,

Fig. 4 Apparent contact angle (θapp) and wetting ridge tip angle (θtip). a–b The apparent contact angle for substrates with different degrees of swelling
and base/crosslinker mixing ratios. Scale bar: 1 mm. c Examples of tip-aligned xz profiles for 50:1 and 60:1 samples, both with and without clear fluid
separation. d Zoomed-in xz profiles for three samples with no fluid separation (red), a small amount of fluid separation (purple), and a significant amount of
fluid separation (green). The open data points are for the fluid profile and the filled data points are for the network profile.
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Fig. 5 Quantifying the wetting ridge heights. a Example of a cross-sectional confocal image of a water drop on swollen 60:1 PDMS (hf and hn are the fluid
and network tip heights relative to the unperturbed surface). Note that several images are stitched together to obtain a larger field of view. Scale bar:
20 µm. b–d Graphs of fluid height (hf, open data points) and network height (hn, filled data points) as a function of the degree of swelling (Q) with mixing
ratios of (b) 60:1, (c) 50:1, (d) 40:1, and 30:1. e The network height for different degrees of swelling and crosslinking, where the solid curves are predictions
given by ≈γw sin θ/E. Error bars denote standard deviations.

Fig. 6 Possible wetting ridge height mechanisms. Confocal images show the surface/interfacial tensions pulling up the network for (a) dry, (b) low
swelling ratio, and (c) high swelling ratio 60:1 samples. d Cross-sectional confocal images of four 50:1 samples with different levels of swelling and fluid
separation, and (e) the corresponding profiles aligned at the network-fluid-water contact line on the right side. Interfacial tensions are shown as vectors
with magnitude given in mN m−1. Scale bar: 20 µm.
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the distance between the two forces becomes larger, and the two
weaker forces may act at two points (Fig. 6c).

A second possible reason for the peak in hn as a function of Q
is due to a decrease in the network-fluid-water angle on the
bottom right of the fluid separation zone (Fig. 6d, e). In order to
compare the angles (α), several xz profiles are overlaid for
50:1 samples with the right angle aligned. When the degree of
swelling increases (and more fluid separates), α decreases. The
vertical force that pulls on the network is related to γwf sin α.
Since α decreases with increasing fluid separation, the vertical
force would also decrease. Therefore, hn first increases with Q due
to a decreasing modulus, but then hn would decrease with Q when
large fluid separation occurs due to a decreasing vertical force.

Proposed fluid separation mechanism. Here we seek out a
simple, semi-quantitative model in an attempt to understand
what drives fluid separation. First consider the case where a water
drop is placed on a layer of immiscible oil, as often observed in
SLIPS. Typically, the spreading parameter S ¼ γw � ðγwf þ γf Þ
defines the “spreading power” (i.e., total vs. partial wetting). The
oil lubricant cloaks the drop when the spreading parameter is
positive47–49. Taking values from pendant drop measurements

(Supplementary Fig. 7) for the interfacial tensions, which are
consistent with literature50,51, S= 72.2− (43.2+ 19.7) > 0; this
means that in the absence of competing forces, the swelling fluid
should cloak the drop. Since cloaking is not observed in our
experiments, additional energies must be considered. Moreover,
recent experiments from others also suggest that cloaking does
not occur in static wetting on soft PDMS materials, probed by
other means7,52. To rationalize this behavior, we hypothesize that
while the interfacial tension of the drop pulls the network up and
the fluid out, elastic energy and the energy of mixing between the
network and fluid lead to a finite fluid height, hf, as illustrated in
Fig. 7a. To describe fluid separation in a simplified manner, the
interfacial energy is balanced by the elastic and mixing energies in
equilibrium as U interfacial ¼ Uelastic þ Umix. The elastic energy per
unit volume for a deforming solid is given by integration of stress
(σ) and strain (ε), Uelastic �

R
σε. Assuming Hooke’s law is valid,

this gives Uelastic ¼ Eε2=2. Strain is defined as ε ¼ hn=t, where t is
the unperturbed sample thickness, such that the strain is defined
in the vertical direction. This is an approximate global strain and
not the true local strain around the tip since there is a complex
relationship between the local and global stress and strain states
that are not easily written analytically. The energy of mixing per

Fig. 7 Comparison of experiments to approximate theory. a Schematic describing the balance of elastic, mixing, and interfacial energy. hn, hf, and Δh is
also described in the schematic. b–e Plots of the experimental (filled black points) and theoretical (Eq. (1), orange open points and lines) separation heights
as a function of the degree of swelling with mixing ratios of (b) 60:1, (c) 50:1, (d) 40:1, and (e) 30:1. Insets show zoomed-in data of lower swelling for
clarity. f Separation height as a function of the degree of swelling of hexadecane swollen 60:1 PDMS. The dotted line is at Δh= 0. Error bars denote
standard deviations.

