3-31-2017

Reactivity of Ketyl and Acetyl Radicals from Direct Solar Actinic Photolysis of Aqueous Pyruvic Acid

Alexis J. Eugene
University of Kentucky, alexis.eugene@uky.edu

Marcelo I. Guzman
University of Kentucky, marcelo.guzman@uky.edu

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/chemistry_facpub

Part of the [Analytical Chemistry Commons](https://uknowledge.uky.edu/analyticalchem), [Atmospheric Sciences Commons](https://uknowledge.uky.edu/chemicalphys), [Biochemistry Commons](https://uknowledge.uky.edu/biochem), [Environmental Chemistry Commons](https://uknowledge.uky.edu/envchem), [Food Chemistry Commons](https://uknowledge.uky.edu/foodchem), [Laboratory and Basic Science Research Commons](https://uknowledge.uky.edu/labs), [Organic Chemistry Commons](https://uknowledge.uky.edu/organicchem), and the [Physical Chemistry Commons](https://uknowledge.uky.edu/physchem)

Repository Citation

Eugene, Alexis J. and Guzman, Marcelo I., "Reactivity of Ketyl and Acetyl Radicals from Direct Solar Actinic Photolysis of Aqueous Pyruvic Acid" (2017). *Chemistry Faculty Publications*. 78.
https://uknowledge.uky.edu/chemistry_facpub/78

This Article is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Reactivity of Ketyl and Acetyl Radicals from Direct Solar Actinic Photolysis of Aqueous Pyruvic Acid

Alexis J. Eugene and Marcelo I. Guzman

Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States

ABSTRACT: The variable composition of secondary organic aerosols (SOA) contributes to the large uncertainty for predicting radiative forcing. A better understanding of the reaction mechanisms leading to aerosol formation such as for the photochemical reaction of aqueous pyruvic acid (PA) at \(\lambda \geq 305 \text{ nm} \) can contribute to constrain these uncertainties. Herein, the photochemistry of aqueous PA (5–300 mM) continuously sparged with air is re-examined in the laboratory under comparable irradiance at 38° N at noon on a summer day. Several analytical methods are employed to monitor the time series of the reaction, including (1) the derivatization of carbonyl (C=O) functional groups with 2,4-dinitrophenylhydrazine (DNPH), (2) the separation of photoproducts by ultrahigh pressure liquid chromatography (UHPLC) and ion chromatography (IC) coupled to mass spectrometry (MS), (3) high resolution MS, (4) the assignment of \(^1\)H NMR and \(^1^3\)C gCOSY spectroscopic features, and (5) quantitative \(^1\)H NMR. The primary photoproducts are 2,3-dimethyltartraric acid and unstable 2-(1-carboxy-1-hydroxyethoxy)-2-methyl-3-oxobutanoic acid, a polyfunctional \(\beta \)-ketocarboxylic acid with eight carbons (C8) that quickly decarboxylates into 2-hydroxy-2-((3-oxobutan-2-yloxy)propanoic acid. Kinetic isotope effect studies performed for the first time for this system reveal the existence of tunneling during the initial loss of PA. Thus, the KIEs support a mechanism initiated by photoinduced proton coupled electron transfer (PCET). Measured reaction rates at variable initial [PA]₀ were used to calculate the sum of the quantum yields for the products, which displays a hyperbolic dependence: \(\Phi_{\text{product}} = 1.99 \frac{[\text{PA}]_0}{(113.2 + [\text{PA}]_0)} \). The fast photochemical loss of aqueous PA with an estimated lifetime of 21.7 min is interpreted as a significant atmospheric sink for this species. The complexity of these aqueous phase pathways indicates that the solar photochemistry of an abundant \(\alpha \)-ketocarboxylic acid can activate chemical processes for SOA formation.

INTRODUCTION

Recently, the contribution of the aqueous phase photochemistry of \(\alpha \)-ketocarboxylic acids, e.g., glyoxylic acid and pyruvic acid (PA), to the formation of secondary organic aerosols (SOA) has been recognized as important.\(^1\)–\(^6\) The oxidation of aromatic compounds from combustion and biomass burning emissions produces a variety of low-molecular-weight organic acids, including PA.\(^9\)–\(^10\) Similarly, the photooxidation of isoprene results in the production of methacrolein in the gas phase,\(^12\)–\(^13\) which is further oxidized to form water-soluble methylglyoxal (Henry’s law constant \(K_H = 3.71 \times 10^3 \text{ M atm}^{-1}) \).\(^14\)–\(^15\) After methylglyoxal partitions to condensed phases, it is quickly hydrated (\(K_{\text{hydr}} = 2.7 \times 10^3 \)) and subsequently undergoes efficient oxidation to PA with a 92% yield.\(^17\)–\(^18\) Furthermore, out of 92 compounds studied, the direct photolysis of PA is predicted as the most favorable one to outcompete oxidation by HO\(^*\) in atmospheric waters.\(^19\)

Aqueous PA (\(K_{\text{eqd}} = 2.10 \)) at room temperature is available as 32% carbonyl (C=O) form in equilibrium with 68% of its hydrate, 2,2-dihydroxypropionic acid (DHPA). Thus, the strong \(n \rightarrow \pi^* \) absorption of PA at \(\lambda = 321 (\pm 20) \text{ nm} \) can induce sunlight-driven photochemistry, as shown in Scheme 1.\(^21\)

Upon photon absorption in water, the produced singlet excited state can undergo intersystem crossing, forming a triplet excited state with a quantum yield \(\Phi_T = 0.22 \) (for 0.10 M PA), and a lifetime \(\tau_{\text{trip}} = 74 \text{ ns} \).\(^22\) The unequivocal interpretation of the (1) electron paramagnetic resonance (EPR) spectra of irradiated aqueous PA glasses\(^23\) together with (2) a kinetic model and product analysis and (3) the use of TEMPO radical scavenger under a broad temperature range demonstrated that the dominant condensed phase photochemistry mechanism is promoted by proton-coupled electron transfer (PCET) between a triplet excited state pyruvic acid (PA\(^*\)) and a ground state PA molecule.\(^22\)–\(^24\) The resulting ketyl (K*) and acetyl (Y*) radicals are key in this process.\(^2\) In the presence of electron transfer from PA\(^*\) to O\(_2\), may occur, providing a source of superoxide and another pathway to form Y\(^*\).\(^25\)

