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ABSTRACT OF DISSERTATION

Statistical Intervals for Neural Network and its Relationship with Generalized
Linear Model

Neural networks have experienced widespread adoption and have become integral in
cutting-edge domains like computer vision, natural language processing, and various
contemporary fields. However, addressing the statistical aspects of neural networks
has been a persistent challenge, with limited satisfactory results. In my research,
I focused on exploring statistical intervals applied to neural networks, specifically
confidence intervals and tolerance intervals. I employed variance estimation meth-
ods, such as direct estimation and resampling, to assess neural networks and their
performance under outlier scenarios. Remarkably, when outliers were present, the re-
sampling method with infinitesimal jackknife estimation yielded confidence intervals
that closely aligned with nominal levels. To consider neural networks as nonparamet-
ric regression models, I employed tolerance intervals and observed that the coverage
of these intervals approached the nominal level. Additionally, I conducted a com-
parative study between neural networks and generalized linear models. The results
indicated that neural networks did not outperform linear models in low-dimensional
settings. However, in high-dimensional models or multitask classification, neural
networks exhibited significantly superior performance. Lastly, I proposed further
research exploring advanced techniques in neural networks, as well as investigating
statistical attributes of various deep learning methods. These future studies hold the
potential to expand our understanding of neural networks and enhance their statis-
tical properties.
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Chapter 1 Introduction

Over the years, data analysis methods have evolved and now, researchers tend to
categorize them based on their objectives. Traditional statistical analysis focuses on
parameter estimation and interpretation, aiming to provide more mathematically or
statistically explainable results rather than just outputting a result. On the other
hand, machine learning methods aim to predict outcomes on new data based on
training data, with metrics such as accuracy and precision receiving more attention.
Researchers in this field tend to focus on improving the speed and performance of
models, rather than delving into the methods used to discover probability insights
behind the model.

In my dissertation thesis, I plan to bridge the gap between these two methods by
introducing statistical insights into machine learning models. I aim to investigate the
reasons behind the impressive performance of machine learning models and find ways
to improve them using mathematical methods.

During the early days of machine learning, computation resources were limited,
and the learning algorithms were not advanced enough to provide predictions for large
output layers. However, since 2010, the development of deep neural network algo-
rithms, as well as parallel computing, has enabled the use of multiple GPUs instead
of CPUs, resulting in faster computations. The training of deep neural networks with
numerous hidden layers and large output outcomes has become considerably faster,
leading to the expansion and deepening of the field of machine learning.

As a result of these advancements, we now have traditional machine learning
methods, such as neural networks, which are widely used in big data analysis and
highly complex machine learning tasks.

1.1 Machine Learning & Statistical Models

The original definition of statistics involves using a sample to make inferences
about the behavior of a population. In this context, machine learning models can
be considered a specific case of statistical models. The distinction between machine
learning and statistical models is based on whether statistical inference is used in
parameter estimation and model fitting.

To further explore this distinction, we will introduce several models, including
generalized linear models, ensemble models, and neural networks, and discuss their
relationships.
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1.1.1 Generalized Linear Model

The generalized linear model is a fundamental structure of statistical models. In
this discussion, we will introduce the basic structure of the model, its underlying
assumptions, and its potential limitations.

Model Structure

Statistics, by definition, involves using a sample to make inferences about the
behavior of a larger population. Machine learning models can be seen as a subset of
statistical models, where the focus is primarily on making predictions based on data.
One key difference between machine learning and statistical models lies in their ap-
proach to parameter estimation and model fitting. While statistical models typically
use statistical inference methods to estimate model parameters, machine learning
models often rely on optimization algorithms to minimize a loss function and fit the
model to the data.

To delve deeper into this distinction, we will discuss several models, including
generalized linear models, ensemble models, and neural networks, and explore their
relationships.

The term ”generalized” in generalized linear models comes from the fact that they
are part of a larger class of models introduced in [1]. In these models, the response
variables {yi} are assumed to follow an exponential family distribution with mean
value {µi}, and to be a function of Xβ, which may be nonlinear. To construct a
generalized linear model, three fundamental components are used:

• Randomized components: refer to the assumption that the response variable
follows a specific distribution, such as normal, binomial, or Poisson. It’s impor-
tant to note that there is no requirement for an independent error term in this
case.

• The linear component of a generalized linear model consists of p variables in the
model, denoted by x1, ..., xp, which represent p known characteristics of each
observation. The prediction for the response variable is modeled as a linear
combination of these variables, in the form of β0 + β1x1 + ...+ βpxp.

• The link function is a crucial component of a generalized linear model, as it
specifies the relationship between the randomized outcome and the linear com-
ponent. It is represented by a function g(·), which relates the mean response
variable Y to the linear predictor Xβ, such that g(Y ) = Xβ.

To specify the exponential family[2] in the context of generalized linear models,
we refer to a group of parameterized probability distributions. The density function
of a random variable x can be factorized into a specific form, given by:

fX(x|θ) = h(x)g(θ)exp(η(θ) · T (x)) (1.1)
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Overall, the three fundamental elements of a generalized linear model are the ran-
domized distribution of the output variable, the linear form, and the link function.

When it comes to fitting the model, there are different loss functions for gener-
alized linear models that need to be satisfied. For regression problems, the sum of
squared errors is commonly used, while for classification tasks, cross-entropy loss is
often preferred. To estimate the model’s parameters, maximum likelihood estimation
or Bayesian methods can be employed.

Model Assumptions

These assumptions below are assumptions for generalized linear models. We have
some specific criteria for more specified linear models.

• The observations Y1, ..., Yn should be independent of each other.

• The response variable Yi is typically assumed to follow a distribution from the
exponential family (e.g., binomial, Poisson, multinomial, normal, etc.).

• While a linear relationship between the response variable and explanatory vari-
ables is not assumed in GLMs, a linear relationship is expected between the
transformed expected response (using the link function) and the explanatory
variables, i.e., g(Y ) = Xβ.

• The explanatory variables can include elementary transformations of the orig-
inal variables, such as linear, power, exponential, logarithmic, trigonometric,
inverse trigonometric, and hyperbolic functions.

• Homogeneity of variance is not required in GLMs, unlike in linear regression
where it is assumed.

• The errors must be independently distributed.

• Maximum likelihood estimation (MLE) is used to estimate the model parame-
ters in GLMs instead of ordinary least squares (OLS), mainly because there is
no explicit solution for the parameters using OLS as the loss function.

Potential Weakness

There are multiple disadvantages for generalized linear regressions, which has
been shown below:

• Feature selection can be challenging in generalized linear regression, and regu-
larization methods are often necessary to improve model performance.

• GLMs assume that the outcomes follow a specific type of distribution, which
can limit their applicability in some cases.

3



• There should be no correlation among the predictors, which can be difficult to
achieve in practice.

• GLMs can be sensitive to outliers, and regularization methods can help mitigate
their impact on the model.

• GLMs may have lower predictive power compared to some machine learning
models, particularly for complex and high-dimensional data.

When fitting GLMs using the maximum likelihood estimation (MLE) method, we
need to use Newton’s method to iteratively update the parameters. This method
is sensitive to the initial value and may involve the Hessian matrix or score matrix
to update parameters, which can sometimes result in failure to achieve the global
minimum or convergence. When using Bayesian methods, choosing the prior distri-
bution to approximate the posterior can be challenging, and it may not be possible
to achieve an analytical solution.

Neural networks are closely related to generalized linear models, although they
share some of the same disadvantages. However, neural networks typically have
stronger predictive power and fewer restrictions on the assumptions compared to
GLMs. This dissertation mainly discusses several statistical methods for analyzing
neural networks. Before delving deeper into neural networks, it is important to in-
troduce the basic structure of machine learning models and statistical methods used
to analyze them.

1.1.2 Ensemble Model

This section discusses the use of ensemble methods to combine multiple base es-
timators in order to improve model performance over using a single algorithm.[3, 4, 5]

The goal of a statistical model is to infer the behavior of the response variable y
from a dataset of predictor variables xi, where i ranges from 1 to n. One approach to
modeling is to use a set of basic learners denoted by L, and a function φ(x, L) to make
predictions of y from x. This function φ(x, L) represents the ensemble method.One
example of an ensemble method is as follows:

Suppose we have a dataset y, x1, ...xn and we want to understand the relationship
between y and the xs’. We apply a resampling method (such as bootstrap) to both
y and x k times, creating k sub-datasets. For each sub-dataset, we fit a basic learner
(such as a linear regression model), resulting in k different models.

Then, we use the k models to make predictions for a special case of x11, ...xn1,
resulting in k different ŷ values. Because each model was trained on a different
sub-dataset, the coefficients for the same variable in the k models may be different.
Finally, we aggregate the k ŷ values using a method such as averaging to obtain our
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final prediction for the specific case x11, ...xn1. This entire process is called ensemble.

Ensemble learning is a technique that involves combining the predictions of mul-
tiple models to improve overall performance. The key step in ensemble learning is
to derive a new sample from the existing sample (usually done through resampling)
and then aggregate the predictions of the base models. This approach is often used
to compensate for poor performance of individual models and can be more effective
than relying on a single method alone.

One commonly used base learner in ensemble learning is the decision tree[6], which
is a fast algorithm that can be used to generate predictions quickly. There are vari-
ous types of ensemble methods, but one common approach is called bagging, which
involves resampling the training data to create multiple subsets and then training
a base learner on each subset. The predictions of the individual learners are then
aggregated to produce a final prediction.

Another popular ensemble method is the random forest, which is a type of bagged
learner that uses decision trees as the base models. Random forest models differ from
standard decision trees by introducing randomness in the feature selection and re-
sampling processes, which helps to reduce overfitting and improve the generalization
performance of the model.

In this context, we can compare the behavior of our ensemble neural network with
that of a random forest model.

Decision Tree

The decision tree[6] is one of the base learners used in the random forest ensemble
method. Decision trees are a type of machine learning method that can be applied in
various fields, such as pattern recognition and image processing[7]. The development
of decision trees has been summarized in recent research [8].

A decision tree is a tree-based technique that uses a series of basic tests to ef-
ficiently separate a dataset into categories. Each test is conducted by comparing a
numeric value with a fixed threshold[9], and the outcome at the leaf is a Boolean
value[10, 11, 12, 13]. Decision trees are mainly used for grouping purposes, but they
can also be used as a classification model in data mining. The nodes and branches of
the tree represent features and their associated subsets, respectively.[14, 15]

In machine learning, the goal is to achieve the best value for the loss function[16].
The loss function most commonly used for each node in the decision tree is entropy[17].
Entropy is a value between 0 and 1, with values closer to 0 indicating better clas-
sification. The entropy of classifying a set S[18, 19] into different c classes is shown
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below:

H(S) =
c∑
i=1

pi log2pi (1.2)

pi represent the proportion of the classified sample to the true subset.
The concept of information gain, also referred to as mutual information, is com-

monly used in decision trees to measure the amount of information that a random vari-
able provides about the target variable.[20, 21] Information gain, denoted as IG(S,a),
is calculated based on the definition of entropy[22, 23] and evaluates the impact of
splitting a dataset S using a random variable a. The formula for information gain is
shown below:

IG(S, a) = H(S)−H(S|a) (1.3)

H(S|a) is the conditional entropy of dataset S given random variable a, and defined
as follow:

H(S|a) =
∑
v∈V (a)

|Sv|
|V |

H(Sv) (1.4)

The range attribute of a is V(a), Sv is a subset of S equal to the attribute v’s size[21].

Decision trees have several advantages, including their ease of interpretation,
transferability, and lack of need for prior assumptions. However, decision trees
can suffer from issues such as incorrect decision-making and overfitting when there
are too many features included in the model. Additionally, the computation time
may be slow due to the complexity of the tree. Another limitation is that binary
splitting of attributes in each sub-node can make regression predictions difficult to
follow.[24, 25, 26].

Bagged Learners

Ensemble methods that combine multiple learning algorithms can typically achieve
better predictive performance compared to using a single base learner.[3, 4, 27] There
are several ways to ensemble base learners, including:

• Bayes optimal classifier[28]: This method combines all hypotheses in the prior
parameter space to obtain the best probability for classification.

• Boosting[29]: This method iteratively assigns weights to weak learners that
were misclassified to reduce bias and variance in each iteration.

• Bayesian Model Averaging (BMA)[30]: BMA uses the average with weights
from several models, given the posterior probability for each model given the
data.

• Bayesian Model Combination[31]: An update to BMA, this method samples
weights from all possible ensembles instead of sampling each model individually.
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• Bucket of models[32]: This method uses a selection algorithm with a train-test
split to choose the best model to average.

• Stacking[33]: This method trains an algorithm to combine predictions from
several other learning algorithms.

Bagging, or bootstrapping, is a successful method for improving uncertainty or
classification accuracy. It is particularly useful in large, high-dimensional datasets
where using a simple learner can make it difficult to find the optimal way to fit the
model.

If we define the dataset as Di = (Yi, Xi), where Yi represents the response variable
and Xi represents a p-dimensional explanatory variable for the i-th instance, we can
use the function θ̂(x) = h(D1, ..., Dn)(x) to estimate E(Y |X = x) for a new explana-
tory random variable x. Typically, decision trees such as CART[34] or MARS[35] can
be used as the function h(x).

Definition 1.1.1 (Bagging). Bagging is defined theoretically as follow:

1. Get a bootstrap sample D∗i = (Y ∗i , X
∗
i ) from the original sample space Di.

2. Compute bootstrapped predictor θ̂∗(x) = h(D∗1, ..., D
∗
n)(x), note that we may

use different h(x) for estimation on each bootstrap sample.

3. The bagged predictor is θ̂B(x) = E∗[θ̂∗(x)]

The expectation in 3. above most of the time will be implemented by Monte Carlo
simulation:

θ̂B(x) ≈ B−1
B∑
b=1

θ̂(b)(x) (1.5)

Referring to [36], the bootstrap size B is often to be chosen at range of 50.

There have been numerous theoretical studies conducted on bagging. One such
study [36, 37] suggests that bagging can improve the mean square error through a
bias-variance trade-off, particularly when the base learners h(x) are unstable. Other
studies have also investigated bagging, such as [38], which decomposed smooth esti-
mators into linear and higher-order terms, and [39], which used U-statistics to deter-
mine the leading effects of variance, bias, and MSE on bagging, even highlighting the
potential for increased second-order MSE terms[40]. To reduce the computational
costs associated with bootstrap, [41] analyzed the variance and MSE reduction of
subbagging, and proposed techniques such as subbagging and half subbagging, which
are computationally efficient and provide similar accuracy to bagging.

