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ABSTRACT OF DISSERTATION 
  

 

SYNTHESIS AND ENERGY APPLICATIONS OF MESOPOROUS TITANIA THIN 
FILMS 

 

The optical and electronic properties of TiO2 thin films provide tremendous 
opportunities in several applications including photocatalysis, photovoltaics and 
photoconductors for energy production. Despite many attractive features of TiO2, critical 
challenges include the innate inability of TiO2 to absorb visible light and the fast 
recombination of photoexcited charge carriers. In this study, mesoporous TiO2 thin films 
are modified by doping using hydrogen and nitrogen, and sensitization using graphene 
quantum dot sensitization.  

For all of these modifiers, well-ordered mesoporous titania films were synthesized 
by surfactant templated sol-gel process. Two methods: hydrazine and plasma treatments 
have been developed for nitrogen and hydrogen doping in the mesoporous titania films for 
band gap reduction, visible light absorption and enhancement of photocatalytic activity. 
The hydrazine treatment in mesoporous titania thin films suggests that hydrazine induced 
doping is a promising approach to enable synergistic incorporation of N and Ti3+ into the 
lattice of surfactant-templated TiO2 films and enhanced visible light photoactivity, but that 
the benefits are limited by gradual mesostructure deterioration. The plasma treated nitrogen 
doped mesoporous titania showed about 240 times higher photoactivity compared to 
undoped film in hydrogen production from photoelectrochemical water splitting under 
visible light illumination.  

Plasma treated hydrogen doped mesoporous titania thin films has also been 
developed for enhancement of visible light absorption. Hydrogen treatment has been 
shown to turn titania (normally bright white) black, indicating vastly improved visible light 
absorption.  The cause of the color change and its effectiveness for photocatalysis remain 
open questions. For the first time, we showed that a significant amount of hydrogen is 
incorporated in hydrogen plasma treated mesoporous titania films by neutron reflectometry 
measurements. 

In addition to the intrinsic modification of titania by doping, graphene quantum dot 
sensitization in mesoporous titania film was also investigated for visible light 
photocatalysis. Graphene quantum dot sensitization and nitrogen doping of ordered 
mesoporous titania films showed synergistic effect in water splitting due to high surface 
area, band gap reduction, enhanced visible light absorption, and efficient charge separation 
and transport. This study suggests that plasma based doping and graphene quantum dot 
sensitization are promising strategies to reduce band gap and enhance visible light 
absorption of high surface area surfactant templated mesoporous titania films, leading to 



 

superior visible-light driven photoelectrochemical hydrogen production. The results 
demonstrate the importance of designing and manipulating the energy band alignment in 
composite nanomaterials for fundamentally improving visible light absorption, charge 
separation and transport, and thereby photoelectrochemical properties. 
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Chapter 1. Introduction 
1.1. Background and Motivation 

Recently, growing energy demand, depletion of fossil fuel and harmful effect of 

traditional energy sources on the global climate and environment have become profound 

concerns [1]. As time passes, both the global population and worldwide energy demand 

increase tremendously. For example, according to the United Nations forecasts, another 

2.5 million people are expected to be added to the present population of 6.5 billion by 2050 

which will cause the energy demand to double over current demand [2, 3]. Even though 

the primary energy sources used currently are hydrocarbon-based fossil fuels with limited 

supply, they are causing serious environmental concerns such as climate change due to 

atmospheric CO2 emission [4-8].  According to the U.S. Energy Information 

Administration, 1 billion barrels of oil were consumed every 12 days in 2011, which would 

result in 1 trillion pounds of CO2 release to the atmosphere [9]. According to the prediction 

of the Intergovernmental Panel on Climate Change, the atmospheric CO2 level could reach 

as high as 590 ppm by 2100 , resulting in a 1.9 °C rise in global mean temperature [4, 10].  

This temperature rise will have catastrophic consequences including sea level rise, flood 

and drought. Because of this, it has become a grand challenge to reduce atmospheric CO2 

levels while at the same time fulfilling the huge energy demanded for a high quality of life.  

To tackle these global concerns, intensive research is going on to find clean and 

renewable energy sources. Renewable energy technologies including solar, hydro and wind 

power are all possible options to reduce the use of limited and climate change-inducing 

fossil fuels. However, all of these technologies are based on energy sources with variable 

intensity, and cannot be used directly for continuous electricity production at a single site.  
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Therefore, it is also pressing to find an efficient and economically viable technology for 

storable renewable energy so that it can be delivered on demand.  

1.2. Hydrogen production from water splitting 

Hydrogen has tremendous potential to become an environmentally-friendly fuel, in 

addition to its ever-growing demand in the petrochemical, refining, and semiconductor 

industries. Hydrogen is one of the greenest energy carriers, in that it produces only water 

when oxidized either by combustion or in a fuel cell. It also is a widely used raw material 

for chemical conversions and reduction reactions. However, production of hydrogen in 

required quantities at a competitive price has been a crucial and urgent challenge [11]. 

Hydrogen can be produced from water splitting using electrolysis by the following 

reactions.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴: 2𝐻𝐻2𝑂𝑂(𝑙𝑙) → 𝑂𝑂2(𝑔𝑔) +  4𝐻𝐻+(𝑎𝑎𝑎𝑎) +  4𝑒𝑒− 𝐸𝐸𝑜𝑜𝑜𝑜0 =  −1.23𝑉𝑉 

𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜: 2𝐻𝐻+(𝑎𝑎𝑎𝑎) +  2𝑒𝑒−  →  𝐻𝐻2(𝑔𝑔) 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟0 = 0.0𝑉𝑉 

The first reaction and second reaction are called the oxygen evolution reaction (OER) and 

hydrogen evolution reaction (HER), respectively. The standard potentials of the half 

reactions (𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜 ) is -1.23V which is required to drive the reaction to split water into 

hydrogen and oxygen gases. However, a significantly larger potential must be applied for 

electrolysis to occur, usually well over 2 V in practice. The extra potential applied is called 

the overpotential, which contributes to direct electrolysis being energetically and 

financially costly.  

To make the water splitting process feasible and cheap for industrial application, 

hydrogen can be produced by water splitting using a semiconductor photocatalyst with 
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sunlight as the required source of energy. The basic principle of the overall water-splitting 

reaction on a semiconductor photocatalyst is shown in Figure 1.1. There are two primary 

requirements for a semiconductor to be a water-splitting photocatalyst. First, the band gap 

of the semiconductor must be higher than the energy needed to split water. Second, band 

alignment is needed; the conduction band potential of the semiconductor must be more 

negative than the water reduction potential (H+/H2, 0 V vs. NHE) and the highest level of 

valence band potential must be more positive than the water oxidation potential (O2/H2O, 

1.23 V vs. NHE). The mechanism of hydrogen production by the water splitting reaction 

photocatalyzed by a semiconductor using sunlight is depicted in Figure 2 [12]. It is shown 

that electrons in the valence band of the semiconductor are excited by light of energy 

exceeding the band gap. The excited electrons are transferred into the conduction band of 

the semiconductor leaving holes (electron vacancies) in the valence band. The holes thus 

formed in the valence band oxidize H2O to H+ and O2. The newly formed H+ reacts with 

the electrons excited in the conduction band of the semiconductor to form molecular 

hydrogen.  

There are several semiconductor photocatalysts available for water splitting. Figure 

2.2 shows the band positions for some of the most common metal oxide semiconductors in 

contact with aqueous electrolyte at pH 1. It can be seen that there are several 

semiconductors (such as GaAs_ with band gap small enough to absorb the most prominent, 

visible wavelengths of sunlight, and larger than the required energy for water splitting. 

However, the band positions of these semiconductors do not align with the water redox 

potential required for them to be used as photocatalysts for water splitting. On the other 

hand, there are other semiconductors such as CdS whose band gap is small enough to 
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absorb sunlight and larger than the potential required for water splitting, and whose band 

positions perfectly match with the water redox potentials. However, the challenge of using 

such semiconductors as a photocatalyst for water splitting is photocorrosion or instability 

in aqueous medium. Along with the small band gap and proper band alignment with the 

redox reaction potentials of water, stability of the photocatalyst in an aqueous medium is 

another challenge for industrial practice of photocatalytic water splitting. It has proven 

difficult to find a material which combines desirable band positions, a useful band gap, 

aqueous stability and a cost low enough for widespread application.  

1.3. Titania as a Photocatalyst 

Based on the general principles outlines above, titania fulfills all the primary 

requirements to be a potential photocatalyst for solar H2 production. Since the first report 

of its use for hydrogen generation via the photocatalytic decomposition of water by 

Fujishima and Honda, [13] TiO2 has attracted significant interest as a photocatalyst due to 

its favorable band edge positions which are well-matched with the redox potentials of 

water, CO2 and a variety of organic compounds. TiO2 is also attractive for this application 

because of its opto-electronic properties, which can be tuned by changing lattice defects or 

oxygen stoichiometry, its superior chemical stability and photocorrosion resistance, and its 

low cost [13-16]. These unique properties have enabled TiO2 to be utilized in a wide range 

of applications including solar energy conversion, antimicrobial and self-cleaning surfaces, 

paint whiteners, ceramics, textiles, personal care products, and environmental catalysis 

[17-27].  

Like many semiconductors, the photoactivity of TiO2 originates from its ability to 

absorb light with energy greater than the band gap, which generates electrons and holes as 
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charge carriers by promoting electrons from the valence band to the conduction band [14]. 

This photocatalytic process involves a series of physical processes including light 

absorption, charge separation, charge migration, charge recombination and surface redox 

reactions [28]. The photogenerated charges can recombine and release their energy as light 

and heat, or these excited charges may reach the surface of titania and participate in 

reactions. The excited electrons have the potential to reduce oxygen molecules to produce 

superoxide radicals which are very reactive and participate in different reactions. On the 

other hand, if they reach the electrolyte interface either at titania or a counter electrode, 

holes are able to oxidize water to produce reactive hydroxyl radicals [29]. 

1.4. Nanostructured Titania 

For the application of TiO2 in photocatalysis, it is very important to control its 

morphology, nanostructure, and electronic properties to enhance the available surface area, 

light absorption, and effective charge carrier separation and transport [18, 30-32]. Further, 

to address the challenges of reducing recombination and increasing interfacial transport of 

photogenerated charge carriers, altering the atomic and nanoscale architecture of TiO2 has 

become a major goal. Mesoporous TiO2 offers a promising platform to address these 

challenges for a number of reasons that are beneficial for efficient photocatalysis [18, 33-

35]. By using process variables to tune its morphology, nanostructure, and electronic 

properties, enhancements can be realized in the accessible surface area, light absorption, 

and effective charge carrier separation and transport in mesoporous TiO2 [18, 30-32]. For 

instance, surfactant-induced templating provides excellent control over the pore size, pore 

orientation, interfacial structure and pore connectivity, which can be tuned to promote rapid 

diffusion of reactants to photocatalytic sites. Further, mesoporous TiO2 offers a high 
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reactive surface area for photocatalysis and its thin walls provide a short distance for the 

transport of photogenerated charge carriers to the catalytic sites, thereby having the 

potential to suppress charge recombination processes [5, 15, 33, 34]. TiO2 thin film can be 

prepared by an evaporation induced self-assembled (EISA) process using surfactant 

templating [36]. In this method, a substrate is dip coated in a solution of metal precursor, 

surfactants and solvent. A controlled amount of chemicals in the solution and definite 

synthesis conditions drive ordered micelle formation with the surfactants in the dip coated 

film. After removing the polymer, surfactant by calcining, the films are found with desired 

properties such as pore size, shape and their order. A detail discussion on the synthesis of 

mesoporous titania is provided in Chapter 2. 

1.5. Doping of Titania 

Despite many attractive features of TiO2, the major challenges of its applications 

under natural solar light are its innate inability to absorb visible light, high rate of 

photogenerated charge carrier recombination, and low interfacial charge transfer rate of 

photogenerated charge carriers [17, 37]. The first challenge results from the wide band gap 

of TiO2 (3.0-3.5 eV[38]), which allows the absorption of light mainly in the ultraviolet 

(UV) range, which corresponds to only 4-5% of the whole solar spectrum, while visible 

light constitutes 40% [39]. To reduce the intrinsic band gap of TiO2, several strategies have 

been tested including the incorporation of either metallic (e.g. Fe and Ni) or non-metallic 

(e.g. C, F, N, S, P and B) atoms into the lattice of TiO2 host materials [17, 23, 40-42]. Metal 

doping showed controversial photocatalytic activity results at both UV and visible 

wavelengths [43-46]. In addition, metal doping in titania can be complicated by thermal 

instability, increase of carrier-recombination centers, dopant insolubility, formation of 
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secondary phase or surface aggregation rather than substitution, phase transformation 

among the titania polymorphs, alteration of charge carrier diffusion length, narrow band 

bending etc. [47-49]. From this perspective, non-metal (H, B, C, N, F, S, P, and I) doping 

is thought to be a more viable strategy to reduce the band gap and enhance the visible light 

driven photocatalytic activity of titania. Increased visible light photocatalytic activity has 

been reported in non-metal doped titania. However, the exact chemical nature of the dopant 

species in titania and their roles for visible light absorption are not always clear [29].  

Among non-metal dopants, nitrogen is one of the most effective elements to 

promote visible light photoactivity [17, 18, 50-52]. Due to its atomic size (comparable to 

oxygen), low ionization potential, and high stability, it is straightforward to introduce 

nitrogen into the titania lattice [29]. Effective band gap narrowing has been correlated with 

high amounts of dopants and strong interactions among the dopant energy states, valence 

and conduction bands [53]. Nitrogen atoms are known to occupy either interstitial sites 

(possibly with N-O bonding) or substitutional sites (replacement of O with N atoms) in 

TiO2 [51]. Though interstitial nitrogen has been shown to increase visible light absorption, 

it does not reduce the band gap because it forms a discrete energy state between the valence 

band and conduction band, often referred to as a midgap state [54]. Most of the theoretical 

and experimental studies have shown that the predominant active form in doped TiO2 is 

substitutional nitrogen which reduces the band gap and increases visible light absorption 

[17, 51, 54-57]. The reduced band gap is attributed to an upward shift of the edge of valence 

band due to the hybridization of the N 2p with the O 2p orbitals [17]. As a result, doped 

titania is able to absorb visible light due to the electrons excited from the localized N 

orbitals to the conduction band or to surface adsorbed O2 [29]. In addition, it has been 
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reported that nitrogen doping increases the wettability of titania, resulting in better 

adsorption of polar reactant molecules [44, 58]. Different strategies of incorporating non-

metal dopants, particularly nitrogen in titania, and resulting photocatalytic activities are 

discussed in details in Chapter 2. 

1.6. Sensitization of Titania 

In addition to the intrinsic modification of titania, sensitization is another route to 

help titania absorb visible light. Recently, utilization of tunable narrow band gap 

semiconductor quantum dots has drawn tremendous interest to sensitize wide band gap 

semiconductors such as metal oxides as alternative approaches to increase photoresponse 

[59]. Figure 1.3 shows a schematic of the sensitization mechanism of titania by small band 

gap semiconductors. Typically, small band gap semiconductors absorb visible light and 

electrons are excited from the valence band to the conduction band. When the conduction 

band potential of the small band gap semiconductors is more positive than that of the wide 

band gap semiconductors, the excited electrons from the conduction band of the small band 

gap semiconductors shift to the conduction band of the large band gap semiconductors 

where they participate in chemical reactions. Several semiconductor quantum dots 

including CdS, CdSe, CdTe and PbS with large extinction coefficient strongly absorb 

visible light, inject electrons into the conduction band of metal oxides such as TiO2, and 

thereby contribute to increased solar energy conversion [59, 60]. However, the 

heterojunctions formed between these semiconductor quantum dots and wide band gap 

semiconductor photocatalysts are often inefficient because of the presence of surface traps 

in naked QDs which increase charge recombination [61]. Furthermore, these 

semiconductor quantum dots include toxic elements and are unstable due to photo-
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oxidation leading to the photodegradation of their performances. For example, Pan et al. 

reported that CdS and CdSe sensitized TiO2 nanotube arrays exhibit cycling instability due 

to serious photo-oxidization in a liquid medium under light irradiation [61].  

As emerging quantum dots, graphene quantum dots (GQDs) are metal free and 

green sensitizers which are synthesized from carbon precursors. Pan et al. also showed that 

the GQD heterojunctions are superior to conventional semiconductor QDs in terms of 

visible-light catalytic activity, durability, and environmental friendliness [61]. Recently, 

graphene quantum dots (GQDs) have drawn tremendous attention due to their unique and 

novel properties.  These include size-dependent band gaps due to strong quantum 

confinement and edge effects, excellent thermal and chemical stability, and 

environmentally friendly nature [62, 63]. GQDs are also water soluble which can enhance 

the water oxidation process. It has been found that making composites of GQDs and TiO2 

enhances the visible light absorption of TiO2 due to charge transfer from GQDs to the 

conduction band of TiO2 [62, 64-66]. Zhuo et al. demonstrated the design of TiO2/GQD 

photocatalysts to harness the visible spectrum of sunlight based on the upconversion 

luminescence properties of GQDs. The efficacy of their photocatalytic ability was 

determined by degradation of methylene blue under visible light irradiation [62]. Williams 

et al. also demonstrated the feasibility of hot electron harvesting from GQDs to titania 

using time-resolved second harmonic generation, and found evidence for ultrafast electron 

injection from photoexcited GQDs to the conduction band of titania. In addition, titania 

with various morphologies including nanotubes, fibers and nanoparticles has been 

sensitized with GQDs [62, 64-68]. All of these GQDs-TiO2 show high visible-light 

catalytic activity, long-term durability, and environmental friendliness. 
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1.7. Overview and Summary of the Dissertation 

While mesoporous TiO2 can be synthesized by different methods, it is challenging 

to incorporate dopants into the lattice of the material while maintaining an advantageous 

mesostructure. Normally, high-temperature heat treatment of TiO2 in the presence of a 

dopant source is used to incorporate new elements into the titania lattice. High temperature 

treatment typically causes a decrease in pore size, surface area and pore accessibility by 

sintering and crystallization. Various strategies have been reported to introduce non-metal 

dopants into mesoporous TiO2, but the properties of the doped mesoporous TiO2 product 

are strongly dependent on the dopant source and strategy. The photocatalytic activity of 

the materials is closely related to its preparation method, so understanding the relationship 

between synthetic strategy, structure and performance is a key to moving towards highly 

efficient visible-light photocatalysis using mesoporous TiO2 based materials.  

This dissertation addresses the applications of mesoporous titania thin films 

synthesized via a surfactant templated sol-gel process. To address the challenge of using 

titania as a photocatalyst, the band gap of mesoporous titania thin films is reduced by 

modifying the valence band and the conduction band using nitrogen and hydrogen doping, 

respectively. For tuning the band gap, hydrazine and plasma treatments have been 

developed in this dissertation research.  In addition to the intrinsic modification of titania, 

graphene quantum dot sensitized mesoporous titania thin films for visible light driven 

photocatalysis has been developed. All of the modified titania films were applied for 

photoelectrochemical water oxidation. This dissertation is organized into eight chapters 

including Chapter 1 (this chapter) which describes the general background of this 
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dissertation. The summaries of Chapter 2 to Chapter 7 are provided below. Lastly, the 

findings from this dissertation and future directions are provided in Chapter 8.  

Chapter 2: This chapter provides a comprehensive literature review on non-metal 

doping in mesoporous TiO2 and its effects on visible light driven photocatalytic 

performance for environmental and energy conversion applications. First, the general 

synthesis process of mesoporous TiO2 are presented, with an eye towards how the 

evolution from precursor to final mesoporous structure can be influenced by the doping 

strategy. Following this, a comprehensive review is provided of non-metal dopant sources 

and doping strategies for mesoporous TiO2. While fewer examples have been reported in 

literature, some examples of co-doping are discussed. A summary of photocatalytic 

performance enhancements by non-metal doping of mesoporous TiO2 is provided. Finally, 

applications of the non-metal doped mesoporous TiO2 are summarized in the fields of 

organic pollutant photocatalysis, hydrogen production from water splitting and CO2 

reduction. Finally, this review provides a summary of key achievements and directions in 

the non-metal doping of mesoporous TiO2 and the extent of applications of these materials. 

This work was published in the journal Inorganics (Islam et al., Inorganics, 2017, 5(1), 

15). 

Chapter 3: In this chapter, we report the incorporation of Ti3+ and nitrogen atoms 

into surfactant-templated mesoporous TiO2 thin films by hydrazine treatment. Cubic 

ordered mesoporous TiO2 thin films were synthesized by templating films derived from 

TiCl4 with triblock copolymer surfactant Pluronic F127. Then, the films were treated with 

hydrazine hydrate, followed by analysis of photocatalytic activity for methylene blue 

degradation as a test reaction. The photoelectrochemical performance of the doped films 
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were demonstrated using water oxidation under basic pH conditions with a visible light 

source. This study suggests that hydrazine induced doping is a promising approach to 

enable synergistic incorporation of N and Ti3+ into the lattice of surfactant-templated TiO2 

films for enhanced visible light photoactivity, but that the benefits are limited by gradual 

mesostructure deterioration. This chapter was published in Materials Chemistry and 

Physics (Islam et al., Mater. Chem. Phys., 2016, 182, 382-393). 

Chapter 4: In this chapter, we report the incorporation of nitrogen into surfactant 

templated mesoporous TiO2 films by N2/Ar plasma treatments. The cubic ordered 

mesoporous TiO2 thin films are treated with N2/Ar plasma generated by a microwave-

assisted chemical vapor deposition (CVD) system, followed by analysis of photocatalytic 

activity for methylene blue degradation as a test reaction. The optical absorbance and 

photocatalytic activity of nitrogen doped TiO2 films are correlated with the duration of 

N2/Ar plasma treatments. The doped films showed about six times higher performance than 

undoped titania films in the photocatalytic degradation of methylene blue under visible-

light illumination. This study suggests that the plasma-based doping approach is very 

effective for incorporation of heteroatoms into mesoporous titania films while maintaining 

their nanostructure.  

The work in this chapter was performed in collaboration with the research group of 

Dr. Doo-Young Kim from the Chemistry department at the University of Kentucky. My 

contributions are the synthesis and characterization of the mesoporous titania thin films, 

and photocatalytic activity tests. Allen Reed performed the plasma treatment of the films 

for nitrogen doping. This work was published in Microporous and Mesoporous Materials 

(Islam et al., Microporous Mesoporous Mater., 2016, 220, 120-128).   
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Chapter 5: This study explores the water oxidation using nitrogen doped, ordered 

mesoporous TiO2 thin films under visible light irradiation.  In our previous chapter, we 

demonstrated enhanced photocatalytic activity for dye degradation of mesoporous TiO2 

films by treating them with N2/argon plasma [69]. In this chapter, we report even more 

substantial effects for photocatalytic water oxidation under visible light using mesoporous 

TiO2 films treated with N2/argon plasma. Cubic ordered mesoporous titania films were 

treated with microwave-generated N2/Ar plasma. The effects of plasma treatment 

conditions such as gas pressure and nitrogen flow rate on the ultimate photocatalytic 

performance were studied along with the effects of light sources with different 

wavelengths. Photocatalytic activities of plasma-treated TiO2 mesoporous films were 

studied by chronoamperometry, linear sweep voltammetry and electrochemical impedance 

spectroscopy.  The results show exceptional improvements (over 200 times at certain 

wavelengths) in photocatalytic water oxidation under both UV and visible light compared 

with prior reports due to the amorphous, high surface area nature of the surfactant 

templated mesoporous titania.  These results suggest that these materials may be a 

promising platform for “disorder engineering” of photoelectrocatalysis.  

This project was performed in collaboration with the research group of Dr. Doo-

Young Kim from the Chemistry Department at the University of Kentucky. My 

contributions are the synthesis and characterization of mesoporous titania thin films and 

photocatalytic activity tests, Allen Reed performed plasma treatment of the films for 

nitrogen doping, and Namal Wanninayake conducted zeta potential and contact angle 

measurements. This work was published in Journal of Physical Chemistry C (Islam et al., 

J. Phys. Chem. C, 2016, 120(26), 14069-14081). 



  

 

14 
 

Chapter 6: In this work, we report the first example of GQD sensitized, nitrogen 

doped mesoporous titania for photoelectrochemical water oxidation. The cubic ordered 

mesoporous titania films were treated with nitrogen/argon plasma for nitrogen doping. The 

graphene quantum dots were synthesized by chemical oxidation of carbon nano-onions. 

Finally, GQDs were attached to the nitrogen doped titania films by a hydrothermal method. 

The graphene quantum dot sensitized titania films show synergistic enhancement when 

combined with plasma-based doping for photoelectrochemical water oxidation.  

This project was performed in collaboration with the research group of Dr. Doo-

Young Kim from Chemistry department at the University of Kentucky. My contributions 

are the synthesis and characterization of the mesoporous titania thin films and 

photocatalytic activity tests, Allen Reed performed the plasma treatment of the films for 

hydrogenation, and Namal Wanninayake synthesized and attached GQDs on titania films, 

conducted zeta potential and contact angle measurements. A manuscript on graphene 

quantum dot sensitized and nitrogen doped titania is in preparation for submission. 

Chapter 7: This study investigates the presence of hydrogen in hydrogen plasma 

treated black mesoporous titania thin films for visible light driven photocatalytic water 

oxidation. Hydrogen treatment has been shown to turn titania from bright white to black, 

indicating vastly improved visible light absorption.  The cause of the color change and its 

effectiveness for photocatalysis remain open questions. For the first time, we showed that 

a significant amount of hydrogen is incorporated in hydrogen plasma treated mesoporous 

titania films using neutron reflectometry measurements. Photocatalytic activities of 

hydrogen plasma-treated mesoporous TiO2 films are studied by photoelectrochemical 
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water oxidation under both UV and visible light irradiation. A manuscript on hydrogen 

plasma treated titania films is ready for short-term submission.  

This project was performed in collaboration with the research group of Dr. Doo-

Young Kim from the Chemistry Department at the University of Kentucky. My 

contributions are the synthesis and characterization of mesoporous titania thin films and 

photocatalytic activity tests, Allen Reed conducted plasma treatment of the films for 

hydrogenation, and Namal Wanninayake conducted the zeta potential and contact angle 

measurements. A manuscript on hydrogen plasma doping of mesoporous titania films is 

ready for short-term for submission. 
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Figures of Chapter 1 

 

 

Figure 1.1. Basic principle of the overall water-splitting reaction on a semiconductor 
photocatalyst. Adapted from ref. [70]. 
 

 

Figure 1.2. Band positions of several semiconductors in contact with aqueous electrolyte 
at pH 1. The lower edge of the conduction band (red colour) and upper edge of the valence 
band (green colour) are presented along with the band gap in electron volts. The energy 
scale is indicated in electron volts using the normal hydrogen electrode (NHE) as a 
reference. Note that the ordinate presents internal and not free energy. The free energy of 
an electron–hole pair is smaller than the band gap energy due to the translational entropy 
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of the electrons and holes in the conduction and valence band, respectively. On the right 
side, the standard potentials of water redox couple are presented against the standard 
hydrogen electrode potential. Adapted from reference [14]. 
 
 

 

Figure 1.3. Schematic of band diagram of sensitization of titania by small band gap 
semiconductors. 
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Chapter 2. Synthesis and Catalytic Applications of Non-metal Doped Mesoporous 
Titania 

Reproduced with permission from Islam, S. Z., Nagpure, S., Kim, D. Y., Rankin, S. E., 

Inorganics, 2017, 5(1), 15. 

2.1 Summary 

Mesoporous titania (mp-TiO2) has drawn tremendous attention for diverse applications due 

to its high surface area, interfacial structure and tunable combination of pore size, pore 

orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid 

diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. 

However, because the large band gap of TiO2 limits its ability to utilize visible light, non-

metal doping has been extensively studied to tune the energy levels of TiO2. While first-

principles calculations support the efficacy of this approach, it is challenging to efficiently 

introduce active non-metal dopants into the lattice of TiO2. This review surveys recent 

advances in the preparation of mp-TiO2 and their doping with non-metal atoms. Different 

doping strategies and dopant sources are discussed. Further, co-doping with combinations 

of non-metal dopants are discussed as strategies to reduce the band gap, improve 

photogenerated charge separation, and enhance visible light absorption. The improvements 

resulting from each doping strategy is discussed in light of potential changes in mesoporous 

architecture, dopant composition and chemical state, extent of band gap reduction, and 

improvement in photocatalytic activities. Finally, potential applications of non-metal 

doped mp-TiO2 are explored in water splitting, CO2 reduction and environmental 

remediation with visible light. 
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2.2.  Introduction 

TiO2 (titania) is one of the most extensively studied semiconductor photocatalysts 

due to its potential to help overcome the worldwide energy shortage while also 

counteracting issues of climate change and environmental contamination [70-72].  Since 

the first report of its use for hydrogen generation via the photocatalytic decomposition of 

water by Fujishima and Honda, [13] TiO2 has attracted significant interest as a 

photocatalyst due to its favorable band edge positions which are well-matched with the 

redox potentials of water, CO2 and a variety of organic compounds. TiO2 is also attractive 

for this application because of its opto-electronic properties, which can be tuned by 

changing lattice defects or oxygen stoichiometry, its superior chemical stability and 

photocorrosion resistance, and its low cost [13-16]. These unique properties have enabled 

TiO2 to be utilized in a wide range of applications including solar energy conversion, 

antimicrobial and self-cleaning surfaces, paint whiteners, ceramics, textiles, personal care 

products, and environmental catalysis [17-27].  

Like many semiconductors, the photoactivity of TiO2 originates from its ability to 

absorb light with energy greater than the band gap, which generates electrons and holes as 

charge carriers by promoting electrons from the valence band to the conduction band [14]. 

This photocatalytic process involves a series of physical processes including light 

absorption, charge separation, charge migration, charge recombination and surface redox 

reactions [28]. The photogenerated charges can recombine and release their energy as light 

and heat, or these excited charges may reach the surface of titania and participate in 

reactions. The excited electrons have the potential to reduce oxygen molecules to produce 

superoxide radicals which are very reactive and participate in different reactions. On the 
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other hand, if they reach the electrolyte interface either at titania or a counter electrode, 

holes are able to oxidize water to produce reactive hydroxyl radicals [29]. 

Despite many attractive features of TiO2, the major challenges of its applications 

under natural solar light are its innate inability to absorb visible light, high rate of 

photogenerated charge carrier recombination, and low interfacial charge transfer rate of 

photogenerated charge carriers [17, 37]. The first challenge results from the wide band gap 

of TiO2 (3.0-3.5 eV[38]), which allows the absorption of light mainly in the ultraviolet 

(UV) range, which corresponds to only 4-5% of the whole solar spectrum, while visible 

light constitutes 40% [39]. To reduce the intrinsic band gap of TiO2, several strategies have 

been tested including the incorporation of either metallic (e.g. Fe and Ni) or non-metallic 

(e.g. C, F, N, S, P and B) atoms into the lattice of TiO2 host materials [17, 23, 40-42]. Metal 

doping showed controversial photocatalytic activity results at both UV and visible 

wavelengths [43-46]. In addition, metal doping in titania can be complicated by thermal 

instability, increase of carrier-recombination centers, dopant insolubility, formation of 

secondary phase or surface aggregation rather than substitution, phase transformation 

among the titania polymorphs, alteration of charge carrier diffusion length, narrow band 

bending etc. [47-49]. From this perspective, non-metal (H, B, C, N, F, S, P, and I) doping 

is thought to be a more viable strategy to reduce band gap and enhance the visible light 

driven photocatalytic activity of titania. Increased visible light photocatalytic activity has 

been reported in non-metal doped titania. However, the exact chemical nature of the dopant 

species in titania and their roles for visible light absorption are not always clear [29].  

Among non-metal dopants, nitrogen is one of the most effective elements to 

promote visible light photoactivity [17, 18, 50-52]. Due to its atomic size (comparable to 
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oxygen), low ionization potential, and high stability, it is straightforward to introduce 

nitrogen into the titania lattice [29]. Effective band gap narrowing has been correlated with 

high amounts of dopants and strong interactions among the dopant energy states, valence 

and conduction bands [53]. Nitrogen atoms are known to occupy either interstitial sites 

(possibly with N-O bonding) or substitutional sites (replacement of O with N atoms) in 

TiO2 [51]. Though interstitial nitrogen has been shown to increase visible light absorption, 

it does not reduce the band gap because it forms a discrete energy state between the valence 

band and conduction band, often referred to as a midgap state [54]. Most of the theoretical 

and experimental studies have shown that the predominant active form in doped TiO2 is 

substitutional nitrogen which reduces the band gap and increases visible light absorption 

[17, 51, 54-57]. The reduced band gap is attributed to an upward shift of the edge of valence 

band due to the hybridization of the N 2p with the O 2p orbitals [17]. As a result, doped 

titania is able to absorb visible light due to the electrons excited from the localized N 

orbitals to the conduction band or to surface adsorbed O2 [29]. In addition, it has been 

reported that nitrogen doping increases the wettability of titania, resulting in better 

adsorption of polar reactant molecules [44, 58].  

Other non-metal elements such as H, B, C, F, I, S and P have also been doped into 

TiO2 and visible light driven photocatalytic activity was observed as a result [73, 74]. 

Valentin et al. performed density functional theory (DFT) calculations to investigate the 

effects on the electronic structure of replacing lattice O atoms with B, C, N, or F dopants, 

or to include the same atoms in interstitial positions [73].  As Figure 2.1 shows, the energy 

states associated with substitutional non-metal dopants fall in between the valence and 

conduction bands of TiO2. Relative to the valence band, the energy level of the bands 
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introduced by doping increases with decreasing electronegativity. N-doping introduces an 

energy state just above the valence band whereas B gives states high in the band gap. Since 

fluorine is very electronegative, it has introduced states below the O 2p valence band and 

leads to the formation of Ti3+ ions due to charge compensation. In contrast, interstitial 

doping led to a combination of energy levels above and below the valence band for B and 

C. Without donating any electron to the host lattice, N was predicted to form a direct bond 

with a lattice O atom to create a non-photoactive interstitial doping site.  

To further improve the visible light driven photocatalytic activity of TiO2, binary 

and ternary co-doping of two non-metal elements such as N-B and N-C has been studied 

[29, 75-85]. Synergistic effects of the co-doping were observed in many cases, although 

the complexity of the parameter space makes it difficult to draw general conclusions about 

doping effects. In addition to band gap reduction and visible light absorption, adding non-

metal elements into TiO2 may have effects on the microstructure of the material, depending 

on the route of introduction.  In one example, boron doped TiO2 particles were found to 

have reduced size resulting in higher surface area and suppressed phase transformation, 

and improves photogenerated charge separation, which contribute to the photocatalytic 

performance of titania significantly [86]. 

While significant positive effects of doping TiO2 have been reported, from an 

application and commercial point of view, the photocatalytic performance of TiO2 must be 

further enhanced. To address the challenges of reducing recombination and increasing 

interfacial transport of photogenerated charge carriers, altering the atomic and nanoscale 

architecture of TiO2 has become a major goal. Mesoporous TiO2 offers a promising 

platform to address these challenges for a number of reasons that are beneficial for efficient 
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photocatalysis [18, 33-35]. By using process variables to tune its morphology, 

nanostructure, and electronic properties, enhancements can be realized in the accessible 

surface area, light absorption, and effective charge carrier separation and transport in mp-

TiO2 [18, 30-32]. For instance, surfactant-induced templating provides excellent control 

over the pore size, pore orientation, interfacial structure and pore connectivity, which can 

be tuned to promote rapid diffusion of reactants to photocatalytic sites. Further, mp-TiO2 

films offers a high reactive surface area for photocatalysis and their thin walls provide a 

short distance for the transport of photogenerated charge carriers to the catalytic sites, 

thereby having the potential to suppress charge recombination processes [5, 15, 33, 34].  

While mp-TiO2 can be synthesized by different methods, it is challenging to 

incorporate dopants into the lattice of the material while maintaining an advantageous 

mesostructure and crystal phase. Normally, high-temperature heat treatment of TiO2 in the 

presence of a dopant source is used to incorporate new elements into the titania lattice. 

High temperature treatment typically causes a decrease in pore size, surface area and pore 

accessibility by sintering and crystallization. Various strategies have been reported to 

introduce non-metal dopants into mp-TiO2, but the properties of the doped mp-TiO2 

product are strongly dependent on the dopant source and strategy. For instance, we recently 

reported that plasma treatment of mp-TiO2 introduces a high level of substitutional nitrogen 

into the lattice, whereas methods based on chemical precursors are more prone to 

generating interstitial nitrogen [69]. The photocatalytic activity of the materials is closely 

related to its preparation method, so understanding the relationship between synthetic 

strategy, structure and performance is a key to moving towards highly efficient visible-

light photocatalysis using mp-TiO2 based materials.  
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There have been a number of reviews published addressing the synthesis of mp-

TiO2 and its broad range of applications [87-90] so we will begin with just a brief overview 

of some of the most relevant strategies. In 2011, Ismail et al. published a review article on 

mp-TiO2 photocatalysts [41] that provides an overview of the preparation and 

characterization of mp-TiO2 and incorporation of noble metals nanoparticles, transition 

metal ions, and non-metal dopants. The characteristics of the mesoporous materials and 

their activity and mechanisms of photocatalysis are discussed. A recent short review by 

Zhou et al. addresses the effects of the mesoporous structure, crystallinity, surface area, 

and pore size of TiO2 on its photocatalytic performance [91], with a short overview of 

modifications of mp-TiO2 using doping and composite materials. While doping has been 

included to some extent, the primary focus of all the reviews mentioned here was the 

synthesis and characterization of the mp-TiO2.  Considering the intense interest in visible-

light photocatalysis using inexpensive materials, there is room for a review addressing 

primarily doping strategies and their outcomes.  

This article will focus specifically on non-metal doping strategies in mp-TiO2 and 

recent advances in understanding their effects on visible light driven photocatalytic 

performance for environmental and energy conversion systems. First, the general synthesis 

process of mp-TiO2 will be presented, with an eye towards how the evolution from 

precursor to final mesoporous structure can be influenced by the doping strategy. 

Following this, a comprehensive review will be provided of non-metal dopant sources and 

doping strategies for mp-TiO2. While fewer examples have been reported in literature, 

some examples of co-doping will be discussed. A summary of photocatalytic performance 

enhancements by non-metal doping of mp-TiO2 will be provided. Finally, applications of 
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the non-metal doped mp-TiO2 will be summarized in the fields of organic pollutant 

photocatalysis, hydrogen production from water splitting and CO2 reduction. Although this 

area of research is very broad, this review will provide a summary of key achievements 

and directions in the non-metal doping of mp-TiO2 and the extent of applications of these 

materials.  

2.2.1. Synthesis of mesoporous TiO2 

Surfactant-templated synthesis of ordered mp-TiO2 was first reported by Antonelli 

and Ying in 1995 [92]. Since then, different mesoporous structures of TiO2 have been 

synthesized including 2D hexagonal, 3D cubic and lamellar using methods including sol-

gel, hydrothermal, solvothermal, microwave, and sonochemical methods [69, 93-106]. A 

variety of morphologies have also been reported due to the interplay between 

mesostructure nucleation, orientation of mesophases at the surface of surfactant/precursor 

aggregates, and growth of organic/titania composites.  Of all forms, thin mp-TiO2 films are 

highly relevant to photoelectrocatalysis both for practical reasons (they can readily be 

deposited onto electrodes) and because they provide fundamental insight into the interplay 

of composition, processing, and surface chemistry. For instance, in our group we have 

prepared mp-TiO2 thin films using Pluronic triblock copolymer surfactants with cubic 

mesostructure [69] and orthogonally oriented 2D hexagonally close packed (o-HCP) 

cylindrical nanopores [103-105] using the evaporation induced self-assembly (EISA) 

technique by manipulating process conditions. Figure 2.2 shows computer-generated 

illustrations of typical mesoporous structures and mesophases such as Im3m cubic 

mesoporous material, o-HCP mesoporous film, parallel HCP mesoporous film, and 



  

 

26 
 

lamellar mesophase where higher intensity (yellow and red) corresponds to a greater 

density of hydrophobic tails of the surfactant template. 

2.2.2. Titanium Precursor Chemistry 

Most of the doped TiO2 materials to be discussed are prepared by precipitation or 

sol-gel processes based on “bottom-up” growth using molecular precursors.  This process 

proceeds by hydrolytic polycondensation of titanium precursors (most often alkoxides or 

chlorides) in the presence of reactivity modifiers, solvents and organic templates.  The 

process begins with hydrolysis, which is the formation of Ti-OH moieties by the 

substitution reaction of water with Ti-Cl or Ti-OR groups (Equation 2.1).  After being 

“activated” this way, precursors undergo condensation reactions to generate Ti-OH-Ti 

bonds by olation (Equation 2.2), or Ti-O-Ti by oxolation (Equation 2.3).  Livage et al. 

provided an excellent overview of the sol-gel chemistry of transition metal precursors [107] 

and described the dependence of hydrolysis reaction mechanism of metal ions on several 

factors including the electron affinities, sizes and the charges of metal ions and alkoxy 

groups; and the number of alkoxy groups.  Because titanium has a high partial charge and 

a preferred coordination number greater than its valence, Ti precursors tend to be quite 

reactive towards hydrolysis.  The high reactivity of transition metal oxides can be reduced 

by adding complexing ligands (such as acetylacetone) [108] or increasing acid 

concentration [109].  

Hydrolysis:≡ 𝑇𝑇𝑇𝑇 − 𝑋𝑋 +   𝐻𝐻2𝑂𝑂  →  ≡ 𝑇𝑇𝑇𝑇 − 𝑂𝑂𝑂𝑂 +   𝑋𝑋𝑋𝑋  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑋𝑋 = 𝐶𝐶𝐶𝐶,𝑂𝑂𝐶𝐶2𝐻𝐻5, 𝑒𝑒𝑒𝑒𝑒𝑒. 

           2.1 

Olation: ≡ 𝑇𝑇𝑇𝑇 − 𝑂𝑂𝑂𝑂 +   𝑇𝑇𝑇𝑇 ≡  →  ≡ 𝑇𝑇𝑇𝑇 − 𝑂𝑂𝑂𝑂 − 𝑇𝑇𝑇𝑇 ≡    2.2 
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Oxolation:  ≡ 𝑇𝑇𝑇𝑇 − 𝑂𝑂𝑂𝑂 +   𝐻𝐻𝐻𝐻 − 𝑇𝑇𝑇𝑇 ≡  →  ≡ 𝑇𝑇𝑇𝑇 − 𝑂𝑂 − 𝑇𝑇𝑇𝑇 ≡  + 𝐻𝐻2𝑂𝑂    2.3 

Kim et al. [110] proposed two kinds of mechanisms for the hydrolysis of titanium 

alkoxides. One is an associative mechanism, in which the entering group forms a complex 

with the metal first, then a detectable intermediate of expanded coordination number is 

formed. The other mechanism is an interchange associative (Ia) mechanism in which the 

transition state is reached mostly through formation of the bond with the entering group. 

In this mechanism, the bond weakening of the leaving group also takes place in the course 

of reaching the transition state.  An associative (A) mechanism is most appropriate to 

describe the hydrolysis of Ti(OEt)4, whereas the transition states for the hydrolysis for 

Ti(OnPr)4 and Ti(OnBu)4 are reached through the interchange associative (Ia) mechanism. 

Henry et al. [111] studied the mechanistic aspects of the hydrolysis and condensation of 

titanium alkoxides complexed by tripodal ligands and found that bridging positions for OR 

groups are sites of preferential attack for substitution by OH and/or OX groups and  the 

basic structure of the Ti4O16 core can be conserved upon hydrolysis and can be used as a 

building block for building complexes of higher nuclearity.  Sanchez and coworkers [112] 

studied the role of water in the hydrolysis reaction in the presence of Pluronic surfactants 

and found that during anhydrous or low water conditions, there are strong Ti-polymer 

interactions which hinder the assembly of the template, leading to a final wormlike 

structure.  In contrast, a high water / high acid environment hinders Ti-polymer 

interactions, which allows the micelles to assemble into well-ordered mesoporous 

structures. 

There are two main pathways for the preparation of ordered mp-TiO2, soft and hard 

templating. The soft templating method usually proceeds by a co-assembly process of the 



  

 

28 
 

precursors (silica, metal oxides, polymers, etc.) and surfactant templates [89, 113]. Since 

the success in the synthesis of ordered mesoporous silica, this methodology has been 

extended to transition metal oxide analogues. Since the soft-templating method is based on 

the co-assembly of reacting metal oxide precursors with surfactants in a dried film, the 

chemistry of the precursors needs to be understood and controlled to give the best chance 

of producing a desired film. As noted above, titania precursors (e.g. titanium (IV) ethoxide 

and titanium tetrachloride) are more reactive than silica precursors such as 

tetraethoxysilane, which can lead to rapid precipitation under uncontrolled conditions. 

Thus, titania precursors can be very difficult to work with if care is not taken in the design 

of the synthesis procedure.  

In their synthesis, Antonelli and Ying [92] used acetylacetone to decrease the 

hydrolysis and condensation rate of titanates to permit assembly of well-ordered materials 

by interactions with the phosphate head groups of a tetradecylphosphate surfactant aqueous 

solution. However, a significant amount of phosphorus remained after the surfactant 

template was removed leading to relatively low photocatalytic activity. In 1999, Antonelli 

et al. reported the synthesis of nonphosphated mp-TiO2 by using dodecylamine as the 

template combined with a dry aging technique [114]. However, the materials did not have 

high thermal stability for catalytic applications. Also, developing new methods of 

controlling the hydrolysis and polymerization of titania precursors was essential to be able 

to obtain high mesostructural regularity over large domains. The EISA method of Brinker 

and coworkers offers such an opportunity.  The method was initially reported to prepare 

mesoporous silica thin films,[115] but was almost immediately realized as the most 
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efficient strategy to synthesize mp-TiO2. Figure 2.3 shows the schematics of the important 

stages of the formation of ordered nanoporous metal oxide films by EISA. 

2.2.3. Surfactant-templated Film Deposition 

Figure 2.3a shows the dip coating process in which surfactant micelles form and 

may begin to assemble due to evaporation adapted from Brinker et al. [115]. In EISA, films 

are prepared by dip coating of substrates from a solution containing inorganic precursors, 

surfactant and solvent accompanied by rapid evaporation of volatile solvents (ethanol and 

water) to drive the formation of an ordered mesoporous structure. One important advantage 

of EISA for the preparation of mesoporous transition metal based thin films is that the pH 

can initially be adjusted to stabilize the coating sol and allow gradual assembly of an 

ordered mesostructured after coating. In order to  inhibit rapid olation and condensation of 

the titania precursors to allow self-assembly to occur,  protons (H+ ions) have been used as 

inhibitors [109]. Although ligands such as acetylacetonate can also be used to reduce the 

reactivity of metal alkoxides, they can interfere in the interactions between titanium species 

and surfactants, so H+ is a more widely used inhibitor in the synthesis of surfactant 

templated mp-TiO2 films [116-119]. Using a highly acidic sol prevents uncontrolled 

condensation of transition metal precursors, which allows slow formation of the inorganic 

network within the liquid crystal mesophase formed after coating. Gradual elimination of 

the acid by evaporation provides a way to control the polymerization of the inorganic 

components while allowing a fully cured inorganic network to form [120]. 

In addition to precursor chemistry, the choice of structure directing agent has a vital 

influence over the final mesostructure formed in surfactant-templated titania films [116, 

121]. For example, using titanium isopropoxide as inorganic precursor, films with an 
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columnar 2D hexagonal close packed (HCP) mesostructure were reported using the 

Pluronic surfactant P123 (a triblock copolymer with average formula EO20PO70EO20, 

where EO is ethylene oxide and PO is propylene oxide), while cubic mesostructured films 

were obtained with Pluronic F127 (EO106PO70EO10) [122].  In addition to the template 

itself, the molar ratio (M) of structure directing agent to the titania precursor also influences 

the type of mesostructure formed [33, 116, 121]. Changing M changes, the amount of 

inorganic precursor associated with the hydrated PEO head groups and the number density 

of micelles formed after coating. In other words, M changes the packing parameter (P) of 

the micelles, which is defined as P=V0/(Ae*L0), where V0 is the surfactant tail volume, Ae 

is the equilibrium area per molecule at the aggregate interface and L0 is the surfactant tail 

length.[123]  The most direct effect of decreasing M should be to increase Ae (since more 

polar components are present to interact with and expand the surfactant headgroups), which 

is expected to favor aggregates with higher curvature such as cylinders (P=1/2) and then 

spheres (P=1/3). 

Films with cubic, hexagonal and lamellar phase can be obtained by varying M.  

Crepaldi et al. [33] synthesized mp-TiO2 films using TiCl4 as titania precursor using 

various surfactants and found that for P123, titania films with 2D HCP mesophase are 

obtained for M of 0.05-0.09 and lamellar mesophase for higher values of M.  With F127 as 

template, a cubic phase is obtained for M values of 0.003-0.006, and 2D HCP for M 

between 0.008-0.01. In a slightly different but consistent approach, Alberius et al. [116] 

showed that the final mesophases in surfactant-templated materials can often be predicted 

based on the volume fraction of surfactant (Φ), which is defined as the ratio of the volume 

of surfactant in the dried film to the volume of the nonvolatile (polar) components in the 
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final film. They predicted based on the observed phase behavior of P123 in water that for 

titania films synthesized using P123 as the surfactant and titanium ethoxide [Ti(OEt)4] as 

the titania precursor, the mesophase should be cubic, 2D HCP or lamellar for Φ in the 

ranges from 29%-36%, 38%-55% and 61%-75% respectively. Wu et al. [124] reported the 

synthesis of titania films using P123 and Ti(OEt)4 for M ratios between 0.006 and 0.012, 

which is expected to correspond to Φ in the range from 26% to 41% [124]. The 

mesostructure should vary from 2D HCP, to a cubic mesophase, to a disordered micellar 

solution sequentially, as the molar ratio (M) decreases from 0.0122 to 0.01, 0.008 and 0.006 

according to Alberius et al. [116]. However, Wu et al. [124] found  for a P123 to Ti ratio 

as low as 0.006, a stable well-ordered mesostructure is still obtained, which is similar to 

the results obtained by Crepaldi et al. [33] and unlike Alberius et al. [116]. This might be 

because the formation mechanism of the mp-TiO2-based thin films is influenced by many 

factors besides the templates and precursor volume fractions, including aging temperature, 

aging time, relative humidity of atmosphere,[33, 125] the acidity of the solution, [33, 125] 

etc. 

