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ABSTRACT OF THESIS 

FACILITATING ANLAYSIS OF TOXOPLASMA GONDII BRADYZOITE 
METABOLIC ACTIVITY VIA IMAGE PROCESSING AND MULTIVARIATE 
LOGISTIC REGRESSION FOR HIGH THROUGHPUT CLASSIFICATION OF 

MITOCHONDRIAL MORPHOLOGIES 
Approximately a third of the population worldwide is chronically infected by the 

parasite Toxoplasma gondii. During chronic infection the parasite resides within tissue 
cysts as the poorly understood bradyzoite form. Observation of these bradyzoites via 
microscopic imaging within tissue cyst purified from infected mouse brains has shown 
metabolic activity with heterogeneous replication potential. With fluorescence 
microscopy imaging targeting the parasite’s actively respiring mitochondria, the 
parasite’s metabolic state can be further investigated as the morphology of mitochondria 
can be associated with specific physiologic states. However, manually classifying 
mitochondrial morphologies from these images can be tedious and prone to error as the 
bradyzoites within cysts can number into thousands. Towards this end, computer based 
tools were developed to facilitate and automate the identification and classification of the 
parasite’s mitochondrial morphologies to aid the study of bradyzoite biology. The 
developed image processing based program assists the manual classification of 
mitochondrial morphologies by trained operators while collecting features and statistics 
from the manual classification of shapes. The manual classifications, obtained from a 
subset of images was used as the gold standard to train a multivariate logistic regression 
algorithm. Results from the machine learning based automatic classification, trained on a 
total of 1,138 discrete mitochondrial objects from 5 images of individual cysts, and tested 
on 5 different images of individual cysts showed that from a total of 927 discrete 
mitochondrial objects that were identified, an average overall accuracy of 82% was 
obtained in predicting the mitochondrial morphology as belonging to one of the five 
predefined classes of Blobs, Tadpoles, Donuts, Arcs, or Other. The Lasso morphology, 
typically associated with actively growing parasites was not observed with significant 
frequency. The majority of detected objects, 55%, of the objects from the 5 images used 
in the training set were identified as belonging to the Blob morphology which is 
presumptively associated with low bradyzoite metabolic activity. There was a lower 
incidence of Tadpole and Arc morphologies which are associated with more active 
parasites. The performance of the trained machine learning algorithm resulted in a high 
degree of confidence in the prediction of Blobs with an average F score of 0.91 and Arcs 
with an average F score of 0.73 which added together make up a majority of 
morphological classes present in most bradyzoites, 85% of the objects detected in the 
training set. These results indicate that the developed approach can advance the 
investigation of bradyzoite biology by allowing for a higher throughput of images 
analyzed and thus potentially assist in the evaluation of the efficacy of potential drug 
treatments. 

KEYWORDS: image processing, machine learning classification, bradyzoite biology 
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CHAPTER 1.  INTRODUCTION 

Technology advancements continue to aid in the expansion of our knowledge in 

many fields due to their broad application, one such area is parasitology allowing 

previously inaccessible aspects to be observed in greater detail. The work described in 

this thesis focused on the integration of fluorescence microscopy imaging methods along 

with the automation of image processing and machine learning to better facilitate 

analysis of the biology of Toxoplasma gondii, specifically bradyzoite mitochondrial 

morphology.   

Toxoplasmosis is an infectious disease caused by the protozoan parasite 

Toxoplasma gondii (T. gondii) which chronically infects a third of individuals globally 

[1].  In most healthy individuals the infection is asymptomatic and readily controlled by 

a competent immune system[1]. However, the immune system does not rid the individual 

of the parasite instead the parasite enters a second life cycle stage defined by the tissue 

cyst composed of slow growing bradyzoites[1]. Tissue cysts develop primarily in 

neuronal and muscle tissues, wherein a life-long infection is established [1].  These tissue 

cysts retain the potential to reactivate either stochastically or in response to yet to be 

defined triggers initiating a round of acute infection. This event in the 

immunocompromised, especially in the case of HIV-AIDS, results in symptomatic 

toxoplasmosis manifesting primarily as toxoplasmic encephalitis that is lethal if not 

treated [1]. There is significant motive for further research on T. gondii due to the 

relatively high prevalence of the parasite, the potential lethality of toxoplasmosis, and the 

outstanding questions on how the parasites biology enables it to persist within humans 

and other intermediate hosts.  
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Little is known about the physiology of bradyzoites, which were long considered 

to be non-replicative and metabolically quiescent [2]. Prior work demonstrated that the 

bradyzoites within tissue cysts in vivo exhibited a surprising level of metabolic activity 

including mitochondrial activity and the ability to replicate [3]. This finding exposed the 

need for further studies on the physiology of bradyzoites, which has necessitated the 

development of new tools including the physiology based imaging approaches that are 

the focus of this work.   

The parasite’s development cycles and its growth during chronic infection are key 

indicators of its capability to persist. Inherent to parasite viability and the potential for 

growth is a requirement for energy and metabolites derived from the activity of the 

single parasite mitochondrion. Ongoing studies revealed a surprising level of 

heterogeneity in the level of activity and morphology of mitochondria and mitochondrial 

elements within tissue cysts purified from infected mouse brains [3]. It can be reasoned 

that these differences reflect underlying physiological states that can inform on the 

metabolism of individual bradyzoites and the populations that are housed within tissue 

cysts. As has been observed in tachyzoites, the varying mitochondrial morphologies are 

plastic and reflect on the parasites physiological state [4, 5]. The morphologies 

resembling that of a lasso (ring) and arcs (linear and curvilinear forms) can be associated 

with more active mitochondria compared to that of a tadpole (also termed sperm-like) 

and blobs (also termed collapsed and puncta) morphological forms [4, 5]. Under 

conditions of nutrient stress and drug pressure the mitochondrion can be fragmented into 

multiple punctate forms [4, 6]. This work aims to assist in the quantification and 

classification of mitochondrial morphologies imaged following accumulation of the 
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mitochondrion targeting reagent MitoTracker, as the observed morphologies can inform 

about the parasite’s physiological state [4, 5]. MitoTracker accumulates within actively 

respiring mitochondria driven by the electrochemical membrane potential [7]. Once in 

the mitochondrion, this fluorescent dye is captured and can be detected using 

fluorescence microscopy[7]. Fluorescence microscopy imaging allows us to capture 

targeted entities, which are the respiring/active mitochondria marked by MitoTracker dye 

and associated nuclei using DNA dye 4’,6-Diamidino-2-phenylindole DAPI (Invitrogen), 

illuminating the mitochondria and nuclei respectively within an optical section of tissue 

cyst following deconvolution. The profiles of labeled mitochondria viewed in the context 

of the nuclear staining using DAPI or other UV excitable DNA-specific dyes (Hoescht 

33342), provides a spatial relationship of individual bradyzoites within labeled cysts 

which was noted to be potentially helpful in classifying the mitochondrial morphology 

by the experts involved in this study. The reason being that the mitochondrion of actively 

growing tachyzoites tend to surround the nucleus with a lasso shape [5]. The 

MitoTracker dye reveals the level of metabolic activity within the encysted bradyzoites 

as it accumulates selectively in active mitochondria and appear as objects with distinct 

morphologies within imaged encysted bradyzoites. Mitochondrial morphology has been 

observed to transition during different lifecycles, such as observed during tachyzoite 

mitochondrial autophagy (mitophagy) [4], as well as in the course of the active growth 

cycle [5].   Notably, the dynamics of mitochondrial morphology have not been 

investigated in bradyzoites. Observing bradyzoite mitochondria in greater detail can help 

to narrow the current gap in knowledge on the parasites ‘clinically important life cycle 

stage’, as the majority of active infections in immune compromised individuals are due 
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to the reactivation of a previously acquired (can be decades earlier) chronic infection [8]. 