In addition to random forest[42], bagging has been extensively applied to many
other machine learning algorithms. SVM[43], multilayer perceptron[44], regularization[45],
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neural networks[46], stack denoising autoencoders[47], and even survival trees[48]
have all been subject to bagging to showcase its effectiveness on these types of ma-
chine learning and statistical learning algorithms. For instance, to address unbal-
anced cases, an asymmetric bagging algorithm[49] has been developed, as well as
Roughly Balanced Bagging[50] and Neighbourhood Balanced Bagging[51] algorithm
to demonstrate the classification effectiveness of bagging. Furthermore, mini-batch
bagging algorithms combining bagging and boosting[52] have been proposed to speed
up computation.

Random Forest

Random forest is one of the most widely used machine learning methods in
business and big data analysis. It has been applied in various fields, including
chemoinformatics[53], ecology[54, 55], 3D object recognition[56], bioinformatics[57],
and econometrics[58]. In fact, Howard and Bowles (2012) suggest that ”random
forests” have been the most successful general-purpose algorithm in modern times.

The term ”random forest”[42] usually refers to a collection of B randomized de-
cision trees. As defined in 1.1.1, if we take θ̂∗(x) to be a decision tree and apply the
same Monte Carlo method as described in 1.5, we can build the basic structure of a
random forest.

We notice that there are 3 parameters relate to random forest are important:

1. an ∈ 1, 2, ..., n is the number of sampled data points in each tree.

2. mtry ∈ 1, 2, ..., p is the number of possible features in each tree each node.

3. nodesize ∈ 1, 2, ..., an is if the each sample in each cell below that the cell will
not split.

Randomness is a crucial element of random forest, which is introduced in two
ways. First, we bootstrap a sample of size less than or equal to N to subset samples
for each tree. Second, we subset a small sample of coordinates from the entire range
of p. Additionally, each individual tree is not pruned, further adding to the random-
ness of the model.

A considerable amount of literature([57, 59, 60]) has analyzed parameter tuning
in random forests, including B, mtry, and an. Some theory and extensions have also
been developed to explain Breiman’s forest[42]. For instance, [61, 62, 63] proposed
the idea of choosing an < n examples without replacement from the initial sample.
[64] introduced the median forest, which is an ensemble of decision trees with each
individual tree split point being in the median when choosing a coordinate at each
node, using the subsample method instead of bootstrap. [65, 66] explored the bagging
principle and application of nearest neighbors. Additionally, discussions on how to
split decision trees, consistency, asymptotic properties, and variable importance are
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also ongoing.[67]

There are several extensions of random forests, such as weighted forest[68, 69],
online forest[70, 71, 72, 73, 74], survival trees[75, 76, 77], ranking forest[78], clustering
forest[79], quantile forest[80], etc. Similar methods for variance estimation for random
forests have also been developed for neural networks.

1.2 Neural Network

Now we talk about the idea in the definition of neural networks.

Basic Structure

Figure 1.1: Perceptron

To begin, we’ll explore the perceptron, which is the simplest type of neural net-
work. As depicted in Figure(1.2), the perceptron works similarly to generalized lin-
ear regression. The inputs, denoted by xi, represent the different features in the
dataset, while the corresponding weights, wi, reflect their importance. Combining
these weights with the inputs in a linear form (z =

∑
iwixi) yields a linear predictor.

After applying a step function (or link function in the case of GLM), the perceptron
outputs a value of Y = σ(XW ′), where X = x1, ..., xp and W = w1, ..., wp. The per-
ceptron serves as the basic building block for neural networks.

Moving on to more complex neural networks, we have the deep neural network,
which takes the form of a multi-layer perceptron (as illustrated in Figure(1.2).

Similar to linear regression, we construct an input matrix for each input as X =
[1|x1 ... xp], where the column vector of all ones represents the intercept term. In this
setup, our input layer has p+1 features or neurons. By applying a linear transform
using a weight matrix and activation function, we can obtain one of the neurons in
the next hidden layer, which is of dimension n×1. By using different weights with the
same input matrix X, we can obtain different neurons in the next hidden layer (where
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Figure 1.2: Deep Neural Network

L1 represents the number of neurons in the first hidden layer), and each neuron has a
size of n×1. We can then consider the neurons in the first hidden layer as inputs and
use the same linear transform with activation function to obtain neurons in the next
layer, which leads to the final output layer through iteration. To achieve different
goals, we can apply different activation functions and output dimensions.

Adam Optimizer

When we construct neural network model into parametric version, which is

Ŷ = σ(σ...(σ(XW ′
0 + b0)W

′
1 + b1)W

′
L + bL) (1.6)

The total number of times the activation function is applied is equal to the total
number of layers (L) plus one. In each layer, W ′

i is an Li×Lk matrix where j = k+1,
and the dimension of W ′

0 is p×L1. Additionally, bi in each layer is an n×Lk matrix.

In the case of the parameteric model described above (for simplicity, we denote
Ŷ = hW (X), where h represents a complex nonlinear function), we typically optimize
a loss function to find the parameter set. If the loss function L(w) is well-defined
and the error term has an explicit distribution, we may directly obtain a maximum
likelihood estimator by setting the first derivative of the log likelihood to be 0 and
the second derivative to be greater than 0.

The structure of a neural network is complex, and it can be challenging to find
the global minimum of the loss function by directly assigning values to the model pa-
rameters. As a solution, we introduce gradient descent as our optimization method.

Gradient descent, also known as steepest descent, was first proposed by Cauchy in
1847 and studied by [81] in 1907. It utilizes gradient information to find the direction

10



of descent and updates the parameters using the descent information and a learning
rate.

Definition 1.2.1. If d ∈ Rn is a vector, and f : Rn → R, the smooth direction is
defined as d if 5f(x)d < 0.

If d is the descent direction, then the value of f will decrease as we move along d
from x. The gradient ∇f(x) offers the direction of steepest ascent of the function at
a single point x, while −∇f(x) represents the direction of steepest descent from point
x. Therefore, on each update for our data point xi ∈ x, we update our parameters
using the formula xi − η ∂f(xi)∂xi

, where η is the learning rate.

To summarize, the gradient descent method can be described as follows:

1. Initialize the weights W = W1, ...,WL in the neural network, and assign 0 as
the initial value of the intercept b. There are several methods for weight initial-
ization, such as constant initialization, random normal initialization, He initial-
ization[1], and Xavier initialization[2]. Here, we will apply Xavier initialization,
which draws a random variable from a uniform distribution with [−1/Li, 1/Li]
in each layer i.

2. For each wij ∈ Wi, set dj = −∂L(wij)

∂wij
.

3. If ||dj|| ≤ ε, stop; otherwise, continue.

4. Find an approximation to the problem: minimize L(wij + ηdj). The learning
rate η is set to be 0.01, but there are several methods for setting η as a function
and tuning it each iteration.

5. Set wij,new = wij + ηdj and go back to step 2.

While there are several advanced optimization methods like Stochastic Gradient
Descent[82], Mini-Batch Gradient Descent[83], and Adagrad[84], we will introduce
the Adam (Adaptive Moment Estimation) method[85]. In Adam, we insert some
updates for steps 4 and 5. Instead of directly using the gradient in step 2, we intro-
duce two raw moment estimates mj and vj by applying a weighted combination of
the previous moment mj−1 and gradient information dj. This allows us to achieve
bias-corrected moment estimates for updating the parameters using the learning rate
η multiplied by mj/(

√
vj + ε).

The computation of the Adam method is pretty straightforward and easy to apply.
It effectively avoids the problem of gradient vanishing. In fact, as suggested by Ruder
in [86], ”Adam might be the best overall choice.

Autodiff

Given that our loss function related to weight is complex and involves many
variables, we can simplify the process of calculating its derivatives using a technique
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called automatic differentiation, or autodiff for short. This method is based on the
concept that most computer programs, no matter how intricate, can be expressed as a
composition of finitely many elementary functions, such as exponentials, logarithms,
powers, and inverses. By repeatedly applying the chain rule to these operations, we
can obtain the derivatives in a specific direction with much less computational and
time complexity.

There are two traditional methods for autodiff: forward accumulation and reverse
accumulation. In the context of neural networks, reverse mode automatic differenti-
ation is commonly used to calculate gradients with respect to the initialized weights.
Here, we will discuss reverse mode autodiff in more detail.

To start, suppose we have a target function G that depends on n variables
x1, ..., xn, and a set of elementary arithmetic operations and functions that were
applied to these variables. We can decompose G into N smaller parts, each of which
involves a subset of the variables and elementary operations. Let xi = gi(xpar(i)) for
i = n+ 1, ..., N , where par(i) represents the parent of variable i.

Next, we can calculate the derivatives of G with respect to each of the xi’s using
the chain rule. We begin by defining the derivative of G with respect to the last
variable xN as:

df

dxN
= 1 (1.7)

Then, we can calculate the derivatives with respect to each of the variables xi in
reverse order (i = N − 1, N − 2, ..., 1) using the following formula:

df

dxi
=

∑
j:i∈par(j)

df

dxj

dxj
dxi

(1.8)

Here, each xj can be expressed as a composition of elementary functions or ele-
mentary functions of multiple xi’s. Finally, we can update each of the parameters
using gradient descent, since we have calculated the derivatives with respect to each
of the variables.

Let’s explore the basic structure of a neural network as an example. Suppose we
have an input X={x1|x2|...|xp}, where v1,...,p = x1, ..., xp denote the input vertices
and hidden layer vertices. Suppose we have a total of P neurons in the hidden and
output layers, where i = p + 1, p + 2, ..., P . Then, we can express each vertex vi as
vi = σi(wi · vpar(i)), where σi is an activation function and wi is the weight parameter
associated with vertex vi. Here, par(i) denotes the parent vertices of vi.

To calculate the gradient of the target function with respect to each vj where j is
in the set of par(i), we can use the chain rule and obtain the expression:
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σ′i(wi · vpar(i))wi,j
where σ′i(x) is the derivative of the activation function with respect to its input,

evaluated at wi · vpar(i). If we define v′i = σ′i(wi · vpar(i)), then the update of the weight
in the gradient is given by:

df

dwi
=

df

dvi
v′iwi

In particular, if we use the sigmoid function σ(x) = 1
1+e−x , we have σ′(x) =

σ(x)(1 − σ(x)), which is still in the form of a sigmoid function. This makes the ap-
plication of reverse auto-differentiation in backpropagation easier to conduct.

When training a neural network using backpropagation, we can use a technique
called ”early stopping”. This involves monitoring the validation loss of the model
during training, and stopping the training process when the validation loss starts to
increase. This is done in order to prevent overfitting, which occurs when the model
is too complex and starts to memorize the training data instead of learning general
patterns.

Specifically, we divide our dataset into training and validation sets, and monitor
the validation loss during training. If the validation loss stops decreasing and starts
to increase, we stop the training process and select the weights that gave the lowest
validation loss as our final weights. This is done to ensure that our model generalizes
well to new, unseen data.

It’s worth noting that sometimes the validation loss can fluctuate due to noise in
the data or other factors, which is why we introduce a stopping criterion that waits
for t consecutive increases in validation loss before stopping the training process. This
helps ensure that we’re not stopping prematurely due to random fluctuations in the
validation loss.

Fine Tuning Parameters

Neural networks are often considered black-box models, and as such, tuning
hyperparameters is a critical part of the model fitting process. There are many pa-
rameters that can be adjusted, including the number of layers, the number of neurons
per layer, the activation function used in each layer, the weight initialization method,
and more.

To develop an effective neural network model, it is common practice to split the
available data into three parts: one for training, one for validation, and one for test-
ing. Typically, 70% of the data is used for training, 20% for validation, and 10% for
testing. During the training phase, the model is fitted using different parameter sets,
and the validation data is used to assess how well the model is performing based on a
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specific metric. Finally, the test data is used to evaluate the performance of the fully
trained model. It’s important to note that the allocation of data into these three
groups should be done randomly to avoid bias.

There are two common techniques used for searching over parameter sets in neural
network models: grid search and random search.

Grid search involves exhaustively enumerating all possible combinations of param-
eter values within a defined range, and evaluating the performance of the model on
a validation set or through k-fold cross-validation on a combined training-validation
dataset. Once the best set of parameters is identified, it is used to fit the test set.
While grid search guarantees that all possible parameter combinations are explored,
it suffers from the curse of dimensionality and can be difficult to parallelize since each
setting is independent of the others.

On the other hand, random search selects a random combination of parameter val-
ues from a defined range, and evaluates the performance of the model. This process
is repeated for a set number of iterations or until a satisfactory level of performance is
achieved. Compared to grid search, random search can be more efficient in exploring
high-dimensional parameter spaces, but it may not guarantee that the best set of
parameters is found.

Both techniques have their advantages and disadvantages, and the choice between
them will depend on the specific problem at hand and available computational re-
sources.

To reduce the computational cost of hyperparameter tuning with grid search, one
strategy is to sample a random value for each parameter at every iteration, rather
than exhaustively testing all possible combinations. It is important to note that
each iteration should generate a unique set of parameters. In practice, using a small
number of hyperparameters in the final tuning can often lead to better performance
compared to grid search.

Hyperparameter tuning can be performed using various advanced methods, such
as Bayesian optimization[87], gradient-based optimization[88], evolutionary algorithms[89],
early stopping[90, 91, 92], and spectral approaches[93].

Since our research focuses specifically on studying statistical intervals for neural
networks, we have limited our hyperparameter tuning to adjusting only the number
of neurons in each layer. Therefore, we have opted to use a grid search approach with
a range of [2,30]*[2,30]. This means that the number of neurons in the first layer is
varied from 2 to 30, as well as the number of neurons in the second layer. While more
advanced methods can be useful for more complex hyperparameter tuning tasks, the
grid search approach is sufficient for our current research goals.
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1.2.1 Relationship of NN and Generalized Linear Model

We can express a generalized linear model using the following formula:

Y = g(Xβ) (1.9)

In this formula, Y represents the target variable, X represents the independent
variables, and beta represents the coefficients for each independent variable. The
function g is the activation function (or link function), which is chosen based on the
distribution of the target variable.

Linear regression and logistic regression are two commonly used methods for fit-
ting generalized linear models. In linear regression, we assume that the target variable
has a normal distribution, and the activation function g is the identity function. In
logistic regression, we assume that the target variable follows a Bernoulli distribution,
and the activation function g is the logit function.

