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Abstract: Rafting is an important phenomenon of the microstructure evolution in nickel-based 
single crystal superalloys at elevated temperature. Understanding the rafting mechanism and its 
effect on the microstructure evolution is of great importance in determining the structural stability 
and applications of the single crystal superalloys. Phase-field method, which is an excellent tool to 
analyze the microstructure evolution at mesoscale, has been gradually used to investigate the rafting 
behavior. In this work, we review the crystal plasticity theory and phase-field method and discuss 
the application of the crystal plasticity theory and phase-field method in the analysis of the creep 
deformation and microstructure evolution of the single crystal superalloys.  

Keywords: rafting behavior; phase-field simulation; crystal plasticity theory; mechanical property 
 

1. Introduction 

Turbine blades are critical structural components in modern aircraft engines and function under 
extreme service conditions, such as high temperature, high pressure, and high stress level. The 
performance of turbine blades plays an important role in determining the stability and service life of 
aircrafts. There is a great need to develop high-performing materials for turbine blades.  

Nickel-based single crystal superalloys are currently used in turbine blades due to their excellent 
mechanical properties at elevated temperature, including high mechanical strength and creep 
resistance. The excellent mechanical properties of the superalloys are attributed to the two-phase 
microstructure, i.e., γ’ precipitate phase and γ matrix phase, with L12 ordered γ’ phase being 
coherently embedded in γ phase of face-centered cubic structure (Figure 1a). The ordered γ′ phase 
with high volume fraction (about 60–70% in most cases) serves as the strengthening phase in the 
superalloys and hinders the motion of dislocations during creep deformation [1–3]. 
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Figure 1. SEM images of the typical microstructure of nickel-based single crystal superalloy (DD5): 
(a) initial microstructure without deformation, and (b) raft structure after the creep deformation at 
980 °C. 

Under mechanical loading at high temperature, the morphology of the γ’ precipitate evolves 
from cubic shape to plate-like shape, as shown in Figure 1, which is referred to as directional 
coarsening or rafting. The rafting is a complex process, which can contribute to the hardening of the 
materials, since the raft structure inhibits dislocation climb around the γ’ phase and restricts the 
motion of dislocations in γ channels [2–4]. However, there are reports that the rafting behavior can 
also lead to the softening of materials [5,6]. The onset of rafting widens the width of some γ channels 
which reduces the blocking effect of Orowan stress and causes the bowing of dislocations in the γ 
channels (Figure 2). This behavior results in the increase of the plastic strain in the corresponding γ 
channels and the nearby γ/γ’ interfaces. Note that the plastic deformation around the γ/γ’ interfaces 
plays a key role in the rafting process. Therefore, the rafting can lead to the strengthening and 
softening of nickel-based superalloys during creep, which necessitates the understanding of the 
evolution of the raft structure under mechanical loading at elevated temperature.  

 
Figure 2. Dislocations bowing through γ channels after long-term aging at 1050 °C for 100 h: (a) TEM 
image, and (b) schematic of dislocation bowing. In the field of view, some dislocations are present in 
the γ’ phase, which is attributed to the dislocation climb [7]. (Reproduced with permission from [8] © 
2020 Elsevier.) 
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There are a variety of methods available to investigate the rafting behavior, which can be divided 
into two categories: experimental methods [1,9] and numerical simulation [10–13]. In general, it is 
very costly and impractical to use conventional experimental methods to study the rafting behavior 
due to the need to “record” the changes of the microstructures during creep deformation. Numerical 
methods, such as finite element method [10], Monte Carlo method [11], and phase-field method [12], 
have become a major approach to understand the microstructure evolution associated with the 
rafting process. Among the numerical methods, the phase-field method has become an important 
technique to analyze the microstructure evolution, which involves phase transition at mesoscale for 
a long-time period without explicit interface tracking [14–20], and has been used efficiently to 
simulate the rafting process. Realizing the presence of plastic deformation during the rafting, the 
theory of crystal plasticity is usually incorporated in the phase-field method to investigate the plastic 
deformation concurrently presented during the rafting. 

In this review, we briefly introduce the rafting behavior in nickel-based single crystal 
superalloys, together with the crystal plasticity theory and the phase-field method. The models, 
which are based on the crystal plasticity theory and the phase-field method, respectively, for the 
analyses of plastic deformation and microstructure evolution are summarized. The applications of 
the crystal plasticity theory and the phase-field method in studying the rafting behavior are then 
discussed. Finally, a brief summary is given.  

2. γ’ Rafting Behavior in Superalloys 

2.1. Types of Rafting  

Rafting is an important phenomenon of the microstructure evolution in L12 hardened 
superalloys, such as nickel- and cobalt-based superalloys [21–23]. There are extensive studies on the 
formation mechanism in single crystal superalloys, which are also applicable to individual grains in 
polycrystalline superalloys [24]. Here, we are mainly focused on the rafting behavior in single 
crystals.  

Under mechanical loading in <001> direction, raft structures can form in single crystals in the 
direction either parallel (P-type) or normal (N-type) to the direction of external loading. The factors 
controlling the rafting orientation mainly include the sign of applied stress, σA (positive for tensile 
loading and negative for compressive loading), the γ/γ’ lattice misfit, δ, and the difference in the 
mechanical behavior between γ and γ’ phase, ∆G [25,26]. Here, 𝛿 = 2 ൫𝑎ఊᇲ − 𝑎ఊ൯ ൫𝑎ఊᇲ + 𝑎ఊ൯ൗ , with 𝑎ఊᇱ 
and 𝑎ఊ  being the lattice constants of γ’ phase and γ phase, respectively. ∆𝐺  is usually used to 
represent the hardness ratio of the γ’ precipitate to the γ matrix with ∆𝐺 > 1 for hard precipitates 
and ∆𝐺 < 1 for soft precipitates. The P-type raft structures form under 𝜎𝛿(1 − ∆𝐺) < 0, and the N-
type raft structures form under 𝜎𝛿(1 − ∆𝐺) > 0, as shown in Figure 3. Schmidt and Gross [25] 
summarized several cases for the raft structures presented in regions (1–7) in Figure 3, in which 
regions (5–7) represent extreme cases. Note that the raft structures presented in region (5) are only 
observed in very soft precipitates under compressive loading, and the raft structures presented in 
regions (6) and (7) are observed in two-phase materials with different Poisson’s ratio and/or Zener 
anisotropy parameter [26].  
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Figure 3. Types of raft structures under mechanical loading in <001> orientation of single crystals and 
positive lattice misfit. ∆𝐺 represents the hardness ratio of the γ’ precipitate to the γ matrix. Seven 
different cases are summarized and marked with corresponding numbers in the figure. 1—N-type 
structure under compression for ∆𝐺 > 1; 2—P-type structure under tension for ∆𝐺 > 1; 3—P-type 
structure under compression for ∆𝐺 < 1; 4—N-type structure under tension for ∆𝐺 < 1; 5—N-type 
structure under compression for ∆𝐺 < 1; 6—N-type structure under tension for ∆𝐺 > 1; 7—P-type 
structure under tension for ∆𝐺 < 1. Adapted from [25]. 

The rafting direction plays an important role in determining the mechanical behavior of 
superalloys. In most cases, the N-type raft structures can reduce the low-cycle fatigue strength of 
materials and the P-type raft structures generally possess high creep resistance and low-cycle fatigue 
strength [27–29]. Note that the N-type raft structures can also increase the creep resistance by 
effectively hindering the motions of dislocations at high temperature under the action of small stress 
[28] in comparison to the corresponding alloys with cubic γ’ precipitates. Mughrabi and Tetzlaff [28] 
reported that the prerafting to form the P-type raft structures in superalloys with negative γ/γ’ lattice 
misfit also resulted in the improvement in fatigue strength at elevated temperature. Compromise 
needs to be made in controlling the rafting behavior of superalloys with negative γ/γ’ lattice misfit.  