The proposed reaction mechanism (Scheme 1) explains the large evolution of primary and secondary CO\(_2\) during and after irradiation, as well as the low-molecular-weight polyfunc-
tional major photoproducts in water and ice: 2,3-dimethyltartaric acid (DMTA) and 2-(3-oxobutan-2-yloxy)-2-hydroxypropionic acid (the oxo-C7 product).2,21 Conversely, the possibility that other minor photoproducts, particularly acetoin, acetic, and lactic acids, could be generated has recently been reinstated3,26 based on an alternative mechanism supported by two-dimensional nuclear magnetic resonance (NMR) spectroscopy for a mixture of products,26 via an α-acetolactic acid intermediate. Remarkably, this alternative reaction mechanism proceeds through the formation of K^* and Y^* radicals too,26 resulting in the same major photoproducts observed before.2,21 However, acetoin was previously confirmed to be an artifact resulting from the decomposition of the thermolabile oxo-C7 product at the high temperatures of gas chromatography analysis28 performed by Leermakers and Vesley.28 Moreover, we have recently reapproached the determination of acetoin as a photoprodut in the gas and liquid phase and quantitatively determined that its upper limit concentration would not exceed 0.006% of the total pyruvic acid converted.29 Additionally, arguments supporting acetoin production from an α-acetolactic acid intermediate26,27 can be discarded based on previous studies, which are summarized below.2,21 Continuous post-photoysis CO$_2$ evolution well below 4 °C, the minimum temperature for α-acetolactic acid decarboxylation,30 indicated that a different intermediate was the dominant primary photoproduct that undergoes β-ketocarboxylic acid decarboxylation.27,29 These decarboxylation tests were carefully performed by quickly starting with stable solutions of α-acetolactic acid kept at 1 °C, in the sealed photochemical reactor, which were acidified and rapidly thermalized to the desired final temperature of experiments, covering the range from -20 to 20 °C.2,21 Past experiments below 4 °C assured that α-acetolactic acid was available unaltered during the reaction,21 discarding any concern raised about the availability of thermally labile α-acetolactic acid in previous work.

In order to assess if results from different analytical techniques could support or contradict each other, affecting the interpretation of the photochemical mechanism,27,29 herein we reexamine the direct photolysis of aqueous PA under an environmentally relevant range of concentrations. Low levels of acetic acid are produced in the presence of air and quantified, while the photochemical production of acetoin and lactic acid is shown not to occur by a combination of NMR spectroscopy, liquid chromatography, and mass spectrometry (MS). The work identifies for the first time 2-(1-carboxy-1-hydroxyethoxy)-2-methyl-3-oxobutanoic acid (oxo-C$_8$ product) as the missing intermediate and precusor to the oxo-C$_7$ product after β-ketocarboxylic acid decarboxylation. The identification of this...
intermediate strongly supports a relevant bimolecular mechanism for the photochemistry of aqueous PA.3,21–25

\section*{EXPERIMENTAL SECTION}

\textbf{Preparation of Experiments.} All experiments were performed in duplicate. The concentration of PA was chosen based on its reported molar ratio to sulfate ranging from 2.5×10^{-4} to 10.7×10^{-3} in urban aerosols.31–33 For the range of relative humidity 50–90\%,34 water uptake by acidic aerosol is dominated by the deliquescence of ammonium bisulfate, which dictates that liquid particles have a ratio of ~ 0.6 g H$_2$O/1 g sulfate.15,36 This reasoning indicates that urban aerosols can be highly acidic and contain 5–250 mM PA. Undissociated PA is a remarkably photoreactive molecule in contrast to its conjugate base.28 Thus, fresh solutions of ca. 5, 25, 50, 75, and 100 mM pyruvic acid (Sigma-Aldrich, 98.5\%, distilled under vacuum) in ultrapure water (18.2 M\,Ω cm$^{-1}$, Elga Purelab Flex, Veolia) were used in typical experiments. The pH of the solutions was adjusted to 1.0 with hydrochloric acid (EMD, 38\%) as calibrated to pH = 1.0 and subjected to the same experimental conditions for comparison to the unlabeled isotopologue. The kinetic isotope effect (KIE) was studied for PA solutions in D$_2$O (Cambridge Isotope Laboratories, 99.9\%). Deuterated hydrochloric acid (DCl, Cambridge Isotope Laboratories, 35.6\% in D$_2$O, 99.8\% isotope enrichment) was used to adjust to pH = 1.0 (pH-meter reading of 0.6)38 during KIE experiments for comparison to the experiment in H$_2$O. Solutions were sparged at 30 mL min$^{-1}$ with air (Scott-Gross, UHP) for at least 30 min before irradiation of aliquots in 5 mm borosilicate NMR tubes (Wilmad) of optical path length $l = 0.424$ cm. Similarly, controls were performed employing 1 atm N$_2$(g) (Scott-Gross, UHP) and 1 atm O$_2$(g) (Scott-Gross, UHP) instead of air. Additional experiments under continuous sparging with 1 atm air or controls under 1 atm N$_2$(g) or 1 atm O$_2$(g) were also performed in a photoreactor (220 mL capacity) as described in our previous work.3

\textbf{Photochemical Conditions.} For irradiation, a 1 kW high-pressure Xe–Hg lamp was used3 in combination with (1) a water filter to remove infrared radiation, and (2) a cutoff filter at wavelength $\lambda \geq 305$ nm to provide near UV and visible radiation. Neutral density filters were employed to measure an attenuated (10.64\% of the total) incident photon rate, $I_0 = 1.14 \pm 0.05)$ \times 10$^{-5}$ Einstein L$^{-2}$ s$^{-1}$, by chemical actinometry with phenylglyoxylic acid.39 The irradiance utilized is comparable to that of Earth at 38° N at noon on a summer day. Reported quantum yields were obtained under light attenuation from initial reaction rates and the calculated absorbed photon rates for variable [PA].5

\textbf{Analysis of Products.} Analyses report the average value from two independent experiments with its corresponding standard deviation. All plots include error bars even though they could be smaller than the symbols shown. For product analysis in water, fresh samples were immediately analyzed to avoid further thermal processing. IC-MS, UHPLC-MS, high resolution MS (HRMS), and both 3H and 13C NMR were employed. The gas phase product analysis by Fourier transform infrared spectroscopy (FTIR) was described previously and the detailed peak assignment is available in Table S1.5 The percentage of PA lost during the reaction is referred to by the term conversion. In order to avoid secondary processes from generated photoproducts which could lead to identification of incorrect reaction mechanisms, the photochemical reaction is generally studied for an arbitrary conversion <30\%, unless noted otherwise.