If we compare formula (1.6) for a neural network with formula (1.9) for a gener-
alized linear model, we can observe that when the neural network has only one layer
and one neuron in the output layer, it reduces to a generalized linear model.

To specify our neural network within the recursive Canonical GLMs framework,
we define the following properties:

1. We can specify multiple GLMs in parallel with each other instead of specifying
a single GLM. We refer to these parallel groupings of GLMs as ”layers”.

2. By stacking multiple layers and using the output of the previous layer as input
for the next layer, we construct the neural network.

1.3 Statistical Interval

Because samples actually comes from a population or process, the statistical
intervals explains uncertainty exist in the data. We here introduce two types of
statistical intervals commonly used in statistical inference.

1.3.1 Constructive Method

As samples are drawn from a population or process, there is inherent uncertainty
in the data. Statistical intervals are used to quantify this uncertainty. In statistical
inference, there are two commonly used types of statistical intervals that we will in-
troduce here.

There are several traditional methods that involve multiple stages in constructing
statistical intervals. The first method is the Delta method, which involves using a
nonlinear regression model to obtain the prediction interval. The second method is
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the Bayesian method, which uses Bayes’ theorem to optimize the weights. The Mean-
Variance Estimation method (MVEM) is another traditional technique that has been
used to construct statistical intervals. Like other traditional methods, MVEM as-
sumes normally distributed errors around the average of the target, and statistical
intervals can be easily formed if the mean and variance are known. The fourth method
is the Bootstrap method, which applies resampling to the data to construct a reliable
statistical interval. These methods will be further discussed in the literature review.

There are multiple papers talks about statistical intervals directly from neural
networks, which are specifically used in neural network model. These methods will
be illustrated in literature review. Here we talks not only about interval construction
method, but also intervals used in real-world uncertainty estimation of predictions.

1.3.2 Confidence Interval

A confidence interval is a statistical range of plausible values for an unknown pa-
rameter based on a sample of data. It is calculated at a specified level of confidence,
denoted by α, which represents the probability that the interval will contain the true
population parameter if the sampling were repeated many times.

To construct a confidence interval for a parameter θ based on a random sample
X from a probability distribution P , we seek a range of values [L,U ] such that the
probability of θ being in the range is at least (1− α). That is,

P (L < θ < U) ≥ (1− α) (for every θ) (1.10)

There are different methods for constructing confidence intervals, but two common
approaches are the empirical quantile method and the use of normal cutoffs with an
estimated variance.

1.3.3 Tolerance Interval

A tolerance interval is a statistical range that is commonly used in manufacturing
and engineering to ensure that a specified proportion (P) of a population is covered
with a certain level of confidence (α). The endpoints of a tolerance interval are known
as tolerance limits.

The main difference between a confidence interval and a tolerance interval is that
the former is used to detect limits on a given population parameter, while the latter
is used to identify the limits within which we expect a stated proportion of the pop-
ulation to lie. To put it simply, the population parameter in a tolerance interval is
the P percent of the population distribution.
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To understand the definition of a [100× (1−α)%]/[100×P%] tolerance interval,
we can define the coverage of an interval [L,U] as:

C(L,U) = F (U)− F (L) (1.11)

where F represents the cumulative distribution function of the probability allo-
cated to the population. The interpretation of a [100×(1−α)%]/[100×P%] tolerance
interval is that, within a [100× (1−α)%] confidence level, at least [100×P%] of the
population will fall between L and U. To obtain L and U, we need to have:

τ = Pr[C(L,U) ≥ P ] ≥ 1− α (1.12)

where τ represents the probability that the interval [L,U] will cover at least P
proportion of the population.

I have done multiple experiments on statistical building and statistical attributes
post-hoc analyzed from neural network, these codes has been saved in the following
path: https://github.com/VPdota2/Dissertation SY. All codes related to direct es-
timate with neighborhood method is saved in under the document
CI using sliding window.ipynb, all codes related to resampling with infinitesimal
jackknife is saved at Infinitesimal Confidence Intervalxxx.ipynb, all tolerance inter-
val is saved at Tolerance Interval Neural Network.ipynb and all model related to GLM
is saved at Misspecify xxxx.ipynb.

17



Chapter 2 Literature Review

Here we review literature about extensions of neural networks, variance estimation
methods in neural network and other ideas in statistical intervals.

2.1 Variance Estimation in Neural Network

As introduced in the paper [94], uncertaintiy estimation was fully discussed and
methods are all fully introduced. Deterministic neural networks, Bayesian neural
networks, ensemble of neural networks, and test-time data augmentation approaches
is discussed for the latest developments, and practical application in order to mea-
sures uncertainty, as well as approaches for the calibration of neural networks is also
discussed. The paper also and give an overview of existing baselines and available im-
plementations. I will also discuss these existing method and their latest development.

At first, we need to talk about the necessity of uncertainty estimation, which
mainly due to some drawback of neural network: deep neural network is not trans-
parent enough, makes the outcome not trustworthy[95]; in-domain and out-of-domain
samples are hard to distinguish[96, 97]; overfitting occurs [98, 99] and uncertainty es-
timates for DNN decision[100] is not reliable; and neural network hard to fight against
adversarial attacks [101, 102, 103].

Then we delve into the concept of predictive uncertainty in machine learning
models, which encompasses data uncertainty, model uncertainty[104], and distribu-
tion uncertainty[105].

Regarding the input data domain, we can identify different forms of data un-
certainty: in domain uncertainty (innate from variation of the data)[106]; domain
shift uncertainty (different distribution of prediction data then observed data)[107]
and out of domain uncertainty (data point significantly deviate from the training
distribution)[108, 109, 110, 111].

In general, there are 4 types of method used to determine uncertainty for deep
neural networks: Single determinist method directly output neural network’s pre-
diction uncertainty ([105, 112, 113, 114, 115, 116, 117, 118, 119]); Bayesian Neural
Network method to assume data belongs to some type of distribution,using Varia-
tional Inference([120, 121]) and Sampling Approach([122])); test time augmentation
used to augment the input data at test time in order to generate the certainty of
prediction([100, 123, 124, 125]) and ensemble networks.

Especially when we talking about ensemble neural networks, my research talks
about using this method for uncertainty estimation as well. [126] introduced an
ensemble training pipeline to quantify predictive uncertainty within DNNs. Using
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bagging, in [127] it found bagging to worsen the predictive accuracy of ensemble
methods on the investigated tasks. [128] introduced a framework for the comparison of
uncertainty quantification methods with a specific focus on real life applications. [129]
found ensemble methods to deliver more accurate and better calibrated predictions
on active learning tasks than Monte Carlo Dropout. [130] presented an ensemble
method for the improved detection of out-of-distribution samples.

2.2 Comparison of NN versus Linear model

The theoretical comparison between neural networks and generalized linear models
(GLMs) has been extensively studied in the literature. Early work by [131] conducted
a detailed analysis and comparison of neural networks with traditional regression
models. Later, [132] proposed that neural networks are a flexible class of nonlinear
regression models. [133] further elaborated on the overlap between neural networks
and GLMs, suggesting that neural networks are a type of overlapping GLM. These
findings are similar to what has been discussed in Chapter 1. [134] also explored the
advantages of using neural network models instead of parametric regression models.

Regarding the relationship between neural networks and logistic regression, [135]
has conducted an extensive analysis.

In [136], a review of articles comparing multilayered feedforward neural networks
with standard statistical techniques such as regression analysis and logistic regression
was conducted. The paper summarizes the relevant articles in various areas of appli-
cations and highlights an important advantage of neural networks. Specifically, neural
networks can approximate any nonlinear mathematical function approximately. This
aspect of neural networks is particularly useful when the relationship between the
variables is unknown or complex and difficult to handle statistically. However, the
determination of various parameters is not straightforward, and finding the optimal
configuration of neural networks is time-consuming.

Another feature of neural networks is the lack of interpretability of the weights
obtained during the model building process. In contrast, statistical models, such as
GLMs, allow for the interpretation of coefficients of individual variables in a statistical
manner. Furthermore, the parametric assumptions of these models can be used to
infer the significance of certain variables in prediction or classification problems.

2.3 Tolerance interval’s application

Tolerance intervals are a useful tool in statistical analysis for establishing bounds
around a population distribution or regression model. Several researchers have ex-
tensively studied the theory and applications of tolerance intervals, including [137],
[138], [139] and [140]. Initially, the study of tolerance intervals under the assumption
of normality was initiated by [141] and [142], with further research on the normal
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assumption topic using different approaches, as discussed in [143] and [144]. Later,
theoretical analysis on nonnormal tolerance intervals was also studied, with [145]
and [146] providing studies for exponential families and gamma distributions for con-
tinuous distributions, and [147] and [148] providing initial studies for concrete dis-
tributions such as discrete exponential families, binomial and Poisson distributions.
Nonparametric tolerance intervals have also been studied by [149] and [150], while
Bayesian tolerance intervals have been examined in [151] and [152]. Recently, approx-
imation methods for tolerance intervals have also been examined, such as in [153],
which compared tolerance factor approximations and the exact tolerance factors for
normal populations.

When extending tolerance intervals to regression models, [154] was the first to do
so by using the multiplication factor k from [137] for linear regression. The general
form proposed by [155] utilizes transformation and/or weighting to extend linear re-
gression to nonlinear. In a discussion about confidence and prediction intervals for
nonparametric regression, [156] pointed out that [157] used [141] tolerance interval for
univariate data. In this paper, we will be using neural networks as a nonparametric
regression model.

There are multiple ways to construct tolerance intervals, each focusing on different
aspects. For example, [158] considered simultaneous tolerance intervals in regression,
while later articles ([159],[160]) talked about calibration intervals using simultaneous
construction, which are bounds for the predictors when a response is given. [159]
calculates tolerance intervals that ”control the center” by requiring that the tolerance
interval be constructed around an estimate of the center of the distribution, while [160]
calculates tolerance intervals that ”control the tails” by ensuring that the proportion
of the distribution falling outside the interval is below a specified amount in each tail.
The regression tolerance intervals[157] we will construct will be formulated to control
the center, as discussed in [143], [137], and [153].
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Chapter 3 Confidence Interval For Neural Network (Direct Evaluation)

We aim to investigate a method that incorporates prediction information from
neighboring predictors to observe the coverage and behavior of this approach.

3.1 Direct Variance Estimation

3.1.1 Neighbourhood

In the field of topology, a neighborhood of a point refers to a set of points that
includes the initial point and allows movement in any direction within the set without
leaving it. In one-dimensional space, we define the neighborhood as follows:

Definition 3.1.1. If x is any single point, a and δ are both positive number, then,
the neighborhood of a is defined as

Bδ(a) = {x ∈ R : |x− a| < δ}

In our approach, we aim to utilize the information from Bα(xi) for all i ∈ 1, 2, ..., n,
where α can vary within a chosen range, and xi represents any point in the predictors.

We want to incorporate the predictions ŷj for j in Bα(xi) and examine how this
information can be used for variance estimation.

3.1.2 MAD Smoothing

Median Absolute Deviation (MAD) is a robust measure of variability for a univari-
ate sample of quantitative data. Here, we provide a brief introduction to this method.

If we have a set of discrete numbers x1, x2, ..., xn, the sample median is defined as
the middle value of the ordered statistics when the total number of values, denoted
by n, is odd. When n is even, the sample median is calculated as the average of the
ordered statistics with ranks n/2 and (n/2) + 1. [161] prove that the median has a
breakdown point of 50%, indicating that it remains robust even in the presence of
outliers. Additionally, the influence function of the median is bounded, providing a
measure of the effect of removing outliers.

When it comes to robust estimation of scale, there are several statistical methods
to consider. One approach involves calculating the average deviation from the me-
dian, denoted as avei|xi−medjxj|. This estimator has a breakdown point of 0, which
means it is sensitive to outliers. Alternatively, we can compute the median absolute
deviation of the mean, denoted as medi|xi−avejxj|. This estimator exhibits the best
possible breakdown point of 50%, meaning it remains robust even when up to half
of the data points are outliers. Furthermore, the influence function of this estimator
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has the sharpest possible bound among all scale estimators[162].

In our analysis, we are interested in evaluating the scale factor for the standard
deviation. To accomplish this, we can proceed as follows:

1

2
= P (|X − µ| ≤MAD) = P (|X − µ

σ
| ≤ MAD

σ
) = P (|Z| ≤ MAD

σ
) (3.1)

Here Z represent a random variable follow standard normal distribution.

Using the fact Φ(−MAD/σ) = 1 − Φ(MAD/σ) (symmetric property of normal
distribution) and Φ(MAD/σ) − Φ(−MAD/σ) = 1/2 (From previous formula), we
have MAD/σ = Φ−1(3/4) = 0.67449, hence σ̂ = k ·MAD = 1/0.67449 ·MAD ≈
1.483 ·MAD.

3.2 Experiment

First we build a dataset simulated by the following formula:

yi = 3cos(xi)− 5(xi/15)2 + εi (3.2)

The error term εi comes from a t-distribution with 2 degrees of freedom.

We aim to examine which parameter in the base learner, specifically a 2-layer neu-
ral network, can effectively capture the underlying structure of the dataset. In this
study, we impose constraints on the network structure by using the rectified linear
unit (ReLU) as the activation function and the mean square loss as the optimization
goal. To evaluate the performance of our model, we split the data into a training set
(70% of the data) and a validation set (30% of the data).

To determine the optimal number of neurons in each layer, we conduct a grid
search. For both layers, we explore neuron sizes ranging from 2 to 30 with an incre-
ment of 1. Through this search, we find that the first layer achieves the best perfor-
mance with 8 neurons, while the second layer performs optimally with 29 neurons. In
our optimization process, we employ the Adam optimizer with a learning rate of 0.01.

In the visualization, we plot the simulated data as blue dots, the true parameter
values are represented by a solid line, and the dashed line corresponds to the fitted
response variable learned by our neural network.

Upon initial observation, it appears that there might be an outlier around x=7,
and the fitted line seems to closely resemble the true parameter line. However, there
are still some potential outliers around 2 and 8. To gain a clearer understanding, we
zoom in on the response variable, limiting the range from -10 to 10.

Upon closer inspection, we observe outliers near 2, indicating that the fitted line
tends to deviate towards the left of the true parametric model. On the other hand,
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Figure 3.1: True data, true parametric line and fitted line

Figure 3.2: True data, true parametric line and fitted line(zoom in)

as the number of outliers increases towards the right side, our neural network may
tend to learn a straight line rather than capturing the curvature present in the true
parametric model.