This is particularly relevant as the only drugs exhibiting any efficacy in this hard to treat 

form are believed to target the parasite mitochondrion [9, 10].  A true longitudinal in 

vivo study is not feasible as the images are taken of extracted and purified tissued cyst 

therefore capturing specific time points throughout the progression of chronic 

toxoplasmosis can help in the derivation of the parasite’s growth and development 

cycles. Once established the observed effect of drug treatment will provide 

unprecedented mechanistic insight into the variable efficacy of existing drugs against 

encysted parasites. 

The observation of the subcellular entities has not been performed in detail 

throughout the parasite’s lifecycle. This is partially due to the high demand of time and 

trained specialist it would require in performing this manual process of observing 

individually sampled images. Technology advances have helped to continue to overpass 

the technical challenges that have halted even some of the ‘most basic studies on 

bradyzoites and tissue cysts in vivo’ [8]. With the application of automated image 

processing and machine learning this manual process has the potential to be automated. 

In this study the input of trained specialist was used to help guide the development of a 

new tool to aid the analysis of the mitochondria within the tissue cysts. Quantitative 

analysis of the mitochondrial morphological diversity has direct implications on the 

assignment of physiological activity and thus druggability.  
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CHAPTER 2. BACKGROUND 

Previous work from our lab developed image processing based tools to quantify 

bradyzoite nuclei, via DAPI (Invitrogen) stained microscopy images, to derive the 

number of parasites within tissue cysts (the packing density) at the chronic stage of 

toxoplasmosis infection [3]. The study illustrated that the bradyzoite burden within cyst 

over time displayed a high degree of heterogeneity challenging the concept of 

bradyzoites being predominantly dormant entities [3]. The wide range in bradyzoite 

burdens observed in that study could be greater than that of the effects of drugs that 

exhibit partial efficacy[8]. This previously unrecognized heterogeneity in organization 

and function of tissue cysts leads to further questions on what contributes to this 

complexity in bradyzoite physiology.  

This prior work found that the packing density defined by varying bradyzoite 

counts within equal sized tissue cysts could differ by over two fold [8].  This work also 

derived that the level of metabolic function, associated with bradyzoites in vivo was 

much greater than what was long thought to be the case. This included the capacity to 

replicate within the tissue cyst, highlighting the need to reexamine the prevailing 

dogma’s surrounding bradyzoite biology [3]. With the number of bradyzoites ranging 

into the hundreds for a single cyst there is the opportunity to observe and gather a large 

amount of useful information on bradyzoites to better understand their biology. At the 

same time, the large number of the bradyzoites also highlight the need for and the utility 

of computer based approaches in these studies.  

The mitochondrion of T. gondii appears highly sensitive to nutrient limitation by 

exhibiting progressive changes in morphology in studies using cell culture based 
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tachyzoite infections [4]. The mitochondrial morphology of T. gondii has shown to 

reflect its physiological state [4, 5]. The pattern of morphologies progresses from loop to 

a more linear shape with a bulbous end (tadpole), to an arc or dumbbell shape, to a 

punctate shape [5]. The normal shape for active tachyzoites has been described as ring or 

loop shaped [4, 5], and a tachyzoite will possess a single large mitochondrion [11].  In 

addition, under conditions of stress and drug pressure, the mitochondrion can be 

fragmented into multiple puncta [4, 6]. In contrast, little is known about the morphology 

of mitochondria within encysted bradyzoites, suggesting that the distribution of 

morphologies could inform on the specific physiological state of the individual 

bradyzoites. 

Image analysis programs have been developed to aid the analysis of pathogen 

recognition and host response via protein recruitment based on machine learning and 

deep learning [12] and the analysis of the tissue cyst morphology along with bradyzoite 

count within cyst was evaluated by Bauman et al. by looking at diameter, circularity, 

particle (bradyzoite count), fractal dimensions, lacunarity, and packing density of tissue 

cysts themselves [13].  Few studies have looked at the chronic phase of in vivo derived 

tissue cyst from the context of individual bradyzoites, and yet analysis at the level of 

parasites organelles specifically mitochondria have not been performed in the manner 

approached here. 

With the use of added imaging techniques and the use of multiple stains in 

ongoing animal studies of exposure to T. gondii in our collaborator’s (Dr. Sinai) 

laboratory, the diversity of the irregularly shaped parasite structures can be enumerated 

and explored in greater detail. As mentioned above, MitoTracker (Invitrogen) can be 



7 
 

used to illuminate active mitochondria. Using mitochondria as a measurable substitute 

for bradyzoite metabolic status we can better understand its growth in terms of expansion 

and replication.  

 This study uses image processing based methods to detect and segment 

fluorescently labelled mitochondrial entities and nuclei within microscopy images to 

localize distinct objects within the images and then uses a supervised machine learning 

approach to identify these objects morphologies.  The images were obtained from mice 

infected with T. gondii with varying parasite burdens. These animal studies were 

conducted in Dr. Sinai’s laboratory and approved by the Institutional Animal Care and 

Use Committee at the University of Kentucky. With hundreds of mitochondria 

illuminated in a single fluorescent microscopy image of a tissue cyst the end goal was to 

be able to identify each individual mitochondrion and classify them as belonging to one 

of the predefined morphologies. Image processing was used to extract features of 

localized objects and manual classification, performed by expert users, was used to 

obtain gold standard classification which was used to train the supervised machine 

learning approach.  

There are currently a number of supervised classification machine learning 

approaches that could be implemented to best predict which morphological class the set 

of extracted features are best associated with based on the user labeled data set.  The 

classification models include simple thresholding, regressions, support vector machines, 

and neural networks [14]. The approach chosen to implement in this thesis was logistic 

regression as it is a widely used technique that is relatively simple to implement yet 

robust. 
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CHAPTER 3. METHODS 

The following section describes how the developed computer program performs 

image processing for object detection, determines features of the detected objects and 

collects user input on the object’s morphological classification. The collected 

information is then used in training a machine learning algorithm automating the time-

consuming process that a trained user would perform of manually identifying and 

classifying individual objects and their shapes within fluorescence based images of tissue 

cysts.  MATLAB’s App Designer, Image Processing, Computer Vision, and 

Optimization toolboxes were used in the creation of a custom designed code that 

incorporates the image processing workflow and a graphical user interface (GUI) for a 

customizable and user-friendly data collection method.  

3.1 Images 

Tissue cysts of the Type II ME49 strain of chronically infected CBA/J mice were 

used to evaluate the chronic stage of infection. CBA/J mice show a high volume of cyst 

development within the brain [15].  The cysts were extracted from the central nervous 

system post infection and purified using a Percoll gradient as described by Watts et al 

[16].  The samples were then labeled for DNA and actively respiring mitochondria with 

DAPI (Invitrogen) and MitoTracker red (Invitrogen) dyes. Prior to being imaged the 

cysts were fixed in 3% paraformaldehyde, deposited on glass slides and cover-slipped. A 

Zeiss Axioplan microscope with 100x/1.4 numerical aperture objective was used with a 

grayscale AxioCam MRM digital camera. A single z- plain image was selected from 

each cyst to be analyzed based on having the widest diameter, hence having the potential 

to represent the maximum number of bradyzoites of all the z-plain images for that cyst.  
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Each image represents a slice of a three-dimensional section of the cyst, because of the z-

plain slicing, thus there was the potential of having overlapping objects. The images 

were deconvolved using an iterative algorithm (AxioVision Deconvolution Suite; Zeiss). 

The deconvolved images were used for object detection and classification as described 

below. The optical magnification used provided images with a 15.5 pixel per micron 

scale. The resulting images, one labeled DAPI and one labeled Mito, were 8-bit 

grayscale image files in TIF format. An example of the DAPI and Mito image pair, 

obtained from the same cyst, is shown in Figure 1. 

 
Figure 1. A representative DAPI (left) and Mito (right) image. 