\textbf{IC-Conductivity-MS Analysis.} Samples were analyzed by IC-MS using a Dionex ICS-2000 ion chromatograph (IonPack AS11-HC, 2 mm column) equipped with a conductivity detector and an electrospray ionization (ESI) MS (Thermo Scientific MSQ Plus).40 Anions were detected at exact mass-charge ratios (m/z) corresponding to the loss of a proton from the molecular weight of the parent molecule. Importantly, these chromatographic analyses indicated that PA needed to be distilled initially when received and periodically thereafter to remove traces of acetic (m/z 59.01), paraprylic (m/z 175.02), and zymonic acid (m/z 157.01) impurities (Figure S1).25 This form slowly over time even when stored in the dark below 8 °C and could interfere with analysis of the chemical mechanism. It is worth noting that in samples of pyruvic acid that have not been distilled, our IC-MS analysis allows for a separation of more than 10 min between peaks for the photoproduct oxo-C$_7$ and the impurity paraprylic acid, both with m/z 175.

\textbf{UHPLC-UV-MS Analysis.} For carbonyl analysis, samples were derivatized with 2,4-dinitrophenylhydrazine (DNPH, Sigma-Aldrich, 99.6\%) and separated on a Thermo Scientific Accela 1250 UHPLC equipped with tandem photodiode array (PDA) and ESI-MS (negative mode) detectors. The separation was adapted from previous work3 using the same C18 column (hypersil gold, 1.9 μm, 50 × 2.1 mm, Thermo Scientific) but using a water/methanol gradient for elution instead of water/acetonitrile. Additionally, the analysis of samples not treated with DNPH was performed (Figure S2) as described in the Supporting Information.

\textbf{HRMS.} Samples were analyzed in a quadrupole Orbitrap (Q Exactive, Thermo Scientific) mass spectrometer operating in ESI negative mode with an internal lock mass for m/z calibration. The following parameters were applied: sheath gas flow 10 L min$^{-1}$, capillary temperature of 320 °C, and a heater temperature of 30 °C. The AGC target was set to 3 \times 106 and the maximum injection time to 250 ms. Three Microscans were averaged per scan for high resolution measurements at 140 000 at m/z 255.2322. The spray voltage was operated at 3.2 kV. The S-lens RF level was set to 50.0 and the scan range to m/z 50–400. Samples were diluted 44-times in 1:1 acetonitrile:water for direct infusion (5 μL min$^{-1}$) into an ESI source.

\textbf{Quantitative Analysis.} Chromatographic quantification of products employed commercially available standards to prepare calibration curves. Levulinic (Sigma-Aldrich, 98.6\%) and (-)-tartaric (Sigma-Aldrich, 99.8\%) acids were used as proxies for candidate products that were not available commercially. Chromatographic relative response factors for the proxy molecules and the products were determined by quantitative NMR (qNMR) following literature procedures,41 for accurate quantification by IC and UHPLC.

\textbf{NMR Spectroscopy.} Samples for NMR were spiked with 10% v/v D$_2$O containing 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS, Aldrich, 97%) and gadolinium(III) chloride hexahydrate (Aldrich, 99.999%).3 1H NMR spectra were recorded at 400 MHz (Varian 400-MR), unless noted otherwise, utilizing a WET 1D water suppression pulse sequence. Acetic acid (Acros, 100\%) and acetoin (Aldrich,
99.1%) were quantified in 1H NMR samples using a four point standard addition. The method is capable of achieving highly accurate quantifications down to 3-times the lower concentration spiked,\(^4\) which covered the range 169–732 μM (\(r^2 = 0.986\)) and 64–1350 μM (\(r^2 = 0.999\)) for acetic acid and acetoin, respectively. More importantly, these spikes were also used for qualitative comparison of spectral features along with a spike of lactic acid (Sigma-Aldrich, 88.6% in water).\(^1\) H NMR predictions were performed in NMRpredict (Modgraph Consultants Ltd.) integrated into MestReNova software, using the BEST algorithm.\(^4\) The algorithm uses a combination of NMR tables and parametrized functional groups to calculate probable chemical shifts. For experiments with \(^13\)C labeled PA, proton decoupled \(^13\)C gradient correlation spectroscopy (gCOSY NMR)\(^4\) was recorded at 150 MHz (Varian Inova A5600). The latter instrument was also employed for the assignment of 1H NMR spectra at 600 MHz.

RESULTS AND DISCUSSION

IC-MS Analysis

Figure 1A shows the IC chromatograms for the time series of an experiment with 113.7 mM PA irradiated at \(λ ≥ 305\) nm. The extracted ion chromatograms (EIC) of 113.7 mM pyruvic acid (PA) photolyzed at \(λ ≥ 305\) nm, without neutral density filters, for (red) 0; (blue) 1; (green) 3; (purple) 5; and (gray) 10 min. Leucinonic and tartaric acid standards are displayed in a black trace for reference. (B) Time series for (gray circle) PA loss at \(m/z\) 87.01, and formation of (red star) the oxo-C⁷ product in Figure 1A, which is the intermediate undergoing thermal \(β\)-ketocarboxylic acid decarboxylation into the oxo-C⁸ product,\(^2\) strongly supports the mechanism proposed in Scheme 1.

The oxo-C⁸ product and DMTA display two distinct chromatographic peaks in both the conductivity and the EIC chromatograms, which show the presence of at least two stereoisomers of each species. Given the radical mechanism proposed in Scheme 1 and the presence of two stereocenters in each product, four stereoisomers of each product should theoretically be formed with equal probability. DMTA is a meso compound, reducing the number of distinct stereoisomers to only three. Thus, one chromatographic peak at 17.07 min is proposed to arise from meso-2,3-dimethyltartaric acid and the other at 17.61 min to inseparable (R,R) and (S,S) enantiomers. Close inspection of the conductive peak for the oxo-C⁷ product indicates a small shoulder at the top left-hand side, suggesting that two coeluting peaks from diastereomers are possible.