3.2.1 Standard Deviation

For the sliding window method, our initial step is to estimate the prediction
standard deviation, denoted as σ, using the standard error ŝ of the predictions within
our neighborhood. It’s important to note that we need to divide the number of cases,
denoted as c, in the neighborhood to make this adjustment.

To define our neighborhood size, we utilize B0.05(xi). In this case, we employ the
normal assumption to construct a 95% confidence band, employing a multiplier of
z0.975 = 1.96.
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Figure 3.3: True data, true parametric line and fitted line (x axis represent explana-
tory variable, blue dot represent true data with noise in simulation, and dashed line
represent 95% confidence band)

Upon observing the plot, we can determine that the coverage rate is 95.4%, which
appears to be quite good. However, the confidence interval lacks smoothness and is
heavily influenced by extreme values.

When we slide our neighborhood size from 0 to 1, we observe the development of
the coverage rate in relation to the neighborhood size.

Figure 3.4: sliding neighbourhood size from 0 to 1 and see coverage rate for 95%
confidence interval in standard error

Initially, our coverage rate is approximately 95%, which aligns with our confidence
band. As we increase the window size, the coverage rate gradually decreases and
stabilizes when δ > 0.4. It’s worth noting that in the early stages, the standard
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deviation of a prediction in our small window (around 0.01) is 0, resulting in a coverage
rate of 0 initially.

3.2.2 MAD neighbourhood

We want to use the MAD in the neighborhood B0.05(xi) of xi’s in all element from
interval x ∈ [0, 10]. We want to use σ̂ = 1.483MAD, where MAD = med|ŷj − yi|,
where yi are true value in xi, and ŷj is the prediction of xj in neighbourhood of xi
where δ = 0.05.

We construct a 95% confidence band utilizing the normal assumption and divide σ̂
by c, which represents the number of cases within the neighborhood. Upon examining
the zoomed-in plot shown in Figure (3.5), we observe that although the confidence
band is not perfectly smooth, it effectively encompasses the majority of the true
parameter line (solid line) in the model. Furthermore, the confidence band appears
to encapsulate the data points with random noise within its boundaries. Notably,
the presence of outliers does not exert a significant influence on the confidence band,
which achieves a high coverage rate of 97.4%.

Figure 3.5: True data, true parametric line and fitted line with confidence band of
using 95% confidence band make use of MAD approximation

Due to the application of the median, the impact of outliers has been mitigated,
resulting in a smoother confidence band compared to using the standard error directly.
However, to examine the progression of the coverage rate, we slide the neighborhood
size from 0 to 1, as depicted in Figure (3.6). This analysis allows us to observe how
the coverage rate evolves as the neighborhood size changes.

Examining Figure (3.6), we can analyze the coverage rate’s behavior when ad-
justing the window size. Notably, the coverage rate appears to be quite satisfactory
within the window size range of 0 to 0.1. However, as the window size exceeds this
range, the coverage rate experiences a rapid decay before stabilizing at a window size
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Figure 3.6: sliding neighbourhood size from 0 to 1 and see coverage rate for 95%
confidence interval in MAD

of 0.8. It is also worth noting that the initial decay in the coverage rate is relatively
smooth compared to using the standard error directly on the predictions within the
window.

3.3 Discussion

Here we can see several research extension of using MAD as robust estimator for
variance.

3.3.1 Sample Size n

We want to see sample size’s effect on sliding window using MAD estimate for
95% confidence band coverage.

Figure 3.7: From left to right, we have sample size n change from 100, 500 to 1000

From Figure (3.7), we can observe certain patterns regarding the coverage rate
as the sample size increases. When the window size approaches 1, the coverage rate
tends to decrease. However, when the window size is around 0.05, the coverage rate
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remains close to 0.95, corresponding to a 95% confidence interval.

There are two notable observations. Firstly, as the sample size increases, the
plot of coverage rate versus window size becomes smoother. Nevertheless, the overall
trend remains consistent: an initial increase in coverage rate followed by a subsequent
decrease. This suggests that the coverage rate may be more influenced by the window
size rather than the sample size. It is possible that the coverage rate is associated
with a function representing the relationship between window size and the learning
ability of a base learner.

Secondly, after a considerable period of decay in the coverage rate as the window
size increases, the coverage rate eventually reaches a stable state. This implies that
using a small window size (approximately 1/200 of the range) appears to be a rea-
sonable choice when there is sufficient information available for the development of
the curve.

3.3.2 Random Error

If we generate n=500 random errors, denoted as ε, from a distribution F with
zero mean and any type of variance, we can examine how well a neural network fits
these errors. To assess the coverage rate of the neural network, we employ a sliding
window approach combined with the Median Absolute Deviation (MAD) method for
robust variance estimation.

Initially, we choose F to be a t-distribution with 2 degrees of freedom and set the
random seed to 42. We train a neural network with 2 layers: the first layer consists of
14 neurons, while the second layer contains 15 neurons. We then evaluate the neural
network’s performance by examining its fitting to the generated errors.

To quantify the uncertainty in the performance estimates, we construct a 95%
confidence interval using a sliding window of size 0.05. Additionally, we investigate
the effect of changing the sliding window size, denoted as m, on the performance and
confidence interval. We vary the window size from 0 to 1, increasing it by 0.02 in
each iteration.

Examining the plot on the left, we observe that the fitting of the neural network
displays fluctuation towards the left side. However, in the middle of the dataset, the
neural network demonstrates a strong ability to fit the random errors accurately.

Furthermore, when the window size is fixed at 0.05, the confidence interval for
the performance of the neural network fitter appears reliable. The interval maintains
a smooth distribution around the true parameters, and the coverage percentage does
not exhibit excessive confidence or conservativeness.
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Figure 3.8: From left to right, we have the fitting of neural network’s performance,
95% CI with 97.4% coverage percentage with sliding window size 0.05, and the growth
of sliding window size’s effect on coverage rate.

Nevertheless, as the window size increases while keeping the sample size fixed at
500, we observe a gradual reduction in coverage. This suggests that the larger window
sizes may lead to decreased accuracy in capturing the true performance of the neural
network.

The plot below shows if we change the random error from a t distribution to
a normal distribution with mean 0 and variance 1, by applying MAD method for
variance estimation.

Figure 3.9: From left to right, we have the fitting of neural network’s performance,
95% CI with 99.6% coverage percentage with sliding window size 0.05, and the growth
of sliding window size’s effect on coverage rate.

Analyzing the plot on the left, we observe that the fitted line generally captures
the true regression line (y = 0), although it exhibits fluctuations around the true
parameter. However, there are no distinct patterns apparent in the graph.

The 95% confidence interval with a window size of 0.05 successfully captures the
true parameters, but the interval itself appears to be less smooth and demonstrates
overconfidence.

Upon varying the sliding window size from 0 to 1 with an increment of 0.02, we
note that the coverage probability initially increases, then fluctuates around 0.975 be-
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fore gradually decreasing. Prior to the 0.5 mark, the coverage probability experiences
an upward trend, followed by a decline and subsequent fluctuation.

3.4 Conclusion

When using a neural network, confidence intervals can be employed to estimate
the uncertainty surrounding the predicted output of the model. To calculate these
intervals, variance is used as a measure of the spread of values, allowing for the quan-
tification of uncertainty.

Directly evaluating variance using residuals and the neighborhood of observations
can be computationally expensive. By utilizing the full model information present in
the data, the model fitting process becomes less susceptible to model bias.

Instead of assuming a constant variance throughout the entire population and
using the entire population to estimate variance, it is crucial to consider that predic-
tions may deviate from the true parameters. In such cases, the neighborhood method
introduced in this chapter proves to be a superior option for estimating variance at
specific points. Comparing the Median Absolute Deviation (MAD) method to the
standard deviation method in the neighborhood, it becomes evident that, for small
neighborhood sizes, the MAD method yields confidence intervals closer to the nomi-
nal level. This is particularly important as the number of variables increases, making
it challenging to identify the neighborhood in high-dimensional space. Additionally,
the currently employed neighborhood method may face difficulties when used with
standard error variance estimation methods.

In conducting sensitivity analysis with varying sample sizes and neighborhood
window sizes in the presence of random errors, we conclude that sample size has min-
imal impact on neighborhood size selection. Furthermore, when random errors are
present, neural networks demonstrate effective model fitting. The decay rate of the
coverage percentage is slower for smaller window sizes and becomes faster for larger
window sizes.

In future studies, it would be valuable to explore the optimal neighborhood size
required to achieve confidence intervals at the nominal level. Additionally, inves-
tigating multivariate regression confidence intervals for neural networks, which can
be compared to traditional KL-Divergence-based Bayes estimation([163]) for neural
network variance estimates, would be beneficial.
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Chapter 4 Confidence Interval For Neural Network (Resampling)

4.1 Variance Estimation Method using Resampling

In this study, we employed bootstrap, jackknife, and extension methods to esti-
mate the variance in a fixed-two layer neural network, aiming to explore the coverage
properties of confidence intervals.

4.1.1 Jackknife

The Jackknife method, initially introduced and studied by Maurice Quenouille[164,
165], and later expanded upon by John Tukey[166], represents a straightforward and
versatile approach for estimating variance in various problem domains.

If there exist a dataset x = (x1, ..., xn) as our dataset, the ith jackknife sample
x(i), which is delete ith element from x,

x = (x1, x2, ..., xi−1, xi+1, ..., xn) (4.1)

and for the population parameter θ̂ = g(x), each jackknife replication θ̂(i) will also
be achieved from x(i), say

ˆθ(i) = g(x(i)) (4.2)

In [167], the estimate of bias in bootstrap is defined by

ˆbiasjack = (n− 1)(θ̂(.) − θ̂) (4.3)

where

θ̂(.) =
n∑
i=1

θ̂(i)/n (4.4)

Hence, the bias-correct version of jackknife estimator is in the form

θ̂U−jack = θ̂ − ˆbiasjack = nθ̂ − (n− 1)θ̂(.) (4.5)

It is mathematically established that ˆbiasjack often serves as an unbiased estimator
for the bias of the overall sample statistic. In fact, it has been demonstrated in 9.1
that ˆbiasjack is a quadratic Taylor series approximation to biasF = biasF (θ̂, θ) =
EF [g(x)]− θ, where F represents the theoretical probability distribution.

4.1.2 Pseudo-values

As per the jackknife method, a pseudoestimate is obtained by excluding Xi from a
set ofXn and utilizing the remaining elements to estimate the population parameter θ.
We denote this estimate as θ̂(i). Additionally, the pseudovalue p(i) = nθ̂− (n− 1)θ̂(i)
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is introduced as a measure[168]. The pseudovalue for the average of all jackknife
estimators is defined as follows:

p(.) =
1

n

n∑
i=1

(nθ̂ − (n− 1)θ̂(i))

=
n∑
i=1

θ̂ + (n− 1)(
1

n

n∑
i=1

θ̂(i)) = nθ̂ − (n− 1)θ̂(i)

(4.6)

Which is actually the bias-corrected jackknife estimate. The natural estimator for
the variance of θ̂U−jack is s2U−jack/n and s2U−jack is sample variance of n pseudo-values:

ˆvar(θ̂U−jack) =
s2U−jack
n

=
1

n

1

n− 1

∑
i

(p(i) − p(.))2

=
n− 1

n

∑
i

(θ̂(i) − θ̂(.))2
(4.7)

4.1.3 Infinitesimal Jackknife

If weight is attached to each observation(using projection expression in jackknife),
instead of assigning weight 0 for the omitted variable in jackknife, we should assign
weight sightly less weight than others, and consider limiting case that the weight
approaches zero. Notice that the

∑
wi not necessary to be 1. If we consider T as

discrete probability distributions, that is concentrate of the mass on a finite number
of points. We can define T as a function of 2n variables:

T (X1, ..., Xn;w1, ..., wn) (4.8)

If G is any probability distribution for which T is defined, and c is a positive constant,
then we let T(cG) = T(G).

If we reduce wi by ε and leave other weight at 1/n, we have

θ̂(i)(ε) = T (X1, ..., Xn;
1

n
, ...,

1

n
− ε, 1

n
) (4.9)

Assume we can different T with respect to wi, and define

D̂i =
∂T

∂wi
|xj=Xj ,wj=

1
n
,j=1,...,n

D̂ii =
∂2T

∂w2
i

|xj=Xj ,wj=
1
n
,j=1,...,n

(4.10)

We can form the Taylor series expansion

θ̂(i)(ε)− θ̂ = T (...,
1

n
− ε, ...)− T (...,

1

n
, ...)

= −εD̂i +
ε2

2
D̂ii − ...

(4.11)
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The variance estimate V̂ (ε) is defined as

n2ε2V̂ (ε) = (1− ε)
∑

[θ̂(i)(ε)− θ̂(.)(ε)]2 (4.12)

If ε = 1/n, then this degenerate go jackknife variance estimator. We can see that

θ̂(i)(ε) ∼= θ̂ − εD̂i (4.13)

Lemma 1. Let G as discrete distribution and P (X = zi) = gi and wi be weight
attached to value zi, and assume zi are distinct. If the derivatives are exist, then∑

i

giD
G
i = 0 and

∑
i

∑
j

gigjD
G
ji = 0

where DG
i is derivative of T with respect to wi evaluated at W=G.

Proof.

0 =
dT (cg1, ..., cgI)

dc
=
∑ ∂T

∂wi

dwi
dc

=
∑
i

gi
∂T

∂wi

Similarly, ∑
i

gi
∑
j

gj
∂T

∂wj∂wi
= 0

If we evaluate at c=1 for both equation, the proof is completed.

Hence
θ̂(.)(ε) ∼= θ̂ − ε

n

∑
D̂i = θ̂ (4.14)

since c in lemma can be chosen by ε/n We will have

θ̂(i)(ε)− θ̂(.)(ε) ∼= −εD̂i (4.15)

Using equation (4.12), we can see that

n2ε2V̂ (ε) ∼= (1− ε)
∑

ε2D̂2
i (4.16)

Letting ε→ 0, we have

nV̂ (0) =
1

n

∑
D̂2
i (4.17)

V̂ (0) is the IJK[169] variance estimate for θ̂.
Also, the bias term can be expressed as B̂(ε)

n2ε2B̂(ε) = n(1− ε)(θ̂(.)(ε)− θ̂) (4.18)

Writing in Taylor expansion, will be

θ̂(i)(ε) ∼= ε̂− εD̂i +
ε2

2
D̂ii (4.19)
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and using
∑
D̂i = 0 and 1

n

∑
θ̂(i)(ε) = θ̂(.)(ε), we have

θ̂(.)(ε) ∼= θ̂ +
ε2

2
D̂ii

n2ε2B̂(ε) = n(1− ε)( ε
2

2n

∑
D̂ii)

(4.20)

Let ε→ 0, we have

nB̂(0) =
1

2n

∑
D̂ii (4.21)

This B̂(0) is the IJK bias in θ̂.

