


Figure 3.4: This figure compares the macro F-scores on the 10% least frequent codes
to the macro F-score on the 10% most frequent ICD-9 diagnosis codes.
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nearly 7% micro F-Score which suggests that NNs can better predict frequent labels.
Likewise, the ensemble approach improves on the prior best macro F-Score by more
than 5%. Even without ensembling, we improve over LR + L2R + NERC by 3%
with respect to the macro F-score. Overall, we find that even in the presence of
data sparsity, NNs can outperform traditional text classification methods when we
use transfer learning.

3.3.5 Label Frequency Analysis

In Figure 3.4 we analyze the macro F-Scores of the 10% least frequent and 10% most
frequent diagnosis codes in the UKYLarge dataset. While calculating the macro F-
score over all labels gives some insight about how our method performs on infrequent
labels, if the frequent and infrequent codes are jointly compared, then it confounds its
interpretation. We find that our proposed method improves infrequent label perfor-
mance by 5%. The macro-averaged performance improves by 2% for frequent classes.
Compared to EM[3] CV[3], these results suggests that the source information EM[3]
CV[3] + EM[7] CV[7] avoids forgetting has a greater impact on infrequent codes.

3.4 Conclusion

In this chapter, we demonstrated the potential of transfer learning using CNNs for
biomedical text classification over conventional CNNs, and other traditional ensemble
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approaches. For comparative purposes, we restricted our dataset to labels occurring
at least 50 times after preprocessing. In this setting most neural networks can reliably
be trained to predict all codes. However, even though this section used larger label
spaces compared to Chapter 2.7, this reduced label space is not realistic. In Chapter 5
we develop a method which can handle the full label set — including codes occurring
much less than 50 times.
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Chapter 4 EMR Coding with Semi-Parametric Multi-Head Matching
Networks

Are there neural architectures that can better handle the label distributions (Fig-
ure 1.2) encountered in EMR datasets? Recent advances in extreme multi-label clas-
sification have proven to work well for large label spaces. Many of these methods (Yu
et al., 2014; Bhatia et al., 2015; Liu et al., 2017) focus on creating efficient multi-
label models that can handle 104 to 106 labels. While these models perform well in
large label spaces, they don’t necessarily focus on improving prediction of infrequent
labels. Typically, they optimize for the top 1, 3, or 5 ranked labels by focusing on
the P@1, P@3, and P@5 evaluation measures. The labels ranked at the top usually
occur frequently in the dataset and it is not obvious how to handle infrequent la-
bels. One solution would be to ignore the rare labels. However, when the majority
of medical codes are infrequent, this solution is unsatisfactory. In Chapter 3, we
improve traditional CNNs by taking advantage of external biomedical textual data.
Yet, we ignore labels which occur less than 50 times in the training dataset. In this
chapter we develop a novel neural network which can better handle infrequent labels.
Furthermore, we analyze various neural-based methods across the entire spectrum of
labels independent of label frequency.

While neural networks have shown great promise for text classification (Kim,
2014; Yang et al., 2016; Johnson and Zhang, 2017), the label imbalances associated
with EMR coding hinder their performance. In Chapter 3, we focused on codes that
occurred at least 50 times in the training dataset. Imagine if a dataset contains only
one training example for every class leading to one-shot learning, a subtask of few-shot
learning. How can we classify a new instance? A trivial solution would be to use a
non-parametric 1-NN (1 nearest neighbor) classifier. 1-NN does not require learning
any label specific parameters and we only need to define features to represent our
data and a distance metric. Unfortunately, defining good features and picking the
best distance metric is nontrivial. Instead of manually defining the feature set and
distance metric, neural network training procedures have been developed to learn
them automatically (Koch et al., 2015). For example, matching networks (Vinyals et
al., 2016) can automatically learn discriminative feature representations and a useful
distance metric. Therefore, using a 1-NN prediction method, matching networks
work well for infrequent labels. However, researchers typically evaluate matching
networks on multi-class problems without label imbalance. For EMR coding with
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extreme label imbalance with several labels occurring thousands of times, traditional
parametric neural networks (Kim, 2014) should work very well on the frequent labels.
In this chapter, we introduce a new variant of matching networks (Vinyals et al., 2016;
Snell et al., 2017a) to address the EMR coding problem. Specifically, we combine the
non-parametric idea of kNN and matching networks with traditional neural network
text classification methods to handle both frequent and infrequent labels encountered
in EMR coding.

Overall, we make the following contributions in this chapter:

• We propose a novel semi-parametric neural matching network for diagnosis/procedure
code prediction from EMR narratives. Our architecture employs ideas from
matching networks (Vinyals et al., 2016), multiple attention (Lin et al., 2017),
multi-label loss functions (Nam et al., 2014a), and CNNs for text classifica-
tion (Kim, 2014) to produce a state-of-the-art EMR coding model.

• We evaluate our model on publicly available EMR datasets to ensure repro-
ducibility and benchmarking; we also compare against prior state-of-the-art
methods in EMR coding and demonstrate robustness across multiple standard
evaluation measures.

• We analyze and measure how each component of our model affects the perfor-
mance using ablation experiments.

4.1 Related Work: Memory Augmented Neural Networks

Memory networks (Weston et al., 2014) have access to external memory, typically
consisting of information the model may use to make predictions. Intuitively, infor-
mative memories concerning a given instance are found by the memory network to
improve its predictive power. Kamra et al. (2017) use memory networks to fix issues
of catastrophic forgetting. They show that external memory can be used to learn
new tasks without forgetting previous tasks. Memory networks are now applied to a
wide variety of natural language processing tasks, including question answering and
language modeling (Sukhbaatar et al., 2015; Bordes et al., 2015; Miller et al., 2016).

Matching networks (Vinyals et al., 2016; Snell et al., 2017a) have recently been
developed for few/one-shot learning problems. We can interpret matching networks
as a key-value memory network (Miller et al., 2016). The “keys” are training instances,
while the “values” are the labels associated with each training example. Intuitively, the
concept is similar to a hashmap. The model will search for the most similar training
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Figure 4.1: The matching CNN architecture. For each input instance, x, we search a
support set using different representations of x and use the similar support instances
and auxiliary features to the output layer.
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instance to find its respective “value”. Also, matching networks can be interpreted as
a kNN based model that automatically learns an informative distance metric. Altae-
Tran et al. (2017) used matching networks for drug discovery, a problem where data is
limited. Finally, memory networks (Prakash et al., 2017) have recently been used for
diagnosis coding. However, we would like to note two significant differences between
the memory network from Prakash et al. (2017) and our model. First, they don’t use
a matching network and their memories rely on extracting information about each
label from Wikipedia. In contrast, our model does not use any auxiliary information.
Second, they only evaluate on the 50 most frequent labels, while we evaluate on all
the labels in the dataset.

4.2 Our Architecture

An overview of our model is shown in Figure 4.1. Our model architecture has two
main components.

1. We augment a CNN with external memory over a support set S, which consists
of a small subset of the training dataset. The model searches the support set to
find similar examples with respect to the input instance. We make use of the
homophily assumption that similar instances in the support set are coded with
similar labels. Therefore, we use the related support set examples as auxiliary
features. The similar instances are chosen automatically by combining ideas
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from metric learning and neural attention. We emphasize that unlike in a
traditional k-NN setup, we do NOT explicitly use the labels of the support set
instances. The support set essentially enriches and complements the features
derived from the input instance.

2. Rather than predicting labels by thresholding, we rank them and select the
top k labels specific to each instance where k is predicted using an additional
output unit (termed MetaLabeler). We train the MetaLabeler along with the
classification loss using a multi-task training scheme.

Before we go into more specific details of our architecture, we introduce some notation.
Let X represent the set of all training documents and x be an instance of X. Likewise,
let S represent the set of support instances and s be an instance of S. We let L be the
total number of unique labels. Our full model is described in following subsections.

4.2.1 Convolutional Neural Networks

Similar to Chapter 3, we use a standard CNN consisting of an embedding layer, a
convolution layer, a max-pooling layer, and an output layer (Collobert et al., 2011;
Kim, 2014). For consistency with Chapter 3, we represent each instance as

g(x) = ĉW

where ĉW represents the max-pooled feature vectors for the instance x first defined
by Equation 2.7.

4.2.2 Multi-Head Matching Network

Using the support set and the input instance, our goal is to estimate P (y|x, S).
The support set S is chosen based on nearest neighbors and its selection process
is discussed in Section 4.2.4. Among instances in S, our model finds informative
support instances with respect to x and creates a feature vector using them. This
feature vector is combined with the input instance to make predictions.

