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ABSTRACT OF THESIS 

 

 

PARAMETRIC NUMERICAL ANALYSIS OF INCLINED COAL PILLARS  

 

Pillars are used as the primary support structures for underground mining to maintain 

stability by supporting the over laying strata. In the case of horizontal seams, the pillars are 

typically subjected to axial loading due to the weight of the overburden and/or abutment 

stresses, while in the case of inclined seams they are subjected to oblique loading due to 

both the vertical and horizontal in-situ stress. Over the years numerous studies have been 

completed on square and rectangular pillars in horizontal seams that have resulted in 

several pillar stability equations and criteria. However very few studies are available with 

respect to pillars in inclined seams. Inclined pillars are subject not only to high normal 

stresses, but they are also subject to higher shear stresses that depend on the inclination of 

the seam, the ratio of the horizontal to vertical in-situ stress as well as the physical and 

mechanical properties of the material. This work presents a parametric numerical 

investigation of pillars in inclined seams using the finite element method (FEM) by 

evaluating different geometrical parameters such as seam inclination, pillar rib geometry 

as well as different pillar strength parameters. The major principal stress was examined at 

mid height of the center pillar whereas the rotational shear stress was taken at the roof-

pillar interface of the center pillar. It is concluded that under Hoek & Brown conditions, 

high shear stress is developed at the pillar-roof interface for inclined pillars and such stress 

increase as pillar inclination increases. The shear stress developed in the pillar roof 

interface for the Hoek & Brown models does not peak at the uphill pillar rib, compared to 

the elastic models. The shear stress is slightly higher on the uphill side of inclined pillars 

than on the downhill side. Finally, the major principal stress at the ribs is higher for the 

elastic models than the Hoek & Brown models.  

Keywords: Inclined pillars, Numerical modelling, Shear stresses, Major principal stresses. 
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CHAPTER 1.  INTRODUCTION 

Coal or rock pillars have various functions in mining operations; they act as the primary 

support structure, help to keep airways open for ventilation purposes, and reduce or 

eliminate surface subsidence (Luo et al., 2020). It is almost impossible to mine safely 

without appropriately designed pillars. Poor design of mine pillars may result in roof falls, 

floor heaves, pillar bursts, rib rolls, surface subsidence, and other events which may put 

miners and equipment at risk. 

 

Due to the complex loading environment in a mine, mine pillars are subjected to different 

stresses. A horizontal pillar will typically experience normal (vertical) stresses whereas an 

inclined pillar will experience a combination of normal and shear stresses. The stresses on 

a pillar might also change with time. Mining is an active and ongoing process, where the 

faces are always advancing. This means that the stresses acting on a pillar will always 

change. A pillar that is designed and constructed for given loading conditions may not 

always be subjected to the same stresses during the life of the mine. It is possible that a pillar 

may also be subjected to shear stresses, either of static or dynamic nature (Maritz, 2015).  

 

Pillar strength can be estimated through several empirical formulas that are available in the 

literature. These formulas are typically based on a statistical analysis of case study data. The 

limitations of most of these equations are that they only considered the width to height ratio 

and in-situ rock or coal strength for square or rectangular pillars in horizontal seams. The 

implementation of such equations to estimate pillar strength in inclined seams may 

overestimate the pillar strength and ultimately lead to an unstable pillar.  

This thesis presents a parametric numerical analysis of pillars in inclined seams using the 

finite element method by evaluating different geometrical parameters, i.e., seam inclination, 

and different pillar strength parameters.   

 

Chapter details 

 

This thesis consists out of five chapters. The heading of each chapter is listed below: 

• Chapter 1 presents the introduction.  

• Chapter 2 present the background and the literature review. 

• Chapter 3 presents the model development.  

• Chapter 4 presents the results and the discussion.  

• Chapter 5 presents the conclusions and recommendations.   
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW  

An underground mine pillar can be described as "the in-situ rock between two or more 

underground openings" (Coates, 1981). Depending on the mining method and the mine 

orebody, mine pillars have different functions (Maybee, 2000). Barrier pillars are used to 

give regional support dividing orebodies into panels. Rib pillars are used to separate, and to 

provide support to openings. In cut and fill operations post pillars are used for local support. 

In steeply dipping orebodies, sill pillars are used to separate the orebody in various mining 

levels and the crown pillars prevent the rockmass above the mine from collapsing.  

Even though mine pillars have an essential role in the mining industry, their design still have 

significant challenges. Pillar design is dependent on pillar strength and the pillar stress 

(Esterhuizen et al., 2008). For stable pillars the pillar strength should always be higher than 

the stress exerted on the pillar. The stability factor relates the average pillar strength to the 

average pillar stress for a flat orebody. Some of the factors that influence pillar stability are 

the depth of the orebody, the excavation size, horizontal stresses, rockmass properties, 

orebody, inclination, and backfilling (Kaklis et al., 2021). It is additionally understood that 

with an active advancing face, a continuous re-distribution of stresses occurs to maintain 

equilibrium. It is anticipated that a pillar, which is designed and intended to only experience 

normal loading environments, will not always be in this “ideal” setting, and during some 

stages of mining, shear stresses would also form part of the loading system. The magnitude 

of pillar stress will depend on different conditions such as jointing within the pillar, roof, 

and floor conditions, the dip of the orebody, loading system, vertical and the horizontal 

stresses, length to width ratio, and pillar dimensions (Maritz, 2015).  

 

Numerous research on pillar size, shape, and stability under normal loading conditions have 

been conducted. For room-and-pillar granite mines, Hedley and Grant (1972) formulated an 

empirical relationship that correlates pillar strength and width-to-height ratio. Lunder & 

Pakalnis, (1997) have considered the role of confinement in determining the strength of hard 

rock pillars. Maybee, (2000) conducted numerous numerical studies and concluded that the 

pillar strength decreases with seam inclination. Esterhuizen et al., (2008) found that for 

limestone room-and-pillar mines, slender pillars have varying strengths depending on the 

geological composition, while there is little effect on squat pillars.  

 

Jessu and Spearing (2018) indicated that limited research has been done on inclined 

rectangular pillars. Several mining companies are adopting these equations on inclined 

orebodies. A study done by Maritz (2015), indicated that various South African platinum 

mines adopted the Hedley and Grant (1972) equation for hard rock mining, which resulted 

in pillar failures. The conclusion of the study contradicts the argument that only normal 

stresses need to be considered in the factor of safety calculations. A study done by Lorig 

and Cabrera (2013) indicates that empirical pillar strength curves cannot be used for 

inclined/foliated pillars since pillar design curves do not account for inclined orebodies, 

square pillars, or weak hanging and footwalls. Failure to account for the effect of shear stress 

on pillar capacity may result in under-designed pillars, leading to pillar failure (Garza-Cruz 

et al., 2019).  
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2.1 In-situ stress 

Rocks experience various stresses at any depth below the ground surface. Depending on 

the source that the stresses originated from as well as the depth below surface the stresses 

can vary in magnitude. In undisturbed ground, before any drilling or mining has taken 

place, the rock formation will usually be exposed to compressive stresses. This condition 

is recognized as in-situ stresses. Any point underground is generally subjected to three 

mutually perpendicular stresses. The vertical stress (𝜎𝑣) is primarily due to the depth below 

surface and the weight of the overburden. The vertical stress typically results in horizontal 

stresses due to the Poisson effect. When rock anisotropy as well as in-situ tectonic 

conditions are taken into account, two different horizontal (lateral) stresses may develop. 

These are typically depicted as 𝜎𝐻 and 𝜎ℎ, normally referred to as maximum and minimum 

horizontal stresses (Aadnøy & Looyeh, 2019). 

 

Figure 2.1: In-situ stress in a rock formation (Aadnøy & Looyeh, 2019). 

 

There are several field test methods that are used to measure the orientation and the 

direction of in-situ stresses. These methods typically require a minimum of six 

measurements along different axes and independent of each other in order to calculate the 

resulting stress state tensor. According to Aadnøy & Looyeh (2019) there are mainly two 

approaches used to determine in-situ stresses, direct and indirect. Table 2.1 lists the 

different in-situ field testing techniques. 
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Table 2.1: Different in-situ field-testing techniques (Aadnøy & Looyeh 2019). 

Direct testing  Indirect testing  

Hydraulic fracturing  Acoustic emissions 

Flat jack test  Borehole breakouts 

Overcoring gauge test that was introduced 

by the United States Bureau of Mines 

(USBM) 

Fault plane solutions 

Overcoring gauge test introduced by the 

Commonwealth Scientific and Industrial 

Research Organization (CSIRO) in 

Australia 

Differential strain analysis 

Inelastic strain relaxation 

Core disking 

Observation of discontinuities 

 

2.2 Pillar stresses 

When an opening is made in the rockmass the in-situ (virgin or far-field) stresses are 

disturbed, causing the stresses to redistribute in the vicinity of the excavation. This is 

known as induced stresses (Foroughi, 1996). The stresses in rockmass are an important 

consideration when designing of underground pillars. The pillar stress depends on the depth 

and the extraction ratio of the mining activity. The tributary area theory is a popular 

approach for determining pillar stresses, and it is applied to situations where similar-sized 

pillars are developed in a large regular array in flat lying orebodies (Mgumbwa et al., 2010). 

Pillars in horizontal seams are mostly subjected to compressive stresses as shown in Figure 

2.2.  

 

Figure 2.2: Horizontal pillars subjected to compression loading (Jessu & Spearing, 2019). 
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Mine pillars on inclined seams will experience oblique loading which is a combination of 

combined compression and shear loading. This is shown in Figure 2.3. It is very important 

to estimate the stresses that act on the inclined pillars since it will influence the pillars 

stability factor that is discussed in Section 2.5.  However, due to the inclination it makes it 

difficult to estimate the stresses inside inclined pillars. 

 

Figure 2.3: Inclined pillars subjected to oblique loading (Jessu & Spearing, 2019). 

Throughout the literature there are different methods of estimating stresses in horizontal 

and inclined pillars. These methods include numerical modeling and analytical methods.  