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-021-00125-2 ARTICLE

COMMUNICATIONS MATERIALS |            (2021) 2:21 | https://doi.org/10.1038/s43246-021-00125-2 |www.nature.com/commsmat 7

www.nature.com/commsmat
www.nature.com/commsmat


unit volume Umix is related to the network volume fraction ϕ
and the interaction parameter χ between the network and the
swelling fluid. For simplicity, this is taken as the effective
osmotic pressure derived from Flory-Huggins energy of mixing,
Umix ¼ ðkBT=b3Þðln 1� ϕ

� �þ ϕþ χϕ2Þ, where kB is the Boltz-
mann constant, T is the temperature, and b is the Kuhn
length53. Note that an exact value for χ is difficult to obtain. In
addition to the enthalpic interactions, χ has also been shown to
be a function of molecular weight, crosslinking density, and
other factors54,55. Because of these complexities, an effective
parameter χeff is used, which is expected to be in the range of
0.3–0.556. For Uinterfacial, we consider the spreading coefficient S
as the driving force. From dimensional analysis, a length scale
Δh arises as U interfacial � S=Δh, which is assumed to describe the
height of the fluid separation, Δh ¼ hf � hn (Fig. 7a). Thus Δh
may provide an idea of the fluid separation by rearranging the
energy balance as:

Δh � γw � γwf þ γf
� �

Eε2
2 þ kBT

b3 ln 1� ϕ
� �þ ϕþ χeffϕ

2
� � ð1Þ

To compare Eq. (1) to our experiments, we calculate the fluid
separation height Δh using a Kuhn length of b= 1.4 nm44,57, and
fitting an effective interaction parameter χeff, combined with
measured values for the strain ε, moduli E, volume fractions ϕ,
and interfacial tensions. The calculated values of Δh from Eq. (1)
are overlaid with measured values for hf−hn in Fig. 7b–e. The
data can be well fit to Eq. (1) except at very high swelling ratios,
with χeff= 0.44 ± 0.04 for the different degrees of crosslinking.
We suspect that the main reason for discrepancy at high swelling
is associated with challenges in sample preparation of highly
swollen thin films (which is also seen by the large error bars for hf
at higher Q). At swelling ratios near saturation, there are likely
small amounts of extra fluid on the surface, which would shift hf
higher than expected. However, this does not affect measure-
ments at swelling ratios below saturation, since the size of the
films is directly measured. Nevertheless, the general trends of
increasing Δh with increasing Q between our experiments and
Eq. (1) are in agreement. This suggests that the fluid separation
occurs due to a balance of the network elasticity, osmotic swelling
pressure, and interfacial tensions.

Thus far, we have focused on PDMS networks swollen with
fluid silicone oil having nearly identical chemistry. To test whether
the underlying concept of Eq. 1 works for a different system, we
performed a set of experiments using the 60:1 mixing ratio PDMS
with hexadecane as the swelling fluid. Hexadecane is used because
it swells PDMS (albeit with a much lower maximum swelling
ratio), it does not readily evaporate, and it has a significantly
different spreading power. For hexadecane, S= 72.2− (49.5 +
27.5), where our measured hexadecane-water interfacial tension of
49.5 ± 0.3 is similar to literature58. Since S < 0, no fluid separation
is expected to occur. Indeed, no fluid separation is observed below
the saturated swelling ratio, as illustrated in Fig. 7f; the dotted line
denotes zero fluid separation (also see Supplementary Fig. 9). Near
the saturated swelling ratio, excess hexadecane droplets can be
seen at the surface since it does not completely spread like fluid
silicone oil (Supplementary Fig. 9). This supports our hypothesis
that the large discrepancy between experiments and Eq. (1) near
saturation is likely due to small amounts of excess fluid. The lack
of fluid separation with the hexadecane swollen PDMS is
consistent with Eq. (1), illustrating its generality.

Discussion
Here we call out our experimental results in Fig. 5, which sug-
gested an abrupt transition of where fluid separation occurs.