First, each support instance sk ∈ S is projected into the support space using a
simple single-layer feed forward NN as

h(g(sk)) = ReLU(Ws g(sk) + bs),
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where Ws ∈ Rz×v and bs ∈ Rz. Likewise, we project each input instance x into the
input space using a different feed forward neural network,

pi(g(x)) = ReLU(Wi
α g(x) + bi

α),

where Wi
α ∈ Rz×v and bi

α ∈ Rz. Compared to the support set neural network
where we use only a single network, for the input instance we have u projection
neural networks. This means we have u versions of x, an idea that is similar to
self-attention (Lin et al., 2017), where the model learns multiple representations of
an instance. Here each pi(g(x)) represents a single “head” or representation of the
input x. Using different weight matrices, [W1

α, . . . ,W
u
α] and [b1

α, . . . ,b
u
α], we create

different representations of x (multiple heads). For both the input multi-heads and
the support instance projection, we note that the same CNN is used (also indicated
in Figure 4.1) whose output is subject to the feed forward neural nets outlined thus
far in this section.

Rather than searching for a single informative support instance, we search for
multiple relevant support instances. For each of the u input instance representations,
we calculate a normalized attention score

Ai,k =
exp(−d(pi(g(x)), h(g(sk)))∑

sk′∈S
[
exp(−d(pi(g(x)), h(g(sk′)))

]
where Ai,k represents the score of the k-th support example with respect to the i-th
input representation pi(g(x)) and

d(xi,xj) = ∥xi − xj∥22,

is the square of the Euclidean distance between the input and support representations.
Next, the normalized scores are aggregated into a matrix A ∈ Ru×|S|. Then, we

create a feature vector
q = vec(AS) (4.1)

where q ∈ Ruz, vec is the matrix vectorization operator, and S ∈ R|S|×z is the support
instance CNN feature matrix whose i-th row is h(g(si)) for i = 1, . . . , |S|. Intuitively,
multiple weighted averages of the support instances are created, one for each of the
u input representations. The final feature vector,

h = q || g(x), (4.2)
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is formed by concatenating the CNN representation of the input instance x and the
support set feature vector q.

Finally, the output layer for L labels involves computing

ŷ = P (y|x, S) = sigmoid(Wc h+ bc) (4.3)

where Wc ∈ RL×(uz+v), bc ∈ RL. Because we use a sigmoid activation function, each
label prediction (ŷi) is in the range from 0 to 1.

4.2.3 MetaLabeler

The easiest method to convert ŷ into label predictions is to simply threshold each
element at 0.5. However, most large-scale multi-label problems are highly imbalanced.
When training using binary cross-entropy, the threshold 0.5 is optimized for accuracy.
Therefore, our predictions will be biased towards 0. A simple way to fix this problem
is to optimize the threshold value for each label. Unfortunately, searching for the
optimal threshold of each label is computational expensive in large label spaces. Here
we train a regression based output layer

r̂ = ReLU(Wr g(x) + br)

where r̂ estimates the number of labels x should be annotated with. At test time, we
rank each label by its score in ŷ. Next, r̂ is rounded to the nearest integer and we
predict the top r̂ ranked labels.

4.2.4 Training

To train our model, we need to define two loss functions. First, following recent
working on multi-label classification with neural networks (Nam et al., 2014b), we
train using a multi-label cross-entropy loss. The loss is defined as

Lc =
L∑
i=1

[
− yi log(ŷi)− (1− yi) log(1− ŷi)

]
,

which sums the binary cross-entropy loss for each label. The second loss is used to
train the MetaLabeler for which we use the mean squared error

Lr = ∥r− r̂∥22
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where r is the vector of correct numbers of labels and r̂ is our estimate. We train
these two losses using a multi-task learning paradigm (Collobert et al., 2011).

Similar to previous work with matching networks (Vinyals et al., 2016; Snell et
al., 2017a), “episode” or mini-batch construction can have an impact on performance.
In the multi-label setting, episode construction is non-trivial. We propose a simple
strategy for choosing the support set S which we find works well in practice. First,
at the beginning of the training process we loop over all training examples and store
g(x) for every training instance. We will refer to this set of vectors as T . Next,
for every step of the training process (for every mini-batch M), we search T \ M

to find the e nearest neighbors (using Euclidean distance) per instance to form our
support set S. Likewise, we add e random examples from T \M to the support set.
Therefore, our support set S contains up to |M |e + e instances. The purpose of the
random examples is to ensure the distance metric learned during training (captured
by improving representations of documents as influenced by all network parameters)
is robust to noisy examples.

4.2.5 Matching Network Interpretation

If we do not use the support set label vectors, then what is our network learning? To
answer this question we directly compare the matching network formulation to our
method. Matching networks can be expressed as

ŷ =
∑
sk∈S

a(x, sk)ysk

where a(, ) is the attention/distance learned between two instances, k indexes
each support instance, and yk is a one-hot encoded vector. a(, ) is equivalent to A1,k

assuming we use a single head. Traditional matching networks use one-hot encoded
vectors because they are evaluated on multi-class problems. EMR coding is a multi-
label problem. Hence, yk is a multi-hot encoded vector. Moreover, with thousands
of labels, it is unlikely even for neighboring instance pairs to share many labels; this
problem is not encountered in the multi-class setting. We overcome this issue by
learning new output label vectors for each support set instance. Assuming a single
head, our method can be re-written as

ŷ = sigmoid(W1
c g(x) + bc +

∑
sk∈S

a(x, sk) ỹsk), (4.4)

where ỹk is the learned label vector for support instance s. Next, we define ỹk, the
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Table 4.1: This table presents the number of training examples (# Train), the number
of test examples (# Test), label cardinality (LC), and the average number of instances
per label (AI/L) for the MIMIC II and MIMIC III datasets.

# Train # Test # Labels LC AI/L

MIMIC II 18822 2282 7042 36.7 118.8
MIMIC III 37016 2755 6932 13.6 80.8

learned support set vectors, as

ỹsk = W2
c h(g(sk)) (4.5)

where both W1
c and W2

c are submatrices of Wc. Using this reformulation, we can
now see that our method’s main components (equations (4.1)-(4.3)) are equivalent to
this more explicit matching network formulation (equations (4.4)–(4.5)). Intuitively,
our method combines a traditional output layer – the first half of equation 4.4 – with
a matching network where the support set label vectors are learned to better match
the labels of their nearest neighbors.

4.3 Experiments

In this section we compare our work with prior state-of-the-art medical coding meth-
ods. In Section 4.3.1 we discuss the two publicly available datasets we use and de-
scribes the implementation details of our model. We summarize the various baselines
and models we compare against in Section 4.3.3. The evaluation metrics are described
in Section 4.3.4. Finally, we discuss how our method performs in Section 4.3.5.

4.3.1 Datasets

EMR data is generally not available for public use especially if it involves textual
notes. Therefore, we focus on the publicly available Medical Information Mart for
Intensive Care (MIMIC) datasets for benchmarking purposes. We evaluate using two
versions of MIMIC: MIMIC II (Lee et al., 2011) and MIMIC III (Johnson et al.,
2016), where the former is a relatively smaller and older dataset and the latter is the
most recent version. Following prior work (Perotte et al., 2013; Vani et al., 2017),
we use the free text discharge summaries in MIMIC to predict the ICD-9-CM codes.
The dataset statistics are shown in Table 4.1.
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For comparison purposes, we use the same MIMIC II train/test splits as Perotte
et al. (2013). Specifically, we use discharge reports collected from 2001 to 2008 from
the intensive care unit (ICU) of the Beth Israel Deaconess Medical Center and predict
both diagnosis and procedure codes. Following Perotte et al. (2013), the labels for
each discharge summary are extended using the parent of each label in label set.
The parents are based on the ICD-9-CM hierarchy. We use the hierarchical label
expansion to maximize the prior work we can compare against.

The MIMIC III dataset has been extended to include health records of patients
admitted to the Beth Israel Deaconess Medical Center from 2001 to 2012 and hence
provides a test bed for more advanced learning methods. Unfortunately, it does not
have a standard train/test split to compare against prior work given we believe we are
the first to look at it for this purpose. Hence, we use both MIMIC II and MIMIC III
for comparison purposes. Furthermore, we do not use the hierarchical label expansion
on the MIMIC III dataset and we only predict diagnosis codes for MIMIC III.

Before we present our results, we discuss an essential distinction between the
MIMIC II and MIMIC III datasets. Particularly, we are interested in the differences
concerning label imbalance. From Table 4.1, we find that MIMIC III has almost
twice as many examples compared to MIMIC II in the dataset. However, MIMIC
II on average has more instances per label. Thus, although MIMIC III has more
examples, each label is used fewer times on average compared to MIMIC II. The
reason for this is because of how the label sets for each instance were extended using
the ICD-9 hierarchy in MIMIC II.