2.2.1 Numerical modeling  

Numerical modeling has been around for more than 20 years and has proven to be an 

effective tool to simulate the behavior of the stresses that act on mine pillars. The advantage 

that numerical modeling has over field testing is that it is less time consuming and more 

cost effective. Normally a numerical model is calibrated with field testing data, to ensure 

proper and accurate results. There are three types of numerical methods: continuous, 

discrete, and hybrid. The Boundary Element Method (BEM), Finite Element Method 

(FEM), and Finite Difference Method make up continuum models. The discrete element 

method (DEM) and the discrete fracture network (DFN) are examples of discrete numerical 

models. Continuum and discrete modeling are combined in hybrid numerical modeling. 

The aim and of the numerical study will determine which numerical approach to use. 

Continuum models are typically used for rockmass that are huge and highly deteriorated 

or when the rockmass has no significant fractures. Discrete models are used when the 

fractures have a significant effect on rock movement (Jing & Hudson, 2002). 

2.2.1.1 Numerical modeling overview  

When compared to other continuum methods, the BEM has the advantage of a reduced 

computational time for rockmass modeling as well as a simpler mesh generation and input 

data preparation. The BEM can also be used to simulate rock fracturing, but in most cases 
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it is limited to fracturing in uniform and linear elastic bodies (Jing & Hudson, 2002). 

Examples of BEM programs are Examine 2D and Map3D. There are three BEM 

approaches that are significant for rockmass modeling: direct method, indirect method, and 

displacement discontinuity method.  

• The Direct Method entails directly solving stresses and displacements from specific 

boundary conditions. 

• The Indirect Method consist of determining the stresses at boundaries at the start 

followed by determining displacements with the help of 35 independent relationships.  

• The Displacement Discontinuity Method is appropriate for modeling the fracture 

growth and is used for rock fracture challenges. 

The idea behind the finite element method (FEM) is to break the problem region into 

smaller sections known as finite elements, do local calculations inside each finite element, 

and then execute finite element assembly to get the answer to the global matrix equation. 

The FEM was the first numerical technique to take into consideration boundary conditions, 

nonlinearity, complex geometries, and material heterogeneities (Jing & Hudson, 2002). 

Examples of FEM software are PLAXIS 3D, Rocscience RS2 and RS3. 

The main method of the FDM is to discretize partial differential equations by substituting 

differences specified over a predetermined time in the coordinate direction for partial 

derivatives (Jing & Hudson, 2002). Three techniques are used by FDM: the core difference 

approach, implicit or backward, and explicit or forward. FLAC3D is an example of FDM 

software. 

DEM is a collection of stiff or deformable blocks/elements used to calculate contact forces 

by continually updating the entire deformation operation to reflect an acceptable 

constitutive model. The DEM is primarily based on implicit and explicit formulations of 

equations of motion of rigid or deformable structures. DEM software examples include 

UDEC and Itasca's 3DEC, which are two-dimensional and three-dimensional models (Jing 

& Hudson, 2002). 

2.2.1.2 Numerical modeling application  

Hoek & Brown, (1980) used FEM to study rock pillars and to characterize the stresses 

induced in them. They determined that at mid-height, the pillar resulted in a constant stress 

distribution for thin pillars. The stress examined at the center of the pillar corresponds to 

the uniaxial compressive strength and can be expressed as: the maximum principal stress 

(𝜎1) equals the average external stress and the minimum principal stress is zero. 

Kaiser and Tang (1998) formulated a Rock Failure Process Analysis (RFPA) FEM code 

and subsequently conducted a failure analysis on rib pillars to simulate the collection and 

release of seismic energy. They discovered a link between stress, strain, acoustic and 

seismic energy release. Kaiser and Tang (1998) also determined that the pillar carrying 

capability falls dramatically with weak hanging or footwall, resulting in seismicity arising 

at far lower stress levels than anticipated. 
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Maybee (2000) utilized Examine2D and Map3D (BEM code) to reproduce the hard rock 

pillars and estimate the stress on the pillars in order to evaluate it using the tributary area 

theory. According to the study, 13 pillars in a row must be modeled in order to effectively 

depict stresses in a room and pillar mine on a two-dimensional plane. 

Esterhuizen (2006) performed numerical studies on limestone mine pillars using FLAC3D 

and found that the failure of hard rock pillars was brittle with aspect ratios less than 1 when 

passing through the center of the 39 pillars. If the aspect ratio is greater than one it would 

lead to ribs spalling (brittle) followed by shear failure within the pillar, shown in Figure 

2.4. A hard rock pillar with a discontinuity was also modeled to investigate the effect of 

geological structure on the pillar. It was discovered that it reacted similarly to a fracture 

plane in a rock sample. 

 

Figure 2.4: Brittle and shear failure modes in pillars (Esterhuizen, 2006). 

 

Hedley et al. (1984) performed a stress evaluation on two pillars with same extraction ratio. 

One pillar was a horizontal pillar that was experiencing normal loading while the other 

pillar was a 20° inclined pillar where it underwent oblique loading. The study showed that 

at similar stress, the horizontal pillar was stable whereas in the inclined pillar, the failure 

extended from the top corner of the one side to the bottom corner of the opposite side, 

shown in Figure 2.5. The numerical investigation concluded that the inclined pillars in the 

Quirke Mine created the chain pillar burst phenomenon. 
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Figure 2.5: Pillars subjected to normal loading and oblique loading (Hedley et al., 1984). 

 

Elmo and Stead (2010) used the hybrid numerical model ELFEN to create a series of two-

dimensional pillar models with joints. They discovered that shear sliding failure occurs 

when inclined joints dip at a greater angle than the friction angle of the joint, but vertical 

joints and joints dipping below the friction angle of the joint suggest splitting failure. Lower 

joint stiffness was also associated with more precise pillar mechanical response, including 

discrete block movement, lateral spalling, and pillar core fracturing. 

According to Suorineni et al. (2011), as the orebody is subjected to oblique loading 

scenarios, it is more prone to generate rock bursts. Suorineni et al. (2013) used Phase2D to 

perform a stress evaluation on pillars under oblique loading circumstances. It was 

established that the direction of the primary far-field principal stresses relative to pillar 

strike or dip can also affect rock bursts. The stress distribution in the pillar is shown in 

Figure 2.6 when the far-field principal stresses are positioned at an angle to the pillar. 

 

Figure 2.6: Stress distribution in the pillar when the far-field principal stresses are 

oriented at an angle to the pillar (Suorineni et al., 2011). 
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2.2.2 Analytical methods  

Before any underground mining activity occurs the stresses in an underground rockmass 

are known as virgin or natural or in-situ stresses. These virgin stresses can be of 

gravitational, tectonic or residual type. This section describes a very common and 

simplified analytical method to determine the in-situ stresses. The virgin vertical stress (𝜎𝑣) 

is due to gravitational loading acting on the overlying strata and can be obtained as: 

𝜎𝑣 = 𝛾ℎ 

where: 

𝜎𝑣 = vertical stress, MPa 

𝛾 = unit weight of rockmass, MN/m3 and 

ℎ = depth of cover, m. 

The horizontal stresses (𝜎h) associated to the virgin vertical stresses can be express as 

follows:  

𝜎ℎ = 𝑘𝜎𝑣 

Where:  

k = is the relation between the horizonal to vertical stress and is dependent on the stress 

field.   

The value of k due to overburden stress in elastic rock behavior, assuming no displacement 

is occurring, is: 

𝑘 =
𝜈

(1 − 𝜈)
 

where: 

ν = Poisson’s ratio  

For most rocks the Poisson’s ratio changes between 0.15 to 0.35, with a general value of 

0.25 (Foroughi, 1996). 

The most used analytical theory to calculate pillar load is the tributary area method. This 

method can only be used when you have regular spaced, square, or rectangular pillars. 

2.2.2.1 Tributary area method for horizontal seams  

The Tributary area theory has been described in numerous textbooks (Bieniawski, 1984; 

Herget, 1988; Peng, 1986). As illustrated in Figure 2.7, the technique accepts that each 

pillar carries the weight above it as well as one-half of the width of the rooms or entry on 

all sides of the pillar. For a square room and pillar pattern the average pillar stress (𝜎𝑝) can 

be calculated as follows:  
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𝜎𝑝 = 𝛾ℎ
(𝑤 + Β)(𝐿𝑝 + Β)

𝑤𝐿𝑝
 

where: 

𝜎𝑝= average pillar stress, MPa 

𝛾 = unit weight of the surrounding rocks, MN/m3 

ℎ = depth below surface, m 

𝑤 = pillar width, m 

𝐿𝑝 = pillar length, m and 

𝐵 = entry width, m. 
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Figure 2.7: Tributary method explained for a room and pillar mining layout (Foroughi, 

1996). 

 

The extraction ratio (𝑅) is the ratio of the mined-out area to the total area and can be 

determined as follows: 

For rectangular pillars:  

𝑅 = 1 − [
𝑤

𝑤 + 𝐵
] [

𝐿𝑝

𝐿𝑝 + 𝐵
] 
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For square pillars:  

𝑅 = 1 − [
𝑤

𝑤 + 𝐵
]

2

 

 

2.2.2.2 Tributary area method for inclined seams 

Although tributary area approach is a common method for determining pillar stresses due 

to its simplicity (Bieniawski, 1983), the presence of shear stresses in dipping coal seams 

complicates matters. The. Some authors (Jeremic, 1985; Pariseau, 1982; Sheorey, 1993; 

Trumbachev & Melnikov, 1964) have used the tributary area approach to estimate the pillar 

load in inclined coal seams. Figure 2.8 and Figure 2.9 show the forces that act on inclined 

pillars.  

 

 

Figure 2.8: Inclined seam with pillar ribs perpendicular to the roof (Foroughi, 1996). 