In addition to the type of mesophase, its orientation can be important for many 

applications.  By analogy with surface chemistry strategies used to orient block copolymer 

films [126-131], the Rankin group has reported the synthesis of mp-TiO2 thin films with 

orthogonally tilted HCP (o-HCP) cylindrical nanopores using EISA with P123 as structure 

directing agent and titanium(IV) ethoxide as titania precursor [104, 132].  The hypothesis 

underlying this approach is that orthogonal alignment of the HCP mesophase can be 

achieved in EISA-derived ceramic film by modifying the substrate surface so that it 

interacts equally with both blocks of the P123 template, making it chemically “neutral” 
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towards the template surfactant.  Monte Carlo simulations [133, 134] have shown that this 

is the expected outcome for mixtures of surfactants and small molecules, and not just for 

neat block copolymers [130].  A related epitaxial orientation procedure was demonstrated 

by Tolbert and coworkers, where HCP film was cast onto a cubic template film to induce 

orthogonal alignment [135].   

2.2.4. Surfactant/Titania Film Aging 

In addition to surface modification, the synthesis procedure for o-HCP TiO2 films 

includes aging after coating in a refrigerator at 4 °C under high relative humidity (approx. 

94%).  The objectives of using a low temperature are to slow titanium precursor 

condensation and to provide a driving force for mesophase formation, similar to the 

subambient temperatures used by Alberius et al. [116]. Even though this aging procedure 

has been found to be an essential part of o-HCP TiO2 film formation, little is known about 

the o-HCP mesostructure formation mechanism other than what has been inferred by 

characterization of the films before and after calcination [104]. Grosso et al. analyzed the 

mechanisms involved in the formation of 2D-hexagonal templated SiO2 and TiO2 

mesostructured films during dip coating using Brij-58 as surfactant and found that the self- 

assembly leads to the formation of organized phase at the final stage of the drying process 

and involves the formation of an intermediate disorganized phase [136]. The disorder to 

order transition takes place on the order of 2-3 minutes after the start of coating for TiO2 

under the conditions studied.  Other reports have shown that for dip-coated thin films, the 

mesostrucutre generally forms through a disorder-to-order transition which may involve 

intermediate hybrid mesophases that are related to the concentration gradient [137-139].  
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Recently, Nagpure et al. [103] reported an in-situ GISAXS investigation of low-

temperature aging in oriented surfactant-mesostructured titania thin films and found that 

the o-HCP structure is the first ordered mesophase formed, and it emerges slowly by a 

disorder-order transition consistent with the tunable steady state (TSS) proposed for highly 

acidic TiO2 sols [140, 141]. Figure 2.3b shows the aging process after deposition in which 

films organize into an ordered mesophase. [103]. The slow mesophase formation and long 

TSS may also be accentuated by the use of P123 as a template [142]. Other studies that 

showed the formation of vertically oriented cylindrical channels by transformation of a 

cubic phase and merging of the pores normal to the film also showed diffraction spots 

consistent with the cubic phase prior to thermal treatment [143-145]. However, the results 

obtained by Nagpure et al. [103] are consistent with the hypothesis underlying the work of 

Koganti et al. [132] that vertical channels simply form due to reorientation of the HCP 

phase in response to the modification of the surface of the substrate with a chemically 

neutral crosslinked P123 layer. A perfectly o-HCP structure follows 2D growth mechanism 

with nucleation at the start of the process, whereas films with mixed pore orientation follow 

2D growth with continuous nucleation. They also studied the effects of aging temperature 

on mesostructure orientation and found that for the film aging at 4 °C, a very well-ordered, 

accessible porous structure was observed everywhere indicating orthogonal alignment of 

the cylindrical micelles. When a film was aged at 23 °C, randomly oriented parallel stripes 

were observed everywhere at the top surface of the film, indicating that the cylindrical 

micelles were arranged parallel to the substrate but with no preferred in-plane orientation. 

Significant thermotropic behavior occurs in Pluronics because of changes in the 

hydrophilicity of the PPO blocks at around 15-20 °C.  For films aged at 4 °C, the "contrast" 
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between hydrophobic PPO and hydrophilic PEO is expected to be small and the polymer 

may find hydrophilic surfaces to be "neutral" [146] even though specific interactions with 

titanium precursors still drive mesophase formation. This would be expected to promote 

orthogonal alignment of the mesophase during low temperature aging.  On the other hand, 

at 23 °C, PPO becomes hydrophobic and the usual contrast mechanisms return. 

After deposition of the sol on glass substrates, the relative humidity (RH) of the 

environment in which these films are aged have been shown to play a vital role in 

mesostructure development. A highly humid environment is important during the aging of 

these films to slow down the evaporation of the water from the films (to provide sufficient 

time for reorientation and ordering of the mesostructure) and also to permit the mesoscopic 

ordering of the surfactant [117, 119, 147-149].  Crepaldi et al. [33] provided a thorough 

discussion of the complete synthesis and characterization procedures to obtain ordered mp-

TiO2 films. They discussed all important chemical and processing parameters important 

for reproducible construction of mp-TiO2 thin films and explained that humidity during 

aging determines the water content in the coatings. This water content determines the 

fluidity of deposited coating and the possibility of occurrence of the disorder-to-order 

transition. The continuous exchange of water between the film and the atmosphere during 

the first hour of aging after deposition allows the condensation of the organic framework 

around micellar aggregates and controls the final mesophase. Jang et al. [125] study the 

effects of pH of the coating sol as well as the humidity of the curing environment on the 

mesostructure of titania films obtained. They suggest an optimum pH (~ -0.6) and humidity 

(~ 80% RH) values to synthesize highly organized mp-TiO2 films. In much of the work in 

the Rankin group, high humidity (~ 94%) has been used to slow the condensation of 
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inorganic precursor, and it is possible that this also plays a role in promoting o-HCP 

mesostructured formation.[103]   

2.2.5. Thermal Treatment 

Calcination of titania film after aging removes surfactant molecules, stabilizes the 

coating, causes structural contraction and induces anatase crystallization from the initially 

amorphous titania structure formed during the sol-gel process [33]. These mp-TiO2 films 

are stable up to a certain level of thermal treatment, but as the time and temperature used 

for calcination increase, they begin to lose mesopore order. This is because high 

temperatures allow diffusion and sintering of atoms in the initial amorphous structure, and 

also induce the nucleation and growth of anatase nanocrystallites, which can destroy 

mesopore ordering due to extensive atomic rearrangement and modification of the 

oxidation state of the titanium by redox reactions [118]. Kirsch et al. [117] studied the 

crystallization kinetics of mp-TiO2 thin films using in-situ x-ray diffraction and suggested 

based on the measured activation energies for the two processes that short calcination times 

at high temperatures are better to produce crystalline films with minimal loss of 

mesoporous order. However, the exact time and temperature required vary for different 

synthesis procedures, and the effects of pore orientation on crystallization vs. 

mesostructured loss remain open questions.  

Das et al. [150] investigated the effects of pore orientation on the mesostructural 

stability for HCP nanopores of titania and found that films with pores oriented orthogonal 

to the substrate at the top surface retain their long-range pore order at higher calcination 

temperatures (500 °C or more) compared to films with pores oriented parallel to the 

substrate. with mixed orientation (mixture of parallel and orthogonal orientation) as shown 
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in Figure 2.3c. This difference was ascribed to greater resistance to anisotropic stress 

during heating of the orthogonally oriented pores, and titania crystallite nucleation at the 

top surface of the films with orthogonally oriented pores. Consequently, the activation 

energy and entropy for mesostructure loss of o-HCP TiO2 films was found to be greater 

than that for films with mixed orientation (mixture of parallel and orthogonal orientation) 

[105]. Nearly perfect orthogonal orientation contributes to the larger activation energy by 

supporting the anisotropic stresses that develops orthogonal to the films during annealing. 

While progress has been made at understanding the rates and mechanisms of 

crystallization vs. mesostructured loss in soft-templated films, the loss of the template by 

oxidation at relatively low temperatures (< 400 °C) presents challenges in forming a 

mesoporous crystalline material. Hard templating may provide an alternative by using 

mesoporous solids as hard templates in which the growth of the precursor to a new material 

is restricted to the surface, cages, channels, or substrate of a hard template. The three main 

steps in the hard templating approach consist of (i) precursor infiltration inside mesopores 

of the template; (ii) conversion of the precursor into the target product in the mesopores; 

and (iii) removal of the mesoporous template [90]. As compared with the soft-templating 

method, the hard-templating method is less straightforward because of the need to 

selectively remove the hard template. Also, it is not easy to completely fill up the voids of 

mesoporous templates with titanium precursors because of their strong tendency to 

precipitate and crystallize into bulk oxide phases directly in aqueous media [107]. 

However, this synthesis strategy avoids the need to control cooperative assembly and 

possible mesostructured loss during heating, thus making it attractive for the synthesis of 

ordered mp-TiO2 with high thermal stability and crystallinity. Lee et al. [151] synthesized 
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thermally stable mp-TiO2 with a hierarchical 4-5 nm mesopore / 50 nm macropore structure 

via replication of citric acid-templated mesoporous silica as a hard template. Yue et al. 

[152] fabricated mesoporous rutile TiO2 (which forms at a higher temperature than anatase 

TiO2) by using SBA-15 and KIT-6 mesoporous silica particles as hard templates and 

Ti(NO3)4 solution as a precursor. The reaction temperature and concentration of HNO3 in 

the used precursor had significant effects on the crystallization of TiO2. Zhang et al. [153] 

reported the synthesis of mesoporous crystalline anatase TiO2 with KIT-6 as the hard 

template and titanium alkoxides as the precursors. It was found that the precursor/template 

ratios, calcination temperatures and immersion time in NaOH solution for the removal of 

the hard template are the three key synthetic parameters that play important roles in the 

formation of crystalline porous TiO2.  

2.3. Nitrogen doping 

Non-metal doping in mp-TiO2 has the potential to extend its light absorption from 

UV to visible wavelengths. Hydrogen, boron, carbon, nitrogen, fluorine, iodine, sulfur and 

phosphorus have been used in this capacity, but nitrogen has been studied most extensively. 

Until now, various approaches to incorporate nitrogen atoms into titania have been 

reported, such as doping during film sputtering [154], annealing under ammonia gas [20], 

ion implantation [155, 156], hydrazine treatment [157, 158], urea treatment [159-161], 

treatment of sol-gel titania with nitrogen-containing organics [162], electrochemical 

processing [163], chemical vapor deposition [164], and plasma techniques [19, 21, 50, 165-

172]. Most of the above doping methods require high temperature treatment and 

complicated or expensive equipment. Therefore, those doping methods are difficult to 

apply in mp-TiO2 due to risk of losing mesostructure at the doping conditions. For example, 
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nitrogen doping in mp-TiO2 by heating in the presence of nitrogen sources is not feasible. 

Because high temperature is required to dissociate molecular nitrogen to atomic nitrogen 

or nitrogen radicals, the mesostructure and crystal phase of titania cannot be easily 

maintained. In addition, higher temperature treatment of  titania forms oxygen vacancy 

which works as a recombination center for the photogenerated charge carriers resulting in 

lower photocatalytic activity [35]. It is necessary to use simple, low-temperature methods 

for doping nitrogen in mp-TiO2. In many approaches, a nitrogen precursor is added into 

the titania precursor solution in gol-gel, hydrothermal and solvothermal methods. Several 

nitrogen sources such as urea, thiourea, nitric acid, and hydrazine have been used for 

doping in mp-TiO2. While many nitrogen sources are available, not all of them can be used 

in all synthesis conditions. For instance, when mp-TiO2 is synthesized in acidic medium, a 

nitrogen source which makes the precursor solution basic cannot be used. For example, 

acidic solutions to prepare surfactant-templated mp-TiO2 thin films to stabilize low-

molecular weight titanate  [69]. In this case, hydrazine cannot be added in the precursor 

solution because the increase in pH will induce titania precipitation. In this section, we will 

discuss nitrogen doping of mp-TiO2 using several nitrogen sources and synthesis 

approaches.  

2.3.1. Amines 

Amines have been widely used as sources of nitrogen for doping in mp-TiO2 [173-

181]. Nassoko et al. synthesized nitrogen doped mp-TiO2 (N-mp-TiO2) nanoparticles by a 

sol-gel method using ethylene-diaminetetraacetic acid as both a soft template and a source 

of nitrogen [175]. The resulting N-mp-TiO2 nanoparticles showed enhanced rhodamine B 

degradation under visible light irradiation. Cheng et al. reported the preparation of 
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mesoporous, nitrogen-doped dual phase titanate/titania by a low-temperature one-pot 

process in the presence of triethylamine [176]. The N-doped titanate/titania showed 

efficacy in visible-light phenol degradation. Fu et al. prepared N-mp-TiO2 using an 

exfoliation-reassembly strategy where ethylamine caused delamination of layered titanate 

and acted as a source of nitrogen [178]. Figure 2.4 shows a schematic illustration of the 

exfoliation-reassembly technique for the synthesis of N-mp-TiO2. In this method, the 

layered protonic titanate sheets are delaminated by ethylamine followed by reassembling 

with positively charged titania colloid nanoparticles leading to formation of randomly 

aggregated hybrid with porous structure. Nitrogen was incorporated into titania from the 

decomposition of ethylamine during calcination. In the photocatalytic degradation of 

methyl orange, the N-mp-TiO2 prepared this way showed much higher photocatalytic 

performance at visible wavelengths compared to commercial P25 or pristine titanate. This 

improvement in photocatalytic activity was ascribed to the porosity, visible light 

absorption, and especially the effective separation of photogenerated charge carriers in the 

modified material.  

Wanqin et al. reported the preparation of nanocrystalline N-mp-TiO2 using 

ultrasonic irradiation with ethylenediamine (C2H4(NH2)2) as a source of nitrogen [180]. 

They proposed that ethylenediamine might form N radicals from its decomposition under 

elevated temperature and pressure produced by acoustic cavitation, which are able to easily 

dope TiO2. The band gap was reduced from 3.3 eV to 2.98 eV by this approach, and the N-

mp-TiO2 degraded 58% of dimethyl phthalate in 5 h whereas undoped TiO2 did not show 

significant degradation. Hu et al. prepared ordered arrays of N-mp-TiO2 spheres using dual 

templating with a combination of inverse opal templating with PMMA (hard templating) 
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and surfactant templating with P123 (soft-templating) [182]. Tetramethylammonium 

hydroxide was used as a source of nitrogen. The N-mp-TiO2 spheres showed enhanced 

rhodamine B degradation compared to nonporous N-TiO2 spheres and undoped mp-TiO2 

spheres under visible light illumination. The high photocatalytic activity of the doped mp-

TiO2 spheres was attributed to N-doping, abundant ordered mesopores and optical effects 

of the opal structure.  

2.3.2. Ammonia 

In addition to organic amines, ammonia has been used as a source of nitrogen to 

prepare N-mp-TiO2 [35, 182-185]. Hou et al. reported the preparation of nanoscrystalline 

N-mp-TiO2 from an alkoxide precursors and concentrated ammonia solution as a source of 

nitrogen [184]. Joshi et al. synthesized N-mp-TiO2 by templating with chitosan, which also 

served as nitrogen source along with ammonium hydroxide [185]. The resulting N-mp-

TiO2 showed enhanced methyl orange degradation under visible light illumination. Li et 

al. prepared N-mp-TiO2 spheres by a hydrothermal method with CTAB and ammonia as 

template and nitrogen source, respectively. Varying ratios of ammonia: Ti were used to 

give N-mp-TiO2 spheres containing about 1.31% of nitrogen (vs. 0.17% for nonporous N-

TiO2 spheres). A higher level of doping was found in the mesoporous spheres because of 

homogeneous doping facilitated by ammonia uptake into the mesopores. Due to greater, 

more homogeneous doping, the N-mp-TiO2 spheres showed the greatest degree of 

degradation of rhodamine B under a 1000 W tungsten halogen lamp (>420 nm). The 

degradation of rhodamine B was found to be 100%, 50%, 35%, and 20% for N-mp-TiO2, 

nonporous N-TiO2, mp-TiO2, and solid TiO2 spheres, respectively. The enhanced 

photocatalytic activity of N-mp-TiO2 spheres is attributed to combination of N-doping and 
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mesopore structure. The maximum photocatalytic activity was found with a 0.5 molar ratio 

of ammonia to TiO2. The surface area of the materials was reduced by the use of more 

ammonia, which decreased the photocatalytic activity of the samples. In addition, 

excessive nitrogen might cause the formation of recombination centers for photogenerated 

electrons and holes.  

2.3.3. Hydrazine 

Hydrazine has also been tested as a potential source of nitrogen in N-mp-TiO2. 

Along with nitrogen, titanium (Ti3+) introduced into the TiO2 due to reduction by in situ 

hydrogen generation is expected to create an energy state below the conduction band of 

TiO2 which further reduces the band gap [74, 158, 186-193]. This Ti3+ state in TiO2 might 

improve not only light absorption but also charge transport. For instance, Zuo et al. 

prepared a self-doped (Ti3+) TiO2 photocatalyst and demonstrated its use for hydrogen 

production under visible light [186]. More recently, Ti3+ doped TiO2 prepared by hydrazine 

reduction has been reported [158]. When TiO2 is reduced by any reducing agent, Ti3+ is 

expected to be formed along with oxygen vacancies. However, with hydrazine (N2H4), 

titania is expected to be co-doped with both Ti3+ and N and is therefore to synergistically 

absorb more visible light and potentially be a more effective redox catalyst than TiO2 doped 

with either species alone. Aman et al. explored this concept using Ti3+ and N-mp-TiO2 

nanoparticles for enhanced photocatalytic activity under visible light [157]. The Ti3+/N-

mp-TiO2 showed higher photocatalytic reduction of selenium to metallic Se° under visible 

light illumination compared to undoped TiO2.  

When hydrazine is decomposed under heat treatment, ammonia, nitrogen and 

hydrogen gases are formed as by Equation 2.4 and 2.5. 
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3 N2H4  4 NH3 + N2     (2.4)  

4 NH3 + N2H4  3 N2 + 8 H2     (2.5)  

This in-situ formed ammonia and nitrogen (and possibly unstable radical species) act as 

sources of nitrogen for doping [157]. Selvam et al. prepared N-mp-TiO2 particles by wet 

impregnation with hydrazine [194]. The N-mp-TiO2 particles were used for the conversion 

of azoxybenzene to amines or 2-phynylindazoles with methanol using a 365 nm medium-

pressure mercury lamp. In addition to introducing N and Ti3+, hydrazine increased the 

surface area from 74 to 134 m2/g due to hydrazine decomposition [157, 194]. The yield of 

4,4’-azoxyanisole by catalytic reductive cleavage on N-mp-TiO2 (95.7 %) in methanol 

under UV (365 nm) light illumination is higher than that on undoped mp-TiO2 (60.3%) and 

P25 (50.6%). These results show that both high surface area and nitrogen doping 

contributed in the higher photocatalytic activity of the N-mp-TiO2. 

2.3.4. Plasma Doping 

Plasma treatment is an efficient method to introduce nitrogen into the titania lattice 

[19, 21, 50, 165-172]. Among available doping approaches, plasma-assisted doping has 

several critical advantages, such as: (i) effectively incorporating heteroatoms into the TiO2 

host by providing reactive dopant species, and (ii) being conducted at relatively low 

temperature so that the nanostructure of TiO2 is maintained. Recently, we have reported 

the incorporation of nitrogen into surfactant templated cubic ordered mp-TiO2 thin films 

by N2/Ar plasma treatments [69, 195]. About 2-3 atomic % substitutional nitrogen was 

found in the doped films and the nitrogen was found to be uniformly distributed through 

the depth of the films.  XPS and optical characterization results suggest that the band gap 

of TiO2 films was reduced from 3.5 eV (in undoped TiO2 films) down to a minimum of 3.0 
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eV after the plasma treatment.  Photocatalytic degradation tests with methylene blue 

demonstrated a significant enhancement in photocatalytic activity of the N-TiO2 films over 

undoped TiO2 films under visible-light illumination (455 nm LED) as shown in 

concentration profile in Figure 2.5. The N-TiO2 prepared by 150 min plasma treatment 

showed the best photocatalytic performance, with the determined rate coefficient of 0.24 

h-1, roughly 6 times greater than that of undoped TiO2 films.  This enhancement in 

photocatalytic activity is qualitatively similar to prior studies of nitrogen doping in 

nanostructured titania but significantly greater in magnitude than the 2-3 times 

enhancement reported by Liu et al [167]. This photocatalytic improvement is attributed to 

the combination of the efficient N2/Ar plasma-induced doping approach with the well-

defined high surface area found in surfactant-templated mp-TiO2 thin films. The present 

study showed that plasma-induced doping enables the efficient incorporation of 

heteroatoms into the TiO2 films while maintaining their mesoporous structure, thereby 

leading to the significant enhancement of visible-light photoactivity. The coating and 

plasma based process presented here has several advantages over competing synthetic 

strategies, as it can be scaled to continuous film production and to deposition of the films 

onto other substrates for photoelectrocatalytic applications.  

2.3.5. Thiourea 

Thiourea has also been used as a nitrogen source for the doping of mp-TiO2 [18, 

196, 197]. Soni et al. reported the preparation of N-mp-TiO2 films via evaporation induced 

self-assembly using P123 as a template and thiourea as a source of nitrogen [18]. The films 

showed the thickness of 73 nm, 211 nm, 385 nm and 695 nm by multiple coating and 

contained 0.9, 1.7, 4.8 and 8.3 at.% of interstitial nitrogen in the films, respectively. It is 
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not clear why nitrogen content increases with the film thickness formed by multilayer film 

deposition. While 73 nm thick N-TiO2 films degraded about 10% methylene blue in 18 

hours, undoped TiO2 did not show any degradation in the photocatalytic degradation test 

under visible light of 442 nm illumination. N-TiO2 of 695 nm thickness showed the best 

response which is complete degradation of methylene blue in 18 hours. That indicates that 

695 nm thick N-TiO2 films exhibited about 10 times higher rate compared to 73 nm thick 

N-TiO2 films, which is due to the increased surface area in the thicker films. The same 

research group used the N-mp-TiO2 thin films for visible light induced bactericidal activity 

on Gram-positive bacteria (Bacillus amyloliquifacience) [197]. An electron paramagnetic 

resonance study of the N-mp-TiO2 powders produced using thiourea by this group showed 

that several paramagnetic species associated with oxygen radicals after calcination at 400 

°C, while nitrogen centers appear after calcination at temperature as high as 500 °C [196]. 

Interestingly, since it contains nitrogen, carbon and sulfur, different authors claimed that 

thiourea modified mp-TiO2 contains different dopants and combinations of dopants 

including B/N/S co-doped mp-TiO2 which will be discussed in later sections [75, 198-201]. 

2.3.6. Urea 

Urea is a common source of nitrogen for doping in mp-TiO2 since it is readily 

available and easy to introduce into TiO2 precursor sol or solid TiO2 using a urea solution 

[37, 85, 202-211]. In addition to being a nitrogen source, urea can contribute to forming 

mesopores in titania by generation of CO2 gas bubbles during its decomposition (Equation 

2.6) [37, 205]. For instance, the surface area of mp-TiO2 prepared using urea was reported 

in one procedure to be 154 m2/g, but only 101 m2/g in mp-TiO2 prepared using a similar 

method without urea [205].  
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CO(NH2)2 + 3 H2O    2 NH3·H2O + CO2  (2.6)  

Chi et al. synthesized N-mp-TiO2 by a solvothermal method using urea as both a 

source of nitrogen and mesopore former [205]. The nitrogen content in the N-mp-TiO2 was 

0.81 at%. The N-mp-TiO2 degraded about 38% of methylene blue whereas undoped mp-

TiO2 degraded only about 20% under visible light illumination, indicating a 2.1 times 

increase in photoactivity upon nitrogen doping. Shao et al. reported the preparation of 

hierarchical mesoporous-macroporous N-TiO2 by thermal treatment of the hierarchical 

TiO2 with urea solution [207]. The band gap was reduced from 3.14 to 2.48 eV after N-

doping. XPS and FT-IR spectra confirmed the formation of Ti–N bonds in the meso-

macroporous N- TiO2. The first-order photocatalytic degradation of Rhodamine B under 

visible light illumination was increased from 3.7×10-3 min-1 to 5.3×10-3 min-1 due to N-

doping. This enhancement in the photocatalytic performance was due to the incorporation 

of nitrogen into the titania lattice and the presence of the hierarchical meso/macroporous 

structure.  Recently, N-mp-TiO2 was prepared using a urea-assisted solvothermal method 

at mild temperature [202].  The band gap was reduced from 3.16 eV to 3.02 eV upon 

nitrogen doping. In photocatalytic oxidation of acetic acid in 60 min under solar simulator, 

N-mp-TiO2 showed about 1.55 times higher performance compared to undoped TiO2. 

Notably, the properties such as the band gap, chemical state of nitrogen and enhancement 

in photocatalytic activity of N-mp-TiO2 are very different based on the preparation 

methods even when urea was used as the nitrogen source. To help to understand the reason 

for this variability, Sreethawong et al. prepared nanocrystalline N-mp-TiO2 and studied the 

urea decomposition process in conjunction with XRD characterization [212]. A mechanism 

was proposed based on the appearance of biuret and cyanuric acid along with anatase titania 
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as observed by XRD. The biuret and cyanuric acid form at about 150-250 °C and 190-350 

°C temperature, respectively. 

2.3.7. Summary of Nitrogen Doped Mesoporous Titania 

A summary of synthesis methods, pore directing agents, dopant sources, N 1s 

binding energy in doped TiO2, the band gap before and after doping, specific surface area, 

compounds used for photocatalytic testing, and photocatalytic enhancement found in the 

N-mp-TiO2 from various literature is presented in Table 2.1. The photocatalytic tests were 

performed under visible light in all cases, although the light source varied. Typical organic 

compounds used for photocatalytic test are methylene blue (MB), methyl orange (MO), 

and rhodamine B (Rh B). It is difficult to compare results of different studies directly due 

to variations in testing conditions including the preparation method of the photocatalyst, 

light sources, light intensities, excitation wavelengths, organic compound chosen for 

photocatalytic testing, catalyst amount, reactor geometry, etc.  

For the sake of comparison, the enhancement is defined by the rate of reaction using 

doped mp-TiO2 divided by the rate of reaction using undoped mp-TiO2. When there was 

no photocatalytic test using undoped titania, the enhancement could not be defined. Most 

of the literature did not report directly the rate coefficient for degradation of the organic 

compounds, in which case the reaction is assumed to be pseudo-first order to determine the 

photocatalytic enhancement. The enhancement is calculated ratio of the maximum 

photodegradation occurring over a certain reaction duration by the doped mp-TiO2 to the 

photodegradation by the undoped mp-TiO2. The reported specific surface area is for 

undoped TiO2. If the surface area of undoped titania is not given, the surface area of doped 
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titania is reported in Table 2.1. The content of dopants are in atomic percentage unless 

otherwise noted.  

From Table 2.1, it is observed that in most cases, urea gives about 1 at.% N.  N-

mp-TiO2 prepared using urea showed about a 0.1-0.2 eV bandgap reduction. Only one 

study was performed using nitrogen plasma-treated mp-TiO2. The nitrogen content and 

band gap reduction in the resulting N-mp-TiO2 were 3.2 at.% and 0.48 eV, respectively. 

The N-mp-TiO2 prepared using ethylenediamine showed the largest band gap reduction of 

2.2 eV. However, this band gap reduction is not from a primary absorption edge shift but 

from formation of a new absorption edge in the visible region [173]. Typically, the binding 

energies of nitrogen in N-TiO2 are in the range of 396 - 404 eV [6, 43, 47]. Two types of 

nitrogen atoms were assigned in titania: (i) substitutional nitrogen with a binding energy 

of 396 eV, and (ii) interstitial nitrogen with a binding energy of 400 eV. The XPS peak at 

396-397 eV is for substitutional nitrogen because it indicates Ti-N bonding [48]. The 

binding energy at around 400 eV is due to the interstitial nitrogen incorporated through 

various N-O-Ti species. From Table 2.1, it is seen that most of the nitrogen is interstitial in 

the N-TiO2, which forms mid-gap states between the valence band and conduction bands. 

On the other hand, very few methods produce N-mp-TiO2 containing substitutional 

nitrogen which is responsible for band gap reduction. In some cases, authors deconvoluted 

the N 1s XPS peak and showed both interstitial and substitutional nitrogen. Only N-TiO2 

prepared by supercritical CO2 drying method and nitrogen plasma explicitly showed 

substitutional nitrogen [69, 206]. In terms of photocatalytic enhancement, all N-mp-TiO2 

materials showed higher visible-light activity compared to undoped titania. Of all 
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approaches, N-mp-TiO2 prepared using nitrogen plasma and amines give the greatest 

enhancement. 

Cong et al. performed an comparison of N-mp-TiO2 prepared using a 

microemulsion-hydrothermal method with triethylamine, urea, thiourea, or hydrazine 

hydrate as nitrogen sourcde and Triton X-100 and 1-hexanol as structure directing agents 

[49]. All of the N-mp-TiO2 catalysts exhibited higher photoactivity compared to undoped 

titania and P25 for rhodamine B degradation under visible light irradiation. The N-TiO2 

prepared with triethylamine showed the highest photocatalytic activity and thiourea 

showed the lowest. The photocatalytic activity increased with nitrogen content. That was 

correlated with the band gap reduction and enhancement in visible light absorption. 

Nitrogen doping could also inhibit charge recombination resulting in increased 

photocatalytic activity as found by photoluminescence measurements. The results from this 

study is also in agreement with the other studies that N-mp-TiO2 prepared with amines as 

a nitrogen source showed higher photocatalytic performance than those prepared with other 

sources, as shown in Table 2.1. 
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2.4. Other non-metal doped mesoporous titania 

2.4.1. Hydrogenation 

Hydrogen doping is a potential strategy to reduce the band gap of TiO2 by 

introducing electronic states below the conduction band [74]. In addition to band gap 

reduction, hydrogenation of TiO2 been shown to increase its conductivity and subsequently 

its capacitance [213]. Upon hydrogenation, titania becomes black and can absorb light over 

a wide wavelength range [15, 214-217]. It has been speculated that hydrogenation 

introduces surface functional groups which also allow for Faradaic reactions to take place 

[213]. Hydrogenation in titania leads to Ti3+ formation or oxygen vacancy.  

Zhou et al. reported the preparation of hydrogenated mp-TiO2 (H-mp-TiO2) with 5-

10 nm pores [218]. The nanoporous titania was formed in situ on titanium flakes by 

electrodeposition followed by annealing in a 1:4 H2/Ar atmosphere. Oxygen vacancy and 

hydroxyl groups formed on the surface of TiO2 due to the hydrogenation. The H-mp-TiO2 

showed a capacitance of 1.05 mFcm-1 at the scanning rate of 100 mVs-1, which is 14-fold 

higher than that of pure TiO2. This capacitance enhancement was attributed to the 

nanoporous architecture which provides easy access of the surface to liquid electrolyte, 

more active sites for ion binding and charge separation, and improvement in electrical 

conductivity. Muhammad et al. reported reduced mp-TiO2 thin films prepared by 

evaporation induced self-assembly using F127 as a pore template followed by heat 

treatment under a hydrogen environment [219]. The transparent titania thin films turned 

black upon heat treatment. However, no evidence of forming Ti3+ was provided. The band 

gap did not change after hydrogenation, but the H-mp-TiO2 films were used for 

photoelectrocatalytic water oxidation at 0.6 V vs. Ag/AgCl in 1 M NaOH solution under a 



  

 

50 
 

150 W Xenon lamp-based solar simulator. The hydrogenated films showed about 11 times 

higher photocurrent compared to pure films. This enhancement was attributed to the 

oxygen vacancy formation during the heat treatment under the flow of hydrogen gas. 

2.4.2. Boron doping 

As noted above, other non-metals than nitrogen have been used in an effort to 

enhance the visible light absorption in titania.  Boron doped mp-TiO2 (B-mp-TiO2) was 

prepared by a sol-gel process using boric acid as a boron source [86]. Different 

concentrations of boron ranging from 0.25 to 9.0 (wt%) was used in the precursor solution 

to obtain B-mp-TiO2 with different loadings. The surface area of samples prepared with 

2% and 5% of boron were 104 and 100 m2/g, respectively, which were higher than other 

samples. At this concentration of boron, aggregation of particles was reduced resulting in 

higher surface area. On the other hand, agglomerates were fused together to form 

comparatively larger irregular grains in pure TiO2 and 9% B-mp-TiO2 resulting in lower 

surface area. This suggests that the presence of boron significantly affects the particle size 

and surface area. Despite the incorporation of boron as B-O-Ti species, the band gap of 

TiO2 was not reduced upon boron doping. The photocatalytic activity of the boron doped 

titania were tested for the degradation of pharmaceutical contaminant metoprolol using a 

Xe lamp solar simulator. Among all the samples, the highest degradation (70%) was 

obtained for the sample with 5% B whereas undoped TiO2 removed 48% of metoprolol 

after 180 min of treatment. Further increase in boron concentration (9% ) reduced the 

photocatalytic performance. At this percentage of B, a level of maximum saturation at the 

particle surface is reached and an excessive amount of boron occupied active sites of the 

catalyst, inhibiting the radiation absorption of TiO2 particles. The observed photocatalytic 
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enhancement was attributed to the high surface area, mesoporous structure, formation of 

Ti(III), introduction of boron as a B–O–Ti species and uniformity in particle size with 5% 

B.  

2.4.3. Carbon doping 

Doping with carbon atoms has been found to increase visible light absorption and 

photocatalytic activity of titania. The carbon dopants can form a new energy state in 

between the valence band and conduction band of titania as shown in Figure 2.1 [73, 220]. 

In addition, carbon doping increases the photocatalytic activity of titania by decreasing the 

recombination rate of photogenerated electron-hole pair where carbon works as an electron 

scavenger [220]. Furthermore, carbon doping increases the conductivity of titania and it 

improves the charge transfer from the bulk to the surface sites where charge carriers 

participate in reactions [44]. Several studies have been reported on carbon doped mp-TiO2 

(C-mp-TiO2) [220-225]. C-mp-TiO2 films were synthesized by a sol-gel process combined 

with hydrothermal treatment using glucose as a source of carbon and a structure-directing 

agent [220]. In this method, titania particles prepared from Ti(OBu)4 and glucose were 

hydrothermally treated in an autoclave containing a glass substrate to make C-mp-TiO2 

films. XPS showed peak at 282.4 eV for Ti-C along with other peaks at 284.8, 286.2 and 

288.6 eV for adventitious elemental C or residual carbon from the precursor. These results 

indicated that substitutional carbon was incorporated into titania lattice by replacing 

oxygen by forming O-Ti-C bond. Photoluminescence showed that electron-hole 

recombination is reduced due to carbon doping. The C-doped mp-TiO2 films also exhibited 

higher photocatalytic degradation of Brilliant Red X-3B under both UV and visible light 

irradiation compared with that of the smooth TiO2 film and a P25 film. The degradation 
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rate coefficients of the doped films were enhanced 2.4 times under UV light and 3.6 times 

under visible light irradiation compared with the undoped film. High surface area, 

enhanced visible light absorption and lower charge carrier recombination due to carbon 

doping contributed to this higher photocatalytic activity of C-mp-TiO2 films. Another 

important feature of this study was repeated cycling, in which is was found that C-mp-TiO2 

showed a 3% decrease in UV photocatalytic activity after 5 cycles whereas undoped titania 

showed a 16% decrease. That indicates C-doped titania is more stable than undoped titania.  

Zhang et al. prepared bimodal C-mp-TiO2 in supercritical ethanol from tetrabutyl 

titanate and raw rice [47]. The mixed precursor solution was heated at varying temperatures 

(all supercritical) and treated at varying temperatures. In the carbon doped mp-TiO2, carbon 

was proposed to play dual roles as a dopant in the titania lattice and a photosensitizer at the 

surface of titania. Sensitization was proposed to come from nanosized carbon at the surface 

of the material, which accepts photogenerated electrons from titania to reduce charge 

carrier recombination. Although authors call this sensitization, it is basically a charge 

separator or electron sink since carbon doped titania itself is absorbing the light. The 

mesostructure was developed due to the ethanol supercritical treatment. The surface area 

of titania increased from 138 m2/g to 160 m2/g upon doping, which suggests that carbon 

doping prohibited the aggregation of nanoparticles. From XPS spectra, peaks for carbon 

were found at 284.9, 285.8, 288.2 and 288.6 eV. The peak at 284.9 eV is for adventitious 

elemental carbon whereas peaks at 285.8 and 288.6 eV are assigned to the oxygen bound 

species C-O and C=O, respectively. The incorporated carbon in the titania lattice showed 

a peak at 288.2 eV. Phenol degradation under visible light has demonstrated that the carbon 

doped mp-TiO2 performed much higher activity compared to undoped titania. The optimal 
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sample was C-mp-TiO2 prepared at 260 °C giving a pseudo-first order rate coefficient for 

phenol degradation of 0.452 min-1. Excessive carbon was left on the 250 °C treated titania 

surface, which inhibited the transfer of the photo-generated electrons from the sensitizer 

layer (outer carbon layer) to the TiO2. On the other hand, the sample treated at 270 °C 

showed lower activity because of a low content of carbon, higher band gap and lower 

surface area. In order to identify the contribution from carbon doping and sensitization, the 

best performed sample prepared first at 260 °C temperature was further heat treated and it 

was found that the sample treated at the lowest temperature (300 °C) showed the lowest 

band gap (2.7 eV) and highest photocatalytic activity (0.526 min-1). Treatment at 300 °C 

was proposed to enhance crystallinity, and hence photoactivity. However, at 400 °C and 

higher, the sample might lose carbon and widen band gap resulting in lower photoactivity. 

These results suggest that the activity contribution from the carbon sensitization is about 

three times that coming from the promotion effect of carbon doped in the titania lattice. 

Such synergistic effect of the lower band gap induced by the carbon doped into the titania 

crystal lattice and photosensitizing resulting from the hybridized carbon grafted on the 

titania surface played a significant role in the photocatalytic degradation of phenol as 

shown in Figure 2.6. 

2.4.4. Fluorine doping 

Studies have been carried out on fluorine doping in mp-TiO2 to improve its 

photocatalytic performance [226-230]. Pan et al. reported the preparation of fluoride doped 

mp-TiO2 (F-mp-TiO2) hollow microspherical photocatalyst for membrane-based water 

purification [227]. F-mp-TiO2 microspheres were synthesized by hydrothermal treatment 

of TiF4 in a H2SO4 aqueous solution which acts as an acid source to promote HF etching. 



  

 

54 
 

This etching governed the aggregation of hydrolyzed TiO2 primary particles and the 

formation of porous microspheres depending on the concentration of H2SO4 (0.1% to 1.0% 

by mass). H2SO4 with 1.0% concentration provided monodispersed mesoporous hollow F-

TiO2 microspheres with abundant cavities and nanopores. The Figure 2.7 shows the SEM 

of mesopore formation at different H2SO4 concentration and TEM images of F-mp-TiO2 

hollow microspheres. XPS spectrum revealed only one peak for F- at 684.3 eV which is 

associated with physically adsorbed anions on the surface of TiO2 microspheres. It has 

been reported that OH. Radicals are more mobile in F-TiO2 surface than pure TiO2, which 

accelerates the photocatalytic degradation of organic pollutants [231]. F-mp-TiO2 

microspheres were more efficient in the absorption of visible light compared to P25, which 

was attributed to light scattering inside the core and mesopores. In the methylene blue 

photocatalytic degradation under UV light, the F-mp-TiO2 hollow microspheres showed 

about 93% degradation compared with 88% for P25 over the same time interval. This 

enhancement was attributed to the accessible mesopore channel, improved light harvesting 

capabilities and surface fluorination.  

Along with enhancing the production of free OH. radicals and reduction of the 

recombination of photogenerated electrons and holes due to the strong electron-

withdrawing ability of the surface fluoride, it was shown that F- ions suppress the 

crystallization of the brookite phase, catalyze the phase transformation of brookite to 

anatase, and enhance the growth of anatase crystallites [229]. F-mp-TiO2 powders were 

prepared by a hydrothermal method from NH4HF2-H2O-C2H5OH mixed solution with 

tetrabutylorthotitanate (Ti(CC4H9)4, TBOT)) as precursor. XPS showed fluorine in the 

form of surface adsorbed F- and the UV-vis absorption edge remained unchanged while 
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slight visible light absorption was increased due to surface fluorination. The photocatalytic 

decomposition of acetone under UV illumination was used to test the activity of F-mp-

TiO2 powders. The rate constant for F-mp-TiO2 powders is about 0.0175 min-1 which is 

about 2.8 times higher than pure TiO2. This enhancement in photoactivity is due to the 

strong electron-withdrawing ability of the surface ≡Ti-F groups of F-TiO2 powders, which 

reduces the recombination of photogenerated electrons and holes, and enhances the 

formation of free OH. radicals as shown in Figure 2.8. All the above studies suggest that 

the improvement in photocatalytic activity of F-mp-TiO2 tested under UV irradiation is 

due to efficient charge separation but not band gap reduction. 

2.4.5. Iodine doping 

Iodine doping in titania can enhance visible light absorption and iodine acts as an 

electron acceptor to reduce charge carrier recombination [232]. Liu et al. prepared visible 

light active iodine doped mp-TiO2 (I-mp-TiO2) with a bicrystalline framework by a 

hydrothermal method using Ti[OCH(CH3)2]4, P123, and iodic acid as precursor, pore 

directing agent, and iodine source, respectively [233]. Iodine doped titania was also 

synthesized without the use of a block copolymer as a template. The resulting titania had a 

mix of anatase and rutile crystal structure. The photocatalytic activity of the I-mp-TiO2 was 

demonstrated by MB degradation under visible light. The degradation with I-mp-TiO2 was 

about 85% in 240 min whereas the I-TiO2 and P25 showed about 55% and 15%, 

respectively. The superiority of the I-mp-TiO2 is attributed to the large surface area, 

mesoporous structure, high crystallinity, bicrystalline framework, and higher visible light 

absorbance due to iodine doping. Qian et al. reported the synthesis of polyvinyl alcohol 

[PVA]-iodine complex doped mp-TiO2 (PIT) and iodine doped TiO2 (IT)  by hydrothermal 
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method using tetrabutyl titanate as precursor, potassium iodate and iodine as iodine sources 

[232]. A smaller particle size of PIT was obtained with PVA additive because the polymer 

helped to disperse particles and control the size of the titania. PIT prepared with calcination 

at 200 °C contained the maximum observed iodine content of 0.62%. Further increasing 

calcination temperature resulted in reduction of both surface area and iodine content. The 

lowest band gap of IT and PIT were 1.93 eV and 1.38 eV, respectively. In MB degradation 

under a 100 W halogen lamp for 1 hour, the PIT nanoparticles showed the maximum 

degradation of 90.2%, whereas it was only 80% and 9% with IT and P25, respectively. 

Photoluminescence spectra obtained using terephthalic acid as a probe molecule revealed 

the production of large amount of OH. radicals on the surface of the photocatalysts. The 

photocatalytic enhancement of the PIT is due to the higher visible light absorption, less 

aggregated particles, and synergy produced by carbon doped from PVA. The thermal 

stability of iodine in PIT was also improved due to the use of PVA.  

2.4.6. Phosphorus doping 

Phosphorus has been doped in mp-TiO2 to improve its photocatalytic activity [234-

238]. Yu et al. prepared a surfactant-templated phosphorus doped mp-TiO2 (P-mp-TiO2) 

using phosphoric acid as a source of phosphorus [235]. It was found that the specific 

surface area of the materials decreased with increasing calcination temperature. The 

specific surface area of P-mp-TiO2 calcined at 400 °C was 301 m2/g compared with 137 

m2/g for pure mp-TiO2. The XRD data showed that the crystallite size increased in the pure 

mp-TiO2, which caused the collapse of mesoporous structure, resulting in lower surface 

area. In contrast, the crystallite size did not change much with calcination temperature in 

the P-mp-TiO2 indicating the inhibition of anatase grain growth. Undoped titania exhibited 



  

 

57 
 

mesoporosity loss due to condensation of Ti-OH from the as-prepared material, while 

H3PO4 promoted the formation of more completely condensed walls without mesopore loss 

by providing repulsion between grains. XPS showed a P 2p peak at 133.8 eV in P-mp-TiO2 

which indicates phosphorus pentavalent oxidation state (P5+). This indicates the absence of 

Ti-P since the binding energy of Ti-P is 128.6 eV. Pentane oxidation was used to 

demonstrate the photocatalytic activity of P-mp-TiO2. The UV-vis spectroscopy 

measurement showed that the band gap of TiO2 increased from 3.10 eV to 3.17 eV in P-

mp-TiO2. This blue shift in light absorption upon phosphorus doping is attributed to the 

reduced crystallinity of the P-mp-TiO2. P-mp-TiO2 calcined at 500 °C showed the highest 

pentane oxidation rate of about 8.5 ppm min-1g-1 whereas it was only 6 ppm min-1g-1 with 

pure mp-TiO2. The higher photocatalytic activity of P-mp-TiO2 was explained by the 

extended band gap energy which provided a more powerful redox ability, large surface 

area, and the existence of Ti ions in tetrahedral coordination.   

Fan et al. studied the role of phosphorus the in synthesis of P-mp-TiO2 prepared by 

EISA [236]. As noted above, incorporation of phosphorus is of benefit to improving the 

thermal stability and enhancing the surface area of mp-TiO2 by constraining the growth of 

anatase crystallites. UV-vis spectra showed no change after phosphorus doping, and XPS 

revealed pentavalent phosphorous (P5+) consistent with amorphous titanium phosphate 

embedded into the nanocrystalline TiO2. P-mp-TiO2 exhibited higher photocatalytic 

degradation of gas phase acetaldehyde compared to pure mp-TiO2 and P25 under 300-W 

Xe arc lamp due to the enhanced surface area upon phosphorus doping. The optimum 

amount of phosphorus was obtained from the balance between the increased surface area, 

and the formation of recombination centers for photogenerated charge carriers. 
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Guo et al. reported the synthesis P-mp-TiO2 hydrothermal and sol-gel methods 

[234]. The P-mp-TiO2 showed high photocatalytic activity in MB degradation under Xe 

lamp irradiation due to the mesoporous structure and large specific surface area. The above 

studies suggest that phosphorus doping showed improved photocatalytic activity of mp-

TiO2 due to the inhibition of crystal growth and mainting high-surface area mesostructure, 

but not improvement in visible light absorption. Basically, phosphorus might not present 

in the lattice of mp-TiO2 as a dopant and it has a favorable mesopore structure effect.  

2.4.7. Summary of Nonmetal Dopants other than Nitrogen 

Table 2.2 summarizes the synthesis methods, pore directing agents, dopant sources, 

relevant XPS binding energies, band gaps before and after doping, specific surface areas, 

compounds used for photocatalytic testing, and photocatalytic enhancement found in 

titania doped with non-metals other than N. As discussed above, C, B, F, I and P have been 

used to enhance visible light absorption and visible light driven photocatalytic activity of 

titania by various mechanisms. All the non-metal doped mp-TiO2 showed higher 

photocatalytic performance compared to either undoped mp-TiO2 or doped nonporous 

titania. Contributions to improved photocatalytic activity of titania include better visible 

light absorption due to bandgap reduction and optical effects, efficient charge separation, 

suppressing phase transformation, controlling crystal growth, and inhibiting 

photogenerated charge carrier recombination. 
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2.5. Co-doping of non-metals  

Overall, non-metal doping in mp-TiO2 has been shown to have a variety of effects 

including extending the absorption edge into the visible-light region, improving the 

separation efficiency of photogenerated electron–hole pairs and thus enhancing visible 

light driven photocatalytic activity. Further progress in the utilization of solar energy has 

increased in recent years. Since different dopant elements form energy states at different 

positions between the valence and conduction band of titania, co-doping has been 

hypothesized to induce synergistic enhancements in photocatalytic activity of TiO2. In 

addition, co-doping may help to reduce charge recombination by compensating for charge 

vacancies formed by nitrogen doping alone. Co-doping of mp-TiO2 to improve visible light 

photoactiivty has been accomplished with N/B [239-242], N/C [48, 243], N/F [79, 209, 

244, 245], N/P [85], N/S [198, 199, 201, 244, 246, 247], I/S [248] and N/S/C [75, 200].  

B/N co-doping in mp-TiO2 has been shown in several reports to give enhanced 

visible light photoactivity [239-242]. Liu et al. showed synergistic effects of B/N co-doping 

of mp-TiO2 prepared using P123 as a template in visible light photocatalytic degradation 

of rhodamine B [76]. B dopant (with XPS binding energy of 191.5 eV) was incorporated 

by hydrothermal processing and N dopant by thermal treatment under ammonia. The 

presence of O–Ti–B bonds contributed to the visible light absorption, and a new O-Ti-B-

N structure that formed on the surface of the mp-TiO2 enhanced the separation and transfer 

of photogenerated charge carriers. In addition, the presence of boron stabilized the 

structure, including the crystal size and specific surface area, relative to undoped titania 

during the nitrogen doping process. All these factors contributed to much higher visible 

light driven photocatalytic activity of B/N-mp-TiO2 compared to B-mp-TiO2 and N-mp-
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TiO2 alone. Zhou et al. studied the effect of nitrogen doping temperature of B/N-doped 

TiO2 by boron doping first and subsequently nitrogen doping in NH3 at variable 

temperatures. The B/N-TiO2 showed synergistic effect in the photocatalytic activity 

demonstrated by methyl orange degradation under visible light irradiation. Boron and 

nitrogen can both be incorporated either interstitially or substitutionally and the Ti-O-B-N 

structure plays a vital role in visible-wavelength photocatalytic activity. Figure 2.9 shows 

a schematic of the transformation of surface structures of B/N-TiO2 at different calcination 

temperatures. At low temperature, the main dopants are Ti-O-N or Ti-O-N and Ti-O-B 

bonds, whereas the Ti-O-B-N structure becomes unstable at higher temperature and Ti-B 

and Ti-N bonds are formed. The optimal nitrogen doping temperature was 550 °C while 

further increasing the calcination temperature formed oxygen vacancies and Ti3+ species, 

resulting in the decrease of photocatalytic activity in visible light. 