However, our proposed mechanism suggests that fluid separation
should occur for all PDMS networks swollen with fluid silicone
oil, even at lower swelling ratios. This inconsistency likely origi-
nates from the spatial resolution of confocal microscopy, which is
on the order of several hundreds of nm, making it difficult to
clearly visualize any separation at lower Q. For example, for the
60:1 samples at Q ≈ 3, Eq. (1) gives Δh ≈ 200 nm, which is not
easily observed, whereas, for Q ≈ 7, Eq. (1) predicts Δh ≈ 2.5 µm,
which is clearly visible. The apparent abrupt transition of fluid
separation observed in the experiments should actually be a
smooth transition governed by a balance of forces. This can be
understood as follows: Because the network and fluid have
favorable interactions, the network wants to retain the fluid. At
low Q, the substrate imposes a high swelling pressure to keep the
fluid inside the network, and the wetting ridge is dominated by
the deformation of the overall gel (swollen network). At high Q,
the drive for the network to retain fluid decreases because it
already has a significant amount. This allows for the network to
expel fluid at the contact line to mitigate the energy penalty of
deforming the crosslinked network.

Our study is motivated by ongoing efforts in understanding
how drops wet soft solids, as well as how drops behave on
engineered slippery surfaces. Therefore, it is instructive to con-
sider how our work fits into the framework of soft wetting and
coatings development. For many studies, the wetting ridge is
assumed to be described only by bulk mechanics while neglecting
oils within the network59–63. However, we suggest here that fluid
can come out at the tip of the contact line for swollen PDMS
networks, even at moderate levels of swelling. Recently, Zhao
et al. showed numerically that for a drop on a poroelastic sub-
strate, the concentration of swelling fluid diverges near the con-
tact line8. This is not inconsistent with our experiments, which
show that fluid separation occurs to mitigate the elastic penalty at
the contact line. However, the swelling fluid molecular weight is
likely to play a role in both the static and dynamic wetting, which
should be considered in future efforts.

Aside from drop wetting, our study is relevant for the adhesion
of soft materials. For example, Berman et al. studied high-rate
adhesive detachment of soft silicone elastomers from a small rigid
sphere. They suggest that fluid inside the network generates a
poroelastic behavior that needs to be considered in order to
describe the detachment dynamics64. Elastowetting has also been
considered for hydrogel materials and not limited to silicones.
When a soft hydrogel sphere is placed onto a rigid surface, the
sphere deforms and creates a foot near the contact line, analogous
to a wetting ridge65,66. However, whether this foot is made up of
mostly water or polymer is not well described. In these cases, we
expect similar physics to our wetting results, except that one of
the phases is non-deformable (i.e., the rigid underlying surface);
this may also lead to more complex stress distributions that may
need to be considered.

From an engineering perspective, swollen networks have been
considered for slippery and repellent coatings (e.g., soft SLIPS).
By crosslinking a PDMS network in the presence of a solvent,
Urata et al. showed that the solvent can continuously leech out if
the mixing energies are unfavorable; this lubricates the surface
and enables easy sliding of drops24. In addition, Golovin and
Tuteja developed a range of silicone elastomers for anti-icing and
demonstrated that the performance is enabled by oily plasticizers
(e.g., a swelling fluid)67. Although it was not explicitly studied,
network deformation and fluid separation are likely important for
both of these applications. Aside from soft surfaces, it has been
shown for stiff, lubricant infused surfaces that the size of a
lubricant wetting ridge is a function of the initial oil layer
thickness68,69. Superficially, this may be analogous to the amount
of fluid in a swollen network. However, these lubricant-infused,
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microporous surfaces do not possess mixing energy associated
with the fluid-network interactions (e.g., χ) or a degree of
crosslinking, which is needed to describe the wetting of soft and
swollen surfaces.

In summary, we present an approach to visualize a crosslinked
network and its swelling fluid separately by employing fluorescent
molecules and confocal microscopy. Our experiments reveal that
the static wetting ridge of a soft and swollen network can com-
prise both a region of network pullup and a region of pure fluid.
Our calculation suggests that fluid separation occurs in all PDMS
networks swollen with fluid silicone oil, although the size can be
small at lower swelling ratios. The wetting ridge height of the
crosslinked network increases initially with increasing swelling,
but then decreases upon further swelling because more fluid is
separated from the network; this allows the overall material sys-
tem to mitigate the elastic energy penalty by balancing it with
osmotic pressure. Using a PDMS network swollen with hex-
adecane, we also show that fluid separation does not occur when
the swelling fluid has a negative spreading parameter. Our results
clearly demonstrate the importance of considering the fluid inside
of gels when investigating the wetting of soft surfaces, which are
likely even more critical for dynamic cases. Overall, our study
offers fundamental insight into soft wetting and poses many
outstanding questions on how molecular architecture, chemical
interactions, and nonlinear and complex strain states may all
affect the wetting behavior of soft and swollen materials.

