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Abstract: The study of protective film formation on Mg alloys by exposure to sodium selenite
solutions was conducted. Anodic polarization studies, electrochemical impedance spectroscopy
studies, morphological analysis, and Energy-dispersive X-ray spectroscopy were performed on
AZ31 Mg alloy after coating treatment in different concentrations of sodium selenite. The corrosion
resistance was improved by around 5 times compared with control. Improved resistance to localized
corrosion was observed in the coatings treated by 5 mM or 10 mM sodium selenite. The protection
mechanism was ascribed to the transformation of selenite to insoluble selenium, the formation of
insoluble MgSeO3 hydrate, and polymerization of amorphous selenium.

Keywords: magnesium; corrosion; EIS; selenite; selenium

1. Introduction

Magnesium alloys have attracted attention due to its high strength and low density [1–3].
Then have been widely used in a number of industrial sectors such as biomedical devices,
the automotive industry, aerospace components, and in the field of electronics [1,4–7].
Unfortunately, Mg is a very active metal and vulnerable to corrosion attacks when exposed
to aqueous environments or humid air [1,8,9]. A number of approaches like alloying,
coating, surface modification, and chemical inhibition have been addressed in the R&D
community recently [1,2,10–18]. Among these approaches, the coating provides corrosion
protection without affecting mechanical properties the way alloying approaches do.

Chromate conversion coating (CCC) has been well studied and been widely recog-
nized as one of the most efficient coatings on magnesium [19–21]. The prominent chemical
mechanism of CCC on Mg alloys is the reduction of Cr2O7

2− to Cr3+. The additional
hydrolyzation and polymerization of Cr3+ will contribute to a Cr-hydroxide inorganic
polymer network that results in forming a film that increases corrosion resistance [20,22,23].
However, the toxicity of chromate greatly lessens its desirability as a corrosion protective
coating. With growing restrictions on chromate-bearing coating across the world, the
search for chromate-free low toxic systems for magnesium alloys arises [24].

Extensive research has been conducted in order to find a high-performance coating to
substitute the highly toxic chromate [25–27]. Common corrosion protective coatings for Mg
alloys include those based on fluoride, phosphate, calcium, and rare earth metals [27–31].
However, the study of corrosion protection by selenite is very limited. Bengough and
Whitby patented an acidic selenite-based coating bath to treat Mg alloys in the 1930s, and
this is believed to be the first published report of the corrosion protection capabilities
of selenite on magnesium [14,32]. Recently, an in-depth inhibition study of selenite on
AZ31 was performed by Feng et al. which indicated selenite having an excellent corrosion
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protection performance [14]. The success inhibition study cast a possible selenite protective
film study.

Compared to chromate, selenite is much less toxic. The medical study of the lethal
dose of sodium selenite (LD50) and selenium for rats is 7 mg Se/kg body wt. The non-metal
Se is believed as the reduction product of selenite having a LD50 of 6700 mg/kg for rats [33].
Additionally, based on the data from Occupational Safety and Health Administration
(OSHA), the industry exposure limit for NaCl, selenium and its compound, and chromate
are listed in Table 1 [34]. Although selenite poses some risks to human health, it appears to
be practical for use in industrial applications if its exposure rate is kept at a safe level and it
is much safer than chromate.

Table 1. OSHA industry exposure limit [34].

Chemicals Industry Exposure Limit (mg/m3)

NaCl 15
Selenium and its compound 0.2

Chromate 0.005

The study of protective film formation on Mg alloys by exposing to sodium selenite
solutions was investigated. It was an important first step in demonstrating an approach to
the future selenite-based conversion coating. The goal of this research was to study the
film protection efficiency and mechanism under immersion in sodium chloride solution.
The results and conclusion were important criteria to exam if it could be a good candi-
date chemical for the industrial coating to substitute the toxic chromate. In this study,
Electrochemical measurements were used to characterize the extent of corrosion properties,
scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDS) were
used to characterize the protective films.

2. Materials and Methods

A commercial AZ31 Mg alloy sheet (2.5–3.5 Al, 0.7–1.3 Zn, and 0.2 Mn wt.%) was used
for all experiments. The alloy sheet was cut into 40 mm× 40 mm pieces and polished using
silicon carbide (SiC) paper, with ethanol as a lubricant, starting from 600 and finishing
with 1200 grit. The polished samples were ultrasonically cleaned in ethanol and were then
dried using a compressed air gun. A selenite coating was formed by immersion in a bath
containing Na2SeO3 (1 mM to 10 mM) at room temperature for 2 h. During the coating
process, a stirrer bar was employed to remove the bubbles attached to the surface. All
coated samples were aged in air at room temperature for 24 h before electrochemical testing.