/NF co-doped mp-TiO2 has been shown to exhibit enhanced visible light adsorption 

and photoactivity [79, 209, 244, 245]. Nitrogen and fluorine co-doping provides synergistic 

effects compared with single element doping. Preparation of F/N-mp-TiO2 microsphere by 

a solvothermal method has been reported using urea as a nitrogen source and ammonium 

fluoride as a fluorine source [209]. The band gaps of TiO2, F-TiO2, N-TiO2 and F/N-TiO2 

were 3.02, 2.95, 2.8 and 2.74 eV, respectively. The contents of F and N were 1.9 at.% and 

0.57 at.%, respectively. The photocatalytic activity of the doped titania was evaluated by 

the acid orange 7 degradation under visible light. The percentages of degradation after 5 h 

were 10%, 15%, 20%, 48% and 55% for P25, TiO2, N-mp-TiO2, F-mp-TiO2 and F/N-mp-

TiO2, respectively. Fluorine doping contributed to the photocatalytic performance 

enhancement in different ways such as band gap narrowing, inhibition of the 



  

 

61 
 

transformation from anatase to rutile and increasing the concentration of OH. radicals in 

the solution which reduces the charge carrier recombination. In addition, fluorine doping 

formed surface acid sites which is beneficial for adsorption of reactant molecules and act 

as electron acceptors. High surface area, mesostructure and a synergistic effect of N and F 

co-doping improved photocatalytic activity of N/F-mp-TiO2 microspheres. 

P/N doping can also enhance visible light driven photocatalytic activity and thermal 

stability of mp-TiO2 [85]. Shao et al. synthesized P/N-mp-TiO2 by direct phosphorylation 

from phosphoric acid followed by nitridation with urea solution [85]. The band gap of the 

N/P-mp-TiO2 is narrower than either N- or P-doped titania. Rhodamine B degradation was 

carried out using the co-doped titania under visible light illumination with a 40-W tungsten 

bulb. The pseudo-first order degradation rate coefficient of rhodamine B for P/N-mp-TiO2 

is 4.9 ×10-3 min-1, which is much higher than that of P-mp-TiO2, N-mp-TiO2 and mp-TiO2.  

Tri-element co-doping of mp-TiO2 provides even more opportunities to enhance 

visible light driven photocatalytic activity but has been studied less frequently due to the 

complexities of such systems [75, 200]. The band gap is proposed to be narrowed by 

mixing the O 2p with C 2p, N 2p and S 3p orbits. El-Sheikh et al. reported the preparation 

of S/N/C-mp-TiO2 by sol-gel process using P123 as a template and thiourea as a precursor 

[75]. The titania is comprised of both anatase and brookite phases. The prepared 

photocatalysts were applied for the degradation of microcystin-LR under a 15 W 

fluorescent lamp. The S/N/C-mp-TiO2 performed 100% degradation with a pseudo first 

order rate coefficient of 0.0095 min-1 which is about 11.5 times higher compared to pure 

TiO2. This higher activity of the S-N-C-mp-TiO2 is attributed to the mesostructure, 
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trielement co-doping, crystallinity of titania and conductivity obtained due to carbon 

doping. 

Table 2.3 summarizes the synthesis methods, pore directing agents, dopant sources, 

XPS binding energy of relevant dopants, band gaps before and after doping, specific 

surface area, compounds used for photocatalytic testing, and photocatalytic enhancement 

found in the non-metal co-doped mp-TiO2. All reported co-doped TiO2 materials had band 

gaps below 3.0 eV. Visible-light photocatalytic activity was achieved using both single 

non-metal dopants and co-doping of mp-TiO2. However, it appears that the enhancement 

in photocatalytic activity of the co-doped mp-TiO2 is consistently higher compared to 

single-element doping, as shown in Tables 2.1 and 2.2, due to the synergistic effects of co-

doping. 
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2.6. Applications 

Due to its combination of optoelectronic activity, high surface area, mesostructure 

and controllable morphology, mp-TiO2 has many potential applications including in 

sensors, photocatalytic decomposition of organic compounds, solar hydrogen production 

by water splitting, photovoltaics, photocatalytic CO2 reduction, lithium ion batteries, and 

supercapacitors. Non-metal doping of mp-TiO2 further can have benefits for all of these 

applications. From the literature review, it shows that extensive study on making visible 

light active titania has been performed and tested their photocatalytic performance by the 

decoloration and degradation of organic compounds such as methylene blue, methyl orange 

and rhodamine B. However, very few studies were carried out to apply the developed 

materials in the energy fields. The following sections review what has been reported 

regarding the application of non-metal doped mp-TiO2 in photocatalytic water splitting and 

CO2 reduction.  The benefits of non-metal doping for sensor, battery, and capacitor 

applications are probably related more to conductivity changes rather than optical and 

surface chemical changes, and are beyond the scope of this review. 

2.6.1. Water Splitting 

Molecular hydrogen is considered to be one of the best alternative green energy 

sources to renewably fulfill increasing global energy demands. Hydrogen can be produced 

with solar energy by water splitting using a semiconductor photocatalyst. There are two 

primary requirements for the semiconductor to be a water-splitting photocatalyst. First, the 

band gap of the semiconductor must be higher than the energy needed to split water. 

Second, band alignment is needed; the conduction band potential of the semiconductor 

must be more negative than the water reduction potential (H+/H2, 0 V vs. NHE) and the 
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highest level of valence band potential must be more positive than the water oxidation 

potential (O2/H2O, 1.23 V vs. NHE). Titania fulfills these requirements, and thus has 

potential to be a photocatalyst for solar H2 production. Figure 2.10 summarizes how titania 

has the capability of both oxidizing water to O2 by holes generated during photoexcitation, 

and reducing water by excited electrons to produce H2.  

Hartmann et al. showed the effectiveness of sol-gel derived mp-TiO2 in the water 

splitting reaction, but its large bandgap limits visible light absorption [249]. To improve in 

hydrogen production from water splitting using visible light, non-metal elements have been 

doped into mp-TiO2 [48, 174, 203, 212, 250, 251]. First, Sreethawong et al. prepared N-

mp-TiO2 and assemblies of TiO2 nanocrystals [212]. Mp-TiO2 was synthesized by a sol-

gel method using laurylamine hydrochloride as a structure-directing agent, and nitrogen 

was doped in titania by calcination using urea. The activities of the materials were tested 

by photocatalytic H2 production from aqueous methanol solution under 300 W Xe arc lamp 

with a wavelength longer than 400 nm using a UV cut-off glass filter. The N-mp-TiO2 

showed a maximum hydrogen production rate of about 6.5 µlh-1 whereas it is at most about 

4.5 µlh-1 for N-doped commercial titania, which demonstrated the importance of the 

mesoporous structure of the photocatalyst. In 2009, the same research group investigated 

the effect of Pt loading in N-mp-TiO2 on the photocatalytic hydrogen production from 

water splitting under visible light irradiation [250]. Various amounts of Pt were loaded on 

to the N-mp-TiO2 from hydrogen hexachlorophatinate (IV) hexahydrate aqueous solution 

via the incipient wetness impregnation method. Hydrogen was produced from water 

splitting in an aqueous methanol solution in a closed system under 300 W Xe arc lamp with 

a wavelength longer than 400 nm using a UV cut-off glass filter, where methanol was used 
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as a sacrificial electron donor. The Pt loaded N-mp-TiO2 produced more hydrogen 

compared to only N-mp-TiO2. The hydrogen production increases with the Pt loading. The 

maximal production of hydrogen was about 27 µlh-1 using 1.3 wt.% Pt loaded nitrogen 

doped titania, which is about 4.5 times higher than that of N-mp-TiO2. The improvement 

of hydrogen production upon Pt loading is due to the effect of electron trapping by Pt metal 

on the surface of titania. The excited electrons on the conduction band of titania are moved 

to the Pt metal surface which locally traps the electrons and increases the charge carrier 

lifetime, and then they participate in the water reduction to produce hydrogen. In the 

meantime, the methanol consumes the photogenerated holes in the valence band of titania, 

which inhibits the undesired photogenerated charge recombination. This efficient charge 

separation by Pt resulted in the improved hydrogen production from water splitting. 

Increase in loading Pt more than 1.3 wt.% decreased the hydrogen production due to 

increased Pt agglomeration, excessive coverage of the titania surface by the Pt 

nanoparticles and increased probability of charge recombination by the excess electrons on 

the Pt surface. In the next year, Fang et al also showed the efficacy of Pt loading in N/S-

mp-TiO2 in water splitting [251]. The co-doped samples were prepared by controlled 

thermal decomposition of a single source, ammonium titanyl sulfate ((NH4)2TiO(SO4)2). 

Following preparation, Pt was loaded into the TiO2 mesopores via incipient wetness. The 

doped titania showed high photocatalytic methyl orange degradation whereas P25 did not 

show any detectable degradation under visible light irradiation. The UV-vis spectroscopy 

data showed that the band gap of the N/S-mp-TiO2 is 3.2 eV which indicates that the doping 

did not reduce the band gap but instead formed isolated energy states in the band gap of 

titania. The N-mp-TiO2 contained Brønsted acid sites arising from covalently bound sulfate 
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groups from the precursor which also helped with MO degradation. The optimum amounts 

of Pt were 1 wt% and 0.1 wt.% for broad spectrum and visible light, respectively. The Pt 

loaded N-mp-TiO2 produced 740 µmol h-1g-1 and 3.49 µmol h-1g-1 hydrogen from aqueous 

solution of methanol under broad spectrum and visible (λ>400 nm) illumination, 

respectively. The hydrogen production rate without Pt loading were 20.4 µmol h-1g-1 and 

1.82 µmol h-1g-1 under broad spectrum and visible (λ>400 nm) illumination, respectively.  

Recently, Liu et al. prepared N-mp-TiO2 nanoparticles by EISA method [203]. The 

mp-TiO2 was doped with nitrogen using urea to introduce 3.46 at.% nitrogen. In the 

photocatalytic water splitting from an aqueous solution containing methanol under visible 

light illumination (450 W Xe lamp with cutoff filter ≥450 nm), they found that N-mp-TiO2 

showed about seven times higher hydrogen generation rate (14.9 µmol g-1h-1) compared to 

undoped titania. This enhancement was attributed to the high surface area of mp-TiO2 as 

well as N-doping.  

Liu et al. reported the preparation of C/N-mp-TiO2 nanoparticles via EISA method 

using an ionic liquid [48]. The ionic liquid (1-ethyl-3-methylimidazolium chloride, 

[C2min][Cl]) provided a source of carbon and nitrogen, and served as a template for pore 

formation. Figure 2.11 shows a schematic illustration of the synthesis of C/N-mp-TiO2. 

The positively charged titania prepared from Ti isopropoxide co-assemble with 

[C2mim][Cl] aggregates followed by calcination to generate C/N-mp-TiO2. Mp-TiO2 

nanoparticles doped only with carbon were prepared using F127. The surface areas 

obtained from [C2mim][Cl] and F127 were 101 m2/g and 54 m2/g, respectively. The 

nitrogen content and band gap of the C/N-mp-TiO2 nanoparticles were 1.75 at.% and 2.92 

eV, respectively. Both doped and undoped titania showed carbon peaks in XPS spectra. No 
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peak for Ti-C at 281 eV was observed, indicating that substitutional C atoms may not have 

been incorporated. Photocatalytic hydrogen generation rates from water with methanol as 

a sacrificial reagent under 450 W Xe lamp for P25, C-mp-TiO2 and best performing C/N-

mp-TiO2 nanoparticles were 2.2, 7.8 and 81.8 µmol g-1h-1, respectively. This superior 

photocatalytic activity is attributed to the high surface area, and synergistic effects of 

carbon and nitrogen co-doping. In addition, the small particle size found in mp-TiO2 helped 

reduce charge recombination, which contributed to the improved water splitting 

performance.  

Recently, our group has reported surfactant templated mp-TiO2 films treated with 

N2/argon plasma studied for ultraviolet and visible light induced photocatalytic water 

splitting activity [195]. The effect of light sources on PEC performance was explored using 

UV (365 nm), blue (455 nm) and green (530 nm) LEDs. N-TiO2 films showed 242x and 

240x enhancement of photocurrent, compared to undoped TiO2 films under UV (365 nm) 

and blue LED (455 nm) irradiation, respectively.  The N-doped films also showed overall 

enhancement of up to 70x and 92x with a broad spectrum Xe arc lamp and halogen bulb, 

respectively, and photocatalytic activity even with green LED illumination, compared to 

no measurable activity without doping.  This study showed that plasma-induced doping of 

sol-gel materials enables the efficient incorporation of heteroatoms into disordered metal 

oxide nanostructures, thereby leading to remarkable enhancement in visible-light driven 

photoelectrochemical water splitting.   

2.6.2. CO2 Reduction 

Recently, depletion of fossil fuels and climate change due to CO2 emission have 

become profound concerns [1]. To tackle these global concerns, intensive research is 
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ongoing to find clean and renewable energy sources and reduce CO2 emissions. TiO2 can 

address these concerns through its use for CO2 conversion to fuel since its conduction band 

potential is more negative than the reduction potential of CO2. Fuels such as formic acid, 

formaldehyde, methyl alcohol, and methane can be formed by the reduction of CO2 [252, 

253]. A multistep reaction (Equations (6.1)–(6.5)) process for CO2 reduction has been 

suggested based on the products (HCOOH, HCHO, CH3OH and CH4) [253]. 

H2O + 2h+ → 1/2O2 + 2H+  6.1 

CO2 (aq.) + 2H+ + 2e− → HCOOH 6.2 

HCOOH + 2H+ + 2e− → HCHO + H2O 6.3 

HCHO + 2H+ + 2e− → CH3OH 6.4 

CH3OH + 2H+ + 2e− → CH4 + H2O. 6.5 

In this mechanism, consumption of CO2 leads to formation of several different 

products depending on the photocatalyst and co-catalyst used. Only one article reports the 

application of non-metal-doped mp-TiO2 in CO2 reduction [254]. Mengyu et al. reported 

the synthesis of silver-loaded, nitrogen-doped TiO2/SBA-15 mesoporous catalysts through 

a solvothermal method using titanium n-butoxide, carboxylate-modified SBA-15, urea, and 

silver nitrate as TiO2 precursor, support, and nitrogen and Ag sources, respectively [254]. 

The mesoporous SBA-15 support was loaded with anatase N-TiO2 and Ag. Ag served as 

an effective electron trap to prevent fast recombination of photogenerated charge carriers, 

and at the same time, visible light absorption was enhanced by silver nanoparticles due to 

a surface plasmon resonance effect. Both substitutional and interstitial nitrogen were found 

in the doped titania. In the CO2 reduction reaction, the catalyst produced 45.7 µmol·g−1·h−1 
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methanol. The improvement of methanol production upon Ag loading is due to the effect 

electron trapping by Ag metal on the surface of titania as illustrated in Figure 12. The 

excited electrons formed in the conduction band of titania are injected to Ag nanoparticles 

where they participate in CO2 reduction to produce carbon radicals. In the meantime, water 

is oxidized by photogenerated holes to form OH· radicals. These radicals ultimately form 

methanol. The enhanced visible light driven activity was attributed to the synergistic effect 

of N-doping and Ag nanoparticle loading over TiO2. Though many publications have 

reported the synthesis of non-metal doped mp-TiO2 and demonstrated its photocatalytic 

activity by degrading different compounds, a significant opportunity still exists to explore 

and develop these materials for CO2 reduction to produce fuels. 

2.7. Future Directions 

Intensive studies have been carried out on the synthesis of mp-TiO2 and its non-

metal doping for environment and energy applications. Although significant progress has 

been made in terms of band gap reduction, visible light absorption, and increasing the 

surface area of titania by various treatments, there is still significant room for development 

of these materials for photocatalysis and photovoltaics. Some of the remaining questions 

to be addressed are whether the mesopores are fully accessible, whether the dopants are 

distributed uniformly, whether the dopants are only on the surface of titania incorporated 

into the bulk of the material, and how the crystal structure of the matrix affects 

performance. The performance of the materials can be improved by better designing its 

mesostructure. For instance, the lifetime of charge carriers can be increased by making 

materials with thin pore walls and increasing the surface/volume (bulk) ratio of titania, 

which will help to inhibit photogenerated charge recombination. Since the mesopores of 
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titania particles may not be fully accessible due to aggregation of the particles, well-ordered 

mp-TiO2 films might be promising materials to enhance pores accessibility for separation 

of products and reactants. The activity can be further improved by making thick multilayer 

films to optimize light absorption vs. reactant and charge carrier diffusion in the materials. 

It is essential to understand the charge transfer dynamics among dopants, mp-TiO2 and 

reactants molecule to further improve the photocatalytic performance of non-metal doped 

mp-TiO2.  

In addition to non-metal dopants themselves, there is room to better understand 

metal co-catalysts.  Noble metals act as passive sinks for electrons to promote the 

interfacial charge transfer process and enhance the quantum efficiency of photocatalytic 

system [44, 255-257]. In addition, metal nanoparticles show plasmonic effects and provide 

hot electrons into the conduction band of titania. Incorporation of noble metal nanoparticles 

such as Pt, Au, Ag, Cu onto non-metal doped mp-TiO2 would benefit from further 

exploration. Furthermore, the fabrication of non-metal doped mp-TiO2 composites with 

other narrow band gap semiconductor materials or quantum dots that act as sensitizers will 

open the door to understanding synergistic effect of doping and sensitization for further 

improving photocatalytic activity. Although great progress has been made in the 

development of the materials in terms of functionality and visible light absorption for 

applications in degradation of organic pollutants, few reports are available regarding their 

application in H2O splitting, CO2 reduction and energy storage applications such as in 

lithium ion batteries. Finally, study on long term stability and deactivation of the non-metal 

doped mp-TiO2 are necessary for their development for commercial use.  
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2.8. Conclusion 

Mesoporous TiO2 presents opportunities for use in a number of applications due to 

combining a favorable morphology (accessible pores, high surface area, well-defined 

mesostructure, tunable pore size and shape, and thin pore walls) with innate optoelectronic 

activity. It is of particular interest for high-volume applications because of its low cost and 

environmentally benign nature. These unique properties make it highly promising in 

environmental, energy conversion and storage applications. To overcome its limitation in 

visible light absorption due to its wide band gap, mp-TiO2 has been doped with several 

non-metal elements in an effort to enhance the visible light driven photocatalytic activity. 

Although significant progress has been made in last few years, incorporation of non-metal 

dopants into the mp-TiO2 lattice while controlling its phase and mesostructure remains a 

challenge.  

In this review, we have discussed the synthesis of mp-TiO2, different doping 

methods and dopant sources. Its applications in environmental pollutant degradation, H2O 

splitting to produce hydrogen gas, and CO2 reduction to fuel were discussed. Among 

several non-metal dopants and modifiers that have been investigated (H, C, B, N, F, I, S, 

and P), the most promising and most studied one is nitrogen. The most common approaches 

to materials synthesis for this purpose are based on liquid-phase methods (hydrothermal or 

solvothermal) where the buildup of the material from molecular precursors provides 

opportunities to introduce dopants during its formation (in solution or during heat treatment 

steps). Typical nitrogen sources are ammonia, urea, thiourea, amine, hydrazine, and 

nitrogen plasma. Successfully producing doped titania for photocatalytic applications 

involves a tradeoff between maintaining the favorable morphology of the material (high 
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specific surface area, controlled pore morphology, crystalline phase, etc.) while selecting 

doping source and method that effectively introduces dopants at a high enough level and 

in the appropriate chemical state for band gap reduction, visible light absorption, control 

of charge carrier recombination, and ultimately, enhancement in photocatalytic activity. 

Because of the tradeoff between loss of mesostructure due to harsh temperature/ chemical 

conditions and the introduction of dopants, there is usually an optimum calcination 

temperature and dopant composition to give a favorable combination of titania phase, 

mesostructure, doping level, surface area, physical and chemical state to slow charge 

carrier recombination.  

While the major contribution of nitrogen doping was to enhance visible light 

absorption, the other non-metal dopants mostly contribute to photocatalytic activity in 

other ways such as inhibiting crystal growth and phase transformations, retaining 

mesostructure, increasing surface area, and providing sites for efficient charge separation. 

Although the mechanisms vary with dopant, the literature contains many examples in 

which the visible light activity of mp-TiO2 has been increased by on to order of several 

times by incorporating all of the non-metal dopants included in this review. Despite these 

improvements, there is still significant opportunity to continue to increase the 

photocatalytic activity of titania by orders of magnitude by judiciously selecting the 

synthesis method and doping strategy.  For example, our group recently showed that two 

orders of magnitude increases in photocatalytic activity can be achieved by combining a 

sol-gel approach to forming disordered mp-TiO2, and using N2/Ar plasms to introduce a 

high level of substitutional nitrogen under mild conditions. Preventing rapid crystallization 

into anatase TiO2 seems to be important to accomplishing this high level of enhancement. 
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Other groups have also begun to explore combining multiple mechanisms of visible light 

enhancement by co-doping mp-TiO2 with more than one non-metal dopant.  In many 

reported examples, co-doped materials exhibit greater enhancement in visible light 

photocatalytic activity than titania doped with single elements due to the synergistic effects 

of the co-doping.  

Most of the investigations of photocatalytic activity of non-metal doped mp-TiO2 

employ colored organic dyes such as methylene blue, methyl orange and rhodamine B. 

These are useful for establishing baseline levels of enhancement and are of direct interest 

for the use of titania in environmental remediation and water treatment. Fewer studies have 

been performed on the application of non-metal doped mp-TiO2 in H2O splitting, and CO2 

reduction, but these are potentially important areas for application of titania due to the 

alignment of its valence and conduction bands with the relevant electrochemical potentials 

required for these reactions. Significant enhancements in these reactions have been made 

through non-metal doping of titania, including a recent report of 240 times enhancement 

in the rate of photoelectrochemical water oxidation in N2/Ar plasma doped mp-TiO2 films.  

Although this review summarizes significant enhancements in visible-light photoactivity, 

further improvements in visible light absorption, separation of photogenerated charge 

carriers, and charge transfer to reactants will be necessary for widespread use of titania in 

practical photocatalytic applications. Future directions to improve the efficiency of the 

non-metal doped mp-TiO2 will include designing stable mesostructures with highly 

accessible pores, making composite with noble metal electron sinks and semiconductor 

sensitizers, and better understanding bottlenecks in energy conversion and storage systems 

limiting the commercialization of these materials.  
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Figures of Chapter 2 

 

 

Figure 2.1. Schematic representation of Kohn-Sham one-electron states and spin density 
plot of substitutionally doped anatase TiO2. Reprinted with permission from ref [73]. 
Reprinted from Catalysis Today vol. 206, C. Di Valentin and G. Pacchioni, “Trends in non-
metal doping of anatase TiO2: B, C, N and F,” pp. 12-18, Copyright (2013), with 
permission from Elsevier. 
 
 

 

Figure 2.2. Computer-generated illustrations of typical mesoporous structures and 
mesophases.  Clockwise from lower left are illustrated an Im3m cubic mesoporous 
material, o-HCP mesoporous film, parallel HCP mesoporous film, and lamellar mesophase 
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where higher intensity (yellow and red) corresponds to a greater density of hydrophobic 
tails of the surfactant template. 
 
 

 
 

Figure 2.3.  Schematics of the important stages of the formation of ordered nanoporous 
metal oxide films by EISA: (a) The dip coating process in which surfactant micelles form 
and may begin to assemble due to evaporation, (b) the aging process after deposition in 
which films organize into an ordered mesophase, and (c) high-temperature aging during 
which organic templates are removed by oxidation, crystallization may occur but loss of 
mesostructural order can happen with increasing temperature and time.  Part (a) is 
reproduce with permission from C.J. Brinker et al. [115], (b) shows the rise of intensity 
from a o-HCP mesophase in a TiO2 film during aging, adapted from Nagpure et al.[103] 
and (c) shows the loss of intensity of the o-HCP mesophase during heating of a TiO2 film 
at 600 °C, adapted from Das et al.[105] 
 

 

Figure 2.4. Schematic of procedures for preparing mesoporous nitrogen-modified titania 
photocatalyst. Reprinted with permission from ref. [178]. Reprinted from Chemical 
Engineering Journal vol. 219, J. Fu et al., “Soft-chemical synthesis of mesoporous 
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nitrogen-modified titania with superior photocatalytic performance under visible light 
irradiation,” pp. 155-161, Copyright (2013), with permission from Elsevier. 
 

 
Figure 2.5. Methylene blue degradation reaction with undoped TiO2 (0 min) film, N-TiO2 
films and without films (Photolysis): (a) Concentration profile (b) the plot of the first-order 
rate coefficient vs. plasma treatment time. Reprinted with permission from ref. [69].   
Reprinted from Microporous and Mesoporous Materials vol. 220, S.Z. Islam et al., “N2/Ar 
plasma induced doping of ordered mesoporous TiO2 thin films for visible light active 
photocatalysis,” pp. 120-128, Copyright (2018), with permission from Elsevier. 
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Figure 2.6. Proposed photocatalytic mechanism over the C-TiO2 samples. Reprinted with 
permission from ref. [47]. Reprinted from Applied Catalysis B vol. 115, Y. Zhang et al., 
“Ethanol supercritical route for fabricating bimodal carbon modified mesoporous TiO2 
with enhanced photocatalytic capability in degrading phenol,” pp. 236-244, Copyright 
(2012), with permission from Elsevier. 
 
 

 
 
Figure 2.7. SEM images of F-mp-TiO2 microspheres synthesized in (a) 0.1, (b) 0.3, (c) 
0.5, (d) 0.8, and (e) 1.0% H2SO4 solution. Panel f and the insert of panel a are TEM images 
corresponding to hollow (e) and solid (a) microspheres, respectively. Reprinted with 
permission from ref. [227]. Reprinted with permission from Journal of the American 
Chemical Society vol. 130, J.H. Pan et al., “Self-etching reconstruction of hierarchically 
mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water 
purifications,” pp. 11256-7, Copyright (2008) American Chemical Society. 
 



  

 

78 
 

 
Figure 2.8. Schematic diagram for generation and transfer of charge carriers in F-TiO2 
under UV irradiation. Reprinted with permission from ref [229]. Reprinted with permission 
from The Journal of Physical Chemistry C vol. 113, J. Yu et al., “Enhancement of 
photocatalytic activity of mesoporous TiO2 powders by hydrothermal surface fluorination 
treatment,” pp. 6743-6750, Copyright (2009) American Chemical Society. 
 
 

 
 

Figure 2.9. The transformation of surface structures of B,N-TiO2.  
Reprinted with permission from ref. [242]. Reprinted from Journal of Solid State 
Chemistry vol. 184, X. Zhou et al., “Effect of nitrogen-doping temperature on the structure 
and photocatalytic activity of the B,N-doped TiO2,” pp. 134-140, Copyright (2011) with 
permission from Elsevier. 
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Figure 2.10. Basic principle of the overall water-splitting reaction on a semiconductor 
photocatalyst. Adapted from ref. [70]. 
 

 

Figure 2.11. Schematic illustrations of synthesis procedure for CNMT-x samples. 
Reprinted with permission from ref. [48]. Reprinted from International Journal of 
Hydrogen Energy vol. 38, S.-H. Liu and H.-R. Syu, “High visible-light photocatalytic 
hydrogen evolution of C,N-codoped mesoporous TiO2 nanoparticles prepared via an ionic-
liquid-template approach,” pp. 13856-13865, Copyright (2013) with permission from 
Elsevier. 
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Figure 2.12. The mechanism of photocatalytic reduction of CO2 under visible light 
irradiation. Adapted from ref. [254].
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Table 2.1. Synthesis method, dopant source, chemical, optical and photocatalytic properties of nitrogen doped mesoporous titania. 
Method Template N Source N Comp 

(at. %) 

Binding 

Energy (eV) 

Initial 

BG (eV) 

Final 

BG (eV) 

SBET 

(m2/g) 

Test 

Compound 

Enhance-

ment 

Ref. 

Solvothermal Free Urea 1.43 400 3.14 3.09 121 Rh B 1.43 [207] 

Solvothermal Free Urea - 399.5 3.16 3.02 23.6 Acetic Acid 1.54 [202] 

EISA F127 Urea 3.46 398.8 - - 67 Water 

Splitting 

2.37 [203] 

Solvothermal Urea Urea 0.8 399.5 - - 154 MB 3.1 [205] 

Supercritical 

CO2 drying 

- Urea - 396 3.1 1.92 116 - - [206] 

Homogeneous 

precipitation 

- Urea 0.91 395.4, 401.5 - - 89 MB 3 [208] 

Sol-gel PAM+PEG Urea 0.6 397, 398.8, 

402.4 

2.9 2.75 110 MO 3 [210] 

Sol-gel Laurylamine 

hydrochloride 

Urea 26.2 wt.% 400.8 3.2 3.1 110.3 Water 

Splitting 

1.44 [250] 

Sol-gel F127 N2 plasma 3.2 396 3.5 3.02 143 MB 6 [69] 

Exfoliation-

reassembly 

- Ethylamine - 399.8 - - 217 MO 9 [178] 

Solvothermal F127 Ethylenediamine 4.1 wt.% 398.6 3.1 2.2 180.2 MB - [173] 

Sol-gel EDTA EDTA - - 3.1 2.29 72.46 Rh B 1.5 [175] 

Sol-gel Triethylamine Triethylamine 4 401.6 - - 180 Phenol 7.5 [176] 

Sol-gel  Triethanolamine 1.09 397, 399.9 - 

 

- 70.5 MB  [177] 



  

 

 
 

82 

Table 2.1. Synthesis method, dopant source, chemical, optical and photocatalytic properties of nitrogen doped mesoporous titania 

(Continued). 
Method Template Dopant Source Dopant 

Comp 

(at.%) 

XPS 

Binding 

Energy 

(eV) 

Initial 

BG 

(eV) 

Final 

BG 

(eV) 

SBET 

(m2/g) 

Test 

compounds 

Enhance-

ment 

Ref. 

Sol-gel 

reverse 

micelle 

TritonX100 Na2EDTA 6 wt.% - 3.13 3.06 58 MB 4 [179] 

Solvothermal F127 Ethylenediamine 0.13 (N/Ti) 399.5, 401.4 3.32 2.98 185.4 Dimethyl 

Phthalate 

2 [180] 

Hydrothermal P123 Triethylamine - 399 - - 150 Rh B 3.3 [174] 

Hydrothermal CTAB Ammonia solution 1.31 399.5, 

400.6, 401.5 

- - 83.1 Rh B 5 [183] 

Sol-gel P123 Tetramethylammonium 

hydroxide 

- 400 - - 105 Rh B 4 [182] 

Sol-gel Chitosan Chitosan and NH4OH 0.72 mass% 394.2, 400.9 - 2.65 132.26 MO 2 [185] 

EISA F127 NH3 gas - 395.9 - - 173 

m2/cm3 

MB 1.47 [35] 

Wet 

Impregnation 

Hydrazine 

Hydrate 

Hydrazine Hydrate - 398.1 - - 74 Azoxybenzene - [194] 
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Table 2.2. Synthesis method, dopant source, chemical, optical and photocatalytic properties of non-metal doped mesoporous titania. 
Method Template Dopant 

Source 

Dopant 

Comp 

(at.%) 

XPS Binding 

Energy (eV) 

Initial 

BG 

(eV) 

Final 

BG (eV) 

SBET (m2/g) Test 

compounds 

Enhance-

ment 

Ref. 

Sol-gel plus 

hydrothermal 

Glucose Glucose C 282.4, 284.8, 

286.2, 288.6 

- - 190 Reactive 

Brilliant X-

3B 

3.6 [220] 

Solvothermal Free Rice C 284.9, 285.8, 

288.2, 288.6 

3.1 2.04 138 MO 25.8 [47] 

Hydrothermal Free TiF4 0.16 at. Conc. 

(F/Ti) 

684.3 - - 21.6 MB 1.06 [227] 

Hydrothermal - NH4HF2-

H2O-

C2H5OH 

0.5 (at. F/Ti) 684 - - 196.6 Acetone 3 [229] 

Hydrothermal P123 Iodic acid 5.2 (I) 624.5 - - 157 MB 5.6 [233] 

Hydrothermal Polyvinyl 

alcohol 

KI and I2 0.62 (I) - - 1.39 190.22 

(doped) 

MB  [232] 

Sol-gel - Boric acid 17.8 (B) 192 3.05 3.04 68.11 Metoprolol 1.45 [86] 

Sol-gel P123 Phosphoric 

acid 

14 (at. P/Ti) - 3.1 3.17 - Pentane 1.42 [235] 

Hydrothermal 

and sol-gel 

- Phosphoric 

acid 

     MB  [234] 
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Table 2.3. Synthesis method, dopant source, chemical, optical and photocatalytic properties of non-metal co-doped mp-TiO2. 
Method Template Dopant 

Source 

Dopant 

Comp (at. 

%) 

XPS 

Binding 

Energy (eV) 

Initial 

BG 

(eV) 

Final BG 

(eV) 

SBET 

(m2/g) 

Test compounds Enhance-

ment 

Ref. 

Sol-gel P123 Thiourea 1.41 (N), 2.33 

(S), C 

399.7, 401.8  2.9 85.1 Cyanotoxin 

microcystin-LR 

11.5 [75] 

Sol-gel CTAB Thiourea - 396, 399.2, 

284.6, 288.2, 

165, 169 

- - 123.8 Reactive Brilliant 

Red X-3B 

5 [200] 

EISA [C2mim][Cl] 

doped/F127 

unodped 

[C2mim][Cl] 1.75 (N), C 398.2, 400.2 3.1 2.98 54 Water splitting 10.5 [48] 

EISA F127 Thiourea 0.044 (N/O), 

0.048 (S/O) 

400.2, 396, 

168.5 

- 2.38 105 MO 18 [201] 

Sol-gel PAM and 

PEG 

Urea (N), 

Boric acid (B) 

1.78 (N), 1.23 

(B) 

400.5, 192.1 3.18 2.78 121.6 MB 3 

 

[240] 

Solvothermal Thiourea Thiourea 0.62 (N), 0.35 

(S) 

168.6, 169.7, 

395.9, 399.7 

- - 29.11 MB 1.23 [198] 

Hydrothermal - Thiourea 1.1 (N), 1.1 

(S) 

395.2, 396.9, 

400.1, 168.9, 

170.3 

- - 22.8 

(doped) 

Potassium ethyl 

xanthate 

- [199] 

Solvothermal - Urea, 

Ammonium 

Fluoride 

0.57 (N), 1.9 

(F) 

683.7-684.6, 

688-688.6, 

399.1, 400.1 

3.02 2.74 36 Acid Orange 7 5.5 [209] 
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Chapter 3. Hydrazine-based Synergistic Ti(III)/N Doping of Surfactant-Templated 
TiO2 Thin Films for Enhanced Visible Light Photocatalysis 

Reproduced with permission from Islam, S. Z., Rankin, E. S., Materials Chemistry and 

Physics, 2016, 182, 382-393. 

3.1 Summary 

This study reports the preparation of titanium (Ti3+) and nitrogen co-doped cubic ordered 

mesoporous TiO2 thin films using N2H4 treatment. The resulting co-doped TiO2 (Ti3+-N-

TiO2) thin films show significant enhancements in visible light absorption and 

photocatalytic activity. Cubic ordered mesoporous TiO2 thin films were prepared via a sol-

gel method with Pluronic F127 as the pore template. After brief calcination, the TiO2 films 

were dipped into hydrazine hydrate which acts both as a nitrogen source and as a reducing 

agent, followed by heating at low temperature (90 °C). The hydrazine treatment period was 

varied from 5 – 20 hours to obtain different degrees of reduction and nitrogen doping. X-

ray photoelectron spectroscopy (XPS) analyses and UV-vis absorbance spectra of Ti3+-N-

TiO2 films indicate that the incorporated N atoms and Ti3+ reduce the band gap of TiO2 and 

thus enhance the absorption of visible light. The corresponding visible light photocatalytic 

activity of Ti3+-N-TiO2 films was determined from the photocatalytic degradation of 

methylene blue under visible light illumination (at 455 nm). The Ti3+-N-TiO2 films 

prepared with 10 hours of treatment show the optimum photocatalytic activity, with a 

pseudo-first order rate coefficient of 0.12 h-1, which is 3 times greater than that of undoped 

TiO2 films. Calcination temperature and time were varied prior to hydrazine treatment to 

confirm that a brief calcination at low temperature (10 min at 350 °C) gave the best 

photochemical activity. In photoelectrochemical water oxidation using a 455 nm LED, the 

Ti3+-N-TiO2 films prepared with 10 hours of N2H4 treatment show about 4 times the 
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photocurrent compared to undoped TiO2 films. The present study suggests that hydrazine 

induced doping is a promising approach to enable synergistic incorporation of N and Ti3+ 

into the lattice of surfactant-templated TiO2 films and enhanced visible light photoactivity, 

but that the benefits are limited by gradual mesostructure deterioration. 

3.2 Introduction 

Directly harvesting solar energy remains a promising approach to meet the 

increasing demand for clean and sustainable fuels and energy [22, 28, 158]. Since 

Fujishima and Honda first demonstrated its use for hydrogen generation from 

photocatalytic water splitting, TiO2 has attracted much attention for solar energy harvesting 

due to its high photostability, low cost, and high availability [13, 29, 157, 189] . These 

unique properties have enabled TiO2 to be utilized in a wide range of applications including 

solar energy conversion, antimicrobial surfaces, whiteners in paint, ceramics, glass, 

textiles, sunscreen, medicine, and organic pollutant degradation for environmental 

remediation [17-25, 69, 105, 192, 258]. The primary challenge of using TiO2 for solar 

energy conversion is its high band gap [17]. The ultraviolet light that titania can absorb 

represents only 5% of the solar spectrum, whereas visible light constitutes about 47% [7]. 

A known strategy to overcome this limitation is to dope titania with nonmetal and metal 

dopants to introduce new electron energy levels, reduce the band gap, and allow the 

material to absorb visible light [17, 29, 40, 259]. Common nonmetal dopants include C, F, 

N, S, P and B [17]. Among the nonmetal dopants, nitrogen is the most effective dopant due 

to its comparable atomic size to oxygen, low ionization potential, and high stability [18, 

29, 39, 79, 178, 180, 181, 194, 202, 203, 210, 211, 258, 260-262]. The mechanism of 

nitrogen doping is thought to be band gap reduction via the formation of a new energy state 
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above the valence band of titania by mixing the 2p orbital of the nonmetal dopant with the 

O 2p orbital [17, 263]. 

Along with nitrogen, titanium (Ti3+) introduced into the TiO2 lattice can create an 

energy state below the conduction band of titania which further reduces the band gap [74, 

158, 186-193]. This Ti3+ state in TiO2 improves not only light absorption but also charge 

transport. For instance, Zuo et al. prepared a self-doped (Ti3+) TiO2 photocatalyst and 

demonstrated its use for hydrogen production under visible light [186]. More recently, Ti3+ 

doped TiO2 prepared by hydrazine reduction has been reported [158]. When TiO2 is 

reduced by any reducing agent, Ti3+ is expected to be formed along with oxygen vacancies. 

However, with hydrazine (N2H4), titania is expected to be co-doped with both Ti3+ and N 

and is therefore to synergistically absorb more visible light and potentially be a more 

effective redox catalyst than TiO2 doped with either species alone. Aman et al. explored 

this concept using Ti3+ and nitrogen doped TiO2 nanoparticles for enhanced photocatalytic 

activity under visible light [157].  

In addition to enhancing the optical absorption of TiO2, it is very important to 

control the morphology and the nanostructure of TiO2 photocatalysts, which significantly 

impacts photocatalytic performance. Ordered nanostructured TiO2 thin films prepared by 

surfactant templating are considered to be very effective structures for photocatalytic 

applications [18]. First, surfactant templating offers excellent control over the structure and 

morphology of the films such as tunable pore size, pore orientation, interfacial structure 

and pore connectivity.  The pore structure facilitates the fast diffusion of reactants to the 

photocatalytic reaction sites of TiO2 films. Second, the mesoporous structure of the TiO2 

films offers a high reactive surface area available for photocatalysis. Third, the sidewalls 
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of mesoporous TiO2 films are thin and comparable to the diffusion length of 

photogenerated holes and electrons, thereby suppressing charge recombination processes 

[5, 33]. Here, cubic ordered mesoporous TiO2 thin films are prepared using evaporation 

induced self-assembly with TiCl4 and triblock copolymer surfactant Pluronic F127 as a 

template. Although mesoporous titania films have been reported for photoelectrolysis, 

those films had discontinuous, disordered pores and high wall thickness [264, 265]. In 

contrast, the pores of our mesoporous titania thin films are continuous, ordered with cubic 

symmetry and surrounded by thin walls. The thin walls in these films are expected to 

provide better charge transport and separation for photocatalysis. At the same time, the 

continuous, ordered pore space is expected to facilitate rapid diffusion of reactants to the 

surface and products away so that the entire thickness of the film can be utilized for 

reaction.  

In the present study, we report the incorporation of Ti3+ and nitrogen atoms into 

surfactant-templated mesoporous TiO2 thin films by hydrazine treatment.  All prior studies 

of Ti3+ and N co-doping by hydrazine treatment used TiO2 powders, nonporous films, 

nanowires or anodized nanotube arrays [49, 157, 158, 188-190, 194, 266-271]. We 

hypothesize that surfactant templated mesoporous TiO2 films have several advantages over 

TiO2 nanotubes.  First, mesoporous titania films have smaller pores and thinner pore walls 

(both 10 nm or less) than titania nanotubes which should result in higher surface areas and 

lower charge recombination rates [33].  Moreover, surfactant templated mesoporous titania 

films can be prepared on any substrate whereas anodized nanotubes can only be prepared 

on Ti foil or substrates amenable to thin film vapor deposition.  The incorporation of Ti3+ 

and nitrogen using a single source, hydrazine, along with the development of the well-
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defined high surface area found in surfactant-templated ordered mesoporous TiO2 thin 

films, are expected to results in a material exhibiting greatly enhanced visible-light 

absorption and photocatalytic activity.  Because the films are formed de novo from a 

molecular precursor, they are expected to be more susceptible to doping, reduction, and 

structural modification than more fully crystalline materials available in other forms. To 

test this hypothesis, cubic ordered mesoporous TiO2 thin films were synthesized by 

templating films derived from TiCl4 with triblock copolymer surfactant Pluronic F127. 

Then, the films were treated with hydrazine hydrate, followed by analysis of photocatalytic 

activity for methylene blue degradation as a test reaction. Further, the optical absorbance 

and photocatalytic activity of Ti3+-N-TiO2 films were correlated with the duration of 

hydrazine treatment. To understand the importance of the thermal treatment prior to 

hydrazine modification, the effects of calcination temperature and time of the titania films 

on the photocatalytic activity of hydrazine-treated titania films were studied. Finally, the 

photoelectrochemical performance of the doped films was demonstrated using water 

oxidation under basic pH conditions with a visible light source. 

3.3. Experimental 

3.3.1. Materials 

Anhydrous ethanol (99.99%, 200 proof, Absolute, Anhydrous, ACS/USP Grade, 

Pharmco Aaper), F127 (triblock copolymer with average structure HO-

(CH2CH2O)100(CH2CHCH3O)65(CH2CH2O)100H, Mn = 12,500 Da, Sigma-Aldrich), 

titanium tetrachloride (tech grade, 99.9%, Sigma-Aldrich), deionized ultrafiltered (DIUF) 

water (Fisher Scientific), colloidal graphite (Ted Pella, inc.), N2H4·H2O, 80% (Hydrazine, 

51%) (Fisher Scientific), methylene blue hydrate (Sigma Aldrich), Nochromix powder 
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(Fisher Scientific), and concentrated sulfuric acid (Certified ACS Plus, Fisher Scientific) 

were all used as received.  

3.3.2. Synthesis of mesoporous titania films 

Nochromix solution, prepared according to the directions of the supplier, was used 

for the cleaning of borosilicate glass slides (Fisher Scientific). Sol preparation was begun 

by preparing a solution of 0.67 g of surfactant F127 in ethanol (18.43g). TiCl4 (1.12 ml) 

was added to the previously prepared F127 solution in a nitrogen-filled glove bag. The 

solution was stirred for 10 min to allow for chloride / ethoxy exchange to take place. 1.8 g 

of deionized water was then added to the solution slowly. The solution was stirred again 

for 10 minutes. In-situ HCl is formed from the reaction between TiCl4 and H2O. This HCl 

makes the solution acidic which helps to control the condensation reaction and allow the 

formation of continuous films. The cleaned glass slides were dip coated using a home built 

system at a rate of 6 cm/min from this solution to prepare the TiO2 films, followed by aging 

in a highly humid environment (RH ~ 94%) in a refrigerator at a temperature of 4 °C for 2 

h. The high RH environment was provided by placing the slides in a sealed box with two 

beakers containing water. Aging at high humidity and low temperature helps to promote 

ordered mesostructure formation, transformation and orientation by slowing the 

condensation of the precursor and controlling evaporation of the solvent. Immediately after 

aging, TiO2 films were calcined in a muffle furnace (Vulcan 3-550) for 10 minutes at 350 

°C. The temperature of the furnace was increased to 350 °C at a ramp of 25 °C/min but the 

calcined TiO2 films were cooled rapidly after 10 minutes at the final temperature. Rapid 

transfer directly from the refrigerator to the furnace was carried out to avoid moisture 

condensation on the surface of the films [272].  
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For titanium reduction and nitrogen doping, a film was dipped into a hydrazine 

hydrate solution (N2H4·H2O (80%)) deep enough to cover the titania film for 1 hour at 

room temperature. Then, the film was removed from the solution and heated at 90 °C for 

different periods (5, 10, 15 and 20 hours) in a closed 50 mL polypropylene centrifuge tube 

with a 1 ml reservoir of N2H4.H2O (80%) in its conical shaped bottom.  The excess liquid 

hydrazine was present to prevent rapid evaporation of N2H4 from the films but did not 

come into direct contact with the slides during heating. After treatment the film was heated 

at 90 °C for 10 minutes after being taken out of the centrifuge tube to remove the adsorbed 

water and hydrazine. The untreated TiO2 sample and the TiO2 samples treated for 5, 10, 

15, and 20 hours are denoted as undoped TiO2, and x h_Ti3+-N-TiO2, where x is the 

duration of hydrazine treatment. 

3.3.3. Characterization 

For the imaging of nanoporous structure, scanning electron microscope (SEM) 

characterization was performed using a Hitachi S-900 at 6 kV. SEM samples were prepared 

by cutting the glass slide to the desired shape using a glass cutter and then mounting the 

sample exactly at the center of a SEM stub coated with carbon tape. The samples were aged 

at 120 °C overnight (~12 h). A Helios Nanolab 660 (FEI) was used for cross sectional 

sample preparation and STEM imaging. TEM was performed using an ultra-high resolution 

JEOL 2200FS. Low angle XRD analysis was performed using a Bruker-AXS D8 

DISCOVER diffractometer to determine the degree of mesostructural ordering. Films were 

scanned at 0.25 °/min in 2θ increments of 0.02° from 1° to 4°. The optical absorbance of 

the samples was obtained with an UV-vis absorption spectrometer (Ocean Optics, DT-

MINI-2-GS). The measurement was carried out by placing the films at an angle of ~45° 
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relative to the incident beam. X-ray photoelectron spectroscopic (XPS) analysis was 

conducted using a ThermoScientific K-Alpha photoelectron spectrometer using 

monochromatic Al K-α radiation with photon energy of 1486.6 eV. Before performing the 

experiment, the samples were cleaned with ethanol to remove dust from their surface. 

3.3.4. Photocatalytic testing 

The photocatalytic activity of the Ti3+-N-TiO2 film was evaluated by monitoring 

the photo-degradation of methylene blue (MB). A photograph of the experimental set-up 

is shown in Appendix A Figure A.1. A blue LED (BLED) with wavelength of 455 nm and 

an ultraviolet LED (UVLED) with wavelength of 365 nm (Thorlabs) were used as the light 

sources. Power densities of the UVLED and BLED were measured with a power energy 

meter (standard photodiode power sensor, Si, Thorlabs) to be 6 mW/cm2 and 22.5 mW/cm2, 

respectively. The spectra of the UVLED and BLED reproduced from Thorlabs are given 

in Appendix A Figure A.2. A cylindrical beaker was used as the reactor. The top of the 

beaker was covered with parafilm to avoid the evaporation of water. In each experiment, 

the solution volume and the initial concentration of MB were 25 ml and 1×10-5 M, 

respectively. The area of mesoporous TiO2 films illuminated by the light source was ~15 

cm2. The distance between the light source and the reactor was 1 cm. Before illumination, 

the solution was stirred for 30 minutes in the dark so that MB could be adsorbed onto the 

pore surface. The solution was continuously stirred using a magnetic stirrer throughout the 

experiment. The change in MB concentration was determined by periodically taking a 2 

mL sample and measuring the optical absorbance at 664 nm using a spectrophotometer 

(Ocean Optics DT-MINI-2-GS). The sample was returned to the reactor after each 

measurement. 
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3.3.5. Photoelectrochemical testing 

For photoelectrochemical (PEC) testing, TiO2 and Ti3+-N-TiO2 films were prepared 

on fluorine-doped tin oxide (FTO) slides. Prior to dip coating, the FTO slides were cleaned 

with deionized water, acetone and isopropanol followed by UV-ozone treatment for 20 

minutes to remove any organic contaminants. The water oxidation reaction was performed 

to evaluate the Ti3+-N-TiO2 film for photoelectrochemical performance in a 

photoelectrochemical system with a three electrode potentiostat (model CHI660D, CH 

Instruments, Inc.). TiO2 films, platinum and Ag/AgCl were used as working, counter and 

reference electrodes, respectively. A glass cell was used as a reactor. KOH of 1 M 

concentration was used as the electrolyte. All three electrodes were kept in the reactor. The 

light source was a blue LED (ThorLabs) with 455 nm wavelength and 22.5 mW/cm2 

intensity. Current-time measurements were carried out using undoped TiO2 and Ti3+-N-

TiO2 films with an applied potential of 0.4 V vs. the Ag/AgCl reference electrode. The 

light was turned on and off every 300 seconds periodically to obtain the light and dark 

currents. This experiment was performed for 1800 seconds. 

Electrochemical impedance spectroscopy measurements were carried out using the 

same potentiostat and electrolyte solution used for photoelectrochemical measurement. 

The measurement was performed at 1 Hz frequency in the dark. The potential was varied 

between -1.5 V and -0.3 V (vs Ag/AgCl). 