Figure 1B displays the time series of product formation and the loss of PA extracted from the data in Figure 1A. The first-order decay of PA fits an exponential function with a coefficient of correlation \(r^2 = 0.994\), and rate constant, \(k_{PA} = 3.28 \times 10^{-3}\) s⁻¹. Similarly, the concentrations of DMTA and the oxo-C⁷ and oxo-C⁸ products increase exponentially according to the equation

\[
[\text{product}] = [\text{product}]_0 (1 - e^{-kt})
\]

where the time \(t\) is given in min, the [product]₀ is a constant (Table 1) that represents the asymptotic upper limit that would be reached as \(t \rightarrow \infty\), and \(k_t\) is the formation rate constant. All nonlinear fittings in Figure 1B have \(r^2 ≥ 0.995\). Although the

![Figure 1](image)

Table 1. Exponential Growth Parameters for Products in Figure 1 and KIE in D₂O

<table>
<thead>
<tr>
<th>product</th>
<th>([\text{product}]_0) (mM)</th>
<th>(k_t) (s⁻¹)</th>
<th>KIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3-Dimethyl tartaric acid</td>
<td>12.79</td>
<td>1.18 \times 10⁻²</td>
<td>5.61 \times 10¹</td>
</tr>
<tr>
<td>Oxo-C⁷</td>
<td>21.35</td>
<td>1.32 \times 10⁻²</td>
<td>7.33 \times 10²</td>
</tr>
<tr>
<td>Oxo-C⁸</td>
<td>2.08</td>
<td>2.22 \times 10⁻²</td>
<td>1.70 \times 10³</td>
</tr>
</tbody>
</table>
precursor oxo-C₈ product is unstable, its expected behavior follows the trend for the daughter oxo-C₇ species.

Experiments with ¹³C Labeled PA and KIE in D₂O. Further confirmation of the structure of products was provided by photolyzing ¹³C labeled PA solutions. Figure 2A shows the total conductivity chromatograms and EIC for the major species observed in this experiment. As expected, the anion for ¹³C labeled PA is observed at m/z 90.02 (Figure 2A), 3 amu heavier than for unlabeled PA. The −COOH group for one of the major products of the reaction appears at m/z 182.08 (Figure 2).

This seven carbon species is 7 amu heavier than the unlabeled oxo-C₇ product observed in Figure 1. The other major product in Figure 2A is observed as two peaks with m/z 183.06, 6 amu higher than the proposed six carbon structure for DMTA. Finally, the intermediate oxo-C₇ product is observed at the predictable m/z 227.08 (Figure 2), 8 amu heavier than the unlabeled product in Figure 1.

Figure 2B shows the exponential decay of ¹³C labeled PA and exponential rise analogous to the unlabeled products in Figure 1B. When comparing the data in Figures 2B to 1B, an isotope effect is apparent from the lower [products] in the experiment with ¹³C labeled PA. Additional experiments (Figure S3, Supporting Information) explored the effect of substituting H₂O by D₂O in experiments aimed at determining global KIE. The initial slopes in Figure 1B and Figure S3 (Supporting Information) are used to calculate the KIE for product formation displayed in Table 1. The reported KIE are defined for first order processes by the ratio of initial formation rate constants kᵢ for experiments in H₂O and D₂O at pH or pD 1.0 under the full photon rate:

\[
\text{KIE} = \frac{k_{i,H_2O}}{k_{i,D_2O}}
\]

The KIE in eq 2 encompasses all the steps required to form the products, including bond breaking and bond making. From the viewpoint of pathways undergoing KIE, the reaction for the loss of PA must be considered as going through a transition state en route to producing the radicals K⁺ and X⁻. This transition state is stabilized differently by H₂O and D₂O leading to a primary KIE. A purely primary KIE ~ 6.5 value for ¹H/²H should be expected at 298 K for homolysis generating two radicals, such as in the unimolecular Norrish type I cleavage of PA in the gas phase. However, the initial loss of PA showing a large KIE, PA = 9.09, supports a mechanism involving PCET, which is equivalent to H atom transfer. In addition, the large KIE, PA disfavors the possibility of a nonlinear transition state as would occur for hydrogen abstraction from the methyl group of PA implied in other mechanisms. This bimolecular process is energetically favorable due to energy released during the decarboxylation of X⁺. The large KIE, PA should involve tunneling, i.e., as typical for acid–base reactions. In other words, we propose the large KIE, PA observed is expected when the acid strengths for ground state PA and the triplet excited state are comparable. Perhaps, if the rate-determining step would have proceeded through an activated complex with bent bonds, e.g., for a transition state displaying a considerable hybridization change to a Csp³ centered radical for H atom abstraction from the terminal methyl group with a Csp³, a smaller KIE should have been measured.

The dramatically large KIE values for the generation of DMTA and the oxo-C₇ product (Table 1) reveal tunneling also occurs for the conversion of radical intermediates and ground state PA into the final products. The penetration of the wave function of the precursor species through the barrier for the reaction occurs more commonly for molecules with H atoms than for the deuterated version. Tunneling is typically associated with proton transfer or H-transfer or electron transfer, all processes that depend exponentially on the mass of the isotope, and thus decrease when transferring from H₂O to D₂O. Remarkably, the KIE for the generation of the oxo-C₇ product (Table 1) should also involve tunneling for the β-ketocarboxylic acid decarboxylation taking place with intramolecular H-transfer. These KIE for products have larger activation energy differences between the compounds containing ¹H and ³H than their differences in zero point energy.

HRMS. High resolution mass spectrometry provided confirmation of the molecular formulas that were proposed above. The full HRMS spectrum of a 100.0 mM pyruvic acid solution photolyzed to 20% conversion is shown in Figure 3. Both pyruvic acid (m/z 87.0083) and its hydrate (DHPA, m/z 105.0192) were observed by this method.
The Journal of Physical Chemistry A

Table 2 lists the observed and theoretical m/z values for pyruvic acid and each of the products detected as well as the mass defect for the predicted formula in the anion identified \(\{\text{M-H}\}^-\). There is an excellent agreement between the m/z detected and the theoretical values (Table 2). It was confirmed that acetoin at m/z 87.0452 (easily distinguished from PA) and lactic acid (m/z 89.0244) were absent in the spectrum of the photolysis products. The analysis of the fragmentation patterns by tandem mass spectrometry (MS/MS) for the species in Table 2 is presented in the Supporting Information (Figure S4).