Commercial nickel-based superalloys possess negative lattice misfit at room temperature, whose 
magnitude decreases with the increase of environmental temperature [30,31]. To better describe the 
effect of lattice misfit on the rafting behavior, cobalt-based superalloys are taken as an example for 
comparison. Cobalt-based superalloys possess positive lattice misfit at room temperature, whose 
magnitude also decreases with the increase of environmental temperature, but the lattice misfit 
remains positive even at temperature of 1000 °C [22,31]. Negative lattice misfit in nickel-based 
superalloys and positive lattice misfit in cobalt-based superalloys at such a high temperature result 
in the formation of N-type and P-type raft structures under tension, respectively. The opposite 
behavior is observed under compression.  

It is known that a superalloy of single crystal exhibits different mechanical behavior from the 
corresponding superalloy of polycrystal, and its creep and fatigue properties are extremely sensitive 
to crystal orientation [32,33]. The complex geometry of single-crystal turbine blades and the 
multiaxial stress state under service necessitate careful characterization and analyses of the 
mechanical behavior and γ/γ’ microstructure evolution of single crystal superalloys in typical crystal 
orientations, including <011> and <111>. Under a tensile loading in <011> direction, directional 
coarsening of γ’ phases was found parallel to (010) plane, while equiaxed coarsening behavior was 
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observed in (100) plane, which exhibits a 45-degree rafting [34,35]. Under a tensile loading in <011> 
direction, no rafting behavior was present [34,36]. However, there always exists a slight 
misorientation between actual loading direction and <011> or <111> crystal orientation, which can 
lead to the formation of raft structures different from theoretical results. If the loading direction 
slightly deviates from <011> direction, see Figure 4 as an example, directional coarsening of γ’ phases 
is still found parallel to (010) plane, but the coarsening behavior in (100) plane is not equiaxed, 
tending to align along [010] or [001] direction. In the case of loading direction slightly deviating from 
<111> direction, rafting behavior along one main direction is also observed (Figure 5). These 
unexpected phenomena were also reported in some works [37–39], which is believed to be related to 
asymmetric stress distribution in γ/γ’ microstructures, caused by a slight misorientation from the 
loading direction and microdefects randomly distributed in the material. Therefore, the rafting in a 
superalloy of single crystal is sensitive to the effective loading direction.  

 
Figure 4. Microstructures of a nickel-based single crystal superalloy under a tensile loading of 250 
MPa at 1253 K, with a 5° misorientation from [011] direction. (a) Loading diagram of a cubical cell, (b) 
initial microstructure in (100) plane, (c) micrograph in (100) plane for 150 h, (d) micrograph in (011) 
plane for 20 h, and (e) micrograph in (011) plane for 100 h. 

 
Figure 5. Microstructures of a nickel-based single crystal superalloy under a tensile loading of 250 
MPa at 1253 K with a 5° misorientation from [111] direction. (a) Loading diagram of a cubical cell, (b) 
micrograph of initial microstructure in (12ത1) plane, (c) micrograph in (12ത1) plane for 300 h, (d) 
micrograph in (111) plane for 20 h, and (e) micrograph in (111) plane for 200 h. 

2.2. Kinetics of Rafting  

In the heart of rafting is a stress-limited diffusion process, depending on applied stress, σA, lattice 
misfit, δ, and the difference between the mechanical property of γ and γ’ phases, ∆G [3,40]. Both 
applied stress and inherent misfit stress play important roles in the distribution of internal stress in 
the grains/crystals consisting of γ and γ’ phases due to the dependence of chemical potential on local 
stress state [40]. Under tensile loading, the difference of the chemical potentials between the γ’ phase 
and the γ phase (γ channels) drives the forming atoms of the γ’ phase (Al, Ti, Ta, etc.) in horizontal 
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γ channels into vertical γ channels and drives nearly insoluble atoms (Co, Cr, Mo, Re, W, etc.) away 
from vertical γ channels. This results in the formation of raft structures perpendicular to the tensile 
loading, as shown in Figure 6 [41,42].  

 
Figure 6. Schematic for the migration of solute atoms under tension in <001> direction. 

Assuming that the stress-limited diffusion process is the dominant mechanism controlling the 
rafting, Fan et al. [34] proposed a von-Mises stress-based criterion in determining the rafting 
direction. Under concurrent action of external stress and misfit stress, the von-Mises stress in different 
γ channels can be calculated according to the formulations in Table 1. Dislocations can easily 
accumulate in γ channels under a large stress, leading to the relief of the misfit stress through the 
migration of the γ/γ’ interface and the directional coarsening in the γ channels with maximum von-
Mises stress [34,43]. 

Table 1. Calculation of the von-Mises stress in γ channels under uniaxial loading. Here, σ0 is applied 
stress in the global coordinate system, σi is the magnitude of the misfit stress, and α is a reduction 
factor. Adapted from [34]. 

 
 
 
 

Loading 
diagram 

Tension along <001> 

 

Tension along <110> 

 

Tension along <111> 

 

Channel 1 ටσଶ − σ(1 + α)σ୧ + (1 + α)ଶσ୧ଶ ඨ74 𝜎ଶ + 12 𝜎(1 + 𝛼)𝜎 + (1 + 𝛼)ଶ𝜎ଶ ට𝜎ଶ + [(1 + 𝛼)𝜎]ଶ 

Channel 2 ට𝜎ଶ − 𝜎(1 + 𝛼)𝜎 + (1 + 𝛼)ଶ𝜎ଶ ඨ74 𝜎ଶ + 12 𝜎(1 + 𝛼)𝜎 + (1 + 𝛼)ଶ𝜎ଶ ට𝜎ଶ + [(1 + 𝛼)𝜎]ଶ 

Channel 3 |𝜎 + (1 + 𝛼)𝜎| ඨ74 𝜎ଶ − 𝜎(1 + 𝛼)𝜎 + (1 + 𝛼)ଶ𝜎ଶ ට𝜎ଶ + [(1 + 𝛼)𝜎]ଶ 
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Geometrical characteristics of the microstructures have been used to determine the degree of 
rafting, such as the width of γ channels [34,44], the dimension of γ’ phase [45], and the shape of γ’ 
phase [46]. The images of the microstructures can be captured through scanning electron microscopy 
(SEM) and transmission electron microscopy (TEM), and the geometrical characteristics of the 
microstructures can be then analyzed via image-processing algorithms. There are a few algorithms 
commonly used to analyze the SEM and TEM images, including Connectivity number method [46], 
AutoCorrelation Method [47,48], Rotational Intercept Method [48], Fourier analysis [9], and Moment 
invariants method [49].  

Fedelich et al. [44] introduced a dimensionless variable ξ for the analysis of rafting as 𝜉 = 𝑤(𝑡) − 𝑤௨𝑤௧ − 𝑤௨ (1) 

where 𝑤(t) is the width of the γ channel at time t, 𝑤௨ and 𝑤௧ are the channel widths of the 
cubic structure and the raft structure, respectively. Their numerical values are correlated to the 
volume fraction of γ’ phase, 𝑓ఊᇱ, and the microstructure periodicity, λ. The dimensionless variable, 
ξ, varies in a range of 0 (initial cubic morphology) to 1 (complete raft morphology).  