Electrochemical experiments were all conducted in a 0.1 M NaCl solution. A tradi-
tional three-electrode vertical cell was employed for all tests. An area of 1 cm2 (face up)
was exposed in the cell. The sample surface area to bath volume was 1 cm2 to 150 mL. A
platinum mesh was used as the counter electrode and a saturated calomel electrode (SCE)
was used as the reference electrode. Anodic potentiodynamic polarization curves were
measured from −0.05 V vs. open circuit potential (OCP) with a scan rate of 0.3 mV/s. To
allow for a stable OCP, a 1-h delay was used before the anodic potential scan. All experi-
ments were replicated a minimum of three times. Electrochemical impedance spectroscopy
(EIS) tests were conducted on 0.1 M NaCl after a 60 min exposure to a 0.1 M NaCl solution.
EIS data were collected at a rate of seven points per decade over a frequency range of
100 kHz to 10 mHz.

Scanning electron microscopy (SEM) was used to observe the corrosion morphology
of samples after 2 h of immersion in 5 mM selenite coating bath at OCP. The operation
voltage ranged from 5 kV to 20 kV, and the working distance was 10.0 mm. The chemical
composition of the protective film was studied by EDS obtained with an operating voltage
of 30 kV.
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3. Results
3.1. Electrochemical Testing

After immersion in different coating baths with different selenite concentrations, a
uniform pale grey film was formed on AZ31. In Figure 1, anodic polarization curves were
collected on coated samples immersed in 0.1 M NaCl solution. The scan was collected
after a 1-h OCP hold aiming to stabilize the corrosion potential. Corrosion current density
values were determined by extrapolation of the linear portion of the log-based cathodic
polarization curves to the intersection with corrosion potential values [14]. Breakdown
potential described the breakdown of the protective film leading to a sharp increase in cur-
rent density [35]. Values for the control experiment were approximately 9.0 × 10−6 A/cm2

for corrosion current density and −1.52 VSCE for corrosion potential. All of the anodic po-
larization curves with coating exhibited a shift towards lower current density. An increase
in the breakdown potential was observed in 5 mM and 10 mM samples.
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Figure 1. Polarization measurements were obtained in selenite coated samples or control without
coating in 0.1 M NaCl.

After at least three repeat experiments, data were summarized in Figure 2. Suppression
of anodic current depended on the concentration of selenite coating bath. As indicated in
Figure 2, all samples were within the range of 1.0 × 10−6 to 2.0 × 10−6 A/cm2. On average,
5 mM sample had the lowest value which indicated a better corrosion resistance. This
result was similar but not as good as chromate conversion coating under a similar testing
environment [20]. Only a small difference was observed in the corrosion potential values
for all selenite coating samples which were all at approximately −1.55 VSCE. The 5 mM
sample was slightly lower than the others, and an upward trend in breakdown potential
with increasing concentration was observed. The breakdown potential of the 1 mM sample
was the lowest with results close to the control. 5 mM and 10 mM samples behaved a
remarkable increase in breakdown potential.
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Figure 2. Concentration dependence of corrosion current density, breakdown potential, and corrosion
potential values obtained from results of polarization tests.

Figure 3a illustrates the EIS Nyquist plots collected from selenium coated AZ31
samples. The EIS Bode plot can be found in supplementary materials (Figures S1–S4).
AZ31 was exposed to different concentrations of selenite solutions and then measured in
a 0.1 M NaCl solution after a 1-h OCP hold. An equivalent circuit model for a defective
coating is shown in Figure 3b that was applied for the spectra fitting. In this model, the
bulk solution resistance is represented by Rs, Rp is the pore resistance representing the
ohmic resistance through the coating or the corrosion product layer. Qc is the reactance
associated with the coating or the corrosion product layer. Qdl represents the interfacial
reactance that develops due to charge separation at the interface between the metal and
the coating, corrosion product layer and penetrating solution, respectively [14]. The sum of
Rp and Rct represents the total resistance (Rtot) here. All Nyquist plots in Figure 3 showed
a two-time constant response. The total impedance increases significantly after applying
selenium coating on AZ31 from ~2 k to ~10 k Ohm. To facilitate comparison, a summarized
plot in Figure 3 shows the dependence of the total resistance measured by EIS on selenite
concentrations. On average, 5 mM shows the highest Rtot values among others. Compared
with control, it gives a 5 times increase in total resistance.