 
3.2 Image Processing 

The 8-bit grayscale image undergoes linear intensity scaling, adjusting the pixel 

intensity range to that of the full range of resolution, i.e. 0 to 255. Enhancing the contrast 

between the background pixels and the target objects’ pixels was then performed by 

utilizing top hat and bottom hat filters [17].  A disc shaped structuring element was used 

in implementing the erosion and dilation processes of the filters, the radius of the 

structuring element used in the top hat filter was 10 pixels while the radius used for the 

bottom hat filter was 3 pixels.  

The two filters were used in conjunction as described in Equation 1 and an 

example of this filtering is depicted in Figure 2. The foreground was emphasized by the 
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application of the top hat filter to the original image, I, which made the bright spots 

brighter. The objects’ perimeter was enhanced by the subtraction of the scaled bottom hat 

filtered image resulting in the contract enhanced filtered image, J. 

ሾ 𝐽 ሿ ൌ ሾ𝑇𝑜𝑝ℎ𝑎𝑡ሺ 𝐼 ሻሿ ൅ ሾ 𝐼 ሿ െ 10 ∗ ሾ𝐵𝑜𝑡𝑡𝑜𝑚ℎ𝑎𝑡ሺ 𝐼 ሻሿ Equation 1. Contrast 
Enhancement 

 
Figure 2. Depiction of the filters used, starting with a zoomed in section of the original 

Mito image [left], the top hat filtered image [left center], the bottom hat filtered 
image [right center], and the combination of images as described by Eq. 1 

[right]. 
3.3 Object isolation and capturing user input 

The image is composed of dark background pixels, bright and intermediate gray 

pixels belonging to the objects of interest within the cyst. The objects of interest are the 

organelles targeted by the fluorescent dye, in the case of the MitoTracker images it is the 

active mitochondria while in the DAPI images it is the nuclei of the individual 

bradyzoites residing within the cyst.  

To analyze individual objects of interest the objects first needed to be 

automatically detected, or separated from the background, and segmented into individual 

entities from within the whole imaged cyst. A threshold value to separate background 

pixels from pixels representing the target objects was implemented, this method 

segmented the target objects sufficiently as well. In this approach only the pixels above 

the threshold value were retained with a value of 1 while the remaining pixels were set to 

0, creating a binary image defined solely of having the target object pixels or background 

pixels. A key factor in choosing the appropriate threshold for this method of 
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segmentation was finding a balance between over segmentation and under segmentation. 

The former results in fragmented target objects while the later results in combined 

objects composed of multiple target objects. In increasing the threshold for binarization 

there may occur over segmentation while decreasing the threshold typically results in 

under segmentation. 

To allow computational analysis with minimal user input, an initial i.e. starting 

threshold value based on intensity distribution was calculated to best separate the objects 

of interest from the rest of the image. The Otsu method determines a threshold which 

minimizes the interclass variance and maximizes the between class variance of 

foreground and background pixels [18]. Therefore, the Otsu method was used to find an 

initial threshold which was set as the default value. After the evaluation of a few images, 

it was determined that 40% of the Otsu threshold provided a more acceptable starting 

point to default to for capturing the objects of interest within the MitoTracker images. An 

example of the binarized Mito images using the unmodified and modified Otsu threshold 

is displayed in Figure 3. The decision to modify the Otsu threshold was based on 

wanting to be more conservative and limit over segmentation because the key attribute of 

the objects that was of interest was their morphologies, i.e. their shapes. The DAPI 

images required a higher percentage of the Otsu threshold which resulted in the 

exclusion of a greater number of lower value pixels. This exclusion prevented under 

segmentation in the DAPI images where the individual target objects were less defined. 

A slider was added to the GUI to allow the user to adjust these default thresholds and the 

resulting changes to the binary image could be observed immediately by the user. 
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Figure 3. The left side of the top and bottom image shows the same zoomed in section of 

a Mito image, while the top right side shows its corresponding binary image using 
the Otsu threshold and the bottom right side shows the binary image using a 

modification of using 40% of the Otsu threshold. 
 

Following thresholding, the DAPI images underwent watershed segmentation 

[19] for more accurate segmentation of the target objects, especially the nuclei within 

proximity of neighboring nuclei. Since the watershed method can be prone to over 

segmentation a height transform [20] was applied to suppress smaller peaks, of one 

standard deviation of the image pixel values or less, before applying watershed 

segmentation. 

The boundary of each object of interest within the binary image was then obtained 

using the Moore-Neighbor tracing algorithm with Jacob’s stopping criterion [17]. This 

step resulted in a label matrix enabling quick access to the total number of objects along 

with their location within the image. With the label matrix and by superimposing the 

binary image on the original image, geometric and pixel value information of each object 
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within the tissue cyst image were extracted. After this stage, a total of 22 features, which 

are defined in the next section within Table 2, were extracted for each object.  

To exclude objects that would typically be ignored during manual evaluation the 

identified objects were filtered based on two criteria to exclude objects smaller than a 

certain size and dimmer in intensity than a certain threshold (but with an intensity greater 

than the binarization threshold). The features of minimum axis length and maximum 

intensity of each object were compared to user selected size and intensity thresholds. A 

‘low size’ exclusion criterion defaulted to half a micron, i.e., seven pixels to exclude 

objects that had a minor axis, or width, less than this value in microns. A second 

exclusion criterion, ‘low intensity’, did not initially exclude any objects unless updated 

by the user as it defaulted to the binarization threshold value used. This criterion 

excluded objects that are dimmer and may have occurred due to over segmentation. The 

user could update these exclusion criteria as needed via the GUI in the appropriate fields 

to observe their effect. 

3.4 Mitochondrial morphology classes and features extracted 

Upon initial analysis the same mitochondrial profiles observed in the tachyzoites 

served as the main morphologies to classify the objects identified in the Mito images. 

These morphologies included a lasso (ring), arcs (linear and curvilinear), tadpoles 

(sperm-like) and blobs (collapsed) forms [4, 5]. 

It was important to then have an additional ‘Other’ class for those objects that the 

user could not place in any one of the four specified classes since the morphological 

diversity of encysted bradyzoites mitochondrial profiles has not been explored before. 

After initial analysis it was observed that the Lasso class was rarely present and there 
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were a number of objects that appeared to have a similar shape but were markedly 

smaller. We referred to this new observed shape as “donut”, therefore a Donut class was 

added, with the Lasso class left unused a total of five classes was maintained for further 

analysis. Table 1 below shows a representative image and description of each class 

mentioned here. 

Table 1. Mitochondrial morphological class description 
Class Description 

Lasso  Ring or loop shaped with a visible hole in the 

middle, typically larger than 1 micron (2-3 micron). 

Normal morphology of a functioning mitochondria. 

Will most likely surround a nucleus. 

Tadpole Tadpole or sperm like, having a bulbous bright end 

with a tail or linear string like protrusion that is 

often thinner and fainter. The tail is typically equal 

to or greater than the diameter of the head. 

Arc 

  

Dumbbell shaped, fairly uniform arms with a thin 

connection, often connected in the shape of an arc.  

This may also include linear shapes. 

Blob Punctate, circular in shape, ranging in brightness, 

typically smaller (between 0.5 microns and 1 

micron in diameter). This is an abnormal 

mitochondrial shape, possible due to fragmentation 

from autophagy. 

Other Unidentifiable, typically a combination of more than 

one due to proximity and/or failure of thresholding 

to segment properly. A typical parasite is around 7 x 

3 microns in size, so if it approaches this size it is 

going to be combination of more than one 

mitochondrion. 
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Donut  Comparable to the Lasso class but does not 

surround a nucleus, typically smaller in size 

compared to the Lasso class. 

 

Features describing shape and intensity attributes of the objects were extracted to 

best capture the geometric and pixel intensity descriptions outlined in Table 1. Many of 

the features were extracted using Matlab’s ‘regionprops’ function [21], these are denoted 

with an asterisk in Table 2.   

Table 2. Description of object features used 
1  Area* Total number of pixels composing the object. 