Tinga et al. [45] proposed an evolution law for the dimension of γ′ phase under the action of a 
multiaxial stress as �̇� = ିଷଶ 𝐿 ቂ ఙᇲఙಾାఙഃቃ ∗బ 𝑒𝑥𝑝 ቂିொିఙಾோ் ቃ, (i = 1, 2, 3) (2) 

where 𝐿  are the dimensions of γ′ phase along three orthogonal directions, 𝜎ᇱ  are the diagonal 
components of deviatoric stress tensor, 𝜎ெ is von-Mises stress, and 𝑈் is thermal shear-activation 
volume, Q, R, and T are activation energy, gas constant, and absolute temperature, respectively, 𝐴∗ 
and 𝜎ఋ are constants, and 𝐿 is the dimension of γ′ precipitate in cubic shape. Desmorat et al. [50] 
used the width of γ channel and the dimensions of γ’ phase as internal variables in the framework of 
thermodynamics with elasto-visco-plasticity and Orowan stress (dislocation mechanics). They 
calculated the Orowan stress 𝜏, which acts as a resistance to the dislocation motion in γ matrices, 
during the rafting in the following formulation, 𝜏୭୰ = 𝛼୭୰ 𝜇𝑏𝑤  (3) 

where 𝛼or is a material constant ranging from 0.238 to 2.15 [51], and μ and b are the shear modulus 
and the magnitude of Burgers vector, respectively. Their simulation results provided quantitative 
description of the rafting behavior in nickel-based single crystal superalloys.  

There exists the interaction between rafting and dislocation motion. Rafting leads to the 
accumulation of dislocations in the γ channels, resulting in the relief of the misfit stress through the 
migration of the γ/γ’ interface and the directional coarsening of γ’ precipitates. Without mechanical 
loading, rafting can also prevail at high temperature if the plastic strain in superalloys reaches a 
threshold value [52,53]. The deformation field (plastic strain) is associated with the presence of 
dislocations in crystal, even though there is no external loading. The dislocation motion in 
superalloys at high temperature relieves the misfit stress and promotes the directional coarsening of 
γ’ precipitates through rafting. It is the plastic deformation in the γ matrices (channels) that 
determines the rafting process and the microstructure evolution. 

3. Crystal Plasticity Models 

3.1. Crystal Plasticity Theory 

Crystal plasticity theory is based on the work from Taylor and his coworkers [54]. Their work 
suggested that plastic deformation of crystalline metals is correlated to the change of crystallographic 
structure. There are two major aspects contributing to the change of crystallographic structure: one 
is the lattice distortion, and the other is the plastic deformation from the gliding of dislocations in slip 
planes. There is a significant amount of dislocations in crystalline metals, which cannot be easily 
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described by traditional continuum mechanics [54]. The large amount of dislocations in crystalline 
metals (≈107 per cm2 at annealed state) makes it reasonable to use the concept of continuum mechanics 
in the analysis of plastic deformation controlled by dislocation motion. 

Assuming that dislocation gliding occurs uniformly in a grain/single crystal, Rice and Hill 
[55,56] proposed a kinematic formalism for the plastic deformation of crystals. They divided the 
deformation gradient tensor F for a crystal into Fe, representing the lattice distortion and rigid 
rotation, and Fp, representing dislocation gliding (Figure 7) as 

F = Fe Fp (4) 

 
Figure 7. Deformation of a single crystal: (a) example of pure dislocation deformation F = Fp, and (b) 
example of pure lattice deformation F = Fe. 

The plastic deformation rate tensor due to the dislocation gliding is calculated as �̇� = 𝑳𝑭 (5) 

Here, Lp is the velocity gradient for plastic deformation, consisting of the contribution of the 
shear strain rate �̇�(ఈ) on all active slip systems as 

𝑳 =  �̇�(ఈ)𝒎(ఈ) ⊗ 𝒏(ఈ)ே
ఈୀଵ  (6) 

where 𝒎(ఈ) and 𝒏(ఈ) are the unit slip direction and normal vectors of the slip plane for the 𝛼-th 
slip system, respectively, and N is the number of slip systems. Lp can be further divided into a 
symmetric part, i.e., plastic deformation rate tensor, Dp, and an antisymmetric part, i.e., spin tensor, 
Wp, as 

𝐷 = 12  �̇�(ఈ)ே
ఈୀଵ ൫𝑚(ఈ)𝑛(ఈ) + 𝑚(ఈ)𝑛(ఈ)൯ (7) 

𝑊 = 12  �̇�(ఈ)ே
ఈୀଵ ൫𝑚(ఈ)𝑛(ఈ) − 𝑚(ఈ)𝑛(ఈ)൯ (8) 

The plastic deformation rate tensor, Dp, represents the incremental change in the deformation 
behavior of the material, and the spin tensor, Wp, represents the gliding-induced change in the crystal 
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orientation. Equations (5)–(8) lay the foundation to establish the relationship between the 
deformation at macro-scale and the shear strains of individual slip systems in a grain/crystal during 
plastic deformation. 

In addition to the kinematic relations, constitutive equations, which capture the microstructure 
evolution, such as the rafting and dislocation activities, and correlate stresses to strains, need to be 
developed in order to completely describe the deformation behavior of a grain/crystal. In the 
following, we present two classes of constitutive models: one is referred to as phenomenological 
constitutive models, and the other is referred to as physics-based constitutive models. 

3.2. Phenomenological Constitutive Models 

Several internal state variables are used in the development of phenomenological constitutive 
models. The deformation state of a material is determined by the variations of the internal state 
variables with thermal and mechanical loading. The phenomenological constitutive models can be 
categorized into power-law type (medium stress condition), hyperbolic-sine type (medium to high 
stress condition) and linear type or combination of linear and power-law types (low to medium stress 
condition). Chowdhury et al. [57] compared the applications of these constitutive models in the study 
of crystal plasticity. For engineering practices, the analysis of the plastic deformation of turbine blades 
is usually based on the power-law constitutive models. The power-law constitutive models have been 
widely used in the stress analysis due to that it is cost-effective in determining material parameters 
in the constitutive models and they are applicable in the analysis of the steady-state creep 
deformation of turbine blades at elevated temperature over a wide range of stresses. However, the 
pre-factor of the power-law constitutive models is a function of temperature due to different rate 
mechanisms. 

For nickel-based superalloys, dislocation motion in both γ and γ’ phases are the dominant 
mechanism for plastic deformation at elevated temperature [58,59]. In the power-law constitutive 
models, the ratio or difference between the resolved shear stress, 𝜏(ఈ), and the slip resistance, 𝑔(ఈ), 
determines the slipping activity of the slip systems. A general mathematic relationship between the 
shear strain rate, the resolved shear stress, and the slip resistance can be expressed as [60] �̇�ఈ = 𝑓൫𝜏(ఈ), 𝑔(ఈ)൯ (9) 

There are three different types of power-law constitutive models for creep deformation as [57] 

�̇�(ఈ) = �̇� ቤ𝜏(ఈ)𝑔(ఈ)ቤ 𝑠𝑔𝑛൫𝜏(ఈ)൯ (10) 

�̇�(ఈ) = �̇� ቤ𝜏(ఈ) − 𝑋(ఈ)𝑔(ఈ) ቤ 𝑠𝑔𝑛൫𝜏(ఈ) − 𝑋(ఈ)൯ (11) 

�̇�(ఈ) = ൽห𝜏(ఈ) − 𝑋(ఈ)ห − 𝑅(ఈ)𝐾 ඁ 𝑠𝑔𝑛൫𝜏(ఈ) − 𝑋(ఈ)൯ (12) 

where �̇�  and n are the shear rate at the reference state and the rate sensitivity parameter, 
respectively, 𝑔(ఈ)  and 𝑅(ఈ)  are two threshold stresses (both evolve with the activity of 
crystallographic slips [57]), 𝑋(ఈ) is internal stress or the back stress, and K is temperature-dependent 
material parameter. The angle bracket “<y>” in Equation (12) represents the positive part of y, and 
the “sgn(•)” is the sign function.  