 

The following equations describe how to calculate the normal stress (𝜎𝑛), shear stress (𝜏𝑡), 

average pillar stress (𝜎𝑝) and the average shear stress in the pillar (𝜏𝑝) in inclined coal 

seams (Foroughi, 1996).  
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𝜎𝑛 = 𝛾ℎ(𝑐𝑜𝑠2𝛼 + 𝑘𝑠𝑖𝑛2𝛼) 

𝜏𝑡 = 𝛾ℎ (
𝑘 − 1

2
) 𝑠𝑖𝑛2𝛼 

𝜎𝑝 =
𝜎𝑛

1 − 𝑅
= 𝜎𝑛 (

𝐵 + 𝑤

𝑤
)

2

 

𝜏𝑝 =
𝜏𝑡

1 − 𝑅
= 𝜏𝑡 [

𝐵 + 𝑤

𝑤
]

2

 

where 

𝛾 = unit weight of overburden, MN/m3 

ℎ = depth of seam, m 

𝑘 = ratio of the horizontal to vertical in-situ stress 

𝛼 = seam inclination  

𝑅 = extraction ratio  

𝑤 = least pillar width, m and 

𝐵 = width to mined out stope, m.  

Foroughi (1996) established that the shear and normal stresses are affected by the seam 

inclination and the horizontal to vertical in-situ stress ratio. When 𝑘 is less than one, the 

shear stresses are at their highest when the seam inclination is 45° and lowest when the 

seam inclination is 0° or 90°. To reduce shear stresses in an inclined pillar, leave the pillar 

with the pillar axis inclined up dip by a specific angle (𝛽1), as indicated in Figure 2.9. 
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Figure 2.9: Inclined seam with deviating pillar rib angles (Foroughi, 1996). 

 

The most effective value for 𝛽1 can be obtained from the state that the resultant stress acts 

along the pillar. The angle 𝛽1 depends upon the seam inclination and 𝑘. This can be defined 

by using the following equations:  

tan(𝛽1) =
𝜏𝑡

𝜎𝑛
 

𝜎𝑛 = 𝛾ℎ(𝑐𝑜𝑠2𝛼 + 𝑘𝑠𝑖𝑛2𝛼) =  𝛾ℎ [
𝑘 + 1 + (1 − 𝑘)𝑐𝑜𝑠2𝛼

2
] 

𝜏𝑡 = 𝛾ℎ
(𝑘 − 1)𝑠𝑖𝑛2𝛼

2
 

𝑡𝑎𝑛𝛽1 =
(𝑘 − 1)𝑠𝑖𝑛2𝛼

𝑘 + 1 + (1 − 𝑘)𝑐𝑜𝑠2𝛼
 

𝑅𝑓 = 𝑘𝛾ℎ(𝐵 + 𝑤)
𝑠𝑖𝑛𝛼

𝑐𝑜𝑠𝛼
 

where: 

𝛽1 = angle of pillar axis deviation 

𝜎𝑛 = normal stress, MPa 
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𝜏𝑡 = shear stress, MPa 

𝛾 = unit weight of overburden, MN/m3 

ℎ = depth of the seam, m 

𝑘 = ratio of the horizontal to vertical in-situ stress 

𝛼 = seam inclination  

𝑅𝑓 = resultant stress, MPa 

 

2.2.2.3 Limitations of using the tributary method  

Although the tributary area method simplifies calculations, it does have certain drawbacks. 

The approach assumes that the overburden load is evenly spread over the pillars and 

ignores the presence of abutments in a mining area, which results in differing stress 

distributions (Maritz, 2015). The tributary area technique solely takes into account the pre-

mining component of normal stress, which acts in the same direction as the primary axis 

of the pillar support system. Other components of pre-mining stress, according to the idea, 

are insignificant and have no effect on the pillar's stability (Brady & Brown, 2006). 

2.2.3 Other methods  

There are also other methods available in literature to calculate pillar stress. The empirical 

methods are built on equations obtained from databases of various case studies. These 

empirical methods have been validated for different regions and are widely used in the 

mining industry (Tuncay et al., 2021). One drawback of the utilization of empirical 

methods is that they can only be applied in situations similar to those under which they 

were developed (Esterhuizen et al., 2008). 

Discussion  

Throughout the literature there are various ways of estimating pillar stress, more 

specifically inclined pillar stress.  The shear forces found in dipping coal seams reduce the 

pillars' stability. When the seam inclination is between 30 and 60 degrees and the pillar 

axis is normal to the stratification, shear stresses are at a maximum (Foroughi, 1996). It is 

acceptable to leave the pillars with a deviation angle of Pi, so that the stress distribution is 

similar to that of a modest dip, to reduce shear stresses. The tributary area is the most 

extensively used analytical method for approximating pillar stress, however it has several 

drawbacks. Numerical modeling has also been used by many authors on how to determine 

inclined pillar stress.  
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2.3 Intact rock strength 

The strength of the intact rock block material is defined by intact rock strength, which 

governs the strength of the rockmass. Igneous and metamorphic rocks can mostly be 

classified as brittle. This implies an abrupt decrease in strength when a limiting stress level 

is surpassed. Weak sedimentary rocks can fail in a more ductile manner. This means that 

when the limiting stress is surpassed there is no too little reduction in strength.  

Most of the information gained on intact rock strength came from laboratory testing, such 

as the uniaxial tensile strength (UTS) test, unconfined compressive strength (UCS) test, 

and the triaxial compressive strength (TXL) test. There are various papers available on 

these testing methods, the reliability and the source of errors involved in the testing 

Bertuzzi (2019). In rock mechanics and underground design there is a need for a 

mathematical expression (or criteria) to model the strength of rock under different stresses. 

The most adopted rock mechanics failure criteria include Mohr-Coulomb, Griffith, 

Drucker-Prager, Wiebols-Cook, Hoek-Brown, extension strain, Bieniawski, Lade, 

Christensen and You. For the purpose of this study only the Mohr-Coulomb and the Hoek 

& Brown failure criteria are discussed.  

2.3.1 Mohr-Coulomb failure criterion 

The most basic and widely used failure criterion in rock mechanics is the Mohr-Coulomb 

criterion. This strength criterion accepts that the failure occurs on a plane due to the shear 

stress (𝜏) on that plane which at failure is a function of that plane’s cohesion (𝑐), friction 

angle (𝜙) and the normal stress (𝜎𝑛) acting on that plane.  

𝜏 = 𝑐 + 𝜎𝑛𝑡𝑎𝑛𝜙 

Where the cohesion and the friction angle are linked to the unconfined compressive (𝜎𝑐) 

and tensile strengths (𝜎𝑡) as:  

𝜎𝑐 =
2𝑐 𝑐𝑜𝑠𝜙

1 − 𝑠𝑖𝑛𝜙
 

𝜎𝑡 =
2𝑐 𝑐𝑜𝑠𝜙

1 + 𝑠𝑖𝑛𝜙
 

Principal stresses are another way to express the Mohr-Coulomb criterion.: 

𝜎1 =
2𝑐 𝑐𝑜𝑠𝜙

1 − 𝑠𝑖𝑛𝜙
+ 𝜎3 [

1 + 𝑠𝑖𝑛𝜙

1 − 𝑠𝑖𝑛𝜙
] 

𝑜𝑟  

𝜎1 = 𝜎𝑐 + 𝑘𝜎3 

The Mohr-Coulomb failure criterion is appropriate to use when analyzing the shear 

strength of planar features such as joints and other discontinuities. However, it is limited 
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to analyze the peak rock strength because the actual peak strength envelopes are normally 

non-linear and it implies that failure occurs as shearing in the direction 
𝜋

4
+

𝜙

2
 .  

2.3.2 Hoek & Brown failure criterion 

The Hoek-Brown empirical failure criterion was created from a best-fit curve to 

experimental failure data plotted in 𝜎1 − 𝜎3 space. The goal was to develop a simple, 

empirical rock failure criterion that sufficiently explains the reaction of an intact rock 

sample to uniaxial tensile stress, triaxial compressive stress, and triaxial compressive 

stress. The criterion has a large uniaxial compressive stress (𝜎𝑐) intact rock data set, that 

ranges from 40 – 580 MPa (Hoek and Brown 1980). 

𝜎1

𝜎𝑐
=

𝜎3

𝜎𝑐
+ √𝑚

𝜎3

𝜎𝑐
+ 𝑠 

Where 𝜎3 is the confinement stress, 𝑠 is a rockmass constant (s=1 for intact rock, s<1 for 

broken rock), and 𝑚 is a constant that is characteristic of the rock type (typical values range 

from 25, for coarse grained igneous rock and metamorphic rocks to 7 for carbonated rocks). 

A general Hoek & Brown criterion was later introduced was introduced by Hoek et al. 

(2002) that made the parameter a variable between 0.5 and 0.65 for rockmass failure. 

𝜎1 = 𝜎3 + 𝜎𝑐𝑖 [𝑚𝑏

𝜎3

𝜎𝑐
+ 𝑠]

𝑎

 

Where 𝑚𝑏  denotes a decreased value of the material constant 𝑚𝑖 and is provided by: 

𝑚𝑏 = 𝑚𝑖𝑒𝑥𝑝 [
𝐺𝑆𝐼 − 100

28 − 14𝐷
] 

𝑠 and 𝑎 are constants for the rockmass given by the following equations:  

𝑠 = 𝑒𝑥𝑝 [
𝐺𝑆𝐼 − 100

9 − 3𝐷
] 

𝑎 =
1

2
+

1

6
(𝑒−𝐺𝑆𝐼/15 − 𝑒−20/3) 

𝐷 is a factor that depends on the amount of disruption caused by blast damage and stress 

relaxation on the rockmass. It ranges from zero for undisturbed in-situ rockmass to one for 

highly disturbed rockmass. 

2.3.3 Mohr-Coulomb vs Hoek & Brown failure criteria  

In geotechnical engineering, the Hoek & Brown failure criterion is the most often 

employed rockmass failure criterion. To assess rockmass properties, the criterion combines 

the geological strength index (GSI) and intact rock parameters (Saeidi et al., 2022). When 

focusing on the stability of soil slopes, the use of the Mohr-Coulomb (MC) failure criterion 
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is a standard technique. Even if the Hoek-Brown (HB) failure criterion proved to be more 

appropriate for evaluating a rockmass, the Mohr-Coulomb model is still widely used in the 

stability study of rock slopes. This could be because the factor of safety can be simply 

stated in terms of basic shear strength characteristics like cohesion and angle of internal 

friction (Poklopová et al., 2021). 

There are inherent shortcomings in the simplicity in the Mohr-Coulomb failure criteria. 