2 Perimeter* Total number of adjoining pixels around the border of the object. 

3 Max 

Intensity* 

Maximum pixel intensity within the object. 

4 Min 

Intensity* 

Minimum pixel intensity within the object. 

5 Avg 

Intensity* 

Mean pixel intensity of the object. 

6 Intensity 

Variance 

Variance of the pixel intensities composing the object. 

7 Intensity Std 

Dev 

Standard deviation of the pixel intensities composing the object, or 

the square root of the variance (feature 6). 

8 Intensity 

MSE 

The mean squared error between original object pixel intensities and 

the enhanced image object pixel intensities, both extracted with 

regionprops*, this intensity change is caused by the linear 

equalization and contrast enhancement performed. 

9 Extent* To calculate the extent, the area of the object is divided by the area of 

the bounding box, or the smallest box that will contain the object. It 

is the ratio of pixels within the object to the pixels in the bounding 

box. 
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10 Circularity* Circularity describes the 'degree of roundness' or how close an object 

is to a circle. A result of 1 corresponds to a perfect circle and 0 

corresponds to highly irregular/non-circular shapes; (4 X pi X Area) 

./ Perimeter.^2. 

11 Eccentricity* This is calculated by using the second moments to find the ratio of 

foci distance to major axis length, assigning a circle a value of 0 and 

a line a value of 1, commonly defined as the deviation from 

circularity. 

12 Major axis* The axis length is determined by finding the corresponding major 

axis of an ellipse with the same normalized second central moments. 

13 Minor axis* The axis length is determined by finding the corresponding minor 

axis of an ellipse with the same normalized second central moments. 

14 Aspect ratio This is calculated by dividing the major axis by the minor axis. 

15 Peak count The number of peaks found in the object after suppressing peaks one 

standard deviation (of total object bounding box) high using a height 

transform (Matlab’s ‘imhmin’) and then applying the watershed 

algorithm (Matlab’s ‘watershed’). This was useful for identifying 

object that may be a combination of multiple objects as having 

multiple peaks. 

16 Hole count The number of holes found in the object, Matlab’s ‘bwboundaries’ 

was used to help calculate this feature. 

17 Hole size The total number of pixels that are part of a hole in the object, or the 

addition of the areas of all holes found in the object, Matlab’s 

‘bwboundaries’ was used to help calculate this feature. 

18 DAPI 

proximity 

The minimum distance found between the mitochondrial object 

extrema* to any surrounding DAPI object centroids*. 

19 DAPI 

distance 

The minimum distance found between the mitochondrial object 

centroid* to any surrounding DAPI object extrema*. 

20 Mito 

proximity 

The minimum distance found between the mitochondrial object 

extrema* to any surrounding mitochondrial centroids*. 
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21 HOG peak 

count 

The histogram of oriented gradients was found using Matlab’s 

‘extractHOGFeatures’ from the Computer Vision toolbox. This 

function evaluated the objects image as single block and found the 

magnitudes of the gradients that fell into 8 orientations (0-45,45-90, 

90-135, 135-180, 180-225, 225-270, 270-315, 315-360).  

To get one value from these distributions the number of dominant 

orientations present was found. First the magnitudes were sorted in 

descending order, this helped to remove complications due to 

varying object orientations. Then the location in the array where the 

difference between the neighboring value was greater than the 

standard deviation was returned. If no value was returned, as in the 

case of a circular objects, then a value of zero was returned. 

22 Extrema 

Intensity 

ratio 

The objects’ centroid* and orientation* were determined to then 

translate and rotate the objects’ image to be centered around its 

centroid and align the major axis with the x-axis. The objects image 

is then split in half along its major axis* and the sum of the 

intensities of each half are determined to then calculate the ratio of 

the brighter half’s pixel intensities to that of the other half’s pixel 

intensities.  

 

3.5 Machine learning for morphology classification 

To address the morphology classification problem a supervised logistic regression 

algorithm was chosen due to its ease of interpretation and implementation. Logistic 

regression determines the probability that a given example or object’s discrete features 

are associated with a class or not by implementing the sigmoid function (eq.2) typically 

with a threshold of 0.5 to make Boolean predictions from the linear regression 

hypothesis (eq.3) [14]. The sigmoid function is derived from the log of the odds ratio, 

which is the ratio between the probability the event, i.e. class, occurs to the probability 
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that it does not occur.  With linear regression the predictive output is on a linear and 

continuous scale that can have a large range, in applying the sigmoid function the 

predictive output gets scaled between 0 and 1, thus can be considered to be the 

probability of the class with a range of 0 to 1.  Since we sought to not just predict the 

probability of one class, each class was evaluated individually to determine the 

probability for each class and then compared to select the class with the maximum 

likelihood. 

𝑔ሺ𝑧ሻ ൌ ଵ

ଵା௘ష೥
     Equation 2. Sigmoid function 

 

 
Figure 4. Sigmoid function plotted in MATLAB 

 
ℎሺ𝑥ெሻ ൌ 𝜃଴𝑥଴

ெ ൅ 𝜃ଵ𝑥ଵ
ெ ൅⋯൅ 𝜃ே𝑥ே

ெ     Equation 3. Linear regression hypothesis 
𝑠𝑢𝑝𝑒𝑟𝑠𝑐𝑟𝑖𝑝𝑡 𝑀 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑀𝑡ℎ 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎𝑛𝑑 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡 𝑁 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑁𝑡ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 

implicit is that x଴
ெ ൌ 1 and 𝜃ேparameters set the contribution from each N feature 

 

To easily implement the concepts of logistic regression in code the features 

(variable X), actual classifications (variable Y), and predicted classifications (or h(X) in 

the following equations) for each object were stored in a vectorized form which allowed 

for the linear regression and logistic regressions equations to be simplified to eq 4 and 5 

below [14]. 
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ℎሺ𝑋ሻ ൌ 𝑋𝜃்     Equation 4. Matrix implementation of linear regression hypothesis 
 

ℎሺ𝑋ሻ ൌ 𝑔ሺ𝑋𝜃்ሻ     Equation 5. Logistic regression hypothesis  
 

X is a matrix composed of M rows, one for each object, and N+1 columns 

of features with an implicit feature with the value of 1 added to allow for 

the simplification of eq 3 to eq 4.  

 

h(X) and Y are column vectors with M rows, each row representing the 

predicted and actual (known) class for each M object. 

 

𝜃 is a parameter row vector with the first column, 𝜃଴, being constant with 

a value of 1, and the following columns representing the coefficiants 

defining the contribution of each N feature. 

 

(For example if there were 200 objects, each with 22 features, dimensions 

of X would be 200 by 23. While h(X) and Y would be 200 by 1 row 

vectors, and 𝜃 would be 1 by 23 row vector) 

 

When developing a machine learning algorithm an optimum solution for the 𝜽 

parameter can be determined more efficiently with features that have been scaled to 

values of the same order via eq.6 [14]. For example, the range for the feature ‘Area’ may 

range from 7 to 700 pixels while the ‘Extent’ feature may range from 0.13 to 0.96 

therefore, the features were first normalized due to the varying ranges of values, this is 

also referred to as feature scaling. 

𝑋ே
ெ ൌ ௑ಿ

ಾି௠௘௔௡ሺ௑ಿሻ

௦௧ௗሺ௑ಿሻ
     Equation 6. Feature scaling 

 

𝑚𝑒𝑎𝑛ሺ𝑋ேሻ ൌ  ଵ
ெ
∑ 𝑋ே

ூெ
௜ୀଵ      Equation 6.1 Feature means 
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𝑠𝑡𝑑ሺ𝑋ேሻ ൌ  ට ଵ

ெିଵ
∑ ห𝑋ே

௜ െ 𝑚𝑒𝑎𝑛൫𝑋ே
௜ ൯ห

ଶெ
௜ୀଵ      Equation 6.2 Feature standard 

deviations 
 

The logistic regression algorithm is trained by finding a parameter vector, 

represented by 𝜽, that minimizes the cost function, or error. The cost function is a 

measure of how the hypothesis, i.e. predicted class from eq. 5, compares to the ground 

truth, or in this example the gold standard, (Y) as described in eq.7 [14]. The function 

returns a lower cost when the hypothesis is closer to the ground truth, or gold standard.  