Two Dimensional NMR. Figure 4 shows the 13C gCOSY spectrum for the photolysis of 97.88 mM 13C labeled PA for a 50.2% conversion, due to the low sensitivity of the NMR experiment. Additional one-dimensional 13C NMR spectra for a 20% conversion is used to guide the assignment of the major product peaks in the spectrum for 50% conversion. Thus, Figure 4 is used with confidence for characterizing the major photoproducts, despite any possible contribution of secondary products to the spectrum. The corresponding one-dimensional 13C NMR spectrum for the same sample is shown in Figure S5 with the peak assignment in Table S2 (Supporting Information).

Table 2. High Resolution MS Analysis for 100.0 mM PA Photolyzed to a 20% Conversion

<table>
<thead>
<tr>
<th>species</th>
<th>observed (m/z)</th>
<th>theoretical (m/z)</th>
<th>mass defect (ppm)</th>
<th>[M-H]$^-$ formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>87.0083</td>
<td>87.0088</td>
<td>5.74</td>
<td>C${3}$H${4}$O$_{3}$ $^-$</td>
</tr>
<tr>
<td>DHPA</td>
<td>105.0192</td>
<td>105.0193</td>
<td>0.95</td>
<td>C${3}$H${4}$O$_{3}$ $^-$</td>
</tr>
<tr>
<td>oxo-C$_7$ product</td>
<td>175.0605</td>
<td>175.0612</td>
<td>4.00</td>
<td>C${4}$H${5}$O$_{4}$ $^-$</td>
</tr>
<tr>
<td>oxo-C$_7$ product</td>
<td>219.0496</td>
<td>219.0510</td>
<td>6.39</td>
<td>C${5}$H${6}$O$_{5}$ $^-$</td>
</tr>
<tr>
<td>DMTA</td>
<td>177.0399</td>
<td>177.0405</td>
<td>3.39</td>
<td>C${4}$H${5}$O$_{4}$ $^-$</td>
</tr>
<tr>
<td>acetic acid</td>
<td>59.0132</td>
<td>59.0138</td>
<td>10.16</td>
<td>C${2}$H${3}$O$_{2}$ $^-$</td>
</tr>
</tbody>
</table>

In theory, the 13C COSY experiment shows cross-peaks between carbons that are 1 to 3 bonds apart in the molecule, but in practice, the most intense signals come from 1 bond couplings. As expected, the most intense cross-peaks in Figure 4 are from the unreacted PA, presenting 13C resonances for the carbonyl and hydrate forms at 201.00; 177.82; 167.39; 95.39; 28.40; and 27.64 ppm (see Figure S5, Supporting Information). The diagonal peaks for the keto and hydrate forms of PA signals are respectively labeled with the letters P and Q in Figure 4. The new signals are apparent in the $-\text{C-O}$ (40–80 ppm), $-\text{COOH}$ (155–185 ppm), and $-\text{C}=\text{O}$ (185–220) regions, which is consistent with the functional groups present in the products depicted in Scheme 1.

The carbon backbone of the major oxo-C$_7$ product in the mixture can be mapped out by the cross-peaks labeled A–G in blue in Figure 4. The most intense carbonyl cross-peak occurs at ~220 ppm and is therefore assigned to the oxo-C$_7$ product. Figure 4 shows that this carbonyl is coupled to a $-\text{CH}_3$ group at ~29 ppm (cross-peak A) and a $-\text{C}=\text{O}$ carbon (~86 ppm, cross-peak B). This $-\text{C}=\text{O}$ carbon (~86 ppm) is in turn coupled to another $-\text{C}=\text{O}$ carbon (~81 ppm, cross-peak C) and to a different $-\text{CH}_3$ group at 23.18 ppm (cross-peak D). Finally, this second $-\text{C}=\text{O}$ carbon (~81 ppm) is coupled to both a third $-\text{CH}_3$ group at 23.06 ppm (cross-peak E) and a $-\text{COOH}$ at ~180 ppm (cross-peak F). A coupling between the $-\text{COOH}$ carbon and the last $-\text{CH}_3$ carbon (23.04 ppm) is also observable in Figure 4 (cross-peak G). Assembling each of these carbon atoms by their couplings provides an unambiguous structure consistent with the oxo-C$_7$ product in Scheme 1, which is the most abundant photoproduce in the chromatographic analyses. It is worth noting that the $-\text{C}=\text{O}$ signals could originate from ether or alcohol carbons. However, the lack of $-\text{C}=\text{O}$ coupling between the $-\text{COOH}$ (~180 ppm) and the farther $-\text{C}=\text{O}$ group (~86 ppm) indicates that an oxygen linkage must exist between the two $-\text{C}=\text{O}$ carbons. In consequence, the $-\text{COOH}$ carbon is three bonds away from the farther $-\text{C}=\text{O}$ carbon, rather than only two bonds, which diminishes the likelihood of observing the coupling under these conditions. Indeed, the previously registered gas phase FTIR spectrum of products covered by water signals~29 must be related to this abundant species and is assigned here to the oxo-C$_7$ product (Table S1, Supporting Information).

The three unique carbons in DMTA can be observed in the one-dimensional 13C NMR spectrum (Figure S5, Supporting Information) to occur at chemical shifts of 179.14, 84.34, and 21.77 ppm. Given the weaker signals expected for the lower [DMTA] in the mixture, cross-peaks are not seen for this species or the oxo-C$_8$ product in the gCOSY spectrum.

Analysis of Carboxyls Treated with DNPH. Additional confirmation of the structures of the oxo-C$_7$ product and dimethyltartaric acid is provided by UHPLC-MS analysis of reaction mixtures after derivatization with DNPH. The derivatization of mixtures with DNPH is the preferred analytical method for the separation and identification of carboxyls. Our previous work established that the mass spectrometer can easily detect the addition of 180.03 amu to the m/z value of the underivatized carbonyl containing species.~29 This mass addition corresponds to C=O group condensation with a bulky DNPH molecule with loss of water. Figure S5A shows the EIC from UHPLC-MS analysis of the E and Z hydrazone isomers of PA at m/z 267.04. The hydrazine for acetoin would appear at m/z 267.07. However, spike additions of acetoin to final concentrations of 10.0 μM before...
derivatization confirm that this molecule is absent in the unspiked samples from photolysis. The EIC for m/z 355.09 in Figure 5B corresponds to the hydrazone of the oxo-C7 product, while the absence of any peak at m/z 357.07 (see inset) confirms that DMTA does not possess a derivatizable carbonyl group.