4.3.2 Implementation Details

Preprocessing: Each discharge summary was tokenized using a simple regex tok-
enization scheme (\w\w+). Also, each word/token that occurs less than five times
in the training dataset was replaced with the UNK token.
Model Details: For our CNN, we used convolution filters of size 3, 4 and 5 with
300 filters for each filter size. We used 300 dimensional skip-gram (Mikolov et al.,
2013b) word embeddings pre-trained on PubMed. The Adam optimizer (Kingma and
Ba, 2014) was used for training with the learning rate 0.0001. The mini-batch size
was set to 4, e – the number of nearest neighbors per instance – was set to 16, and
the number of heads (u) is set to 8. Our code is available at: https://github.com/
bionlproc/med-match-cnn
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4.3.3 Baseline Methods

In this chapter, we focused on comparing our method to state-of-the-art methods
for diagnosis code prediction such as grounded recurrent neural networks (Vani et
al., 2017) (GRNN) and multi-label CNNs (Baumel et al., 2017). We also compare
against traditional binary relevance methods where independent binary classifiers
(L1-regularized linear models) are trained for each label. Next, we compare against
hierarchical SVM (Perotte et al., 2013), which incorporates the ICD-9-CM label hi-
erarchy. Finally, we also report the results of the traditional matching network with
one modification: We train the matching network with the multi-label loss presented
in Section 4.2.4 and threshold using the MetaLabeler described in Section 4.2.3.

We also present two versions of our model: Match-CNN and Match-CNN Ens.
Match-CNN is the multi-head matching network introduced in Section 4.2. Match-
CNN Ens is an ensemble that averages three Match-CNN models, each initialized
using a different random seed.

4.3.4 Evaluation Metrics

We evaluate our method using a wide variety of standard multi-label evaluation met-
rics. We use the popular micro and macro averaged F1 measures to assess how our
model (with the MetaLabeler) performs when thresholding predictions. For problems
with large labels spaces that suffer from significant imbalances in label distributions,
the default threshold of 0.5 generally performs poorly (hence our use of MetaLabeler).
To remove the thresholding effect bias, we also report different versions of the area
under the precision-recall (AUPRC) and receiver operating characteristic (AUCOC)
curves. Finally, in a real-world setting, our system would not be expected to replace
medical coders. We would expect medical coders to use our system to become more
efficient in coding EMRs. Therefore, we would rank the labels based on model con-
fidence and medical coders would choose the correct labels from the top few. To
understand if our system would be useful in a real-world setting, we evaluate with
precision at k (P@k) and recall at k (R@k). Having high P@k and R@k are critical
to effectively encourage the human coders to use and benefit from the system. These
evaluation metrics are explained in Chapter 2.

4.3.5 Results

We show experimental results on MIMIC II in Table 4.2. Overall, our method im-
proves on prior work across a variety of metrics. With respect to micro F1, we
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Table 4.2: Results for the MIMIC II dataset. Models marked with * represent our
custom implementations.

F1 AUC (PR) AUC (ROC) P@k R@k
Prec. Recall Micro Macro Micro Macro Micro Macro 8 40 8 40

Flat SVM (Perotte et al., 2013) 86.7 16.4 27.6 – – – – – – – – –
Hier. SVM (Perotte et al., 2013) 57.7 30.1 39.5 – – – – – – – – –
Logistic (Vani et al., 2017) 77.4 39.5 52.3 04.2 54.1 12.5 91.9 70.4 91.3 57.2 16.9 52.8
Attn BoW (Vani et al., 2017) 74.5 39.9 52.0 02.7 52.1 07.9 97.5 80.7 91.2 54.9 16.9 50.8
GRU-128 (Vani et al., 2017) 72.5 39.6 51.2 02.7 52.3 08.2 97.6 82.7 90.6 54.1 16.8 50.1
BiGRU-64 (Vani et al., 2017) 71.5 36.7 48.5 02.1 49.3 07.1 97.3 81.1 89.2 52.2 16.5 48.3
GRNN-128 (Vani et al., 2017) 75.3 47.2 58.0 05.2 58.7 12.6 97.6 81.5 93.0 59.2 17.2 54.8
BiGRNN-64 (Vani et al., 2017) 76.1 46.6 57.8 05.4 58.9 13.1 97.5 79.8 92.5 59.6 17.2 55.2
CNN (Baumel et al., 2017) * 81.0 40.3 53.8 03.1 59.9 12.7 97.1 75.9 93.1 58.5 20.7 58.6
Matching Network * 43.9 38.8 41.2 01.4 39.4 03.4 89.3 55.1 79.3 42.7 17.2 42.5
Match-CNN (Ours) 60.5 56.1 58.2 06.4 61.2 14.8 97.7 79.2 93.0 58.6 20.7 59.0
Match-CNN Ens. (Ours) 61.6 56.7 59.1 06.6 62.3 15.7 97.7 79.3 93.5 59.4 20.8 59.8

Table 4.3: Results for the MIMIC III dataset. Models marked with * represent our
custom implementations.

F1 AUC (PR) AUC (ROC) P@k R@k
P R Micro Macro Micro Macro Micro Macro 8 40 8 40

Logistic (Vani et al., 2017) * 71.1 24.2 36.1 02.6 41.9 14.7 96.1 75.1 55.4 21.1 41.4 68.6
CNN (Baumel et al., 2017) * 72.6 24.6 36.7 02.1 37.6 09.5 94.2 69.7 53.4 19.6 39.5 63.6
Matching Network * 24.8 23.7 24.2 00.8 18.3 02.8 82.3 55.4 31.0 12.8 23.1 43.1
Match-CNN (Ours) 46.6 44.7 45.6 04.1 42.1 11.9 96.3 72.6 55.7 20.6 41.3 67.0
Match-CNN Ens. (Ours) 48.8 44.9 46.8 04.3 44.1 12.9 96.5 76.0 57.0 21.1 42.2 68.3

improve upon GRNN-128 by over 1%. Also, while macro-F1 is still low in general,
we also improve macro F1 compared to state-of-the-art neural methods by more than
1%. In general, both micro and macro F1 are highly dependent on the threshold-
ing methodology. Rather than thresholding at 0.5, we rank the labels and pick the
top k based on a trained regression output layer. Can we do better than using a
MetaLabeler? To measure this, we look at the areas under PR/ROC curves. Regard-
ing micro and macro AUPRC, we improve on prior work by ≈ 2.5%. This suggests
that via better thresholding, the chances of improving both micro and macro F1 are
higher for Match-CNN compared to other methods. Finally, we are also interested in
metrics that evaluate how this model would be used in practice. We perform com-
parably with prior work on P@k. We show strong improvements in R@k with over
a 4% improvement in R@40 compared to grounded RNNs and over 1% improvement
when compared with Baumel et al. (2017). Our method also outperforms matching
networks across every evaluation measure.

We present MIMIC III results in Table 4.3. We reiterate that MIMIC III does not
have a standard train/test split. Hence we compare our model to our implementations
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Table 4.4: Ablation results for the MIMIC III dataset.

F1 P@k R@k AUC (PR)
Micro Macro 8 40 8 40 Micro Macro

Match-CNN 45.6 04.1 55.7 20.6 41.3 67.0 42.1 11.9
- Matching 42.9 03.4 53.4 19.6 39.5 63.6 37.6 09.5
- MetaLabler 39.1 02.6 55.7 20.6 41.3 67.0 42.1 11.9
- Multi-Head 45.0 03.4 54.8 20.2 40.3 65.6 41.7 11.3

of methods from prior efforts. For MIMIC III also we show improvements in multiple
evaluation metrics. Interestingly, our method performs much better than the standard
CNN on MIMIC III, compared to the relative performances of the two methods on
MIMIC II. Match-CNN improves on CNN in R@40 by almost 5% on the MIMIC III
dataset. The gain in R@40 is more than the 1% improvement found on MIMIC II.
We hypothesize that the improvements on MIMIC III are because the label imbalance
found in MIMIC III is higher than MIMIC II. Increased label imbalances mean more
labels occur less often. Therefore, we believe our model works better with less training
examples per label compared to the standard CNN model.

In Table 4.4 we analyze each component of our model using an ablation analysis on
the MIMIC III dataset. First, we find that removing the matching component signif-
icantly effects our performance by reducing micro AUPRC by almost 5%. Regarding
micro and macro F1, we also notice that the MetaLabeler heuristic substantially im-
proves on default thresholding (0.5). Finally, we see that the multi-head matching
component provides reasonable improvements to our model across multiple evalua-
tion measures. For example, P@8 and P@40 decrease by around 1% when we use
attention with a single input representation.