From previous introduction, we know that the variance of Infinitesimal Jackknife
estimate is

V̂ ∞IJ =
n∑
i=1

Cov∗[N
∗
i , t
∗(x)]2 (4.22)

where t∗(x) represent a base learner on bootstrap sample, and N∗i is the ith training
example appears in a bootstrap sample.

But we can only work with finite number of B bootstrap replicates, here we will
have

V̂ B
IJ =

n∑
i=1

ˆCovi, with ˆCovi =

∑
b(N

∗
bi − 1)(t∗b(x)− t̄∗(x))

B
(4.23)

N∗bi represent the ith observation appear times in bootstrap example b.

4.1.4 Jackknifes’ relationship with bootstrap

Jackknife can be actually explained as an approximation to the bootstrap. If we
consider linear statistic

θ̂ = s(x) = µ+
1

n

∑
α(xi) (4.24)

We know that jackknife standard error

ŝeBoot =
n− 1

n

∑
i

(θ̂(i) − θ̂(.))2 (4.25)

and bootstrap standard error

ŝeB = {
B∑
b=1

[θ̂∗(b)− θ̂∗(.)]2/(B − 1)}1/2 (4.26)

where θ̂∗(.) is the avearge of bootstrap statistics. And the bootstrap standard error
multiply {(n− 1)/n}1/2 is the jackknife standard error.
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4.2 Confidence Interval Building

Here we want to see performance of different variance estimation method’s per-
formance on building confidence intervals for fixde 2-layer with fixed neurons neural
networks.

4.2.1 Normal Assumption

We know that if sample size n grows large, the distribution of θ̂ becomes approx-
imately normal, and mean will be around θ with variance near ŝe. We will use z(α/2)

represent the 100∗α/2 percentile point as cut-off point, then, since θ̂−θ
ŝe

is approximate
normal distribution, we will have:

P (zα/2 ≤
θ̂ − θ
ŝe
≤ z1−α/2) = 1− α (4.27)

Can also be change into form

[θ̂ − z1−α/2 ∗ ŝe, θ̂ − zα/2 ∗ ŝe] (4.28)

Or we can write in a form
θ̂ ± z1−α/2 ∗ ŝe (4.29)

4.2.2 Percentile Method

We can let Ĝ be the empirical distribution of bootstrap statistics θ̂∗ = s(x∗). The
1− α percentile confidence interval can be defined by α/2 and 1− α/2 percentiles of
Ĝ:

[θ̂%,low, θ̂%,upper] = [Ĝ−1(α/2), Ĝ−1(1− α/2)] (4.30)

And we define the Ĝ−1(α) to be the 100 ∗ α percentile of the bootstrap distribution.
We can consider B independent bootstrap datasets x∗1,x∗2, ...,x∗B and compute

the bootstrap statistics θ̂∗(b) = s(x∗b). The θ̂
(α)
B will be the 100 ∗ αth percentile of

bootstrap statistic θ̂∗, then the approximate 1− α percentile interval is

[θ̂%,low, θ̂%,upper] ≈ [θ̂
∗(α/2)
B , θ̂

∗(1−α/2)
B ] (4.31)

If the sampling distribution of θ̂∗ is roughly normal, the percentile interval may agrees
on the standard normal interval. But if the distribution of (̂θ)∗ is not normally dis-
tributed, the percentile interval seemed to perform better than normal approximation,
unless the transform of θ fits normal distribution in the following lemma:

Lemma 2. If transformation φ̂ = f(θ̂) have a perfectly normal approximation

φ̂ ∼ N(φ, a2) (4.32)

Then the percentile interval of θ̂ is [f−1(φ̂− z1−α/2a), f−1(φ̂− zα/2a)]
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Proof. The percentile interval of φ̂ will be

[φ̂(α), φ̂1−(α)] (4.33)

Since φ̂ is a normal distributed random variable, the normal interval for φ̂ will be

[φ̂− z1−α/2 ∗ a, φ̂− zα/2 ∗ a] (4.34)

Since φ̂ = f(θ̂) then θ̂ = f (−1)(φ̂). The percentile interval will be

[f−1(φ̂− z1−α/2 ∗ a), f−1(φ̂− zα/2 ∗ a)]

4.2.3 Bootstrap Size’s Effect

We want to study the feature of the distribution of θ belongs to the population,
noted by γ̂B. The variance of γ̂B depend on sample size n and bootstrap sample size
B. In fact, if the variance of bootstrap estimate standard error of x̄ is our research
target, the variance of standard error has the form

var(ŝeB) =
c1
n2

+
c2
nB

(4.35)

where c1 and c2 are constants depend on population distribution F. The c1/n
2 rep-

resents sampling variation, which comes from sample size n is smaller than whole
population. While the second part is c2/nB represent the resampling variation, and
it comes from bootstrap in resample.

Since n, B change will lead to change of E(ŝeB), in hear we will consider the
coefficient of variation of ŝeB

cv(ŝeB) =

√
var(ŝeB)

E(ŝeB)
(4.36)

Using simplification in Appendix(9.3) we can see that

cv(ŝeB) = {cv(ŝe∞)2 +
E(∆̂) + 2

4B
}1/2 (4.37)

If the population parameter is using sample mean as estimation, while each sample
are iid normally distributed, then

cv(ŝeB) = [
1

2n
+

1

2B
]1/2 (4.38)

We choose n=500 and range B from 1 to 2000 to see how the coefficient of variation
behaves, notice the dashed line is ŝe∞.
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Figure 4.1: CV vs B when sample size fixed to 500

Notice that there seems to be a singular point around 200, actually it comes from

d2 cv(ŝeB)

d B2
=
d − 1

4
√

1
2B

+ 1
2n
B2

d B

=
4B + 3n

16n( 1
2B

+ 1
2n

)
3
2B4

set to 0
= B = 3n/4 = 375

(4.39)

We know a random forest’s performance cannot be worsened by adding more trees
to it, comparing it to [170], I choose the B larger than 500, I will use 500, 2000, 5000
to see coverage rate of 95% confidence interval.

4.3 Experiment

We want to compare coverage probability of two different method of confidence
interval coverage probability and coverage performance using bootstrap, jackknife
and infinitesimal jackknife method.

We still use the synthetic data generated by (5.6), and see ensemble other method’s
performance. When the bootstrap size is fixed at 500, and applying the multiplier z*
to construct prediction confidence interval, the coverage plot is shown as follow:

We observed that these confidence intervals for the whole dataset is highly cor-
related with outliers - when there is effect of outlier on both side of the line, the
confidence interval is seemingly covered more for these outliers. However, overally,
the percentage coverage for these models are close to the nominal level - α.

When comparing Infinitesimal Jackknife with Bootstrap, Jackknife, the overall
coverage comparison is shown as follow:
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Figure 4.2: 95% Confidence Interval using Infinitesimal Jackknife Variance Estima-
tion

Infinitesimal Jackknife Jackknife Bootstrap Quantile
95% CI 96.2% 88.6% 93%

When comparing with these three methods, infinitesimal jackknife method is the
closest to nominal level 1 − α = 95%. We consider infinitesimal jackknife is more
sensitive to nonlinear models. However, the IJ confidence interval is extremely sensi-
tive to outliers, we need to introduce robust estimator to enhance confidence interval
coverage.

4.4 Extended Research: Effect of Outlier

Since there will be a spike around our confidence interval around outlier’s posi-
tion (around x=7), I want to try several method to smooth the confidence interval
excluding outlier’s effect. I only present the confidence interval build by Infinitesimal
Jackknife variance estimation for comparison.

4.4.1 Delete

If we arbitrarily delete the data seems to be the outlier(x=7.314 precisely), then
we will fit our data like the plot below:
Seems like our fitted line is more skewed to the left than not delete the outliers, seems
like delete outlier is making our model fitting become worse.

4.4.2 Huber’s M Estimator

If our loss function for regression is a sample average, then a class of extremum
estimators is called M-estimator[171]. Generally, if êi = yi − ŷi represents residuals
in model fitting, then we want to minimize

∑
ρ(êi) as a loss function where ρ(êi) is

a function of residuals.
The specific Huber M-estimator(Or Huber Loss)[172] is a compromise between e2

and |e|. Although LAD(Least Absolute Deviations) estimates over LS(Least Square)

37



Figure 4.3: True data, true parametric line and fitted line(delete outlier)

estimates on not sensitive to outliers, but LS are more accurate to evaluate regression
performance. Huber M-estimates is a method to combine advantage of both method
and alleviate the effect of outliers. Huber’s M Statistics is defined as:

ρ(e) =

{
e2 if − k ≤ e ≤ k

2k|e| − k2 ife < −k or k < e
(4.40)

Where k = 1.5σ̂ and σ̂ is the estimate of population standard deviation σ.
We actually choose σ̂ = 1.483MAD[173] and MAD is the median of absolute

deviation |êi|. The algorithm we are going to apply here is we fit the model iteratively
to get residual from our result, then update k in each iteration to achieve a stable
point in regression.

Figure 4.4: Huber’s M Estimator for k=1

The Figure 4.4.2 represent a Huber’s estimator behavior if residuals increment
from -3 to 3. The solid line is what Huber’s M Estimator behavior and dashed line
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is just the least square estimates. We can see that by using Huber’s M statistic, the
outlier’s effect has been alleviated outlier’s effect from second order power to linear.

After applying Huber’s M statistics with updated k in each iteration, we see how
our neural network fit for the theoretical line in the Fig(5.2.1)

Figure 4.5: True data, true parametric line and fitted line(delete outlier)

We can see from the plot that the fitted line can depict true parametric line very
well, except for some edge on the curvature point can’t depict the true line very
smoothly.

4.4.3 Discussion

Method Delete Huber’s M
Coverage Rate 66.6% 93.4%

Table 4.1: Compare coverage rate of multiple smoothing method with 95% CI

We can combine those method and see coverage rate in the table below. We
can see that, under the Huber’s M estimator, the percentage coverage for these mod-
els are close to the nominal level - α. If we only delete one outlier, it is hard to
determine which is outlier and which is not. Hence, the smoothing method are theo-
retically better in coverage percentage than just ignore outlier.

4.5 Conclusion

I have explored an alternative approach to constructing confidence intervals for
neural network regression. This approach involves using resampling methods to either
calculate variance or construct a sampling distribution for neural network predictions,
thereby enabling the construction of confidence intervals.
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For resampling methods, various techniques can be employed, such as bootstrap,
jackknife, and infinitesimal jackknife. While jackknife and bootstrap methods have
previously been applied for variance estimation in neural networks, the infinitesimal
jackknife is a novel addition. The infinitesimal jackknife method exhibits lower vari-
ance compared to the traditional jackknife method when the model fitting extent is
the same, making it more sensitive to the coverage of the confidence interval.

After analyzing the impact of bootstrap size and considering that 200 bootstrap
samples provide consistent and stable standard errors, a similar nonlinear model is
fitted using a neural network. Among the different resampling methods, the infinites-
imal jackknife method with the multiplier of the normal distribution achieves the
closest nominal coverage to the neural network prediction, indicating its superiority
in variance estimation.

Since the simulated model includes some observations that deviate significantly
from the true model line, robust regression techniques were introduced to mitigate
the effect of outliers on confidence interval construction. Comparing the approach of
solely deleting outliers with the Huber’s M estimator, which incorporates the Median
Absolute Deviation (MAD) as a measure of variance, the latter exhibits much better
coverage within the confidence interval setting. This demonstrates that instead of
deleting outliers, down-weighting them is more appropriate when making predictions
for the underlying data trend.

Based on my research findings, resampling methods provide more accurate un-
certainty estimation for neural network regression compared to direct estimation.
However, it is worth noting that both resampling and neural network approaches
are time-consuming. Therefore, there is room for further improvements. For exam-
ple, combining resampling methods with Bayesian estimation techniques (as cited in
the referenced paper) can enhance the understanding of uncertainty estimation for
neural networks. Additionally, ensemble methods, which involve combining multiple
neural networks, have the potential to reduce model variance and may lead to better
model fitting than a complex multi-layer perceptron model. Further analysis can be
conducted to explore this avenue as well.
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Chapter 5 Tolerance interval

In addition to the traditional setting of confidence intervals, we also aim to explore
other types of statistical analysis in our research. Specifically, we will investigate the
use of tolerance intervals in conjunction with neural networks as a nonparametric
regression model. This research direction will focus on establishing bounds around
the population distribution using a neural network as the predictor, rather than
making point estimates or constructing confidence intervals.

5.1 Definition

In this part, we introduce the method of how to achieve tolerance interval for
nonparameteric regression and its theory basis.

5.1.1 Nonparametric Regression Tolerance Intervals

Regression analysis is a statistical method used to estimate the relationship be-
tween a quantitative response variable and one or more explanatory variables. Non-
parametric regression is a variation of this method that models the response variable
as a function of the explanatory variable(s) without making assumptions about the
shape of the relationship.

Nonparametric regression can be expressed as:

Y = f(X) + ε (5.1)

where f(·) represents the regression function and ε is a random error, typically as-
sumed to be generated from a theoretical distribution. Unlike parametric regres-
sion, nonparametric regression does not assume constant variance of the error term
(V ar(εi) = σ2(xi)).

Neural network is a complex, nonlinear regression method that can also be con-
sidered a nonparametric approach to analyzing regression models.

To determine if the fitted model, f̂(·), provides a good and smooth fit to the data,
there are many subjective methods that can be used. However, statistical interval
estimation can be challenging for nonparametric regression because inherent bias in
the method can result in higher error at peaks and lower error at valleys in the re-
gression curve.