The first flaw is that the Mohr-coulomb failure criteria is developed for soil slopes, and it 

assumes that the soil will fail in shear. The tensile strength is not well described or 

explained in the equations. This shortcoming is not too serious when applying the Mohr-

Coulomb failure criteria for rocks since, when dealing with rocks only the compression 

region is focused on and not the tension region. The second shortcoming in the Mohr-

Coulomb failure criteria is that it assumes a linear failure envelope. The failure envelope 

of many rocks is nonlinear and the Mohr-Coulomb failure criteria can overestimate the 

shear strength for rocks (Fahrman, 2016).  

Both approaches assume different rockmass yield and deformation characteristics. As 

demonstrated in Figure 2.10, the Hoek and Brown model assumes an elastic-brittle-plastic 

rockmass behavior, whereas the Mohr-Coulomb model assumes an elastic-perfectly-plastic 

rockmass behavior. The outcomes of the two models will be identical until the point of 

failure. For the same stress, the Hoek & Brown model will exhibit greater plastic straining 

than the Mohr-Coulomb model after failure (Saiang et al., 2014). 

 

Figure 2.10: (a) shows a Hoek & Brown elastic-brittle-plastic rockmass behavior and (b) 

a Mohr-Coulomb elastic-perfectly-plastic rockmass behavior (Saiang et al., 2014). 

 

Discussion  

There are various failure criteria available in the literature, but the most common are the 

Hoek & Brown and the Mohr-Coulomb failure criteria. The Mohr-Coulomb failure criteria 

was mainly developed for soil slopes while the Hoek & Brown failure criteria was 

developed for rockmass. For plastic behavior the Hoek & Brown model and the Mohr 



 

19 

 

Coulomb models behave similar. After failure larger strains are observed in the Hoek & 

Brown models (Saiang et al., 2014). 

2.4 Pillar strength  

Pillar strength can be defined as the maximum resistance of a pillar to axial compression. 

According to York et al., (2000) the in-situ strength of the rockmass is the primary strength 

factor of a pillar, but there are also other factors that should be taken into consideration 

when deriving the strength of a pillar. These factors are:  

• Jointing within the pillar 

• Roof and floor conditions 

• Seam dip 

• Total system loading  

• Virgin horizontal and vertical stress ratio (k-ratio) 

• Creep 

• Length to width ratio 

• Pillar dimensions  

Most of the current pillar strength equations do not take the above-mentioned factors into 

account. This means that when one of these factors becomes dominant, inaccurate strength 

results may be obtained. Any difference of the above-mentioned factors from the current 

empirical range must be given specific attention in order to yield more accurate results. 

2.4.1 Horizontal pillars  

A number of equations have been established to determine the strength of pillars in coal 

and hard rock mines. Table 2.2 presents several pillar strength equations that have been 

developed by different researchers around the world. Most of the strength equations in 

Table 2.2 are related to coal pillars (Das et al., 2019) and were developed through 

laboratory compression tests, large scale in-situ tests, analytical solutions, collapsed and 

stable pillar cases, and numerical modeling for coal mines. Due to the complexity of the 

rockmass and the problems encountered in evaluating the strength of the in-situ rock, a 

simplified approach is usually used to determine the strength of a pillar. It should be noted 

that these equations work best in situations similar to those that they were derived for (Das 

et al., 2019).
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Table 2.2: Several pillar strength equations  

No Authors  Equation  Derivation Coal pillar/ 

Rock pillar 

Width to 

height 

Type of 

strength 

employed 

1 Greenwald et 

al. (1941) 𝑠 = 0.67𝑘
𝑤0.5

ℎ0.88
 

In-situ test Coal Slender In-situ size 

30 cm 

2 Gaddy (1956) 
𝑠 = 𝑘

𝑤0.5

ℎ
 

Lab test Coal Slender Lab size 

25 cm 

3 Obert & 

Duvall 

(1967) 

𝑠 = 𝑘(0.78 + 0.22
𝑤

ℎ
) Lab test Coal Slender In-situ size 

‘critical’ 

4 Salamon & 

Munro 

(1967) 

𝑠 = 7.2
𝑤0.46

ℎ0.66
 

Pillar Cases Coal Slender Constant 

strength 

5 Salamon & 

Munro 

(1967) 

generalized 

𝑠 = 0.79𝑘
𝑤0.46

ℎ0.66
 

 Coal Slender In-situ size  

30 cm 

6 Hedley & 

Grant, (1972) 𝑠 = 𝑘
𝑤0.5

ℎ0.75
 

Empirical Rock   

7 Bieniawski 

(1968) 
𝑠 = 𝑘 (0.64 + 0.36

𝑤

ℎ
) 

 

In-situ test Coal Slender In-situ size 

‘critical’ 
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No Authors  Equation  Derivation Coal pillar/ 

Rock pillar 

Width to 

height 

Type of 

strength 

employed 

8 Bieniawski 

(modifed) 

Logie & 

Matheson 

(1982) 

𝑠 = 𝑘 (0.64 + 0.36
𝑤

ℎ
)

1.4

 
In-situ test Coal Squat In-situ size 

‘critical’ 

9 Lunder & 

Pakalnis, 

(1997) 

𝑠 = 0.44𝜎𝑐(0.68 + 0.52𝑘) Empirical Rock Both  

10 Salamon & 

Wagner 

(1985) 

𝑠 = 0.79𝑘
𝑅0.46

𝑉0.66
{

0.59

𝜀
[(

𝑅

𝑅0
)

𝜀

− 1] + 1} 

Where, 𝑅𝑜 = is the critical w/h=5, R=w/h of 

pillar, V= is the pillar volume, 𝜀 =is a 

constant = 2.5 (proposed) 

Case 

studies and 

theoretical 

analysis 

Coal Squat In-situ size  

30 cm 

11 Wilson 

(1972) 

Case I 𝑤 > 2�̅� 

(Wilson's equations are all in tonne, ft units.) 

Rectangular pillars 

𝑠 =  
4𝛾𝐻

𝑤1𝑤2

[𝑤𝑤1 − 1.5(𝑤 + 𝑤1)ℎ𝐻 × 10−3

+ 3ℎ2𝐻2 × 10−6]  

Long pillars  

Theoretical 

analysis 

Coal Both No strength 
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No Authors  Equation  Derivation Coal pillar/ 

Rock pillar 

Width to 

height 

Type of 

strength 

employed 

𝑠 =
4𝛾𝐻

𝑤
(𝑤 − 1.5ℎ𝐻 × 10−3) 

Case II 𝑤 ≤ 2�̅� 

Rectangular pillars  

𝑠 = 667𝛾
𝑤

𝑤1𝐻
(𝑤1 −

𝑤

3
) 

Long pillar 

𝑠 = 667𝛾
𝑤

𝐻
  

�̅� =0.0015hH is the failed coal zone  

𝛾 =0.0707 t/ft2 is the rock density  

 

12 Wilson 

(1983) 

Case I Roadways stable 

𝑠 =
1

𝑤𝑤1
∫ (𝑤 − 2𝑥)(𝑤1 − 2𝑥)𝑑𝜎 + 𝑞𝑝

𝑞𝛾𝐻

𝑞𝑝

+  
𝜎𝑜

𝑤𝑤1

(𝑤 − 2𝑥)(𝑤1 − 2𝑥) 

Case 2 Roadways unstable  

Theoretical 

analysis 

Coal Both In-situ 

strength = (lab 

strength)/5 
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No Authors  Equation  Derivation Coal pillar/ 

Rock pillar 

Width to 

height 

Type of 

strength 

employed 

𝑠 =
1

𝑤𝑤1
∫ (𝑤 − 2𝑥)(𝑤1 − 2𝑥)𝑑𝜎 + 𝑞𝑝

𝜎′

𝑞𝑝

 

Where 𝜎′ = 𝑞𝑝 (
𝑤

ℎ
+ 1)

𝑞−1

or 𝑞𝑝 exp (
𝑤𝐹

2ℎ
) 

𝜎0= is the in-situ strength, 𝑝= is a constant 

for broken coal = 0.1 MPa (recommended), 

𝑞= triaxial constant = 3.5 (average 

recommended) 

These equations are subject to the two 

ground conditions listed below: 

Yield in roof, seam, and floor 

𝑥 =
ℎ

2
[(

𝜎

𝑞𝑝
)

1
𝑞−1

− 1] ; 

�̅� =
ℎ

2
[(

𝛾𝐻

𝑝
)

1/(𝑞−1)

− 1] 

Yield in seam, rigid roof, and floor 

𝑥 =
ℎ
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No Authors  Equation  Derivation Coal pillar/ 

Rock pillar 

Width to 

height 

Type of 

strength 

employed 

Where  

𝐹 =
𝑞 − 1

√𝑞
+

(𝑞 − 1)2

𝑞
tan−1√𝑞 

 tan−1in radians  

13 Sheorey et al. 

(1986) 

𝑠 = 0.66𝑘ℎ−0.35

+ 6.3 {𝐾𝛾𝐻 [1

− exp (−
1.5𝑤

𝐷
)]}

0.8

 

Where 𝐷 = 25 + 0.1𝐻, 𝐾 =

virgin horizontal − vertical stress ratio 

Theoretical 

empirical 

method, and 

case studies 

Coal Both In-situ size  

30 cm 

14 Sheorey et al. 

(1987) 𝑠 = 0.27𝑘
𝑤0.5

ℎ0.86
 

Case 

studies 

Coal Slender Lab size  

25 cm 

15 Sheorey et al. 

(1987) 
𝑠 = 0.27𝑘ℎ−0.36 +

𝐻

160
(

𝑤

ℎ
− 1) 

Theoretical, 

empirical 

method, and 

case study 

Coal Both Lab size  

25 cm 

16 Sheorey 

(1992) 
𝑠 = 0.27𝑘ℎ−0.36 + (

𝐻

250
+ 1) (

𝑤

ℎ
− 1) 

Theoretical, 

empirical 

method, and 

case study 

Coal Both Lab size  

25 cm 
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Rock pillar 
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17 Van der 

Merwe 

(1999) 

𝑠 = 4
𝑤0.81

ℎ0.76
 

Case 

studies 

Coal  Constant 

strength 

18 Van der 

Merwe 

(2003) 

𝑠 = 𝑘
𝑤

ℎ
 (𝑘 = 2.8 − 3.5) Case 

studies 

Coal  Constant 

strength 
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The variables are as follow: 𝑠 is the pillar strength (MPa), 𝑤 is the width of the pillar or 

long pillar or smaller width of rectangular pillar (m), 𝑤1 is the longer width of a rectangular 

pillar (m), 𝐻 is the depth of cover (m), and 𝑠 is the strength of coal (MPa) both in-situ or 

laboratory conditions.  