𝐽ሺ𝜃ሻ ൌ
1
𝑀
෍ቂെ𝑌ሺ௜ሻ 𝑙𝑜𝑔 ቀℎ൫𝑋ሺ௜ሻ൯ቁ െ ൫1 െ 𝑌ሺ௜ሻ൯𝑙𝑜𝑔 ቀ1 െ ℎ൫𝑋ሺ௜ሻ൯ቁቃ ൅

𝜆
2𝑀

෍𝜃௝
ଶ

ே

௝ୀଵ

ெ

௜ୀଵ

 

Equation 7. Regularized cost function; superscript ሺiሻ represents the ith row or 
object 

 

This cost equation includes a regularization parameter, 𝝀 , to prevent overfitting 

the model to the provided training objects. Regularization helps to generalize the model 

for future predictions by adding a cost for the parameter vector used and limiting the 

algorithms overall fit to the training set used. 

To find the parameters which minimize the cost and in return find the most 

accurate hypothesis, the 'fminunc' function from MATLABs Optimization Toolbox was 

used. This function uses the Quasi-Newton algorithm with BFGS Quasi-Newton method 

and a cubic line search procedure [21]. The optimum parameters are found for each class, 

essentially creating 5 models. To do this the ground truth vector, Y, is modified when 

each model is trained to consist of 1’s for the class of interest and 0’s for all other 

classes. Next eq.5 is used to find the hypothesis with each model for the provided 

objects; this results in 5 hypotheses for each M object. Finally, a one-vs-all approach is 
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used as described in eq 8 where the class associated with the model resulting in the 

greatest hypothesis value is then set to be the predicted class for that object [14, 22]. 

 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛ெ ൌ 𝑚𝑎𝑥 ሾ ℎ௕௟௢௕ሺ𝑋ெሻ , ℎ௧௔ௗ௣௢௟௘ሺ𝑋ெሻ,ℎௗ௢௡௨௧ሺ𝑋ெሻ,ℎ௔௥௖ሺ𝑋ெሻ,ℎ௢௧௛௘௥ሺ𝑋ெሻ ሿ 
Equation 8. Multi-class logistic regression prediction; superscript M represents the 

Mth object 
 

The performance of the algorithm is then determined by comparing the prediction 

vector, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛ெ, with the ground truth vector Y. 

3.6 Process for capturing manual classification and implementation of machine 

learning 

The design of the user interface of the developed program is depicted in Figure 5 

and a flowchart of how the input and output of the program are handled is portrayed in 

Figure 6. The first step of the program requires a Mito image input, then the 

corresponding DAPI image is loaded, and image processing of both images is performed 

automatically. The user reviews the DAPI image first and its default settings to update 

them as needed to outline the nuclei within the image, this step is performed on the first 

tab of the program which is setup similar to what is shown in Figure 5.  The user then 

moves to review the Mito image and its default settings, on the second tab of the 

program GUI, updating the default settings to identify each mitochondrial object as 

accurately as possible within the program. The user is warned if the number of 

mitochondrial objects found is greater than the number of nuclei found in the DAPI 

image. This is done as the parasite is a eukaryote with a single nucleus and 

mitochondrion per organism indicating the number mitochondria is generally expected to 

be similar to the number of nuclei.  The presence of “inactive” mitochondria, which are 
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not visualized by the MitoTracker dye, can result in the number of mitochondrial objects 

recorded being lower than that for DAPI-stained nuclei. In addition, mitochondrial 

fragments would typically be excluded using the size criteria, although extensive 

mitochondrial fragmentation [4] could result in a higher relative mitochondrial count. 

Once the user is satisfied with the settings, a file is saved containing all the necessary 

variables to replicate the users’ results. This first step in the process was performed by a 

designated lead user with an extensive background in reviewing T. gondii microscopy 

imaging.  

The second step was performed by the lead user along with two other trained 

users varying in experience and background in the investigation of mitochondrial 

function and T. gondii. The lead user had 25+ years of experience while the other two 

had less than 4 and 2 years. To train and help calibrate the group of users Table 1 was 

reviewed by all and edited to best define the mitochondrial morphological classifications. 

Each trained user then performed the classification step by inputting the settings 

file created by the lead user in step one. This step automatically processes the images to 

display the individual objects ensuring that the same objects were seen by all users. The 

objects were reviewed, and an appropriate morphology classification was selected 

independently by each user. Within the GUI, each object started with a green bounding 

box and once the object had been reviewed the bounding box for it turned from green to 

blue, while the current object being reviewed was red to allow for easy tracking of the 

current object being reviewed along with the user’s overall progress. When complete a 

file was saved with the user’s classifications. 
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Figure 5. Mito tab, the second tab of the GUI with numbers representing the sequential 

steps to be taken: 1) selecting the button to begin settings selection or the button 
to load a settings file if a settings file is used step 2 and 3 are skipped, 2) 

adjusting the threshold setting, 3) adjusting the exclusion criteria, 4) classifying 
the object morphology, and 5) saving the output files. 

 

 
Figure 6. General program design for input and output. The classification data file is a 

M x 1 vector, M number of objects. The settings output file stores the image file 
name, DAPI threshold, DAPI low intensity criteria, DAPI low size criteria, DAPI 

object count, DAPI object count after watershed, Mito threshold, Mito low 
intensity criteria, Mito low size criteria, Mito object count, and an indicator to 

extract features or not. 
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3.7 Congruence in manual classification and validation of automatic classification 

A total of 12 images were classified individually by all three users. Of these 12, 5 

images they had previously reviewed once before, 2 images were repeated from the first 

set of 5 but with different settings, the remaining 5 were new images. The 5 images 

previously reviewed and the 5 new images were randomly selected from a set of 20 

imaged tissue cysts. A review of the congruence among manual classifiers, i.e. the 

degree to which different users placed the same objects within the same class was 

performed to determine whether certain morphologies were readily classifiable. This 

review was previously performed on the first 5 images after classifications were made 

with the 5 classes of Blob, Tadpole, Lasso, Arc, and Other [23], referred to as round 1 in 

Figure 7. These findings were then compared to the congruency determined from this 

study of the same 5 images, referred to as round 2, to evaluate if there was an 

improvement in congruency amongst these 5 images. 
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Figure 7. Flowchart for analysis 

 

The settings for the first 5 images were made previously in one sitting by the lead 

user, then the lead user was tasked with selecting the settings for the first 5 images again 

along with 5 new images at a later sitting. The change in settings for the first 5 images 

was evaluated, of which 2 were selected that had the largest differences. These 2 images 

were classified twice, once with the first settings and again with the new settings to 

evaluate the impact the change in settings had on the class distributions within.  

The gold standard, which is used as the ground truth in this application, was used 

for training the machine learning algorithm and was determined in two sittings, each 
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with all users present to assist in determining the most accurate class to be used for each 

object. In the first sitting all the objects from one of the initial 5 images, from round 1, 

was reviewed as a calibration session before the users individually classified all 12 

images. In the second sitting the remaining 4 of the initial 5 images were reviewed to 

determine a gold standard for just the objects they did not already have a consensus on 

from their individual classifications.  