For the power-law constitutive model of Equaton (10), the activity of crystallographic slips is 
determined by the resolved shear stress, 𝜏(ఈ) . The slip resistance, 𝑔(ఈ) , is the only internal state 
variable as 

�̇�(ఈ) =  ℎఈఉห�̇�(ఉ)หே
ఉୀଵ  (13) 
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with ℎఈఉ as the hardening matrix, which determines the hardening effect of the α-th slip system on 
the β-th slip system [61]. For α = β, the hardening parameter, ℎఈఈ , represents the self-hardening 
modulus as [61] ℎఈఈ = ℎ(𝛾) = ℎ𝑠𝑒𝑐ℎଶ ฬ ℎ𝛾𝜏௦ − 𝜏ฬ (14) 

for 𝛼 ≠ 𝛽, the hardening parameter, ℎఈఉ, represents the latent hardening modulus as ℎఈఉ = 𝑞ℎ(𝛾), (𝛼 ≠ 𝛽) (15) 

Here, ℎ is the initial hardening modulus, 𝜏௦ and 𝜏 are the saturated shear stress and initial 
yield stress, respectively, and q is a constant. The cumulative shear strain, 𝛾, is calculated as 𝛾 =  න ห𝛾(ఈ)ห𝑑𝑡௧

ఈ  (16) 

Note that the hardening matrix, ℎఈఉ, is also reported in a power-law form as [60,62]  ℎఈఉ = 𝑞ఈఉℎ ൬1 − 𝜏𝜏௦൰బ
 (17) 

with n0 as a material constant. For the self-hardening modulus, 𝑞ఈఉ = 1, and for the latent hardening 
modulus, 𝑞ఈఉ = 1.4. 

For the constitutive models of Equations (11) and (12), the activity of crystallographic slips is 
determined by the effective stress 𝜏(ఈ) − 𝑋(ఈ)  and ห𝜏(ఈ) − 𝑋(ఈ)ห − 𝑅(ఈ) , respectively. The internal 
stress, 𝑋(ఈ), can be calculated by the following equation [63]  𝑋(ఈ) = 𝐶(ఈ)𝑎(ఈ) (18) �̇�(ఈ) = 𝜙൫𝜈(ఈ)൯�̇�(ఈ) − ห�̇�(ఈ)ห𝑑(ఈ)𝑎(ఈ) (19) 𝜙൫𝜈(ఈ)൯ = 𝜙 + (1 − 𝜙)𝑒ିఋఔ(ഀ) (20) 𝜈(ఈ) = න ห�̇�(ఈ)ห௧

 𝑑𝑡 (21) 

In Equation (18), 𝐶(ఈ) is the determinate internal stress at a temperature, and 𝑎(ఈ) is a control 
variable [57]. The constant d is a recovery parameter. The flow accumulation function of 𝜙൫𝜈(ఈ)൯ is 
calculated from the accumulated shear strain of the 𝛼-th slip system of 𝜈(ఈ) and the constants of 𝛿 
and 𝜙 in Equation (20). It needs to be pointed out that some works [12,19] replaced the term of 𝜙൫𝜈(ఈ)൯�̇�(ఈ) with ห�̇�(ఈ)ห in Equation (19) and did not consider the flow accumulation function of 𝜙൫𝜈(ఈ)൯. 

In general, the use of the effective stress instead of the resolved shear stress for the constitutive 
models of Equations (11) and (12) makes it possible to analyze the plastic deformation in materials 
consisting of complex microstructures involving multiphases [64,65]. This is because the internal 
stresses from the complex microstructures do not directly contribute to the activities of 
crystallographic slips and needs to be deducted. Additionally, the increments of the internal state 
variables in Equations (11) and (12) have provided the basis to accurately describe crystallographic 
slips and determine the threshold stress. All of these suggest that the power-law constitutive models 
of Equations (11) and (12) can likely provide better correlations between stresses and strains for the 
analysis of the plastic deformation of the nickel-based superalloys. 

3.3. Physics-Based Constitutive Models 

In the phenomenological constitutive models, the threshold stresses, 𝑔(ఈ)and/or 𝑅(ఈ), whose 
evolution follows a hardening rule, are used to represent the contribution of dislocation motion. 
However, it is very difficult, if not impossible, to experimentally determine the hardening rule and 
to validate the hardening rule under service-like conditions. Additionally, these constitutive models 
fail to capture the orientation dependence of the mechanical behavior of single crystals [66] and the 
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hardening rule of materials at the micron scale [67]. There is a great need to develop physics-based 
constitutive models, which use dislocation density as an important internal state variable. 

There are various physics-based constitutive models, which incorporate dislocation density in 
the theory of plasticity for the analysis of the plastic deformation of crystalline materials [68–71]. In 
the heart of the physics-based constitutive models is the evolution of statistically stored dislocation 
(SSD) and geometrically necessary dislocation (GND) during plastic deformation. The SSD is 
associated with the “homogeneous” deformation, while the GND is associated with the 
“inhomogeneous” deformation in single crystals only at small length scale [68]. 

SSDs are quantified by dislocation density, ρ, (line length per unit volume), Burgers vector, b, 
and unit vector of dislocation-line segment, t. The magnitude of the Burgers vector is discrete and 
related to the lattice constant of crystal. For simplification, the unit vector of dislocation-line segment 
is sometimes limited to a finite set, which makes it easy to include dislocations in numerical 
calculation. 

The Orowan relationship instead of the phenomenological constitutive relationship is used to 
correlate the plastic shear rate with dislocation density in a physics-based constitutive model as [60]  �̇�(ఈ) = 𝜌(ఈ)𝑏𝜈(ఈ) (22) 

where 𝜌 is the density of mobile dislocations and is calculated from the SSD density, 𝜌ௌௌ, and b 
and 𝜈  are the magnitude of Burgers vector and average velocity of the mobile dislocations, 
respectively. One specific form of Equation (22) is [68,69]:  �̇�(ఈ) = ൫𝜌ା(ఈ)�̅�ା(ఈ) + 𝜌ି(ఈ)�̅�ି(ఈ) + 𝜌௦ା(ఈ)�̅�௦ା(ఈ) + 𝜌௦ି(ఈ)�̅�௦ି(ఈ)൯|𝒃| (23) 

where the subscripts, e and s, represent edge and screw dislocations, respectively, and the symbols, 
“+” and “−”, represent the polarity of the SSD density. The density of mobile dislocation, 𝜌 , in 
Equation (22) can also be divided into two portions: 𝜌 for the dislocations parallel to slip planes, 
and 𝜌ி for the dislocations perpendicular to slip planes as [70,71] 𝜌(ఈ) = 𝐵𝑇ට𝜌(ఈ)𝜌ி(ఈ) (24) 

𝐵 = 2𝑘𝑐ଵ𝜇𝑏ଷ (25) 

𝜌(ఈ) =  𝜒(ఈ)(ఉ)𝜌ௌௌ(ఉ)ே
ఉୀଵ ห𝑠𝑖𝑛 ൫𝒏(ఈ), 𝒕ఉ൯ห (26) 

𝜌ி(ఈ) =  𝜒(ఈ)(ఉ)𝜌ௌௌ(ఉ)ே
ఉୀଵ ห𝑐𝑜𝑠 ൫𝒏(ఈ), 𝒕ఉ൯ห (27) 

where kB is Boltzmann constant, c1 is a constant for the evolution of dislocation density, and 𝜒(ఈ)(ఉ) 
represents the interaction strength between different slip systems. The dislocation interaction plays 
an important role in determining the plastic deformation in single crystal superalloys. There are 
nucleation and annihilation of dislocations during plastic deformation, which determine the 
evolution of dislocation densities [68,70]. 