4.4 Conclusion

In this chapter, we introduced a semi-parametric multi-head matching network and
applied it to EMR coding datasets. We find that by combining the non-parametric
properties of matching networks with a traditional classification output layer, we
improve metrics for both frequent and infrequent labels in the dataset. However, this
model does not handle ICD-9 codes that never appeared in the dataset. Furthermore,
with the evaluation strategy used in this chapter, it is ambiguous how the model
performs on infrequent codes compared to codes that occur infrequently. We address
theses issues in Chapter 5.
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Chapter 5 Zero-shot and Few-shot Multi-label Learning

As discussed in Chapter 1, there are two major difficulties when developing machine
learning methods for large-scale multi-label text classification problems. First, the
documents may be long, sometimes containing more than a thousand words (Mullen-
bach et al., 2018). Finding the relevant information in a large document for a specific
label results in needle in a haystack situation. Second, data sparsity is a common
problem; as the total number of labels grows, a few labels may occur frequently,
but most labels will occur infrequently. Rubin et al. (2012) refer to datasets that
have long-tail frequency distributions as “power-law datasets”. Methods that predict
infrequent labels fall under the paradigm of few-shot classification which refers to
supervised methods in which only a few examples, typically between 1 and 5, are
available in the training dataset for each label. With predefined label spaces, some
labels may never appear in the training dataset. Zero-shot problems extend the idea
of few-shot classification by assuming no training data is available for the labels we
wish to predict at test time. In this chapter, we explore both of these issues, long doc-
uments and power-law datasets, with an emphasis on analyzing the few- and zero-shot
aspects of large-scale multi-label problems.

In Figure 5.1, we plot the label frequency distribution of diagnosis and procedure
labels for the entire MIMIC III (Johnson et al., 2016) dataset. A few labels occur more
than 10,000 times, around 5000 labels occur between 1 and 10 times, and of the 17,000
diagnosis and procedure labels, more than 50% never occur. There are a few reasons
a label may never occur in the training dataset. In healthcare, several disorders are
rare; therefore corresponding labels may not have been observed yet in a particular
clinic. Sometimes new labels may be introduced as the field evolves leading to an
emerging label problem. This is intuitive for applications such as hashtag prediction
on Twitter. For example, last year it would not have made sense to annotate tweets
with the hashtag #EMNLP2018. Yet, as this year’s conference approaches, labeling
tweets with the #EMNLP2018 will help users find relevant information.

How does the emerging code problem appear in health care? Do many new codes
get added to standardized medical coding terminologies? The World Health Organi-
zation (WHO) recently introduced the “gaming disorder” as a mental health disorder
in ICD-111. It was estimated that nearly 1 in 10 adolescents aged 8 to 18 suffer from

1http://www.who.int/features/qa/gaming-disorder/en/
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Figure 5.1: This plot shows the label frequency distribution of ICD-9 codes in MIMIC
III.
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gaming addiction (Gentile, 2009). With ICD-10, patients with gaming addictions
may be annotated with the label “Impulse-control disorder”. While some scholars
suggest that the estimates of video game addiction may be inflated (Wood, 2008), in
the event that hospitals switch to ICD-11, it is possible that many medical records
will begin to be annotated with the “gaming disorder” term. Switching to a new
vocabulary does not happen overnight. The word health organization released the
full ICD-10 terminology in 1994. The US Department of Health and Human Services
did not mandate the health industry to transition from ICD-9 to ICD-10 until 2015.
However, when we transition to a new vocabulary, and given the introduction of new
soon-to-be frequent codes, it is important to develop methods that can predict these
codes until enough training data is collected to take advantage of traditional super-
vised methods. This is evident given how many new codes were added to ICD-10
compared to ICD-9. Specifically, ICD-9 contains just over 14 thousand diagnosis
codes compared to the 68 thousand codes in ICD-10. Furthermore, the number of
procedure codes increased nearly 19 times from almost 4 thousand codes in ICD-9 to
over 70 thousand in ICD-10.

Infrequent labels may not contribute heavily to the overall accuracy of a multi-
label model but in some cases correct prediction of such labels is crucial but not
straightforward. For example, in assigning diagnosis labels to EMRs, it is important
that trained human coders are both accurate and thorough. Errors may cause unfair
financial burden on the patient. Coders may have an easier time assigning frequent
labels to EMRs because they are encountered more often. Also, frequent labels are
generally easier to predict using machine-learning based methods. However, infre-

56



quent or obscure labels will be easily confused or missed causing billing mistakes
and/or causing the coders to spend more time annotating each record. Thus, we
believe methods that handle infrequent and unseen labels in the multi-label setting
are important.

Current evaluation methods for large-scale multi-label classification mostly ignore
infrequent and unseen labels. Popular evaluation measures focus on metrics such
as micro-F1, recall at k (R@k), precision at k (P@k), and macro-F1. As it is well-
known that micro-F1 gives more weight to frequent labels, papers on this topic also
report macro-F1, the average of label-wise F1 scores, which equally weights all labels.
Unfortunately, macro-F1 scores are generally low and the corresponding performance
differences between methods are small. Moreover, it is possible to improve macro-F1
by only improving a model’s performance on frequent labels, further confounding its
interpretation. Hence we posit that macro-F1 is not enough to compare large-scale
multi-label learning methods on infrequent labels and it does not directly evaluate
zero-shot labels. Here, we take a step back and ask: can the model predict the
correct few-shot (zero-shot) labels from the set of all few-shot (zero-shot) labels? To
address this, we test our approach by adapting the generalized zero-shot classification
evaluation methodology by Xian et al. (2017) to the multi-label setting.

In this chapter, we propose and evaluate a neural architecture suitable for handling
few- and zero-shot labels in the multi-label setting where the output label space
satisfies two constraints: (1). the labels are connected forming a DAG and (2). each
label has a brief natural language descriptor. These assumptions hold in several
multi-label scenarios including assigning diagnoses/procedures to EMRs and indexing
biomedical articles with medical subject headings. Taking advantage of this prior
knowledge on labels is vital for zero-shot prediction. Specifically, using the EMR
coding use-case, we make the following contributions:

1. We overcome issues arising from processing long documents by introducing a
new neural architecture that expands on recent attention-based CNNs (ACNN (Mul-
lenbach et al., 2018)). Our model learns to predict few- and zero-shot labels
by matching discharge summaries in EMRs to feature vectors for each label
obtained by exploiting structured label spaces with graph CNNs (GCNN (Kipf
and Welling, 2017)).

2. We provide a fine-grained evaluation of state-of-the-art EMR coding methods
for frequent, few-shot, and zero-shot labels. By evaluating power-law datasets
using an extended generalized zero-shot methodology that also includes few-
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shot labels, we present a nuanced analysis of model performance on infrequent
ICD-9-CM codes.

5.1 Related Work

In this section, we present related-work about three areas of research relevant to this
chapter: Few- and zero-shot learning, structured label correlations for multi-label
classification, and GCNNs.

5.1.1 Few-Shot and Zero-Shot Learning

While neural networks are generally considered to need large datasets, they have
been shown to work well on few-shot classification tasks. To handle infrequent labels,
most NN methods use a k-NN-like approach. Siamese NNs (Koch et al., 2015) learn a
nonlinear distance metric using a pairwise loss function. Matching networks (Vinyals
et al., 2016) introduce an instance-level attention method to find relevant neighbors.
Prototypical Networks (Snell et al., 2017b) average all instances in each class to form
“prototype label vectors” and train using a traditional cross-entropy loss.

Zero-shot learning has not been widely explored in the large-scale multi-label
classification scenario. Like neural few-shot methods, neural zero-shot methods use a
matching framework. Instead of matching input instances with other instances, they
are matched to predefined label vectors. For example, the Attributes and Animals
Dataset (Xian et al., 2017) contains images of animals and the label vectors consist of
features describing the types of animals (e.g., stripes: yes). When feature vectors for
labels are not available, the average of the pretrained word embeddings of the class
names have been used. The attribute label embedding method (Akata et al., 2016)
uses a pairwise ranking loss to match zero-shot label vectors to instances. (Romera-
Paredes and Torr, 2015) introduced the “embarrassingly simple zero-shot learning”
(ESZSL) method which is trained using a mean squared error loss. A few zero-shot
methods do not translate well to multi-label problems. CONSE (Mikolov et al.,
2013a) averages the embeddings for the top predicted supervised label vectors to
match to zero-shot label vectors. CONSE assumes that both supervised and zero-
shot labels cannot be assigned to the same instance. In this chapter, we expand on
the generalized zero-shot evaluation methodology introduced by (Xian et al., 2017)
to large-scale multi-label classification. Finally, it is important to note that zero-shot
classification has been previously studied in the multi-label setting (Mensink et al.,
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2014). However, they focus on image classification and their datasets only contain
around 300 labels.