The trained algorithm then predicted the classification of objects in images that 

were not used in training the algorithm. The performance of the algorithm is reported for 

both the training set and test set, of which there is one test for each user. The 

performance is reported for each user’s classification to evaluate if it performs well for 

all users. The performance is based on several calculations as follows:  The first is the 

overall accuracy, the percent of all objects that were correctly classified. Then the 

sensitivity, specificity, precision, and F score are calculated per class as defined in eq 

9,10,11, and 12. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ  ்௥௨௘ ௉௢௦௜௧௜௩௘௦

்௥௨௘ ௉௢௦௜௧௜௩௘௦ାி௔௟௦௘ ே௘௚௔௧௜௩௘௦
     Equation 9. Sensitivity 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ  ்௥௨௘ ே௘௚௔௧௜௩௘௦

்௥௨௘ ே௘௚௔௧௜௩௘௦ାி௔௟௦௘ ௉௢௦௜௧௜௩௘௦
      Equation 10. Specificity 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  ்௥௨௘ ௉௢௦௜௧௜௩௘௦

்௥௨௘ ௉௢௦௜௧௜௩௘௦ାி௔௟௦௘ ௉௢௦௜௧௜௩௘௦
      Equation 11. Precision 

 

𝐹 𝑠𝑐𝑜𝑟𝑒 ൌ  ଶ∗ௌ௘௡௦௜௧௜௩௜௧௬∗௉௥௘௖௜௦௜௢௡
ௌ௘௡௦௜௧௜௩௜௧௬ା௉௥௘௖௜௦௜௢௡

      Equation 12. F score 

 

Lastly a non-blind validation was performed as outlined in Figure 7, denoted 

‘Round 3’.  This allowed the users to observe the predictions made by the machine 

learning algorithm and provide further feedback.  In this step the settings for 10 new 
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images, remaining from the initial set of 20, were made by the lead user.  The objects 

identified in these images were input into the trained machine learning algorithm to 

predict their class. A validation input file was created containg the settings used and the 

predicted class.  Each user was then randomly selected several objects to verify the 

predictions machine learning algorithm by using the ‘Validation’ tab, displayed in Figure 

8. 

 
Figure 8 Validation tab, the third tab of the GUI with numbers representing the 

sequential steps to be taken: 1) selecting the button to load a validation input file 
if a settings file, 2) observing the images on the right and the predicted class 
displayed then selecting ‘Correct’ if the predicted class is accurate and if not 

selecting the appropriate class, 3) saving the output files. 
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CHAPTER 4. RESULTS 

4.1 Settings and manual classification 

The first image analyzed by all users together to obtain manually made 

classifications that could be used as gold standard classifications, prior to individual 

classifications of the remaining images resulted in the following class breakdown for the 

334 objects that were detected. 

 
Figure 9. Class distribution for first 334 objects used for gold standard from one image 

 

The congruency, i.e. agreement, between users from round 1 classifications, when 

using the Lasso class for this image, was at 52.7% for all three users, 95.5% for at least 

two users, and 4.5% where none of the users agreed.  As described in the methods 

section, the addition of the Donut class was made after round 1 classification’s due to 

having no objects that the users unanimously agreed were Lassos and the observation of 

multiple Donut shaped objects. With the addition of the Donut class a total of 11,3% 

objects were classified as donuts when determining the gold standard. Therefore, in 

evaluating each users’ round 1 classifications to the gold standard it is expected to be 

slightly lower due to not having the donut class when these classifications were 

performed, this data resulted in the following percent match: 73.1% for user 1, 82.6% for 

user 2, and 72.8% for user 3. 
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The congruency between users’ classifications for this first image, after the gold 

standard was determined, in round 2 was 71.3% for all three users, 99.1% for at least 2 

users, and 0.9% where none of the users agreed. For 6 of the objects (which was 1.8% of 

all objects), the users all agreed on a class in their individual classifications that differed 

from the gold standard i.e. what they had classified as the class for these objects was 

different than what the consensus class ended up being agreed for the objects. There 

were 9 objects (2.7% of all objects), where the users did not have a consensus 

classification and none of the users matched the gold standard class. Evaluating each 

user to the gold standard with the round 2 individual classifications resulted in the 

following percent match: 78.4% for user 1, 86.8% for user 2, and 88% for user 3. 

The congruency between users when using the Lasso class for the first 5 images 

in round 1 produced the results in Figure 10(A) with 57% of the objects being classified 

similarly by all users and 96% classified the same by 2 of the 3 users.  In round 2 of 

classifications for these images with the addition of the Donut class, 71.8% of the objects 

were classified similarly by all users and 98.8% were classified the same by 2 of the 3 

users. Figure 10(B) shows a higher congruency in Blob recognition occurred in round 2 

as compared to the first time the objects of these images were classified in round 1, while 

both graphs in Figure 10 display that Blobs were the most frequent class to occur as well 

as the most likely to be uniformly recognized by all operators. There was an increase in 

instances were all three users agreed for the Arc and Other classes except Tadpoles 

which remained constant.  
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Figure 10. Round 1 (A) and round 2 (B) percentage of all objects classified separated by 

class and the percent agreement between users for the first 5 images 
 

For all 5 images from which a gold standard classification was determined, there 

were a total of 1,138 objects and the class breakdown within these remained comparable 

to that of the first image, with the most objects belonging to the Blob class followed by 

Arcs, Tadpoles, Others, then Donuts as displayed in Figure 11. Comparing these 

consensus (i.e. gold standard) distributions to that of each user’s round 2 individual 

classification the following percent matches were determined: 83.4 for user 1, 86.7 for 

user 2, and 87.1 for user 3.  Objects for each class where there was 100% agreement 

between all users and which matched the gold standard are shown in Figure 12. 

 
Figure 11. Class distribution for the 5 gold standard images 
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Figure 12. Objects classified congruently with all users and the gold standard for Blobs 

(A), Donuts (B), Tadpoles (C), Arcs (D), and Others (E) 
 

From the previous classifications in round 1 the users did not unanimously 

determine any object to be a Lasso in these images, user 1 classified a total of 3 Lassos 

(0.3%), user 2 and 3 classified 2 and 0 objects as Lassos, respectively. Since the Donut 

class made up only 3% (37) of all objects in the gold standard classifications, evaluating 

the degree of agreement between each users’ round 1 classifications and the gold 

standard is expected to be slightly lower due to not having the donut class when these 

classifications were performed. This data resulted in the following percent match: 74.9 

for user 1, 82.2 for user 2, and 75.6 for user 3. 

To visualize the normalized features distribution for each class as defined by the 

gold standard from the first 5 images Figure 13 displays a boxplot for each class and 

each of the 22 features where the top of the box marks the 75th percentile and the bottom 

the 25th percentile with a red line indicating the median, the red ‘+’ markers indicate the 

outliers which are greater than one and a half times the interquartile range. These results 
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show the trends for each feature for each class, for example the circularity and extent are 

highest for the Blob class followed by the Donut class while the eccentricity and aspect 

ratio are highest for the Tadpole and Arc class. A telling feature of the Donut class is the 

presence of holes which correlates with the higher hole size while a telling feature of the 

Tadpole class is to have a bright head with dim tail which correlates to the higher 

extrema intensity ratio shown. 
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Figure 13. Depiction of the 22 normalized features and their distribution for each class 

from the 1138 gold standard objects 
 

There was a total of 927 objects that were classified from the new set of 5 images 

in round 2, that had not previously been analyzed. Of the 927 objects, 697 were placed in 

the same class by all 3 users (75.2% of the objects) i.e. they were classified similarly by 

all users. A total of 918 objects (99%) were classified as belonging to the same class by 2 

out of the 3 three users. These results, displayed in Figure 14 consistently show Blobs as 

the most frequent class to occur and a high congruency amongst users recognizing this 
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class. The agreement for and frequency of occurrence for the Arc, Donut, and Other 

classes were comparable to the results from the first five images with a slight increase in 

user congruency for Tadpoles.   

 
Figure 14. Percentage of all objects classified separated by class and the percent 

agreement between users for the 5 new images 
 

The settings determined in a second sitting were compared to the settings 

originally chosen in Table 3 and Table 4 for the DAPI settings and Mito settings, 

respectively. The object counts for the DAPI images increased for all images with the 

new settings, the percent increase ranged from 18.3% to 83.3% (averaging to a 42.4% 

increase). This increase in count resulted from a lower threshold being selected. The 

exclusion criteria were not adjusted from the defaults for any of the images.  