Most of the pillar strength equations that are shown in Table 2.2, incorporates the strength 

and geometric parameters of a pillar, but fails to include the seam inclination effect.  Due 

to the complex behavior of the inclined coal seam, pillar strength equations in Table 2.2 

cannot be applied to inclined pillars (Mgumbwa et al., 2010). The pillar attempts to slide 

alongside the contact planes towards the real dip on an inclined seam. This increases the 

likelihood of shear failure in the inclined pillar as well as separation from the roof and floor 

contact points. The stresses at the pillar-to-rock contact are determined by the friction angle 

and cohesiveness of the contact planes, as well as the rock mass's deformation 

characteristics. Despite the fact that it is not typically taken into account in pillar strength 

calculations, seam inclination is crucial in determining the sliding of the coal pillar along 

the overlaying and underlaying contact surfaces (Das et al., 2019). 

If these equations are adopted in situations where they are not intended for, the pillar 

strengths can be overestimated resulting in pillar failure (Garza-Cruz et al., 2019).  A study 

done by Maritz (2015), indicated that various platinum mines in South Africa, which have 

steep dipping orebodies, have adopted the Hedley & Grant (1972) equation for hard rock 

mining, which resulted in pillar failure. Lorig & Cabrera (2013) also indicated that the 

empirical strength curves are not helpful in the case of inclined pillars, since they do not 

account for the pillar inclination and width to height ratios of more than 2. 

2.4.2 Inclined pillars  

Throughout the literature several authors have tried to estimate the strength of inclined 

pillars. The techniques identified to estimate inclined pillar strength are analytical 

solutions, laboratory testing and numerical modeling.  

2.4.2.1 Analytical solutions  

Pillar strength formulae used around the world are designed for horizontal coal pillars. Das 

et al. (2019) created an analytical approach for estimating the strength of square, 

rectangular, and extremely long coal pillars. The analytical solutions can be used for both 

inclined and horizontal coal pillars. The mathematical solutions were developed in order 

to calculate the confining stress in the coal pillar, which was then employed in the Sheorey 

(1997) rockmass failure criterion to calculate the peak stress in the pillar at the time of 

collapse. The intact and the broken coal properties are required as input parameters for the 

mathematical models and can be obtained through laboratory testing. The mathematical 

solutions also take into consideration the shearing effect when the dip of the coal seam 

increases. At the roof-pillar and floor-pillar interface, a Mohr-Coulomb criterion was 

considered for the shearing effect. It was observed that the mathematical solutions worked 

when tried to predict stable and failed cases of flat and inclined pillars.  



 

27 

 

2.4.2.2 Laboratory testing  

Jessu et al. (2018) conducted a laboratory study on gypsum and sandstone to see how 

inclination affects the strength reduction. Gypsum and sandstone are representatives of 

brittle rock, and have lower strengths, making them suitable for laboratory testing. PVC 

tubes with inner diameters of 50 mm were used for the gypsum, while PVC tubes with 

inner diameters of 42 mm were utilized for the sandstone. PVC mold tubes were cut 

perpendicular to the tube length to replicate horizontal pillars, and at an angle for both ends 

to simulate inclined pillars. 65 Gypsum tests and 27 sandstone tests were done with width 

to height ratios of 0.4, 0.5, 1.0, 1.5 and 2.0. Platens were manufactured and used in the 

UCS test at 10o and 20o to simulate the drip effect. Figure 2.11 shows the results of the 

gypsum and the sandstone after the Uniaxial Compressive Strength (UCS) test was done. 

The percentage reduction in strength of the samples for all the width to height ratios were 

similar. The strength reduction for gypsum at 10o and 20o was respectively 76%-79% and 

54%-59%. The strength reduction for sandstone at 10o and 20o was respectively 67%-72% 

and 42%-47%. 

 

 

Figure 2.11: The strength change of the (a) gypsum samples, (b) sandstone samples for 

various width to height ratios and various inclinations (Jessu et al., 2018). 

 

Figure 2.12: Strength reduction for gypsum and sandstone (derived from Jessu et al., 

2018)Figure 2.12 was derived from Figure 2.11 (which was published by Jessu et al., 2018) 

in order to better illustrate how the strength decreases as the inclination increases, for the 

gypsum and the sandstone.  
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Figure 2.12: Strength reduction for gypsum and sandstone (derived from Jessu et al., 

2018) 

 

Luo et al. (2020) presented a similar study where 112 molds of a mixture of Portland 

cement and gypsum were made. The molds had width to height ratios of 1.0, 1.5, and 2.0. 

Figure 2.13a shows the two cushion blocks with inclinations of 10o and 20o used to simulate 

the dip effect. The results of the UCS test are shown in Figure 2.13b. The authors found 

that the reduction in strength of the samples for all the width to height ratios were similar.  

 

Figure 2.13: Shows (a) the cushion blocks used in the experimental setup, and (b) the 

UCS results (Luo et al., 2020).   

In both cases, Jessu et al. (2018) and Luo et al. (2020), the results of the UCS tests showed 

that when the dip angle increases, the strength of the pillar decreases. Laboratory testing 

can be helpful to determine the strength reduction factors. Strength reduction factors can 

therefor lead to a better design of inclined pillars without overestimating the stability factor. 
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2.4.2.3 Numerical solutions  

Numerical modeling is an effective method for addressing complicated geological 

problems through the computational simulation of geological processes. For example, 

numerical modeling can solve complex stress scenarios in an underground mine without 

the need for experimental laboratory setups. However, before numerical modeling can be 

done, the model must be calibrated according to site-specific data.  

Suorineni et al. (2013) used numerical analysis to better understand the behavior of inclined 

pillars. They found that inclined orebodies are more likely to fail since the inclined pillars 

lose their strength due to a loss in confinement. The loss of confinement increases with 

pillar inclination, pillar width-to-height ratio and the 𝑘-ratio (the ratio between the 

horizontal principal stress to the vertical principal stress).  

Jessu et al. (2018) investigated the strength performance of inclined pillars using laboratory 

and numerical investigations. Before any inclined pillar modeling could be done, the model 

was calibrated. The results were compared to those of Lunder and Pakalnis (1997). Jessu 

et al. (2018) simulated pillars at five different inclinations of 0o, 10o, 20o, 30o and 40o. The 

advantage that the numerical model has over the laboratory results is that numerical 

modeling could be used to study five different inclinations, while laboratory 

experimentation could only study two inclinations. As a result of the numerical modeling 

approach, an equation was proposed for strength reduction factors that would need to be 

applied to each different inclination. The strength reduction factors for inclinations 10o, 

20o, 30o and 40o were found to be 0.94, 0.87, 0.78 and 0.67. Thus, strength reduction factors 

can be used to estimate the strength of inclined pillars.  

Garza-Cruz et al. (2019) presented a retrospective analysis of the Troy mine experience in 

order to forecast pillar performance at the Montanore mine. The Troy mine and the 

Montanore mine are less than 30 km apart and is Montana. The Troy mine had a dipping 

ore body that led to increased shear stresses and a loss in confinement, which resulted in 

pillar failure. Data was collected on stresses and failure mechanisms and used to calibrate 

a numerical model to predict pillar performance at the Montanore mine. The result from 

the study indicated that shear stress was not included when designing the incline pillars at 

the Troy mine.  

Lorig and Cabrera (2013) conducted a numerical study on the effect of foliation and pillar 

inclination on pillar strength. The model represented width-to-height ratios ranging from 

0.3 to 3.5 in intervals of 0.5 and the height of the pillar was fixed at 1.3 m. The 

geomechanical properties of pillar schist were used to calibrate the model. The results were 

compared to those of Lunder and Pakalnis (1997) for horizontal pillars. The findings from 

this numerical study indicated that lower foliation strength would lead to even lower pillar 

strengths and that steeper inclination also reduces the strength in the pillar. 

Discussion  
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The pillar strength equations available in the literature are site specific and/or does not take 

into account the shearing effect on inclined seams. Studies have shown that when strength 

calculations for horizontal pillars are adopted in the case of inclined pillars, they can 

overestimate the pillar strength and lead to pillar failure mainly due to the fact that 

horizontal strength equations do not consider the shear stress that acts on an inclined pillar. 

The three techniques and methodologies identified to estimate inclined pillar strength are 

analytical solutions, laboratory testing and numerical modeling.  The literature review 

presented in this section demonstrates that numerical modeling can assist with pillar design 

in inclined orebodies. Furthermore, predictions can be made to improve future mining 

sustainability when the mining conditions are known, like in the case of Garza-Cruz et al. 

(2019). In addition, a combination of numerical modeling and laboratory testing can be 

used to find strength reduction factors, such as conducted by Jessu et al. (2018) and Luo et 

al. (2020). 

2.5 Stability factor  

Pillar design depends on pillar strength and pillar stress (Esterhuizen et al., 2008) where 

strength and stress need to be evaluated for the specific loading mode. The use of stability 

factors in pillar design typically allows (up to a point) for poor estimations of strength and 

stress.  These principles apply to both coal pillars and non-coal pillars. For stable pillars 

the pillar strength should always be higher than the stress exerted on the pillar. The stability 

factor (SF) relates the average pillar strength (S) to the average pillar stress (𝜎𝑝) for a flat 

orebody.  

𝑆𝐹 =  
𝑆

𝜎𝑝
 

For coal pillars, it is also well known that pillar strength increases as the pillar width-to-

height ratio increases (Mark, 2006) as the core area of the pillar increases. Figure 2.14 

schematically presents a typical relationship between pillar strength, pillar stress and the 

stability factor for different pillar width to height ratios.  
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Figure 2.14: The relationship between pillar strength, pillar stress and stability factor  

(Suorineni, 2013). 