3.4. Results and discussion 

The structure and surface morphology of the TiO2 films were characterized by SEM 

as shown in Figure 3.1(a). Nanopores are clearly visible on the top surface of the film. The 

average pore diameter and wall thickness of the TiO2 films are around 7 nm and 5.5 nm, 



  

 

94 
 

respectively. The TEM image in Figure 3. 1(b) also clearly shows the presence of pores 

throughout the film. The arrangement of the pores is consistent with a cubic array of 

interconnected globular mesopores [33]. The cross-sectional bright field STEM image 

(Appendix A Figure A.3) also shows that the cubic array of pores extends across the 

thickness of ~ 80 nm thick films. Figure 3.1(c) shows the XRD pattern of the TiO2 film, 

which corroborates that the mesoporous titania films have an ordered pore structure. A 

single XRD reflection was observed at 2θ = 2.26° which corresponds to a d-spacing value 

of 3.9 nm. Assuming that the mesostructure is oriented so that the SEM image gives the 

(110) d-spacing, this peak corresponds to the (420) plane parallel to the substrate for a 

body-centered cubic mesophase (Im3m space group), but this may be a different peak 

because of contraction normal to the film.  Since the pore size found from SEM images is 

almost three times of the d-spacing, the reflection in Figure 3.1(c) is definitely a higher 

order XRD diffraction peak, indicating that a well-ordered structure is present. Wide angle 

XRD (2θ > 10°) was performed to investigate the phase of the mesoporous TiO2 film but 

the films were found to be x-ray amorphous.   

To identify the crystalline phase in the titania films, high-resolution TEM 

(HRTEM) and selected area electron diffraction (SAED) were performed. In a 

representative HRTEM image (Figure 3.2), a large amount of amorphous phase is 

observed. However, the film also contains dispersed nanocrystals with a size of about 2 

nm. Appendix A Figure A.4 shows an enlarged HRTEM image of a nanocrystal in the film. 

The lattice fringe is 0.245 nm, which is consistent with anatase (103) or (004) d-spacing 

[273]. In addition to the direct visualization by HRTEM, the SAED pattern from the same 

sample (Appendix A Figure A.5) was collected but showed only a diffuse ring rather than 
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any bright diffraction spot, probably due to the small amount of nanocrystals embedded in 

an amorphous matrix. 

Figure 3.3 presents the optical absorbance and the estimated band gap of hydrazine 

treated TiO2 films. The UV-vis spectra indicate that the primary absorption feature 

associated with the band gap of the material shifts towards the visible wavelength range 

upon hydrazine treatment.  In addition, modification of the films causes enhancement of 

absorbance in the range from 350-700 nm, along with enhancement of ultraviolet 

absorption. This enhancement in the absorbance is due to the reduction and nitrogen doping 

of the film. Enlarged spectra of the Ti3+-N-TiO2 films in the visible light region are shown 

in the inset of Figure 3.3 (a). The inset reveals that the absorbance tail is extended towards 

longer wavelengths as the duration of hydrazine treatment increases. The absorbance of the 

10 h_Ti3+-N-TiO2, 15 h_Ti3+-N-TiO2 and 20 h_Ti3+-N-TiO2 films are almost the same up 

to 550 nm. However, the 15 h_Ti3+-N-TiO2 and 20 h_Ti3+-N-TiO2 films showed a new 

band in the range of 550-700 nm. This suggests that the films treated for more than 10 

hours may exhibit an enhanced photo-response at long wavelengths. 

In order to determine the band gap of the undoped TiO2 and Ti3+-N-TiO2 films, 

Tauc plots were drawn (Appendix A Figure A.6). To do this, (αhν)1/2 vs. hν was plotted 

where α is the absorption coefficient and hν is the photon energy. The absorption 

coefficients were calculated from the absorbance divided by the film thickness from 

Appendix A Figure A.3. The band gap was estimated by extrapolating the linear portion of 

the Tauc plot to the x-axis where the value of (αhν)1/2 approaches zero [274]. The relation 

between band gap and hydrazine treatment duration is shown in Figure 3.3(b) and clearly 

shows an effect of hydrazine treatment on the band gap of Ti3+-N-TiO2. The band gap of 
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undoped TiO2 film is 3.5 eV, which is consistent with an amorphous / nanocrystalline 

structure (wide angle XRD revealed no discernable reflections from crystalline phases).  

All of the doped films showed a band gap between 3.30 and 3.40 eV. Though the band gap 

of all the doped films are almost same, localized midgap states might be formed in the 

doped films treated for longer time, and specific surface sites could be generated 

representing catalytically active arrangements of Ti, N and O. This might be the reason for 

higher absorbance across the visible region of the Ti3+-N-TiO2 films treated for increasing 

times.  

XPS was used to determine the nitrogen content and chemical state of undoped 

TiO2 and 5 h_Ti3+-N-TiO2 films. As shown in Figure 3.4(a), XPS surface scanning shows 

a peak with high intensity at ca. 400 eV for 5 h_Ti3+-N-TiO2 films whereas no peak was 

found for undoped TiO2 films. The composition of nitrogen in 5 h_Ti3+-N-TiO2 films was 

measured using the XPS peaks of Ti, O and N to be 2.32 atomic %. Several authors reported 

that the binding energy of nitrogen in TiO2 are in the range of 396 - 404 eV [274-276]. 

There are two types of nitrogen found in doped titania - (i) substitutional doping with a 

binding energy of 396 eV, and (ii) interstitial doping with binding energy of about 400 eV 

[17]. The XPS peak at 400 eV is due to N-N, N-O, or Ti-O-N bonding whereas direct Ti-

N bonding gives rise to a binding energy of 396 eV [190].  Compared to other hydrazine 

based studies, our hydrazine treated Ti3+-N-TiO2 films showed significantly higher 

nitrogen content. For instance, Sun et al. reported about 0.2% nitrogen species in N-TiO2 

synthesized using hydrazine as the nitrogen source [188]. That might be because our 

amorphous/nanocrystalline surfactant templated TiO2 films were formed de novo from a 

molecular precursor, which is expected to enhance nitrogen incorporation and hydrazine 
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reduction compared to more fully crystalline materials available in other forms. Depth 

profiling was performed inside the films using argon ion etching for 10 etching intervals 

of 5 seconds each at 1000 eV energy. Figure 3.4(b) shows that N 1s peaks are found at both 

400 eV and 396 eV, which implies that both interstitial and substitutional nitrogen are 

present in the 5 h_Ti3+-N-TiO2 film. Nitrogen is found throughout the film, but a higher 

amount of nitrogen is found at the film surface, as shown in Figure 3.4(c). This might be 

due to the combined nitrogen from doping and adsorbed species from the atmosphere.  The 

fraction of substitutional nitrogen increases with increasing etching depth within the film, 

suggesting that N2H4 creates interstitial N/O species near the surface but still is able to 

introduce nitrogen into the matrix of the films throughout their depth. The etching depth of 

TiO2 film has been estimated by comparing with the standard etching rate of Ta2O3. 

According to the XPS instrument documentation, the etching rate for Ta2O3 is 1.05 nm/s 

for the same potential (1000 eV) used for TiO2 film etching. Since the TiO2 film is also a 

metal oxide as Ta2O3, it is assumed that the etching rate of TiO2 will be similar, suggesting 

a total etched depth of 47 nm. 

Figures 3.5(a) and 3.5(b) show the XPS spectra in the Ti 2p range during 1000 eV 

Ar etching depth profiling of undoped TiO2 and 5 h_Ti3+-N-TiO2 films, respectively.  The 

spectra have two obvious peaks at ca. 458.8 eV and 464.5 eV associated with the Ti 2p3/2 

and Ti 2p1/2 orbitals, respectively in both undoped TiO2 and 5 h_Ti3+-N-TiO2 films [157]. 

A shoulder at about 457 eV was found to the right of the peak at 458.8 eV for both undoped 

TiO2 and 5 h_Ti3+-N-TiO2 films. This shoulder is associated with the Ti3+ state [157]. It is 

possible that Ti3+ is observed in both films because of partial reduction due to Ar etching. 

However, the relative peak intensity and width of the Ti3+ shoulder of 5 h_Ti3+-N-TiO2 are 
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visibly higher than those of undoped TiO2 film. This indicates that 5 h_Ti3+-N-TiO2 films 

have more reduced Ti3+ compared to undoped TiO2 films. A direct comparison of the XPS 

spectra of undoped and doped TiO2 films has been made to more clearly compare the Ti3+ 

peaks within the film. Appendix A Figure A.7(a) shows the XPS Ti 2p depth profile spectra 

of the undoped TiO2 and 5 h_Ti3+-N-TiO2 films after 45 s of etching. Though the absolute 

intensity of the shoulder for Ti3+ in the 5 h_Ti3+-N-TiO2 film is a little higher than that for 

the undoped TiO2 film, the relative intensity of Ti3+ in the 5 h_Ti3+-N-TiO2 film is much 

higher compared to the peak intensity of Ti3+ in the undoped TiO2 film. Peak fitting was 

performed to deconvolute the contributions of Ti 2p1/2, Ti 2p2/3 and Ti3+ in the Ti 2p 

spectrum. Appendix A Figure A.7(b) and (c) show the peak fitting of the XPS Ti 2p  spectra 

(after 45 s of etching). The relative contribution of Ti3+ in the undoped TiO2 and 5 h_Ti3+-

N-TiO2 film are 11.3% and 23.2%, respectively. While Ar ion etching may introduce some 

reduced titanium, this indicates that the doped film has significantly more Ti3+ compared 

to an undoped titania films after 45 s of etching.  

Aman et al. also observed a shoulder at 457 eV for Ti3+ state in addition to the 

original peak at 459.7 eV in hydrazine treated TiO2. They suggested that the Ti3+ formation 

is mostly due to the hydrazine reduction [157]. Mao et al. prepared reduced titania by 

hydrazine treatment but could not detect Ti3+ in the hydrazine reduced TiO2 using XPS 

analysis [158]. They used electron paramagnetic resonance (EPR) to show the presence of 

Ti3+. Several studies also used EPR to determine the presence of Ti3+ in hydrazine treated 

TiO2 [158, 188, 267, 268]. However, due to the limited quantity of material present in these 

films, EPR analysis was not possible. 



  

 

99 
 

The characterization above established that hydrazine treatment leads to increases 

in nitrogen content, Ti3+ doping and visible light absorption.  The visible light driven 

photocatalytic activity of Ti3+-N-TiO2 films was assessed by monitoring photocatalytic 

degradation of methylene blue (MB) and compared with that of undoped TiO2 films. Prior 

to each photocatalytic measurement, the TiO2 films were immersed in MB-containing 

solution for at least 30 min, in order to make sure that the adsorption of MB onto the surface 

of mesoporous TiO2 films became saturated. MB adsorption reached equilibrium in 30 min, 

as shown in the representative long-time adsorption study in Appendix A Figure A.8(a). 

For photocatalytic measurements, the MB-containing solution was exposed to a blue LED 

light (peak wavelength 455 nm) to measure photocatalytic activity over the course of 4 

hours. Figure 3.6(a) shows the photocatalytic results normalized using the absorbance at 

the time that illumination with the LED began, and with the time scale set to zero at the 

beginning of illumination.  The curves clearly show enhanced photocatalytic activity of 

Ti3+-N-TiO2 films compared to the undoped TiO2 film. Insignificant degradation was found 

without TiO2 films (direct photolysis of MB). The photocatalytic degradation results of 

MB with undoped TiO2 film and Ti3+-N-TiO2 films clearly showed that the photocatalytic 

activity of Ti3+-N-TiO2 gradually increased in proportion to the duration of hydrazine 

treatment from 0 to 10 hours.  

The kinetics of photocatalytic degradation reaction rates were quantified by fitting 

the decay of MB concentration with the pseudo-first order rate equation: C=C0*exp(-kt), 

where k = the rate coefficient. Appendix A Figure A.8(b) shows that all experiments 

display very good linear fits between ln(C/C0) and t, thus indicating that first order kinetics 

are appropriate in this case. The rate coefficients are plotted as a function of hydrazine 
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treatment time in Figure 3.6(b). The rate coefficients increase with increasing hydrazine 

treatment until 10 hours.  This correlates with the increase in visible light absorbance, and 

decrease in band gap found above. The 10 h_Ti3+-N-TiO2 films showed the maximum rate 

coefficient of 0.12 h-1, which was nearly 3 times greater than for undoped TiO2 film. Based 

on the film thickness (80 nm), structure (from SEM) and illuminated area, this corresponds 

roughly to a rate coefficient of ~85 min-1/(g catalyst). The increase in photocatalytic 

activity after hydrazine treatment could be attributed to the enhancement of the visible light 

absorbance due to a combination of nitrogen doping and titanium reduction to Ti3+, 

facilitated by the nanocrystalline mesoporous architecture. The enhancement observed here 

is comparable to the results reported in a previous studies. For instance, Selvam et al. 

prepared N-doped TiO2 by a wet method using hydrazine. The N-TiO2 showed 70 % 

nitrobenzene conversion (5 h photoirradiation) whereas untreated TiO2 showed 60 % 

conversion (6 h photoirradiation) under 365 nm mercury lamp irradiation, which represents 

a 1.6× increase in activity (assuming 1st order kinetics) [269]. Xu et al. observed about 4× 

enhancement in X-3B dye solution degradation under visible light irradiation (MVL 210 

source) for TiO2 nanotubes after the samples were hydrazine treated [189]. In another 

study, Sun et al. prepared Ti3+ and N co-doped titania particles by hydrazine treatment. In 

the 4-chlorophenol degradation under 250 W Xe lamp irradiation, the first order rate 

constant for doped titania was 0.002 min-1 whereas undoped titania did not show any 

significant photodegradation [188]. It is difficult to compare our results directly with the 

literature due to the use of different light sources with different intensity and catalyst 

amount, but the effects of hydrazine treatment appear to be comparable or better than in 

prior reports. 
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While hydrazine treatment helps titania in visible light driven photocatalytic 

activity, excessive exposure to hydrazine negatively affected its photocatalytic 

performance. For instance, 20 h_Ti3+-N-TiO2 films showed a rate coefficient of 0.054 h-1, 

which was much lower than that for the 10 h_Ti3+-N-TiO2 films. The photocatalytic 

performance of the 10 h_Ti3+-N-TiO2, 15 h_Ti3+-N-TiO2, and 20 h_Ti3+-N-TiO2 films are 

not proportional with the UV-vis spectroscopy measurement as they exhibited about the 

same absorbance at 455 nm wavelength (Figure 3.3(a)). Since the reaction rate strongly 

depends on the available surface area of the film and the network connectivity, 

deterioration of the porous network might explain the decline in activity with long exposure 

to hydrazine (and water vapor). The mesostructure of the Ti3+-N-TiO2 films was 

investigated by SEM as shown in Figure 3.7. More high resolution SEM images are 

provided in Appendix A Figure A.9. The pore wall thickness increased and pore size 

decreased due to the coarsening during the long time hydrazine treatment. These effects 

cause pore constriction and partial pore blocking. The coarsening increases with the 

hydrazine treatment period. After 20 hours of the treatment, the film almost lost 

accessibility of the pores completely at the scale visible by SEM. This structural 

deterioration caused a decrease in available surface area, which would explain the decrease 

in photocatalytic activity. Thus, the photocatalytic performance of the Ti3+-N-TiO2 films 

displays a tradeoff between increasing absorbance due to doping and reduction, and 

decreasing surface area due to coarsening of the mesostructure. The reduction of surface 

area most likely dominates over the increase in visible light absorbance in the 15 h_Ti3+-

N-TiO2 and 20 h_Ti3+-N-TiO2 films which causes the decrease in photocatalytic activity 

in the MB degradation reaction.  
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The effect of calcination temperature of the titania films on the photocatalytic 

activities of the 10 h_Ti3+-N-TiO2 films was studied by methylene blue degradation using 

BLED illumination. First, three titania films were prepared using 10 min of calcination in 

air at 350 °C, 400 °C and 450 °C. Then, all the films were hydrazine treated for 10 h. The 

concentration profiles in Figure 3.8(a) shows that the degradation of MB is highest for the 

film calcined at 350 °C, and decreases with increasing temperature. Fitting a first-order 

kinetic model to the concentration profiles (Appendix A Figure A.10 (a)) yields rate 

coefficients for films calcined at 350 °C, 400 °C and 450 °C of 0.12 h-1, 0.102 h-1 and 0.09 

h-1, respectively. The trend probably reflects a tradeoff between crystallization during 

calcination and nitrogen doping / reduction during hydrazine treatment. At 350 °C, the 

films are likely to be least crystalline, and therefore most easily doped and reduced by 

species derived by hydrazine decomposition. Although increasing the calcination 

temperature would be expected to enhance the activity of the titania itself due to 

crystallization, it reduces the ease with which hydrazine modification of the matrix occurs, 

and the photocatalytic activity under visible illumination is reduced. 

The effect of calcination time of the titania films on the photocatalytic activities of 

the 10 h_Ti3+-N-TiO2 films was also studied by methylene blue degradation under BLED 

illumination. Three titania films were prepared with calcination in air at 350 °C for 10 min, 

60 min and 120 min, followed by 10 h of hydrazine treatment. The concentration profiles 

in Figure 3.8(b) shows that the degradation of the MB in this series is fastest for the film 

calcined for 10 min, and decreases with longer calcination. Fitting a first-order kinetic 

model to the concentration profiles (Appendix A Figure A.10(b)) yields rate coefficients 

for 10 min, 60 min and 120 min calcined films of 0.12 h-1, 0.064 h-1 and 0.052 h-1, 
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respectively. Longer calcination than the baseline 10 min used to decompose the pore 

template would expected to induce greater crystallization of the titania, along with the 

possibility of pore sintering. Both effects would reduce the effectiveness of matrix 

modification by hydrazine treatment. Thus, consistent with the hypothesis that the 

disordered nature of sol-gel titania aids in hydrazine-based doping, brief (10 min), low 

temperature (350 °C) calcination is found to give the best photocatalytic activity for films 

with 10 h hydrazine treatment.  

Further, methylene blue degradation was performed with titania films calcined at 

350 °C for 10 min to test their photocatalytic activity under UVLED illumination. The 10 

h_Ti3+-N-TiO2 films showed higher photoactivity compared to the undoped TiO2 film 

under both UVLED and BLED illumination as shown in Figure 3.8(c). The sample and 

wavelength are indicated in the legend as (hydrazine treatment time) (LED type), for 

example 10 h_BLED indicating 10 h hydrazine treatment and BLED illumination. Fitting 

the concentration profiles (Appendix A Figure A.10(c)) gives rate constants for 0 h_BLED, 

10 h_BLED, 0 h_UVLED and 10 h_UVLED films of 0.042 h-1, 0.12 h-1, 0.231 h-1, and 

0.243 h-1, respectively. The photoactivities of both undoped and doped films under UVLED 

illumination are much higher than under BLED illumination. In addition, the hydrazine 

treated titania films showed a higher degradation rate than undoped titania films 

illumination at both wavelengths. According to previous studies, nitrogen doping does not 

improve photocatalytic activity under UV light irradiation, and may actually deteriorate 

UV photoactivity [261, 274, 277]. The reason that UV photoactivity is not lost in the Ti3+-

N-TiO2 films here is due to efficient reduction and nitrogen doping of the titania matrix of 
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the amorphous sol-gel TiO2. Efficient doping combined with advantageous mesoporous 

TiO2 structure seems to enable efficient charge separation and transport.  

To alleviate concerns over visible enhancement arising from sensitization by MB 

and to show the versatility of the doped films, photoelectrochemical (PEC) activity 

measurements were conducted in a three-electrode system to evaluate the water oxidation 

performance of the doped films as a photoanode. The current-time curves for the undoped 

TiO2 and Ti3+-N-TiO2 films are presented in Figure 3.9(a). The inset in Figure 3.9(a) 

presents the enlarged region from 400 to 1800 s of the current-time plot. The initial currents 

for the doped films are significantly higher than the undoped TiO2 film. The current 

increases with increasing hydrazine treatment period. However, the current decreases with 

time for all of the doped films. Ti3+ may be oxidized during the current-time experiment 

resulting in decreasing current. 

For comparison of the photoelectrochemical performance of the doped films, the 

photocurrent was separated from the total current. The current vs. time data for all dark 

periods was fit with a single fourth order polynomial (Appendix A Figure A.11) and this 

function subtracted from the total current to give the photocurrent. Appendix A Figure 

A.12 shows the photocurrent as a function of time for the undoped and Ti3+-N-TiO2 films. 

It is clear that the photocurrent of the Ti3+-N-TiO2 films is higher than undoped TiO2 films. 

The specific photocurrent was calculated from the photocurrent density divided by the 

mass per area (2.29×10-5 g/cm2 calculated using 80 nm film thickness, and pore diameter 

and wall thickness from the SEM imaging). The specific photocurrent of undoped TiO2 

and Ti3+-N-TiO2 films at 600 s (the start of the second illuminated period) are plotted as a 

function of hydrazine treatment time in Figure 3.9(b). The 10 h_ Ti3+-N-TiO2 films showed 
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the maximum photocurrent which is about 4 times as high as for undoped TiO2 films. The 

photocurrent for the film after 20 hours of hydrazine treatment is lower than for the film 

treated for 10 hours. This is consistent with the maximum in photocatalytic activity for MB 

degradation at 10 hours of hydrazine treatment and can be explained by the mesostructure 

deterioration for more than 10 hours of hydrazine treatment as shown in Figure 3.7. The 

enhancement in water oxidation of this study surpasses the results reported in previous 

studies. For instance, Xu et al. prepared hydrazine treated titania nanotubes and found 2× 

enhancement in photoelectrochemical performance compared to undoped titania nanotubes 

in water oxidation under a halogen lamp [189]. Mao et al. also showed less than 2× 

photocurrent enhancement in water oxidation under a solar simulator for  hydrazine TiO2 

nanotubes compared to undoped TiO2 nanotubes [158].  The greater enhancement found 

here may be a result of the ease with which the initially amorphous sol-gel titania film is 

doped by N2H4 treatment. The absolute current density of our titania film is relatively small 

compared to the current density of some other titania materials reported in literature [278]. 

This is because the films have low thickness (80 nm) and the BLED source has low energy 

density. It is difficult to make absolute comparison of the photocurrents obtained from 

photoelectrochemical water oxidation across different measurement systems in the 

literature because of differences in several factors including light source, wavelength and 

intensity; catalyst amount; addition of various reagents (e. g. hole scavengers); addition of 

co-catalysts (e.g. metal nanoparticles); electrolyte pH; and applied potential. The specific 

photocurrent per gram of our doped mesoporous titania was estimated to be on the scale of 

mA, which is quite significant considering the low intensity of the BLED source. The 

absolute photocurrent of our mesoporous titania thin films can be further improved by 
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preparing thicker films using a layer-by-layer deposition technique to be reported in a 

future contribution.   

The electronic properties of the films and the film /electrolyte interface were 

investigated by electrochemical impedance spectroscopy (EIS) for undoped TiO2 and Ti3+-

N-TiO2 films. Mott-Schottky plots were prepared using data from the EIS measurement as 

shown in Figure 3.10(a). The positive slope of the Mott-Schottky plot indicates that (as 

expected) TiO2 is an n-type semiconductor [158, 279]. The flat band potential (Efb) was 

estimated by extrapolating the linear portion of the Mott-Schottky plot to the horizontal 

axis as shown in Appendix A Figure A.13. Figure 3.10(b) shows that Efb of Ti3+-N-TiO2 

films decreases monotonically as a function of hydrazine treatment duration. Efb represents 

the edge of the conduction band of TiO2 since it is an n-type semiconductor, [280-284] so 

Figure 3.10(b) suggests that a new energy band for the Ti3+ state might be formed just 

below the conduction band of TiO2 due to the reduction by hydrazine. The Ti3+ state 

formation increases with the increasing hydrazine treatment time resulting in decreasing 

Efb. This EIS measurement is consistent with the photocatalytic and photoelectrochemical 

results in that the photoactivity increases as Efb of TiO2 decreases due to hydrazine 

treatment. The downward shift of the edge of the conduction band is also in agreement 

with the band gap reduction of the Ti3+-N-TiO2 films estimated from optical measurement. 

It has suggested that nitrogen doping reduces Efb [281, 282, 285], but Spadavecchia et al. 

demonstrated both experimentally and theoretically that nitrogen doping alone does not 

change Efb [280]. Therefore, the observed change in Efb is most likely caused by reduction 

due to the use of hydrazine as a source of nitrogen doping. 
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In an n-type semiconductor (TiO2), electrons are the majority charge carriers. The 

charge carrier density (ND) can be calculated from the slope of the linear portion of a Mott-

Schottky plot using Equation 3.1 (the Mott-Schottky equation): 

  1
𝐶𝐶2

=  � 2
𝑞𝑞ɛɛ0𝑁𝑁𝐷𝐷

� �𝐸𝐸 − 𝐸𝐸𝑓𝑓𝑓𝑓 −
𝜅𝜅𝑇𝑇
𝑞𝑞
�                                     (3.1)    

where C is the areal capacitance of the space charge layer, q the elementary charge (1.6 × 

10-19 C), ɛ0 the vacuum permittivity (8.85 × 10-14 Fcm-1), ɛ the dielectric constant of the 

studied semiconductor, Efb the flat band potential, E the applied external bias, κ 

Boltzmann’s constant, and T the absolute temperature. 

The dielectric constant is assumed to be 41 for TiO2 [281]. The calculated value of 

ND in the undoped mesoporous TiO2 film is 9 ×1019 cm-3. Treatment with N2H4 caused a 

decrease in ND for 5 and 10 hours of treatment (Figure 3.10(c)), but ND increased to 9.62 

× 1019 cm-3 in the film treated for 20 hours. Since N2H4 is both a strong reducing agent and 

a nitrogen source, treatment introduces both Ti3+ electron donors (tending to increase ND) 

[158] and nitrogen atom electron acceptors (tending to decrease ND) [280, 285]. The 

balance of the two determined the net change in ND, and  excessive nitrogen doping has 

been suggested to convert Ti3+ to Ti4+ species [280]. Figure 3.10(c) shows that introduction 

of acceptors dominates the properties of the 5 h_Ti3+-N-TiO2 and 10 h_Ti3+-N-TiO2 films 

resulting in lower ND compared to undoped TiO2 film. On the other hand, the increase in 

ND in the 20 h_Ti3+-N-TiO2 film suggests that prolonged treatment with hydrazine results 

in a net introduction of more Ti3+ compared to nitrogen. Hanzu et al. reported  a reduction 

in ND from  6.7×1020 cm-3 in undoped TiO2 nanotubes to 3.9×1020 cm-3 upon nitrogen 

doping [280]. Mao et al. reported that ND increased from 6.9×1018 cm-3 in titania nanowires 

to 8.54×1019 cm-3 after 24 hours of N2H4 treatment [158].  The results found here are 
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consistent with these two observations if we conclude that nitrogen introduction dominates 

ND at short times and titanium reduction takes over the electronic properties of the films at 

long treatment times. 

3.5. Conclusions 

Titanium (Ti3+) and nitrogen co-doped cubic ordered mesoporous TiO2 thin films 

were prepared by hydrazine treatment and tested for photocatalysis under visible light 

illumination.  The cubic ordered mesoporous TiO2 thin films were prepared by a surfactant 

templated sol-gel method followed by hydrazine treatment in a closed vessel to allow long-

term exposure to hydrazine from the vapor phase. Both interstitial and substitutional 

nitrogen were found inside of the doped films whereas no nitrogen was found in the 

undoped TiO2 film.  XPS and optical characterization suggest that the band gap of TiO2 

films was reduced from 3.5 eV (in undoped TiO2 films due to their amorphous / 

nanocrystalline structure) down to a minimum of 3.3 eV after the hydrazine treatment. 

While this band gap reduction does not bring the primary absorption into the visible 

wavelength range, enhanced visible light absorption was found in an absorbance tail that 

extended well into the visible wavelength range, most likely due to the formation of 

localized absorbers that may function as catalytic sites at the surface of the mesoporous 

titania. 

Photocatalytic degradation tests with methylene blue (MB) demonstrated a 

significant enhancement in photocatalytic activity of the Ti3+-N-TiO2 films over undoped 

TiO2 films under visible-light illumination. A 455 nm LED was used as a representative 

visible light source for the experiment because this wavelength is not absorbed by MB.  

The Ti3+-N-TiO2 film prepared by 10 hours of hydrazine treatment showed the optimal 
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photocatalytic performance, with the determined rate coefficient of 0.12 h-1, roughly 3 

times greater than that of undoped TiO2 films. Based on the film thickness, structure and 

illuminated area, this corresponds to a rate coefficient of ~85 min-1/(g catalyst). To confirm 

that the high level of photocatalytic enhancement observed here can be attributed to the use 

of disordered sol-gel TiO2, the effects of increasing calcination temperature and time were 

observed.  Both were found to decrease photocatalytic activity, showing that 350 °C and 

10 min are the optimum calcination conditions for introducing visible-light photocatalytic 

activity by hydrazine treatment in these films. The enhancement in photoactivity of the 

film was confirmed by measuring photoelectrochemical (PEC) water oxidation. The Ti3+-

N-TiO2 films prepared with 10 hours of hydrazine treatment also showed optimal 

performance in the PEC experiments, roughly four times the photocurrent of undoped TiO2 

films. This study thus demonstrates the effectiveness of hydrazine treatment as a source of 

Ti3+ and N dopant for mesoporous TiO2 thin films prepared by surfactant templating.  

Treatment with hydrazine leads to improved photocatalytic and photoelectrochemical 

performance, but is balanced by gradual coarsening of the titania mesostructure due to 

exposure to hydrazine and water vapor during treatment. 
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Figures of Chapter 3 
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Figure 3.1. Electron micrographs of the F127-templated TiO2 film after calcination and 
without hydrazine treatment: (a) SEM image of the top surface, (b) TEM image of material 
scraped from the glass substrate, and (c) XRD pattern of TiO2 film on the original substrate. 
 

 

Figure 3.2. HRTEM image of undoped titania film. 
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Figure 3.3. (a) UV-vis spectra of undoped TiO2 and Ti3+-N-TiO2 films prepared using 
different hydrazine treatment times (the inset shows an enlarged region in the visible 
wavelength range) and (b) band gap vs. hydrazine treatment time based on Tauc plot 
analysis. 
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Figure 3.4. (a) High resolution N 1s XPS spectra, (b) XPS N 1s depth profile spectra for 5 
h_Ti3+-N-TiO2 film, and (c) plot of nitrogen content from XPS depth profile vs. total Ar 
etching time at 1000 eV power.  
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Figure 3.5. XPS Ti 2p depth profile spectra of (a) undoped TiO2 films and (b) 5 h_Ti3+-N-
TiO2 films.   
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Figure 3.6. Methylene blue degradation kinetics with undoped TiO2 (0 h) films, Ti3+-N-
TiO2 films, and solution without catalysis (Photolysis): (a) Concentration profile, and (b) 
pseudo-first order rate coefficient vs. hydrazine treatment time. 
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Figure 3.7. Plan view SEM images of (a) undoped TiO2, (b) 5 h_Ti3+-N-TiO2, (c) 10 
h_Ti3+-N-TiO2, and (d) 20 h_ Ti3+-N-TiO2 films (Scale bar: 120 nm). 
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Figure 3.8. Concentration profiles during methylene blue degradation with 10 h_Ti3+-N-
TiO2 films  showing (a) effect of calcination temperature of titania films, (b) effect of 
calcination time of titania films and (c) effect of light sources (BLED and UVLED). 
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Figure 3.9. (a) Current density as a function of time for the water oxidation reaction with 
TiO2 and Ti3+-N-TiO2 films (The inset is an expansion of the region from 400 to 1800 s) 
and (b) Photocurrent per mass of undoped TiO2 and Ti3+-N-TiO2 films at 600 s as a function 
of hydrazine treatment time. 
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Figure 3.10. (a) Mott-Schottky plots for undoped TiO2 and Ti3+-N-TiO2 films, and (b) flat 
band potential and (c) charge carrier density of the films as a function of hydrazine 
treatment time.  
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Chapter 4. N2/Ar Plasma Induced Doping of Ordered Mesoporous TiO2 Thin Films 
for Visible Light Active Photocatalysis  

Reproduced with permission from Islam, S. Z., Reed, D. A., Kim, D. Y., Rankin, S. E., 

Microporous and Mesoporous Materials, 2016, 220, 120-128. 

4.1. Summary 

This study reports the rapid and effective nitrogen doping of ordered, mesoporous TiO2 

thin films using nitrogen/argon (N2/Ar) plasma. The resulting nitrogen-doped TiO2 (N-

TiO2) films show a significant enhancement in both visible light absorption and 

photocatalytic activity. The cubic ordered mesoporous TiO2 thin films are prepared via a 

sol-gel method using titanium tetrachloride (TiCl4) as precursor and triblock copolymer 

Pluronic F127 as the template. Following brief calcination, the TiO2 films are treated with 

N2/Ar plasma under controlled conditions of reactive gas pressure, microwave power, and 

plasma exposure duration.  To vary the degree of nitrogen doping, the plasma exposure 

time varied from zero up to 210 min.  The nitrogen content of the films increases with 

plasma exposure duration, up to over 3 at% N. X-ray photoelectron spectroscopic (XPS) 

analyses and UV-vis absorbance spectra of N-TiO2 films indicate that the incorporated N 

atoms reduce the band gap of TiO2 and thus enhance the absorption of visible light. Finally, 

the visible-light photocatalytic activity of N-TiO2 films is determined from the 

photocatalytic degradation of methylene blue under visible-light illumination (with a 455 

nm LED). The N-TiO2 films prepared by 150 min treatment show the optimum 

photocatalytic activity with a pseudo-first order rate coefficient of 0.24 h-1, which is six 

times greater than that of undoped TiO2 films. Treatment for excessive time (e.g. 210 min) 

leads to a decline in photocatalytic activity due to coarsening of the porous structure. The 

present study suggests that plasma-induced doping is a promising approach to enable the 
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efficient incorporation of heteroatoms into surfactant-templated TiO2 thin films while 

maintaining their nanostructures, thereby leading to the significant enhancement of visible-

light photoactivity. 

4.2. Introduction 

Since Fujishima first reported H2 generation by splitting water with a TiO2 

photocatalyst, TiO2 has attracted much attention due to many advantageous properties 

including its low cost, high availability, chemical stability, and excellent optoelectronic 

properties [1-4]. These unique properties have enabled titania to be utilized in a wide range 

of applications including solar energy conversion, antimicrobial agents, whiteners in paint, 

ceramics, textiles, personal care products, and catalysts for environmental remediation [4-

12].  

Despite many attractive features of TiO2, one critical challenge is the innate 

inability of TiO2 to absorb visible light [5]. The wide band gap of TiO2 allows the 

absorption of solar light mainly in the ultraviolet (UV) range, which corresponds to only 

8% of the whole solar spectrum, while visible light constitutes 47% [3]. To reduce the 

intrinsic band gap of TiO2, several strategies have been tested including the incorporation 

of either metallic (e.g. Fe and Ni) or non-metallic (e.g. C, F, N, S, P and B) atoms into the 

lattice of TiO2 host materials [3, 5, 11, 13, 14]. Among these dopants, nitrogen is one of 

the most effective elements to promote visible light photoactivity [5, 6, 15]. The classic 

hypothesis for the effect of bulk N-doping is that replacement of oxygen atoms with 

nitrogen atoms induces the addition of N2p energy states slightly above valence band, 

leading to a reduction in the band gap, thus enabling TiO2 to absorb light in the visible 

range [5]. 
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Until now, various approaches to incorporate nitrogen atoms have been reported, 

such as doping during film sputtering [16], annealing under ammonia gas [8], ion 

implantation [17, 18], hydrazine treatment [19, 20], urea treatment [21-23], treatment of 

sol-gel titania with nitrogen-containing organics [24], electrochemical processing [25], 

chemical vapor deposition [26], and plasma techniques [7, 9, 15, 27-34]. Among these 

approaches, plasma-assisted doping has several critical advantages over other methods, 

such as: (i) effectively incorporating heteroatoms into the TiO2 host by providing reactive 

dopant species, and (ii) being conducted at relatively low temperature so that the 

nanostructure of TiO2 is maintained.  

In addition to the challenging issue associated with the optical absorbance of TiO2, 

the morphology and the nanostructure of TiO2 photocatalysts are important factors to 

determine their photocatalytic performance. Among many available TiO2 nanostructures, 

surfactant-templated mesoporous TiO2 thin films offer several advantages [6]. First, 

surfactant templating provides excellent control over the structure and morphology of the 

films such as tunable pore size, pore orientation, interfacial structure, and pore 

connectivity, which facilitate the fast diffusion of reactants to the photocatalytic reaction 

sites of TiO2 films. Second, the mesoporous structure of the TiO2 films offers a high 

reactive surface area available for photocatalysis. Third, the sidewalls of mesoporous TiO2 

films are thin and comparable to the diffusion length of photogenerated holes and electrons, 

thereby having the potential to suppress charge carrier recombination processes [35, 36]. 

In the present study, we report for the first time the incorporation of nitrogen into 

mesoporous TiO2 films by N2/Ar plasma treatments.  All prior studies of N-doping by 

plasma treatment used TiO2 powders, nonporous films, or anodized nanotube arrays [7, 9, 
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15, 27-34]. However, surfactant templated mesoporous TiO2 films have several advantages 

over TiO2 nanotubes. Mesoporous titania film have smaller pores and thinner pore walls 

(both on the order of 10 nm or less) than titania nanotubes (22-110 nm pore diameters and 

7-34 nm thick walls) which results higher surface areas and lower charge recombination in 

mesoporous titania films [9, 28, 36]. Moreover, surfactant templated mesoporous titania 

films can be prepared on any substrate whereas anodized nanotubes can only be prepared 

on Ti foil or substrates amenable to thin film vapor deposition. Finally, the initial 

amorphous structure of surfactant-templated TiO2 films may have photocatalytic 

advantages based on recent reports that surface defects enhance visible light absorption and 

charge carrier separation [37, 38], and is expected to enhance the incorporation of plasma-

generated nitrogen species. The hypothesis of this work is that by combining the efficient 

N2/Ar plasma-induced doping approach with the well-defined high surface area found in 

surfactant-templated mesoporous TiO2 thin films, significant enhancement of visible light 

absorbance and visible light photo-activity will be achieved. To test this hypothesis, cubic 

ordered mesoporous TiO2 thin films will be synthesized by templating films derived from 

TiCl4 with Pluronic F127. Then, the films will be treated with N2/Ar plasma generated by 

a microwave-assisted chemical vapor deposition (CVD) system, followed by analysis of 

photocatalytic activity for methylene blue degradation as a test reaction. If the hypothesis 

is correct, the optical absorbance and photocatalytic activity of N-TiO2 films are expected 

to be correlated with the duration of N2/Ar plasma treatments.  
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4.3. Experimental 

4.3.1. Materials 

Anhydrous ethanol (200 proof, Pharmco Aaper), F127 (triblock copolymer with 

average structure HO-(CH2CH2O)100(CH2CHCH3O)65(CH2CH2O)100H, Mn = 12,500 Da, 

Sigma-Aldrich), titanium tetrachloride (tech grade, Sigma-Aldrich), deionized ultrafiltered 

(DIUF) water (Fisher Scientific), colloidal graphite (Ted Pella, Inc.), methylene blue 

hydrate (Sigma Aldrich), Nochromix powder (Fisher Scientific), and concentrated sulfuric 

acid (Fisher Scientific) were all used as received.  

4.3.2. Synthesis of mesoporous titania films 

 Nochromix solution, prepared according to the directions of the supplier, was used 

to clean borosilicate glass slides (Fisher Scientific). Sol preparation was begun by 

preparing a solution of 0.67 g of F127 in ethanol (18.43g). TiCl4 (1.12 ml) was added to 

the previously prepared F127 solution in a nitrogen-filled glove bag. The solution was 

stirred for 10 min to allow for chloride / ethoxy exchange to take place and then 1.8 g of 

deionized water was added into the solution slowly. The solution was stirred again for 10 

minutes. The cleaned glass slides were dip coated using a home built system at a rate of 6 

cm/min from this solution to prepare the TiO2 films, followed by aging in a highly humid 

environment (RH ~ 94%) in a refrigerator at a temperature of 4 °C for 2 h. The high RH 

environment was provided by placing the slides in a sealed box with two beakers 

containing DIUF water. Immediately after aging, TiO2 films were calcined in a muffle 

furnace (Vulcan 3-550) for 10 minutes at 350 °C. The temperature of the furnace was 

increased to 350 °C at a ramp of 25 °C/min and the calcined TiO2 films were cooled rapidly 

in air after 10 minutes at the final temperature. Rapid transfer directly from the refrigerator 



  

 

125 
 

to the furnace was carried out to avoid moisture condensation on the surface of the films 

[39].   

4.3.3. N2/Ar Plasma treatment of mesoporous TiO2 film 

A microwave-assisted plasma CVD system (Seki Diamond Systems, AX5010) was 

used for the nitrogen doping of TiO2 films. The schematic diagram of this plasma system 

is shown in Figure 4.1. The TiO2 sample was placed on a Mo sample stage and the chamber 

was evacuated. Once a base pressure of 60 mTorr was established, the chamber was purged 

with Ar gas at a flow rate of 100 sccm for 10 min. After 10 min, the pressure was brought 

to 15 Torr and an Ar plasma was ignited using 300 W microwave power (2.45 GHz). 

Immediately upon plasma ignition, N2 gas was introduced at a rate of 40 sccm. The pressure 

was brought to 60 Torr and the power to 450 W where it remained through the rest of the 

treatment process. Plasma treatment duration was varied from 30 min to 210 min. After the 

treatment, the TiO2 films were cooled in a 250 Torr N2 atmosphere for 60 min prior to 

being removed from the chamber. The untreated TiO2 sample and the TiO2 samples treated 

for 30, 50, 70, 90, 150 and 210 min are denoted as undoped TiO2 and x min_N-TiO2, where 

x is the duration of plasma treatement. 

4.3.4. Characterization 

 Thermaogravimetric analysis (TGA) was performed using a TA-SDT-Q600 

simultaneous TGA/DSC instrument (TA Instruments). First, the TiO2 films were dip 

coated and aged for 2 hours at 4 °C (RH ~ 94 %). Then the aged films were kept in oven 

at 100 °C overnight to remove solvents and water. Before the measurement, films were 

scratched from the substrate with a razor blade to generate a powder. TGA measurements 

were performed at various ramp rates under an air atmosphere. For imaging of the 
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mesoporous structure, scanning electron microscope (SEM) characterization was 

performed using a Hitachi S-900 at 6 kV. SEM samples were prepared by cutting the glass 

slide to the desired shape using a glass cutter and then mounting the sample exactly at the 

center of a SEM stub coated with carbon tape. The samples were aged at 120 °C overnight 

(~12 h). A Helios Nanolab 660 (FEI) was used for cross sectional sample preparation and 

STEM imaging. The thicknesses of the TiO2 films were measured using a profilometer 

(Dektak 6M manufactured by Veeco). TEM was performed using an ultra-high resolution 

JEOL 2200FS. Low angle XRD analysis was performed using a Bruker-AXS D8 Discover 

diffractometer to determine the degree of mesostructural ordering. Films were scanned at 

0.5 °/min in 2θ increments of 0.02° from 1° to 4°. The optical absorbance of the samples 

was obtained with an UV-vis absorption spectrometer (Ocean Optics, DT-MINI-2-GS). 

The measurement was carried out by placing the films at an angle of ~45° relative to the 

incident beam. X-ray photoelectron spectroscopic (XPS) analysis was conducted using a 

ThermoScientific K-Alpha photoelectron spectrometer using monochromatic Al K-α 

radiation with photon energy of 1486.6 eV. Before performing the experiment, the samples 

were cleaned with ethanol to remove dust from their surface. 

4.3.5. Photocatalytic measurement 

 The photocatalytic activity of the N-TiO2 film was evaluated by monitoring the 

photo-degradation of methylene blue (MB). A photograph of the experimental set-up is 

shown in Appendix A Figure A.1. A blue LED with wavelength of 455 nm (Thorlabs) was 

used as the light source. The spectrum of the blue LED reproduced from Thorlabs is given 

in Appendix A Figure A.2b. A cylindrical beaker was used as the reactor. The top of the 

beaker was covered with parafilm to avoid the evaporation of water. In each experiment, 
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the solution volume and the initial concentration of MB were 25 ml and 1×10-5 M, 

respectively. The area of mesoporous TiO2 films illuminated by the light source was ~15 

cm2. The distance between the light source and the reactor was 1 cm. Before illumination, 

the solution was stirred for 30 minutes in the dark so that MB could be adsorbed onto the 

pore surface. The solution was continuously stirred using a magnetic stirrer throughout the 

experiment. The change in MB concentration was determined by periodically taking a 2 

mL sample and measuring the optical absorbance at 664 nm using a spectrophotometer 

(Ocean Optics DT-MINI-2-GS). The sample was returned to the reactor after each 

measurement. 

4.4. Results and discussion 

As a first characterization step, TGA measurements were performed to confirm that 

calcination at 350 °C leads to complete removal of the template. The TGA temperature 

program consisted of a ramp from 50 °C to 350 °C followed by isothermal heating for 10 

min and a second ramp from 350 °C to 450 °C. Two ramp rates (25 °C/min to mimic 

calcination conditions and a more typical TGA rate of 5 °C/min) were used for two 

samples. The TGA profiles are presented in Appendix B Figure B.1. Most of the weight 

loss of the samples occurred near 300 °C and is associated with decomposition of F127. A 

small amount of additional weight loss was observed during isothermal heating at 350 °C 

temperature. The weight remaining after isothermal heating at 350 °C for 10 min was 49.7 

% for samples heated at both 25 °C/min and 5 °C/min. This suggests that there is no 

residual carbon due to rapid calcination at 350 °C. Upon heating to higher temperature (350 

to 450 °C), a steady loss of mass at a constant rate is observed which is due to loss of water 
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during coarsening of the TiO2 films.  This same rate of mass loss with heating was observed 

up to temperatures as high as 1000 °C (data not shown).  

The structure and surface morphology of the TiO2 films after calcination were 

characterized by SEM as shown in Figure 4.2(a). Nanopores are clearly visible on the top 

surface of the film. The average pore diameter and wall thickness of the TiO2 films are 

around 7 nm and 5.5 nm, respectively. The TEM image in Figure 4.2(b) also clearly shows 

the presence of pores throughout the film. The arrangement of the pores is consistent with 

a cubic array of interconnected globular mesopores as reported for these synthesis 

conditions by Crepaldi et al. [36].  The cross-sectional bright field STEM image (Figure 

4.2(c)) also shows that the cubic array of pores extends across the thickness of the films. A 

variety of globular ordered mesostructured oxides exist (Im3�m, Fm3�m, Pm3�n and 

P63/mmc) that differ in the packing of their micelle templates, but since Im3�m cubic is the 

only reported TiO2 structure synthesized with F127 [40] and it is consistent with the 

micrographs, this is assumed to be the mesophase.  The film thickness estimated from the 

cross-sectional STEM image is ~ 80 nm. To investigate the variation of film thicknesses 

arising from dip coating, the thickness was also measured at four different points in the 

film by profilometry to be 98±16 nm. This thickness agrees reasonably well with the 

thickness measured from the STEM image assuming slight contraction due to cross 

sectioning and imaging. Figure 4.2(d) shows the XRD pattern of the TiO2 film, which 

indicates that the mesoporous titania films have an ordered pore structure consistent with 

the electron micrographs. A single XRD reflection was observed at 2θ = 2.24° which 

corresponds to a d-spacing value of 3.9 nm. Assuming that the mesostructure is oriented 

so that the SEM image gives the (110) d-spacing, this peak corresponds to the (420) plane 
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parallel to the substrate for a body-centered cubic mesophase (Im3�m space group).  

However, contraction is expected normal to the film during calcination and drying (and is 

suggested by the appearance of Figure 4.2(c)), so a clear assignment cannot be made from 

one diffraction peak.  In any event, since the pore size found from SEM images is almost 

three times of the d-spacing, the reflection in Figure 4.2(d) is certainly a higher order XRD 

diffraction peak, indicating that a well-ordered structure is present. Wide angle XRD was 

performed to investigate the phase of the mesoporous TiO2 film. No XRD diffraction peak 

was observed before or after plasma treatment. This indicates that the mesoporous TiO2 

films are x-ray amorphous (most likely nanocrystalline based on studies of similar films 

by Das et al. [41]). 

Figure 4.3 presents the optical absorbance and the estimated band gap of plasma-

treated TiO2 films. As shown in the inset of Figure 4.3a, the transparent TiO2 film becomes 

yellowish after treatment with N2/Ar plasma, indicating a profound effect on its optical 

response in the visible range. UV-vis absorbance spectra of N-TiO2 films revealed the 

enhancement of absorbance primarily in the range from 350-550 nm, along with 

enhancement of ultraviolet absorption. The enhancement of visible and UV absorption is 

consistent with the incorporation of nitrogen atoms into the TiO2 framework [42]. A closer 

look at the UV-vis spectra in Figure 4.3a reveals that the tail of absorbance is extended 

towards longer wavelengths as the duration of plasma treatment increases. In order to 

determine the band gap of the undoped TiO2 and N-TiO2 films, Tauc plots were drawn as 

shown in Appendix B Figure B.2. To do this, (αhν)1/2 vs. hν was plotted where α is the 

absorption coefficient and hν is the energy of photon. The absorption coefficients were 

calculated from the absorbance divided by the film thickness. The band gap was estimated 
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by extrapolating the linear portion of the Tauc plot to the x-axis where the value of (αhν)1/2 

approaches zero [43]. The band gap of the undoped TiO2 film is 3.5 eV. Generally, the 

band gap of crystalline anatase titania is 3.2 eV. However, the amorphous / nanocrystalline 

nature of our TiO2 films gives a band gap larger than that of anatase TiO2 [44]. The relation 

between band gap and plasma treatment duration is shown in Figure 4.3(b) and clearly 

shows an effect of plasma treatment on the band gap of N-TiO2. While the band gap of 

undoped TiO2 film is 3.5 eV, it decreases with plasma exposure for N-TiO2 before starting 

to plateau at ~3.0 eV for the 150 min_N-TiO2 film.  The 90 min_N-TiO2 film is an outlier 

from this general trend but still shows a reduced band gap relative to the undoped film. 