5.1.2 Structured Label Correlations for Multi-label Classification

Ontological resources that consist of hyperemic (“is a”) and meronymic (“part of”)
relations between labels are common in many domains including e-commerce and
biomedicine. Such hierarchical knowledge sources, when available, are commonly
exploited to improve multi-label predictions. Hierarchical binary relevance (HBR)
constructs a dataset for each node in the hierarchy consisting of instances belonging
to its parent (Tsoumakas et al., 2010). Predictions can be made using a top-down
approach where an instance won’t proceed to the inner nodes of a subtree if its
root node does not positively classify the instance. This suggests that for large
label spaces it is not necessary to run every classifier for each label. There are well
known weaknesses to such an approach the most significant one being the so called
“blocking problem” where recall is adversely affected by higher nodes ruling out correct
downstream predictions.

Recent work has transformed the hierarchical classification problem into an opti-
mal subgraph search problem (Bi and Kwok, 2011). In the BR framework, the key
idea is to independently pick the top k labels based on each classifier score. Instead,
the optimal subgraph respects specific properties that ensure the consistency of the
directed asyclic graph (DAG). This is different from HBR which builds a new dataset
for each node. Label co-occurrence as well as semantic label hierarchy have been
formulated via label ranking optimization problems (Wu et al., 2015) by encouraging
parent labels to rank higher than their children.

5.1.3 Graph Convolutional Neural Networks

GCNNs generalize CNNs beyond 2d and 1d spaces. Defferrard et al. (2016) devel-
oped spectral methods to perform efficient graph convolutions. Kipf and Welling
(2017) assume a graph structure is known over input instances and apply GCNNs
for semi-supervised learning. GCNNs are applied to relational data (e.g., link pre-
diction) by Schlichtkrull et al. (2018). GCNNs have also had success in many NLP
applications including, but not limited to, semantic role labeling (Marcheggiani and
Titov, 2017), dependency parsing (Strubell and McCallum, 2017), and machine trans-
lation (Bastings et al., 2017).

There are three GCNN papers that share similarities with our work.
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Figure 5.2: Overview of our architecture

1. Peng et al. (2018) use a GCNN on a word co-occurrence graph for large-scale
text classification where the GCNN operates on documents/words, while our
GCNN operates on the labels.

2. Chen et al. (2017) use GCNNs on structured label spaces. However, their ex-
periments focus on smaller label spaces and do not handle/assess zero-shot and
few-shot labels. Also, their experiments for text classification do not incor-
porate attention and simply use an average of word vectors to represent each
document.

3. Wang et al. (2018) propose a zero-shot GCNN image classification method for
structured multi-class problems. We believe their method may transfer to the
multi-label text classification setting but exact modifications to affect that are
not clear (i.e., their semi-supervised approach may not be directly applicable).
Likewise, porting to text is nontrivial for long documents.

5.2 Method

Figure 5.2 shows the overall schematic of our architecture. Intuitively, we incorporate
four main components. First, we assume we have the full English descriptor/gloss
for each label we want to predict. We form a vector representation for each label
by averaging the word embeddings for each word in its descriptor. Second, the label
vectors formed from the descriptor are used as attention vectors (label-wise attention)
to find the most informative ngrams in the document for each label. For each label,
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this will produce a separate vector representation of the input document. Third,
the label vectors are passed through a two layer GCNN to incorporate hierarchical
information about the label space. Finally, the vectors returned from the GCNN are
matched to the document vectors to generate predictions.

5.2.1 Convolutional Neural Network

Contrary to Chapters 3 and 4, instead of using a max-over-time pooling layer, we learn
to find relevant ngrams in a document for each label via label-wise attention (Mullen-
bach et al., 2018). The CNN will return a document feature matrix D ∈ R(n−s+1)×u

where each column of D is a feature map, u is the total number of convolution filters,
n is the number of words in the document, and s is the width of convolution filters.

5.2.2 Label Vectors

To be able to predict labels that were not in the training dataset, we avoid learning
label specific parameters. We use the label descriptors to generate a feature vector for
each label. First, to preprocess each descriptor, we lowercase all words and remove
stop-words. Next, each label vector is formed by averaging the remaining words in
the descriptor

vi =
1

|N |
∑
j∈N

wj, i = 1, . . . , L, (5.1)

where vi ∈ Rd, L is the number of labels, and N is the index set of the words in the
descriptor. Prior zero-shot work has focused on projecting input instances into the
same semantic space as the label vectors (Sandouk and Chen, 2016). For zero-shot
image classification, this is a non-trivial task. Because we work with textual data,
we simply share the word embeddings between the convolutional layer and the label
vector creation step to form vi.

5.2.3 Label-Wise Attention

Similar to the work by Mullenbach et al. (2018), we employ label-wise attention to
avoid the needle in the haystack situation encountered with long documents. But
here we also need to find relevant information for zero-shot classes. So we use the
label vectors vi rather than learning label specific attention parameters. First, we
pass the document feature matrix D through a simple feed-forward neural network

D2 = tanh(DWb + bb)
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where Wb ∈ Ru×d and bb ∈ Rd. This mapping is important because the dimensional-
ity of the ngram vectors (rows) in D depends on u, the number of scores we generate
for each ngram. Given D2, we generate the label-wise attention vector

ai = softmax(D2 vi), i = 1, . . . , L, (5.2)

where ai ∈ Rn−s+1 measures how informative each ngram is for the i-th label. Finally,
we use D, and generate L label-specific document vector representations

ci = aT
i D, i = 1, . . . , L,

such that ci ∈ Ru. Intuitively, ci is the weighted average of the rows in D forming a
vector representation of the document for the i-th label.

5.2.4 GCNN Output Layer

Traditionally, the output layer of a CNN would learn label specific parameters opti-
mized via a cross-entropy loss. Instead, our method attempts to match documents
to their corresponding label vectors. In essence, this becomes a retrieval problem.
Before using each document representation ci to score its corresponding label, we
take advantage of the structured knowledge we have over our label space using a
2-layer GCNN. For both the MIMIC II and MIMIC III datasets, this information is
hierarchical. A snippet of the hierarchy can be found in Figure 5.2.

Starting with the label vectors vi, we combine the label vectors of the children
and parents for the i-th label to form

v1
i = f(W1vi +

∑
j∈Np

W1
pvj

|Np|
+

∑
j∈Nc

W1
cvj

|Nc|
+ b1

g)

where W1 ∈ Rq×d, W1
p ∈ Rq×d, W1

c ∈ Rq×d, b1
g ∈ Rq, f is the rectified linear

unit (Nair and Hinton, 2010) function, and Nc (Np) is the index set of the i-th label’s
children (parents). We use different parameters to distinguish each edge type. In
this chapter, given we only deal with hierarchies, the edge types include edges from
parents, from children, and self edges. This can be adapted to arbitrary DAGs, where
parent edges represent all incoming edges and the child edges represent all outgoing
edges for each node.
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The second layer follows the same formulation as the first layer with

v2
i = f(W2v1

i +
∑
j∈Np

W2
pv

1
j

|Np|
+

∑
j∈Nc

W2
cv

1
j

|Nc|
+ b2

g)

where W2 ∈ Rq×q, W2
p ∈ Rq×q, W2

c ∈ Rq×q, and b2
g ∈ Rq. Next, we concatenate both

the averaged description vector (from equation (5.1)) with the GCNN label vector

v3
i = vi || v2

i ,

where v3
i ∈ Rd+q. Now, to compare the final label vector v3

i with its document vector
ci, we transform the document vector into

ei = ReLU(Woci + bo), i = 1, . . . , L,

where Wo ∈ R(q+d)×u and bo ∈ Rq+d. This transformation is required to match the
dimension to that of v3

i . Finally, the prediction for each label i is generated via

ŷi = sigmoid(eTi v3
i ), i = 1, . . . , L.

During experiments, we found that using either the output layer GCNN or a separate
GCNN for the attention vectors (equation (5.2)) did not result in an improvement
and severely slowed convergence.

5.2.5 Training

Following the same strategy as Chapters 3 and 4, we train our model using a multi-
label binary cross-entropy loss (Nam et al., 2014a)

L =
L∑
i=1

[
− yi log(ŷi)− (1− yi) log(1− ŷi)

]
,

where yi ∈ {0, 1} is the ground truth for the i-th label and ŷi is our sigmoid score for
the i-th label.

5.3 Experiments

In this chapter, we use the same two medical datasets for evaluation purposes from
Chapter 4: MIMIC II (Jouhet et al., 2012) and MIMIC III (Johnson et al., 2016).
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Table 5.1: MIMIC II and MIMIC III dataset statistics for few- and zero-shot learning.