The SSD alone is not enough to describe the plastic deformation of crystalline materials. If 
heterogeneous two-phase microstructure exists in a material, a local strain gradient related to the 
activity of GNDs is always generated between the strengthening precipitates, such as γ’ phases in 
nickel-based superalloys [72]. In crystal plasticity models, GNDs can be obtained from slip gradients, 
and they are further divided into the edge dislocation, 𝜌ீே,, along the slip direction and the screw 
dislocation, 𝜌ீே,௦, perpendicular to the slip direction as [67] 𝜌ீே,(ఈ) 𝑏 = −𝜵𝛾(ఈ) ∙ 𝒎(ఈ) (28) 𝜌ீே,௦(ఈ) 𝑏 = 𝜵𝛾(ఈ) ∙ 𝒑(ఈ) (29) 
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where 𝒑(ఈ) = 𝒎(ఈ) × 𝒏(ఈ), 𝒎 is a unit vector parallel to the Burgers vector, and 𝒏 is the unit normal 
to the slip plane. 

With the SSD density and GND density, the internal stress or back stress, 𝑋(ఈ), and the slip 
resistance, 𝑔(ఈ), in phenomenological constitutive models can be calculated as [67] 𝑔(ఈ) = 𝜇𝑏ඨ 𝐻(ఈ)(ఉ)𝜌(ఉ)ఉ  (30) 

𝑋(ఈ) = 𝜇𝑏𝑅ଶ8  1(1 − 𝜐) 𝜵𝜌ீே,(ఈ) ∙ 𝒎(ఈ) − 2  𝛿௦(ఈ)(ఉ)൫𝜵𝜌ீே,௦(ఈ) ∙ 𝒑(ఈ)൯ఉ  (31) 

where 𝜐 is Poisson’s ratio, R is a length scale in the calculation model [73], 𝐻(ఈ)(ఉ) is the interaction 
matrix between two slip systems of α and β with six types of interaction in the matrix [74]. 𝛿௦(ఈ)(ఉ) is 
the interaction coefficient as [73] 

𝛿௦(ఈ)(ఉ) = ൝1   𝑓𝑜𝑟(𝛼, 𝛽) = (4,13), (6,18), (8,17), (9,15), (10,16), (11,14),(1,16), (2,17), (3,18), (5,14), (7,13), (12,15)0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (32) 

Here, α (= 1 to 12) represents the edge dislocation, and α (= 13 to 18) represents the screw 
dislocation. 𝜌(ఉ) in Equation (30) is the total dislocation density on the β-th slip system. Note that 
Tinga et al. [51] considered the contributions of the SSD density and GND density to the total 
dislocation density, respectively.  

Some works incorporated dislocation dynamics, such as discrete dislocation dynamics (DDD) 
[16,17] and continuum dislocation dynamics (CDD) [18], in the analysis of plastic deformation and 
microstructural evolution. The DDD models are based on discrete description of dislocation motion 
and require sufficiently fine grid spacing and great computational cost in the simulation of 
dislocation activities. The CDD models are based on a continuum quantity (dislocation density) 
instead of individual dislocations and need much less computational cost [18]. However, the 
simulation with either type of dislocation dynamics models still costs more computational effort than 
that with the crystal plasticity models, which incorporate the dislocation activity in a 
phenomenological or empirical form [19,20]. Thus, crystal plasticity models are widely used to 
account for the microstructure evolution and plastic deformation and to provide valuable 
information for engineering applications [57,75]. Table 2 presents the comparisons of the plasticity 
models used in the rafting analysis.  

Table 2. Comparisons of different plasticity models used in the rafting analysis. 

Model Pros and Cons 
Application in the Rafting 

Analysis 

Phenomenological 
constitutive models 

Pros: Be cost-effective in determining material parameters 
and applicable in engineering calculations. 

Cons: Fail to capture the orientation dependence of the 
mechanical behavior of single crystals; difficult to 

experimentally verify the hardening rule used in the 
constitutive models. 

Rafting with creep damage 
[8,19] 

Physics-based 
constitutive models 

Pros: Be able to model the microstructure evolution and 
include the contribution of dislocations. 

Cons: Fail to explicitly capture the motion of dislocations. 

Coupling between rafting 
and crystal plasticity with 
dislocation densities [67] 

Discrete dislocation 
dynamics models 

Pros: Explicitly describe the dislocation distribution during 
microstructural evolution. 

Cons: Require sufficiently fine grid spacing and great 
computational cost in simulation. 

Distribution of plastic strain 
in γ-channels and its effect 

on rafting [16] 

Continuum dislocation 
dynamics models 

Pros: Consider average distribution of dislocations and need 
less computational cost. 

Cons: Difficult to be compared with phenomenological 
constitutive models in engineering calculations. 

Effect of initial dislocation 
density on rafting [18] 
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4. Phase-Field Models  

4.1. Phase-Field Method 

Phase-field method is based on the description of diffuse-interface model, and the concept of 
diffuse interface is derived from van der Waals [76] and Cahn and Hilliard [77]. In contrast to 
conventional sharp-interface models (field variables are discontinuous at interface), the interface in 
the diffuse-interface model is represented by a series of consecutive values [18]. Assigning different 
values to different phases (for example, γ’ strengthening phase and γ matrix phase in nickel-based 
superalloys), the interface region is implicitly given [78]. Such a method makes it possible to analyze 
the evolution of complex microstructures, including precipitation, dissolution, coarsening, 
connection, and topological inversion of γ’ strengthening phases [79,80]. Additionally, the physical 
characteristics, i.e., the γ/γ’ lattice misfit, elastic constants and dislocation densities, and the 
mechanical behavior, i.e., heterogeneous elasticity and plastic deformation, of superalloys can be well 
incorporated in the mathematical framework of the phase-field method. The phase-field method has 
become an excellent technique to study internal stresses and plastic deformation and illustrate the 
mechanisms for the microstructure evolution in nickel-based superalloys. 

The application of the phase-field method in the simulation of microstructural evolution was 
initially based on an elastic framework, where the mechanical stress, σA, the γ/γ’ lattice misfit, δ, and 
the difference of mechanical properties between γ and γ’ phases, ∆𝐺, were incorporated in the model 
to reveal the rafting behavior [14,15,26]. The elasto-plastic frameworks, which take into account the 
plastic deformation in γ matrices during creep, were later developed [8,12,19]. 

Superalloys are generally multiphase and/or multicomponent materials, which require large 
number of field variables or physical quantities in the phase-field method in addition to mechanical 
deformation (elastic and elasto-plastic deformation). They provide a practical application of the 
phase-field theory in the understanding of the microstructure evolution of multiphase, polycrystal, 
and multicomponent materials [81]. The combination of the phase-field model and the crystal 
plasticity likely opens a new avenue for the study of the mechanical deformation and microstructure 
evolution of superalloys under concurrent action of thermal and mechanical loading. 