The derivatization with DNPH performed on the photolyzed 13C labeled PA is presented in Figure S6 (Supporting Information). With three heavy carbons, the E and Z hydrazones of 13C labeled PA are observed at m/z 270.05, while the hydrazone for acetaldehyde (4 × 13C) should be observed at m/z 271.09. The 13C labeled PA hydrazones with an extra 13C from the natural abundance enrichment expected for DNPH should be observed at m/z 271.05, which would be indistinguishable from acetaldehyde. However, the percentage ratio of integrating the ion counts (I_271/I_270) at m/z 271.05 and 270.05 for these perfectly coeluting chromatographic peaks, R_{271/270} = 100 \times \frac{\int_{271.05}^{271.05} dt}{\int_{270.05}^{270.05} dt}, in Figure S6 (Supporting Information) yields an average of 1.54 (±0.01)% before and after 10 min of irradiation. Thus, any contribution to the peak with m/z 271.05 must be due to the natural isotopic abundance contribution of DNPH to the 13C labeled PA hydrazone, which is predicted to be 1.54%, matching R_{271/270}. Finally, a trace production of acetaldehyde at m/z 225.05 (Figure S6, Supporting Information) becomes evident during UHPLC-MS analysis of hydrazones from 13C labeled PA. Because acetaldehyde is a common ambient air pollutant, the solution with DNPH can easily scavenge 12C acetaldehyde forming its hydrazone. Thus, the experiment detecting its 13C isotopologue during the photolysis of 13C PA provides additional support for the photochemical production of acetaldehyde. The presence of a trace of acetaldehyde confirms that Y* is an intermediate radical in the mechanism.

Considering a photochemical mechanism for conversion below 30% in Figure 1, the average concentration ratio [oxo-C7]/[oxo-C8] 3.4 can be rationalized to arise from the decarboxylation of the unstable β-ketocarboxylic acid oxo-C8 intermediate into the oxo-C7 product. Furthermore, the derivatization conditions favor the decarboxylative loss of any remaining oxo-C8 product. Figure 5C shows how the hydrazones of PA and the oxo-C7 product decay and grow, respectively, in general agreement with Figure 1B.

Although acetaldehyde was proposed as a major photoproduc in one of the first studies of PA direct photolysis in water, the chirp is later explained that under high temperature GC conditions the oxo-C7 and oxo-C8 products decompose into acetaldehyde. Additionally, we have established an upper limit for the yield of acetaldehyde photoproduction, if any could be detected, to be below 0.006% or at the trace level. Despite the chromatographic results in Figure 4 that verify our previous results showing a lack of acetaldehyde in the photoproduction mixture, it is critical to further explore this issue using the NMR-based techniques used to support its presence. Below, we use the method of standard addition to accurately reassess the spectroscopic features in the 1H NMR spectrum of the photolysis mixture inaccurately attributed to acetaldehyde.

Qualitative and Quantitative 1H NMR Analysis. In order to quantify each product by 1H NMR, the entire spectrum must be first assigned. While the chromatographic analysis indicates that only three products largely dominate the composition of the reaction mixture, the 1H NMR spectrum is much more complex due to the presence of diastereomers for each product, making the assignment of all resonances difficult. In order to facilitate the assignment of the spectrum, a photolysis with more concentrated reagent was performed for air saturated PA solution of initial concentration [PA]_0 = 322 mM at pH = 1 up to a 20.3% conversion. The assignment of this 600 MHz 1H NMR spectrum is available in Table S3 (Supporting Information). Figure 6 shows 1H NMR spectra for an experiment with a solution of 102.4 mM PA before irradiation (panel A), after photolysis for a 15% conversion (panel B), the same post-photolysis sample in panel B after spiking to [acetoin]_frac{final} = 4.06 mM (panel C). Figure 6D presents a close-up view from the regions where acetoin signals should be observed. An acetoin standard in D2O referenced to DSS displays three signals: δ
1.37 (δ, J = 6.9 Hz, 3 H), 2.21 (s, 3 H), 4.42 (q, 1 H). Figure 6D clearly shows that while δ 2.21 (s) matches quite well with a photoprodut peak, the doublet centered at δ 1.37 (d) does not, implying that different species are the main contributors to both associated signals under consideration.

Hypothetically, the maximum concentration of acetoin would be constrained by the area from the singlet at δ 2.21, which yields 238 μM for 15.4% PA conversion. Given the much lower threshold for the concentration of acetoin set chromatographically, it is unlikely that the small peak at δ 2.21 could be due to acetoin. Instead, the resonance at 2.21 ppm can be explained by a methyl group neighboring the C=O in the oxo-C₈ product (see structure in Scheme 1 with the −CH₃ group in pink font).

Computational predictions of the ¹H NMR spectrum for the oxo-C₈ product place the analogous −CH₃ singlet at δ 2.16 near the signal of interest. The very intense singlet for the −CH₃ group bound to the C=O of the abundant oxo-C₇ product is found at δ 2.31, which cannot be confused with the intermediate species observed in the spectrum at δ 2.21. Additionally, we must note that the oxo-C₆ and oxo-C₇ products correctly account for the other ¹H NMR peaks at 2.21 (s) and 3 times, is that it can be used to quantify the perfectly overlapping oxo-C₈ photoprodut by qNMR (Figure 6E), including the low area under both associated signals under consideration.

The ¹H NMR study is also capable of evaluating whether acetic acid is a minor photoprodut or not, as proposed elsewhere. This analysis has direct implications for assessing if lactic acid is present and at a relevant concentration in the presence of dissolved O₂.3 Thus, the quantitation of all species by qNMR (Figure 6E), including the low concentration of acetic acid, if any is produced, making the simple comparison at 3 min of irradiation, corresponding to a λ of 1.40 to 1.44 of the photolyzed mixture do not overlap well with the signal in lactic acid, the area for the photoproducts is also considerably larger than acceptable for the stoichiometric constraint for lactic acid discussed already. The previous observation is consistent with the lack of lactic acid peaks during IC-conductivity-MS analysis.