Number of Labels
Dataset Frequent (S) Few-Shot (F) Zero-Shot (Z)

MIMIC II 3228 3459 355
MIMIC III 4403 4349 178

Both datasets contain discharge summaries annotated with a set of ICD-9 diagno-
sis and procedure labels. Furthermore, we use the same train/test splits as Chap-
ter 4. Discharge summaries are textual documents consisting of, but not limited to,
physician descriptions of procedures performed, diagnoses made, the patient’s med-
ical history, and discharge instructions. We use the label descriptors provided by
the world health organization (WHO) to generate label vectors, whose average de-
scriptor length is seven words. Following a generalized zero-shot learning evaluation
methodology (Xian et al., 2017), we split the ICD-9 labels into three groups based
on frequencies in the training dataset: The frequent group S that contains all labels
that occur > 5 times, the few-shot group F that contains labels that occur between
1 and 5 times, and the zero-shot group Z of labels that never occurred. The groups
are only used for evaluation. That is, during training, systems are optimized over all
labels simultaneously. Also, instances that do not contain few- or zero-shot classes are
removed from their respective groups during evaluation. This grouping is important
to assess how each model performs across labels grouped by label frequency. Our
evaluation methodology differs from that of (Xian et al., 2017) in two ways. First,
because each instance is labeled with multiple labels, the same instance can appear
in all groups — S, F, and Z. Second, instead of top-1 accuracy or HIT@k evaluation
measures, we focus on R@k to handle multiple labels. At a high level, we want to
examine whether a model can distinguish the correct few-shot (zero-shot) labels from
the set of all few-shot (zero-shot) labels. Therefore, the R@k measures in Tables 5.2
and 5.3, and Figure 5.3 are computed relative to each group.

5.3.1 Datasets

We use the same datasets as Chapter 4. The number of labels in the frequent, few-
and zero-shot groups in the MIMIC II and III datasets are reported in Table 5.1.
For reproducibility purposes, we use the same training/test splits of the MIMIC II
as Perotte et al. (2013). Following the procedures in Perotte et al. (2013), Vani et
al. (2017), and Chapter 4, for each diagnosis and procedure label assigned to each
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medical report, we add its parents using the ICD-9 hierarchy. Each report in MIMIC
II is annotated with nearly 37 labels on average using hierarchical label expansion.

MIMIC III does not contain a standardized training/test split. Therefore, we
create our own split that ensures the same patient does not appear in both the training
and test datasets. Unlike the MIMIC II dataset, we do not augment the labels using
the ICD-9 hierarchy. Also, contrary to Chapter 4, we predict both diagnosis and
procedure codes. The ICD-9 hierarchy has three main levels. For MIMIC III, level
0 labels make up about 5% of all occurrences, level 1 labels make up about 62%,
and level 2 (leaf level) labels make up about 33%. Also, each MIMIC III instance
contains16 ICD-9 labels on average.

5.3.2 Implementation Details.

For the CNN component of our model, we use 300 convolution filters with a filter size
of 10. We use 300 dimensional word embeddings pretrained on PubMed biomedical
article titles and abstracts. To avoid overfitting, we use dropout directly after the
embedding layer with a rate of 0.2. For training we use the ADAM (Kingma and Ba,
2014) optimizer with a minibatch size of 8 and a learning rate of 0.001. q, the GCNN
hidden layer size, is set to 300.

5.3.3 Evaluation Measures

Thresholding has a large influence on traditional multi-label evaluation measures
such as micro-F1 and macro-F1 (Tang et al., 2009). Hence, we report both recall at k
(R@k) and precision at k (P@k) which do not require a specific threshold. R@k and
P@k is defined in detail in Chapter 2, by Equation 2.5 and Equation 2.4 respectively.
R@k is preferred for few- and zero-shot labels, because P@k quickly goes to zero
as k increases and gets bigger than the number of group specific labels assigned to
each instance. Furthermore, for medical coding, these models are typically used as
a recommendation engine to help coders. Unless a label appears at the top of the
ranking, the annotator will not see it. Thus, ranking metrics better measure the
usefulness of our systems.

5.3.4 Baseline Methods

For the frequent and few-shot labels we compare to state-of-the-art methods on the
MIMIC II and MIMIC III datasets including ACNN (Mullenbach et al., 2018) and
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a CNN method introduced in (Baumel et al., 2017). We also compare with the L1
regularized logistic regression model used in (Vani et al., 2017).

For zero-shot learning, we compare our results with ESZSL (Romera-Paredes and
Torr, 2015). To use ESZSL, we must specify feature vectors for each label. For zero-
shot methods, the label vectors used are crucial regardless of the learning method
used. Therefore, we evaluate ESZSL with three different sets of label vectors. We
average 200 dimensional ICD-9 descriptor word embeddings generated by (Pyysalo et
al., 2013)2 which are pretrained on PubMed, Wikipedia, and PubMed Central (ESZSL
+ W2V). We lowercased descriptors and removed stop-words. We also compare
with label vectors derived from our own 300 dimensional embeddings (ESZSL +
W2V 2) pretrained on PubMed indexed titles and abstracts. We also generate label
vectors using the ICD-9 hierarchy. Specifically, let Y ∈ RN×L be the document
label matrix where N is the total number of documents. We factorize Y into two
matrices U ∈ RN×300 and V ∈ R300×L using graph regularized alternating least
squares (GRALS) (Rao et al., 2015). Finally, we also report a baseline using a
random ordering on labels, which is important for zero-shot labels — because the
total number of such labels is small, the chance that the correct label is in the top
k is higher compared to few-shot and frequent labels. This method is explained in
detail in Appendix A.

We compare two variants of our method: zero-shot attentive GCNN (ZAGCNN),
which is the full method described in Section 5.2 and a simpler variant without the
GCNN layers, zero-shot attentive CNN (ZACNN)3.

5.3.5 Results

Table 5.2 shows the results for MIMIC II. Because the label set for each medical record
is augmented using the ICD-9 hierarchy, we expect methods that use the hierarchy
to have an advantage. ACNN performs best on frequent labels. For few-shot labels,
ZAGCNN outperforms ACNN by over 10% in R@10 and by 8% in R@5; compared
to these R@k gains for few-shot labels, our loss on frequent labels is minimal (< 1%).
We find that the word embedding derived label vectors work best for ESZSL on zero-
shot labels. However, this setup is outperformed by GRALS derived label vectors on
the frequent and few-shot labels. On zero-shot labels, ZAGCNN outperforms the best
ESZSL variant by over 16% for both R@5 and R@10. Also, we find that the GCNN

2http://bio.nlplab.org/
3We name our methods with the “zero-shot” prefix because they are primarily designed for such

scenarios, although as we show later that these methods are effective for both few-shot and frequent
labels
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Table 5.2: MIMIC II results across frequent (S), few-shot (F), and zero-shot (Z)
groups. We mark prior methods for MIMIC datasets that we implemented with a *.

S F Z Harmonic Average
R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10

Random 00.0 00.0 00.0 00.0 01.1 03.2 – –

Logistic (Vani et al., 2017) * 13.7 24.7 00.1 00.3 – – – –
CNN (Baumel et al., 2017) * 13.8 25.0 05.0 08.2 – – – –
ACNN (Mullenbach et al., 2018) * 13.8 25.5 04.6 08.1 – – – –

ESZSL + W2V 07.4 11.9 00.8 01.7 08.0 17.2 02.0 04.1
ESZSL + W2V 2 05.0 08.6 02.5 04.4 10.3 18.9 04.3 07.6
ESZSL + GRALS 13.5 23.8 08.1 12.3 08.5 13.6 09.5 15.2

ZACNN 13.5 24.5 10.3 14.9 14.7 22.1 12.8 20.5
ZAGCNN 13.5 24.7 13.0 18.5 26.9 36.2 16.0 24.6

Table 5.3: MIMIC III results across frequent (S), few-shot (F), and zero-shot (Z)
groups. We mark prior methods for MIMIC datasets that we implemented with a *.

S F Z Harmonic Average
R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10

Random 00.0 00.0 00.0 00.0 03.8 05.2 – –

Logistic (Vani et al., 2017) * 27.3 42.7 01.4 01.4 – – – –
CNN (Baumel et al., 2017) * 26.9 41.3 05.8 08.5 – – – –
ACNN (Mullenbach et al., 2018) * 28.8 45.8 13.0 16.8 – – – –

ESZSL + W2V 13.5 19.1 03.1 05.1 15.7 25.7 06.5 10.5
ESZSL + W2V 2 12.7 18.9 03.1 04.8 14.8 30.5 06.3 10.2
ESZSL + GRALS 25.6 39.3 03.3 06.0 07.6 13.8 06.4 11.4

ZACNN 27.8 43.5 15.2 19.5 36.4 44.2 23.2 31.0
ZAGCNN 28.3 44.5 16.6 21.6 42.8 49.5 25.2 33.7

layers help both few- and zero-shot labels. Finally, similar to the setup in (Xian et al.,
2017), we also compute the harmonic average across all R@5 and all R@10 scores.
The metric is only computed for methods that can predict zero-shot classes. We find
that ZAGCNN outperforms ZACNN by 4% for R@10.