 

According to Merwe et al. (2002), the dip of the seam can affect the pillar stability in coal 

pillar designs by:  

• A reduction in the effective area of the pillar 

• The down dip sides of the pillar can spall under the effects of gravity  

• The roof strata can ‘ride’ down dip inducing shear at the pillar contact planes 

• Non-symmetrical stress distribution may result in higher load on the down dip side.  

The approach to estimate the effective pillar dimensions due to inclination, that can be used 

in pillar strength and stress calculations to estimate the stability factor is shown in Figure 

2.15.   

 

Figure 2.15: Effect of gradient on pillar stability (Merwe et al. 2002). 

 

ℎ𝑒𝑓𝑓 =
ℎ

𝑐𝑜𝑠𝜃
 

𝑤𝑒𝑓𝑓 = (𝑤 − ℎ 𝑡𝑎𝑛𝜃) 𝑐𝑜𝑠𝜃 

𝐵𝑒𝑓𝑓 = (𝐵 + ℎ 𝑡𝑎𝑛𝜃) 𝑐𝑜𝑠𝜃 

𝐶𝑒𝑓𝑓 = (𝑏 + 𝑤) 𝑐𝑜𝑠𝜃 



 

32 

 

Where: 

ℎ𝑒𝑓𝑓= Effective pillar height: 

𝑤𝑒𝑓𝑓= Effective pillar width along the dip: 

𝐵𝑒𝑓𝑓 =Effective board width along dip: 

𝐶𝑒𝑓𝑓 =Effective pillar center distance along dip: 

Effective depth, 𝐻𝑒𝑓𝑓 = 𝐻 at pillar effective mid width (𝑤𝑒𝑓𝑓/2) 

Merwe et al. (2002) also indicated that this approach should only be used for seams that 

has an inclination of less than 11°, because of the adverse shear effects of steeper 

inclinations.  

 

Discussion  

The stability factor of a pillar is a function of pillar strength and pillar stress. When these 

parameters are calculated incorrectly due to pillar inclination it can overestimate the 

stability factor of the pillar which can lead to pillar failure. The analytical approach used 

by Merwe et al. (2002) is only suitable for seam inclinations less than 11o and indicated 

that numerical modeling should be used for higher inclinations. 
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CHAPTER 3. NUMERICAL MODELING  

Numerical modeling has proven to be a powerful tool for solving complex geotechnical 

problems due to its versatility and computational power. Due to the complex loading 

conditions of inclined orebodies numerous authors have used numerical modeling to 

investigate how pillar inclination and pillar geometry affect pillar stress. Several 

researchers (Suorineni (2013), Lorig and Cabrera (2013), Maritz (2015), Jessu and 

Spearing (2018), Das et al. (2019), Garza-Cruz et al. (2019)) have used numerical modeling 

to determine pillar stresses and pillar strengths for inclined pillars. A requirement for 

numerical modeling is the calibration of the models according to known results. The 

calibration procedure typically consists of evaluation of model results with respect to 

calculated stress and deformation (and/or other variables) and adjustment of the input 

parameters in a systematic approach to accomplish a reasonable agreement between the 

model results and measurements. When models have been calibrated, they can be used to 

evaluate similar mining designs in similar geological settings (Esterhuizen et al., 2010). 

3.1 Model development  

Models were created representing a horizontal seam with five pillars with a large width to 

height ratio such as the pillars present in coal mines. Although this geometry has been 

modeled extensively by numerous researchers. This step was included as it established a 

baseline for comparison. Two sets of models were created with respect to inclined pillars. 

One set features vertical pillar ribs (A-Pillar) and the other features pillar ribs perpendicular 

to the floor (B-Pillar) (Figure 3.1). Model geometries were developed in RS2, which is a 

finite element code developed by Rocscience (2022).  The pillar and opening dimension in 

these models are hypothetical, however their inclination and pillar geometry are based on 

information available in the literature as discussed above.  
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Figure 3.1: Geometry of models developed.  

Inclined pillar models included five (5) pillars for various inclinations and two rib 

geometries, shown in Figure 3.2 and Figure 3.3. The inclined-pillar geometry was modeled 

using five (5) pillars instead of a single inclined pillar as the latter does not actually model 

the behavior of a series of pillars on an inclined seam (Lorig and Cabrera, 2013). Stresses 

were extracted for the middle pillar. The models assumed competent roof and floor 

(sandstone) and typical coal properties for the pillar. The initial runs were under an 

elasticity assumption for all materials.  It is understood that a 2D plane strain model refers 

to a very long pillar in the out-of-plane direction, however, the objective of this study is to 

compare the stresses developed across the different geometries.  

 

Figure 3.2: Model of a 20° inclined pillar with vertical pillar ribs (A-Pillar). 
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Figure 3.3: Model of a 20° inclined pillar with pillar ribs perpendicular to the floor 

 (B-Pillar). 

 

The material properties that were used for sandstone and coal for the elastic models in this 

study was gathered from work done by Tulu et al. (2017) and Esterhuizen et al. (2010). 

The material properties for coal and sandstone are shown in Table 3.1 and Table 3.2 

respectively.  

 

Table 3.1: Elastic parameters of sandstone (Tulu et al., 2017) 

Parameter Value 

Unit weight (MN/m3) 0.024 

Young’s modulus (MPa) 20460 

Poisson’s ratio 0.25 

 

Table 3.2: Elastic parameters of coal (Esterhuizen et al., 2010) 

Parameter Value 

Unit weight (MN/m3) 0.0196 

Young’s modulus (MPa) 3000 

Poisson’s ratio 0.25 
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Subsequently failure criteria were introduced for both the coal and the roof and floor rock 

which was modelled as a much stronger material (sandstone). The lab UCS strength of the 

pillar material (coal) was modelled with varying strength values. The sandstone properties 

remained the same as in the elastic model. Coal was modelled as an elastoplastic material 

using the strain-softening option. The material properties that were used for the constitutive 

models were gathered from Esterhuizen et al. (2010) and are shown in Table 3.3. The strain 

softening option allows the material to assume residual stresses in the highly stressed 

regions (i.e., ribs) which push the peak stresses towards the core of the pillar.  

 

Table 3.3: Material properties for Hoek-Brown Constitutive Model (Esterhuizen et 

al.,2010). 

Parameter Value 

Unit weight (MN/m3) 0.0196 

Young’s modulus (MPa) 3000 

Poisson’s ratio 0.25 

UCS (MPa) 10, 15, 20 

m-value 1.47 

s-value 0.07 

m-Residual 1 

s-Residual 0.001 

 

 

An interface element was added between the coal and the sandstone to allow for relative 

slippage, i.e., between the roof and the pillar as the pillar deforms (Figure 3.4).  
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Figure 3.4: Shows the interface elements that was added between the sandstone and the 

coal. 

 

The material properties for this interface elements was gathered from work done by 

Esterhuizen et al., (2010) and is shown in Figure 3.4. 

 

Table 3.4: Material properties for the interface element (Esterhuizen et al., 2010).  

Parameter Value 

Interface normal stiffness (GPa/m) 100 

Interface shear stiffness (GPa/m) 50 

 

3.2 Numerical Analysis 

Five (5) rectangular pillars with a width of 25 m and a height of 2 m were modeled in a 

horizontal geometry (Figure 3.5) as well as in 10-, 20-, and 30-degree inclinations. The 

inclined pillars were modeled both as A-Pillars and as B-Pillars (Figure 3.2 and Figure 

3.3). The overburden depth was set to 300 m with an overburden specific weight of 24 

kN/m3. In-situ horizontal stresses were set to one third of the vertical stress.  The tributary 

area stress for a very long horizontal pillar with the same width was calculated at 8.64 MPa.  

This is considered a reference value for the average stress across a pillar as calculated by 

the 2D plane strain finite element models.  
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Figure 3.5:  Model of the Horizontal pillar dimensions. 

 

 

Figure 3.6: Model of five 20° Inclined A-pillars. 

Before finalizing the models, a sensitivity analysis was developed with respect to mesh 

size. The analysis determined the size of the mesh required for both the pillar and the 

surrounding rock to ensure reliable calculations for stresses and strains. A mesh gradation 

factor of 0.1 (default value) was used that resulted in a fine mesh around the entry and 

larger elements away from the entry. Figure 3.7 compares mesh that were developed with 

gradation factors 0.1 and 0.01.  
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Figure 3.7: Left: Mesh with a gradation factor of 0.1. Right: Mesh with a gradation factor 

of 0.01. 

 

An increased mesh discretization density was added to the center pillar where the stress 

measurements were taken Figure 3.8. This was done to ensure more accurate results.   

 

 

Figure 3.8: Increased mesh discretization density around the center pillar.  

 

The elastoplastic models were run with three different values with respect to the material 

lab strength. Figure 3.9 and Figure 3.10 show the models that were developed for elastic 

material properties and for elastoplastic pillar properties for both the cases of the A-pillar 

and the B-pillar. Seven elastic and 28 Hoek & Brown models were generated. All models 

utilized a six-node triangular element and a graded mesh with about 19 000 nodes and 9000 

elements.  
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Figure 3.9: Model geometries for elastic models. 

 

 

Figure 3.10: Model geometries for Hoek & Brown models. 
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CHAPTER 4. RESULTS AND DISCUSSION 

In this study a total of 35 numerical models were developed, based on the same pillar 

dimensions with variations in the seam inclination (0°, 10°, 20° and 30°), the orientation of 

the pillar ribs and the UCS values of the coal. This section discusses the influence of these 

parameters on the major principal stress as well as the shear stresses. The stresses were 

numerically calculated along the pillar width at mid height and along the pillar-roof 

interface. Elastic models were used to compare the impact on the development of such 

stresses due to elastic behavior and pillar geometry. Additionally, Hoek & Brown models 

were also generated to investigate the effect of different coal UCS values and seam 

inclination has on the developed stresses.  

4.1 Major principal stress 

The major principal stress results were taken along the center pillar width at mid height, 

shown in Figure 4.1.  

 

Figure 4.1: Location of the major principal stress queries.  