4.2. Ni-Al Binary System 

Nickel-based superalloys consist of multielements, including Ni, Al, Re, Co, etc., while Ni and 
Al are two major elements determining the microstructure evolution [12]. A Ni-Al binary system has 
been used in different phase-field models to simulate the γ/γ’ microstructure evolution in the nickel-
based superalloys. 𝐶(𝒓, 𝑡) is defined as the concentration of Al, which is used to distinguish γ’ phase (mainly Ni3Al) 
from γ phase (mainly Ni). For a given concentration, C, it is equal to 𝑐ఊ in the γ phase and 𝑐ఊᇲ in 
the γ’ phase, and the region with the Al concentration changing from 𝑐ఊ to 𝑐ఊᇲ corresponds to the 
γ/γ’ interface. Note that the Ni-Al phase diagram is used to determine the numerical values of 𝑐ఊ 
and 𝑐ఊᇲ at a given temperature [82]. A dimensionless parameter, 𝐶ᇱ, is sometimes used instead of 
the concentration, C, to distinguish the γ’ phase from the γ phase as [26]  𝐶ᇱ = 𝐶 − 𝑐ఊ𝑐ఊᇲ − 𝑐ఊ (33) 

with C’ = 1 representing the γ’ phase and C’ = 0 representing the γ phase.  
There are four different γ′ variants when studying the γ/γ’ microstructure evolution. This is 

because there are antiphase domains between different γ’ variants, which affect the directional 
coarsening of γ’ phase [79]. Three field parameters are introduced to characterize four different γ’ 
variants: {𝜙ଵ, 𝜙ଶ, 𝜙ଷ}=𝜙{1,1,1}, 𝜙{1ത ,1ത , 1}, 𝜙{1ത , 1, 1ത}, 𝜙{1, 1ത ´ , 1ത} [12]. The concentration field, 𝐶(𝒓, 𝑡), and the field parameters, 𝜙  (i = 1, 2, 3), are controlled by kinetic equations, which are 
established on the principles of minimum free energy [12] and/or maximum entropy [83].  

The principle of maximum entropy has been mainly used in the solidification analysis of alloys. 
It is very difficult to calculate the change of entropy during plastic deformation. The principle of 
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minimum free energy is more common in the study of the rafting process. With the principle of 
minimum free energy, the concentration field, 𝐶(𝒓, 𝑡), and the field parameters, 𝜙 (i = 1, 2, 3), satisfy 
the Cahn–Hilliard and Allen–Cahn equations as  𝜕𝐶(𝑟, 𝑡)𝜕𝑡 = 𝜵 ∙ ൬𝑚𝜵 𝛿𝐹𝛿𝐶(𝑟, 𝑡)൰ (34) 

డథ(,௧)డ௧ = −𝑙 ఋிఋథ(,௧), (i=1, 2, 3) (35) 

The local volume fraction of the γ’ phase, f(𝒓, 𝑡), is used sometime instead of 𝐶(𝒓, 𝑡) in Equation 
(34) [20,84]. Note that the local γ’-volume fraction is equivalent to the dimensionless parameter, C’. 
The use of f(𝒓, 𝑡) makes it easy to extend the phase-field models for the Ni-Al binary system to 
multicomponent systems. Here, m0 and l0 are the mobility coefficient and the kinetic coefficient, 
respectively, and F is the total free energy consisting of chemical free energy, 𝐹, and strain energy, 𝐹. The chemical free energy can be expressed by Ginzburg–Landau functional approximation as 
[12]  𝐹 = න[𝑓ℎ + κଵ |𝛁C|ଶ + κଶ  |𝛁ϕ୧|ଶ] dV୧ୀଵ,ଷ  (36) 

The gradients of the concentration field and field parameters in Equation (36) define the 
numerical resolution and interface thickness in the simulation [18]. The gradient energy coefficients 
of 𝜅ଵ  and 𝜅ଶ  are related to interfacial energy, and their values are adjusted to ensure that the 
interface thickness of two-phase microstructure can represent real situation [12,85]. The use of 𝑓 
is to distinguish the γ phase from the γ’ phase and to assure the stability of four different γ’ variants 
at 𝜙{1, 1, 1}, 𝜙{1ത, 1ത, 1}, 𝜙{1ത ´ , 1, 1ത}, and 𝜙{1, 1ത, 1ത}. The strain energy, 𝐹, is calculated as 𝐹 = 𝐹 + 12 න𝝀ധ : 𝜺𝒆𝒍: 𝜺𝒆𝒍𝑑𝑉 (37) 

where 𝝀ധ  is local elasticity modulus tensor depending on the concentration field, 𝐶(𝒓, 𝑡). 𝐹  is a 
homogeneous term, depending on loading condition. For strain-control condition, 𝐹 = 0; for stress-
control condition, 𝐹 = −𝑉𝜎𝜀̅. Here 𝜎 is the components of applied stress, and 𝜀̅ is the average 
strain components [13]. 

The contribution of the hardening free energy, Fvp, or plastic energy, Fpl, to the total free energy 
during plastic deformation was also considered in some works [12,19]. However, the partial 
derivative of Fvp or Fpl to 𝐶(𝒓, 𝑡) in Equation (34) is negligible since most studies have been using the 
same viscoplastic parameters for both the γ phase and the γ’ phase, i.e., the hardening or plastic 
energy function is homogeneous in two phases and independent of the concentration field, 𝐶(𝒓, 𝑡). 

It is worth mentioning that calculations are performed for small deformation in the phase-field 
simulation. In this situation, the change of the crystal dimensions is negligible and the total strain rate 
tensor, 𝛆ሶ෨, can be divided into three parts as [26,86]  𝜺ሶ෨ = 𝜺ሶ෨ + 𝜺ሶ෨ + 𝜺ሶ෨ (38) 

Here, 𝜺ሶ෨, 𝜺ሶ෨, and 𝜺ሶ෨ are elastic strain, eigenstrain from the γ/γ’ lattice misfit 𝜉, and plastic 
strain rate tensors, respectively. The plastic strain rate tensor, 𝜺ሶ෨, is obtained through the theory of 
crystal plasticity as [86]  

𝜺ሶ෨ =  �̇�(ఈ)𝒎(ఈ) ⊗ 𝒏(ఈ)ே
ఈୀଵ  (39) 

Then the shear strain rate �̇�(ఈ)  is calculated through phenomenological or physics-based 
constitutive models. However, the use of the theory of crystal plasticity for small deformation 
indicates that the calculated strains are much less than the strains measured in experiments.  

The equilibrium equations must be satisfied all the time during the microstructure evolution. 
The local stress equilibrium is expressed as [12]  
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ቄ𝑑𝑖𝑣 𝝈~ = 0𝜎ത = 𝝈~ ∈ 𝑉 (40) 

Minimizing the strain energy function, 𝐹 , with respect to the displacement or strain 
components, ui or𝜀̅, under given boundary conditions yields [13] 

⎩⎪⎨
⎪⎧ 𝛿𝐹𝛿𝑢 = 0, 𝑠𝑡𝑟𝑎𝑖𝑛 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝛿𝐹𝛿𝜀̅ = 𝜎, 𝑠𝑡𝑟𝑒𝑠𝑠 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (41) 

The Cahn–Hilliard and Allen–Cahn equations and the equilibrium equations constitute the main 
framework of the phase-field models, which involve the two-way interaction between the 
concentration field and the energy function (stresses).  

4.3. Multiphase-Field Model 

Phase-field models have evolved from simple binary models with only one order parameter to 
multiorder or multiphase models recently. A typical example of the multiorder phase-field model is 
to have four different γ’ variants with three ordered parameter fields, 𝜙 (i = 1, 2, 3), as discussed in 
the above section. Multiphase-field models are mainly used for polycrystalline materials [87] and 
single crystal with multiple components [41]. The following discussion is focused on the 
multicomponent models for the analysis of the rafting behavior in single crystals.  