Table 3. DAPI settings comparison 
Threshold (original) 

Threshold 
Otsu% (original) 

Otsu% 
Watershed 

Count 
(original) 
Watershed 

Count 

69 97 54.337 76.378 558 375 

50 62 39.3701 48.8189 614 335 

81 112 63.7795 88.189 442 326 

82 95 64.5669 74.8031 420 355 

81 104 63.7795 81.8898 274 218 
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For three of the Mito images the user selected threshold values were increased 

and for two of the images the threshold values were decreased, the percent decreases 

were greater than that of the percent increases. The image with the greatest percent 

difference (decrease) in threshold value also had a decrease in the low size exclusion 

criteria of 0.15 from 0.5 microns resulting in the largest percent increase in the number of 

objects counted, a 91.2% increase in objects from the original (third in Table 4). The 

second largest percent difference in object counts was an increase by 25.2% which was 

caused by the 22.5% decrease in the threshold value. The low intensity exclusion 

criterion was not adjusted from the default for any of the images. These two images, 

highlighted in Table 4, were chosen to repeat with these new settings due to the greatest 

difference in resulting objects detected, and were included in round 2 for manual 

classification. 

Table 4. Mito settings comparison 
Threshold (Original) 

Threshold 
Otsu% (Original) 

Otsu% 
Low 
Size 

(Original) 
Low Size 

Count (Original) 
Count 

55 51 43.3071 40.1575 0.35 0.35 208 218 

51 45 40.1575 35.4331 0.35 0.35 306 334 

42 56 33.0709 44.0945 0.35 0.5 216 113 

51 45 40.1575 35.4331 0.35 0.35 324 358 

54 70 42.5197 55.1181 0.35 0.35 144 115 

 

A summary of the impact of the settings change on class distribution and 

congruency is shown in Figure 15. The congruency was comparable with a slight 

decrease for the images with the new settings. Comparing the 2 images that were 

repeated with new settings, which had a total of 360 objects, 73.9% of the objects were 
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classified similarly by all users, and 98.1% of the objects were classified the same by 2 

of the 3 users. When the original settings were used, a total of 228 objects were detected, 

75% of the objects were classified similarly by all users, and 98.7% of the objects were 

classified the same by 2 of the 3 users. The distribution of classes identified by each user 

for the images remained relatively consistent with a slight decrease in Blobs and increase 

in Arcs in the images with new settings. 

 

Figure 15. Percentage of all objects classified separated by classification and user for 
the 3 repeat images with original settings (A) and new settings (C). Percentage of 

all objects classified separated by classification and the percent agreement 
between users for the 2 repeat images with original settings(B) and new 

settings(D) 
4.2 Machine learning performance 

The first gold standard image, with 334 objects, was initially used to train the 

machine learning algorithm. Once the 𝜽 parameter arrays were determined (one for each 
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of the five classes), which is called Model 1, the training accuracy was found to be 

86.8%, this was the fraction of the total number of objects that were classified correctly 

regardless of class that the trained algorithm achieved when predicting the class for the 

same 334 training objects. The breakdown per class, shown in Table 5 showed a high 

degree of performance for the Blob, Donut, and Arc classes. 

Table 5. Training performance with first gold standard image 
 (Model 1) Blob Tadpole Donut Arc Other 
Sensitivity 0.97093 0.41176 0.90909 0.85088 0.45 
Specificity 0.91358 0.98738 1 0.90455 0.98408 
Precision 0.92265 0.63636 1 0.82203 0.64286 
F score 0.946176 0.5 0.952381 0.836207 0.529412 

 

Tables 5,7-9,11 and 13-15 break down the performance per class showing the 

sensitivity, specificity, precision, and F score as calculated by equations 9-10 in the 

methods section.  The sensitivity, or recall, is the percentage of actual positives predicted 

accurately or the true positive rate while specificity is the percentage of actual negatives 

predicted accurately or the true negative rate. Precision also called positive predictive 

value is the number of true positives divided by the number of predicted positives. Lastly 

the F score uses the calculated sensitivity and precision values to provide a single metric 

to compare the performance for each class [14].  

Testing this trained algorithm on the remaining 11 images that were classified 

individually produced an overall accuracy or 73.8%, 82.8%, and 82.6% for user 1,2, and 

3 respectively. The overall accuracy was computed as the percent of object where the 

predicted class matched that of the user’s classification. A summary of the objects that 

were identified by each user in the test set is shown in Table 6 and graphically depicted 

in bar chart form in Figure 16. The performance breakdown is displayed in Tables 7-9 by 
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user. The performance for Model 1 on the Blob class remained high and there was 

overall high specificity for all classes. 

 
Figure 16. Summary of the number of objects each user classified as one of the five 

classes for the objects in the 11 test images 
 

Table 6. Number of objects each user classified as one of the five classes for the 
2,091 objects in the 11test images 

Blob Tadpole Donut Arc Other 
User 1 1354 250 60 374 53 
User 2 1244 125 16 672 34 
User 3 1351 112 15 547 66 

Predicted 1198 55 38 748 52 
 

Table 7. Model 1 testing performance with user 1 classifications 
 Blob Tadpole Donut Arc Other 

Sensitivity 0.84343 0.124 0.33333 0.90642 0.20755 
Specificity 0.92402 0.98696 0.99114 0.76179 0.97988 
Precision 0.95326 0.56364 0.52632 0.45321 0.21154 
F score 0.894984 0.203279 0.408163 0.604278 0.209524 

 

Table 8. Model 1 testing performance with user 2 classifications 
 Blob Tadpole Donut Arc Other 

Sensitivity 0.89309 0.272 1 0.83333 0.29412 
Specificity 0.89728 0.98932 0.9894 0.86751 0.97958 
Precision 0.92738 0.61818 0.42105 0.74866 0.19231 
F score 0.90991 0.377778 0.592593 0.788732 0.232558 
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Table 9. Model 1esting performance with user 3 classifications 
 Blob Tadpole Donut Arc Other 

Sensitivity 0.86454 0.24107 1 0.91773 0.24242 
Specificity 0.95946 0.98585 0.98892 0.84067 0.98222 
Precision 0.97496 0.49091 0.39474 0.67112 0.30769 
F score 0.916438 0.323353 0.566038 0.77529 0.271186 

When training the algorithm with all 1,138 gold standard object classifications 

from the first 5 images, the training accuracy was 84.8% with the following performance 

breakdown per class in Table 11. The training performance remained similar to that when 

training with one image. The parameters determined for the five classes is displayed in 

Table 10. 

Table 10. Theta parameters 
(Model 2) Blob Tadpole Donut Arc Other 

Constant (θ_0) -1.11254 -6.49823473 -7.84 -1.9699 -5.11838 

Area 0.34055 0.01724091 0.262 0.974739 1.771135 

Perimeter 0.17384 -2.030202224 -1.67 -2.83466 1.055137 

Circularity 3.00977 -1.520282926 -0.14 -2.42467 -2.7186 

Extent -0.1671 0.319468028 0.562 0.015405 0.382758 

Eccentricity 1.68559 4.932588178 0.921 1.315383 -0.61986 

Major Axis Length -1.24554 -0.553633524 0.528 -0.11369 -1.98938 

Minor Axis Length -1.13004 1.835126685 3.016 1.607829 -1.30582 

Aspect Ratio -6.31523 -0.327253727 -0.42 1.123867 -0.26114 

Maximum Pixel Intensity 1.04769 3.537202161 -0.87 -2.35301 -0.19481 

Mean Pixel Intensity -1.92191 -2.715971158 1.333 0.609366 -0.41831 

Minimum Pixel Intensity -0.00376 0.218155991 0.463 -0.09563 -0.13372 

Intensity Variance 0.11547 -2.956779969 0.271 1.057729 -0.05514 
Intensity Standard 