Tolerance intervals can be used to provide a nonparametric measure of interval
estimation. Suppose a random sample Z1 = z1, ..., Zn = zn comes from a distribution
function FZ , the upper and lower tolerance bounds of [100 × (1 − α)%]/[100 × P%]
interval are L = z(r) and U = z(n−r+1), where z(j) represents the jth value of the
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ordered statistics of the random samples and r < (n−1)/2. The coverage probability
of the tolerance region [Z(r), Z(n−r+1)] is beta distributed with shape parameters n−
2r + 1 and 2r. For a two-sided tolerance interval, r is determined by minimizing the
probability that the beta distribution is greater than or equal to P :

arg min
r:r<(n+1)/2

Pr(Beta ≥ P ) ≥ 1− α (5.2)

and
n−r∑
i=0

(
n

i

)
P i(1− P )(n−i) ≥ 1− α (5.3)

An alternative method for achieving [100× (1− α)%]/[100× P%] regression tol-
erance bounds is to use the order statistics of all residuals, i.e., e(1), ..., e(n). For each
prediction point in the regression, the tolerance bounds can be calculated as:

L = ŷj + e(r) (5.4)

and
U = ŷj + e(n−r+1) (5.5)

5.2 Experiment

In the first and second chapters, we explored the definition of tolerance intervals
and their applications to various statistical models. In this chapter, we will investigate
the behavior of tolerance intervals when applied to a nonparametric model, specifically
a neural network.

5.2.1 Nonlinear model tolerance interval

We are still applying the previous simulation function

yi = 3cos(xi)− 5(xi/15)2 + εi (5.6)

where εi obeys t distribution with 2 degrees of freedom.

We define our x variable from the interval [0,10] with increment of 0.02 and want
to see the coverage probability for each point in x axis related to nominal confidence
level.

Based on the coverage probability plot5.2.1, we can observe that when x is in
the range of [0.5, 5] and [7, 9.5], the coverage probability exceeds the nominal level.
However, similar to the findings in [174], when x has a large value, the coverage prob-
ability appears to be low. In our analysis, we observed that the decay of coverage
probability is much faster than that reported in [174] when x becomes larger in our
experiment.
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Figure 5.1: The coverage probability at n=500 sample size of unique x value for
90× 95, 95× 95 and 99× 95 tolerance intervals.

P
1− α n 0.9 0.95 0.99
0.90 50 0.9477496 0.7948052 0.141384

500 0.8893424 0.9084754 0.95710896
0.95 50 0.9477496 0.7948052 0.95710896

500 0.91052844 0.95447828 0.95710896
0.99 50 0.9477496 0.7948052 0.141384

500 0.95003264 0.97866392 0.95710896

Table 5.1: Compare coverage rate of multiple smoothing method with 95% CI

Additionally, we noticed an important factor that affects the performance of the
neural network, which is the variance estimation in outliers when x is around the
outliers. The coverage probability drops into a convex curve around x=6, whereas
the effect of outliers on [174]’s paper is not significant.

Table (5.1) presents the estimated coverage from our simulations. It is apparent
that when the sample size is small, the coverage probability is significantly below
the nominal level (1-α). This occurs because when the sample size is small, a small
increment in the order statistics i has a large effect on the cumulative probability of
a Beta distribution, leading to an underestimation of the true coverage probability in
the case of small sample sizes. The required sample size has been studied by [175],
who specified n ≥ f(α, P ), where f is a specified distribution.

We observe that as the proportion of the population increases, the coverage prob-
ability also increases when the sample size and confidence level are fixed, while the
confidence level determines the nominal level of coverage. Moreover, as the sample
size becomes larger, the coverage probability becomes closer to the nominal level.

43



However, when compared with the results from [174], the coverage probability for
neural network is lower than that for LOESS[176].

There still exist some issue in fitting neural network to achieve tolerance interval
for model, here we do several extension works on tolerance interval to see neural
network’s performance.

5.2.2 Experiment using Linear Model

We aim to examine whether a linear curve with normal error, fitted using a neu-
ral network, can achieve similar coverage to the nominal level without being affected
by outliers. This is because our theoretical curve is non-linear and has non-normal
distribution errors.

In the experiment, the following formula is firstly used:

y = 3x+ ε (5.7)

and X belongs to the interval [0, 10] and with equal increment and of size 500. ε is a
random variable belongs to a standard normal distribution.

After fitting the 2-layer neural network with first layer size 3 and second layer size
29, we can see the fitting of the linear curve in the solid black line in Figure(5.2).

Figure 5.2: Fitting linear curve with neural network.

Upon examining the fitted curve, we observe that it is curvilinear for x in the
range of [0,1], but becomes linear after x > 1. Next, we investigate the performance
of different values of P = 0.95 and α = 0.1, 0.05, 0.01 by examining the distribution
of coverage for y values at each x in the interval [0,10] in Figure (5.3).

The coverage plot above reveals that the coverage percentage drops drastically to
a very low level when x is less than 1 (this may be due to the vanishing gradient issue).
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Figure 5.3: The coverage probability at n=500 sample size of unique x value for
90 × 95, 95 × 95 and 99 × 95 tolerance intervals, fitting linear model with neural
network.

However, as x increases, the coverage tends to become closer to the nominal level, or
even exceed it. This may be because normal random errors are less likely to create
outliers, and fitting a complicated neural network on a simple linear function tends
to have a large effect on certain parts if there is overfitting. Therefore, our robustness
issue of tolerance interval is resolved. However, if the neural network cannot fit the
true curve well, there may still be some effect on certain parts of the model.

5.2.3 MAD as Deviation Estimator

In Section(3.1.2) we discussed the method of using MAD with sliding window as
an estimator for standard deviation, i.e., σ̂ = 1.483 MAD. We now introduce the
method of using variance with normal assumption to build tolerance interval, and see
the performance of neural networks.

When using normal assumptions on variance, the bounds for a [100×(1−α)%]/[100×
P%] two-side regression tolerance interval will be expressed in the form as

L = ŷj − k ∗ s (5.8)

And
R = ŷj + k ∗ s (5.9)

We might want to assume s/sj for each j is approximately 1, then we can use
σ̂ at each point yj as estimator of sj. We also use [154] to estimate k-factor in our
tolerance interval. Let f=n-p, where n is how many cases in one sample, and p is how
many features in your data. We will have

k =

√
fχ2

1;P (1/n∗h)

χ2
f,α

(5.10)
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Figure 5.4: Left figure describe for fixed confidence limit α, the behavior of K versus
coverage percent P; Right figure talks about for fixed coverage percent P, the behavior
of K versus confidence limit α.

where χ2
c,α(δ) will be the the α% quantile of a noncenteral chi-square distribution

with c degrees of freedom and noncenterality parameter δ.

Figure(5.4) describe for a fixed α = 0.05, the multiplier k’s behaviour on coverage
probability P; It is observed that for a fixed P=0.95, the multiplier k’s behaviour on
confidence level α:

When α is fixed, an increase in coverage probability P leads to a larger value of K.
Additionally, as P approaches 1, the derivative of P with respect to K becomes higher.
When P is held fixed, K exhibits smoother decrements for α values in the middle of
[0.2,0.8], while for α values at the edges (0 to 0.2 or 0.8 to 1), the decrements of K
become faster. Generally, P is the primary factor influencing the composite values of
K, while α is the secondary factor.

To simplify the equations, we assume n∗h = 1 since there are too many parameters
in the model. Equation (5.6) is still used with the error term following a standard
normal distribution. The 95 × 95 tolerance interval for the simulated data can be
seen in Figure (5.5).

From the tolerance interval figure we can see that tolerance interval can capture
most the data under normal distribution error, but not overconfidence. In fact, for
95 × 90, 95 × 95 and 95 × 99 tolerance interval coverage on different x compare
to nominal level, while we see that in fig(5.6) for each coverage line, there exist
little difference. This is perhaps for different choice of coverage percent P in the set
{90%, 95%, 99%}, the multiplier K has little difference.

5.3 Discussion

This chapter explores the use of ”tolerance interval” in the context of neural
network models. We provide an overview of the background, development, and ap-
plicability of tolerance intervals in neural networks. We apply three methods to
construct tolerance intervals: the quantile method, the variance estimation method
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Figure 5.5: The coverage probability at n=500 sample size 95×95 tolerance intervals,
fitting linear model with MAD as variance estimation on neural network.

Figure 5.6: The coverage probability at n=500 sample size of unique x value for
90× 95, 95× 95 and 99× 95 tolerance intervals, fitting nonlinear model with neural
network.

with normal simulation, and a method similar to the R package tolerance ([177]). To
implement these methods, we utilize the Keras API in Python, as neural networks
can be challenging to work with in the R environment.

To compare the advantages and disadvantages of using neural networks in building
tolerance intervals, we applied a nonparametric regression tolerance interval method
as discussed in [174]. We compared our results with those of [174] and found that the
neural network model showed similar coverage probabilities as the traditional non-
parametric model (LOESS) when residual and order statistics of the neural network
were used to build the tolerance interval.
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Furthermore, to establish a baseline model for the neural network, we used the
tolerance interval building method for linear regression when fitting the neural net-
work model to data under a linear regression setting. As discussed in Chapter 7, the
prediction power of neural networks is almost the same as linear regression when the
underlying model is linear. Thus, we expect that neural networks will show similar or
better coverage performance than linear regression. We found that the nonparametric
tolerance interval coverage ability is similar to that of the linear regression tolerance
interval under statistical inference.

We also attempted to use the MAD method to approximate the variance and
build the tolerance interval under this setting. However, we found that the coverage
performance was not as good as the nonparametric regression method. Nevertheless,
the theoretical tolerance interval setting under the neural network model can be
further explored.
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Chapter 6 Neural Network’s Effect Comparing With Linear and Logistic
Regression with misspecification

In Section 1.1, we mentioned that neural networks are essentially recursive gener-
alized linear models, built by stacking GLMs in horizontal and vertical ways. In this
section, we will delve into the relationship between neural networks and linear/logistic
regression models, specifically for linear structures. We will explore how model fitting
performance is affected when misspecification occurs.

6.1 Basic Concept

Here, we will introduce the concepts of linear regression and logistic regression,
which are two common special cases in generalized linear models. Additionally, we
will discuss the concept of misspecification in statistical models.

6.1.1 Linear Regression

In the context of generalized linear models, linear regression assumes that the
outcome variable is normally distributed and the link function is the identity function.
The basic model structure can be expressed as:

E(Y ) = Xβ (6.1)

Based on the property that if a new variable Y is constructed by adding a con-
stant Xβ to a normally distributed variable ε, the distribution of Y is still normal.
Therefore, linear regression is traditionally expressed in the following form:

Y = Xβ + ε (6.2)

where ε ∼ N(0, σ2), representing a normal distribution with 0 mean and σ as the
standard deviation.

When discussing model assumptions, two specific requirements are designed for
linear regression. The first is the assumption of homogeneity of variance. Addition-
ally, the loss function of linear regression is the sum of squared error. To minimize
this error, we can differentiate the loss function to obtain:

Loss = (Y −Xβ)′(Y −Xβ)
∂L

∂β
= β′X ′Xβ − 2XβY (6.3)

Since the sum of square loss is a convex function, the β̂ that makes the equation
equal to 0 will be the parameter that solves linear regression. Thus, we have:

β̂ = (X ′X)−1X ′Y (6.4)

Furthermore, we know that E(MSE) = σ2, since
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SSE = (Y −Xβ̂)T (Y −Xβ̂)

P is the projection matrix on the column space of X. The fact is that PY = Xβ̂.
Since Y ∼ N(Xβ, σ2In), and

SSE

σ2
=
Y T (I − P )Y

σ2
∼ χ2

(n−k)

because I-P is the projection matrix of rank n-k.

When Mean Squared Error (MSE) is used as a performance metric, it is considered
the best (minimum variance) unbiased estimator for linear model structures[178].
Therefore, MSE is often used as a performance metric to evaluate how well an artificial
neural network can learn from a linear model.

6.1.2 Logistic Regression

Under GLM structure, when the outcome is binary, the target variable is assume
to be Bernoulli distributed and link function will be logit function. The basic model
structure will following the form:

logit(Y ) = Xβ

Where logit function is logit(Y ) = log(Pr(Y=1)
Pr(Y=0)

), which is the log of the odds of this
case belongs to class ”1”.

For maximum likelihood estimate of β, we want to maximize the likelihood

L(β) = Πs in yi=1p(xi)× Πs in yi=0(1− p(xi))

where s is each case, when we take the log ot this likelihood, we have

l(β) =
n∑
i=1

(yilog(p(xi)) + (1− yi)log(1− p(xi)))

The cross-entropy loss is obtained by taking the negative logarithm of the likelihood
above. In order to minimize this loss, an optimization method such as Newton’s
method is typically used to find the local minimum. However, due to the inclusion
of probability P in the Hessian matrix, there is no closed-form solution for logistic
regression to achieve the global minimum, as explained in detail in Section (9.4).

In the case of multiple outcomes in classification, a baseline outcome is typically
specified, and the probabilities of the other classes are predicted in parallel. The
variable is then classified into the group with the highest predicted probability. This
approach is often used in logistic regression.
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6.1.3 Misspecification

Statistical models are defined as a set of data drawn from a specific type of distri-
bution. This distribution is referred to as the statistical model.When misspecification
is introduced in linear models [179], it means that the true linear model is specified
as follows:

f(yi) = β0 + β1xi + β2qi + εi

and we have the relationship of xi with qi: xi = g(qi) + ui where ui is some unique
variance inside x.

A linear model is called misspecified is we build following model if true model is
specified in the function of f(yi):

yi = π̂0 + π̂1xi + v̂i

Where v̂ represent the residual of the misspecified model, since actual relationship of
qi is actually omitted in the wrongly presented model.

This chapter primarily focuses on the misspecification of the interaction term in
linear models, where the true model includes an interaction term, but the misspecified
model does not. We will compare the performance of generalized linear models and
neural networks in this context.