The total free energy, F, in multicomponent models can be calculated from the integration of the 
strain energy density, fel, the interface energy, fit, and the chemical free energy, fch, as [87] 𝐹 = න (𝑓 + 𝑓௧ + 𝑓) 𝑑𝛺ఆ  (42) 

𝑓௧ =  𝜅ఈఉ𝜂ఈఉ ቊ𝜂ఈఉଶ𝜋ଶ ห𝜵𝜙ఈ ∙ 𝜵𝜙ఉห + 𝑊ఈఉቋே
ఈ,ఉୀ  (43) 

𝑓 =  𝜙ఈ𝑓ఈ(𝒄ఈ)ே
ఈୀ + 𝝁 ൭𝒄 −  𝜙ఈே

ఈୀଵ 𝒄ఈ൱ (44) 

where 𝜙 denotes γ matrix, 𝜙ఈ (𝛼=1, 2, 3, 4) denote different γ’ variants, 𝜅ఈఉ is the interface energy, 𝜂ఈఉ  is the width of interface, 𝑊ఈఉ൫= 𝜙ఈ𝜙ఉ൯  is the repulsive potential function, and 𝒄  is the 

concentration vector. In Equation (44), 𝑓ఈ(𝒄ఈ) is the bulk free energy of each phase, and 𝝁 ቀ= డడ𝒄 ቁ 
is chemical potential vector.  

The strain energy density, 𝑓, in multiphase-field models has a similar expression to that in 
binary-field models as 𝑓 = 12 𝜆∗ 𝜀𝜀 (45) 𝜀 = 𝜀 − 𝜀∗ − 𝜀 (46) 

where 𝜆∗  and 𝜀∗  are the components of effective stiffness tensor and effective eigenstrain tensor, 
respectively [41,87].  

The kinetic equations for the microstructure evolutions are [41,87] 𝜕𝜙ఈ𝜕𝑡 = −  𝜇ఈఉ𝑁 ቆ 𝛿𝐹𝛿𝛷ఈ − 𝛿𝐹𝛿𝛷ఉቇே
ఉୀ  (47) 

𝜕𝑐𝜕𝑡 = 𝜵 ൭ 𝑴ே
ఈୀ 𝜵 𝛿𝐹𝛿𝑐 ൱ (48) 



Crystals 2020, 10, 1095 16 of 24 

 

𝜕𝜎𝜕𝑟 = 0 (49) 

Here, 𝜇ఈఉ is the components of the mobility-coefficient tensor, and 𝑴 is the chemical mobility 
tensor. Comparing Equations (47)–(49) of the multiphase-field model with those in the Ni-Al binary-
field model, we note similarities between both models. The driving force for the microstructure 
evolution in both models is the variation of the energy functions of individual phases, and the 
equilibrium equation needs to be satisfied all the time.  

Figure 8 summarizes the basic process to numerically solve the Ni-Al binary-field models and 
the multiphase-field models. 

 
Figure 8. Flowchart showing the basic process to numerically solve the Ni-Al binary-field models and 
the multiphase-field models. 

Step 1: Obtain initial microstructures. This can be achieved by the heat treatment of superalloys 
(precipitation and coarsening) at high temperature and imaging (SEM and/or TEM) [79] and/or by 
setting field variables from external files [8,42]. 

Step 2: Calculate plastic strain. The plastic strain is calculated by solving the related equations, 
which are based on phenomenological models or physics-based models. 

Step 3: Calculate strain energy. The total strain field, 𝛆~, and the stress filed, 𝛔 , are firstly 
obtained by solving equilibrium equations [12,26]. The elastic strains are obtained by subtracting the 
eigenstrain and plastic strains from the total strains. Finally, the strain energy is calculated from the 
elastic strains and elastic constants. 

Step 4: Update the field variables by solving the Allen–Cahn and Cahn–Hilliard equations. 
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5. Application of Crystal Plasticity and Phase-Field Method in the Rafting Analysis  

5.1. Uniaxial Tension 

Uniaxial tension with constant strain rates has been used to experimentally study the rafting 
behavior in superalloys. Using strain control in the phase-field simulation, we can achieve the tensile 
mode in solving equilibrium equations. Figure 9 presents the microstructure evolution and plastic 
strain during the tension of a nickel-based single crystal superalloy. It is evident that there is no 
significant change in the microstructure, and there is plastic deformation near the γ/γ’ interface and 
the center of the γ’ phases. Comparing the numerical results with experimental results, we can 
determine the mechanical properties of the γ/γ’ microstructure and the bulk phase (if two phase 
structures are not distinguishable) from the input parameters for the numerical calculation. 
Additionally, we can evaluate the strengthening effect of the γ’ phase and determine the effect of the 
γ’ phase on the mechanical properties of nickel-based superalloys on the macroscale. 

 
Figure 9. Numerical results of the microstructure and plastic strain at different instants during the 
tension of a nickel-based single crystal superalloy at a strain rate of 10−3 per second and 1253 K: (a1–
d1) microstructure, and (a2–d2) plastic strain. (Reproduced with permission from [8] © 2020 Elsevier.) 

Cottura et al. [67,88] introduced a characteristic plastic length, 𝜁, in 1D configuration to illustrate 
the size effect on the plastic deformation of the γ phase and the mechanical properties of the material. 
Their simulation results suggest that plastic strain is homogeneous in the γ phase if the characteristic 
plastic length is negligible. Increasing the characteristic plastic length led to the inhomogeneous 
distribution of the plastic strain and the decrease of the peak value of 𝜁. For the value of 𝜁 being 
larger than the width of the γ channels, no plastic deformation would occur in the γ channels. 
Increasing the characteristic plastic length also increased the flow stress during the tensile 
deformation. 

Wang et al. [8] included the Orowan stress in a visco-plasticity phase-field model to analyze the 
size effect in a two-dimensional system. Their results show that the flow stress during the tensile 
deformation decreases with the increase of the γ channel width and the flow stress remains 
unchanged after the γ channel width reaches a critical value. Zhang et al. [7] also reported similar 
results for the tension of nickel-based superalloys at high temperature. They pointed out the 
dependence of the yielding stage during tensile deformation on the penetration of dislocations into 
γ’ precipitates.  
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5.2. Creep Deformation  

5.2.1. N-Type/P-Type Rafting 

There are reports on the use of the phase-field models in the analysis of the rafting during creep 
deformation in the frameworks of elastic deformation [14,26] and elasto-plastic deformation 
[8,12,19,67]. In the framework of elastic deformation, the rafting is determined by the sign of applied 
stress, σA, the γ/γ’ lattice misfit, δ, and the difference of mechanical properties between γ and γ’ 
phases, ∆𝐺. The results from the phase-field simulation reveal the formation of N-type and P-type 
raft structures in consistence with the predictions shown in Figure 3. However, the simulation cannot 
capture the rafting features associated with plastic deformation [12,26] despite the good replication 
in the types of the raft structure. For example, Gaubert et al. [12] compared the simulated 
microstructures in elastic framework with the corresponding ones in elasto-plastic framework. They 
found raft structures with straight edges in elastic framework and raft structures with wavy-type 
edges in elasto-plastic framework. In addition, the plastic deformation increased the rafting rate and 
promoted the formation of raft structures. Wang et al. [8] presented raft structures and the 
distribution of plastic strain during creep deformation in elasto-plastic framework. As shown in 
Figure 10, the raft direction was not strictly perpendicular to the loading direction, and the plastic 
strain almost appeared in horizontal γ channels and around the γ/γ’ interface. They pointed out that 
further plastic strain that occurred around the γ/γ’ interface might result in the instability of raft 
structures.  