Deviation 0.71496 2.500957553 -0.41 0.257916 0.906855 

Intensity MSE 1.28341 0.119710932 -2.5 -0.31131 0.039224 

Peak Count -0.52124 -0.387752903 -1.38 0.117529 0.343296 

Hole Size -1.26692 -1.838875404 2.036 -0.46652 0.046713 

Hole Count 0.48507 0.013877879 -0.17 -0.07419 0.533047 

HOG Peak Count 0.11276 0.281818941 -0.34 -0.07014 -0.15992 

Extrema Intensity Ratio -0.41361 0.756114891 -0.1 -0.49678 0.209065 

DAPI Proximity 0.25784 -0.220159517 0.039 0.038435 -1.14201 

DAPI Distance -0.08573 0.139730564 -0.82 -0.03937 0.471918 

Mito Proximity -0.06414 0.210152542 0.03 -0.01026 0.168185 
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Table 11. Training performance with all gold standard objects 
(Model 2) Blob Tadpole Donut Arc Other 
Sensitivity 0.9664 0.35802 0.67568 0.83768 0.36 
Specificity 0.88694 0.9877 0.99637 0.88903 0.99081 

Precision 0.91239 0.69048 0.86207 0.76658 0.64286 
F score 0.938617 0.471545 0.757576 0.800554 0.461538 

 

Testing this second trained algorithm on the second set of 5 new images that were 

classified individually produced an accuracy of 76.9%, 83.1%, and 85% for user 1,2, and 

3 respectively. A summary of the number of the total objects of each class that were 

identified by each user in this test set is shown in Table 12 and graphically depicted in 

Figure 17. The performance breakdown is displayed in Tables 13-15 by user. The overall 

accuracy for each user increased and the performance for the Blob class remained high 

along with the overall high specificity for all classes. 

 

Table 12. Number of objects each user classified as one of the five classes for the 927 
objects in the 5 test images 

Number of Objects Blob Tadpole Donut Arc Other 
User 1 620 101 27 162 17 
User 2 557 67 5 285 13 
User 3 617 54 6 228 22 

Predicted 563 36 18 281 29 
 

 
Figure 17. Summary of the number of objects each user classified as one of the five 

classes for the objects in the 5 test images 
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Table 13. Model 2 testing performance with user 1 classifications 
 Blob Tadpole Donut Arc Other 

Sensitivity 0.85968 0.26733 0.37037 0.85185 0.29412 
Specificity 0.90228 0.9891 0.99111 0.81307 0.97363 
Precision 0.94671 0.75 0.55556 0.4911 0.17241 
F score 0.901099 0.394161 0.444444 0.623025 0.217391 

 

Table 14. Model 2 testing performance with user 2 classifications 
 Blob Tadpole Donut Arc Other 

Sensitivity 0.91741 0.43284 0.8 0.77544 0.38462 
Specificity 0.85946 0.99186 0.98482 0.90654 0.97374 
Precision 0.90764 0.80556 0.22222 0.78648 0.17241 
F score 0.9125 0.563107 0.347826 0.780919 0.238095 

 

Table 15. Model 2 testing performance with user 3 classifications 
 Blob Tadpole Donut Arc Other 

Sensitivity 0.88817 0.51852 0.83333 0.87719 0.31818 
Specificity 0.95161 0.99084 0.98588 0.88412 0.97569 
Precision 0.97336 0.77778 0.27778 0.71174 0.24138 
F score 0.928814 0.622222 0.416667 0.785855 0.27451 

 

In the final validation step, i.e. round 3, a total of 438 objects were collectively 

validated by the three users (each user validated a subset of these 438 objects). Of these 

438 objects, the same 24 were randomly selected by two users for validation. These 

results are summarized in Table 16 below, which shows 87% of the validated objects 

were accurately predicted. A breakdown per class of the validated objects’ predicted class 

to manual class is presented in Table 17. Looking at each user individually: user 1 

validated 173 objects indicating 89% were correct, user 2 validated 122 objects indicating 

88% were correct, and user 3 validated 167 objects indicating 86% were correct.  

Table 16 Validation Summary 
 #validated #correct #incorrect %correct %incorrect 

All (excluding 
duplicates) 438 381 57 86.9863 13.0137 

All users (including 
duplicates) 462 404 58 87.44589 12.55411 
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Table 17 Validation classification breakdown 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Manual classification (excluding duplicates) 
%error 
(total of 

13%)  
Predicted 

class Blob  Tadpole Donut Arc Other 
5 Blob [209] 5 11 3 3 

1.6 Tadpole 1 [19] 0 6 0 
0 Donut 0 0 [14] 0 0 

4.3 Arc  5 9 0 [125] 5 
2.1 Other  0 2 3 4 [14] 
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CHAPTER 5. DISCUSSION 

T. gondii bradyzoites within tissue cysts have been found to be metabolically 

active with heterogeneous replication [3]. To better understand the metabolic activity and 

replication potential of these encysted bradyzoites investigation of the mitochondrial 

function can provide valuable information [8].  The classification of mitochondrial 

morphologies that are present within the bradyzoites can inform about the metabolic 

state of the bradyzoite as a functional state of any given cell is likely to be associated 

with the particular morphology of the mitochondrion [4, 5].  Image processing and 

classification algorithms can facilitate the analyses of larger numbers of images than 

what would be possible by the current process of manually classifying the mitochondria 

from the thousands of possible bradyzoites within a cyst as it is tedious and time 

consuming. This increased throughput will allow the gathering of information about the 

biology of this parasite at a scale that is not possible using current approaches. 

The developed program helped to facilitate the manual expert classification of 

mitochondrial shapes and these classifications were used in the evaluation of a machine 

learning approach for the automation of the morphology classifications. A common 

machine learning method used in object detection for multi-class classification is 

multinomial logistic regression approach with a one vs all methodology [14], which was 

used in this case to predict the detected objects morphological class.   With the extracted 

features and user labeled data collected via the developed program this approach proved 

to be successful for the mitochondria morphology classification problem presented here, 

with being able to achieve up to 85% overall accuracy, i.e. the fraction of correctly 

classified object regardless of class. 
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Consistent with previous findings [23] the Blob morphology (condensed or 

punctate mitochondrial profile) was the simplest to classify with a readily apparent 

appearance which likely resulted in the high level of congruency between users and the 

higher accuracy that was seen for the trained machine learning algorithm. Most of the 

objects were identified as belonging to the Blob morphology, with lower incidences of 

Tadpole and Arc morphologies which is not surprising as the Tadpoles and Arcs are 

associated with more active parasites and bradyzoites metabolic activity is still expected 

to be low [4]. When training the algorithm with gold standard objects of one image 

compared with that of five images there was a slight decrease in training accuracy but the 

testing accuracies slightly increased; with the larger training set the model was better 

generalized to fit the variance in the new test data but these differences in accuracy were 

minimal, suggesting one image may be sufficient for training but that more may be 

helpful. The trained machine learning performance resulted in a high degree of 

confidence in the prediction of Blobs and Arcs which make up a majority of 

morphological classes present in most bradyzoites. The results also showed that the 

variation in settings chosen for each image resulted in relatively large differences in the 

number of mitochondrial objects found within, but the class distribution remained fairly 

constant. 

 In summary, results of our study provide a robust program that can successfully 

automate the classification of the majority of mitochondria morphologies within 

encysted bradyzoites which can minimize the burden of evaluating these images and 

present opportunities for hybrid workflows involving partial automation in classifying 

the majority of objects present. The classes which attained lower accuracy and were of 
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low incidence could be presented to the user for manual classification, while the objects 

that were predicted to belong to a class with higher accuracy and where there was overall 

high congruency such as seen with the Blobs would not need to be reviewed, thereby 

allowing the majority of the objects within the cyst to be automatically classified which 

would dramatically reduce the time required for manual classification. 
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