Methods
Preparation of swollen elastomer films
PDMS base fluorescence. Sylgard 184 (Dow) is used as our model poly-
dimethylsiloxane (PDMS) elastomer. In order to visualize the crosslinked network,
fluorescein dye is chemically incorporated into the PDMS network. Fluorescein O,
O’-diacrylate (Sigma-Aldrich) is first dissolved in chloroform (ACS, VWR Che-
micals) with a concentration of ~5 mg per gram of chloroform. The dye solution is
then mixed with Sylgard 184 PDMS base with a fluorescein concentration of
approximately ~400 μg per gram of PDMS base. The dyed base is kept in a
desiccator under vacuum for ~4 days to remove residual solvent.

Silicone oil fluorescence. A red-shifted perylene monoimide (PMI) dye is utilized for
the silicone oil. The perylene dye is synthesized via an N–H/C–H palladium-
catalyzed domino reaction70. Details of the synthetic methods and characterization
are given in Supplementary Note 1; for NMR spectra see Supplementary Figs. 10–
11. The PMI powder is directly dissolved in the silicone oil (polydimethylsiloxane,
trimethylsiloxy terminated, Mw: 770 g mol−1, Gelest) with a concentration of ~8 μg
per gram of silicone oil. To dissolve the dye in the oil, the solution was agitated
with a steel bar for 2 min until it was fully dissolved.

Thin PDMS film preparation. As-prepared PDMS elastomers are prepared using
mixtures of 30:1, 40:1, 50:1, and 60:1 by weight of the dyed base and curing agent.
The two parts are manually mixed with a steel bar by stirring for at least 5 min. The
mixtures are then degassed under vacuum to remove trapped air bubbles for ~1 h.
Thin PDMS films are then spin-coated onto a glass substrate. Before spin-coating
PDMS, the glass slides (24 × 60 mm, VWR) are first cleaned by sonication in
acetone (ACS, VWR Chemicals) for 15 min, and then cleaned in a UV-ozone
chamber (Jelight) for 15 min. To aid in removing the thin PDMS film from the
glass surface after curing, a sacrificial polyacrylic acid (PAA) (Mw: 1800 g mol−1,
Sigma-Aldrich) layer is first spin-coated on the glass slide. The PAA is dissolved in
water at a concentration of (30 mg g−1). The PAA solution is then spin-coated with
a spin speed of 2500 r.p.m. for 60 s. Afterward, the substrates are left to dry under
vacuum for 1 h. The PDMS mixture is then spin-coated onto the PAA-coated glass
substrate with spin speed between 1500 to 3500 r.p.m. for 30 s to achieve a
thickness range of 90 μm to 25 μm. The samples are then cured in a 65 °C pre-
heated oven for 48 h.

For thin substrates, the thickness can play a role in the wetting behavior6,36,61.
To determine a range where thickness effects are negligible, we measured the height
of the water wetting ridge on as-prepared 60:1 and 50:1 samples with different
thickness. We found the wetting ridge height to be independent of thickness when
the thickness is larger than ~50 µm for 60:1 samples and ~40 µm for 50:1 samples,
as shown in Supplementary Fig. 4. Therefore, all samples were prepared such that
the final test samples have a thickness of at least 50 µm. It should be noted that the
thicknesses change upon extracting free molecules or upon rewelling with the free
fluid. Therefore, the initial spin-coated thickness for a given sample is chosen
relative to the final desired swelling ratio. Thickness values were measured and

verified both by confocal microscopy and by optical profilometry (Filmetrics
Profilm 3D, Supplementary Fig. 6).

Extracting uncrosslinked molecules. The as-prepared soft PDMS (50:1 and 60:1)
elastomers are rather sticky, making it challenging to fatten out a thin sample if it
contacts itself or the container. In order to retain thin films after the extraction
procedure, the interfacial extraction method, described elsewhere37, is used to
remove uncrosslinked molecules that are initially present in the as-prepared sam-
ples. Briefly, the as-prepared samples are cut with a razor to a 1 cm by 0.5 cm size.
They are then floated onto the surface of deionized water (VWR) in a glass petri
dish. The PDMS films are released on the water surface by dissolving the sacrificial
PAA underlayer. To extract the uncrosslinked PDMS chains, hexane was then
carefully added to the Petri dishes to swell the network and allow uncrosslinked
molecules to migrate into the surrounding media. During this procedure, the film
remains at the hexane–water interface. The Petri dishes are then sealed with alu-
minum foil to keep hexane from evaporating. To minimize the concentration of free
silicone chains in the surrounding hexane environment, the hexane is exchanged
every two days. After three exchanges, the hexane is removed by syringe and
micropipette, leaving the hexane-swollen PDMS film on the water surface. To dwell
the sample and obtain a dry network, the Petri dishes are loosely covered with
aluminum foil to slow the rate of hexane evaporation and the deswelling rate of film.
After 24 h, the extracted film is left floating on the water surface.