6.2 Experiment

6.2.1 Compare linear model for NN and OLS for different sample size

To begin, we will compare linear regression with a neural network that has 3
layers, uses the Adam optimizer, ReLU activation functions in the hidden layers, and
a linear function in the output layer. We will use a theoretical sample with sizes of
n=75, 150, and 500, defined as follows:

y = 3x+ ε (6.5)

where x is within the range of [0, 10] and ε is drawn from a normal distribution with
mean 0 and standard deviation 1. Since linear regression with the OLE (Ordinary
Least Squares) estimator is the BLUE (Best Linear Unbiased Estimator) for the
parameter b (in this case, b equals 3), it can learn the linear model best with the
formula β = (X’X)−1X’Y. By using 67% of the sample as the training data and
33% of the sample as the testing data, we can evaluate the performance of MLE on
the test set, which is:

method training size LR NN
MSE 50 0.9241 1.0127
MSE 100 0.8667 0.8790
MSE 333 0.9829 0.9836
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Next, we will extend the dimension of the data from 1 to 5, where x1 is generated
from a Uniform(0,10) distribution, x2 is generated from a Uniform(5,15) distribu-
tion, x3 is generated from a Uniform(10,20) distribution, x4 is generated from a
Uniform(15,25) distribution, and x5 is generated from a Uniform(20,30) distribution.
We will create another theoretical sample with sizes of n=75, 150, and 500, defined
as follows:

y = x1 + 2x2 + 3x3 + 4x4 + 5x5 + ε (6.6)

where ε is drawn from a normal distribution with mean 0 and standard deviation 1.
In this case, we fit the OLS model and a neural network with 500 iterations to this
sample, and we obtain:

method training size LR NN
MSE 50 0.9518 27.6432
MSE 100 0.8800 16.5946
MSE 333 0.9842 2.2070

We can observe that linear regression performs much better than the neural net-
work in the linear simulation models, especially when the sample size is small. Addi-
tionally, linear regression can learn the variance very well even when the sample size
is small, while the neural network tends to underfit in this situation. However, as
the sample size increases to around 103, the neural network with 3 layers exhibits a
similar effect on linear model fitting as linear regression.

6.2.2 Compare linear model misspecification with interaction using NN
and OLS method for different sample size

Next we developed some interaction model to see NN’s effect on mispecification
on linear models, the theoretical data looks like:

y = x1 + 2 ∗ x2 + 3 ∗ x3 + 4 ∗ x4 + 5 ∗ x5 + 2.5 ∗ x1x2 + 4.5 ∗ x3x4 + ε (6.7)

We are trying to compare LR and NN’s effect on reduced model, that is, only fit
models on independent variables with no interaction term, then test those only inde-
pendent included variable’s prediction performance on the test set. Linear Regression
still seems to outfit neural network, by setting test set 25, 50, 167, 1677, the MSE on
test set be:

method training size LR NN
MSE 50 46.2052 255.9778
MSE 100 49.5002 225.3776
MSE 333 44.8011 140.2441
MSE 3333 43.1964 43.5922

MSE on Neural network is not better than linear regression on linear model with
misspecification.
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While fitting the reduced model on training data (without test set), when sample
size becomes larger, we have the performance of NN better than LR in the measure-
ment of MSE.

method training size LR NN
MSE 75 44.5415 264.4734
MSE 500 42.4133 105.2864
MSE 1000 42.6387 45.1027
MSE 5000 42.8269 33.3050

Notice that batch size is important for converge, I adjusted batch size to 1.
To see the effect more clearly, we make the individual effect of interaction variables

insignificant, and have a significant slope for interaction of variables, i.e., in the
formula below, we generate n = 75, 500, 1000, 5000, 10000 random variables, and
only fit LR and NN model on x1, x2, x3, x4, and x5 but no interaction term included:

y = x1 + 2 ∗ x2 + 3 ∗ x3 + 0 ∗ x4 + 0 ∗ x5 + 2.5 ∗ x4x5 + ε (6.8)

I changed ε ∼ N(0,10) to see further variance reduction, as model performance
below, after sample size increase, the loss of NN is getting smaller and better than
linear regression’s behavior.

method training size LR NN
MSE 75 24.2514 144.2779
MSE 500 21.9112 80.9711
MSE 1000 23.3927 25.0894
MSE 5000 23.1192 23.5615
MSE 10000 23.3390 20.9650

When sample size becomes larger and larger, the fitting of NN is smaller and
finally better than linear regression.

6.2.3 Compare linear model misspecification with interaction using NN
and OLS method for different sample error

Next we see the effect of change the variance of error to σ = {50, 25, 12.5, 5}
and fix sample size to 1000, while the following model is used to create samples that
amplify the interaction effect:

y = x1 + 2 ∗ x2 + 0 ∗ x3 + 0 ∗ x4 + 3 ∗ x5 + 50(x3x4) + ε (6.9)

The performance of neural network and linear regression using reduced model (with-
out interaction term) is shown below:
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method σ size LR NN
MSE 50 412.6013 261.0349
MSE 25 410.9903 242.5660
MSE 12.5 410.7536 233.9843
MSE 5 410.7942 237.1565

MSE on NN outperforms LR in this specific setting.

We then create a dataset based on x1, x2, x3, x4 ∗ x5 in the formula below and
use sample size as 1000,

y = x1 + 2 ∗ x2 + 3 ∗ x3 + 0 ∗ x4 + 0 ∗ x5 + 25 ∗ log(x4x5) + ε (6.10)

where x1 ∼ U [0, 10], x2 ∼ U [2, 12], x3 ∼ U [4, 14], x4 ∼ U [6, 16], x5 ∼ U [8, 10], and
afterwards, we fit simulated dataset on reduced model (only single variable x1 through
x5 without interaction term), the performance is like

method σ size LR NN
MSE 50 50.01 50.00
MSE 25 25.00 26.19
MSE 12.5 12.50 16.11
MSE 5 5.01 5.23

But after creation of dataset based on x5, x1 ∗ x2, x3 ∗ x4 in the formula below and
use sample size as 1000,

y = 0 ∗ x1 + 0 ∗ x2 + 0 ∗ x3 + 0 ∗ x4 + 2 ∗ x5 + 3(x1x2) + 5(x3x4) + ε (6.11)

where x1 ∼ U [0, 10], x2 ∼ U [2, 12], x3 ∼ U [4, 14], x4 ∼ U [6, 16], x5 ∼ U [8, 10] and
afterwards, we fit simulated dataset on reduced model (only single variable x1 through
x5 without interaction term), the performance is like

method σ size LR(Reduced) NN(Reduced) LR(Full) NN(Full)
MSE 50 69.0035 60.0925 49.9854 52.6746
MSE 25 54.0656 44.7310 24.9927 27.3412
MSE 12.5 49.7273 39.9236 12.4963 14.9813
MSE 5 48.5045 38.3074 4.9985 5.7446

When it comes to misspecification of both interaction and missing term, NN can
detect better MSE than linear regression when error is large enough, the data is built
using the following formula:

y = 1.5 ∗ x1 + 2.5 ∗ x2 − 2 ∗ x3 − 3 ∗ x4 + 3(x1x2) + 5(x3x4)− 3x5 + ε (6.12)

The sample size is 1000, I used 67% of the data as training 33% of the data as testing.
We have x1 ∼ U [0, 10], x2 ∼ U [2, 12], x3 ∼ U [4, 14], x4 ∼ U [6, 16], x5 ∼ U [8, 10]
afterward, we fit simulated dataset on reduced model (only single variable x1 through
x4 without x5 and interaction term), the performance is like
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method σ size LR(Reduced) NN(Reduced)
MSE 50 105.5080 95.7167
MSE 25 61.4098 58.8847
MSE 12.5 46.1043 45.2764
MSE 5 42.3015 40.0126

Overall, NN has better fitting then linear regression when misspecification include
both interaction term and missing term, we can also observe that when error term is
large in variance, NN has better fitting in test set than linear regression.

6.2.4 Compare NN and Logistic Regression for categorical classification

Let’s begin by discussing binary outcomes. Simulating logistic regression out-
comes can be challenging because it requires using a linear model to obtain the log-
arithm of the odds, followed by an inverse transformation to convert the probability
into a binary class.

We need to look at the inverse of the logit function - sigmoid function. Sigmoid
function has been provided below:

Figure 6.1: Sigmoid Function

The simulation process is shown as follow:

• Make a certain X and β, then fit Xβ as logit(y).

• Transfer logit(y) into probability (p) using sigmoid function (σ(x) = 1
1+e−x ).

• For case of Xβ, generate each target variable based on a Bernoulli distribution
with probability p.
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To ensure the successful fitting of logistic regression, it is important to simulate
the range of Xβ within the interval of [-5, 5]. Additionally, it is necessary to have at
least 5% of the total data resulting in Xβ being less than 0. Failing to meet these
conditions could lead to an imbalance where the target variable is either all ”1” or
all ”0,” rendering the logistic regression unfit for analysis.

We have implemented a new evaluation metric, the Receiver Operating Charac-
teristic (ROC) curve and the corresponding Area Under the Curve (AUC) score, to
assess the performance of our classification model. The ROC curve is a graphical
representation of the model’s ability to differentiate between the classes.

The ROC curve is generated by plotting the True Positive Rate (TPR) against
the False Positive Rate (FPR). TPR is the ratio of true positives to the sum of true
positives and false negatives, while FPR is the ratio of false positives to the sum of
true negatives and false positives. By varying the decision threshold for classifying
probabilities from 0 to 1 and applying it to the predicted output, we can plot the
TPR against the FPR, resulting in the ROC curve. The AUC score represents the
total area under this curve.

Interpreting the ROC/AUC score, a higher AUC indicates that the model has a
greater ability to correctly predict instances of class 0 as 0 and class 1 as 1. Essen-
tially, a higher AUC suggests that the model exhibits improved separability between
the classes.

To illustrate, please refer to Figure (6.2), which showcases an example of an
ROC/AUC curve.

Figure 6.2: ROC curve example

56



I simulated a logistic regression model by simulating logit:

logit(y) = −9 + 3.5x1 + 0.2 ∗ x2

For each probability in p, y represents a random sample obtained from a binomial
distribution. We conducted a logistic regression analysis with the formula y ∼ x1+x2,
where x1 and x2 are the predictor variables. When we increased the sample size from
100 to 1000, the coefficients estimated by the logistic regression model approached
the true values of [0.2, 3.5] more closely.

Furthermore, we evaluated the performance of the logistic regression model and a
neural network (NN) by calculating their ROC scores. The logistic regression model
achieved a ROC score of 0.9578, indicating a high level of predictive accuracy. Simi-
larly, the neural network attained a ROC score of 0.9574, demonstrating comparable
performance to the logistic regression model.

When I introduced an interaction term

logit(y) = −9 + 3.5x1 + 0.2 ∗ x2 + 1.5x1 ∗ x2

then if fit logistic regression and NN only on reduced model, ROC scores are 0.9730
for logistic regression and 0.9851 for neural network. This seems to prove that neural
network can’t perform better than logistic regression.

When more complicated model is introduced, we used bootstrap to construct 95%
bootstrap intervals for the ROC-AUC scores for both logistic regression and neural
network method. The model is expressed in the following form:

logit(y) = 2 + 0 ∗ x1 + 0 ∗ x2 − 0.2 ∗ x3 − 0.3 ∗ x4 + 0 ∗ x2 ∗ x1 + 0 ∗ x3 ∗ x4

Where x1 is a random choice from 0 and 1, x2 is drawed from a normal distribution
with 0 mean 1 variance, x3 and x4 are drawed from uniform [0,10] distribution and
uniform [10,20] distribution.

When only {x1, x2, x3, x4} included in the model, the 95% confidence interval for
logistic regression ROC-AUC score is [0.7088, 0.8324], while the same level confidence
interval for 2-layer NN ROC-AUC score is [0.7080, 0.8326], which means neural net-
work are similar confident to logistic regression when model is correctly specified.

Then we tried to include interaction term in the following model:

logit(y) = 2 + 0 ∗ x1 + 0 ∗ x2 − 0.2 ∗ x3 − 0.3 ∗ x4 + 3 ∗ x2 ∗ x1 + 0.05 ∗ x3 ∗ x4

When model is misspecified, i.e., only {x1, x2, x3, x4} are in the model, we have logistic
regression 95% confidence interval on the test set as [0.7741, 0.8758], while the neural
network 95% confidence interval on the test set as [0.7730, 0.8749]. The difference is
not significant at all.
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6.2.5 True Dataset

California Housing data[180]

The California housing dataset encompasses data gathered from all block groups
in California during the 1990 Census. Geographical area significantly influences pop-
ulation density, thus information regarding distances between centroids of each block
group is included, measured in terms of latitude and longitude. Block groups that
lack entries for either independent or dependent variables have been excluded from
the dataset.

The California Housing dataset comprises of 10 variables, encompassing 8 quan-
titative variables (longitude of houses, latitude of houses, median house age, total
rooms, total bedrooms, population in the area, households, median income, median
house value), and 1 categorical variable (ocean proximity) with 5 distinct classes.

There are 207 missing values for ’total bedrooms’, I used median imputer for this
variable; Then I applied label encoder to the categorical variable with 5 classes, which
converts these string classes into {0, 1, 2, 3, 4}, five classes. In order to achieve the
same scale for all predictors, I applied a standard scaler, which is

z =
x− u
s

(6.13)

where u is the mean of this variable, and s is the standard deviation of this variable
with (n-1) as denominator. n is how many cases we have in this dataset. Then I
applied a 80/20 train-test split on the whole dataset, fit models on the 80% training
data and find performance on those 20% testing data.

Those models I used for model fitting is using linear regression as base model, and
a 2-layer neural network, with 64 neurons in each layer and relu as active function in
each layer, using Adam optimizer as optimization method and minimize mse as loss
function. A patience of 10 has been applied as early stopping criteria.

The comparison of linear regression with and without interaction term is shown
below, neural network is been used as another modeling method:

RMSE (on
test)

Reduced Model
Full Model (with
2nd order inter-
action)

Full Model (with
3rd order inter-
action)

Linear Re-
gression

71447.87 67932.09 112478.66

2-layer NN 67261.91 63560.67 62637.14

Upon analysis, it becomes evident that the model exhibits misspecification con-
cerning the second-order term. The full model demonstrates superior evaluation
metrics when tested. Comparatively, the neural network outperforms linear regres-
sion in terms of fitting, even after incorporating the interaction term.
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Introducing a third-order interaction term into the full model reveals that linear
regression tends to overfit, as evidenced by an increase in RMSE on the test set.
However, the neural network retains the ability to capture certain patterns within
the dataset. Thus, we can deduce that the neural network possesses greater capacity
than the linear regression model, particularly when dealing with high-dimensional
data.

When we talk about dimension reduction, we first want to see how neural net-
work’s fitting performance compared with linear regression if we remove some in-
significant variables from reduced model. I first achieved model significance on those
variables:

Figure 6.3: Model Significance

Variables x1, ..., x9 represent [’longitude’, ’latitude’, ’housing median age’, ’to-
tal rooms’, ’total bedrooms’, ’population’, ’households’, ’median income’, ’median house value’,
’ocean proximity’]. When variables are reduced based on p-value, the smaller the t-
statistics, the earlier variable will be excluded.