We report the MIMIC III results in Table 5.3. Unlike for MIMIC II, the label sets
were not expanded using the ICD-9 hierarchy. Yet, we find substantial improvements
on both few- and zero-shot labels using a GCNN. ZAGCNN outperforms ACNN by
almost 5% and ZACNN by 1% in R@10 on few-shot classes. However, ACNN still
outperforms all other methods on frequent labels, but by only 0.3% when compared
with ZAGCNN. For zero-shot labels, ZAGCNN outperforms ZACNN by over 5% and
outperforms the best ESZSL method by nearly 20% in R@10. We find that ZACNN
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Table 5.4: P@k, R@k, and macro-F1 results over all labels (the union of S, F, and
Z).

P@10 R@10 Macro-F1

CNN 56.2 40.7 02.8
ACNN 62.4 45.2 06.8
ZACNN 57.7 42.9 03.7
ZAGCNN 58.7 43.9 03.8

Figure 5.3: This graph plots the MIMIC III R@k for few-shot (F) labels at different
k values.
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slightly underperforms ZAGCNN on frequent labels with more prominent differences
showing up for infrequent labels.

In Table 5.4 we compare the P@10, R@10, and macro-F1 measures across all three
groups (the union of S, F , and Z) on the MIMIC III dataset. We emphasize that the
evaluation metrics are calculated over all labels and are not averages of the metrics
computed independently for each group. We find that R@10 is nearly equivalent to
the R@10 on the frequent group in Table 5.3. Furthermore, we find that ACNN
outperforms ZAGCNN in P@10 by almost 4%. To compare all methods with respect
to macro-F1, we simply threshold each label at 0.5. Both R@k and P@k give more
weight to frequent labels, thus it is expected that ACNN outperforms ZAGCNN for
frequent labels. However, we also find that ACNN outperforms our methods with
respect to Macro-F1.

Given macro-F1 equally weights all labels, does the higher macro score mean
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ACNN performs better across infrequent labels? In Figure 5.3, we plot the MIMIC
III R@k for the neural methods with k ranging from 1 to 100. We find as k increases,
the differences between ZAGCNN and ACNN become more evident. Given Figure 5.3
and the scores in Table 5.3, it is clear that ACNN does not perform better than
ZAGCNN with respect to few- and zero-shot labels. The improvement in macro-F1
for ACNN is because it performs better on frequent labels. In general, infrequent
labels will have scores much less than 0.5. If we rank all labels (S ∪ F ∪ Z), we find
that few-shot labels only occur among the top 16 ranked labels (average number of
labels for MIMIC III) for 6% of the test documents that contain them. This result
suggests that many frequent irrelevant labels have higher scores than the correct
few-shot label.

Why do the rankings among few- and zero-shot labels matter if they are rarely
ranked above irrelevant frequent labels? If we can predict which instances contain
infrequent labels (novelty detection), then we can help human coders by providing
them with multiple recommendation lists — a list of frequent labels and a list of
infrequent/zero-shot labels. Also, while we would ideally want a single method that
performs best for both frequent and infrequent labels, currently we find that there
is a trade-off between them. Hence it may be reasonable to use different methods in
combination depending on label frequency.

5.4 Conclusion

In this chapter, we performed a fine-grained evaluation of few- and zero-shot label
learning in the large-scale multi-label setting. We also introduced a neural architec-
ture that incorporates label descriptors and the hierarchical structure of the label
spaces for few- and zero-shot prediction. For these infrequent labels, previous evalu-
ation methodologies do not provide a clear picture about what works. By evaluating
power-law datasets using a generalized zero-shot learning methodology, we provide
a staring point toward a better understanding. Our proposed architecture also pro-
vides large improvements on infrequent labels over state-of-the-art automatic medical
coding methods.

69



Chapter 6 Conclusion and Future Work

Coding EMRs with diagnosis and procedure codes is an indispensable task for billing,
secondary data analyses, and monitoring health trends. Both speed and accuracy of
coding are critical. While coding errors could lead to more patient-side financial
burden and misinterpretation of a patients well-being, timely coding is also needed
to avoid backlogs and additional costs for the healthcare facility. In this thesis, we
created several neural network-based methods that overcome various issues encoun-
tered when developing automated medical coding systems. In doing so, we provide
several contributions to the field with valuable insights for future work. The rest of
this chapter discusses our contributions, limitations, and directions for future work
in more detail.

6.1 Summary of Contributions

In this dissertation, we presented instantiations of neural networks for coding EMRs
with diagnosis and procedure codes. This research has resulted in several important
contributions. We list the main contributions below:

Transfer learning for medical coding. In Chapter 3, we performed a detailed
analysis of various transfer learning methods to understand what performs best on a
real-world EMR dataset. Furthermore, we introduced a simple, yet effective, transfer
learning method which overcomes issues of catastrophic forgetting. We show that
transfer learning can provide significant improvements to CNNs, especially when using
biomedical research articles indexed by the PubMed search engine as supplementary
training data.

Matching networks for EMR coding. Traditional CNNs are limited in terms of
how well they can perform on power-law datasets, such as the distribution shown
in Figure 1.2. In Chapter 4, we introduced a novel extension of matching networks
which combine the non-parametric properties of kNN with traditional parametric
CNNs. We find that by incorporating the features of similar instances, where the
similarity is learned by the neural network, then we can improve over prior state-of-
the-art medical coding methods on a variety of evaluation metrics.

Extracting unseen medical codes from EMRs. The shortcoming of many meth-
ods for automated medical coding is their inability to predict codes that never oc-

70



curred in the training dataset. Yet, because many diagnosis and procedure codes
may simply be rare, many hospitals may not have encountered them yet. Therefore,
many EMR datasets will be missing a lot of codes. However, when a new code is
encountered, we still want our models to have the ability to predict them. In Chap-
ter 5, we introduced a model which takes advantage of the structured nature of ICD
codes as well as code descriptors to predict unseen codes. Furthermore, we show that
if we use a generalized zero-shot learning evaluation methodology, then we can have
a clear understanding of how different methods perform on infrequent (few-shot) and
unseen (zero-shot) diagnosis and procedure codes.

6.2 Limitations and Directions for Future Work

There are limitations with the datasets used to evaluate our various methods. Like-
wise, there are limitations of the methods presented in this manuscript. Both the
MIMIC datsets and the UKY dataset are annotated with procedure and/or diagno-
sis codes from the ICD-9-CM vocabulary. However, in 2015, a federal mandate was
issued that requires healthcare facilities in the United States to use ICD-10 instead
of ICD-9. Because of this recent change, ICD-10 training data is limited. There-
fore, we use ICD-9 datasets for evaluation. Issues of data sparsity are exacerbated
in ICD-10. ICD-9-CM contains 3824 procedure codes and 14025 diagnosis codes.
ICD-10-CM contains 71924 procedure codes and 69823 diagnosis codes. So, for a
method to extend to ICD-10 codes it must overcome two obstacles. First, with over
140 thousand codes, methods which predict ICD-10-CM codes must scale to such a
large label space. Second, with so many labels, it is possible that a greater propor-
tion of codes will be infrequent or not occur at all in many datasets. If an unseen
code is not close to seen code in the ICD-10 hierarchy, then our method proposed in
Chapter 5 may not be able to predict it. Our semi-parametric matching network also
has its own limitations. Specifically, we proposed a simple method to sample support
set instances. The method involved repeated distance calculations on a large num-
ber training documents. However, as the training set grows, repeatedly performing
brute-force distance calculations will become inefficient.

We believe there are three important avenues for future work.

1. For medical coding, a wealth of unstructured domain expertise is available in
biomedical research articles indexed by PubMed. These articles are annotated
with medical subject headings (MeSH terms), which are organized in a hier-
archy. Relationships between MeSH terms and ICD-9 codes are available in
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Figure 6.1: Schematic for taking advantage of all the available structured and un-
structured information available in PubMed and UMLS.

ICD-9 Prediction
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UMLS
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and

Mult-task Learning

MeSH Prediction
EMR

Unified Medical Language System (UMLS (Bodenreider, 2004)). In Chapter 3,
we used transfer learning to try to take advantage of this information. However,
if we can take advantage of all this structured and unstructured information via
methods such as transfer multi-task learning, then we may be able to predict
infrequent labels better. We provide a basic schematic of this idea in Figure 6.1.
Furthermore, we only used a relatively small subset of PubMed articles in Chap-
ter 3, if we can develop more efficient training methods, then we can easily take
advantage of the 27 million available articles.