 

4.1.1 Major principal stress under elastic conditions 

Figure 4.2 presents the variation of major principal stress along the pillar width at mid 

height for an elastic regime for four different seam inclination angles and different pillar 

geometries. The major principal stresses peaks close to the rib and it decreases towards the 

center of the pillar. Right at the rib there is a reduction in stress with respect to the peak 

which is a result of rib deformation due to the specific opening geometry. This is different 
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than distributions observed for other opening geometries (i.e., circular) where peak 

principal stresses occur right at the rib (Obert & Duvall, 1967). In addition, the major 

principal stress increases slightly as seam inclination increases.  

 

 

Figure 4.2: Elastic major principal stress results. 

 

Figure 4.3 compares the elastic major principal stress results for a 30° inclined A- and B-

Pillar. Close to the rib region the variation between the different geometries is more 

pronounced and lower rib stresses are experienced in the case of the perpendicular pillar 

geometry (B-Pillar). The main body of the pillar is almost the same as expected.  
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Figure 4.3: Elastic major principal stress results for a 30° inclined A- and B-Pillar. 

 

Figure 4.4 and Figure 4.5 illustrate the orientation of the major principal stress for a flat 

and 30° inclined A-Pillar. In both cases the direction of the major principal stress in the 

vicinity of the pillar follows the direction of loading.  

 

Figure 4.4: Orientation of the major principal stress for an elastic flat pillar.  
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Figure 4.5: Orientation of the major principal stress for an elastic 30° inclined A-Pillar. 

 

Figure 4.6 and Figure 4.7 illustrate the total displacement vectors for a flat and a 30° 

inclined A-Pillar. As expected, the overburden weight will cause a reduction in opening 

size.  Both models are under elastic conditions, and the rib material has not failed. In both 

cases the total displacement vectors follow the direction of loading.  



 

45 

 

 

Figure 4.6: Displacement vectors for an elastic flat pillar. 

 

 

Figure 4.7: Displacement vectors for an elastic 30° inclined A-Pillar.  
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4.1.2 Major principal stress under the Hoek & Brown criterion 

The variation of the major principal stress for the same line query, for a Hoek & Brown 

strain softening regime is presented in the case of the horizontal pillar (Figure 4.8) and the 

20° inclined A-pillar (Figure 4.9). Zero values are denoted at the ribs, in contrast to the 

non-zero values in Figure 4.2 (elastic case). The effect of different coal UCS values were 

also investigated, for both horizontal and inclined pillars. For the UCS values selected the 

peak values of the major principal stress on the pillar are not really affected. As expected, 

the peak stress value appears further away from the ribs as the UCS value decreases, which 

confirms that the yielded region (that develops at the rib towards the center of the pillar) 

increases as the coal UCS decreases. 

As expected in Figure 4.8 and Figure 4.9, stresses are high at the center (core) of the pillar, 

while they quickly dissipate away from the center of the pillar and close to the rib. The 

actual peak is not at the center of the pillar but at the transition between the yielded zone 

and the core. This is attributed to the fact that the rib has yielded due to high stress 

conditions and therefore the rib material can only bear very low or even zero loads. This is 

the same behavior observed in horizontal pillars modelled under elastoplastic conditions 

(Cardenas Triana et al., 2021).  

 

Figure 4.8: Variation of the major principal stress along the pillar width at mid height for 

the Hoek & Brown models for different coal UCS values for the horizontal pillar. 
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Figure 4.9: Variation of the major principal stress along the pillar width at mid height for 

the Hoek & Brown models for different coal UCS values for the 20° inclined A- Pillar. 

 

 

Figure 4.10 compares the major principal stress for different seam inclinations with vertical 

pillar rib geometries (A-Pillar) and for a coal UCS value of 20 MPa.  In the core of the 

pillar the stresses are the same and it increases as you get closer to the ribs. The stresses do 

not peak at the rib but peaks a few meters into the pillar. The stresses at the rib are zero 

which indicates that the rib material has yielded. This is similar to the findings presented 

in the paper written by Jessu et al., (2018). The peak stress decreases as the seam inclination 

increases.  
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Figure 4.10: Comparison of the major principal stress and different inclination with a 

vertical pillar geometry (A-Pillar), with a coal UCS of 20 MPa. 

 

Figure 4.11 compares the major principal stress for a vertical and perpendicular (A – and 

B-Pillar) pillar geometry. The stress in the two geometries is the same and there is no 

distinct difference.  

 

Figure 4.11: Variation of the major principal stress along the pillar width at mid height 

for the Hoek & Brown models in the case of the 20° inclined A- and B-Pillar, with a coal 

UCS of 20 MPa. 
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Figure 4.12 and Figure 4.13 shows the direction of the major principal stress for a flat and 

20° A-Pillar under Hoek & Brown conditions.  

 

Figure 4.12: Orientation of the major principal stress for a 15 MPa Hoek & Brown flat 

pillar. 

 

Figure 4.13: Orientation of the major principal stress for a 15 MPa Hoek & Brown 20° A-

Pillar.  
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Figure 4.14 and Figure 4.15 shows the displacement vectors for a flat and 20° A-Pillar 

under Hoek & Brown conditions. In contrast with the elastic models the rib material is 

starting to yield. This is illustrated by the displacement vectors at the rib pointing in a 

down-outwards direction.  

 

Figure 4.14: Displacement vectors for a 15 MPa Hoek & Brown flat pillar. 
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Figure 4.15: Displacement vectors for a 15 MPa Hoek & Brown 20° A-Pillar. 

 

4.1.3 Comparison between the elastic and Hoek & Brown models 

Figure 4.16 compares the major principal stress between the elastic and Hoek & Brown 

models for a flat pillar and 20° inclined A-Pillar. At the rib region, the elastic models 

experience higher stresses than the Hoek & Brown models. This is due to fact that the rib 

material has failed in the Hoek & Brown models and, therefore, it can bear much lower 

loads. The major principal stresses in the Hoek & Brown models are translated more 

towards the core of the pillar which leads to higher peak stresses than the elastic models.  
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Figure 4.16: Comparison of the major principal stress between the elastic and Hoek & 

Brown models for a flat pillar and 20° inclined A-Pillar. 
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4.2 Shear stress at the pillar-roof interface  

The shear stress results were taken along the center pillar width, at the pillar-roof interface, 

shown in Figure 4.17. 

 

Figure 4.17: Location of the shear stress queries.  

 

To calculate the shear stress on a plane the following equation was used. The stress 

element, Figure 4.18, can be used to better understand this equation.   

𝜏𝑛 = −
1

2
(𝜎𝑥 − 𝜎𝑦) sin 2𝜃 + 𝜏𝑥𝑦 cos 2𝜃 

Where, 

𝜎𝑥 = Stress in the 𝑥-direction  

𝜎𝑦 = Stress in the 𝑦-direction  

𝜏𝑥𝑦 = Shear stress   

𝜃 = Angle between the 𝑥-axis and the normal to the plane under study (same as the stress 

𝜎𝑛 direction) 
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Figure 4.18: Stress element. 

 

4.2.1 Rotated shear stress at the pillar-roof interface under elastic conditions 

Figure 4.19 compares the distribution of the shear stress along the pillar-roof interface for 

different pillar inclinations with vertical and perpendicular (A- and B-Pillar) geometries. 

A rapid change of shear stress is observed close to the rib regions. On the uphill side the 

change of shear stress is positive while on the downhill side the change of shear stress is 

negative. The reason for this is that there is a change in direction of the shear stress at the 

pillar ribs between the uphill and downhill side. The peak shear stresses are higher on the 

uphill side of the pillar than the downhill side. As expected, when the seam inclination 

increases the shear stress also increases.  
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Figure 4.19: Variation of the shear stress along the pillar-roof interface with respect to the 

seam inclination in elastic models. 

 

The maximum shear stress values at the ribs for the perpendicular pillar (B-pillar) are 

slightly higher than those of the vertical pillar (A-pillar) on the uphill side, shown in Figure 

4.20. This may be attributed to the inclination of the pillar with respect to the roof and floor 

lines. 
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Figure 4.20: Variation of the shear stress along the pillar-roof interface for elastic models 

in the case of the 30° inclined A- and B-Pillar. 

 

4.2.2 Rotated shear stress at the pillar roof interface using the Hoek & Brown criterion 

Figure 4.21 compares the shear stress at the pillar roof interface for different inclinations 

and pillar geometries with a coal UCS of 20 MPa. The peak shear stresses are lower in 

Hoek & Brown models when compared to elastic models (Figure 4.19). In contrast with 

the elastic models the peak shear stresses are not at the rib, but a few meters into the rib. 

This is due to the rib material that has yielded. This means that the pillar can take lower to 

zero loads. When the seam inclination increases the shear stress at the pillar-roof interface 

also increases, as expected.  
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Figure 4.21: Variation of the shear stress along the pillar-roof interface with respect to the 

pillar inclination for Hoek & Brown models with coal UCS = 20 MPa.  

 

Figure 4.22 compares the shear stress at the pillar roof interface for different inclinations 

and pillar geometries with a coal UCS of 10 MPa. It is observed that a low coal UCS values 

and high pillar inclinations the Hoek & Brown models struggle to converge and is 

presented by oscillating lines. This is due to the numerical solution of the strain softening 

model. 
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Figure 4.22: Variation of the shear stress along the pillar-roof interface with respect to the 

pillar inclination for Hoek & Brown models with coal UCS = 10 MPa. 

 

In Figure 4.23 it is observed that at an inclination of 30° the uphill peak stresses in the 

pillar-roof interface are higher in pillars with perpendicular ribs (B-Pillar) than vertical ribs 

(A-Pillar). Throughout the width of the pillar the shear stresses remain the same for both 

pillar geometries. 

 

Figure 4.23: Variation of the shear stress along the pillar-roof interface with respect a 30° 

pillar inclination Hoek & Brown models with coal UCS = 20 MPa for A-Pillar and B-

Pillar. 
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4.2.3 Comparison between the elastic and Hoek & Brown models 

Figure 4.24 compares the shear stress between the elastic and Hoek & Brown models for a 

flat pillar and 20° inclined A-Pillar. At the pillar ribs higher peak shear stresses are 

observed in the elastic models compared to the Hoek & Brown models. This is due to the 

rib material that has yielded, and as a result, the peak stresses are translated more inward 

for the Hoek & Brown models. 