Surprisingly, long term exposure of the film to plasma reduced the visible light absorption 

of the 210 min_N-TiO2 film. This may be because long plasma treatment begins to induce 

coarsening and mesostructure loss which, due to a reduction in interfacial area and growth 

of crystallites, lead to a loss of catalytic surface sites which act as light absorbers.  A 

negative effect of excessive nitrogen plasma treatment on visible light absorption of TiO2 

was also reported by Jinlong et al. [15]. Compared to other doping methods, our plasma 

treated N-TiO2 showed considerably larger reduction of band gap. For example, Selvam et 

al. prepared N-doped TiO2 by a wet method using hydrazine hydrate and reported a 0.22 

eV band gap reduction [45]. Recently, Siuzdak et al. synthesized N-TiO2 by an 

electrochemical method using solutions with different nitrogen sources including amines 

(diethylenetriamine – DETA, trimethylamine – TEA, and ethylenediamine – EDA) and 

urea(U). The band gap reductions were found to be 0.4 eV (N-TiO2-TEA), 0.37 eV (N-

TiO2-DETA), 0.14 eV (N-TiO2-DETA) and 0.12 eV (N-TiO2-U) [46]. 
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The elemental compositions and chemical nature of N-doped TiO2 films vs. 

undoped TiO2 film were probed by XPS analyses. Representative survey XPS spectra are 

presented in Appendix B Figure B.3(a). The high resolution N1s spectra of N-TiO2 films 

prepared with different treatment extents are shown in Figure 4.4(a). N-TiO2 films showed 

a peak at ca. 397 eV indicating the presence of nitrogen atoms, whereas no peak was 

detected in undoped TiO2 films. The peak intensity increased with the duration of plasma 

treatment. Previous researchers reported that the binding energies of nitrogen in N-TiO2 

are in the range of 396 - 404 eV [6, 43, 47]. Two types of nitrogen atoms were assigned in 

titania - (i) substitutional nitrogen with a binding energy of 396 eV, and (ii) interstitial 

nitrogen with a binding energy of 400 eV. The substitutional XPS peak at 396 eV is 

significant because it indicates Ti-N bonding [48]. Our results are consistent with reported 

literature that nitrogen plasma treatment induces mainly substitutional nitrogen doping into 

titania [5, 9, 33]. Asahi et al. reported that substitutional nitrogen is critical for visible light 

photoactivity of nitrogen doped TiO2 [5]. The content of nitrogen atoms in N-TiO2 films 

determined by XPS analysis is shown in Figure 4.4(b). The content of N atoms generally 

increases with exposure time and varies from 2-3 at%, up to a maximum content of N of 

3.2 at% for the 90 min_N-TiO2 film.  The depth profile of nitrogen atoms in the 90 min_N-

TiO2 film was measured by XPS integrated with Argon ion etching (5 seconds per level in 

10 levels using 1000 eV energy). As shown in Figure 4.4(c), the content of nitrogen atoms 

was uniform throughout the film. This uniformity may result from the mesoporous nature 

of the sample, which allows rapid diffusion of reactive nitrogen species from the plasma. 

Compared to other doping methods, our plasma treated N-TiO2 showed significantly higher 

nitrogen content. For instance, Li et al. prepared nitrogen doped mesoporous titania 
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particles by hydrothermal process using ammonia as a nitrogen source. They reported at 

most 1.31 at.% interstitial nitrogen [49]. Sun et al. reported about 0.2 at.% nitrogen species 

in N-TiO2 synthesized using hydrazine hydrate as the nitrogen source [50].  The XPS peaks 

for Ti 2p orbitals of undoped TiO2 and 90 min_N-TiO2 films are presented in Appendix B 

Figure B.3(b). The Ti 2p3/2 XPS peaks are observed at 458.2 eV and 457.7 eV in undoped 

TiO2 and 90 min_N-TiO2 films, respectively. The lowering of binding energy by 0.5 eV 

after nitrogen plasma treatment is attributed to the different electronic interaction of Ti with 

nitrogen because of the higher electronegativity of nitrogen compared to oxygen, and is 

another indication of direct Ti-N interactions [51-54].  

Along with core-level study of N-TiO2 films, the valence band XPS can help in 

understanding the doping mechanism [54, 55]. The valence band spectra of undoped TiO2 

and N-TiO2 films are shown in Figure 4.5. The valence band edge for each film was 

estimated by linear extrapolation of the peaks to the baseline. Both undoped TiO2 and N-

TiO2 films display typical VB density of state characteristics of TiO2, with the edge of the 

maximum energy at about 2.1 eV for undoped TiO2 [54]. A red shift is observed in the 

valence band edges with N-doping, which increases as the duration of plasma treatment 

gets longer. The valence band edge of the 90 min_N-TiO2 film exhibited the maximum red 

shift of ~0.75 eV. This shift is consistent with previous reports on nitrogen-doped TiO2 

[55] as well as the band gap results from Tauc analysis (Figure 4.3(b)). 

The visible light driven photocatalytic activity of nitrogen-doped TiO2 films was 

assessed by monitoring photocatalytic degradation of methylene blue (MB) and compared 

with that of undoped TiO2 films. Prior to each photocatalytic measurement, the TiO2 films 

were immersed in MB-containing solution for at least 30 min, in order to make sure that 
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the adsorption of MB onto the surface of mesoporous TiO2 films became saturated. MB 

becomes fully adsorbed in 30 min, as shown in the representative long-time adsorption 

study in Appendix B Figure B.4(a). This confirms that the mesoporous TiO2 film is 

exposed to a constant concentration of MB after equilibration. For photocatalytic 

measurements, the MB-containing solution was exposed to a blue LED light (peak 

wavelength 455 nm) to measure photocatalytic activity for 4 h. Figure 4.6(a) shows the 

photocatalytic results normalized using the absorbance at the time that illumination with 

the LED began, and with the time scale set to zero at the beginning of illumination.  The 

curves clearly show enhanced photocatalytic activity of N-TiO2 films compared to the 

undoped TiO2 film. Insignificant degradation was found without TiO2 films (direct 

photolysis of MB). The photocatalytic degradation results of MB with undoped TiO2 film 

and N-TiO2 films clearly showed that the photocatalytic activity of N-TiO2 gradually 

increased in proportion to the duration of plasma treatment (from 0 min to 150 min).  

The activity of undoped TiO2 films may seem surprising since the blue LED 

provides photons with energy below the bandgap, but since MB exhibits minimal 

absorbance at 455 nm, sensitization by MB is not likely to be the cause.  To confirm this, 

photoelectrochemical water splitting experiments were performed using various light 

sources for undoped TiO2 films (prepared according to the procedure above) on FTO-

coated glass slides.  Not surprisingly, the results (Appendix B Figure B.5) show the greatest 

photocurrent with a UV (365 nm) LED, followed by a solar simulator.  However, the blue 

(455 nm) LED still exhibits photocurrent. Since no MB or any other dye is present during 

this experiment, this shows that photocatalytic activity in the undoped TiO2 films at 455 

nm is not a result of MB sensitization.  In contrast, lower-energy light from a green (530 
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nm) LED does not induce any photocurrent in the undoped TiO2 films.  The sub-band gap 

photoactivity in the undoped films may result from surface defects in the amorphous / 

nanocrystalline films, which have been demonstrated in recent reports on nanocrystalline 

rutile and thin nanotubes to result in enhancements in visible-light activity of undoped TiO2 

by reducing the band gap and enhancing charge carrier separation [37, 38].  

The kinetics of photocatalytic degradation reaction rates were determined by fitting 

the decay of MB concentration with the pseudo-first order rate equation: C=C0*exp(-kt), 

where k = the rate coefficient. Appendix B Figure B.4(b) shows that all experiments display 

very good linear fits between ln(C/C0) and t, thus indicating that first order kinetics are 

appropriate in this case. The rate coefficients are plotted as a function of plasma treatment 

time in Figure 4.6(b). The rate coefficients increase with increasing plasma treatment until 

150 min.  This correlates with the increase in nitrogen doping, increase in visible light 

absorbance, and decrease in band gap found above. The N-TiO2 films prepared with 150 

min plasma treatment showed the maximum rate coefficient of 0.24 h-1, which was nearly 

6 times greater than for undoped TiO2 film.  Based on the film thickness (98 nm), structure 

(body centered cubic pore array with 7 nm pore diameter and 5.5 nm wall thickness, see 

Appendix B Figure B.6) and illuminated area (15 cm2), an order of magnitude estimate of 

the specific rate coefficient can be made as ~110 min-1/(g catalyst).   

The enhancement of this study greatly surpasses the results reported in the previous 

study by Liu et al. where only 2-3 times enhancement was observed for TiO2 nanotubes 

after the samples were plasma treated [29]. Compared to other doping methods, our plasma 

treated N-TiO2 showed significantly higher enhancement in photoactivity. For instance, 

Siuzdak et al. reported that after 2 h xenon lamp illumination, the degradation of methylene 
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blue reached 27, 37, 38, 49, and 52% for pure TiO2, N-TiO2–TEA, N-TiO2–EDA, N-TiO2–

U and N-TiO2–DETA, respectively which represents at most a 2.3× increase in activity 

(assuming 1st order kinetics) [46]. Selvam et al. prepared N-doped TiO2 by a wet method 

using hydrazine hydrate. The N-TiO2 showed 70 % nitrobenzene conversion (5 h 

photoirradation) whereas untreated TiO2 showed 60 % conversion (6 h photoirradiation) 

under 365 nm mercury lamp irradiation, which represents a 1.6× increase in activity 

(assuming 1st order kinetics) [45]. In another study, Li et al. prepared nitrogen doped 

mesoporous titania particles by a hydrothermal method using ammonia. The N-TiO2 

showed at most a 1.7× improvement in degradation rate of Rhodamine B compared to 

undoped TiO2 under 1000 W tungsten halogen bulb illumination with a UV filter [49].  

However, it is difficult to compare our results directly with the literature due to the use of 

different light sources, different intensities and catalyst amounts. For instance, we used a 

single wavelength LED (455 nm wavelength) whereas most of the literature used a light 

source of broad spectrum and high intensity.  Nevertheless, the maximum relative 

improvement in rate of MB degradation under comparable visible light illumination found 

here (6×) exceeds all previous reports of N-doping effects.  We propose that the reason for 

this exceptional enhancement may lie in the use of amorphous / nanocrystalline TiO2, 

which readily incorporates substitutional nitrogen and may also be able to easily form 

highly active surface sites. 

While nitrogen plasma treatment helps titania in visible light driven photocatalytic 

activity, excessive exposure to the plasma negatively affected its photocatalytic 

performance. For instance, N-TiO2 films prepared with 210 min treatment showed a rate 

coefficient of 0.13 h-1, which was much lower than that for the sample prepared with 150 
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min plasma treatment. The reduced photocatalytic performance of the 210 min_N-TiO2 

film might be due to its lower visible light absorption as previously shown in Figure 4.3(a). 

In addition, since the reaction rate strongly depends on the available surface area of the 

film and the network connectivity, the deterioration of porous network might explain the 

decline in activity with long exposure to plasma. The mesostructure of the N-TiO2 films 

was investigated by SEM as shown in Figure 4.7. 

No significant structural change was found for 30 min of plasma treatment (Figure 

4.7c/d). However, the pore structure was observed to be deteriorated in the films which 

were treated for 210 min (Figure 4.7e/f). The pores were fused with each other due to the 

effects of sintering, either because of defects caused by excessive nitrogen doping or 

because of the temperature reached during plasma exposure. Appendix B Figure B.7 shows 

more SEM images of varying magnification for 210 min_N-TiO2 samples taken at different 

spots on the films. Fast Fourier transforms (FFT) were performed on the SEM images of 

undoped TiO2 and 210 min_N-TiO2 films using ImageJ software as shown in Appendix B 

Figure B.8. Ordered bright spots for ordered pores are found for the undoped TiO2 film, 

whereas the 210 min_N-TiO2 film shows a more diffuse ring with weak spots. This 

indicates a loss of long-range pore order in the 210 min_N-TiO2 film. XRD was performed 

to further investigate the pore order in the 210 min_N-TiO2 sample. Appendix B Figure 

B.9 shows XRD patterns of undoped TiO2 and 210 min_N-TiO2 films. No significant peak 

intensity was observed in the XRD pattern for 210 min_N-TiO2 film, again showing that 

excessive plasma treatment of the film leads to a loss of long-range mesopore order.  

We estimated the surface area reduction due to plasma treatment using analysis of 

SEM images with the particle analyzer tool in ImageJ. An image of undoped TiO2 and 
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another of 210 min_N-TiO2 films were used for the analysis. The SEM images before and 

after image processing by ImageJ are shown in Appendix B Figure B.10, along with details 

of the method. The calculated specific surface area of the undoped TiO2 film is 143 m2/g 

which is consistent with the value (about 150 m2/g) reported by Crepaldi et al. for F127 

templated mesoporous titania thin films [36]. The calculated specific surface area of 210 

min_N-TiO2 films is 117 m2/g. Thus, the specific surface area has been reduced by 18 % 

due to plasma treatment. This surface area reduction, along with the reduction in visible 

light absorption due to a loss of surface catalytic sites explains the reduction in 

photocatalytic activity in the 210 min_N-TiO2 films.  Huang et al. also reported the surface 

area reduction of titania by plasma treatment due to a sintering effect [32]. On the other 

hand, Ishihara et al. reported that excessive nitrogen plasma treatment causes surface 

defects in titania nanotubes resulting in lower photocatalytic performance [9]. Based on the 

UV-vis measurement, SEM results and previous literature, the observed deterioration of 

photocatalytic activity in 210 min_TiO2 can be attributed to the lower visible light 

absorption, reduction of active surface area due to the sintering of TiO2 films or the 

generation of surface defects causing the recombination of charge carriers.  Regardless of 

the mechanism, the coarsening of the film with longest plasma exposure suggests the 

possibility for optimization of plasma exposure conditions in the future to balance doping 

rate with heating and structural changes. 

4.5. Conclusions 

Nitrogen-doped, cubic ordered mesoporous TiO2 thin films were successfully 

prepared by N2/Argon plasma treatment and tested for photocatalysis under visible light 

irradiation. Cubic ordered mesoporous TiO2 thin films were prepared by a surfactant 
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templated sol-gel method followed by nitrogen plasma treatment. About 2-3 at% 

substitutional nitrogen was found in the doped films and the nitrogen was found to be 

uniformly distributed through the depth of the films.  XPS and optical characterization 

results suggest that the band gap of TiO2 films was reduced from 3.5 eV (in undoped TiO2 

films) down to a minimum of 3.0 eV after the plasma treatment.  In addition, enhanced 

visible light absorption was found in an absorbance tail that extended well into the visible 

wavelength range.  Photocatalytic degradation tests with methylene blue demonstrated a 

significant enhancement in photocatalytic activity of the N-TiO2 films over undoped TiO2 

films under visible-light illumination. The N-TiO2 prepared by 150 min plasma treatment 

showed the best photocatalytic performance, with the determined rate coefficient of 0.24 

h-1, roughly 6 times greater than that of undoped TiO2 films.  This enhancement in 

photocatalytic activity is qualitatively similar to prior studies of nitrogen doping in 

nanostructured titania but significantly greater in magnitude than the 2-3 times 

enhancement reported by Liu et al [29]. The present study shows that, as hypothesized, 

plasma-induced doping enables the efficient incorporation of heteroatoms into the TiO2 

films while maintaining their mesoporous structure, thereby leading to the significant 

enhancement of visible-light photoactivity.  The coating and plasma based process 

presented here has many advantages over competing synthetic strategies, as it can be scaled 

to continuous film production and to deposition of the films onto other substrates for 

photoelectrocatalytic applications, which will be explored in future reports. 
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Figures of Chapter 4 

 

 

Figure 4.1. Schematic of the plasma reactor used for nitrogen doping of TiO2 films. 
 

 

Figure 4.2. Electron micrographs of the F127-templated TiO2 film after calcination and 
without plasma treatment: (a) SEM image of the top surface, (b) TEM image of material 
scraped from the glass substrate, (c) cross sectional bright-field STEM image and (d) XRD 
pattern of TiO2 film on the original substrate. 
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Figure 4.3. (a) UV-vis spectra of undoped TiO2 and N-TiO2 films prepared using different 
plasma treatment time (inset is a photograph of undoped TiO2 and 30 min_N-TiO2 film) 
and (b) Band gap vs. plasma treatment time based on analysis using Tauc plots. 
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Figure 4.4. (a) High resolution N 1s XPS spectra, (b) plot of surface N content from XPS 
vs. plasma treatment time, and (c) XPS N 1s depth profile for the 90 min_N-TiO2 sample. 
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Figure 4.5. Valence band XPS spectra (inset is the enlarged region near the band edge) of 
undoped TiO2 and N-TiO2 films.  
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Figure 4.6. Methylene blue degradation reaction with undoped TiO2 (0 min) film, N-TiO2 
films and without films (Photolysis): (a) Concentration profile (b) the plot of the first-order 
rate coefficient vs. plasma treatment time.  
 

 
 
Figure 4.7. SEM images of (a,b) undoped TiO2, (c, d) 30 min_N-TiO2 and (e, f) 210 
min_N-TiO2 films. 
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Chapter 5. Remarkable Enhancement of Photocatalytic Water Oxidation in N2/Ar 
Plasma Treated, Mesoporous TiO2 Films  

Reproduced with permission from Islam, S. Z., Reed, A. D., Wanninayake, N., Kim, D. 

Y., Rankin, S. E., The Journal of Physical Chemistry C, 2016, 120(26), 14069–14081. 

4.1. Summary 

Mesoporous TiO2 films treated with N2/argon plasma were studied for ultraviolet and 

visible light induced photocatalytic water oxidation activity. Compared to pristine TiO2 

films, plasma treated TiO2 films showed remarkable enhancement of photocurrents (up to 

80-240 times) in both ultraviolet light and visible light, greatly surpassing enhancements 

previously reported in the literature. The cubic ordered mesoporous TiO2 thin films were 

prepared by a surfactant-templated sol-gel method and were treated with N2/argon plasma, 

an approach hypothesized to capitalize on the high degree of disorder in the material and 

the high energy of the plasma species to achieve efficient nitrogen doping. The effects of 

reaction gas pressure and N2 gas flow rate on photoelectrochemical (PEC) response were 

investigated. UV-vis absorbance spectra indicated that the incorporated N atoms 

significantly reduced the band gap of TiO2 with the enhancement of visible light 

absorption, and XPS analysis showed primarily substitutional N atoms incorporation rather 

than interstitial. The photocatalytic activity of nitrogen-doped TiO2 (N-TiO2) films was 

evaluated by chronoamperometry and linear sweep voltammetry. The effect of light 

sources on PEC performance was explored using UV (365 nm), blue (455 nm) and green 

(530 nm) LEDs. N-TiO2 films showed 242x and 240x enhancement of photocurrent, 

compared to undoped TiO2 films under UV and blue LED irradiation, respectively.  The 

N-doped films also showed overall enhancement of up to 70x and 92x with a broad 

spectrum Xe arc lamp and halogen bulb, respectively, and photocatalytic activity even with 
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green LED illumination, compared to no measurable activity without doping.  The present 

study shows that plasma-induced doping of sol-gel materials enables the efficient 

incorporation of heteroatoms into disordered metal oxide nanostructures, thereby leading 

to remarkable enhancement in visible-light driven photoelectrochemical water oxidation.  

5.2 Introduction 

TiO2 is one of the most extensively studied semiconductor photocatalysts for H2 

production from water splitting to address the worldwide energy shortage and concerns 

over climate change due to fossil fuel use.[70, 72]  Since the first demonstration of 

hydrogen generation from the decomposition of water by Fujishima and Honda using a 

TiO2 photocatalyst in 1972, titanium dioxide has attracted significant interest as a 

photocatalyst due to its favorable band edge positions (relative to the redox potential of 

water), opto-electronic properties which can be varied by changing lattice defects or 

oxygen stoichiometry, superior chemical stability, photocorrosion resistance, and low cost 

[13-16]. 

For the application of TiO2 in photocatalysis, it is very important to control its 

morphology, nanostructure, and electronic properties to enhance the available surface area, 

light absorption, and effective charge carrier separation and transport [18, 30-32].  

Surfactant-templated mesoporous TiO2 thin films possess several advantageous properties 

that are beneficial for efficient photocatalysis [18, 33, 34].  First, surfactant-induced 

templating offers excellent control over pore size, pore orientation, interfacial structure and 

pore connectivity, which in turn allows rapid diffusion of reactants and products within the 

film.  Second, the mesoporous structure of the TiO2 films presents a high reactive surface 

area for photocatalysis. Third, the thin pore walls (< 10 nm thick) of mesoporous TiO2 
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films provide a short distance for the transport of photogenerated charge carriers to the 

catalytic sites, which is expected to suppress charge recombination processes [5, 15, 33, 

34]. 

Despite the aforementioned attractive features of TiO2, due to its wide band gap it 

only absorbs ultraviolet light, which comprises 5% of the energy in the solar spectrum [72, 

277]. To effectively utilize solar energy for water oxidation, its band gap must be tuned to 

allow visible light to be absorbed. Doping is one of the most feasible potential strategies to 

tune the band gap of TiO2 [17, 40-42, 286].  Among various types of dopants (metallic and 

non-metallic) which have been investigated, nitrogen has been found to be the most 

effective [17, 18, 50].  Depending on the source and preparation method, nitrogen atoms 

are known to occupy either interstitial sites (possibly bonded to O) or substitutional sites 

(replacement of O atoms with N atoms) in titania [51]. Though interstitial nitrogen has 

been shown to increase visible light absorption, it does not reduce the band gap because it 

forms a discrete energy state between the valence band and conduction band [54].  

Additionally, interstitial nitrogen has been found to be a charge recombination center, 

thereby reducing the photocatalytic performance of titania [54]. Most of prior theoretical 

and experimental studies have shown that the predominant active species in nitrogen doped 

TiO2 is substitutional nitrogen, which reduces the band gap and increases visible light 

absorption [17, 51, 54-56]. The reduced band gap is attributed to an upward shift of the 

edge of valence band due to the hybridization of the N 2p with the O 2p orbitals [17]. 

Several N-doping methods have been used to date including: film sputtering [154],  

annealing under ammonia gas [20], ion implantation [155, 156], hydrazine treatment [157, 

158], urea treatment [160, 161], treatment of sol-gel titania with nitrogen-containing 
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organics [162], electrochemical processing [163], and chemical vapor deposition [164].  

Plasma treatment is another approach that stands out as a way to effectively incorporate 

substitutional nitrogen into the titania lattice [19, 21, 50, 165-172]. Moreover, while many 

of the methods listed above require high temperature or solvent-based treatments, plasma-

assisted doping is conducted at relatively low temperature at which the nanostructure of 

TiO2 can be maintained. 

In our previous study, we demonstrated enhanced photocatalytic activity of 

mesoporous TiO2 films by treating them with N2/argon plasma [69]. The plasma treatment 

enabled the incorporation of a significant amount of substitutional nitrogen. In addition, 

the nanostructure of the TiO2 films was found to be maintained over a significant dose of 

plasma exposure.  Those films showed excellent performance in photocatalytic activity for 

the degradation of methylene blue under visible light illumination.  In the present study, 

we report even more substantial effects for photocatalytic water oxidation under visible 

light using mesoporous TiO2 films treated with N2/argon plasma.  

The hypothesis of the present work is that the efficient N2/Ar plasma-induced 

doping approach applied to the ordered porous architecture of surfactant-templated TiO2 

thin films can be tuned to substantially enhance visible light driven water oxidation.  While 

a significant body of literature exists on N-doped TiO2, the morphology and method of 

preparation play a determining role in the activity of these materials.  Nitrogen doped, 

ordered mesoporous TiO2 thin films present a novel high surface area, readily doped 

platform for water oxidation under visible light that has not yet been investigated.  Many 

prior studies of N-doping by plasma treatment have used anodized TiO2 nanotube arrays 

[21, 166, 167]. As suggested in our previous paper,[69] surfactant templated mesoporous 
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TiO2 films have several advantages over TiO2 nanotubes.  First, mesoporous titania films 

have smaller pores and thinner pore walls (both 10 nm or less) than titania nanotubes (22-

110 nm pore diameters and 7-34 nm thick walls) which should result in higher surface areas 

and lower charge recombination.[21, 33, 166]  Moreover, surfactant templating is a 

flexible, scalable approach adaptable to any substrate whereas anodized nanotubes can only 

be prepared on Ti foil or substrates amenable to thin film vapor deposition.  Finally, the 

initially amorphous structure of surfactant-templated TiO2 films is expected to enhance the 

incorporation of plasma-generated nitrogen species, especially substitutional nitrogen 

which is responsible for band gap reduction and photocatalytic activity.  The disorderd 

structure is expected to enhance surface defects, which have been suggested to enhance 

visible light absorption and charge carrier separation [31, 32].  

To test the hypothesis, cubic ordered mesoporous TiO2 thin films templated with 

Pluronic F127 were treated with microwave-generated N2/Ar plasma.  The effects of 

plasma treatment conditions such as gas pressure and nitrogen flow rate on the ultimate 

photocatalytic performance were studied.  Finally, the effects of light sources with different 

wavelengths on the photocatalytic activity were explored. Photocatalytic activities of 

plasma-treated TiO2 mesoporous films were studied by chronoamperometry, linear sweep 

voltammetry and electrochemical impedance spectroscopy.  The results show exceptional 

improvements in photocatalytic water oxidation under both UV and visible light compared 

with prior reports due to the amorphous, high surface area nature of the surfactant 

templated mesoporous titania and suggest that these materials may be a promising platform 

for “disorder engineering” of photoelectrocatalysis. 
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5.3 Experimental Section 

5.3.1 Materials 

Anhydrous ethanol (99.99%, 200 proof, Absolute, Anhydrous, ACS/USP Grade, 

Pharmco Aaper), F127 (triblock copolymer with average structure HO-

(CH2CH2O)100(CH2CHCH3O)65(CH2CH2O)100H, Mn = 12,500 Da, Sigma-Aldrich), 

titanium tetrachloride (tech grade, 99.9%, Fisher Scientific), deionized ultrafiltered (DIUF) 

water (Fisher Scientific), colloidal graphite (Ted Pella, inc.), KOH (ACS reagent grade, 

85%, Fisher Scientific), Nochromix powder (Fisher Scientific), concentrated sulfuric acid 

(Certified ACS Plus, Fisher Scientific), and epoxy adhesive (Loctite hysol 9462 brown 

two-part epoxy adhesive, R.S. Hughes) were all used as received. 

5.3.2. Synthesis of mesoporous titania films 

Nochromix solution, prepared according to manufacturer instructions, was used to 

clean borosilicate glass slides (Fisher Scientific). Sols for film deposition were prepared as 

described previously. [69]  Briefly, 1.12 ml of TiCl4 was added to a solution of 0.67 g of 

F127 in 18.43 g of ethanol in a nitrogen-filled glove bag. After stirring for 10 min to allow 

the chloride / ethoxy exchange to occur, 1.8 g of deionized water was slowly added, and 

the mixture was stirred for an additional 10 min. The cleaned glass slides were dip coated 

with this sol using a home built system at a rate of 6 cm/min, followed by aging in a 

refrigerator at high humidity (RH ~ 94%) and at 4 °C for 2 h. The high RH environment 

was provided by placing the slides in a sealed box with two beakers containing water. 

Immediately after aging, TiO2 films were calcined in a muffle furnace (Vulcan 3-550) for 

10 minutes at 350 °C. During heating, the ramp was 25 °C/min but the TiO2 films were 

cooled rapidly after calcination back to room temperature. Rapid transfer directly from the 



  

 

150 
 

refrigerator to the furnace was carried out to avoid moisture condensation on the surface of 

the films [272]. 

5.3.3. N2/Ar plasma treatment of mesoporous TiO2 film 

A microwave-assisted plasma CVD system (Seki Diamond Systems, AX5010) was 

used for the nitrogen doping of TiO2 films. The schematic of the plasma system is shown 

in Figure 5.1. A TiO2 sample was placed on the molybdenum (Mo) stage and the chamber 

was evacuated. After reaching a base pressure of 60 mtorr, the chamber was purged with 

Ar gas flowing at 100 sccm for 10 min. Then, the pressure was raised to 15 torr and Ar 

plasma was ignited using 300 W microwave power (2.45 GHz). Immediately upon plasma 

ignition, N2 gas was introduced, the pressure was brought to a specified value, and the 

power to 300 watts where it remained through the rest of the treatment process. Pressure 

in the plasma reactor was varied from 30 torr to 70 torr under constant nitrogen flow of 40 

sccm. To explore the effect of nitrogen flow rate, nitrogen flow in the plasma reactor was 

varied from 40 sccm to 100 sccm at the constant pressure of 70 torr. The microwave power 

and plasma treatment duration were kept constant at 300 watts and 30 min, respectively. 

After treatment, the films were cooled in a 250 torr N2 atmosphere for 60 min prior to being 

removed from the chamber. The untreated TiO2 sample and the TiO2 samples treated for 

40, 60, 80 and 100 sccm nitrogen flow in the plasma reactor are denoted as 0 sccm_N-TiO2 

and x sccm_N-TiO2, respectively, where x is the nitrogen flow rate in sccm. 

5.3.4. Characterization 

Thermogravimetric analysis (TGA) was performed using a TA-SDT-Q600 

simultaneous TGA/DSC instrument (TA Instruments). First, the TiO2 films were dip 

coated and aged for 2 hours at 4 °C (RH ~ 94 %). Then the aged films were kept in an oven 
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at 100 °C overnight to remove solvents and water. Before the measurement, films were 

scratched from the substrate with a razor blade to generate a powder. TGA measurements 

were performed at various ramp rates in air. The morphology and structure of the TiO2 

films were characterized with a scanning electron microscope (SEM) attached to a dual-

beam Helios Nanolab 660 (FEI). The samples for SEM characterizations were prepared by 

cutting the FTO substrate on which the TiO2 thin film was coated using a glass cutter and 

then mounting the sample exactly at the center of a SEM stub coated with carbon tape. A 

scanning transmission electron microscopic (STEM) image was obtained from the same 

sample after focused ion beam (FIB) sectioning. High resolution images of powders 

scraped from the mesoporous TiO2 films were obtained with a transmission electron 

microscope (TEM) (JEOL 2200FS). Low angle XRD analysis was carried out using a 

Bruker-AXS D8 DISCOVER diffractometer to determine the degree of mesostructural 

order. Films were scanned at 0.5 °/min in 2θ increments of 0.02° from 1° to 4°.  The optical 

absorbance of the samples was measurement with an UV-vis absorption spectrometer 

(Ocean Optics, DT-MINI-2-GS). The measurement was carried out by placing the films at 

an angle of ~45° relative to the incident beam to avoid interference fringes in the spectra. 

X-ray photoelectron spectroscopic (XPS) analysis was conducted using a ThermoScientific 

K-Alpha photoelectron spectrometer using monochromatic Al K-α radiation with photon 

energy of 1486.6 eV. Prior to XPS characterization, samples were cleaned with ethanol to 

remove dust from their surface. 

5.3.5. Photoelectrochemical measurements 

For photoelectrochemical (PEC) experiments, the films of undoped TiO2 and N-

TiO2 were prepared on fluorine-doped tin oxide (FTO) coated glass substrates. Prior to dip 



  

 

152 
 

coating, FTO slides were cleaned with DIUF water, acetone and isopropanol followed by 

UV-ozone treatment for 20 minutes to remove any organic contaminants. The 

photoelectrochemical measurement was carried out to evaluate the performance of N-TiO2 

films for water oxidation. These experiments were conducted in a photoelectrochemical 

system with an electrochemical cell (home-made glass cell) with three electrodes and a 

potentiostat (CHI 660D, CH Instruments, Inc.). A TiO2 film mounted on FTO (either N-

doped or undoped), a platinum wire, and a Ag/AgCl electrode were used for working, 

counter and reference electrodes, respectively. 1M KOH was used as an electrolyte. The 

area of the TiO2 films exposed to the electrolyte solution was 2 cm2 and the rest of the films 

was covered by epoxy paste. After adding the epoxy paste on the surface of the TiO2 films, 

it was dried for 3 hours at 120 °C in air. Light sources were a Xe arc lamp with AM 1.5 G 

filter, halogen lamp (ELH Osram, 120 V, 300 W), a UV LED (365 nm, Thorlabs), a blue 

LED (455 nm, Thorlabs) and a green LED (530 nm, Thorlabs). Power density was recorded 

by a power energy meter (standard photodiode power sensor, Si, Thorlabs). The power 

densities of the Xe arc lamp with AM 1.5 G filter and halogen lamp were 100 mW/cm2, 

and the power densities of the UV LED, blue LED (BLED) and green LED (GLED) were 

6 mW/cm2, 22.5 mW/cm2 and 2.5 mW/cm2, respectively. The emission spectra of light 

sources are shown in Appendix C Figure C.1.  

Amperometric photocurrent-time (i-t) profiles were recorded with undoped TiO2 

and N-TiO2 films by holding the potential at 0.4 V vs. Ag/AgCl. The light source was 

turned on and off every 300 seconds periodically to record photo- and dark currents. This 

experiment was performed for 1800 seconds. Oxygen produced from water oxidation with 

100 sccm_N-TiO2 film during an amperometric measurement under UVLED illumination 
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was measured using a Neulog oxygen sensor. The sensor measures oxygen in the 

electrolyte solution. Appendix C Figure C.6 shows the experimental set-up. All of the 

electrodes, nitrogen flow tubing and the oxygen sensor were dipped into the electrolyte 

solution in the photoelectrochemical cell. The cell was sealed with parafilm. First, the 

electrolyte solution was purged with nitrogen gas for 2 hours. Then, the nitrogen tubing 

was taken out of the electrolyte solution but kept inside the cell. The experiment was 

conducted with illumination for 2 hours. Then, the nitrogen purging was stopped 

completely and the nitrogen tubing was taken out the cell. The system with only the 

electrodes and oxygen sensor was sealed with parafilm, and the experiment was run with 

UVLED illumination for another 12.5 hours. Linear sweep voltammetric (LSV) 

measurements were performed from -0.8 V to 0.4 V vs. Ag/AgCl under Xe arc lamp and 

UVLED, and -0.5 V to 0.4 V vs. Ag/AgCl under BLED and GLED. The scan rate of LSV 

curves was 5 mV/s. The electrochemical impedance spectroscopy was carried out using the 

same potentiostat and electrolyte used for other photoelectrochemical measurements. A 

Mott-Schottky plot was recorded at the frequency of 1 Hz under dark condition in the 

potential between -1.5 V to -0.3 V vs. Ag/AgCl. Nyquist plots were obtained with and 

without halogen lamp illumination. The AC frequency was varied from 0.1 Hz to 100 kHz 

with the DC potential of -0.7 V vs. Ag/AgCl. 

5.3.6. Zeta potential (ζ) measurements 

The zeta potentials of TiO2 and N-doped TiO2 thin films were measured by the 

streaming potential technique using a SurPASS electrokinetic analyzer (Anton Parr). The 

undoped TiO2 and N-doped TiO2 films were prepared on Ti foils (each 2 cm x 1 cm) and 

mounted in the sample holder of an adjustable gap cell. 0.01 M KCl was used as electrolyte. 
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0.05 M HCl and 0.05 M NaOH were used in the automatic titrator to change the pH of the 

electrolyte solution from 2 to 10. Zeta potential was monitored as a function of pH. 

5.3.7. Contact angle measurements 

Surface wettability of undoped TiO2 and N-doped TiO2 were determined with 

contact angle goniometer (Ramé-hart Model 100). Prior to the measurement, samples were 

thoroughly washed with deionized water and vacuum dried for 24 hours. The contact angle 

was measured by gradually increasing the droplet volume and the maximum value reported 

as the advancing contact angle. 

5.4. Results and Discussion 

As a first characterization step, TGA was performed to confirm that calcination at 

350 °C leads to complete template removal. The temperature program consisted of a ramp 

from 50 °C to 350 °C, isothermal heating for 10 min, and a second ramp from 350 °C to 

450 °C. Two ramp rates (25 °C/min to mimic calcination conditions and a more typical 

TGA analysis rate of 5 °C/min) were used for separate samples. The TGA profiles 

(Appendix B Figure B.2) show that most of the weight loss occurred near 300 °C and is 

associated with decomposition of F127. A small amount of additional weight loss was 

observed during isothermal heating at 350 °C but was independent of the ramp rate, 

indicating no residual carbon due to rapid calcination at 350 °C. Upon heating to higher 

temperature (350 to 450 °C), mass was lost at a constant rate due to loss of water during 

coarsening of the TiO2 films.  This same rate of mass loss with heating was observed up to 

temperatures as high as 1000 °C. 
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Once the removal of template and formation of mesoporous titania films was 

confirmed, the effects of plasma treatment were investigated.  In a previous study, 

relatively high plasma power (450 W) was used [69], but because of concerns about the 

stability of the FTO conducting layer in the current photoelectrochemical study, the effects 

of using a lower power (300 W) and treatment time (30 min) with varying pressure and gas 

flowrate were observed here.  As can be seen in the inset of Figure 5.2, the transparent 

undoped TiO2 films turned yellow after N2/Ar plasma treatment at 70 torr and varying 

flowrate, indicating the impact of nitrogen doping on its visible light absorption. UV-

visible absorbance showed that the treatment with N2/Ar plasma is accompanied by the red 

shift in the spectral peak, as well as a significant increase of visible light absorption as 

shown in Figure 5.2. The change in absorption spectra is consistent with the color change 

of the film from colorless to yellow.  This is attributed to new electronic energy states 

formed by nitrogen incorporation in the film.  The visible light absorption increases with 

the nitrogen gas flow rate from 40 sccm to 60 sccm. However, the yellow color faded to 

some extent in 80 sccm_N-TiO2 and 100 sccm_N-TiO2 films resulting in slightly lower 

visible light absorption.  On the other hand, the 100 sccm_N-TiO2 film showed much 

higher absorption in the UV region. This may be because high nitrogen flow plasma 

treatment begins to induce changes in the atomic-scale ordering of the framework of the 

material, which may be associated with coarsening of the mesoporous structure and a 

decrease in the ability of the material to incorporate nitrogen (see below).  A negative effect 

of excessive nitrogen plasma treatment on visible light absorption of TiO2 was also 

reported by Jinlong et al [50]. 
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The band gaps of undoped TiO2 and N-TiO2 films were estimated using Tauc plots 

(Appendix C Figure C.2). To do this, (αhν)1/2 vs. hν was plotted where α is the absorption 

coefficient and hν is the photon energy. The absorption coefficient was calculated from the 

absorbance divided by the film thickness. The band gap was estimated by extrapolating the 

linear portion of the Tauc plot to the x-axis where the value of (αhν)1/2 approaches zero 

[274]. The band gaps of 0 sccm_N-TiO2, 40 sccm_N-TiO2, 80 sccm_N-TiO2 and 100 

sccm_N-TiO2 films are 3.5 eV, 2.95 eV, 2.95 eV and 2.88 eV, respectively. Since the Tauc 

plot for 60 sccm_N-TiO2 film did not show a clear linear portion, the band gap could not 

be estimated. Generally, the band gap of crystalline anatase titania is 3.2 eV. However, 

amorphous TiO2 films are known to have a band gap larger than that of anatase TiO2, closer 

to 3.5 [30]. Overall, the N2/Ar plasma treatment significantly reduced the bandgap from 

3.5 eV to 2.88 eV, without a strong dependence on the N2/Ar flow rate. In addition, the 

plasma treatment may introduce rich surface defects which are catalytically active, in 

contrast to bulk defect sites. Compared to other doping methods, our plasma treated N-

TiO2 showed considerably larger reduction of band gap. Previously reported band gap 

reductions in N-doped TiO2 was 0.22 eV with hydrazine hydrate treatment,[269] and with 

various organic nitrogen sources were 0.4 eV (with triethylamine), 0.37 eV (with 

diethylenetriamine), 0.14 eV (with ethylenediamine) and 0.12 eV (with urea) [287].   

XPS was carried out on undoped TiO2, 40 sccm_N-TiO2, 60 sccm_N-TiO2, 80 

sccm_N-TiO2 and 100 sccm_N-TiO2 films. Measurement was conducted at three points on 

each sample. Representative survey XPS spectra are presented in Appendix C Figure C.3a, 

and representative high-resolution spectra for N1s are presented in Figure 5.3a. All films 

showed a peak at about 395 eV due to substitutional nitrogen. The composition of nitrogen 
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was calculated based on XPS high resolution spectra of nitrogen, titanium and oxygen. The 

small peaks at about 402 eV and 407 eV for adsorbed N2 were not considered in the 

composition analysis. Figure 5.3b shows the measured nitrogen content in N-TiO2 films as 

a function of nitrogen flow rate in the plasma reactor. The average composition increases 

with nitrogen gas flow rate until 80 sccm. The maximum nitrogen content was about 5.5 

at% for this sample. Further increasing the gas flow to 100 sccm, the nitrogen composition 

in the titania film decreased to about 3.5 at %. As noted above, the decrease might be due 

to atomic structure changes such as crystallization beginning with a more intense plasma 

treatment. Although none of the films exhibit x-ray diffraction (see below), nanocrystal 

formation during plasma treatment might expel some of the nitrogen in TiO2 films leading 

to a lower nitrogen content in the 100 sccm_N-TiO2 film.  Compared to other doping 

methods, our plasma treated N-TiO2 showed significantly higher nitrogen content. At most 

1.31 at % interstitial (not substitutional) nitrogen was reported using hydrothermal 

ammonia treatment [183], and about 0.2 at % nitrogen species in hydrazine hydrate treated 

titania [188].   

The depth profile of nitrogen in the 100 sccm_N-TiO2 film was measured by XPS 

integrated with Argon ion etching (5 seconds per level in 20 levels using 1000 eV energy). 

As shown in Figure 5.3c, the content of nitrogen atoms was uniform throughout the film. 

This uniformity may result from the mesoporous nature of the sample, which allows rapid 

diffusion of reactive nitrogen species from the plasma. The XPS peaks for Ti 2p orbitals 

of undoped TiO2 and N-TiO2 films are presented in Figure 5.3d. The undoped TiO2 

exhibited Ti 2p binding energies of 457.98 eV and 463.78 eV, attributed to Ti 2p3/2 and Ti 

2p1/2, respectively. The peak positions shift to lower energies with increase in nitrogen flow 
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until reaching 457.48 eV for Ti 2p3/2 and 463.18 eV for Ti 2p1/2 in the 100 sccm_N-TiO2 

films. The lowering of binding energy by 0.5 - 0.6 eV after nitrogen plasma treatment is 

attributed to the different electronic interaction of Ti with nitrogen because of the lower 

electronegativity of nitrogen compared to oxygen, and is another indication of direct Ti-N 

interactions [267, 288, 289]. The doped films also showed a shoulder at about 456.5 eV 

binding energy which is associated with the Ti3+ state formed during plasma treatment 

[157]. The shoulder intensity is almost same for all the doped films. Appendix C Figure 

C.3b shows the XPS spectra in the Ti 2p range during 1000 eV Ar etching depth profiling 

of 100 sccm_N-TiO2 films. It shows that the shoulder intensity at about 456.5 eV increases 

with the depth of the film, indicating that more Ti3+ is formed inside the film.  

Along with the core-level study of N-TiO2 films, valence band XPS provides 

insight into the doping mechanism [217, 277]. The valence band spectra of undoped TiO2 

and N-TiO2 films are shown in Figure 5.4. The valence band edge for each film was 

estimated by linear extrapolation of the peaks to the baseline. Both undoped TiO2 and N-

TiO2 films display typical VB density of state characteristics of TiO2, with the edge of 

maximum energy at about 2.4 eV for undoped TiO2 [217]. A red shift is observed in the 

valence band edges with N-doping. The valence band edge of all the N-TiO2 film exhibited 

about the same red shift of ~0.8 eV. This shift is consistent with previous reports on 

nitrogen-doped TiO2 [277] as well as the band gap results from Tauc analysis (Appendix 

C Figure C.2). Though the band gap was reduced significantly in the 40 sccm_N-TiO2 film, 

it did not change with increasing nitrogen gas flow. Localized mid-gap states might be 

formed in the doped films treated with higher nitrogen gas flow rates, and specific surface 
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sites could be generated representing catalytically active arrangements of Ti, N and O.  

These would explain changes in absorbance not reflected in the band gap itself. 

The morphology and nanostructure of undoped TiO2 film were characterized by 

SEM, TEM, STEM and XRD as shown in Appendix C Figure 4.2. Accessible 

interconnected cubic ordered pores were obtained in the film. The film thickness is about 

80 nm as determined from STEM images. The average pore diameter and wall thickness 

of the TiO2 films are around 7 nm and 5.5 nm, respectively. The details of the nanostructure 

characterizations were described in the previous report by Islam et al [69]. Wide angle 

XRD was performed to investigate the phase of the mesoporous TiO2 film, but no clear 

reflections were observed before or after plasma treatment. This indicates that the 

mesoporous TiO2 films are x-ray amorphous (but most likely nanocrystalline[150]). 

The effect of N2/Ar plasma treatment on the nanostructure of the N-TiO2 films was 

investigated by SEM as shown in Figure 5.5. No significant structural change was found 

in 40 sccm_N-TiO2 films (Figure 5.5b). However, the pore structure was observed to 

deteriorate slightly in the films which were treated with 60 sccm nitrogen flow (Figure 

5.5c). The structural deterioration increased with nitrogen flow (Figure 5.5d and Figure 

5.5e). In addition, the surface of the doped films became rougher compared to undoped 

TiO2 films. The pores were fused with each other by sintering, either because of the effects 

of excessive nitrogen doping or because of the temperature reached during plasma 

exposure. Huang et al. also reported surface area reduction of titania by plasma treatment 

due to sintering.[170] On the other hand, Ishihara et al. reported that excessive nitrogen 

plasma treatment causes surface defects in titania nanotubes.[21] Despite the coarsening of 
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the structure, accessible pores are still present in all samples, so they are likely to still be 

able to participate in photoelectrochemical reactions (see below). 

Zeta-potential measurements were conducted to investigate the change in surface 

charge after N2/Ar plasma treatment. Figure 5.6 illustrates the surface zeta potential 

measurements for undoped TiO2 and 100 sccm_N-TiO2 thin films. N-doped TiO2 showed 

an increased negative zeta potential compared to undoped TiO2. The surface charge of 

undoped TiO2 is mainly governed by bridging and terminal hydroxyl (OH) groups. It has 

been reported that the bridging Ti-OH-Ti groups are acidic (pKa 2.9) and the terminal Ti-

OH groups are basic (pKa 12.7) [290, 291]. Therefore, the isoelectric point (IEP) of 

undoped TiO2 mainly depends on the relative density of bridging and terminal OH groups. 

The synthesis method influences the relative amounts of these OH groups, so IEP values 

have been reported in the literature for anatase TiO2 ranging from 5.1 to 6.7 [291]. In this 

study, undoped TiO2 showed an IEP of 4.9; this value is close to the literature reported IEP 

range [292][291]. In N-doped TiO2, the IEP was shifted to 2.5, indicating that the surface 

became more negative than for undoped TiO2. These results suggest higher acidity of N-

doped TiO2. Based on our XPS data, substitutional N-atoms predominate in N-doped TiO2. 

Therefore, the predicted surface structures for undoped and N-doped TiO2 can be illustrated 

as in Appendix C Figure C.4 [291].  The higher N-TiO2 surface acidity originates from the 

imbalance in electronegativity of oxygen compared to substitutional nitrogen. Since 

oxygen (3.5) is more electronegative than nitrogen (3.0), the oxygens in terminal OH 

groups would be expected to draw electrons away from neighboring NH groups, thus 

weakening the N-H bond and generating higher surface acidity [293]. This not only 

explains the observed zeta potential results, but also suggests that water molecules should 
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have a stronger dipole interaction with N-doped TiO2 than undoped TiO2. This was 

investigated by surface wettability measurements.  

The surface wettability is expected to play an important role in photocatalytic water 

oxidation activity. Therefore, it was probed by the water contact angle measurements. The 

contact angles measured for undoped and N-doped TiO2 are 60° and 11°, confirming the 

higher hydrophilicity of N-doped TiO2 (Appendix Table C.1). This hydrophilicity helps to 

keep the water molecules closer to the catalytic surface and facilitates efficient electron 

transfer at the electrode-electrolyte interface [19]. 

Amperometric i-t curves were recorded to evaluate the water oxidation 

performance of the undoped and plasma-treated films. A halogen lamp was used as the 

light source which was chosen to approximate the solar spectrum. The effect of plasma 

treatment parameters such as gas pressure (in torr) and N2 flow rate (in sccm) on the water 

oxidation performance was explored. As shown in Figure 5.7, all films treated with N2/Ar 

plasma showed a significant enhancement of photocurrent compared to the undoped TiO2 

film. In Figure 5.7a, the photocurrent was progressively enhanced with the increase of gas 

pressure from 30 to 70 torr, indicating more efficient N incorporation at high gas pressure. 

At pressures higher than 70 torr, the plasma was unstable and therefore could not be used 

for doping. The N-TiO2 films prepared at 70 torr showed the maximum photocurrent. The 

enhancement of photocurrent prepared at 70 torr is about 20 times compared to the undoped 

TiO2 film, and this pressure was used for the preparation of the rest of the samples. 

Subsequently, the effect of nitrogen source gas flow rate on the photocatalytic 

activity was investigated. The nitrogen flow rate was varied from 0 sccm to 100 sccm. The 

flow rate of >100 sccm wasn’t able to be assessed due to the limitation of the reactor 
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system. The gas pressure was kept at 70 torr. As seen in Figure 5.7b, the photocatalytic 

activity was gradually enhanced with the increasing flow rate. The 100 sccm_N-TiO2 film 

showed the maximum photocurrent density, 1.84 µA/cm2. This is equivalent to 0.08035 

A/g based upon the estimated mass per area of the film, 2.29 × 10-5 g/cm2, calculated using 

the film thickness of 80 nm, pore diameter, and wall thickness from SEM images.  The 

photocurrent enhancement for 100 sccm_N-TiO2 film is about 92 times compared to 

undoped TiO2 films. 

In order to achieve the aim of efficiently utilizing the whole solar spectrum, it is 

important to evaluate photocatalytic activity under visible light as well as UV light. In an 

effort to evaluate photoactivity throughout the spectrum, amperometric i-t measurements 

were carried out using four different light sources (Xe arc lamp with AM 1.5 G filter, 

UVLED, BLED, and GLED). Figure 5.8a-d shows the amperometric i-t curves of undoped 

TiO2 and 100 sccm_N-TiO2 films under illumination with these four sources. The 

photocurrent densities under Xe arc lamp with AM 1.5 G filter, UVLED, BLED and GLED 

for 100 sccm_N-TiO2 were 29.6 µA/cm2, 230.45 µA/cm2, 3.8 µA/cm2, and 0.15 µA/cm2, 

respectively. This is equivalent to 1.29 A/g, 10.06 A/g, 0.165 A/g and 0.007 A/g for Xe arc 

lamp, UVLED, BLED and GLED, respectively. The photocurrent enhancement of 100 

sccm_TiO2 compared to undoped TiO2 was 70 times under Xe arc lamp and 242 times 

under UVLED while it was 240 times for BLED. Also notable is that under GLED, no 

apparent photocurrent was observed for the undoped TiO2 film, while significant 

photocurrent density was observed after plasma treatment and doping. The photocurrent 

obtained under Xe arc lamp is much higher than the photocurrent obtained with a halogen 
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bulb because of spectral difference between the two light sources in the 350 to 500 nm 

wavelength range, as shown in Appendix C Figure C.1a. 