Reaction Mechanism with Formation of the Oxo-C₈ Intermediate. The data presented above showing an oxo-C₈ photoprodut for the first time provides strong support for the mechanism in Scheme 1. Briefly, the photochemical process begins with a production of triplet excited state PA* in overall reaction R1a + R1b (Scheme 1), which could be thermally lost via reaction R2. PA* undergoes proton-coupled electron transfer (PCET) with a ground state molecule in concerted reaction R3 to yield the ketyl radical K* and an acyloxy radical X*. The rapid decompostion of X* releases CO₂(g) and the acetyl radical Y* in a few picoseconds via reaction R4a,b, which gets hydrated via reaction R4b with a rate constant k₄b = 2 × 10⁴ s⁻¹. In the presence of dissolved O₂, the strongly reducing Y* radical generates acetic acid and another equivalent of HO₂* in the sequence of reactions R5a, R5b with an overall rate constant k₅ = 7.7 × 10⁻³ M⁻¹ s⁻¹. Alternatively Y* can reduce the abundant ground state PA stoichiometrically producing K* and acetic acid. The recombination of two K* radicals in reaction R6 forming DMTA, a major product, proceeds with a rate constant k₆ ≈ 2 × 10⁴ M⁻¹ s⁻¹. Reaction R7 also competes for the fate of K* radicals by generating a peroxy radical KO₂*, in the presence of dissolved O₂, the rate constant of which is unknown at pH 1 but has been reported at pH 7: k₇ = 2.6 × 10⁸ M⁻¹ s⁻¹. The radical KO₂* participates in a null cycle by decomposing back into PA and hydroperoxyl radical, HO₂*, in reaction R7b.

The high reactivity of the photogenerated radicals tends to deplete O₂(aq) from the solution quickly. However, up to 90% regeneration of PA was observed via reaction R7 that traps K* in the presence of [O₂(aq)] = 32 μM from continuous air sparging (as monitored before for glyoxylic acid) compared to anoxic conditions. While the recycling of K* proceeds, Y* becomes more available for the generation of acetic acid. Similarly, the respective generation of DMTA, the oxo-C₇ product, and the oxo-C₈ product still proceeds in the presence of air, although slower by 37, 285, and 94 times than under anoxic conditions. Based on Scheme 1, the initial photolytic loss rate R₀ = 1.46 × 10⁻⁶ M s⁻¹ for 100 mM PA (Figure S9, Supporting Information) produces stoichiometric amounts of K* and Y* radicals. Under nondepleted O₂ conditions, the measured initial production rates can be used to estimate [K*] = √[(rateR₀ - rateR₄ - rateR₅)/k₆] = 2.36 × 10⁻⁸ M. The previous value needs to be multiplied by 9.42 (see the regeneration of PA indicated above under nondepleted O₂(aq) conditions) to estimate the total steady state [K*]ₜₐ = 1.71 × 10⁻⁷ M. The competitive pathway for trapping K* in the presence of [O₂(aq)] = 130 μM proceeds with an 80 times drop in oxo-C₇ production. Therefore, the ratio of reaction rates from oxygen scavenging of K* with rate constant kₖ₅ to the production of the oxo-C₇ product must be (d[KO₂*/dt]) / (d[oxo-C₇ product]/dt) = k₅/k₆ [K*]ₜₐO₂ (O₂(aq))/([K*]₂ssO₂) = 79. Thus, by solving for k₅ in eq 3

$$k₅ = \frac{79k₆[K*]ₜₐO₂}{[O₂(aq)]}$$

a rough estimate of k₅ = 1.22 × 10⁸ M⁻¹ s⁻¹ is obtained at pH 1. Therefore, the advanced quantitation methods presented here allow one to estimate a reasonable value as compared to similar radicals that scavenge O₂(aq) with a rate constant k₅ ≈ 1 × 10⁹ M⁻¹ s⁻¹. Future efforts should experimentally determine k₅.

The strong oxidant HO₂* from reactions such as R7b can self-disproportionate to form H₂O₂ and O₂ in the absence of transition metal ions. The produced H₂O₂ can be photolyzed at λ ≤ 365 nm, providing a potential source of HO₂*. Acetic acid can also result from the reaction of PA + HO₂* with second
order rate constant $k_{PA+HO^*} = 3.2 \times 10^8$ M$^{-1}$ s$^{-1}$, via an alkoxy radical intermediate. In addition, the reaction of PA with HO* has been proposed to generate acetic, formic, glyoxylic, and oxalic acids. However, only acetic acid is observed here, indicating that oxidation by HO* generated in situ is not a competitive pathway during direct photolysis. Ultimately, the fate of any produced HO$_2^*$ would be to undergo decomposition into O$_2$ and H$_2$O. A reaction of increasing importance at higher PA concentrations is the addition of K* to the C=O of a neutral PA molecule (reaction R8a), forming the radical C$. Finally, the radicals C$ and Y$ must then combine to form the oxo-C$_8$ photoprodut via reaction R8b, which undergoes a typical β-ketocarboxylic acid decarboxylation with rate constant $k_9 = 1.21 \times 10^{-3}$ s$^{-1}$. Into the oxo-C$_7$ product in reaction R9. Previously proposed pathways to acetoin and lactic acid production are not included in this scheme because of the demonstrated lack of evidence for their formation.