 

Figure 4.24: Comparison of the shear stress between the elastic and Hoek & Brown 

models for a flat pillar and 20° inclined A-Pillar. 

 

4.3 Summary of numerical results 

This section summarizes all the data and graphs presented in Section 4.1 and 4.2. The 

summary tables (Table 4.1, Table 4.2,  

Table 4.3, Table 4.4) compare the peak stress, mid pillar stress and the location of the peak 

stress from the rib for all the models. The peak stress is the maximum stress experienced 

within the pillar and the mid pillar stress is the stress taken at the middle of the pillar or 

12.5m from the rib. Table 4.1 and Table 4.2 summarize the major principal stress under 

elastic and Hoek & Brown conditions, while  

Table 4.3 and Table 4.4 summarize the shear stress under elastic and Hoek & Brown 

conditions. In the case where lower coal UCS values were used at higher seam inclinations 

it seems that the strain softening model does not smoothly converge to a solution. 

Therefore, an average value was taken around the indicated location (mid pillar or peak 

stress) and is denoted by an “*” next to the value.  
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Table 4.1: Summary of the major principal stress results under elastic conditions. 

Model  Peak Stress (MPa) Mid pillar stress 

(MPa) 

Location of the 

peak stress from 

the pillar rib (m) 

Flat Pillar  10.63 7.97 0.758 

10° A-Pillar 10.48 7.96 0.505 

10° B-Pillar 10.49 7.97 0.758 

20° A-Pillar 10.32 7.89 0.505 

20° B-Pillar 10.17 7.92 0.758 

30° A-Pillar 10.1 7.67 0.505 

30° B-Pillar  9.23 7.72 1.01 

 

Figure 4.25 compares the peak and the mid pillar major principal stress for models under 

elastic conditions. There is a slight decrease in the peak major principal stress when the 

seam inclination increases. The mid pillar principal stress is constant for all inclinations.  

 

Figure 4.25: Major principal stress under elastic conditions. 

 

Table 4.2 summarizes the major principal stress results under Hoek & Brown conditions.  
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Table 4.2: Summary of the major principal stress results under Hoek & Brown 

conditions. 

Model  Peak Stress (MPa) Mid pillar stress 

(MPa) 

Location of the 

peak stress from 

the pillar rib 

Coal UCS = 10 MPa 

Flat Pillar  11.694 8.76 3.03 

10° A-Pillar 11.35 8.85 3.53 

10° B-Pillar 11.37 8.879 3.28 

20° A-Pillar 10.87 8.9* 4.042 

20° B-Pillar 11.097 9* 3.788 

30° A-Pillar 10.14 9.1* 4.032 

30° B-Pillar  10.746 9* 3.788 

Coal UCS = 15 MPa 

Flat Pillar  12.06 8.54 2.02 

10° A-Pillar 12.108 8.54 2.52 

10° B-Pillar 11.76 8.56 2.27 

20° A-Pillar 10.956 8.6 2.782 

20° B-Pillar 11.14 8.56 2.273 

30° A-Pillar 10.18 8.7* 3.7 

30° B-Pillar  10.695 8.58* 2.778 

Coal UCS = 20 MPa 

Flat Pillar  13.28 8.39 1.768 

10° A-Pillar 11.54 8.4 1.767 

10° B-Pillar 12.6 8.41 1.768 

20° A-Pillar 11.62 8.47 2.019 

20° B-Pillar 11.118 8.4 1.768 

30° A-Pillar 10.6 8.3 2.78 

30° B-Pillar  10.7 8.23 2.02 
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Figure 4.26 compares the peak major principal stress under Hoek & Brown conditions for 

different coal UCS values. Through all the coal UCS models there is a common trend that 

the peak major principal stress decreases slightly as the seam inclination increases.  

 

Figure 4.26: Peak major principal stress results under Hoek & Brown conditions.  

 

Figure 4.27 compares the mid pillar major principal stress, under Hoek & Brown 

conditions, for different coal UCS values. The major principal stress for all the models is 

constant.  
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Figure 4.27: Mid pillar major principal stress results under Hoek & Brown conditions. 

 

 

Table 4.3 summarizes the shear stress results under elastic conditions.  

 

Table 4.3: Summary of the shear stress results under elastic conditions. 

Model  Peak stress (MPa) Mid pillar stress 

(MPa) 

Location of the 

peak stress from 

the pillar rib (m) 

Flat Pillar  5.36 0 0 

10° A-Pillar 4.784 0.9 0 

10° B-Pillar 5.6 0.9 0 

20° A-Pillar 4.76 1.6 0 

20° B-Pillar 7 1.6 0 

30° A-Pillar 5.05 2.2 0 

30° B-Pillar  6.2 2.2 0 

 

Figure 4.28 shows the results of the peak and mid pillar shear stress under elastic 

conditions. When looking at the peak shear stress, there is a general trend where the B-
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Pillar (perpendicular ribs) experiences higher shear stresses than the A-Pillar (vertical ribs). 

The shear stress in the middle of the pillar increases as the seam inclination increases.  

 

 

Figure 4.28: The peak and mid pillar shear stress results under elastic conditions.  

 

Table 4.4 summarizes the shear stress results under Hoek & Brown conditions for different 

coal UCS values.  

Table 4.4: Summary of the shear stress results under Hoek & Brown conditions. 

Model  Peak stress (MPa) Mid pillar stress 

(MPa) 

Location of the 

peak stress from 

the pillar rib (m) 

Coal UCS = 10 MPa 

Flat Pillar  1.798 0 1.042 

10° A-Pillar 2.08 1.039 2.083 

10° B-Pillar 2.11 1.05 1.042 

20° A-Pillar 2.44 2.17* 2.083 

20° B-Pillar 2.1 1.87* 2.083 

30° A-Pillar 2.82 2.5* 2.083 
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30° B-Pillar  2.6 2.5* 2 

Coal UCS = 15 MPa 

Flat Pillar  2.35 0 1.042 

10° A-Pillar 2.16 0.97 1.042 

10° B-Pillar 2.2 0.98 1.042 

20° A-Pillar 2.84 1.89 2.083 

20° B-Pillar 2.65 1.87 1.042 

30° A-Pillar 2.59 2.5* 2.083 

30° B-Pillar  2.8 2.5* 2.083 

Coal UCS = 20 MPa 

Flat Pillar  2.22 0 1.042 

10° A-Pillar 2.471 0.96 2.083 

10° B-Pillar 2.82 0.96 1.042 

20° A-Pillar 2.56 1.82 2.083 

20° B-Pillar 2.86 1.8 1.042 

30° A-Pillar 2.99 2.5 2.083 

30° B-Pillar  3.3 2.5 1.042 

 

Figure 4.29 shows the peak shear stress under Hoek & Brown conditions. A general trend 

through all the models is that as the seam inclination increases the peak shear stress 

increases. The 20 MPa UCS coal models shows a similar trend as the elastic models, where 

the B-Pillar (perpendicular ribs) experiences higher peak shear stresses than the A-Pillar 

(vertical ribs). This probably indicates that the coal material in these models has not failed 

due to applied loads. The 15 MPa and 10 MPa UCS coal models show a different behavior 

which can be attributed to coal material failure due to the applied loads.  
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Figure 4.29: Peak shear stress results under Hoek & Brown conditions.  

 

Figure 4.30 shows the mid pillar shear stress results under Hoek & Brown conditions for 

different coal UCS values. The general trend through all the models is that as the seam 

inclination increases the mid pillar shear stress increases.   

 

 
Figure 4.30: Mid pillar shear stress result under Hoek & Brown conditions.  
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CHAPTER 5.  CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Over the years numerous studies have been completed on square and rectangular pillars in 

horizontal seams, however very few studies are available with respect to pillars in inclined 

seams. Inclined pillars are subject not only to high normal stresses, but they are also subject 

to higher shear stresses that depend on the inclination of the seam, the ratio of the horizontal 

to vertical in-situ stress as well as the physical and mechanical properties of the material. 

The present work presented hypothetical elastic and Hoek & Brown numerical models, to 

investigate the major principal stress and shear stress at different seam inclinations.  

The results from the elastic two-dimensional plane strain models for inclined pillars 

indicate the following: 

• Major principal stress 

o The major principal stress developed in the pillar decreases slightly as the 

seam inclination increases.  

o The major principal stresses in the core of the pillar are the same for the A- 

and B-Pillar geometries.   

o The B-Pillar (perpendicular ribs) experiences lower principal stress at the 

pillar ribs compared to the A-Pillar (vertical ribs).  

 

• Shear stress 

o The shear stress peak on the uphill side of the inclined pillars. 

o The shear stress increases as the seam inclination increases. 

o The shear stress is the same for the A- and B-Pillar geometry in the mid 

pillar. The B-Pillar (perpendicular ribs) experiences higher shear stress at 

the pillar ribs compared to the A-Pillar (vertical ribs).  

The results from the Hoek & Brown two-dimensional plane strain models for inclined 

pillars indicate the following: 

• Major principal stress 

o The location of the peak value of the major principal stress is translated 

more towards the core of the pillar compared to the results for elastic 

models.  

o The major principal stress at the ribs are higher for the elastic models than 

the Hoek & Brown models.  

o When the coal UCS decreases the major principal stress are translated 

more towards the core of the pillar.  

o Also, when the coal UCS decreases the yielding zones at the pillar ribs 

increases.  
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• Shear stress 

o The shear stress developed in the pillar roof interface for the Hoek & 

Brown models does not peak at the uphill pillar rib, compared to the 

elastic models.  

o The shear stress increases as the seam inclination increases.  

o The shear stress is the same for the A- and B-Pillar geometry, at the pillar 

roof interface. 

5.2 Recommendations  

The recommendations for future work include:  

• The development of 3D models for flat and inclined geometries. 

• The investigation of a greater range of UCS values so as to validate the different 

behavior between elastic and yielding models.  

• The investigation of interface elements with different properties. This includes 

conditions when mining into the roof and the floor and not on the contact plane. 

• The investigation of various vertical to horizontal stress ratios.  

• The investigation of models that consider different material zones within a pillar 

may add value to this analysis.  

• A comparison of the results with actual data collected by operators. 
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