The long-term stability of the 100 sccm_N-TiO2 thin film in photoelectrochemical 

water oxidation was evaluated by amperometric measurement under UVLED illumination 

for 5 hours. The amperometric current-time profile is presented in Appendix C Figure C.5. 

The film showed stable photocurrent throughout the measurement without any significant 

photocurrent reduction. The charge produced by the film over the course of the experiment 

is several orders of magnitude larger than would be associated with oxidation of the 

nitrogen in the film. 

The photocurrent comes from water oxidation to produce oxygen gas. When light 

is absorbed by the titania films, electrons are excited from the valence band to the 

conduction band and simultaneously holes are formed in the valence band. Those holes 

oxidize water to produce oxygen gas. The evolution of oxygen was confirmed using an 

oxygen sensor to follow the concentration of oxygen in the electrolyte solution. Appendix 

C Figure C.7 shows the oxygen gas bubbles formed during photoelectrochemical water 

oxidation on the surface of the 100 sccm_N-TiO2 film under UVLED illumination. 

Appendix C Figure C.8 shows the concentration profile of the dissolved oxygen gas 

produced from photoelectrochemical water oxidation. After purging the electrolyte 

solution for 2 hours with flowing nitrogen, the initial concentration of oxygen was 0.13 

mg/l. After this initial solution purge, the nitrogen tube was removed from the solution and 

pulled into the headspace of the cell to blanket the solution with nitrogen during the 

photoelectrochemical reaction. After 2 hours of water oxidation, the oxygen concentration 

increased steadily to 0.28 mg/l. Then, the nitrogen tube was removed and the cell was 
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sealed with parafilm completely. During the nitrogen tube withdrawal, the oxygen 

concentration decreased to 0.23 mg/l, but the oxygen concentration then increased again 

with time until reaching 0.42 mg/l after 12 hours of reaction.  The concentration remained 

at this plateau value until 14.5 hours of reaction. This indicates that the electrolyte solution 

became saturated with oxygen gas after 12 hours of the water oxidation. Hence, Appendix 

C Figure C. confirms that the photocurrent obtained from amperometric and linear sweep 

voltammetry with the 100 sccm_N-TiO2 film results from photoelectrochemical water 

oxidation to produce oxygen.  

In addition to chronoamperometric curves recorded at fixed potential (0.4 V vs. 

Ag/AgCl), linear sweep voltammetric (LSV) curves were recorded with undoped TiO2 and 

100 sccm_N-TiO2. The LSV curves were recorded with chopping the light from a Xe arc 

lamp, UVLED, BLED and GLED as presented in Figure 5.9a-5.9d, respectively. 

Photocurrents increase with applied potential. The photocurrent enhancement determined 

at 0.35 V vs. Ag/AgCl under Xe arc lamp, UVLED and BLED are 55, 276 and 220 times, 

respectively. Since undoped TiO2 film did not show any photoresponse under GLED, the 

enhancement could not be determined. The photoresponse in the LSV curves is consistent 

with the results of the chronoamperometric measurements (Figure 5.8). This 

photoelectrochemical enhancement significantly exceeds the values reported in prior 

literature. Sharma et al. and Ishihara et al. prepared plasma-treated nitrogen doped TiO2 

nanotubes and found 2 times enhancement of water oxidation photocurrent compared to 

undoped TiO2 nanotubes under a solar simulator [21, 166]. Liu et al. also showed less than 

2 times photocurrent enhancement in water oxidation under a 350 W Xe lamp for plasma 

treated N-TiO2 nanotubes compared to undoped TiO2 nanotubes [167]. Compared to other 
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doping methods, our plasma treated N-TiO2 also shows significantly higher enhancement 

in photoactivity. For instance, Babu et al. prepared N-TiO2 using urea as nitrogen precursor 

and found 7× photocurrent enhancement in photoelectrochemical water oxidation using a 

solar simulator [294]. Xu et al. prepared hydrazine treated titania nanotubes and found 2× 

enhancement in photoelectrochemical performance compared to undoped titania nanotubes 

in water oxidation under a halogen lamp [189].  

It is difficult to make absolute comparison of the photocurrents obtained from 

photoelectrochemical water oxidation across different measurement systems in literature 

because of differences in several factors including light source, wavelength and intensity; 

catalyst amount; addition of various reagents (e. g. hole scavengers); addition of co-

catalysts (e.g. metal nanoparticles); electrolyte pH; and applied potential. The specific 

photocurrent per gram of our nitrogen doped mesoporous titania was estimated to be on 

the scale of amperes, which is quite significant considering the low intensity of some of 

the LED sources (1.29 A/g for Xe arc lamp, 10.1 A/g for UVLED, 0.165 A/g for BLED 

and 0.007 A/g for GLED).  

Further, to make a semi-quantitative comparison, the incident photon to current 

conversion efficiency (IPCE) and the absorbed photon to current conversion efficiency 

(APCE) of the plasma doped titania thin films were calculated using the photocurrent 

observed under UVLED and BLED illumination. The details of the calculations are 

provided in the Appendix C. The IPCE was calculated using IPCE = 1240I/(λJ), where I 

indicates photocurrent density, J illuminated light intensity and λ light wavelength. The 

IPCE of the undoped TiO2 and 100 sccm_N-TiO2 films under UVLED were calculated to 

be 0.05% and 13.0%, respectively. The IPCE of the undoped TiO2 and 100 sccm_N-TiO2 
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films under BLED were 0.0002% and 0.05%, respectively. Since the thickness of our 

titania thin films is only 80 nm, APCE was calculated by dividing IPCE by the fraction of 

light absorbed at 365 nm and 455 nm (from Figure 5.2) under UVLED and BLED, 

respectively. The APCEs of the undoped TiO2 and 100 sccm_N-TiO2 films under UVLED 

were 0.5% and 33.6%, respectively. The APCEs of the undoped TiO2 and 100 sccm_N-

TiO2 films under BLED were 0.004% and 0.3%, respectively. The IPCE of nitrogen doped 

titania has been rarely reported in literature. Hoang et al. prepared N-doped titania 

nanowire arrays of 2.6 µm thickness [295], and reported IPCEs of about 20% and 1% at 

365 nm and 450 nm wavelength, respectively. The IPCE of our mesoporous titania films 

under UVLED and BLED are relatively smaller than these values, but this is mainly due 

to the thin films used in the present study. The APCE (33.6%) value measured under 

UVLED here is significantly improved relative to the IPCE value of Hoang et al. at 365 

nm wavelength. It is expected that the IPCE of our mesoporous titania thin films can be 

further improved by preparing thicker films using a layer by layer deposition technique to 

be reported in a future contribution.  

According to many previous studies, nitrogen doping does not improve 

photocatalytic activity under UV light irradiation [261, 274, 277]. In some cases, nitrogen 

doping has been found to deteriorate UV photoactivity [261, 274, 277]. In our study, N2/Ar 

plasma treated mesoporous N-TiO2 films showed significant enhancement of 

photocatalytic activity not only under visible light but also under UV light. This 

extraordinary behavior of the N-TiO2 films is due to efficient plasma doping method which 

induces a high nitrogen content with preferentially substitutional nitrogen incorporation. 

The efficient doping method combined with advantageous mesoporous TiO2 structure 
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seems to enable efficient charge separation and transport. Moreover, the amorphous nature 

of mesoporous TiO2 film may assist the efficient incorporation of nitrogen in its lattice. 

The defects present in bulk titania are thought to deteriorate photocatalytic 

performance since the defects work as charge recombination centers. However, the rich 

surface defects of mesoporous TiO2 film might help create catalytic sites which enable the 

adsorption of water molecules. Those surface defects work as charge carrier traps and 

induce charge transfer to adsorbed molecules resulting in high photoelectrochemical 

performance. Li et al. showed that surface defects in TiO2 enhance its photocatalytic 

activity [31]. Salari et al. also showed enhanced photocatalytic activity of titania due to the 

effects of surface disorder formed by heating at high temperature in the absence of oxygen 

[32]. Under the N2/Ar plasma treatment of high-surface-area, mesoporous TiO2 films, a 

high density of surface disorder might be created along with nitrogen doping. Therefore, 

both nitrogen doping and surface defects formed by plasma treatment may be responsible 

for the outstanding photocurrent enhancement observed in the present study under both 

UV and visible light irradiation.  

Another interesting feature of the LSV and chronoamperometric curves is the time-

dependent decay of photocurrents during the illumination periods. As can be seen in Figure 

5.9a, 9c, and 9d, the photocurrents decay with a time scale of seconds before they reached 

constant values. The photocurrent decay is possibly due to charge accumulation at trap 

sites, leading to charge recombination. The photocurrent becomes stable when the rate of 

charge generation is equal to the rate of charge recombination. While photocurrents 

induced by a halogen lamp, BLED, and GLED showed photocurrent decays, the UVLED 

did not induce photocurrent decay, as shown in Figure 5.9b. Although the origin is not 
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clear, the difference between UV and visible light sources clearly reflect the different paths 

of charge carriers generated by UV and visible lights.  

To gain more insight into the optoelectronic properties of the films, further 

photoelectrochemical characterization was performed. Open circuit potential (OCP) was 

measured with undoped TiO2 and 100 sccm_N-TiO2 films with and without illumination 

using a halogen lamp. The OCP values measured during the illumination with a halogen 

bulb were -0.19V and -0.34V for undoped TiO2 and 100 sccm_N-TiO2, respectively. The 

OCP values of undoped TiO2 and 100 sccm_N-TiO2 in the dark were -0.05 V and -0.09 V, 

respectively.  A more negative value of OCP (found for N-TiO2 in both light and dark 

conditions) indicates favorable energetics for water oxidation since it determines the 

difference between the Fermi level of a semiconductor and the redox potential of the 

electrolyte [166]. 

The electronic properties of TiO2 films and the interface between TiO2 film and 

electrolyte were investigated by electrochemical impedance spectroscopy (EIS). Mott-

Schottky plots were obtained with 0 sccm_N-TiO2 and 100 sccm_N-TiO2 films as shown 

in Figure 5.10a. The positive slope in the Mott-Schottky plot indicates that TiO2 is an n-

type semiconductor with and without N-doping [158, 279]. The flat band potential (Efb) 

was estimated by extrapolating the linear portion of the Mott-Schottky plot to the x-axis as 

shown in Appendix C Figure C.9. The Efb values for undoped TiO2 and 100 sccm_N-TiO2 

films are -0.93 and -0.813 V, respectively. Efb represents the edge of the conduction band 

of TiO2 since it is an n-type semiconductor [280-282, 284], so the reduction of flat band 

potential suggests that a new energy band for the Ti3+ state or oxygen vacancy might be 

formed just below the conduction band of TiO2 due to the plasma treatment. Though it is 
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well known that nitrogen doping causes a negative shift of the valence band of titania[17], 

several studies suggested that nitrogen doping reduces Efb by the positive shift of 

conduction band [281, 282, 285]. For instance, Bloth et al. showed that nitrogen doping 

caused a significant positive shift of the conduction band of titania [281]. They 

hypothesized two possibilities for this shift due to N-doping: (i) oxygen vacancies (which 

cause Ti3+ state formation below the conduction band), and (ii) interstitially doped nitrogen 

altering the polarization or geometry of the titanium ions, causing a change in the Ti 3d 

orbitals. In contrast to the above observations, Spadavecchia et al. demonstrated both 

experimentally and theoretically that nitrogen doping alone does not change Efb [280]. 

Since in this case interstitial N is not indicated by XPS, the shift in Efb is most likely due 

to generation of Ti3+. 

In n-type semiconductor, electrons are charge carriers. The density of charge 

carriers (ND) was calculated from the slope of the linear portion of the Mott-Schottky plots. 

Equation 5.1 is the Mott-Schottky equation: 

                                                     1
𝐶𝐶2

=  � 2
𝑞𝑞ɛɛ0𝑁𝑁𝐷𝐷
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𝑞𝑞
�           (5.1) 

       

where C is the areal capacitance of the space charge layer, q is the elementary charge (1.6 

× 10-19 C), ɛ0 the vacuum permittivity (8.85×10-14 F cm-1), ɛ the dielectric constant of the 

studied semiconductor, Efb the flat band potential, E the applied external bias, κ 

Boltzmann’s constant, and T the absolute temperature. The dielectric constant is assumed 

to be 41 for TiO2 [281]. The calculated ND values in undoped TiO2 and 100 sccm_N-TiO2 

films are 8.67×1019 cm-3 and 3.06×1020 cm-3, respectively. So, there is a significant (3.5 

times) increase in charge carrier density upon plasma treatment. When introduced by N-
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plasma treatment, nitrogen atoms work as electron acceptors (tending to decrease ND) [280, 

285] and Ti3+ as electron donors (tending to increase ND) [158]. The balance of the two 

determines the net change in ND, and excessive nitrogen doping has been suggested to 

convert Ti3+ to Ti4+ species [280]. Cao et al. reported that charge carrier density increased 

from 3.5 × 1019 cm-3 in undoped TiO2 to 5.7 × 1020 cm-3 upon nitrogen doping [296]. 

Recently, Wang et al. also reported the increased donor density upon nitrogen doping [56]. 

This increased donor density was attributed to the Ti3+ formation during the nitrogen 

implantation process. On the other hand, Hanzu et al. reported  a reduction in ND from  

6.7×1020 cm-3 in undoped TiO2 nanotubes to 3.9×1020 cm-3 upon nitrogen doping [285]. 

The significant change observed here suggests formation of a combination of substitutional 

N and Ti3+, although more studies are necessary to elucidate the mechanism of the positive 

shift of conduction band edge and change in charge carrier density due to nitrogen doping 

of titania.  

Nyquist plots were recorded for undoped TiO2 and 100 sccm_N-TiO2 films with 

and without illumination by a halogen lamp as shown in Figure 5.10b. A much smaller area 

under the semicircular portion of the curves is observed for the N-doped TiO2 film 

compared to undoped TiO2, indicating more efficient charge transfer at the electrolyte-

electrode interface due to doping [19]. Hence, more efficient photogenerated electron-hole 

pair separation and faster interfacial charge transfer occurred in N-TiO2 compared to 

undoped TiO2 film. The facilitated charge transfer kinetics of the 100 sccm_N-TiO2 films 

is consistent with the photocurrent enhancement in the amperometric and LSV 

measurements.  
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5.5. Conclusion 

This study reported the rapid and efficient nitrogen doping of ordered, mesoporous 

TiO2 thin films using nitrogen/argon (N2/Ar) plasma for water oxidation under both visible 

and ultraviolet illumination. Cubic ordered mesoporous TiO2 thin films were prepared by 

a surfactant templated sol-gel method and were treated with N2/Ar plasma. Optical 

spectroscopic analysis suggested a significant reduction in band gap of the TiO2 films from 

3.5 eV to 2.88 eV after plasma treatment. Photoelectrochemical (PEC) measurements 

demonstrated a dramatic enhancement in photocurrents for N-TiO2 films under both UV 

and visible-light illumination. The effect of plasma parameters such as gas pressure and 

nitrogen gas flow rate on the photocurrent were explored. The greatest photocurrent 

enhancements observed under UVLED and BLED illumination were 242 times and 240 

times, respectively, for films treated for 30 min under a 300 W plasma at 70 torr and 100 

sccm flow rate. These results show that, consistent with the hypothesized advantages, 

plasma treated sol-gel derived N-TiO2 films showed remarkable enhancement in water 

oxidation not only with visible light of both short and long wavelength, but also under UV 

light. This enhancement in water oxidation is much greater than in previous reports (where 

a maximum of 7 times enhancement was reported [294]). The extraordinary enhancement 

observed in this study suggests that there is room to explore greater levels of doping and 

the effect of disorder by using plasma-induced doping combined with a mesoporous TiO2 

architecture.  We also suspect that the effect is enhanced by the generation of catalytically 

active surface sites, which will be a subject for future investigation.   
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Figures of Chapter 5 

 

 
Figure 5.1. Schematic of the plasma reactor used for N2/Ar plasma treatment of TiO2 films. 
 
 

 
Figure 5.2. UV-vis absorption spectra of undoped and N-doped TiO2 films prepared with 
different nitrogen gas flow rate (0-100 sccm) in the plasma reactor at 70 torr.  The inset 
shows photographs of the corresponding 0 sccm_N-TiO2, 40 sccm_N-TiO2, 60 sccm_N-
TiO2, 80 sccm_N-TiO2 and 100 sccm_N-TiO2 films (from left to right). 

Magnetron 
Power Head

Microwave 
Power Generator

Pump Ar N2

Mass Flow 
Controllers

3-Stub Tuner

Gas 
Mixing 

Manifold

Mo 
Sample 
Stage

Vacuum 
Chamber

Gas 
Deflector 

Tube

Plasma

300 400 500 600 700
0.0

0.3

0.6

0.9

1.2

1.5

 

 

Ab
so

rb
an

ce
 (a

.u
)

Wavelength (nm)

 0 sccm
 40 sccm
 60 sccm
 80 sccm
 100 sccm



  

 

173 
 

 

Figure 5.3. (a) High resolution N 1s XPS spectra, (b) plot of surface N content from XPS 
vs. nitrogen flow rate in the plasma reactor, (c) XPS N 1s depth profile for the 100 sccm_N-
TiO2 sample and (d) high resolution Ti 2p XPS spectra. 
 
 

 

Figure 5.4. Valence band XPS spectra of undoped TiO2 and N-TiO2 films. 
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Figure 5.5. SEM images of (a) 0 sccm_N-TiO2, (b) 40 sccm_N-TiO2, (C) 60 sccm_N-
TiO2, (d) 80 sccm_N-TiO2 and (e) 100 sccm_N-TiO2 films (Scale bar = 100 nm). 
 
 

 

Figure 5.6. Zeta potential (ζ) of the undoped TiO2 and 100 sccm_N-TiO2 thin films as a 
function of pH. 
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Figure 5.7. The effect of plasma treatment conditions on photocatalytic current-time (i-t) 
profiles under halogen lamp illumination representing water oxidation reaction (a) with a 
gas pressure variation and (b) with a different N2 gas flow rate in the plasma reactor. 
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Figure 5.8. Amperometric current-time profiles with 0 sccm_N-TiO2 (undoped) and 100 
sccm_N-TiO2 films under the illumination of (a) Xe arc lamp with AM 1.5 G filter (b) 
UVLED, (c) BLED and (d) GLED. 
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Figure 5.9. Linear sweep voltammetric (LSV) curves recorded with 0 sccm_N-TiO2 
(undoped) and 100 sccm_N-TiO2 films under the illumination of (a) Xe arc lamp with AM 
1.5 G filter, (b) UVLED, (c) BLED and (d) GLED. 
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Figure 5.10. (a) Mott-Schottky plot and (b) Nyquist plot recorded for 0 sccm_N-TiO2 and 
100 sccm_N-TiO2 films. 
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Chapter 6. Synergistic Effects of Graphene Quantum Dot Sensitization and 
Nitrogen Doping of Mesoporous TiO2 Films for Water Oxidation Photocatalysis 

6.1. Summary 

In this study, we report the synthesis and photoelectrochemical (PEC) behavior of 

surfactant templated mesoporous TiO2 films simultaneously doped with nitrogen by 

plasma treatment and sensitized with graphene quantum dots (GQD/N-TiO2). These novel 

nanocomposite structures have been applied successfully as photoanodes for PEC water 

oxidation under visible light irradiation. First, cubic ordered mesoporous TiO2 films were 

prepared by a surfactant templated sol-gel method. Then, TiO2 films were treated with 

N2/Ar plasma to incorporate substitutional N atoms into the lattice of TiO2. GQDs with an 

average size of ~5 nm were prepared by chemically oxidizing carbon nano-onions. The 

immobilization of GQDs onto the titania surface was accomplished by hydrothermal 

deposition. Successful immobilization of GQDs onto N-TiO2 was probed by UV-Vis, XPS, 

zeta potential and contact angle measurements. The nitrogen-doped TiO2 (N-TiO2) showed 

a significant reduction of band-gap (3.5 eV to 2.88 eV) and high enhancement (191 times) 

of photocatalytic water oxidation under visible light, while  GQD/TiO2 gave a modest (4 

times) enhancement.  However, when combined, GQD/N-TiO2 films showed a remarkable 

275 times enhancement compared to TiO2 films due to synergistic effects of nitrogen 

doping and GQD sensitization resulting in enhanced visible light absorption and efficient 

charge separation, transport, and transfer. The results demonstrate the importance of 

designing and manipulating the energy band alignment in composite nanomaterials for 

fundamentally improving visible light absorption, charge separation and transport, and 

thereby PEC properties.  
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6.2. Introduction 

TiO2 has been a well-known semiconductor material for applications in 

photocatalysis directed at addressing the worldwide energy shortage and concerns over 

climate change due to fossil fuel use.  TiO2 is especially relevant because of its favorable 

opto-electronic properties, superior chemical stability, photocorrosion resistance, and low 

cost [13-16]. In addition, means are available to control its morphology, nanostructure, and 

electronic properties to enhance the available surface area, light absorption, and charge 

carrier separation and transport, making titania attractive for photocatalysis, especially 

photocatalytic hydrogen production by water splitting [18, 30-32].   

Mesoporous TiO2 thin films synthesized by surfactant-templated sol-gel methods 

have high surface area and controlled pore size, pore orientation, interfacial structure, and 

pore connectivity.  These features allow rapid diffusion of reactants and products within 

the film, and their thin pore walls reduce photogenerated charge recombination [5, 15, 18, 

33, 34, 103, 105, 150, 297]. In order to overcome their innate inability to absorb the 

abundant visible light from the solar spectrum, the band gap of mesoporous titania thin 

films was reduced in our previous studies by substitutional nitrogen doping using a plasma-

based doping approach [69, 195]. The plasma treatment enabled the incorporation of a 

large amount of substitutional nitrogen which is responsible for band gap reduction and 

photocatalytic activities. In addition, the nanostructure of the TiO2 films was found to be 

maintained over significant doses of plasma exposure.  We demonstrated enhanced 

photocatalytic activity of  plasma-assisted doped mesoporous TiO2 films [69]. Under 

visible light, N2/Ar plasma treated TiO2 films showed excellent photocatalytic activity for 

the degradation of methylene blue, and even more substantial effects for photocatalytic 
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water oxidation [195]. Compared to other methods of doping with molecular precursors 

(ammonia, hydrazine, etc.), plasma-based doping in mesoporous titania shows superior 

photocatalytic enhancements [297]. Reasons for the high photocatalytic activity of plasma-

treated titania include the initial amorphous structure of the surfactant templated TiO2 films 

and the reactive nitrogen species generated at low temperatures by plasma systems. 

Plasma-generated nitrogen species are readily incorporated into the amorphous structure 

of surfactant-templated TiO2 films to give a large amount of substitutional nitrogen.  The 

disordered structure also has many surface defects, which have been suggested to enhance 

visible light absorption and charge carrier separation [31, 32].  

Recently, utilization of tunable narrow band gap semiconductor quantum dots has 

drawn interest to sensitize wide band gap semiconductors (such as the metal oxides) as a 

strategy to increase their photoresponse [59]. Several semiconductor quantum dots (QDs) 

with large extinction coefficients including CdS, CdSe, CdTe, and PbS have been shown 

to be able to strongly absorb visible light and inject electrons into the conduction band of 

metal oxides such as TiO2, and thereby contribute to increased solar energy utilization [59, 

60]. However, the heterojunctions formed between these semiconductor quantum dots and 

wide band gap semiconductor photocatalysts are inefficient because of rich surface traps 

on bare QDs which increase charge recombination [61]. In addition, quantum dots are often 

passivated with long chain organic molecules, which block efficient charge transfer 

between the quantum dot and metal oxide [61]. Furthermore, these semiconductor quantum 

dots conatain toxic heavy metals, and can be susceptible to photooxidation degrading their 

performance. For example, Pan et al. reported that CdS and CdSe  QD sensitized TiO2 
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nanotube arrays show significant cycling instability due to significant photooxidization in 

a liquid medium under light irradiation [61].  

As an emerging class of QDs, graphene quantum dots (GQDs) are metal free and 

green sensitizers, which canbe synthesized from a wide variety of carbon precursors. They 

are of growing interest for their novel properties including size-dependent band gap due to 

strong quantum confinement and edge effects, excellent thermal and chemical stability, 

and environmentally friendly nature [62, 63]. Pan et al. showed that GQD heterojunctions 

are superior to conventional semiconductor QDs in terms of visible-light catalytic activity, 

durability, and environmental friendliness [61]. It has also been reported that composites 

of GQDs and TiO2 exhibit enhanced visible light absorption due to charge transfer from 

GQDs to the conduction band of TiO2 [62, 64-66]. Williams et al. demonstrated the 

feasibility of hot electron harvesting from GQDs to titania using time-resolved second 

harmonic generation, and found evidence for ultrafast electron injection from photoexcited 

GQDs to the conduction band of titania. Titania with various morphologies including 

nanotubes, fibers and nanoparticles have been sensitized with GQDs [62, 64-68]. To further 

improve the performance of GQDs/TiO2, surfactant templated mesoporous titania films 

can be employed. As suggested in our previous paper [69], surfactant templated 

mesoporous TiO2 films have several advantages over nanotubes for photoelectrochemical 

(PEC) applications including smaller pore size and thinner pore walls which result in higher 

surface area and lower charge recombination, and a flexible and scalable synthesis 

approach. 

To date, doping and sensitization of titania have been explored as separate 

phenomena, and no work has been done in which the two approaches are combined for 
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solar energy conversion applications. Here, we report the first example of GQDs sensitized 

and N-doped titania for PEC water oxidation. We hypothesize that synergistic effects of 

GQD sensitization and nitrogen doping in titania can be obtained. Photoexcited electrons 

are expected to be available from GQDs, and the N-states formed at the top of the valence 

band of titania are expected to facilitate charge carrier transfer. Further, GQDs will help 

achieve better charge separation in GQD/N-TiO2 due to their hole extraction affinity. It is 

believed the π-conjugated basal plane of GQDs will effectively transport holes and 

facilitate the water oxidation on the catalytic sites of GQDs [298]. To confirm this 

hypothesis, first we prepare cubic ordered mesoporous titania thin films by evaporation 

induced self-assembly using surfactant templating. Then, the films are treated with 

nitrogen/argon plasma for substitutional nitrogen doping. Green emitting graphene 

quantum dots (GQDs) are synthesized by chemical oxidation of carbon nano-onions. 

Finally, GQDs are attached to the nitrogen doped titania films by hydrothermal deposition 

method. These films are used for water oxidation under visible light. Photocatalytic 

activities of plasma-treated TiO2 mesoporous films are studied by chronoamperometry, 

linear sweep voltammetry and electrochemical impedance spectroscopy.  The results from 

indicate that synergistic interaction between GQDs and N-TiO2 can significantly improve 

water oxidation under visible light. 

6.3. Experimental Section 

6.3.1. Materials 

Anhydrous ethanol (99.99%, Absolute, Anhydrous, ACS/USP Grade, Pharmco 

Aaper), F127 (triblock copolymer with average structure HO-

(CH2CH2O)100(CH2CHCH3O)65(CH2CH2O)100H, Mn = 12,500 Da, Sigma-Aldrich), 
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titanium tetrachloride (tech grade, 99.9%, Fisher Scientific), deionized ultrafiltered (DIUF) 

water (Fisher Scientific), colloidal graphite (Ted Pella, inc.), KOH (ACS reagent grade, 

85%, Fisher Scientific), Nochromix powder (Fisher Scientific), concentrated sulfuric acid 

(Certified ACS Plus, Fisher Scientific), and epoxy adhesive (Loctite hysol 9462 brown 

two-part epoxy adhesive, R.S. Hughes) were all used as received. Carbon nano-onions 

(CNOs) were prepared by thermal annealing of commercially available nanodiamond 

powders (Dynalene NB50) at 1650 °C for 1h under the flow of helium in a graphitization 

furnace. HNO3 and KOH were purchased from SigmaAldrich. All chemicals were used as 

received without further purification. Dialysis bags were purchased from Spectrum Labs.  

6.3.2. Synthesis of mesoporous titania films 

Nochromix solution, prepared according to manufacturer instructions, was used to 

clean borosilicate glass slides (Fisher Scientific). Sols for film deposition were prepared as 

described previously [69]. Briefly, 1.12 ml of TiCl4 was added to a solution of 0.67 g of 

F127 in 18.43 g of ethanol in a nitrogen-filled glove bag. After stirring for 10 min to allow 

the chloride / ethoxy exchange to occur, 1.8 g of deionized water was slowly added, and 

the mixture was stirred for an additional 10 min. The cleaned glass slides were dip coated 

with this sol at a rate of 6 cm/min, followed by aging in a refrigerator at high humidity (RH 

~ 94%) and at 4 °C for 2 h. The high RH environment was provided by placing the slides 

in a sealed box with two beakers containing water. Immediately after aging, TiO2 films 

were calcined in a muffle furnace (Vulcan 3-550) for 10 minutes at 350 °C at 25 °C/min 

ramp but cooled rapidly after calcination back to room temperature. Previous report 

showed that calcination at 350 °C for 10 min is sufficient for the complete removal of the 

surfactant from the films [69].  
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6.3.3. N2/Ar plasma treatment of mesoporous TiO2 film 

A microwave-assisted plasma CVD system (Seki Diamond Systems, AX5010) was 

used for the nitrogen doping of TiO2 films. The plasma conditions used for nitrogen doping 

was microwave power 300 watts, microwave pressure 70 torr, nitrogen flow rate 100 sccm 

and plasma treatment duration 30 min. The details of the plasma treatment procedure is 

provided in Chapter 4 and 5.  

6.3.4. Synthesis of GQDs 

Graphene quantum dots (GQDs) were prepared using carbon nano-onion (CNO) 

precursor. First, 200 mg of CNOs were placed in a three-neck round bottom flask followed 

by 67 ml of conc. H2SO4 (Sigma-Aldrich, ACS reagent 95-98%) and 33 ml of HNO3 

(Fisher Scientific, Assay-69.5%) solutions. A thermometer was used to monitor the 

temperature of the solution. After attaching a reflux condenser, the round bottom flask was 

heated using a silicone oil bath at 105 °C for 5 hours to produce GQDs. Next, the GQDs 

solution was cooled down to room temperature, and 300 ml of deionized (DI) water was 

added. Then, the solution was placed in an ice bath and neutralized using KOH (VWR 

analytical) pellets. The precipitated salts during the neutralization process were removed 

by vacuum filtration. The remaining salts in the filtrate containing GQDs were removed by 

dialyzing (using a 1 kD molecular weight cutoff dialysis bag (Spectrum Labs)) for one 

week in DI water. Finally, solid GQDs were obtained by drying the solution at low humid 

environment at 50 ºC under vacuum.  
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6.3.5. Attachment of GQDs to TiO2 and nitrogen doped TiO2 

GQDs were attached to TiO2 and N-TiO2 using a hydrothermal deposition method. 

First, 1 mg/ml GQD solution was prepared using DI water. Then, 10 ml of the GQD 

solution was poured into a Teflon container and a TiO2 film was immersed in it. The Teflon 

container was tightly capped and placed in a stainless-steel autoclave reactor. The 

autoclave reactor was heated to 110°C for 5 hours to attach GQDs to TiO2. After cooling 

down the autoclave reactor to room temperature, the sample was taken out and further dried 

under vacuum for 24 hours. Finally, the GQD functionalized TiO2 (GQD/TiO2) film was 

rinsed with DI water to remove excess GQDs and dried for another 24 hours under vacuum. 

A similar procedure was followed to obtain GQD functionalized nitrogen doped films 

(GQD/N-TiO2). The synthesis steps of graphene quantum dot from carbon nano onions and 

GQD sensitized, nitrogen doped mesoporous titania thin films are summarized in Figure 

6.1. 

6.3.6. Characterization 

The morphology and structure of the TiO2 films were characterized with a scanning 

electron microscope (SEM) attached to a dual-beam Helios Nanolab 660 (FEI). The 

samples for SEM characterizations were prepared by cutting the FTO substrate on which 

the TiO2 thin film was coated using a glass cutter and then mounting the sample exactly at 

the center of a SEM stub coated with carbon tape. The optical absorbance of the samples 

was measurement with an UV-vis absorption spectrometer (Ocean Optics, DT-MINI-2-

GS). The measurement was carried out by placing the films at an angle of ~45° relative to 

the incident beam to avoid interference fringes in the spectra. X-ray photoelectron 

spectroscopic (XPS) analysis was conducted using a ThermoScientific K-Alpha 
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photoelectron spectrometer using monochromatic Al K-α radiation with photon energy of 

1486.6 eV. In the XPS spectra, the binding energy shifts were corrected using the C 1s 

level at 284.6 eV as an internal standard. 

The grazing incidence small angle x-ray scattering (GISAXS) pattern of titania 

films was collected in order to confirm the orientation of the pores before and after nitrogen 

plasma treatment. GISAXS experiments were done at the Advanced Photon Source at 

Argonne National Laboratory at beamline 8-ID-E using a wave length of 1.148 Å and a 

sample-detector distance of 1040 mm [299].  Calcined undoped TiO2 and hydrogen plasma 

treated TiO2 films on glass substrates were placed on a sample holder. GISAXS patterns 

were collected at 0.14° incidence angle at room temperature.  The beam size was 100 µm× 

50 µm (H×V) and data were collected with a Pilatus 1M pixel array detector using a 10 s 

exposure time.  Images were corrected for detector nonuniformity and converted to q-space 

using the GIXSGUI package for Matlab [150]. 

The zeta potentials (ζ) of TiO2 thin films and modified films were measured with a 

SurPASS electrokinetic analyzer (Anton Parr). TiO2 films were prepared on thin Ti foils 

(each 2 cm × 1 cm).  The samples were mounted in a cell with an adjustable gap. In the 

main electrolyte containing 0.01 M KCl, the pH of the solution was changed from 2 to 10 

by adding either 0.05 M HCl or 0.05 M NaOH in an automatic titrator. The results provided 

zeta potential measurements as a function of pH. 

Surface wettability of TiO2, GQD/TiO2, N-TiO2 and GQD/N-TiO2 were 

determined with contact angle goniometer (Ramé-hart Model 100). Prior to the 

measurement, samples were thoroughly washed with deionized water and vacuum dried 
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for 24 hours. The contact angle was measured by gradually increasing the droplet volume 

and the maximum value reported as the advancing contact angle. 

6.3.7. Photoelectrochemical measurements 

For photoelectrochemical (PEC) experiments, films of TiO2, GQD/TiO2, N-TiO2 

and GQD/N-TiO2 were prepared on fluorine-doped tin oxide (FTO) coated glass substrates. 

Prior to dip coating, FTO slides were cleaned with DIUF water, acetone and isopropanol 

followed by UV-ozone treatment for 20 minutes to remove any organic contaminants. The 

performance of TiO2, GQD/TiO2, N-TiO2 and GQD/N-TiO2 films for water oxidation was 

measured using an electrochemical cell (home-made glass cell) with three electrodes and 

a potentiostat (CHI 660D, CH Instruments, Inc.). A TiO2 film (modified or unmodified) 

deposited on FTO, a platinum wire, and a Ag/AgCl electrode were used for working, 

counter and reference electrodes, respectively. 1M KOH was used as the electrolyte. The 

area of the TiO2 films exposed to the electrolyte solution was 2 cm2 and the rest of the films 

was covered by epoxy paste. After adding the epoxy paste on the surface of the TiO2 films, 

it was dried for 3 hours at 120 °C in air. Light sources were a halogen lamp (ELH Osram, 

120 V, 300 W) and a blue LED (455 nm, Thorlabs). Power density was recorded by a 

power energy meter (standard photodiode power sensor, Si, Thorlabs). The power densities 

of the halogen lamp and blue LED (BLED) were 100 mW/cm2 and 22.5 mW/cm2, 

respectively. The emission spectra of light sources are available from the manufacturers.  

Amperometric photocurrent-time (i-t) profiles were recorded with TiO2, 

GQD/TiO2, N-TiO2 and GQD/N-TiO2 films by holding the potential at 0.4 V vs. Ag/AgCl. 

The light source was turned on and off every 300 seconds periodically to record photo- and 

dark currents. This experiment was performed for 1800 seconds. Linear sweep 
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voltammetry (LSV) was performed from -0.45 V to 0.4 V vs. Ag/AgCl under halogen bulb, 

and -0.4 V to 0.4 V vs. Ag/AgCl under BLED. The scan rate of LSV curves was 5 mV/s. 

Electrochemical impedance spectroscopy was carried out using the same potentiostat and 

electrolyte used for other photoelectrochemical measurements. A Mott-Schottky plot was 

recorded at the frequency of 1 Hz under dark condition for potential varying from -1.5 V 

to -0.3 V vs. Ag/AgCl. Nyquist plots were obtained with a DC potential of -0.7 V vs. 

Ag/AgCl under BLED illumination for frequencies between 0.1 Hz to 100 kHz at 0.005 V 

amplitude. 

6.4. Results and Discussion 

Figure 6.2a shows the UV-Visible absorption spectrum of a GQD suspension. The 

highest energy absorbance of GQDs can be assigned to the π → π* transition in the sp2 

domains. The nonbonding electrons present in the GQDs correspond to oxygen functional 

groups such as C=O or C-O, and yield n → π* transitions at lower energies [300]. Figure 

6.2b shows the fluorescence emission spectra obtained with varying excitation wavelength 

(250 nm - 600 nm). The emission maximum is constant for excitation from 250 nm to 420 

nm. At higher excitation wavelengths emission maxima is further red shifted, indicating 

the presence of GQDs with slightly different sizes and functionalities [300]. The TEM 

image of GQDs is shown in Figure 6.2c. As illustrated by the size distribution histogram 

of GQDs shown in the right hand inset, the mean diameter of a GQD is 4.82 nm. The left 

hand inset shows a high resolution TEM image of a GQD, which consists of layers with 

the 0.23 nm lattice spacing of graphene [300]. The surface functional groups of GQDs were 

probed by FT-IR. The spectrum in Figure 6.2d shows the characteristic bands of 

C=O/O−C=O stretching near 1700 cm-1, benzene C=C ring skeletal vibration around 1582 
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cm-1, and the broad peak for O-H vibrations from alcohols and carboxylic acid groups 

around 2500 cm-1 to 3500 cm-1. The results of UV-Vis, TEM and FT-IR characterizations 

indicate that GQDs are spherical particles composed of sp2 basal planes and various 

oxygenated functional groups. 

UV-visible spectroscopy (Figure 6.3) was used as a first characterization of 

combined N-doping and GQD incorporation into TiO2 films.  As observed previously, the 

transparent undoped TiO2 films turned yellow after N2/Ar plasma treatment (inset of Figure 

6.3), and UV-vis spectroscopy indicates a red shift of the primary peak, as well as a 

significant increase of visible light absorption consistent with nitrogen incorporation [195]. 

The primary change compared to undoped TiO2 in the UV-visible spectrum in GQD-TiO2 

films (Figure 6.3) is a red shift in the primary absorption feature due to the sensitization of 

TiO2 film by the GQDs. In addition to the red shift, the GQD/TiO2 showed higher 

absorbance in the range of 350-500 nm. Enlarged spectra of the films in the visible light 

region are shown in the lower inset of Figure 6.3. The inset reveals that the absorbance tail 

extends towards longer wavelengths upon incorporation of both GQD and nitrogen in TiO2 

films. The lower inset of Figure 6.3 also shows that the absorbance at long wavelengths of 

the GQD/TiO2 is higher than that of TiO2 and similarly, the absorbance of GQD/N-TiO2 is 

higher than that of N-TiO2 films, due to the sensitization effect of GQD on the TiO2 and 

N-TiO2 films.  

The band gaps of undoped TiO2, GQD/TiO2, N-TiO2 and GQD/N-TiO2 films were 

estimated using Tauc plots (Appendix D Figure D.1). To do this, (αhν)1/2 vs. hν was plotted 

where α is the absorption coefficient and hν is the photon energy. The absorption 

coefficient was calculated from the absorbance divided by the film thickness. The band 
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gap was estimated by extrapolating the linear portion of the Tauc plot to the x-axis where 

the value of (αhν)1/2 approaches zero [274]. The band gaps of TiO2, GQD/TiO2, N-TiO2 

and GQD/N-TiO2 films are 3.5 eV, 3.25 eV, 2.88 eV and 3.0 eV, respectively. Generally, 

the band gap of crystalline anatase titania is 3.2 eV. However, amorphous TiO2 films are 

known to have a band gap larger than that of anatase TiO2, closer to 3.5 eV [30]. The reason 

for a lower band gap of GQD/TiO2 compared to TiO2 might be due to the combination of 

amorphous titania with high band gap and GQD with low band gap, and/or hydrothermal 

treatment of the TiO2 for GQD attachment. Even though the band gap has not been changed 

upon GQD functionalization in N-TiO2 films, the light absorption in the long wavelength 

visible region has been increased resulting in the maximum visible light absorption in the 

GQD/N-TiO2 films among all the films as shown in inset of Figure 6.3. 

The undoped TiO2 films were shown to be 80 nm thick, with interconnected cubic 

ordered pores approximately 7 nm in diameter and walls 5.5 nm thick [69]. XRD analysis 

indicated a peak at low angle consistent with the ordered pore structure and no distinct 

reflections at high angle, suggesting a disordered or fine nanocrystalline structure [69]. The 

effect of N2/Ar plasma treatment on the nanostructure of the N-TiO2 films was investigated 

by SEM as shown in Figure 6.4. Accessible pores are clearly seen in the SEM image of the 

N-TiO2 films as shown in Figure 4c. However, the pore structure was observed to 

deteriorate slightly in the films. The pores fused with each other due to the effects of 

sintering, either because of exposure to a large dose of high-energy nitrogen species or 

because of the temperature reached during plasma exposure. After and before nitrogen 

doping, GQDs were attached to the titania surface by hydrothermal treatment. Figure 6.4b 

and 6.4d are the SEM images of GQD/TiO2 and GQD/N-TiO2 films, respectively. Pores 
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are clearly seen in the GQD/TiO2 and GQD/N-TiO2 films. However, fewer accessible pores 

are found after GQD attachment. Still, most of the pores in the GQD/TiO2 and GQD/N-

TiO2 films are accessible and the hydrothermal treatment did not induce excessive 

coarsening relative to each starting film.  

The GISAXS patterns of the undoped TiO2 and N-TiO2 films are shown in Figure 

6.5. Three bright diffraction spots in the GISAXS pattern were observed for the undoped 

TiO2 films (Figure 6.5a) indexed to the (110), (101) and (11�0) plane of a distorted cubic 

(Im3m) mesostructure [18]. As shown in Figure 6.5b, the GISAXS pattern after nitrogen 

plasma treatment shows two vertical rod on either side of the beam stop indicating the 

presence of an orthogonally oriented hexagonal close packed (o- HCP) cylindrical 

mesophase. These rods can be indexed to primary (100) spacing of the close-packed pores, 

and their rod shape can be attributed to the finite cylindrical shape of the pores [103, 105, 

150]. The patterns were found at q of ca. 0.045 Å-1 corresponding to d-spacing 14 nm, 

which is consistent with the pore spacing in the SEM image (Figure 6.4c). Although 

characterization of the N-TiO2 films was reported previously [69], these new GISAXS 

results show a new result: the pores in N-TiO2 films become vertically oriented channels 

due to contraction normal to the film and fusing of some of the pores due to the 

transformation during the plasma treatment. It has also been reported in literature that heat 

treatment can transform cubic ordered pores into vertically oriented pores which is 

consistent with our study [144]. 

The elemental compositions and chemical nature of unmodified TiO2, GQD/TiO2, 

N-TiO2 and GQD/N-TiO2 films were probed by XPS analyses. High resolution C 1s XPS 

spectra of the unmodified TiO2, GQD/TiO2, N-TiO2 and GQD/N-TiO2 films are presented 
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in Figure 6.6a. All films showed peaks for carbon at about 284.6 eV and 288.3 eV which 

correspond to C=C and COOH groups, respectively [301]. The source of the carbon in 

TiO2 and N-TiO2 films might be the solvent added during the synthesis of TiO2 films and 

adventitious carbon from the environment. The carbon peak for GQD/TiO2 films is 

noticeably broader than that of unmodified TiO2 films, which indicates a wider distribution 

of carbon-containing species than in unsensitized TiO2. Similarly, the C1s peak intensity 

for GQD/N-TiO2 film is much wider and stronger than that for N-TiO2 films, consistent 

with the formation of a GQD/N-TiO2 hybrid. Further, the absence of a peak at 281.0 eV 

for Ti-C confirmed that TiO2 was not doped with carbon. Yu et al. suggested that a 

GQD/TiO2 composite is formed by conjugation via Ti-O-C bonds due to the hydrothermal 

treatment of TiO2 in GQD solution [301].  

High resolution XPS was carried out to investigate the presence of nitrogen in TiO2, 

GQD/TiO2, N-TiO2 and GQD/N-TiO2 films. High-resolution spectra for N1s are presented 

in Figure 6.6b. The TiO2 film did not show any peak for nitrogen but GQD/TiO2 film 

showed a very wide peak at about 400 eV for nitrogen. This nitrogen might come from the 

functional groups of attached GQD, which is another indication that GQD is attached to 

the TiO2 film. On the other hand, N-TiO2 and GQD/N-TiO2 films showed a sharp peak at 

about 395 eV due to substitutional nitrogen. The composition of nitrogen calculated based 

on XPS high resolution spectra of nitrogen, titanium, oxygen and carbon is 5.82 at. % and 

6.07 at. % in N-TiO2 and GQD/N-TiO2 films, respectively. The small peaks at about 399.5 

eV for nitrogen in both GQD/TiO2 and GQD/N-TiO2 films might come from the nitrogen-

containing functional group of GQD.  
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Zeta potential measurements (ζ) were used to examine the surface charge after 

GQD functionalization. Figure 6.7 illustrates the zeta potential measurements obtained for 

undoped TiO2, GQD/TiO2, N/TiO2, and GQD/N-TiO2. GQDs contain functional groups 

such as -COOH and -OH. These functional groups adopt a negative surface charge at high 

pH values due to deprotonation. Therefore, both GQD/TiO2, and GQD/N-TiO2 samples 

showed relatively large negative surface charges. The isoelectric points (IEPs) for undoped 

TiO2, N-TiO2, GQD/TiO2 and GQD/N-TiO2 are 4.9, 2.5, 2.7 and 2.0, respectively. 

Compared with the N-TiO2 surface, GQD immobilized surfaces showed higher acidity due 

to the functional groups associated with GQDs [302, 303]. These functional groups are 

expected to play a significant role in adsorbing polar species and catalyzing surface 

reactions.[304]  Interestingly, the GQD/N-TiO2 sample exhibits two inflections in the ζ 

curve corresponding to titration of acid groups, near pH 3.5 and 6.5, rather than just the 

single inflection observed for GQD-TiO2 at pH 6.5.  The more acidic groups are not 

observed in either N-TiO2 or GQD-TiO2 alone and form in the composite. 

The surface wettability of the films was investigated by contact angle 

measurements. The contact angles measured for TiO2, N-TiO2, GQD/TiO2 and GQD/N-

TiO2 are 50.9±0.3°, 12.8±0.3°, 32.2±0.2º, and 25.7±0.7º, respectively (Appendix D Table 

D.1). N-TiO2 showed the smallest contact angle, indicating the highest hydrophilicity. The 

hydrophilicity of GQD/TiO2 is higher than that of TiO2. GQD/N-TiO2 showed an 

intermediate hydrophilicity between N-TiO2 and GQD/TiO2. GQDs contain a hydrophobic 

aromatic domain as well as hydrophilic surface functionality [305]. Therefore, the balance 

between these two factors and the surface roughness may govern the overall behavior of 

the surface hydrophilicity of the GQD immobilized surface[306]. This surface 
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hydrophilicity will affect the interaction between electrode and electrolyte and thereby 

influence the charge transfer kinetics at the catalyst surface.  

The photocatalytic activity of TiO2, N-TiO2, GQD/TiO2 and GQD/N-TiO2 films in 

water oxidation were evaluated by recording amperometric i-t curves under visible light 

using a blue LED (455 nm wavelength) light source (Figure 6.8a). A summary of the 

photoelectrochemical performance of the titania films in amperometric i-t measurements 

is provided in Table 6.1. The photocurrent densities of TiO2, N-TiO2, GQD/TiO2 and 

GQD/N-TiO2 films were 0.0175 µA/cm2, 3.352 µA/cm2, 0.0807 µA/cm2, and 4.815 

µA/cm2, respectively. This is equivalent to 0.764 mA/g, 146.4 mA/g, 3.52 mA/g and 

210.26 mA/g, respectively, based upon the estimated mass per area of the film, 2.29 × 10-

5 g/cm2, calculated using the film thickness of 80 nm, pore diameter, and wall thickness 

from SEM images. The photocurrent enhancement of the N-TiO2, GQD/TiO2 and GQD/N-

TiO2 films over unmodified films are 191, 4.6 and 275 times, respectively (Table 6.1). 

Further, i-t curves were recorded to evaluate the water oxidation performance of the 

unmodified and modified titania films under a halogen bulb with a wide spectrum of 

emission as shown in Figure 6.8b. The photocurrent enhancement of N-TiO2, GQD/TiO2 

and GQD/N-TiO2 films compared to TiO2 was ca. 101 times, 4.6 times and 128 times. This 

clearly indicates that GQD sensitization of TiO2 and N-TiO2 films significantly improved 

their photocatalytic activity in water oxidation under visible light irradiation. When the 

performance is compared between GQD sensitization and nitrogen doping alone, nitrogen 

doping is more effective than GQD sensitization. However, combining GQD sensitization 

and nitrogen doping gives performance of the hybrid material much higher than a linear 

combination of enhancements due to sensitization and doping alone. That indicates a 
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synergistic effect on photocatalysis of GQD and N-doping under both narrow spectrum 

visible light (BLED) and broad spectrum light (halogen bulb). These superior results hint 

at effects from charge separation by GQDs beyond their strong visible light absorption.   

In addition to chronoamperometric curves recorded at fixed potential (0.4 V vs. 

Ag/AgCl), linear sweep voltammetry (LSV) curves were recorded with chopping of the 

light from a BLED and halogen bulb, as shown in Figure 6.9. Photocurrents increase with 

applied potential. The current of the unmodified and modified titania films, and the 

enhancement of current upon modification of the films in LSV measurements at 0.35 V vs. 