Evaluation of the Reaction Mechanism from Measured Quantum Yields. The steady state concentration of excited state pyruvic acid, [PA*_ss], can be inferred by balancing out its initial rate of production with the absorbed photon rate from eq 5.

$$[PA^*_ss] = \frac{k_{ho} [PA]_0}{k_2 + k_3 [PA]_0}$$

Figure S8 (Supporting Information) shows that the photolytic rate in eq 4, $k_{ho} [PA]_0$, depends linearly on the photon absorption by aqueous PA solution (I_a) with a slope of ~ 2. Indeed, Figure S8 indicates that $\Phi_{PA} \approx 2$ or that each PA* produced per photon absorbed consumes an additional molecule of PA in a highly efficient bimolecular process. The Φ_{PA} should not be confused with the photodecarboxylation quantum yield of aqueous PA, $\Phi_{CO_2} = 0.78$. While Φ_{CO_2} accounts for $\sim 50\%$ of the evolution of CO$_2$(g) from the primary decomposition of X^* per photon absorbed, the secondary decarboxylation of the oxo-C$_4$ product must contribute the other $\sim 28\%$ of this gas. Thus, the missing $\sim 22\%$ of produced K* radical must recombine to produce DMTA, which does not emit CO$_2$(g). For experiments with [PA]$_0 \geq 4$ mM, I_a is given by:

$$I_a = I_0 (1 - e^{-2.303 \epsilon [PA]_0})$$

I_a only varies with [PA]$_0$ because the incident photon rate, $I_0 = 1.14 \times 10^{15}$ M s$^{-1}$, the molar absorptivity of PA ($\epsilon = 11.3$ M$^{-1}$ cm$^{-1}$) and the optical path length of the NMR tube ($I = 0.424$ cm) are constants. Therefore, by substituting $k_{ho} [PA]_0 \approx 2 I_a$ in eq 3:

$$[PA^*_ss] \approx \frac{2 I_a}{k_2 + k_3 [PA]_0}$$

Assuming this simplified reaction scheme, for each photolyzed molecule of PA generating the stoichiometric amount of ketyl and acetyl radicals, PA + $h\nu \rightarrow K^* + Y^*$, provides a means to solve the steady state concentration of ketyl radicals, [K*]$_{ss}$ in the system. Thus, balancing out the measured initial rate of PA loss to the initial rate of generation of product consuming K* (observed from the channels R6 + R8 + R9 in Scheme 1) indicates that

$$\text{rate of product formation} = \frac{k_3 [PA^*] [PA]_0}{[PA]_0}$$

The initial rate of generation of product and loss of PA are presented in Figure S9 (Supporting Information) for a $\leq 20\%$ conversion. By substituting [PA*] from eq 6 in eq 7, and reordering, it is apparent that

$$\sum \Phi_{product} = \frac{\text{rate of product formation}}{I_a} = \frac{2[PA]_0}{k_2 k_3 + [PA]_0}$$

Thus, the sum of the corresponding photochemical quantum yields for the oxo-C$_7$ product (Φ_{oxo-C_7}), 2,3-dimethyltartaric acid (Φ_{DMTA}), and the oxo-C$_8$ product (Φ_{oxo-C_8}), $\sum \Phi_{product}$ depends on $[PA]_0$ as described by the hyperbola in eq 8. The $\sum \Phi_{product}$ is calculated from the initial formation rates divided by the absorbed photon rate from eq 5. Figure 7 shows the sum of the quantum yields for the three products $\sum \Phi_{product}$ vs [PA]$_0$ on normalized sum of the quantum yields for the oxo-C$_7$ product, DMTA, and the oxo-C$_8$ product $\sum \Phi_{product}$ during the direct photolysis of aqueous solutions at pH = 1 and 298 K.

![Figure 7](Image)
using the measured $\Phi_{PA} \approx 2$, the variable actinic flux $F_A(\lambda)$ at the surface for a solar zenith angle (SZA) of 40° and a surface albedo (α) of 30%14 and the cross section of PA $\sigma(\lambda)$ extracted from a 100 mMS solution. For the environmental conditions defined, the reciprocal of the estimated $j_{aq} = 7.7 \times 10^{-6}$ s$^{-1}$ can be used to report the lifetime of aqueous PA against loss by photolysis, $\tau_{aq,phot} \approx 21.7$ min. The aqueous phase loss of PA against expected urban cloud droplets58 with $[HO_2(aq)]_r = 1 \times 10^{-10}$ to 1×10^{-14} M proceeds with a rate constant $k_{aq,PA+HO_2} = 1.2 \times 10^{15}$ M$^{-1}$ s$^{-1}$,59 with a comparatively long lifetime $\tau_{aq,PA+OH} \approx 0.96$ to 9.6 days, respectively. Instead, the gas phase photolysis of PA proceeds only 1.9-times faster than in water, as integrated for a unity quantum yield under the same SZA, α, and altitude defined above.14 However, the reactivity in the gas phase should be of lesser importance because PA partitions quickly to the particle phase coexisting in hydration equilibrium with 2,2-dihydroxypropanoic acid.20 Combining the rate constant for the gas phase reaction PA + *OH, a $k_{PA+*OH} = 1.2 \times 10^{-13}$ cm3 molecule$^{-1}$ s$^{-1}$,55 with $[HO_2(g)]_{daytime} = 1.6 \times 10^4$ molecules cm$^{-3}$, yields such a long lifetime, $\tau_{PA+OH} \approx 2.0$ months, that the importance of this process can be disregarded.

A combination of analytical methods support a photochemical mechanism where PA, K*, and Y* radicals play an important role in water, generating products with large O:C ratio. Particularly, the chemical identification of the oxo-C$_2$ product proves a radical—radical termination reaction involves the participation of Y*. Additional support for a mechanism with the participation of Y* is provided by the small production of acetic acid in the presence of dissolved O$_2$(g) and the detection of trace levels of acetaldehyde. In addition, this work demonstrates the importance of quality assurance when characterizing a complex reaction mixture to prevent mischaracterizing spectroscopic features for species such as acetoin and lactic acid. The work also serves as a model study recommending to others that (1) primary photoproducts should be preferably identified for maximum reactant conversions of $\sim 20–30\%$, and (2) using more than one method of analysis is a preferred experimental practice.

The high reactivity of the photogenerated radicals tends to deplete O$_2$(aq) from the solution quickly. However, in the presence of dissolved O$_2$, the loss of PA proceeds more slowly than under anoxic conditions, suggesting the importance of the null cycle via reaction R7 to trap K* and regenerate the reactant, while Y* becomes more available for the generation of acetic acid. Finally, simple α-ketocarboxylic acids such as PA and glyoxylic acid are a potential source of complex SOA generation with common radical intermediates, which are produced by dissimilar photochemical initiation steps.5 Overall, the inclusion of direct photolysis for this class of compounds in atmospheric models should reduce the uncertainty associated with SOA sources in current models.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpca.6b11916. Additional experimental details, additional figures including mass spectra, UHPLC-MS, and NMR, and data tables (PDF)

REFERENCES