Swelling with silicone oil and hexadecane. To systematically swell the sample with
silicone oil, drops of PMI-dyed silicone oil or n-hexadecane (VWR) are added
directly onto the extracted film when it is still floating on the water surface. The oil
spontaneously swells into the thin film due to the affinity between silicone oil or
hexadecane and the PDMS network. The degree of swelling is controlled by the
volume of oil added. The petri dish is then sealed with aluminum foil for 1 week to
allow the swelling to reach an equilibrium state. Thin-film samples are removed
from the water surface and placed onto a glass slide. The glass slide is put under to
vacuum for 1 day to remove any residual water or solvent.

Imaging via confocal microscopy. Images are captured on an inverted confocal
microscope (Leica SP8) equipped with a ×40 objective with a correction ring
(Leica). It should be noted that the correction ring is used to correct the z-direction
height that can be stretched due to looking through the PDMS samples. The
microscope is also equipped with a piezo objective kit (piezosystem jena) to capture
faster cross-sectional images. Two lasers with wavelengths of 488 nm and 638 nm
are utilized to excite the fluorescein and PMI dyes separately, and two high-
sensitivity (HyD) detectors are used to collect emission wavelength ranges of
500–600 nm and 670–750 nm. A 4 μl water drop is placed on the sample and a
cross-sectional image of the surface deformation is taken with a resolution of
1204 × 1204. The undisturbed surface line of the sample is identified by a flat
surface far from the contact zone. For some samples with large deformations (e.g.,
60:1), several images are taken along the x-axis and stitched together. The confocal
images are analyzed using ImageJ software. The heights of oil and network are
measured by the vertical distance between the flat surface and the highest tip of oil
and network. The images are made binary to reduce color scattering and more
clearly identify surface lines of each phase.

Characterization
Macroscale contact angle. A goniometer is used to measure the macroscopic static
water contact angles on the PDMS elastomers. The goniometer pictures are ana-
lyzed with ImageJ and using Dropsnake to extract macroscale contact angle data.

Modulus. Due to the difficulty in measuring the modulus of thin-film samples,
thick elastomer samples (thickness >0.5 mm) are prepared for testing by shear
rheology. Samples are produced with as-prepared mixtures of 30:1, 40:1, 50:1, and
60:1 by weight of the Sylgard 184 base and curing agent. After mixing and
degassing, the mixtures are then poured into a 35 mm diameter plastic Petri dish
and cured in a 65 °C pre-heated oven for 48 h. To extract uncrosslinked molecules
of these thick samples, the samples are immersed in a beaker of hexane for 1 week
while exchanging solvent every two days. Afterward, the hexane-swollen sample is
removed and allowed to dry at room temperature. A rheometer (TA Instruments
Discovery HR-2) equipped with 8 mm aluminum parallel plates is used to measure
the shear modulus of dry and swollen elastomers. The plates are scratched to help
with mitigating slip at the boundaries. The shear modulus of highly swollen
samples are tested to a strain of 1% at a frequency of 0.1 Hz and the dry and
slightly swollen samples are tested to a strain of 1% at a frequency of 0.01 Hz
(Supplementary Fig. 3). The strains used were confirmed to be in the linear
region of a strain sweep up to 10% (Supplementary Fig. 12). The Young’s
modulus (E) was calculated from the shear storage modulus (G) by assuming a
Poisson’s ratio of 0.5 for incompressibility.

Swelling ratio. To quantify the amount of swelling, top view images of the films are
obtained with a Nikon D610B camera equipped with a Tamron Sp Af 90 mmF/
2.8Di Macro Lens while they are still floating on water. The area of the film before
and after swelling and extraction is measured and the area ratio is calculated. The
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area ratio A is equal to the area of the swollen sample divided by dry (extracted)
area, A= as/ad. Assuming the samples swell isotropically, the swelling ratio Q is
then calculated as Q= A3/2.

Surface tension measurement. The pendant drop method is used to measure the
surface tension of water, interfacial tension of water-silicone oil, and of water-
hexadecane. A vertical needle with an outer diameter of 0.356 mm and an inner
diameter of 0.178 mm is used to inject deionized water in the air, silicone oil, or
hexadecane (Supplementary Fig. 7). The pendant drop pictures are analyzed with
OpenDrop software71.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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