2. To predict exact code sets, in Chapters 3 and 4 we rely on simple thresholding
methods or a MetaLabeler (Tang et al., 2009). However, as discussed in Chap-
ter 5, these simple thresholding strategies are not sufficient for infrequent and
zero-shot codes. A promising area of research is to develop more sophisticated
thresholding strategies. Similarly, for our zero-shot medical coding method to
be useful for human coders, it is important to develop an accurate novelty de-
tector. We plan to study methods for determining if an instance contains an
infrequent label, and if it does, we want to determine how many infrequent
labels it should be annotated with. In essence, this is an extension of the Met-
aLabeler methodology. Novelty detection is also similar to open classification
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methods (Shu et al., 2017). Open classification involves dynamic open environ-
ments where some new/test documents may not belong to any of the training
classes. Open classification methods generally train a extra class which predicts
if an instance is not annotated with any of the training classes or not. If we
can predict if an instance contains infrequent labels, then we can recommended
few- and zero-shot labels to human annotators only when necessary. Likewise,
if we can develop better few- and zero-shot methods, then we can use different
thresholds for each group in combination with the novelty detector.

3. In this dissertation, we have focused on extracting diagnosis and procedure
codes from textual notes in EMRs. The process of coding EMRs with diagnosis
and procedure codes can be termed as multi-label classification. In our future
work, we can apply our methods to other large multi-label problems besides
EMR coding. Other large multi-label problems include classifying Wikipedia
articles (Partalas et al., 2015), patent classification (Tran and Kavuluru, 2017),
and annotating research articles with MeSH terms (Rios and Kavuluru, 2015a).
For example, the matching network described in Chapter 4 and the zero(few)-
shot method in Chapter 5 can be used for MeSH classification given PubMed
is a power-law dataset where many labels occur infrequently.

Copyright c⃝ Anthony Rios, 2018.
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Appendix A Graph Regularized Concept Vectors

Zero-shot learning algorithms require a feature vector for each label that we expect
to predict at test time. For some applications, attributes are available for each label
such that a feature vector can be formed (Xian et al., 2017). When such information
is unavailable, then pretrained word vectors of the label names have been used (Xian
et al., 2017). In this chapter, we describe GRALS (Rao et al., 2015), a method which
we use in Chapter 5 to create label vectors using pairwise relationships between labels.
Specifically, we make use the the hierarchical structure of the ICD-9-CM code set. A
snippet of the hierarchy is shown in Chapter 5, Figure 5.2.

Model Details In Figure A.1, we display a high-level overview of the GRALS
matrix factorization method. Intuitively, we factorize the document label matrix into
to smaller matricies: a document matrix, and a label matrix. The label matrix is
regularized such that labels that are connected in the hierarchy will have similar vector
representations. Unlike Rao et al. (2015), we assume all elements of the document
label matrix are observed.

Traditional factorization methods decompose Y into two matrices, U ∈ RN×k and
V ∈ RL×k by solvoing the following optimization problem

minimize
U,V

∥Y −UVT∥2F + λ(∥U∥2F + ∥V∥2F ) (A.1)

where λ controls the amount of regularization for both U and V. This factorization
has typically been used to reduce the label space such that methods can scale to ex-
treme labels spaces. The main assumption is that Y can be sufficiently approximated
by a low-rank matrix. Several solutions for factoring the document label matrix have
been explored by many researchers (Hsu et al., 2009; Yu et al., 2014; Xu et al., 2016).
Unfortunately, the low rank approximation of Y does not hold in the presence of
tail labels – infrequently occuring labels. Additionally, if a label never occurs in the
training dataset (i.e., the column in Y for that label is all zeros), then its label vector
will be random.

We assume there exists a graph G = (V,E) that encodes structured relationships
between labels. If we assume the matrix V encodes latent label representations, we
can assume that labels connected in G will have similar label representations. Even
if a ICD-9 code occurs infrequently, if either its parent or child occurs in the training
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Figure A.1: Visualization of the GRALS (Rao et al., 2015) matrix factorization
method.
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dataset, then a label vector for the infrequently occur label can still be reasonably
approximated. Therefore, we use the following graph regularizer∑

{i,j}∈E

Ei,j∥vi − vj∥2 = tr(VTLGV), (A.2)

where Ei,j is the edge weight between nodes (i, j) and LG = Q− E is the Laplacian
matrix where Q is the degree matrix of G (Belkin and Niyogi, 2003).

We can combine Equations A.1 and A.2 into the final optimization problem

minimize
U,V

∥Y −UVT∥2F + λ1∥U∥2F + λ2tr(VLGV
T ). (A.3)

To simplify the optimization procedure, and following the work proposed by Rao et
al., 2015, we ignore the L2 regularization term on V.

To optimize Equation A.3 we use an alternating minimization technique. First,
fixing V and optimizing U , then fixing U and optimizing V .
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Optimizing U. To optimize U, we first fix V which results in the following opti-
mization problem

minimize
U

∥Y −UVT∥2F + λ1∥U∥2F (A.4)

which simplifies to standard ridge regression problem. We solve Equation A.4 ana-
lytically as

U = YV(VTV + λ1I)
−1

where −1 represents the inverse of a matrix, and I is the identity matrix.

Optimizing V. Optimizing V is equivalent to

minimize
V

∥Y −UVT∥2F + λ2tr(VLGV
T ). (A.5)

Taking the gradient of f(V) with respect to V and setting it to 0 gives us

VUTU+ λ2LGV = YTU. (A.6)

based on the connections between Frobenius norm and trace functions and their
derivatives1. Equation A.6 can be solved for V analytically when U is fixed. However,
it would involve inverting an Lk × Lk matrix which is computationally expensive,
especially as the number of codes increases. Therefore, we follow Rao et al. (2015)
and use the conjugate gradient (CG) method to find a solution to Equation A.6. In
order to perform the CG method efficiently, we need to define an efficient method of
calculating a hessian-vector product. Because we use the squared loss, the hessian
vector product, ∇2f(s)s, can be calculated as

vec(SUTU+ λ1S+ λ2LGS)

where vec(S) = s is the vectoral representation for the matrix S obtained by con-
catenating its columns.

Implementation details. We using an alternating least squares (ALS) optimiza-
tion procedure to train this model. We repeat the ALS procedure for a total of 25
iterations and perform 10 CG iterations at each step. Both, λ1 and λG are found via
grid search and are set to 0.1 and 10.0 respectively. Finally, the vector dimensionality
k is set to 300.

1https://goo.gl/6Cs43b, https://goo.gl/sUUTTE
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Abbreviations

ACNN Attention Convolutional Neural Network. 57

ALS Alternating Least Squares. 76

AUCOC Area Under the Receiver Operating Characteristic Curve. 12, 52

AUPRC Area Under the Precision Recall Curve. 12, 52–54

CAC Computer Aided Coding system. 1

CF Convolutional Filter. 25

CG Conjugate Gradient. 76

CMC Computational Medicine Challenge. 9, 14

CNN Convolutional Neural Network. 5, 9, 44, 61

CONSE Convex Combination of Semantic Embeddings. 58

CUIs Concept Unique Identifiers. 23

CV Convolutional Layer. 35

DAG Directed Acyclic Graph. 59

EM Embedding Layer. 35

EMR Electronic Medical Record. 1

ESZSL Embarrassingly Simple Zero-shot Learning. 58, 66

GCNN Graph Convolutional Neural Network. 57

GRALS Graph Regularized Alternating Least Squares. 66, 74

HBR Hierarchical binary relevance. 59

HIPPA Health Insurance Portability and Accountability Act. 1

ICD International Classification of Diseases. 1
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ICD-10-CM The International Classification of Diseases, Tenth Revision, Clinical
Modification. 1

ICD-9-CM The International Classification of Diseases, Ninth Revision, Clinical
Modification. 3, 22, 74

ICU Intensive Care Unit. 51

kNN k Nearest Neighbors. 44

L2R Learning to Rank. 39

LEML Low rank Empirical risk minimization for Multi-Label Learning. 8

MeSH Medical Subject Headings. 31

MIMIC Medical Information Mart for Intensive Care. 1, 50, 63

MNB Multinomial Naive Bayes. 17

nDCG Normalized Discounted Cumulative Gain. 8

NERC Named Entity Recognition. 39

NLM National Library of Medicine. 17

NLP Natural Language Processing. 9

NN Neural Network. 13

P@k Precision at k. 12, 52, 65

R@k Recall at k. 13, 52, 65

RNN Recurrent Neural Network. 10

RTF Rich Text Format. 15

SKR Semantic Knowledge Representation. 16

SVM Support Vector Machine. 10

UKY University of Kentucky. 2
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UMLS Unified Medical Language System. 17, 22

W2V Word to Vector (Word2Vec). 66

WHO World Health Organization. 55

XML eXtensible Markup Language. 14

ZACNN Zero-shot Attention Convolutional Neural Network. 66

ZAGCNN Zero-shot Attention Graph Convolutional Neural Network. 66
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