Combining the results from the potentiodynamic polarization curve and EIS, the
corrosion rate data were all summarized in Table 2. It can be concluded that the data
trend matches with each other. 5 mM selenite provides the best corrosion protective
effect, decreasing corrosion current density, and increasing polarization resistance. Overall,
these results show that while there is an increase of corrosion resistance at all selenite
concentrations examined, the most protective coatings are formed at the 5 millimolar
selenite concentration.

Table 2. Compare the results obtained from polarization data and EIS data.

Chemicals Corrosion Current Density (A/cm2) Rtot (Ω·cm2)

Control 4.57 × 10−6 1921
1 mM Selenite 1.51 × 10−6 ± 4.0 × 10−7 7420 ± 193
5 mM Selenite 1.18 × 10−6 ± 3.4 × 10−7 9907 ± 1480
10 mM Selenite 1.45 × 10−6 ± 0.6 × 10−7 8583 ± 940



Materials 2021, 14, 286 5 of 9Materials 2021, 14, x FOR PEER REVIEW 5 of 10 
 

 

0.0 2.0x103 4.0x103 6.0x103 8.0x103 1.0x104 1.2x104

0.0

2.0x103

4.0x103

6.0x103

8.0x103

1.0x104

1.2x104

0 2 4 6 8 10
0.0

2.0x103

4.0x103

6.0x103

8.0x103

1.0x104

1.2x104

 Control
 1 mM Selenite
 5 mM Selenite
 10 mM Selenite

Z'(Ohm cm2)

-Z
''(

O
hm

 c
m

2 )

 

  

 

 

 

R
to

t(O
hm

 c
m

2 )

Concentration of Sodium Selenite (mM)

Control

 

(a) 

 

(b) 

Figure 3. (a) Results of EIS testing in control without coating and various selenite coated ample in 
0.1 M NaCl, (b) an equivalent circuit model for a defective coating. 

Combining the results from the potentiodynamic polarization curve and EIS, the cor-
rosion rate data were all summarized in Table 2. It can be concluded that the data trend 
matches with each other. 5 mM selenite provides the best corrosion protective effect, de-
creasing corrosion current density, and increasing polarization resistance. Overall, these 
results show that while there is an increase of corrosion resistance at all selenite concen-
trations examined, the most protective coatings are formed at the 5 millimolar selenite 
concentration. 

Table 2. Compare the results obtained from polarization data and EIS data. 

Chemicals Corrosion Current Density (A/cm2) Rtot (Ω·cm2) 
Control 4.57  10−6 1921 

1 mM Selenite 1.51  10−6  4.0  10−7 7420  193 
5 mM Selenite 1.18  10−6  3.4  10−7 9907  1480 
10 mM Selenite 1.45  10−6  0.6  10−7 8583  940 

3.2. Surface Morphology and Characterization 

Figure 3. (a) Results of EIS testing in control without coating and various selenite coated ample in
0.1 M NaCl, (b) an equivalent circuit model for a defective coating.

3.2. Surface Morphology and Characterization

The observed protective coating morphology was nearly identical among 1 mM, 5 mM,
and 10 mM selenite immersion solution. The representative coating morphology formed
by the 2 h exposure in 5 mM selenite bath, represented in Figure 4, which was similar
to the previous inhibitor study and chromate conversion coating [14,20]. The shrinkage
cracking phenomenon is an artifact of surface film dehydration in the microscope column.
It indicates the surface films are likely a hydrated gel film that contains selenium in
it which is the genesis of corrosion resistance. This gel shares characteristic of other
important gel films such as chromate conversion coatings that form over a heterogeneous
microstructure [19–23]. Its formation is most likely triggered by the reductive alkaline
interfacial characteristics. The cracking on the surface was mostly in the same direction
which may relate to the sample polishing defects. Several small bright sites may indicate
the concentrated selenium element [14].

Energy-dispersive X-ray spectroscopy (EDS) provided an elemental analysis of protec-
tive coatings. As indicated in Figure 5, the coating consists mainly of Mg, Se, Al, and Mn.
The high local intensity of Al and Mn signals come from the Al-Mn intermetallic in this
study. These results indicate an intermixing of the Mg and Se through the protective coating.
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4. Discussion

Selenite coating gave AZ31 strong corrosion protection evident by the results from
the potentiodynamic polarization curve and EIS. The protection mechanism may relate
to the reduction of selenite [14,36,37]. The high reactivity of magnesium results in a
strong reducing agent in the aqueous environment when in contact with other reducible
chemicals. In Figure 5, the EDS results indicate an intermixing of the Mg and Se through
the coating. More evidence was indicated by the previous selenite inhibitor study. After
immersing AZ31 in a dilute selenite bath, non-metal Se was detected by X-ray photoelectron
spectroscopy (XPS) and Raman [14]. At the interface between AZ31 and coating bath, the
reduction of SeO3