 
Figure 10. Microstructure evolution (top row) and the corresponding plastic strain field (bottom row) 
at different instants at 1253 K under 330 MPa from the phase-field simulation: (a) t = 0, (b) t = 5 h, (c) 
t = 16.83 h, (d) t = 32 h, and (e) t = 51.39 h. Dark blue in the top row denotes γ matrix, and other four 
colors represent four different γ’ variants. (Reproduced with permission from [8] © 2020 Elsevier.) 

Zhou et al. [89] pointed out that the kinetics for rafting are not solely determined by the 
difference of mechanical properties between γ and γ’ phases, ∆𝐺. They revealed that N-type raft 
structures can form under tensile loading even for homogeneous γ/γ’ microstructures (∆𝐺 = 1) if 
there are dislocations present in horizontal γ channels (normal to the loading direction) at initial state. 
The time needed to form stable P-type raft structures is less than that to form N-type raft structures, 
which can be attributed to the difference in the diffusion paths of solute atoms. 

According to Equations (34) and (36), the atomic migration in γ channels is controlled by the 
difference of chemical potentials, where forming elements of the γ’ phase (mainly Al in Ni-Al binary 
system) diffuse from the γ channels with large chemical potential to the matrix with small chemical 
potential. Under compression in <001> direction, the forming atoms of the γ’ phase migrate from two 
types of vertical γ channels (channel 1 and channel 2, see Table 1) to the horizontal γ channel (channel 
3) leading to the formation of P-type raft structure. Under tension in <001> direction, atoms migrate 
from channel 3 to channels 1 and 2, leading to the formation N-type raft structure.  
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The phase-field models for Ni-Al binary system have been focused on the diffusion of Al, which 
is likely not enough for multielement superalloys. Multiple-component phase-field models, which 
contain the main chemical components of nickel-based superalloys, have been developed in order to 
systematically investigate the effects of alloy elements on the rafting kinetics [42]. As shown in Figure 
6, the results reveal that, under tensile loading, the coalescence of γ’ precipitates to form raft 
structures causes the diffusion of Al, Ti, and Ta from the horizontal γ channels to the vertical γ 
channels and removes atoms of Co, Cr, and Mo from the vertical γ channels. However, some 
refractory elements, such as Re and W, likely accumulate near the γ/γ’ interface. 

5.2.2. Complex Types of Rafting 

The types of raft structures formed are largely dependent on the loading condition (direction, 
tension/compression, etc.), such as the 45-degree rafting in <011> direction [37] (Figure 4). Kamaraj 
[40] reported the formation of raft structures with 45° angle to the shear stress in a double shear creep 
test. Such a type of raft structure was also observed experimentally during the creep of MC2 nickel-
based superalloy at high temperature and attributed to the highly localized creep strain [90]. 
However, the angle between the direction of the raft structure and the mechanical loading varied 
from the region near the fracture with highly localized creep strain to the region far away from the 
fracture. 

Gaubert et al. [91] analyzed the microstructure evolution of <011>-oriented Ni-based superalloys 
using a 3D mean-field visco-plasticity model. Their results demonstrated the directional coarsening 
of raft structures along <100> direction. A slight deviation between the loading direction and <011> 
direction drove initial cubic γ’ precipitates to coarsen firstly along <100> direction and extended then 
along <001> or <010> direction. Yang et al. [92] performed a similar study on the microstructure 
evolution of nickel-based superalloys with the loading direction deviated from <001> orientation. 
They referred to this loading mode as monoclinic loading, which can be equivalent to a shear-loading 
mode and a tension-loading mode. They analyzed the microstructure evolution under monoclinic, 
shear, and tension loadings, respectively, and found nearly no rafting behavior under the shear 
loading and synchronous N-type rafting for the monoclinic and tension loading under small stress. 
Increasing applied stress led to the formation of 45-degree rafting in the overall region under the 
shear loading and in the partial region under the monoclinic loading. A N-type rafting was still found 
under the tensile loading, and its rafting rate was smaller than that under the monoclinic loading. 
Increasing applied stress increased the role of the shear stress component in the rafting process under 
the monoclinic loading. 

Ali et al. [93] combined the phase-field method with physics-based crystal plasticity model to 
explain the formation of a 45-degree rafting in the region with local creep strain larger than 10% 
under a tensile loading in <001> direction. Their results showed that creep strain in some regions was 
significantly higher than average creep strain. A large amount of geometrically necessary dislocations 
was found in these regions, which caused the change of the original direction of the raft structures 
and led to the formation of the 45-degree rafting.  

5.2.3. Collapse and Topological Inversion  

It is known that rafting usually occurs under mechanical loading at high temperature. 
Continuous creep deformation can cause the change of initial γ’ precipitates of cubic shape to stable 
raft structures. However, further creep deformation may distort the stable raft structure and lead to 
topological inversion of γ/γ’ phases, i.e., the γ’ strengthening phase gradually surrounds the γ phase 
[94]. Incorporating damage parameters [8,19,80] and the change of misfit strain [84,95] in the phase-
field models allows for the determination of the major factors contributing to the collapse and 
topological inversion of the γ/γ’ microstructures. 

The damage parameters can represent the change of the elastic constants of the γ’ phase and/or 
the increase of the plastic shear rate during creep deformation. Some slip systems can cut into the γ’ 
phase and distort stable raft structures [8,80] when plastic strain accumulated near the γ/γ′ interface 
reaches a critical value. The results from the phase-field models with the variation of misfit strain 
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reveal the decrease of misfit strain during the deformation, which makes the γ/γ’ interface become 
semi-incoherent or incoherent. This trend destroys the stabilization mechanism in the γ channels and 
reduces the disjoining potential between adjacent γ’ precipitates [95]. This is an essential step to 
achieve topological inversion, as observed experimentally. 

Currently, the phase-field models with damage parameters are mainly under the framework of 
elasto-plastic deformation. It is a challenge to fully describe the three creep stages for the tensile creep 
at elevated temperature in addition to the analysis of the collapse and topological inversion of the 
γ/γ’ microstructures and the microstructure evolution. The incorporation of the change of misfit 
strain in the phase-field models also enables the observation of the topological inversion of the γ/γ’ 
microstructures, and the simulation results are in good agreement with those observed in long-term 
aging experiments [95]. 

6. Summary 

Phase-field method is an excellent technique to study the rafting process in nickel-based 
superalloys. Incorporating the theory of crystal plasticity in the phase-field method makes it possible 
to analyze the rafting kinetics with internal physical characteristics (the γ/γ’ lattice misfit, elastic 
constants, and dislocation densities) as well as the mechanical behavior (heterogeneous elasticity and 
plastic deformation) of superalloys. Raft structures with N-type/P-type or other complex types can 
be formed during creep deformation under different loading modes. The creep deformation may lead 
to the collapse of raft structures and the topological inversion of the γ/γ’ microstructures.  

Introducing damage parameters or variation of lattice misfit in the phase-field models under 
elasto-plastic framework makes it possible to illustrate the individual processes for the 
microstructure evolution. The development of multiphase-field models provides the foundation to 
study the contribution of solute atoms to the rafting behavior and to better design and optimize 
superalloys for industrial applications. Future efforts are expected to focus on complex situations for 
industrial applications of single crystal superalloys, which likely include orientation-dependent, 
temperature-dependent, and composition-dependent mechanical properties. The evolution of the 
mechanical properties needs to be correlated to the microstructure evolution, such as the rafting. 
Additionally, the interactions between raft structures and defects, such as dislocations, micro-voids, 
micro-cracks, etc., need to be incorporated in the models. Further study is needed to expand the 
capability of the phase-field simulation in the analysis of the effects of voids and cracks of millimeter 
size.  
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