Ag/AgCl are presented in Table 6.2. The photocurrent enhancement for N-TiO2, 

GQD/TiO2 and GQD/N-TiO2 films over TiO2 film are 222, 8.5 and 346 times, respectively 

under BLED illumination. The results as shown in Table 6.2 from the linear sweep 

voltammetry measurement indicate that the photocatalytic activities of the TiO2 and N-

TiO2 films were improved significantly by GQD sensitization, and GQD and N-doping 

exhibit excellent synergistic effect in photocatalysis, which is consistent with the 

chronoamperometric results (Table 6.1). Reasons for the superior performance of our 

hybrid materials is attributed to several factors, mainly: enhanced visible light absorption, 

good charge separation, high surface area of the mesoporous titania films, efficient 

interface formation between the GQD and mesoporous titania, small pore wall thickness 

of the titania film, ease of nitrogen doping by efficient plasma treatment into sol-gel derived 

amorphous titania, and finally synergistic electronic effects of GQD and N-doping 

together.  

The observed photoelectrochemical enhancements with N-doping and GQD/N-

doping significantly exceed values reported in prior literature for other relevant systems. 
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Sharma et al. and Ishihara et al. prepared plasma-treated nitrogen doped TiO2 nanotubes 

and found 2 times enhancement of water oxidation photocurrent compared to undoped 

TiO2 nanotubes under a solar simulator [21, 166]. Liu et al. also showed less than 2 times 

photocurrent enhancement in water oxidation under a 350 W Xe lamp for plasma treated 

N-TiO2 nanotubes compared to undoped TiO2 nanotubes [167]. Compared to other doping 

methods, our plasma treated N-TiO2 also shows significantly higher enhancement in 

photoactivity. For instance, Babu et al. prepared N-TiO2 using urea as nitrogen precursor 

and found 7× photocurrent enhancement in photoelectrochemical water oxidation using a 

solar simulator [294]. Xu et al. prepared hydrazine treated titania nanotubes and found 2× 

enhancement in photoelectrochemical performance compared to undoped titania nanotubes 

in water oxidation under a halogen lamp [189]. The only comparison to a GQD-containing 

system is from Yu et al., who prepared GQD sensitized TiO2 using the hydrothermal 

treatment [301]. This GQD/TiO2 showed about 2 times enhancement in photocurrent 

compared to unmodified TiO2.  Thus, when compared to other N-doped and GQD-

conjugated photocatalytic systems, the results in Tables 6.1 and 6.2 show enormous 

enhancements for the water oxidation reaction. 

The incident photon to current conversion efficiency (IPCE) and the absorbed 

photon to current conversion efficiency (APCE) of all films were calculated using the 

photocurrent observed from linear sweep voltammetry measurements under BLED 

illumination as presented in Figure 6.8a. The details of the calculations are provided in the 

Appendix D. The IPCE was calculated using IPCE = 1240I/(λJ), where I indicates 

photocurrent density, J illuminated light intensity and λ light wavelength. The IPCE of the 

TiO2, GQD/TiO2, N-TiO2 and GQD/N-TiO2 films were calculated to be 0.00018%, 
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0.0015%, 0.04% and 0.06%, respectively. Since the thickness of our titania thin films is 

only 80 nm, APCE was calculated by dividing IPCE by the fraction of light absorbed at 

455 nm (from Figure 6.3). The APCE of the TiO2, GQD/TiO2, N-TiO2 and GQD/N-TiO2 

films were calculated to be 0.0039%, 0.024%, 0.25% and 0.37%, respectively. Since, either 

IPCE or photocurrents obtained from photoelectrochemical water oxidation depends on 

many factors including light source, electrolyte, additives in electrolyte, catalyst and co-

catalyst and so on, it is difficult to make absolute comparison across different measurement 

systems in literature. Further, the IPCE of nitrogen doped or GQD sensitized titania has 

been rarely reported in the literature. Hoang et al. prepared N-doped titania nanowire arrays 

of 2.6 µm thickness,[295] and reported IPCE of about 1% at 450 nm wavelength. The IPCE 

of our mesoporous titania films under BLED are smaller than this value, but this is mainly 

due to the thin films (1/10 the thickness of Hoang et al.) used in the present study. It is 

expected that the IPCE of our mesoporous titania thin films can be further improved by 

preparing thicker films using a layer-by-layer deposition technique to be reported in a 

future contribution.  

Another interesting feature of the LSV and chronoamperometric curves is the time-

dependent decay of photocurrents during the illumination periods. As can be seen in Figure 

6.8 and Figure 6.9, the photocurrents decay with a time scale of seconds before they 

reached constant values. The photocurrent decay is possibly due to charge accumulation at 

trap sites, leading to charge recombination. The photocurrent becomes stable when the rate 

of charge generation is equal to the rate of charge recombination. It is noticed that the 

transient photocurrent decreased gradually for all of the films but at different rates which 

indicates that these charge recombination processes follow different kinetics based on 
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doping and sensitization of titania films. To further understand this phenomenon, transient 

kinetic analysis was performed on the chronoamperometric curves. It is assumed that the 

charge recombination follows first order kinetics [307, 308]. The decay kinetics of the 

transient photocurrent is calculated by an exponential approach using equation 6.1.  

 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑠𝑠𝑠𝑠 + (𝐶𝐶𝑖𝑖 − 𝐶𝐶𝑠𝑠𝑠𝑠)×𝑒𝑒−𝑘𝑘𝑘𝑘          (6.1) 

where Ct is the current density with time, Ci is the initial current density, Css is the steady-

state value (at long times from the start of a transient), k is the recombination rate constant 

and t is the time.  If equation 6.1 is rearranged, it can be written as: 

 ln �𝐶𝐶𝑡𝑡−𝐶𝐶𝑠𝑠𝑠𝑠
𝐶𝐶𝑖𝑖−𝐶𝐶𝑠𝑠𝑠𝑠

� = −𝑘𝑘𝑘𝑘    (6.2) 

In other words, ln(R) = -kt where 𝑅𝑅 = (𝐶𝐶𝑡𝑡−𝐶𝐶𝑠𝑠𝑠𝑠
𝐶𝐶𝑖𝑖−𝐶𝐶𝑠𝑠𝑠𝑠

).  

Since the recombination process is very rapid, the first 12 seconds after light 

exposure at the 600 second overall time point was used for analysis of the data. Figure 6.10 

plots of ln(R) vs. t all four films. From these plots, it becomes clear that charge 

recombination happens in two stages – one fast process that reaches completion within the 

first 2 seconds followed by a slower decay towards steady state. To account for these 

processes, two lines were fit to the initial and later segments of the data in Figure 6.10. The 

rapid (k1) and slower (k2) rate coefficients are presented in Table 6.3. The first rate 

coefficient (k1) is increased by nitrogen doping, showing that while N-TiO2 absorbs and 

utilizes photons effectively, charge recombination is worsened.  For the GQD/N-TiO2 and 

GQD/TiO2 films, k1 decreases significantly over N-TiO2 and TiO2 films, indicating that 

recombination of photoinduced electron-hole pairs is slowed due to the presence of GQDs. 

Along with the enhancement of light absorption due to sensitization and doping, these 
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results further confirm that separation of photogenerated electrons and holes by GQDs 

contributes to the synergistic enhancement of photocatalytic activity of sensitized and 

doped titania films. The second rate constants (k2) for the GQD/N-TiO2 and N-TiO2 film 

are similar which indicates the GQDs do not have a significant contribution over this time 

scale, and a similar observation was made for TiO2 and GQD/TiO2 films. In the second 

part of the curve, in each case there is only a small fraction of charges left after the rapid 

recombination step, so this is expected to have little influence on the observed 

photocatalysis.  Overall, Table 6.3 shows the slowest charge recombination in the GQD/N-

TiO2 sample. 

As a final measurement of the electrochemical characteristics of the films, Nyquist 

plots were recorded for all films under BLED illumination as shown in Figure 6.11. When 

GQD was attached onto the TiO2 surface, the area under the semicircle for the GQD/TiO2 

decreased, indicating that the charge transfer kinetics at the interface were improved, which 

is in agreement with the literature [301]. A much smaller area under the semicircular 

portion of the curves is observed for the N-TiO2 film compared to undoped TiO2, indicating 

that doping also improves charge transport at the interface [19]. Hence, more efficient 

photogenerated electron-hole pair separation and faster interfacial charge transfer occurred 

in N-TiO2 compared to undoped TiO2 film. On the other hand, the radius of the GQD/N-

TiO2 is greater than that of N-TiO2 film but similar to that of the GQD/TiO2 film. This 

indicates that GQDs dominate charge transfer at the surface of the electrodes regardless of 

nitrogen doping. 

To further understand the synergistic enhancement of nitrogen doping and GQD 

immobilization, band alignments of TiO2, N-TiO2 and GQDs were investigated. Based on 
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the Tauc plot analysis above, TiO2, N-TiO2 and GQDs have band gaps of 3.5 eV, 2.88 eV, 

and 2.42 eV, respectively. Ultraviolet photoelectron spectroscopy (UPS) was conducted to 

elucidate the position of the valance band edge of TiO2 and N-TiO2 with respect to vacuum. 

Cyclic voltammetry experiment was conducted to determine the lowest unoccupied 

molecular orbital (LUMO) position of GQDs (experimental details are available in 

Appendix D). The highest occupied molecular orbital (HOMO) level of GQDs and the 

conduction band positions of TiO2 and N-TiO2 were deduced from the band gap of each 

material. The obtained energy band diagram is illustrated in Figure 6.12. For optimal 

catalytic performance, the positions of the valence band and conduction band are 

important. Upon nitrogen doping of TiO2, the position of the valence band shifts towards 

the conduction band and simultaneously brings it closer to the HOMO level of GQDs. It 

has been reported that the high valence band offset at the junction can yield to increased 

hole transport barriers due to strong charge carrier scattering [309], thus reducing the 

device efficiency [310]. Based on the energy band diagram, after nitrogen doping, the 

valance band offset reduces.  Therefore, GQD/N-TiO2 has more favorable band alignments 

than GQD/TiO2 to generate higher charge separation efficiency [311]. 

6.5. Conclusion 

This study reported the synthesis of novel nanocomposite materials based on 

visible-light-absorbing GQDs and N-doped mesoporous TiO2 films with properties tailored 

for photoelectrochemical (PEC) water oxidation. Synergistic effects of sensitization and 

nitrogen doping in mesoporous titania films were observed in photoelectrochemical water 

oxidation, with remarkable photocurrent enhancements as a result. Cubic ordered 

mesoporous TiO2 thin films were prepared by a surfactant templated sol-gel method and 
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were treated with N2/Ar plasma for the incorporation of substitutional N atoms into the 

lattice of TiO2. Optical spectroscopic analysis suggested a significant reduction in band 

gap of the TiO2 films from 3.5 eV to 2.88 eV after plasma treatment. GQDs with an average 

size of ~5 nm were prepared by chemically oxidizing carbon nano-onions. The 

immobilization of GQDs onto the titania surface was accomplished by a hydrothermal 

deposition method.  

As reported previously, N-TiO2 showed orders of magnitude enhancement (191 

times) in photocatalytic water oxidation rate under blue LED (455 nm wavelength) 

illumination. When TiO2 and N-TiO2 films were sensitized by GQDs, the GQD/TiO2 and 

GQD/N-TiO2 films showed about 4 times and 275 times enhancement compared to the 

TiO2 film, respectively. When halogen bulb with a broad spectrum was used as a light 

source, the photocurrent enhancement of GQD/TiO2, N-TiO2, and GQD/N-TiO2 films 

compared to TiO2 was ca. 4.6 times, 101 times and 128 times, respectively. This 

enhancement in water oxidation is much greater than in previous reports for either N-

doping of TiO2 (where a maximum of 7 times enhancement was reported [294]) or GQD 

sensitization of TiO2 (where a maximum of 2 times enhancement was reported [301]) 

alone. The high level of enhancement by N-doping observed in this study is due to the 

effect of using plasma-induced doping combined with a disordered, thin-walled 

mesoporous TiO2 architecture. Adding sensitization by GQDs to the plasma-induced 

doping approach in sol-gel derived mesoporous titania yields large synergistic effects for 

photocatalytic water oxidation due to differences in charge carrier creation and separation.  

The absorbance found by UV-vis spectroscopy is not vastly increased by GQD addition to 

N-TiO2, but direct evidence is found for improved valence band alignment, and for reduced 
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rates of charge carrier recombination in GQD/N-TiO2, presumably due to easy charge 

carrier transport. The study provides a new pathway for developing nanostructured 

composite materials based on energy band alignment for fundamentally improving visible 

light absorption, charge separation and transport, and thereby energy and environmental 

applications.  
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Figures of Chapter 6 

 

 

Figure 6.1. Synthesis steps of (a) graphene quantum dots, and (b) graphene quantum dot 
sensitized nitrogen doped mesoporous titania thin films  
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Figure 6.2. (a). UV-VIS absorbance, (b). Fluorescence, (c) low resolution and high-
resolution TEM images and (d) FTIR spectrum of graphene quantum dots 
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Figure 6.3. UV-vis spectra of pure TiO2, GQD/TiO2, N-TiO2 and GQD/N-TiO2 films. The 
inset shows photographs of the corresponding TiO2, GQD/TiO2, N-TiO2 and GQD/N-TiO2 
films (from left to right). The inset also shows an enlarged region in the visible wavelength 
range. 

 

 

Figure 6.4. SEM images of (a) undoped TiO2, (b) GQD/TiO2, (c) N-TiO2 films and (d) 
GQD/N-TiO2 films (Scale bar = 100 nm). 
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Figure 6.5. GISAXS patterns of (a) undoped TiO2 and (b) N-TiO2 films 
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Figure 6.6. (a) High resolution (a) C 1s and (b) N 1s XPS spectra of TiO2, GQD/TiO2, N-
TiO2 and GQD/N-TiO2 films  
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Figure 6.7. Zeta potential (ζ) of the undoped TiO2 and GQD/TiO2, N-TiO2 and GQD/N-
TiO2 films as a function of pH. 
 
 

 

Figure 6.8. Amperometric current-time profiles with undoped TiO2, GQD/TiO2, N-TiO2 
and GQD/N-TiO2 films under the illumination of (a) BLED and (b) halogen bulb. 
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Figure 6.9. Linear sweep voltammetric (LSV) curves recorded with undoped TiO2 and 
GQD/TiO2, N-TiO2 and GQD/N-TiO2 films under the illumination of (a) BLED and (b) 
Halogen bulb. 
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Figure 6.10. Linear fit for the ln(R) vs time curve considering only the linear portion with 
(a) TiO2, (b) GQD/TiO2, (c) N-TiO2 and (d) GQD/N-TiO2 film 
 
 
 

 
Figure 6.11. Nyquist plot recorded for TiO2, N-TiO2, GQD/TiO2 and GQD/N-TiO2 films 
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Figure 6.12. Energy band diagram for GQD/TiO2 and GQD/N-TiO2 
 

Table 6.1. Photoelectrochemical water oxidation performance of titania films in 
amperometric i-t measurements 
 

Film Current (µA/cm2) 
under BLED 

Current (µA/cm2) 
under halogen bulb 

Enhancement 
under BLED 

Enhancement 
under halogen bulb 

TiO2 0.0175  0.018  - -  
N-TiO2 3.352 1.817  191 101 
GQD/TiO2 0.0807 0.0825 4.6 4.6 
GQD/N- TiO2 4.815 2.31 275 128 

 

Table 6.2. Photoelectrochemical water oxidation performance of titania films in linear 
sweep voltammetry measurements (currents are taken at 0.35 V vs. Ag/AgCl) 
 

Film Current (µA/cm2) 
under BLED 

Current (µA/cm2) 
under halogen bulb 

Enhancement 
under BLED 

Enhancement 
under halogen bulb 

TiO2 0.0148 0.018 - - 
N-TiO2 3.289 1.4 222 78 
GQD/TiO2 0.126 0.12 8.5 6.6 
GQD/N- 
TiO2 

5.1345 3.178 346 177 
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Table 6.3. Charge recombination rate constants for TiO2, GQD/TiO2, N-TiO2 and GQD/N-
TiO2 films in the transient photocurrent decay kinetics 
 

Film k1(s-1) k2(s-1) 

TiO2 1.3 0.275 

GQD/TiO2 0.9 0.375 

N-TiO2 2.14 0.058 

GQD/N-TiO2 0.58 0.113 
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Chapter 7. Plasma Treated Hydrogen Doped Mesoporous Black TiO2 Thin Films 
for Water Oxidation Photocatalysis 

7.1. Summary 

In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in 

plasma treated hydrogen doped mesoporous black titania thin films in their visible light 

absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous 

TiO2 thin films are prepared by a surfactant-templated sol-gel method and are treated with 

hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in 

the material and the high energy of the plasma species to achieve efficient hydrogen 

doping. UV-vis absorbance spectra indicate that H2 plasma treatment makes TiO2 films 

black, with broad-spectrum enhancement of visible light absorption, and XPS analysis 

shows peak for Ti3+ state in treated films. The presence of hydrogen in black mesoporous 

titania (H-TiO2) films is confirmed by the scattering length density (SLD) profiles obtained 

from neutron reflectometry measurements. The H-TiO2 shows ca. 28 times and 8 times 

higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO2 

films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings 

provide the first direct evidence that the dramatic change in visible light absorbance of H-

treated black TiO2 is accompanied by significant hydrogen uptake and not just Ti3+ 

generation or surface disordering.  
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7.2. Introduction 

Sunlight driven hydrogen production by water splitting using semiconductor 

photocatalysts is a promising approach for the large scale production of carbon-free fuels 

to address worldwide energy demand and concerns over climate change due to fossil fuel 

use [11, 70, 72, 312-314].  Since the first demonstration of H2 generation from the 

decomposition of water by Fujishima and Honda in 1972, titania has attracted significant 

interest as a photocatalyst due to its favorable band edge positions (which are well-matched 

with the redox potential of water), opto-electronic properties which can be varied by 

changing lattice defects or oxygen stoichiometry, superior chemical stability, 

photocorrosion resistance, and low cost [13-16, 195]. 

Despite its attractive features, the utilization of sunlight by TiO2 has been limited, 

due to its large band gap. Undoped TiO2 only absorbs ultraviolet light, which comprises 

5% of the energy in the solar spectrum [72, 277]. To effectively utilize solar energy for 

water splitting, its band gap must be tuned to allow visible light to be absorbed. Doping is 

one of the most feasible potential strategies to tune the band gap of TiO2 [17, 40-42, 286]. 

Various types of metallic and non-metallic dopants have been investigated [17, 18, 50].  

However, satisfactory performance of metal and nonmetal doped titania has not been 

achieved yet. Recently, hydrogenated titania (H-TiO2) has drawn tremendous interest 

because it is black and thus can absorb light over a wide range of the solar spectrum [15, 

74, 214-217, 315]. The photocatalytic activity of H-TiO2 improved significantly at UV 

wavelengths. However, black TiO2 has so far exhibited minimal photocatalytic reactivity 

in visible light. This raises intriguing fundamental questions about the reasons for 
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hydrogenation turning TiO2 black and the translation of light absorption to photochemical 

activity.  

Some reports have shown that H-doping reduces the band gap of TiO2 by modifying 

the conduction band and enhancing its photocatalytic activity [74]. It has been claimed that 

hydrogenation of TiO2 leads to Ti3+ (or oxygen vacancy) formation which is responsible 

for the black color, although this is not a settled hypothesis [316]. On the other hand, many 

research groups have proposed that surface disorder in H-TiO2 is primarily responsible for 

its black color [74, 214, 317]. Chen et al. showed that hydrogen induces disordered material 

at the surface of crystalline anatase nanoparticles. The hydrogen causes changes in the 

electronic structure and formation of mid-gap states. These mid-gap states allow 

electromagnetic radiation of a wide range of wavelengths to be absorbed, giving rise to the 

black color of TiO2. The energy distribution of these mid-gap states obtained from large 

amounts of lattice disorder differs from that of a single defect in a crystal. A continuum 

extending to and overlapping with the conduction band edge can be formed from these 

mid-gap states instead of forming discrete donor states near the conduction band edge. In 

extreme cases, these states can also merge with the valence band. The dominant centers for 

optical excitation and relaxation can come from these extended energy states in 

combination with the energy levels produced by dopants [74].  

Meanwhile, other research groups also prepared surface disordered TiO2 (d-TiO2) 

which is not black. Recent reports showed that surface defects enhance visible light 

absorption and charge carrier separation [31, 32]. However, the surface defects are 

introduced to the TiO2 surface by heat treatment and without the introduction of hydrogen, 

and this d-TiO2 is not black. Li et al. prepared sub-10 nm rutile titanium dioxide 
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nanoparticles from TiCl4 by rapid hydrolysis and found efficient visible-light-driven 

photocatalytic hydrogen production. They argued that surface defects happen due to 

bridging hydroxyl group and oxygen vacancy formation. These defects bring an upward 

shift of the valence top of TiO2 due to band bending associated with charge imbalance 

induced by the defect energy levels. In another study, Salari et al. performed surface 

disorder engineering in TiO2 nanotube arrays by heat treatment in an oxygen free 

atmosphere and found highly efficient solar-driven oxygen evolution [32]. Heat treatment 

in an oxygen-free atmosphere promotes the formation of high energy facets that help to 

form lattice disorder on the TiO2 and electron traps associated with undercoordinated Ti 

atoms. This lattice disorder forms mid-gap states instead of discrete donor states that can 

merge either with the valence or conduction band. This consequently leads to improved 

visible light absorption. Interestingly, those disordered TiO2 nanotubes are not black but 

are active in visible light, which contrasts with disordered H-TiO2 which is black in color 

and mostly active under UV light illumination. These studies suggest that surface disorder 

in H-TiO2 is not the sole reason for its black color or for its photocatalytic activity at mostly 

UV wavelengths.  

The above results inspired further detailed studies of H-TiO2 to understand the 

origin of broad spectrum light absorption and enhanced photocatalytic activities. The 

presence of hydrogen may play a critical role in allowing TiO2 to absorb both visible and 

infrared light. However, no studies performed to date have yielded direct evidence of 

hydrogen in black titania. X-ray photoelectron spectroscopy (XPS) has showed the 

presence of Ti3+ in H-TiO2. However, XPS cannot detect hydrogen directly due to its small 

atomic number. Other approaches commonly used to investigate the composition and 
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bonding in materials, such as energy dispersive x-ray spectroscopy and infrared 

spectroscopy, are also insensitive to hydrogen. To directly investigate the presence of 

hydrogen in H-TiO2, we employ neutron reflectometry (NR). Generally, neutrons are 

powerful probes for determining structural information about light elements such as 

hydrogen, as neutrons interact directly with nuclei rather than electrons (as do x-rays). 

Furthermore, information about chemical composition of a material can be obtained from 

NR measurements since neutron-nucleus interactions are sensitive to differences in both 

atomic number and isotope [318]. Hydrogen has been successfully detected in different 

materials using NR [319-321]. The non-destructive nature and ability to see hydrogen and 

buried interfaces are other rare qualities that make NR an invaluable technique. However, 

no studies have been reported of hydrogen in titania using NR. Here, we use NR to 

investigate the presence of hydrogen in black H-TiO2 and relate the composition and 

structure of the material to light absorption and enhanced photocatalytic performance of 

H-TiO2. 

For the application of TiO2 in photocatalysis, it is very important to control its 

morphology, nanostructure, and electronic properties to enhance the available surface area, 

light absorption, and effective charge carrier separation and transport [18, 30-32]. 

Surfactant-templated mesoporous TiO2 thin films possess several advantageous properties 

that are beneficial for efficient photocatalysis [18, 33, 34]. First, surfactant templating 

offers excellent control over structural features including nanopore size, pore orientation, 

interfacial structure and pore connectivity.  Second, the mesoporous structure of the TiO2 

films presents a high reactive surface area for photocatalysis. Third, the thin pore walls (< 

10 nm thick) of mesoporous TiO2 films provide a short distance for the transport of 
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photogenerated charge carriers to catalytic sites, thereby having the potential to suppress 

charge recombination processes [5, 15, 33, 34]. Fourth, these nanostructured films can 

improve light distribution via light scattering, and provide surface area-enhanced charge 

transfer to lower the required interfacial overpotential [322]. Finally, neutron reflectometry 

measurement requires an ultra-smooth surface, which is provided by surfactant templated 

mesoporous TiO2 thin films but not in other materials such as particle arrays.  

For TiO2 hydrogenation, most studies have used high temperature annealing in a 

hydrogen atmosphere [213, 315, 323, 324]. Plasma treatment may be a superior approach 

for mesoporous films because plasma-assisted doping is conducted at relatively low 

temperature at which the nanostructure of TiO2 can be maintained [216, 315, 325-327].  In 

addition, the ionic, the high energy and active nature of the hydrogen species in the plasma 

makes this method more effective to incorporate hydrogen into the TiO2 host. Finally, 

hydrogen plasma treatment does not cause phase transformation of titania, so the phase of 

titania can also be maintained [315].  

In the present study, we report the first direct evidence for the incorporation of 

hydrogen into mesoporous TiO2 films by H2 plasma treatment. While some literature exists 

on H- TiO2, the morphology and method of preparation play decisive roles in the activity 

of these materials.  Hydrogen doped, ordered mesoporous TiO2 thin films present a novel 

high surface area, readily doped platform for water oxidation under visible light that has 

not yet been investigated.  Many prior studies of hydrogen doping by plasma treatment 

have used anodized TiO2 nanotubes or nanoparticles [216, 326, 327].  We hypothesize that 

surfactant templated mesoporous TiO2 films have several advantages over TiO2 nanotubes.  

First, mesoporous titania films have smaller pores and thinner pore walls (both on the order 
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of 10 nm or less) than titania nanotubes (22-110 nm pore diameters and 7-34 nm thick 

walls) which result in higher surface areas and lower expected charge recombination in 

mesoporous titania films [21, 33, 166]. Moreover, surfactant templated mesoporous titania 

films can be prepared on any substrate whereas anodized nanotubes can only be prepared 

on Ti foil or substrates amenable to thin film vapor deposition.  Finally, the initially 

amorphous structure of surfactant-templated TiO2 films is expected to enhance the 

incorporation of plasma-generated high energy hydrogen species and to achieve efficient 

hydrogen doping and may have photocatalytic advantages based on recent reports that 

surface defects enhance visible light absorption and charge carrier separation [31, 32].  

Further, we use NR to investigate hydrogen in hydrogen plasma treated black 

mesoporous TiO2 thin films, and the films are used for photoelectrochemical water 

oxidation. First, cubic ordered mesoporous TiO2 thin films are synthesized by templating 

films derived from TiCl4 with Pluronic F127.  Then, the films are treated with H2 plasma 

generated by a microwave-assisted chemical vapor deposition (CVD) system.  The 

structure of the films is investigated with a number of techniques including grazing 

incidence small angle x-ray scattering (GISAXS). For direct investigation of hydrogen, 

results are reported of NR performed at the Spallation Neutron Source (SNS) at Oak Ridge 

National Laboratory. Photocatalytic activities of hydrogen plasma-treated mesoporous 

TiO2 films are studied by photoelectrochemical water oxidation under both UV and visible 

light irradiation. 
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7.3. Experimental Section 

7.3.1. Materials 

Anhydrous ethanol (200 proof, Pharmco Aaper), F127 (triblock copolymer with 

average structure HO-(CH2CH2O)100(CH2CHCH3O)65(CH2CH2O)100H, Mn = 12,500 Da, 

Sigma-Aldrich), TiCl4 (tech grade, Sigma-Aldrich), deionized ultrafiltered (DIUF) water 

(Fisher Scientific), colloidal graphite (Ted Pella, inc.), KOH (ACS reagent grade, 85%, 

Fisher Scientific), Nochromix powder (Fisher Scientific), and concentrated sulfuric acid 

(Fisher Scientific) were all used as received. 

7.3.2. Synthesis of mesoporous titania films 

Nochromix solution, prepared by following the instructions of the supplier, was 

used to clean borosilicate glass slides (Fisher Scientific). Sol preparation was begun by 

preparing a solution of 0.67 g of surfactant F127 in ethanol (18.43g). TiCl4 (1.12 ml) was 

added to the previously prepared F127 solution in a nitrogen-filled glove bag. The solution 

was stirred for 10 min to allow for chloride / ethoxy exchange to take place. 1.8 g of 

deionized water was then added to the solution slowly. The solution was stirred again for 

10 minutes. The cleaned glass slides were dip coated using a home built system at a rate of 

6 cm/min from this solution to prepare the TiO2 films, followed by aging in a highly humid 

environment (RH ~ 94%) in a refrigerator at a temperature of 4 °C for 2 h. The high RH 

environment was provided by placing the slides in a sealed box with two beakers 

containing water. Immediately after aging, TiO2 films were calcined in a muffle furnace 

(Vulcan 3-550) for 10 minutes at 350 °C. The temperature of the furnace was increased to 

350 °C at a ramp of 25 °C/min but the calcined TiO2 films were cooled rapidly after 10 
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minutes at the final temperature. Rapid transfer directly from the refrigerator to the furnace 

was carried out to avoid moisture condensation on the surface of the films [272]. 

7.3.3. H2 Plasma Treatment 

Hydrogen plasma treatment was carried out using a microwave-assisted plasma 

CVD system (AX5010, Seki Diamond). The schematic diagram of the plasma system is 

shown in Figure 7.1. The TiO2 film was placed on a Molybdenum (Mo) stage and the 

chamber was evacuated. Once a base pressure of 60 mTorr was established, the chamber 

was purged with H2 gas at a flow rate of 100 sccm for 10 min. Then, the pressure was 

brought to 5 Torr H2 and the plasma was ignited using 300 W microwave power (2.45 

GHz). With the plasma on, the pressure and power were slowly increased to 40 Torr and 

400 W, respectively, where they remained for 30 minutes. For samples prepared to 

investigate photoelectrochemical water oxidation, the FTO slides are not stable at the harsh 

plasma conditions described above. Therefore, the plasma conditions were changed to a 

mild level at which the FTO slides are stable. At mild conditions, the plasma treatment 

time, pressure, power and hydrogen gas flow were 5 min, 5 Torr, 300 watts and 100 sccm, 

respectively. 

7.3.4. Characterization 

The morphology and structure of TiO2 films were characterized with a scanning 

electron microscope (SEM) attached to a dual-beam Helios Nanolab 660 (FEI). The 

samples for SEM characterizations were prepared by cutting the FTO substrate on which 

the TiO2 thin film was mounted using a glass cutter and then mounting the sample exactly 

at the center of a SEM stub coated with carbon tape. A scanning transmission electron 

microscopic (STEM) image was obtained from the same sample using a Helios Nanolab 
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660 (FEI). High resolution images of powders scraped from the mesoporous TiO2 films 

were obtained by a transmission electron microscope (TEM) (JEOL 2200FS). Low angle 

XRD analysis was carried out using a Bruker-AXS D8 DISCOVER diffractometer to 

determine the degree of mesostructural order. Films were scanned at 0.5 °/min in 2θ 

increments of 0.02° from 1° to 4°.  The optical absorbance of the samples was measurement 

with an UV-vis absorption spectrometer (Ocean Optics, DT-MINI-2-GS). The 

measurement was carried out by placing the films at an angle of ~45° relative to the incident 

beam to avoid interference fringes in the spectra. X-ray photoelectron spectroscopic (XPS) 

analysis was conducted using a ThermoScientific K-Alpha photoelectron spectrometer 

using monochromatic Al K-α radiation with photon energy of 1486.6 eV. Prior to XPS 

characterization, samples were cleaned with ethanol to remove dust from their surface. 

In order to probe the presence of hydrogen in H-TiO2 film, neutron reflectometry 

experiments were performed at the Liquids Reflectometer (beamline 4B) at the Spallation 

Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The LR is a horizontal 

geometry instrument using the time-of-flight technique with an effective single bandwidth 

of 3.5 Å at an accelerator pulse frequency of 60 Hz. The reflectivity R(Q), was measured 

as a function of perpendicular wave vector transfer, Q = (4π/λ)sin θ, where λ is the neutron 

wavelength and θ the angle between neutron beam and sample surface [328]. For these 

measurements, neutrons of wavelength 2.5-17.5 Å together with three incidence angles θ 

=0.30°, 0.8°, and 1.8°, provided a wave vector transfer (Q). An incidence beam slit was 

adjusted for each incident angle in order to maintain a constant beam profile on the sample. 

The films were prepared on 5 mm thick circular silicon wafers with a diameter of 50 mm 

by the same modification and dip coating procedures described above. Neutron 
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reflectometry measurements were performed in air at room temperature and atmospheric 

pressure. To study the pore accessibility of the cubic ordered mesoporous titania films, 

neutron reflectometry experiments were performed in D2O medium. Computer modeling 

and fitting program Motofit developed by A. Nelson was used to analyze the specularly 

reflected neutron data [318, 329]. For comparison to the experimentally acquired NR data, 

the Motofit program uses the Abeles formalism to calculate reflectivity from a model 

scattering length density (SLD) profile [330]. The average neutron scattering length density 

(SLD) is determined as a function of depth of the sample with a given measured reflectivity 

of that sample. However, the SLD profile cannot be directly determined from the measured 

reflectivity profile of a sample. To determine the SLD profile, Modeling of the SLD profile 

is performed based on the initial guess of the sample parameters on which a least squares 

fit is performed to the reflectivity profile. In this process, generally the known values of 

some parameters are kept fixed but the value of unknown parameters are varied within a 

given range [318]. For instance, the SLD of the backing layer (silicon wafer substrate) and 

the fronting layer (air or D2O) are known and were fixed during the modeling procedure. 

In this work, the SLD and thickness of the TiO2, H-TiO2 and SiO2 (on top of the Si 

substrate) were varied within a physically allowable range to obtain a best fit of the model 

data with the experimentally acquired reflectivity data.  

The GISAXS patterns of titania films were measured in order to confirm the 

orientation of the pores before and after hydrogen plasma treatment. GISAXS experiments 

were done at the Advanced Photon Source at Argonne National Laboratory at beamline 8-

ID-E using a wave length of 1.148 Å (10.86 keV) and a sample-detector distance of 2185 

mm [299].  Prepared undoped TiO2 and hydrogen plasma treated TiO2 films were placed 
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on a sample holder. GISAXS patterns were collected at 0.14° incident angle at room 

temperature with both the sample and flight path in vacuum.  The beam size was 100 µm× 

50 µm (H×V). Data were collected with a Pilatus 1M pixel array detector using a 10 sec 

exposure time.  Images were corrected for detector nonuniformity and converted to q-space 

using the GIXSGUI package for Matlab [331]. 

For the investigation of the crystallinity of the sol-gel templated titania thin films, 

GIWAXS was performed on the films before and after hydrogen plasma treatment at 

Advanced Photon Source at Argonne National Laboratory at beamline 8-ID-E. The plane 

of the thin film surface was oriented horizontally, and the sample was mounted inside a 

vacuum chamber. For GIWAXS, the same Pilatus detector was brought to a sample-to-

detector distance of 228 mm. These measurements were performed at an X-ray wavelength 

of 1.148 Å, with the sample under vacuum. The incident angle of the beam was fixed to 

0.14°. At a beam size was 200 µm ×20 µm (H×V). In-plane diffraction patterns were 

collected as a function of the scattering vector q. The x-ray beam was allowed to enter the 

chamber through a mica window and was incident on the samples. Scattered x-rays exited 

the chamber through a Kapton window and data were collected with a Pilatus 1M pixel 

array detector with 10 sec exposure time. Images were corrected for detector nonuniformity 

and converted to q-space using the GIXSGUI package for Matlab  [299, 331]. Integrated 

line-cut profiles of x-ray intensity vs. qy were computed from the 2D GIWAXS patterns 

along angular direction (90°<ф<180°) using the GIXSGUI package. 

The zeta potentials (ζ) of TiO2 and hydrogenated TiO2 thin films were measured by 

the streaming potential technique using a SurPASS electrokinetic analyzer (Anton Parr). 

The undoped TiO2 and hydrogenated TiO2 films were prepared on thin Ti foils (each 2 cm 
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× 1 cm) as flexible substrates, which are necessary for zeta potential measurement. Due to 

Ti foil susceptibility to hydrogen embrittlement, instead of performing hydrogenation at 

harsh plasma condition, hydrogenation was performed under the plasma conditions of 400 

W power, 10 Torr pressure, 100 sccm flow rate and 30 minute exposure time for this 

measurement. Prepared samples were mounted on the sample holder of an adjustable gap 

cell. 0.01 M KCl was used as the electrolyte. The pH value of the electrolyte was changed 

from 2 to 10 using 0.05 M HCl and 0.05 M NaOH in an automatic titrator. Finally, the zeta 

potential measurements were recorded as a function of pH. 

Contact angle measurements were performed by using a contact angle goniometer 

(Ramé-Hart model 100). Before the measurement, samples were thoroughly washed with 

deionized water and dried under vacuum for 24 hours. Advancing contact angle was 

recorded as the maximum angle noted upon the gradual increase of the water droplet 

volume.  

7.3.5. Photoelectrochemical characterization 

For photoelectrochemical (PEC) experiments, the films of undoped TiO2 and H-

TiO2 were prepared on fluorine-doped tin oxide (FTO) coated glass substrates. Prior to dip 

coating, FTO slides were cleaned with DIUF water, acetone and isopropanol followed by 

UV-ozone treatment for 20 minutes to remove any organic contaminants. The 

photoelectrochemical measurement was carried out to evaluate the performance of H-TiO2 

films for water oxidation. These experiments were conducted in a system with a home-

made glass electrochemical cell with three electrodes and a potentiostat (CHI 660D, CH 

Instruments, Inc.). A TiO2 film mounted on FTO (either N-doped or undoped), a platinum 

wire, and a Ag/AgCl electrode were used as working, counter and reference electrodes, 
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respectively. 1M KOH was used as an electrolyte. Light sources were a UV LED (365 nm, 

Thorlabs), and a blue LED (455 nm, Thorlabs). The power densities of the UV LED and 

blue LED (BLED) were 6 mW/cm2 and 22.5 mW/cm2, respectively. The emission spectra 

of light sources are shown in Appendix C Figure C.1).  

Amperometric photocurrent-time (i-t) profiles were recorded with undoped TiO2 

and H-TiO2 films by holding the potential at 0.4 V vs. Ag/AgCl. The light source was 

turned on and off every 300 seconds periodically to record photo- and dark currents. This 

experiment was performed for 1800 seconds. For electrochemical impedance spectroscopy 

(EIS), mesoporous titania thin films were deposited on boron doped Si wafers. EIS was 

carried out using the same potentiostat and 0.5M Na2SO4 as an electrolyte solution. Nyquist 

plots were obtained with and without halogen lamp illumination. The AC frequency was 

varied from 0.1 Hz to 100 kHz with the DC potential of -0.005 V vs. Ag/AgCl. 

7.4. Results and Discussion 

Figure 7.2 presents the UV-vis absorption spectra of pristine TiO2 and H-TiO2 films 

prepared using harsh plasma conditions. As shown in the inset of Figure 7.2, the transparent 

TiO2 film becomes black after treatment with hydrogen plasma, indicating a profound 

effect on its optical response in the visible range. UV-vis absorbance spectra reveal that H-

TiO2 film absorbs almost the whole range of visible light (350-800 nm) whereas the 

absorbance of the TiO2 film is limited only to UV light. The broad spectrum light 

absorption in these black films is consistent with literature [74].  

The morphology and nanostructure of undoped TiO2 film were characterized by 

SEM, TEM, STEM and XRD as shown in Figure 4.2 in Chapter 4. Accessible 

interconnected cubic ordered pores were obtained in the film. The film thickness is ca. 80 
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nm as determined from STEM images. The average pore diameter and wall thickness of 

the TiO2 films are around 7 nm and 5.5 nm, respectively. The details of the nanostructure 

characterizations were described in the previous report by Islam et al.[195]  The effect of 

H2 plasma treatment on the nanostructure of the H-TiO2 films prepared by harsh plasma 

treatment was investigated. Figure 7.3a and Figure 7.3b show SEM images of undoped 

TiO2 and H-TiO2 films, respectively. As shown in Figure 7.3b, while significant 

roughening of the H-TiO2 film is observed, the majority of the pores are still accessible.  

GISAXS was used to determine whether the disordered mesostructure at the top 

surface extended into the films after harsh plasma treatment. The GISAXS patterns of the 

undoped TiO2 and H-TiO2 films are shown in Figure 7.4a and Figure 7.4b. Three 

diffraction spots were observed for the undoped TiO2 films as shown in Figure 7.4a. Those 

spots can be indexed to the (110), (101) and (11�0) planes of a distorted cubic (Im3�m) 

mesostructure [18]. This distortion, or contraction of the cubic structure normal to the film 

surface, is consistent with the STEM image as shown in Figure 4.2c. As shown in Figure 

7.4b, the GISAXS pattern of a hydrogen plasma treated film indicates that the films 

maintain an ordered mesostructure. However, the GISAXS pattern for the H-TiO2 film 

differs from the undoped TiO2 film in that it contains only two mostly vertical rods on 

either side of the beam stop (Figure 7.4b). Generally, the presence of the orthogonally 

oriented hexagonal close packed (o- HCP) cylindrical mesophase is indicated by a single 

intense rod extending in the out-of-plane direction, on either side of the beam stop. These 

rods can be indexed to the (100) plane of the HCP structure, and their rod shape can be 

attributed to the finite cylindrical shape of the pores (Kiessig fringes are most likely not 

observed because of a distribution of rod lengths and orientations) [103, 105, 150]. The 
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Bragg rods were found at qy of ±0.045 Å-1, corresponding to a d-spacing of 14 nm which 

is consistent with the d-spacing (8 nm pore size and 6 nm wall thickness) indicated in the 

SEM images (Figure 7.3). This GISAXS study indicates that the pores in the hydrogen 

plasma treated titania films become vertically oriented cylindrical channels, whereas 

globular pores are arranged in 3-dimensional cubic order in the undoped titania films. The 

most likely explanation is that the plasma treatment caused the body centered cubic pores 

to merge into a system of vertical pores due to contraction normal to the film and fusing of 

pore walls. It has been proposed previously that heat treatment can transform cubic ordered 

pores into vertically oriented channels by this mechanism [144].  

Grazing incidence wide angle x-ray scattering (GIWAXS) was performed to 

investigate the effect of hydrogen plasma treatment on crystallization of H-TiO2 films. 

Appendix E Figure E.1a, E.1b and E.1c show the GIWAXS patterns of glass substrate, 

undoped TiO2 and H-TiO2 prepared by harsh plasma treatment, respectively. Neither 

sample exhibited any sharp GIWAXS features, indicating that they are amorphous. For a 

comparison between amorphous and anatase films, more fully crystallized titania films 

were prepared by calcining at 600 °C for 60 min. This film gave a GIWAXS pattern with 

several bright rings consistent with the powder pattern of anatase titania, as shown in 

Appendix E Figure E.1d. To further analyze the results, the GIWAXS data integrating 

along the angular direction (90º < ϕ < 180º) using the GIXSGUI package to generate the 

1D patterns in Figure 7.5 for glass substrate, undoped TiO2, H-TiO2 and anatase TiO2 

(heated at 600 °C for 60 min). As discussed above, the undoped TiO2 and H-TiO2 films did 

not show any sharp peaks in the x-ray scattering pattern which means that undoped titania 

is mostly of an amorphous phase. On the other hand, TiO2 film calcined at 600 °C showed 
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peaks at 1.76 Å-1, 2.61 Å-1, 3.27 Å-1 and 3.71 Å-1 corresponding to d-spacing values of 3.57 

Å, 2.41 Å, 1.92 Å and 1.7 Å, respectively.  These are indexed to the (101), (103), (200) 

and (211) planes of anatase [332]. All 1D GIWAXS patterns in Figure 7.5 also have a broad 

hump over the range of 0.5 Å-1 < q <2.5 Å-1, which is attributed to the presence of 

amorphous TiO2 and glass substrate in the system. Thus, hydrogen plasma treatment of 

TiO2 films does not induce any crystallization, even under relatively harsh conditions that 

induce surface roughening and a transformation of the mesophase to vertically aligned 

channels. This is consistent with the UV-vis measurement that hydrogen plasma does not 

reduce the band gap of titania films, and with prior literature that showed no phase 

transformation due to hydrogenation of titania [315]. 

X-ray photoelectron spectroscopy (XPS) was performed to investigate the effect of 

hydrogen plasma treatment on the chemical states of the elements in TiO2 films. Figure 

7.6a show the Ti 2p XPS spectrum of the undoped TiO2 and H-TiO2 films. In the undoped 

TiO2 films, two peaks observed at 457.88eV and 463.78 eV are assigned to Ti 2p1/2 and Ti 

2p3/2 of Ti4+, respectively [213]. The H-TiO2 film also showed two peaks shifted to 

458.38eV and 463.98 eV for Ti 2p1/2 and Ti 2p3/2 of Ti4+, respectively. Adjacent to the Ti 

2p1/2 peak, a shoulder at ca. 456.0 eV was observed upon hydrogen plasma treatment. The 

appearance of the new shoulder at 456.0 eV in H-TiO2 film is attributed to formation of 

reduced Ti3+ sites [333]. These Ti3+ states are generally attributed to oxygen vacancies in 

TiO2 (assuming Schottky defects where reduction in cation charge is compensated by loss 

of anions), but it is also possible that in hydrogenated TiO2, Ti3+ can form by substitution 

of O2- with H-.  Density functional theory calculations by Lu et al. suggest that a 

combination of Ti-H and Ti-OH bonds are readily formed on some facets of anatase titania, 
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and are responsible for the introduction of midgap states that give H-TiO2 its black color 

[334].  Peak fitting was performed to deconvolute the contributions of Ti 2p1/2, Ti 2p2/3 and 

Ti3+ in the Ti 2p spectrum of the H-TiO2 film as shown in Appendix E Figure E.2. The 

content of Ti3+ in the H-TiO2 film determined by deconvolution is 14.0%.  

XPS O 1s spectra of pristine TiO2 and H-TiO2 films are shown in Figure 7.6b. Peaks 

were observed at 529.7 eV and 530.0 eV for pristine TiO2 and H-TiO2 films, respectively. 

Both spectra showed a small peak at about 532 eV indicating the presence of hydroxyl 

groups on the surface of the films. However, the peak intensity at 532 eV for the H-TiO2 

film is much higher compared to the undoped TiO2 film, suggests that H2 plasma treatment 

introduces more hydroxyl group on the films in addition to the possibility of Ti-H bond 

formation [335].  

In order to more directly investigate the presence of hydrogen in H-TiO2 films, 

neutron reflectometry was performed. Reflectivity (R) data were obtained as a function of 

the scattering vector Q and the data were analyzed using Motofit [329] software as 

implemented in Igor Pro. The model was fitted to the raw R vs. Q data resulting in a 

multilayer neutron scattering length density (SLD) profile as a function of normalized film 

depth. A materials’ SLD relates its chemical composition and density according to 

Equation 7.1: 

                                                            SLD= Naρm
M

∑ bi
n
i=1                                             (7.1) 

where M is molecular weight of the compound, Na is Avogadro’s number, ρm mass density 

and bi the bound coherent scattering length of ith atom comprising the material [328]. These 

are calculated using the SLD calculator in Motofit. The theoretical value of SLD for 

nonporous titania is 2.34×10-6 Å-2 based on a mass density of 3.78 g/cm3 for anatase titania. 
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From the top view SEM image, the porosity calculated for titania films with cubic ordered 

pores is 29% (based on pore diameter of 7 nm and pore wall thickness 5.5 nm, calculated 

using Image J [195]), which would give a SLD of 1.65×10-6 Å-2 due to the reduction in 

density of the film.  

Appendix E Figure E.3 shows the NR data and model fit for a mesoporous TiO2 

film in air. No fringes in the NR data were observed in this sample, which did not permit 

SLD modelling with a great deal of confidence in the parameters. Figure 7.7 shows the 

neutron reflectometry data and model fit for a H-TiO2 film measured in air. The SLD 

profile obtained from model fitting is presented in the inset of Figure 7.7. This profile 

consists of air (front layer), porous TiO2, SiO2 and Si substrate (backing layer). A layer of 

SiO2 a few Ångstroms thick was observed due to oxide formation on top of the Si substrate. 

The SLD for the porous H-TiO2 film layer was estimated to be 0.74×10-6 Å-2 which is much 

lower than the theoretical SLD of an undoped mesoporous TiO2 film (1.65×10-6 Å-2). Since 

hydrogen has a negative SLD, it reduced the SLD of TiO2 when incorporated in a H-TiO2 

film, so the observed reduction suggests that hydrogen has been incorporated into the 

lattice of the TiO2 films.  For instance, if the oxygen content of the films does not change, 

a material of composition TiO2H1.2 and 29% porosity would have a SLD of 0.75×10-6 Å-2, 

which is similar to the experimental value. Moreover, hydrogen is uniformly distributed 

across the film thickness, since model containing a single layer of uniform SLD for the H-

TiO2 film was found to fit the NR data in Figure 7.7. Thus, for the first time, neutron 

reflectometry showed that the dramatic change in visible light absorbance of hydrogenated 

black TiO2 [3] is accompanied by significant hydrogen uptake and not just Ti3+ generation 

or disordered surface formation.  
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Further, NR was carried out to investigate the pore accessibility of mesoporous 

titania films in a D2O medium. Modeling was performed with the NR data of undoped 

mesoporous titania films in D2O media as shown in Figure 7.8. The SLD profile is 

presented in the inset of the Figure 7.8. This profile consists of D2O (front layer), porous 

TiO2, SiO2 and Si substrate (backing layer). A layer of D2O of few Angstrom thickness 

was observed at the top of the TiO2 film. The SLD for the mesoporous titania film was 

3.24×10-6 Å-2. The theoretical value of SLD for D2O is 5.91×10-6 Å-2 calculated based on 

the mass density of 1.1 g/cm3. Considering the porosity of the mesoporous films and SLD 

of each material, the SLD of D2O infiltrated mesopores of titania film is expected to be a 

volume-weight average value. As above, assuming 29% porous titania, the calculated SLD 

of 71% titania and 29% D2O is 3.38×10-6 Å-2. This agrees well with the measured SLD of 

the D2O-infiltrated mesoporous TiO2 film. The calculated SLD (3.38×10-6 Å-2) of a 

mesoporous TiO2 film in D2O is much higher than the SLD (1.65×10-6 Å-2) of a film in air 

due to the high positive SLD value of D2O. This indicates that the pores of the mesoporous 

TiO2 films are accessible to and wetted by D2O. Further, the thickness of the mesoporous 

TiO2 film obtained from the SLD profile fit to the NR data (inset of Figure 7.8) is 95 nm, 

which is consistent with the thickness (98 nm) measured by profilometry previously [195]. 