2− will take place. The equilibrium reaction and equilibrium reduction
potential for selenite are [38]:

SeO3
2− + 6H+ + 4e−
 Se + 3H2O (1)

E0 = 0.875 − 0.0866pH + 0.0148log(SeO3
2−) (2)
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Based on Equation (2), the value of E0 associates with pH and selenite concentration.
In the alkaline environment and for dissolved selenium activities ranging from 10−6 to 1.0,
E0 varies from +0.27 to−0.40 VSHE [38]. At the same range, the E0 for magnesium reduction
ranges from −2.4 to −2.8 VSHE. Consequently, at the interface between Mg alloy substrate
and selenite coating bath, there is a strong driving force for the reduction of selenite.

Another possible insoluble product arises from the following reaction [38–42]:

Mg2+ + SeO3
2− + xH2O→MgSeO3 · xH2O (3)

Mg2+ will induce the precipitation of SeO3
2− to form insoluble MgSeO3 hydrate. This

reaction was further proved from lab-synthesizing. The white bulk MgSeO3 hydrate was
successfully made by titration of MgCl2 solution with Na2SeO3.

As a consequence, two insoluble products may form from the contact with Mg alloy
with selenite coating bath. In the coating formation process, those products may well
collaborate with the corrosion products of Mg contributing a hydrated gel protection film
on AZ31.

This protective hydrated gel film is similar and can be comparable to the chromate
coating [20]. For chromate coating, a reduction reaction is triggered by the reductive
alkaline Mg interface. Accompanied by further hydrolyzation and polymerization process,
a Cr-hydroxide inorganic polymer network is formed resulting in an excellent corrosion
protection effect [20,22,23]. The reduction of selenite is able to give a similar process that
relies on the unique polymerization of amorphous selenium. A selenium inorganic polymer
network that possibly results in the formation of films several hundred nanometers in
thickness [43–45]. Cooperating with other protection mechanisms, selenite has interesting
and promising effects on Mg alloys.

In this study, the concentration of selenite in the coating bath had a moderate effect on
the corrosion rate. The SEM morphology was nearly the same. The corrosion rate of all
tests, trough 1 mM to 10 mM, were all in the same magnitude. It was revealed here that
5 mM selenite bath has the best coating performance on average which gave a decrease
of corrosion current density and an increase of total resistance. Corrosion potentials were
all within the range of −1.55 ± 0.03 VSHE. Breakdown potential was dependent on the
concentration of selenite in the coating bath. Exposure in a higher concentration (5 mM
and 10 mM) versus a lower concentration (1 mM) resulted in an increment of 0.14 V of
breakdown potential. The breakdown potential and the corrosion potential may be assessed
as the resistance to localized corrosion, with larger values indicating a lower probability
of localized corrosion during free corrosion exposures [15]. Therefore, the coating in a
high selenite concentration bath benefited the resistance to localized corrosion. Lower
concentration did not have this property since the corrosion potential and breakdown
potential were all similar to control. The thickness of the coating may affect this property.
The thickness of Mg-Se mixed film relates to the bath concentration and proportional to
breakdown potential which has been proven in the previous study [14].

Compared with other conventional Mg coatings in a similar testing environment, the Se-
based protective film has better performance than vanadate, stannate and Ce3+, has similar
performance with PO4

3− and Ca2+, and can be comparable to chromate [12,15,19,26–31,46,47].
Since the study of the selenite-based protective film was blank before. This research casts a
possible selenite conversion coating study.

5. Conclusions

A variety of analytical methods were employed to study the performance and protec-
tion mechanism of selenite coating on Mg alloy AZ31.

1. The selenite protective film form on AZ31 upon exposure to selenite-bearing bath
provides an approximate 5 times increment of corrosion resistance compared with
control. A robust and apparently protective hydrated gel film was observed in SEM
images collected after coating. The selenite coating from a higher concentration (5 mM
and 10 mM) selenite decreases the likelihood of surface film breakdown.
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2. The protection mechanism of selenite coating was the interface reaction between
Mg and coating bath that results in the reduction of selenite, formation of MgSeO3
hydrate, and polymerization of amorphous selenium to generate a Mg-Se mixed
protection film.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-194
4/14/2/286/s1, Figure S1: Bode plot for control, Figure S2: Bode Plot for 1 mM Selenite, Figure S3:
Bode Plot for 5 mM Selenite, Figure S4: Bode Plot for 10 mM Selenite.
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