Zeta potential measurements were carried out to probe the change in surface charge 

after hydrogenation. Figure 7.9 illustrates the zeta potential measurements for H-TiO2 and 

undoped TiO2 films. Apparently, the H-TiO2 sample showed an increased negative surface 

charge. The surface charge of undoped TiO2 is mainly determined by the relative density 

of bridging (Acidic, pKa~2.9) and terminal hydroxyl (Basic, pKa~12.7) groups [195]. 

Usually, these two types of hydroxyl groups have similar densities on the surface of 
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undoped TiO2 [336]. Therefore, the isoelectric point (IEP) of undoped TiO2 typically 

around a neutral value. However, the experimental IEP values for undoped TiO2 available 

in the literature varies from 3 to 7 [337]. Measured IEP values vary mainly due to the 

synthesis method and the electrolyte used for the experiment [337]. Here, undoped TiO2 

showed an IEP of 4.1 which is in the range of reported literature values. After treatment 

with hydrogen, the IEP value was shifted to 2.63 indicating a higher relative surface acidity. 

This observation suggests the hydrogenation influences the surface density of bridging and 

terminal hydroxyl groups. Wang et al. reported that hydrogenation increases the bridging 

hydroxide density of TiO2. Also, they showed proton nuclear magnetic resonance evidence 

for bridging hydroxyl groups present in the H-TiO2 sample [216]. Therefore, in this study 

the hydrogen plasma treatment is expected to increase the relative density of bridging 

hydroxyl groups, although this may be due to reduction of terminal hydroxyl groups and 

substitution with Ti-H bonds. As a result, IEP was shifted from 4.1 to 2.63 increasing the 

surface acidity. Consequently, the increased negative surface charge improves the surface 

hydrophilicity.  

The increase in surface hydrophilicity was confirmed using contact angle 

measurements. H-TiO2 showed hydrophilic nature with a contact angle of 31° whereas 

undoped TiO2 was more hydrophobic (contact angle of 61° - see Appendix E Table E.1). 

This observation is consistent with the previous reports [338]. A more negatively charged 

surface near pH 7 has a strong water dipole moment. Thus, H-TiO2 possess a higher 

hydrophilicity. This hydrophilicity of hydrogenated TiO2 plays a significant role in the 

photocatalytic water oxidation by promoting the interaction of water molecules with the 

catalytic surface for efficient electron transfer at the interface. 
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For hydrogen production from photoelectrochemical water oxidation, mesoporous 

titania thin films were prepared on conductive fluorine doped tin oxide (FTO) substrate. 

However, at harsh hydrogen plasma conditions used for NR measurement, FTO slides were 

unstable and photoelectrochemical water oxidation could not be performed. To get stable 

FTO slides, much milder plasma conditions were used to prepare H-TiO2 films. Appendix 

E Figure E.4 show the UV-vis spectra of H-TiO2 films prepared under mild conditions. At 

mild condition, the visible light absorption of H-TiO2 film is a little higher than undoped 

TiO2 films. SEM images of H-TiO2 films after plasma treatment with mild conditions are 

presented in Appendix E Figure E.5, where accessible pores are clearly visible. This 

indicates mild plasma condition does not change the mesostructure of the titania films.  

Amperometric i-t curves were recorded to evaluate the performance of the undoped 

TiO2 and H-TiO2 films in photoelectrochemical water oxidation as shown in Appendix E 

Figure E.6a and E.6b. A UV-LED and Blue-LED were used as the UV and visible light 

sources. Hydrogen plasma treatment of the film increased the dark current. For the sake of 

a direct comparison of photocurrents of the undoped and doped films, the dark current is 

subtracted from the total current observed for the H-TiO2 film in Figure 7.10a and 7.10b. 

The photocurrent densities under UVLED and BLED for undoped TiO2 were 0.81 µA/cm2 

and 0.018 µA/cm2, respectively whereas the photocurrent densities under UVLED and 

BLED for H-TiO2 were 22.9 µA/cm2 and 0.16 µA/cm2, respectively. The photocurrents of 

the H-TiO2 film under UVLED and BLED are equivalent to 1.0 A/g and 0.007 A/g, 

respectively based upon the estimated mass per area of the film, 2.29 × 10-5 g/cm2, 

calculated using the film thickness of 80 nm, pore diameter, and wall thickness from SEM 

images.  The photocurrents of the H-TiO2 films in water oxidation are ca. 28 times and 8 
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times compared to undoped TiO2 films under UV and visible light irradiation, respectively. 

This enhancement is due to the effect of hydrogen doping coupled with the mesostructure 

of the titania films. The reason for higher performance in UV light illumination is due to 

the increased charge transport and separation upon hydrogen doping. The greater 

enhancement found here may be a result of the ease with which the initially amorphous 

sol-gel titania film is doped by hydrogen plasma treatment. This photoelectrochemical 

enhancement significantly exceeds the values reported in prior literature. Huo et al. showed 

2.6 times enhanced photocurrent in water splitting using hydrogenated Ti3+ self-doped 

TiO2 under visible light illumination [317]. Pesci et al. prepared hydrogen-treated TiO2 

nanowires and found 2 times enhancement of water oxidation photocurrent compared to 

undoped TiO2 nanotubes under a 75 W Xe lamp [323]. Zheng et al. showed 3.2 times 

photocurrent enhancement in water splitting  by hydrogen treating TiO2 nanowire-

microspheres [339]. However, the hydrogen production from water splitting of these 

studies decreased drastically when only visible light was used.  

While most of the literature shows that hydrogenation of titania only improves 

under UV light illumination, our hydrogen plasma treated mesoporous titania thin films 

showed not only under UV light but also visible light illumination. The absolute current 

density of our titania film is relatively small compared to the current density of some other 

titania reported in literature. The reason for lower photocurrent of our mesoporous titania 

thin films are very low thickness (80 nm) and low light intensity of our LEDs with low 

energy (365 nm and 455 nm). However, it is difficult to make absolute comparison of the 

photocurrents obtained from photoelectrochemical water oxidation across different 

measurement systems in literature because of differences in several factors including light 
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source, wavelength and intensity; catalyst amount; addition of various reagents (e. g. hole 

scavengers); addition of co-catalysts (e.g. metal nanoparticles); electrolyte pH; and applied 

potential. The specific photocurrent per gram of our doped mesoporous titania was 

estimated to be on the scale of amperes, which is quite significant considering the low 

intensity of the LEDs sources. The performance of our mesoporous titania thin films can 

be improved by depositing this hydrogen doped mesoporous titania on a substrate which is 

stable under harsh plasma conditions. Moreover, the absolute photocurrent of our 

mesoporous titania thin films can be further improved by preparing thicker films using a 

layer by layer deposition technique to be reported in a future contribution.   

Another interesting feature of the chronoamperometric curves is the time-

dependent decay of photocurrents during the illumination periods. As can be seen in Figure 

7.10b, the photocurrents decay with a very rapid step (on the order of seconds) followed 

by slower decay before they reached constant values. The photocurrent decay is possibly 

due to charge accumulation at trap sites, leading to charge recombination. The photocurrent 

becomes stable when the rate of charge generation is equal to the rate of charge 

recombination. While photocurrents induced by a BLED showed prominent photocurrent 

decays, the UVLED did not induce noticeable photocurrent decay, as shown in Figure 

7.10a. Although the origin is not clear, the difference between UV and visible light sources 

clearly reflect the different paths of charge carriers generated by UV and visible 

wavelengths. Another possibility is that this current decay might be due to lower energy of 

the BLED. The excited electrons and holes can easily recombine when generated by blue 

light, while excited electrons and holes generated by the higher energy UV- LED have less 
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chance to recombine. Excited electrons reach the top of the conduction band with the high 

energy of UV-LED and are not available to recombine with the holes in the valence band.  

As a final measurement of the electrochemical characteristics of the films, Nyquist 

plots were recorded for undoped TiO2 and H-TiO2 films in 0.5M Na2SO4 in the dark, as 

shown in Figure 7.11. A much smaller area under the semicircular portion of the curves is 

observed for the H-doped TiO2 film compared to undoped TiO2, indicating more efficient 

charge transfer at the electrolyte-electrode interface due to hydrogen doping.  Hence, more 

efficient photogenerated electron-hole pair separation and faster interfacial charge transfer 

are able to occur in H-TiO2 compared to undoped TiO2 film. The accelerated charge 

transfer kinetics of the H-TiO2 films is consistent with the photocurrent enhancement in 

the amperometric measurements. To gain more insight into the optoelectronic properties 

of the films, further photoelectrochemical characterization was performed. Open circuit 

potentials (OCP) were measured for undoped TiO2 and H-TiO2 films in dark condition in 

0.5M Na2SO4. The OCP values of undoped TiO2 and H-TiO2 film in the dark were 0.228 

V and -0.07 V, respectively.  A more negative value of OCP found for H-TiO2 indicates 

favorable energetics for water oxidation since it determines the difference between the 

Fermi level of a semiconductor and the redox potential of the electrolyte [166]. 

7.5. Conclusion 

In this study, neutron reflectometry was used to detect the hydrogen in plasma 

hydrogen doped mesoporous titania thin films, and the films were used for hydrogen gas 

production via photoelectrochemical water oxidation. The mesoporous titania films 

prepared by a surfactant templated sol-gel process became black and showed significantly 

enhanced absorption of visible light after hydrogen plasma treatment. Direct evidence of 
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the effects of hydrogen plasma treatment in surfactant templated TiO2 thin films could only 

be determined using neutron reflectometry and showed that the SLD for hydrogen doped 

films is smaller than that of undoped mesorous TiO2 films, which is consistent with 

hydrogen incorporation into the lattice of the titania films. Thus, for the first time, neutron 

reflectometry showed that the dramatic change in visible light absorbance of H-treated 

black TiO2 is accompanied by significant hydrogen uptake and not just Ti3+ generation or 

surface disorder. GISAXS measurements also showed that the film remained mesoporous 

after hydrogen plasma treatment whereas GIWAXS measurements confirms that the film 

maintains its atomically disordered phase. The hydrogen doping effect was demonstrated 

by hydrogen production by photoelectrochemcial water oxidation, which showed an 

increase in photocurrent of ca. 28 times and 8 times compared to undoped TiO2 films under 

UV and visible light irradiation, respectively. Further, impedance spectroscopy 

measurement showed that hydrogenation in mesoporous titania films improves the charge 

transfer kinetics. This study demonstrated that hydrogen plays a critical role in the black 

color of plasma treated hydrogen doped mesoporous titania thin films and in more complete 

utilization of UV and visible light for water oxidation photocatalysis. The new insights into 

hydrogenated titania introduced here will be useful for the design of efficient 

nanostructured photocatalysts for energy applications. 
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Figures of Chapter 7 

 

 
Figure 7.1. Schematic of the plasma reactor used for H2 plasma treatment of TiO2 films. 
 

 
Figure 7.2. UV-vis spectra of mesoporous undoped TiO2 and H-TiO2 films 
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Figure 7.3. SEM images of (a) undoped TiO2 and (b) H-TiO2 films 
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Figure 7.4. GISAXS patterns of (a) undoped TiO2 and (b) H-TiO2 films 

 

 

Figure 7.5. GIWAXS line cut patterns of undoped TiO2, H-TiO2 and anatase TiO2 
(calcined at 600 °C for 60 min) films. Integrated line-cut profiles of x-ray intensity vs. qy 
were computed from the 2D GIWAXS patterns along angular direction (90°<ф>180°) at a 
fixed range of qy values using GIXSGUI package. 
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Figure 7.6. (a) Ti 2p and (b) O 1s high resolution XPS spectra of undoped TiO2 and H-
TiO2 films. 
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Figure 7.7. NR profile of H-doped mesoporous TiO2 film in air. The inset shows the 
scattering length density (SLD) profile of the fitted model. 
 
 

 
Figure 7.8. NR profile of undoped mesoporous TiO2 film in D2O. The inset shows the 
scattering length density (SLD) profile of the fitted model. 

 

 

Figure 7.9. Zeta potential measurements of undoped TiO2 and H-TiO2 films 
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Figure 7.10. Photocurrent-time measurement with undoped TiO2 film and H-TiO2 films 
under (a) UVLED and (b) BLED light irradiation. 
 

 

Figure 7.11. Nyquist plot of TiO2 and H-TiO2 films (Inset shows enlarged plot). 
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Chapter 8. Conclusions and Future Work 
8.1. Conclusions 

This dissertation addressed the synthesis of mesoporous titania thin films by the 

surfactant templated sol-gel process, and the application of these films in energy 

conversion, with special emphasis on hydrogen production by photocatalytic water 

splitting under visible light illumination. Mesoporous TiO2 presents opportunities for use 

in a number of applications due to combining a favorable morphology (accessible pores, 

high surface area, well-defined mesostructure, tunable pore size and shape, and thin pore 

walls) with innate optoelectronic activity. It is of particular interest for high-volume 

applications because of its low cost and environmentally benign nature. These unique 

properties make it highly promising in environmental, energy conversion and storage 

applications. To address the challenge of using titania as a photocatalyst, whose band gap 

is larger than the energy of abundant visible light in the solar spectrum, doping a foreign 

element into titania lattice is one of the potential strategies to tune the band gap of titania 

to enhance the visible light driven photocatalytic activity. However, incorporation of a 

foreign element into the mesoporous TiO2 lattice while controlling its phase and 

mesostructure remains a challenge because successfully producing doped titania for 

photocatalytic applications involves a tradeoff between maintaining the favorable 

morphology of the material (high specific surface area, controlled pore morphology, 

crystalline phase, etc.) while selecting doping source and method that effectively 

introduces dopants at a high enough level and in the appropriate chemical state for band 

gap reduction, visible light absorption, control of charge carrier recombination, and 

ultimately, enhancement in photocatalytic activity. 
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In this dissertation, the band gap of mesoporous titania thin films was engineered 

by modification of the conduction and valence band using nitrogen and hydrogen doping 

by two different doping methods. For nitrogen doping in these mesoporous titania thin 

films, molecular precursor (hydrazine) based and plasma based methods have been 

developed. Results showed that plasma-based doping (which made the films yellow in 

color while pristine titania is colorless) is superior to molecular precursor-based doping for 

incorporation of substitutional nitrogen in titania.  The substitutional form is primarily 

responsible for band gap reduction, visible light absorption and photocatalytic activity. 

Furthermore, the nanostructure of the films was better maintained in the plasma-based 

treatment than in molecular precursor-based doping. To modify the conduction band of the 

mesoporous titania films, hydrogenation was performed using a plasma system and found 

to turn the mesoporous titania films black. This study addressed the fundamental reason 

for this black color of hydrogenated titania films by probing for the presence of hydrogen 

in the films using neutron reflectivity. Along with band gap engineering for visible light 

absorption, sensitization using environmental friendly graphene quantum dots was also 

performed in mesoporous titania thin films. For the first time, graphene quantum dot 

sensitization and nitrogen doping of titania were combined for enhancement visible 

absorption, charge separation, and photocatalytic activity. For applications, all modified 

films were tested for activity in hydrogen production by photoelectrochemical water 

splitting under visible light illumination.   

Before all the modifications by band gap engineering and sensitization, and 

subsequent photocatalytic tests, first, cubic ordered mesoporous titania thin films were 

synthesized by surfactant templating sol-gel method using a Pluronic surfactant F127. For 
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molecular precursor-based doping, hydrazine was used to prepare titanium (Ti3+) and 

nitrogen co-doped mesoporous TiO2 thin films as presented in Chapter 3.  The cubic 

ordered mesoporous TiO2 thin films were treated with hydrazine in a closed vessel to allow 

long-term exposure to hydrazine from the vapor phase. XPS characterization showed that 

both interstitial and substitutional nitrogen are present inside of the doped films. The doped 

films were tested by photocatalytic degradation of methylene blue under visible-light 

illumination (blue-LED) and found a significant enhancement in photocatalytic activity 

over undoped TiO2 films. The Ti3+-N-TiO2 film prepared by 10 hours of hydrazine 

treatment showed the optimal photocatalytic performance with the determined rate 

coefficient of 0.12 h-1 (85 min-1/(g catalyst)), roughly 3 times greater than that of undoped 

TiO2 films. The Ti3+-N-TiO2 films prepared with 10 hours of hydrazine treatment also 

showed optimal performance in the photoelectrochemical water oxidation, roughly four 

times the photocurrent of undoped TiO2 films. This study thus demonstrates the 

effectiveness of hydrazine treatment as a single source of Ti3+ and N dopant for mesoporous 

TiO2 thin films prepared by surfactant templating, which leads to improved photocatalytic 

and photoelectrochemical performance. 

For plasma-based doping, mesoporous TiO2 films were treated with N2/Ar plasma. 

XPS showed about 2-3 at% substitutional nitrogen in the doped films.  The band gap of the 

films was reduced from 3.5 eV (in undoped TiO2 films) to 3.0 eV (in N-TiO2 films) by 

plasma treatment as confirmed by UV-vis spectroscopy characterization. The 

photocatalytic evaluation of the plasma treated N-TiO2 films was conducted by methylene 

blue degradation under visible light illumination (blue-LED). The N-TiO2 films showed 

roughly 6 times greater (rate coefficient of 0.24 h-1) degradation than that of undoped TiO2 
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films.  This enhancement in photocatalytic activity is significantly greater than the 

enhancement reported on plasma treated titania with other morphologies and phases.  

Further, the visible light active plasma treated N-TiO2 films developed in Chapter 

4 was applied for hydrogen production from photoelectrochemical water splitting. In 

Chapter 5, the nitrogen plasma condition was reassessed to obtain nitrogen doped 

mesoporous titania films onto a stable conductive  fluorine doped tin oxide substrate. 

Moreover, plasma pressure and nitrogen flow rate in the plasma chamber were varied to 

find out an optimum condition for the best performance of the doped films in 

photoelectrochemical water oxidation. The greatest photocurrent enhancements observed 

under UV (UVLED with 365 nm wavelength) and visible (Blue-LED) light illumination 

were 242 times and 240 times, respectively. Interestingly, these results show that plasma 

treated sol-gel derived N-TiO2 films showed remarkable enhancement in water oxidation 

not only with visible light, but also under UV light which is rarely observed in literature. 

This enhancement in water oxidation is much greater than the values of previous reports 

(where a maximum of 7 times enhancement was reported [294]). The combination of a sol-

gel approach to forming disordered mesoporous TiO2, and using N2/Ar plasms to introduce 

a high level of substitutional nitrogen under mild conditions contributed to these two order 

of magnitude increases in photocatalytic activity. Preventing rapid crystallization into 

anatase TiO2 seems to be important to accomplishing this high level of enhancement. We 

also suspect that the effect is enhanced by the generation of catalytically active surface 

sites. These remarkable enhancements of the plasma treated nitrogen doped mesoporous 

titania in photocatalytic and photoelectrochemical activities demonstrate that plasma-based 
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approach is an efficient way to modify sol-gel derived metal oxides for their optoelectronic 

properties and catalytic activities.   

The visible light driven photocatalytic activity of nitrogen doped titania films 

developed in Chapter 4 and 5 was further enhanced by sensitization. In Chapter 6, nitrogen 

doping by plasma-based approach and sensitization using graphene quantum dots (GQDs) 

are combined in mesoporous titania films for better visible light absorption and efficient 

photogenerated charge separation. First, GQDs were prepared by chemically oxidizing 

carbon nano-onions and were immobilized onto the mesoporous titania surface using a 

hydrothermal method. In photoelectrochemical water oxidation under blue LED 

illumination, the GQD/TiO2 and GQD/N-TiO2 films showed about 4 times and 275 times 

enhancement, respectively while N-TiO2 showed about 191 times enhancement compared 

to unmodified TiO2 film. This indicates that when sensitization with graphene quantum 

dots is combined with plasma-induced nitrogen doping in sol-gel derived mesoporous 

titania, synergistic effect emerges for photocatalytic water oxidation.  This synergistic 

effect is attributed to enhanced visible light absorption, efficient charge separation, 

transport and transfer. This study provides new pathways for developing nanostructured 

composite materials based on engineering the energy band alignments of doped materials 

and quantum dots for fundamentally improving visible light absorption, charge separation 

and transport, and thereby energy and environmental applications. 

While substitutional nitrogen doping modifies the valence band of titania, hydrogen 

doping affects the conduction band, thus impacting both electronic properties and 

photocatalytic activity. Hydrogenated titania is black but there are several hypotheses about 

the cause of this, as reviewed in Chapter 7. Neutron reflectometry was used to detect 
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hydrogen in hydrogen plasma-doped mesoporous titania thin films, and the films were used 

for photoelectrochemical water oxidation in Chapter 7. Direct evidence of the effects of 

hydrogen plasma treatment in TiO2 was found using neutron reflectometry by observing 

changes in scattering length density (SLD).  A decrease in SLD for hydrogen doped films 

indicated hydrogen incorporation into the lattice of the titania films. Thus, for the first time, 

neutron reflectometry showed that the dramatic change in visible light absorbance of H-

treated black TiO2 is accompanied by significant hydrogen uptake and not just Ti3+ 

generation or surface disorder. The hydrogen doping effect was demonstrated by 

measurements of photoelectrochemcial water oxidation, where increases in photocurrent 

were measured of ca. 28 times and 8 times compared to undoped TiO2 films under UV and 

visible light irradiation, respectively. This study demonstrated that hydrogen incorporation 

plays a critical role for the development of black color in plasma-treated hydrogen doped 

mesoporous titania thin films, and helps to utilize the absorbed UV and visible light for 

water oxidation photocatalysis. The new insights into hydrogenated titania found here will 

be useful for the design of efficient nanostructured photocatalysts for energy and 

environmental applications. 

8.2. Future Work 

Although significant progress in visible-light photoactivity of titania has been made 

already, further improvements in visible light absorption, separation of photogenerated 

charge carriers, and charge transfer to reactants are necessary for the use of titania in 

practical photocatalytic applications. In Chapter 4, 5 and 7, plasma based nitrogen and 

hydrogen doping were carried out in mesoporous titania films separately and found 

remarkable photocatalytic enhancement. Since nitrogen and hydrogen co-doping enhances 
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the visible light absorption and photocatalytic activities of titania more than doping with 

either nitrogen or hydrogen alone, co-doping using hydrogen and nitrogen plasma 

treatments provide a promising direction for future research. A new direction that may 

provide opportunities for better charge separation would be to develop heterojunctions of 

hydrogen-doped titania and nitrogen-doped titania. When electrons and holes are excited 

in either hydrogen doped region or the nitrogen doped region of the films, those charge 

carriers will propagate to physically separated regions resulting in better charge separation. 

For instance, when electrons are excited in hydrogen-doped domains, before combining 

with the holes in the same domain, those electrons can move to the empty conduction band 

of nitrogen-doped domains. On the other hand, when electrons are excited in nitrogen 

doped domain, holes are formed in the valence band and those excited holes can easily 

move the hydrogen doped domain which results in better charge separation. Since the hole 

and electron diffusion lengths of TiO2 are on the order of 10 nm and 10 µm, respectively, 

and the pore walls of mesoporous TiO2 are thinner than 10 nm, the photogenerated holes 

can easily move to the TiO2 surface for reaction before recombination.  

An intimate junction between nitrogen and hydrogen doped region can be achieved 

using single-mask plasma lithography, which takes advantage of the directionality of 

plasma exposure. Patterning of the H-doped and N-doped regions can be accomplished by 

masking regions not to be exposed to plasma.  A preliminary demonstration of this 

possibility is shown in Figure 8.1 where H-doped and N-doped films patterned were 

formed by masking mesoporous titania films with fractured Si wafers.  Plasma treated N-

TiO2 films prepared by masking some portion of the film created macroscopically well-

defined undoped (colorless) and doped (yellow) regions as shown in Figure 8.1.  A XPS 
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line scan was performed across the film as shown in Figure 8.2. A distinct N1s peak was 

found in the doped portion of the film whereas undoped portion of the films did not show 

significant signal. The line scan across the N-doped interface shows that a gradient of 

substitutional nitrogen has been achieved over a length scale on the order of 100 µm. To 

form heterojunctions with domain size in the order of a micron or less, a novel single-mask 

plasma lithography process is envisioned in which the effects of H2 plasma treatment are 

first reversed with O2 plasma or N2 plasma so that only one mask is needed.  This will 

address potential concerns about double-doping of some areas and also help to form an 

intimate contact between two doped regions. After successful preparation of the 

heterojunction, the methods developed as part of this dissertation can be used to understand 

the effects of the heterojunction on light absorption, electrochemical properties of the 

materials, and photocatalytic water oxidation.   

In Chapter 6, sensitization of N-doped titania with graphene quantum dots was 

found to cause significant enhancement in visible light absorption and photocatalytic 

activity of titania films. A new direction to enhance visible light absorption of titania would 

be sensitization with bioinspired compounds such as dopamine. Dopamine is an enediol 

ligand and is expected to have large affinity for under-coordinated surface metal sites due 

to its ability to chelate with transition metals to satisfy their desired coordination [340]. An 

enhanced interfacial charge transfer rate was found due to the formation of charge-transfer 

complexes with enediols on TiO2 [341]. Further, dopamine derivatives sensitize TiO2 to 

improve its visible light absorption [342, 343]. Moreover, dopamine contains an amine 

group which would change the surface charge in the positive direction, and would be 

expected to promote the absorption of anionic and hydrogen bonding solutes for 
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photocatalysis. Hence, it is hypothesized that dopamine functionalized mesoporous titania 

films will be very active in visible light driven photocatalysis by taking advantage of 

electronic and surface chemistry tuning on the surface of mesoporous titania films.  

Preliminary experiments on dopamine sensitized mesoporous titania films were 

conducted. Cubic ordered mesoporous TiO2 films were submersed in an aqueous solution 

of 1.0 mM dopamine to allow dopamine to be adsorbed onto the film. The films were then 

removed and allowed to air-dry. Figure 8.3 shows photographs of an unmodified 

(colorless) TiO2 film and a dopamine functionalized TiO2 (DA-TiO2) film. The treated film 

has a yellow/orange color, which arises only because of the interaction between dopamine 

and titania (since each component alone is colorless). The modified films were tested for 

activity in photoelectrochemical water splitting with illumination using a blue LED (455 

nm wavelength). The initial photocurrent measured for DA-TiO2 films was found to 

improve significantly over unmodified TiO2 films (data not shown). However, the 

photocurrent of DA-TiO2 films decays significantly over time, suggesting that the 

modification is not stable either due to desorption or degradation of dopamine. This is most 

likely due to the high pH (13.5) of the KOH solution used by default in this dissertation for 

water splitting. To gain the benefits of dopamine modification in a stable 

photoelectrochemical system, future directions to pursue include developing a stable 

functionalization strategy using either heat treatments, pH or chemical modification of the 

surfaces; and using different conditions for photoelectrochemical measurements to avoid 

destabilization of the films during photocatalysis measurements. 

Future directions to improve the efficiency of doped and sensitized mesoporous 

TiO2 films will be aimed at better understanding the bottlenecks in environmental 
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remediation, energy conversion, and energy storage systems that limit the 

commercialization of these materials. It is essential to understand the charge transfer 

dynamics among dopants, sensitizer, mesoporous TiO2 and reactants molecule to further 

improve the photocatalytic performance of mesoporous TiO2 films. The effects of doping, 

sensitization and heterojunction formation on the charge carrier lifetime can be investigated 

using ultrafast pump-probe spectroscopy. This technique was attempted using doped titania 

films and sensitized titania films in collaboration with the Ultrafast Spectroscopy Facility 

at the University of Louisville However, the experiments were not successful because the 

low quantity of material present in the thin films developed in this dissertation. To be able 

to use this technique, the quantity of material need to be increased by depositing multilayer 

films using layer-by-layer deposition technique, which is an approach under development 

in the Rankin laboratory. The photoactivity can also be improved by making this thick 

multilayer films to optimize light absorption vs. reactant and charge carrier diffusion in the 

materials. 

In addition to non-metal dopants themselves, there is room to better understand 

metal co-catalysts.  Noble metals act as passive sinks for electrons to promote the 

interfacial charge transfer process and enhance the quantum efficiency of photocatalytic 

system [44, 255-257]. In addition, metal nanoparticles show plasmonic effects and provide 

hot electrons into the conduction band of titania. Incorporation of noble metal nanoparticles 

(such as Pt, Au, Ag) and transition metals such as Cu onto non-metal doped mesoporous 

TiO2 film would benefit from further exploration. Furthermore, the fabrication of non-

metal doped mesoporous TiO2 composites with other metal oxides such as hematite and 
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perovskite such as strontium titanate will open the door to enhanced visible light absorption 

and charge separation for further improving photocatalytic activity.  

Although great progress has been made in the development of the materials in terms 

of functionality and visible light absorption for applications in degradation of organic 

pollutants such as methylene blue (which may be considered as model pollutant), and 

hydrogen production from water splitting, all the modified titania films developed in this 

dissertation are very promising materials for applications in other environmental organic 

pollutants (such as, chlorinated aromatic hydrocarbons, surfactant, dyes, herbicides, etc.) 

and inorganic pollutants (such as, CN-, CrO4 2-, etc.); in other energy conversions such as 

CO2 reduction; and in energy storage such as in lithium ion batteries and supercapacitors.  

Future work in all of these directions is expected to yield significant insights into the nature 

and generality of the electronic modifications induced by plasma doping in mesoporous 

titania materials. 

 

Figure 8.1. Preliminary test of masking with a fractured Si wafer for (a) H-doping and (b) 
N-doping.  A line scan by XPS of the N-doped interface.  
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Figure 8.2. XPS N1s spectra of N-TiO2 film prepared by masking some portions of the 
film (line scan was performed) (small scale). 

 

 

Figure 8.3. An untreated TiO2 film (left) compared to a dopamine treated TiO2 film (right).  
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APPENDIX 
 

APPENDIX A Supporting Information of Chapter 3 

 

 

Figure A.1. Photograph of the experimental set-up for methylene blue degradation reaction 
measurements. 
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Figure A.2. Spectra of (a) UVLED and (b) BLED reproduced from Thorlabs. 
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Figure A.3. Cross sectional bright-field STEM image of the F127-templated TiO2 film 
after calcination and without hydrazine treatment.  
 

 

Figure A.4. HRTEM image of undoped TiO2 film. 
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Figure A.5. SAED pattern of undoped TiO2 film. 
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Figure A.6. Tauc plots of (a) undoped TiO2 (0 h) (b) Ti3+-N-TiO2 _5 h (c) Ti3+-N-TiO2 
_10 h (d) Ti3+-N-TiO2 _15 h and (e) Ti3+-N-TiO2 _20 h.  Extrapolation of the linear portion 
of each curve to the horizontal axis gives the band gap. 
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Figure A.7. (a) XPS Ti 2p spectra (after 45 second etching) of undoped TiO2 and 5 h_Ti3+-
N-TiO2 films with peak fitting of (b) undoped TiO2 and (c) 5 h_Ti3+-N-TiO2 films. 
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Figure A.8. (a) Measurement of methylene blue adsorption on undoped TiO2 films in the 
dark confirming that steady state adsorption is reached within 30 min, and (b) fitting of 
first order kinetics for the MB decomposition reaction with undoped TiO2, Ti3+-N-TiO2 
films and without films (photolysis). 
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Figure A.9. Plan view SEM images of (a) undoped TiO2, (b) 5 h_Ti3+-N-TiO2, (c) 10 
h_Ti3+-N-TiO2, and (d) 20 h_ Ti3+-N-TiO2 films (Scale bar width = 86 nm). 
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Figure A.10. Fitting of first order kinetics for the MB decomposition reaction with 10 
h_Ti3+-N-TiO2 films (a) calcined at varying temperature for 10 min, (b) calcined at 350 °C 
for varying time; and (c) calcined for 10 min at 350 °C but with two light sources (BLED 
and UVLED). 

 

 
Figure A.11. Dark current density vs. time for undoped TiO2 and Ti3+-N-TiO2 films and 
fitting of 4th order polynomials to each data set. 

 

 

The following are the equations found from fitting the dark current in Figure A.11. 
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For 20 h:    y=505.29-1.288x+0.0015x2-7.815E-7x3+1.518E-10x4     (A.4) 
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Figure A.12. Photocurrent density vs. time during the water splitting reaction with 
undoped TiO2 and Ti3+-N-TiO2 films after subtracting the best-fit dark current functions 
from Figure A.11.  The inset shows the enlarged region from 400 s to 1800 s. 
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Figure A.13. Flat band potential estimation using Mott-Schottky plots for each 
mesoporous thin film sample by extrapolating the linear part of the curves to the horizontal 
axis.  
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APPENDIX B Supporting Information of Chapter 4 

 

 
Figure B.1. TGA of uncalcined TiO2 films heated from 50 °C to 450 °C at 5 °C/min and 
25 °C/min ramp with intermediate isothermal heating at 350 °C for 10 min. 
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Figure B.2. Tauc plot of (a) undoped TiO2 (0 min), (b) 30 min_N-TiO2, (c) 50 min_N-
TiO2, (d) 70 min_N-TiO2, (e) 90 min_N-TiO2, (f) 150 min_N-TiO2, and (g) 210 min_N-
TiO2 films. 
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Figure B.3. (a) XPS survey spectra of undoped TiO2 (0 min) and N-TiO2 (90 min) (the 
spectrum of undoped TiO2 was offset by 20000 value) and (b) XPS Ti 2p spectra of 
undoped TiO2 and 90 min_N-TiO2 films. 
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Figure B.4. (a) Methylene blue adsorption on undoped TiO2 films in dark and (b) Fitting 
first order kinetics of MB reaction. 
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Figure B.5. Photocurrent-time measurement for undoped cubic mesoporous TiO2 film on 
FTO-coated borosilicate glass slide using various light sources.  The electrolyte for these 
experiments was 1 M KOH, and the light sources were a solar simulator (halogen bulb with 
intensity of 100 mW/cm2), ultraviolet LED (UVLED) with λ = 365 nm and intensity 6 
mW/cm2, blue LED (BLED) with λ = 455 nm and intensity = 22.5 mW/cm2, and green 
LED (GLED) with λ = 530 nm and intensity = 2.5 mW/cm2.  All LED sources were from 
Thor labs and the current measurements were done using a Ag/AgCl reference electrode, 
Pt counterelectrode, and 0.4 V applied potential. 
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Figure B.6.  (111) projection of an Im3�m cubic mesoporous material illustrating the 
geometry used to estimate the mass of catalyst film.  The box contains 2 unit cells x 2 unit 
cells x 2 unit cells.  The pore-pore distance in this projection (12.5 nm from SEM) indicates 
a unit cell parameter of 15.3 nm.  Assuming a pore diameter of 7 nm, this gives a volume 
fraction of solid material of 90%. 
 

 
Figure B.7. SEM images of 210 min_N-TiO2 films of different magnifications taken from 
different spots of the films. 
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Figure B.8. ImageJ contrast-enhanced SEM images of (a) 0 min_N-TiO2 and (b) 210 
min_N-TiO2 films (image size – 500 nm×500 nm). Insets are fast Fourier transforms 
(FFTs) of the images. 
 

 

 
Figure B.9. XRD pattern of 0 min_N-TiO2 (undoped) and 210 min_N-TiO2 films. 
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Figure B.10. SEM images of (a) 0 min_N-TiO2 (undoped) and (b) 0 min_N-TiO2 

(undoped) after brightness / contrast adjustment by ImageJ; and (c) 210 min_N-TiO2 and 
(d) 210 min_N-TiO2 films after processing by ImageJ for the particle analysis tool. 
 

Particle analysis in ImageJ was performed on the SEM images shown in Figure 

B.10. 
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No. of counts: 1494 

Total area of pores: 11700 nm2 

Percentage of area covered by pores in the image: 29.4% 

Average pore perimeter: 10.3 nm 

 

For 210 min_TiO2 film, 

No of counts: 2299 

Total area of pores: 8260 nm2 

Percentage of area covered by pores in the image: 20.6% 

Average pore perimeter: 6.12 nm 

 

Calculation of specific surface area 

Assuming that the density of titania = 3.8 g/cm3, specific surface area is calculated 

assuming that perimeter is proportional to area and that pore area is proportional to pore 

volume.  In this case, 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

(1 − % 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) ∗ (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 

For undoped films,  

SSA  = 1494×(10.3×10-9)/(1-0.294)/(200×10-9×200×10-9)/(3.8×106) 

   =143 m2/g 

For 210 min_N-TiO2 films,  

SSA = 2299×(6.12×10-9)/(1-0.206)/(200×10-9×200×10-9)/(3.8×106) 

   =117 m2/g 
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APPENDIX C Supporting Information of Chapter 5. 

 

 
Figure C.1. Spectra of (a) Halogen bulb (120 V ELH) and Xe arc lamp reproduced from 
http://www.pveducation.org/pvcdrom/characterisation/illumination-sources, (b) UVLED, 
(C) BLED and (d) GLED reproduced from Thorlabs. 
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Figure C.2. The determination of band gaps by Tauc plot for (a) 0 sccm_N-TiO2 
(undoped), (b) 40 sccm_N-TiO2, (c) 60 sccm_N-TiO2, (d) 80 sccm_N-TiO2 and (e) 100 
sccm_N-TiO2 films 

 

 
Figure C.3. (a) XPS survey spectra of undoped TiO2 (0 sccm) and 100 sccm_N-TiO2 (100 
sccm) (the spectrum of N-TiO2 was offset by 50000 intensity units) and (b) XPS Ti 2p 
depth profile for the 100 sccm_N-TiO2 sample. 
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Figure C.4. Predicted surface structures for undoped TiO2 and N-doped TiO2 films. 

 

 

Figure C.5.  Amperometric current-time profile of water oxidation for long term stability 
test for 100 sccm_N-TiO2 film under UVLED illumination. 
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Figure C.6. Experimental set-up for oxygen measurement using oxygen sensor from water 
oxidation with 100 sccm_N-TiO2 film under UVLED illumination. 
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Figure C.7. Oxygen gas bubbles on the surface of the 100 sccm_N-TiO2 film formed by 
water oxidation under UVLED illumination. 

 
 

 

Figure C.8. Concentration profile of dissolved oxygen produced by water oxidation with 
100 sccm_N-TiO2 film under UVLED illumination. 
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IPCE Calculations 

Calculation for 100 sccm_N-TiO2 film under UVLED illumination  

IPCE = 1240I/(λJ) , I = 230.45 ×10-6 A/cm2, J = 6×10-3 W/cm2, λ = 365 nm 

= 1240×230.45×10-6/(365×6×10-3) = 0.13023=13.023% 

APCE = IPCE/Absorbance 

The absorbance of the double sided titania films on glass slide at 365 nm taken from 

Figure 5.2 = 0.427 

The absorbance of the single sided titania films on glass slide at 365 nm taken from 

Figure 5.2 = 0.427/2 = 0.2135 

A = log (1/T), so 0.2135 = log(1/T), T = 0.6116 

A = 1-T=1-0.6116=0.388 

So, APCE = 13.023%/0.388 = 33.56% 

 

Calculation for undoped TiO2 film under UVLED illumination  

IPCE = 1240I/(λJ) , I = 0.81×10-6 A/cm2, J = 6×10-3 W/cm2, λ = 365 nm 

= 1240×0.81×10-6/(365×6×10-3) = 0.00046=0.046% 

APCE = IPCE/Absorbance 

The absorbance of the double sided titania films on glass slide at 365 nm taken from 

Figure 5.2 = 0.085 

The absorbance of the single sided titania films on glass slide at 365 nm taken from 

Figure 5.2 = 0.085/2 = 0.0425 

A = log (1/T), so 0.0425 = log(1/T), T = 0.907 

A = 1-T=1-0.907=0.093 

So, APCE = 0.046%/0.093 = 0.49% 

 

Calculation for 100 sccm_N-TiO2 film under Blue-LED illumination 

IPCE = 1240I/(λJ), I = 3.7 ×10-6 A/cm2, J = 22.5×10-3 W/cm2, λ =455 nm 

= 1240×3.7×10-6/(455×22.5×10-3) = 0.000448=0.0448% 

APCE = IPCE/Absorbance 

The absorbance of the double sided titania films on glass slide at 365 nm taken from 

Figure 5.2 = 0.15 
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The absorbance of the single sided titania films on glass slide at 365 nm taken from 

Figure 5.2 = 0.15/2 = 0.075 

A = log (1/T), so 0.075 = log(1/T), T = 0.84 

A = 1-T=1-0.84=0.16 

So, APCE = 0.0448%/0.16 = 0.28% 

 

Calculation for undoped TiO2 film under Blue-LED illumination  

IPCE = 1240I/(λJ), I = 0.017×10-6 A/cm2, J = 22.5×10-3 W/cm2, λ =455 nm 

= 1240×0.017×10-6/(455×22.5×10-3) = 2.06×10-6=2.06×10-4% 

APCE = IPCE/Absorbance 

The absorbance of the double sided titania films on glass slide at 365 nm taken from 

Figure 5.2 = 0.047 

The absorbance of the single sided titania films on glass slide at 365 nm taken from 

Figure 5.2 = 0.047/2 = 0.0235 

A = log (1/T), so 0.0235 = log(1/T), T = 0.947 

A = 1-T=1-0.947=0.053 

So, APCE = 2.06×10-4%/0.053 = 0.0039% 
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Figure C.9. Estimation of flat band potential for (a) 0 sccm_N-TiO2 and (b) 100 sccm_N-
TiO2 films using Mott-Schottky plots. 
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Table C.1. Contact angles of undoped TiO2 and N-doped TiO2 films.  

Sample Reading 1 Reading 2 Reading 3 Average contact angle 

(n=3) 

Ti-TiO2 60° 61° 60° 60°±1° 

N-Doped TiO2 10° 11° 12° 11°±1° 
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APPENDIX D Supporting Information of Chapter 6. 

 
Figure D.1. The determination of band gaps by Tauc’s method for (a) TiO2, (b) 

GQD/TiO2, (c) N-TiO2, (d) GQD/N-TiO2 films 

 
IPCE Calculations 

The photocurrents of TiO2, N-TiO2, GQD/TiO2 and GQD/N-TiO2 films at 0.35 V vs. 

Ag/AgCl in linear sweep voltammetry under BLED illumination are 0.0148 µA/cm2, 3.29 

µA/cm2, 0.126 µA/cm2, and 5.13 µA/cm2, respectively.  Absorbance at 455 nm taken 

from Figure 6.3 for TiO2, GQD/TiO2, N-TiO2 and GQD/N-TiO2 films are 0.047, 0.057, 

0.154, 0.163, respectively.  Based on these values, the incident photon conversion 

efficiency (IPCE) and absorbed photon conversion efficiency (APCE) values can be 

calculated 

Calculation for TiO2 

Calculations for undoped TiO2 film under blue LED illumination:  
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IPCE = 1240I/(λJ) where I = 0.0148×10-6 A/cm2, J = 22.5×10-3 W/cm2 and λ =455 

nm. 

Thus, IPCE = 1240×0.017×10-6/(455×22.5×10-3) = 2.06×10-6 = 2.06×10-4% 

APCE = IPCE/(A) where A = fraction of light absorbed by film. 

The absorbance of the double sided titania films on glass slide at 455 nm taken from 

Figure 6.3 = 0.047, so the absorbance of the single titania film = 0.047/2 = 0.0235. 

A = log (1/T), so 0.0235 = log(1/T), T = 0.947 

A = 1-T=1-0.947=0.053 

So, APCE = 2.06×10-4%/0.053 = 0.0039% 

 

Calculation for GQD/TiO2 

Calculations for GQD-modified TiO2 film under blue LED illumination:  

IPCE = 1240I/(λJ) where I = 0.126 ×10-6 A/cm2, J = 22.5×10-3 W/cm2, λ =455 nm. 

IPCE = 1240×0.126 ×10-6/(455×22.5×10-3) = 15.2×10-6=15.2×10-4% 

APCE = IPCE/A 

The absorbance of the double sided GQD-TiO2 films on glass slide at 455 nm taken 

from Figure 6.3 = 0.057, so for a single film, absorbance = 0.057/2 = 0.0285. 

A = log (1/T), so 0.0285 = log(1/T), T = 0.936 

A = 1-T=1-0.936=0.0635 

So, APCE = 15.24×10-4%/0.0635 = 0.024% 

 

Calculation for N-TiO2 

Calculation for N-doped TiO2 film under blue LED illumination:  

IPCE = 1240I/(λJ) where I = 3.29 ×10-6 A/cm2, J = 22.5×10-3 W/cm2, λ =455 nm. 

IPCE = 1240×3.29 ×10-6/(455×22.5×10-3) = 3.98×10-4 = 3.98×10-2%. 

APCE = IPCE/A 

The absorbance of the double sided titania films on glass slide at 455 nm taken from 

Figure 6.3 = 0.154, so for a single film, absorbance =  0.154/2 = 0.077. 

A = log (1/T), so 0.0285 = log(1/T), T = 0.84 

A = 1-T=1-0.936=0.16 

So, APCE = 3.98×10-2%/0.16 = 0.25% 
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Calculation for GQD/N-TiO2 

Calculation for GQD/N-TiO2 film under blue LED illumination:  

IPCE = 1240I/(λJ), I = 5.13 ×10-6 A/cm2, J = 22.5×10-3 W/cm2, λ =455 nm 

= 1240×5.13 ×10-6/(455×22.5×10-3) = 6.22×10-4=6.22×10-2% 

APCE = IPCE/Absorbance 

The absorbance of the double sided titania films on glass slide at 455 nm taken from 

Figure 6.3 = 0.163, so for a single film, absorbance = 0.163/2 = 0.0815. 

A = log (1/T), so 0.0285 = log(1/T), T = 0.83 

A = 1-T=1-0.936=0.17 

So, APCE = 6.22×10-2%/0.17 = 0.37% 

 

Table S1. Contact angles of TiO2, N-TiO2, GQD/TiO2 and GQD/N-TiO2 films. 

Sample Reading 1 Reading 2 Reading 3 
Average contact 

angle 

Ti-TiO2 50.9° 50.6° 51.2° 50.9° ± 0.3° 

N-Doped TiO2 12.9° 13.1° 12.5° 12.8° ± 0.3° 

GQD/TiO2 32.0° 32.1° 32.4° 32.2° ± 0.2° 

GQD/N-TiO2 25.1° 26.2° 25.9° 25.7° ± 0.7° 
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Determination of HOMO-LUMO positions of GQDs using Cyclic voltammetry 

 

Background 

Cyclic voltammetry can be used to determine the HOMO-LUMO positions of a 

compound using Ferrocene as an internal standard. From CV, the oxidation onset of the 

substance represents the HOMO, and the reduction onset of the substance represents the 

LUMO. 

EHOMO of ferrocene (Fc) = 4.8 eV below the vacuum level will be used as the reference 

value. 

Method 

1.) Electrode preparation (glassy carbon (GC) electrode was polished and prepared for 

the procedure) 

A. Carbon nano-onions (1mg) + 0.5% Nafion solution (5µl) + DI water(100µl) → 
(Sonication for 30 mins)→Drop cast 5µl onto GC electrode 

B. Carbon nano-onions (1mg) + GQD (0.1mg) + 0.5% Nafion solution (5µl) + DI 
water (95µl) →(Sonication for 30 mins)→ Drop cast 5µl onto GC electrode 

2.) Both electrodes were dried at 50 °C under a vacuum for 5 hours to remove the water 

3.) 0.1M tetrabutylammonium hexafluorophosphate (TBAH) in dry acetonitrile was used 

as the electrolyte solution. 

4.) Reference electrode was prepared by filling Ag wire containing electrode with 10 mM 

AgNO3 + 0.1 M TBAH in dry acetonitrile 

5.) Prior to the electrochemical measurement, 6 ml of non-aqueous electrolyte was 

purged with N2 for 15 minutes to remove dissolved oxygen. 

Results 

Cyclic votammogram of Background – Electrode A 

Cyclic votammogram of GQD loaded electrode – Electrode B 
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Figure D.2. Cyclic voltammogram of Background – Electrode A and Cyclic 

voltammogram of GQD loaded electrode – Electrode B 
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Figure D.3. Cyclic voltammogram with GQD 

 

Ferrocene (𝐸𝐸°) = 0.086 V vs Ag/AgNO3 

𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −𝑒𝑒[𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐸𝐸1/2(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + 4.8] 

𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −𝑒𝑒[−0.50 − 0.09 + 4.8] 

𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −4.21 𝑒𝑒𝑒𝑒 

 

From previous data (UV VIS measurements) GQD band gap = 2.42 eV 

HOMO level of GQD = -6.63 eV vs. vacuum 

LUMO level of GQD = -4.21 eV vs. vacuum 

 

Determination of valance band position of TiO2 and N-TiO2 using ultraviolet 

photoelectron spectroscopy (UPS) 

Source - E-LUXTM121 

Source energy = 10.2 eV (H Lyman-α photon source) 

Reduction onset = -0.50 
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Figure D.4. Valance band spectra obtained by UPS(left side) and the coresponding 

energy level diagram(Right side) 

 

Calculation 

Work function (WF) = 10.2 eV – X2 eV 

WF = 10.2 eV – 5.12 eV = 5.08 eV 

Valance Band (VB) = WF + X1 

VB = 5.08 eV + 2.77 eV = 7.85 eV with respect to vacuum 

(Valance band position of N-TiO2 was also determined by following the same procedure) 
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APPENDIX E Supporting Information of Chapter 7. 

 

 
Figure E.1. GIWAXS patterns of (a) glass substrate, (b) undoped TiO2, (c) H-TiO2 and (d) 
anatase films 
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Figure E.2. XPS Ti 2p spectra H-TiO2 films with peak fitting 
 

 

 

 
Figure E.3. Neutron Reflectivity profile of (model fit-line, experimental-bar) of undoped 
mesoporous TiO2 film in air 
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Figure E.4. UV-Vis spectra of pure and hydrogenated TiO2 (mild condition) 

 

 
Figure E.5. SEM images of H-TiO2 prepared using mild plasma conditions 
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Figure E.6. Photocurrent-time measurement with undoped TiO2 film and H-TiO2 films 
under (a) UVLED and (b) BLED light irradiation 
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Table E.1. Contact angles of undoped TiO2 and H-doped TiO2 films 

Sample Reading 1 Reading 2 Reading 3 Average contact 
angle 

TiO2 60° 61° 62° ~61° 

H-TiO2 31° 31° 30° ~31° 
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