When considering only the 5 most significant variables, the Neural Network achieves
an RMSE of 76133 on the test set, whereas linear regression yields an RMSE of
124421.84. On the other hand, when focusing solely on the 3 most significant vari-
ables, the Neural Network achieves an RMSE of 72688.58, while linear regression
produces an RMSE of 1404194.86. These results suggest that the Neural Network
exhibits more consistent performance on the test set when the number of variables is
reduced and the model is underfitting.

Outliers persist within the model, and the distribution of the output exhibits right-
skewness. Housing prices were truncated at 500,001 if they exceeded this threshold.
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Moreover, multiple high-priced houses are present in California, with a light and
non-normal distribution. To address these concerns, two remedial actions were im-
plemented. Firstly, outliers were deleted, and secondly, a log transformation was
applied to those outliers. The performance of the two models is outlined below:

RMSE (on
test)

Delete outliers log transform target variable

Linear Re-
gression

62934.35 0.3501

2-layer NN 69884.50 0.3315

We noticed that by removing outliers, linear regression demonstrates superior
model fitting performance compared to a 2-layer neural network. This suggests a
possible presence of overfitting in the 2-layer neural network. Furthermore, when em-
ploying a remediation technique such as the log transformation of the target variable,
the linear regression model exhibits a higher root mean square error (RMSE) than
the 2-layer neural network in the train-test split evaluation.

MNIST

The MNIST dataset[181] is derived from the National Institute of Standards and
Technology database and serves as a benchmark for evaluating the performance of
various models. It comprises 70,000 grayscale images of handwritten digits, each rep-
resented by a 28 × 28 pixel grid. The pixel values range from 0 to 255, with higher
values indicating brighter pixels. The objective is to classify these images into one of
ten classes, corresponding to integer values from 0 to 9.

The dataset consists of 60,000 training samples and 10,000 testing samples, with
each observation having 10 classes and 784 variables. It’s worth noting that the data
is sparse, as there is often empty space around the edges of each image, resulting in
many variables being set to zero. Consequently, the assumption of linearity in logistic
regression is violated when applied to this dataset.

When comparing logistic regression and a 2-layer neural network on the MNIST
dataset, I also aimed to assess their predictive capabilities. To start, I designated
the handwritten digit ’0’ as the target variable, while categorizing all other digits as
’others.’ For logistic regression, the model achieved an impressive ROC-AUC score of
0.9961, with a precision of 0.96 for classifying the digit ’0.’ Given the highly imbal-
anced nature of the data, the regression output demonstrated considerable precision.

Next, I applied the 2-layer neural network, which yielded a slightly lower ROC-
AUC score of 0.9946 and a precision of 0.83 for classifying the digit ’0.’ At first glance,
it may appear that the neural network performed worse than logistic regression when
using these evaluation metrics.
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However, when considering all ten classes for classification, the neural network out-
performed multivariate logistic regression in terms of overall accuracy. Additionally,
the precision of the neural network was significantly higher when conducting multi-
class classification. It is important to note that logistic regression in the scikit-learn
package employs a one-vs-rest schema, creating a ten-dimensional outcome where
each dimension represents a specific class with the target variable set to 1 and the
others set to 0. In contrast, the neural network utilizes the softmax function ( exp(zi)∑

exp(zj)
)

to output the probability of a case belonging to each class. The softmax function is
a generalized extension of the sigmoid function.

The confusion matrix of the multinomial logistic regression and the neural network
is shown below. We observed that the macro average for the neural network is
significantly higher than that of logistic regression. Additionally, the neural network
exhibits higher precision for predicting each digit class compared to logistic regression
as well.

Figure 6.4: Logistic Regression Confusion Matrix

Figure 6.5: Neural Network Confusion Matrix
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6.3 Conclusion

When applying linear regression, assuming the model is not misspecified, it gener-
ally exhibits superior performance compared to neural networks when evaluating the
Mean Squared Error (MSE) as the performance metric. As the sample size increases,
the performance of neural networks becomes closer to that of linear regression. How-
ever, when the linear model is misspecified, neural networks tend to provide better
prediction performance than linear regression. In such cases, larger sample sizes con-
tribute to improved prediction performance, while minimizing the variance in error
also leads to better predictions.

Regarding bi-variate classification tasks, logistic regression tends to outperform
two-layer artificial neural networks (ANNs). We examined 28 papers specified in [182]
and found that in 10 cases (36%), ANNs outperformed logistic regression, while in
4 cases (14%), logistic regression outperformed ANNs. The two methods exhibited
similar performance in the remaining 14 cases (50%). In scenarios where the output
is not binary, Cox regression is typically employed for this type of data. A detailed
comparison is provided below:

It can be concluded that logistic regression performs better than neural networks
in binary classification tasks. However, when conducting multi-class classification, lo-
gistic regression exhibits inferior performance compared to two-layer neural networks.

In a related study mentioned in [135], specifically Schumacher (1996), it is noted
that logistic regression demonstrates better model understanding than neural net-
works when the dataset involves less than 400 observations and/or more than five

1On ROC there is no difference, but Hosmer-Lemeshow test for logistic reg is 0.34 and NN is
0.08, which means NN is lack of fit

2fraction of patients predicted to Survive who died (fpsd) as a function of the fraction of patients
predicted to survive (fps))

3Author estimates the number of patient cases needed to show statistically significant differences
in the fpsd values between LR and NN, the sample size in each level is in the extend of 10e5, also,
fps is in the treatement level {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, then reported similar final result for both
NN and logistic regression method on each treatment level.

4Although NN has better ROC, but NN had poorer calibration(TP vs predict percentage).
5ROC-AUC score for a neural network model was significantly larger than that for logistic

regression in the training set (p = 0.04). However, the performance was statistically equivalent in
the test set (p = 0.45).

6Neural Networks are able to distinguish patients at high and low risk from their DNA flow cy-
tometry histograms and that they interpret the histograms differently than conventional techniques.

7The neural networks successfully estimated perioperative cardiac risk with better calibration
than comparable logistic regression models.

8This is a book using multiple dataset, we only present diabete dataset result here.
9Logistic regression being the most unstable

10This model used to determine variable importance.
11The ANN improvement over the Cox model on nonlinear data was very small (0.015), but is

significant at alpha=0.05
12On train-test split, the ROC for both methods are equal likely performed.
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Table 6.1: paper performance

Paper Evaluation
Metric

Regression NN total size validation
size

Outcome

Lippmann
[183]

ROC-
AUC
Score

76.20% 76.10% 80600 50% train equi

Ennis
[184]

ROC-
AUC
Score

81.8%
(Model
with full
interac-
tion)

81.6%
(Vari-
ables
only)

32092 66% train equi

Warner
[134]

ROC-
AUC
Score

71.62% 71.65% 32092 66% train regression1

Cooper
[185]

fpsd ver-
sus fps2

- - 14199 70% train equi3

Burke
[186]

ROC-
AUC
Score

77.6%
(Model
with cu-
bic spines
of age)

78.4%
(Vari-
ables
only)

5773 60% train NN

Selker
[187]

ROC-
AUC
Score

90.5% 92.3% 8271 63% train NN4

Rowland
[188]

ROC-
AUC
Score

68% 69% 1674 50% train
not ran-
dom

equi

Duh
[189]

ROC-
AUC
Score

90.9% 90.9% 5626 66% train equi5

Ravdin
[190]

Goodness
of fit
score
(Good-
ness of
fit)

81.5 81.7 1373 66% train equi

Ravdin
[190]

low risk 5.50 % 5.60% 1590 50% train equi6
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Table 6.2: paper performance cont.

Paper Evaluation
Metric

Regression NN total size validation
size

Outcome

Eisenstein
[191]

ROC-
AUC
Score

no miss-
ing, no
interact:
0.645; no
missing,
interact:
0.663;
missing,
no inter-
act: 0.5;
missing,
interact:
0.5

no miss-
ing, 0
hid:
0.662; no
missing,
1 hid:
0.600;
missing,
0 hid:
0.568;
missing,
int: 0.598

1139 56% train no con-
clusion

Lapuerta
[192]

ROC and
Hosmer-
Lemeshow
Chi-SQ

68.3%
and 18.6

67.5%
and 45

1081 52% train neural
network

Virtanen
[193]

Sensitivity
and
speci-
ficity

87% and
41%

85% and
26%

974 5-fold regression

Zirnikov
[194]

ROC-
AUC
score

91.7% 95.4% 890 50% train nn

Zirnikov
[195]

ROC-
AUC
score

88.4% 93.5% 865 50% train nn

Michie
[196]

error rate 22.3% 24.8% 768 12-fold cv reg7

Jefferson
[197]

accuracy
on test

- - 620 leave-
one-out

nn8

Ohno
-Machado

[195]

Not com-
parable

Test
Statistic

ROC -
score

588 10-fold cv equi9
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Table 6.3: paper performance cont.

Paper Evaluation
Metric

Regression NN total size validation
size

Outcome

Buchman
[198]

Accuracy,
Speci-
ficity,
Sensi-
tivity,
R-square

0.65,
0.62, 0.72
and 0.26

0.88,
0.83,
0.97, 0.57

491 66% train neural
network

Faraggi
[199]

Concor-
dance
Index
“C”

first or-
der ph:
0.607;
second
order ph:
0.580

2 hidden
layer :
0.600;
3hidden
layer:
0.582

475 50% train equi

Kattan
[200]

Concor-
dance
Index
“C”

0.79 0.8 424 66% train nn10

Doig
[201]

sensitivity,
speci-
ficity,
ppv, npv,
roc

0.133,
0.976,
0.4,
0.902,
0.8230

0.267,
0.976,
0.571,
0.916,
0.8178

422 66% train nn11

Dybowski
[202]

ROC
and Brier
Score

0.753,
0.2323

0.85, 0.16 258 65% train neural
network

Lette
[203]

sensitivity,
speci-
ficity,
ppv, npv

0.67,
0.82,
0.18, 0.98

0.67,
0.96, 0.5,
0.98

360 55% train neural
network

Mar-
chevsky

[203]
accuracy 66% 89% 279 55% test

in NN,
39% test
in LR

neural
network

Rae
[204]

accuracy 20-item:
0.728,
5-item:
0.6

20-item:
0.83,
5-item:
0.731

274 180 train neural
network
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Table 6.4: paper performance cont.

Hammad
[205]

Sensitivity
and PPV

66% and
59%

83% and
63%

251 80% train neural
network

Biagiotti
[206]

sensitivity,
speci-
ficity,
brier
score

0.84,
0.966,
0.051

0.96,
0.977,
0.031

226 5-fold neural
network

covariates. Additionally, even with large sample sizes, unless the underlying func-
tion can only be captured by a single hidden layer neural network and cannot be
expressed using logistic regression with interaction or quadratic terms, neural net-
works may provide a better understanding of the true data. In other cases, logistic
regression is not inferior to neural networks and provides more interpretability to the
model parameters. These findings align precisely with our own results.
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Chapter 7 Future Development

During the course of my research, I have encountered several challenges and
pitfalls associated with neural networks. As a result, I have identified various meth-
ods for enhancing and calibrating neural networks. Furthermore, advanced variance
estimation techniques and conducting further comparisons between neural networks
and linear models represent promising areas for future investigation. These aspects
present valuable opportunities for expanding our understanding and refining the ap-
plication of neural networks in research.

7.1 Problems in Neural Network

Neural networks are commonly employed for analyzing high-dimensional data,
where the network structure tends to be intricate in terms of both dimensionality
and layer sizes. During the process of fitting neural network models, I encountered
three typical challenges:

• Vanishing gradient: This phenomenon, discussed in [207], refers to the issue of
gradients becoming extremely small during the training process, leading to slow
convergence or even stagnation. Dealing with vanishing gradients is crucial to
ensure effective learning in neural networks.

• Model oscillation: Model oscillation occurs when the neural network’s parame-
ters fluctuate excessively during training, leading to unstable and inconsistent
predictions. Overcoming model oscillation is essential for achieving reliable and
robust neural network models.

• Local optima: Neural networks are prone to getting trapped in local optima,
where the model converges to suboptimal solutions instead of finding the global
optimum. Exploring strategies to escape local optima and guide neural networks
towards better solutions is an ongoing challenge.

These pitfalls highlight the need for careful consideration and implementation of
techniques to mitigate their impact and improve the overall performance and relia-
bility of neural network models.

7.1.1 Vanish/Exploding Gradient

Backpropagation, which calculates gradients from the upper layer to the lower
layer in neural networks, can lead to diminishing gradients. This means that the
gradient values calculated for the lower layers become smaller and smaller, and in
some cases, they may even vanish to zero. Conversely, in certain situations where the
gradient in the upper layer is large, it can cause the gradient in the lower layer to
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explode and disrupt the algorithm, leading to divergence.

Vanishing and exploding gradients are common obstacles encountered during the
training and optimization of neural networks, presenting substantial challenges. Ad-
dressing these challenges requires careful attention and the utilization of specific tech-
niques like weight initialization, gradient clipping, and normalization methods. These
strategies play a vital role in alleviating these issues and promoting greater stability
and efficacy in the learning process of deep neural networks.

If the initial weights come from a normal distribution, the variance of the weight
value, denoted as wij, will depend on the specific initialization method used. In the
case of Xavier initialization (also known as Glorot initialization)[208], the variance of
wij is typically set to:

var(wij) =
2

nin + nout
(7.1)

where nin represents the number of input connections to the weight and nout epresents
the number of output connections. This formula ensures that the variance of the
weight values is adjusted according to the network’s architecture. If initial weight
come from uniform distribution -[a,a], and a defined as

a =

√
6

nin + nout
(7.2)

On the other hand, He initialization[209] is defined similar as Xavier initialization,
instead of using output information, He initialization only consider input connections
for weights are being initialized.

In [208] Glorot and Bengio mentioned that vanishing gradient problem can also
be due to choosing activation function badly. Here we define saturating function f as

Definition 7.1.1. For a function f, it is not saturating if and only if |limz→∞f(x) =
+∞| or |limz→−∞f(x) = +∞|

From the definition above, it is evident that the vanishing gradient problem can
be alleviated if a function is not saturating. However, the choice of activation func-
tion plays a crucial role in determining whether saturation occurs. For instance,
the Sigmoid function is commonly used but is saturating, meaning that its gradient
approaches zero as the input values become very large or very small; On the other
hand, the Rectified Linear Unit (ReLU)[210] activation function is not saturating
when x > 0 since does not suffer from saturation when the input x is greater than
zero, as its gradient remains constant. This characteristic of ReLU makes it more
resilient to the vanishing gradient problem in such cases. ReLU activation fucntion
is shown as follow:

ReLU(x) = max(0, x)

{
0, if x < 0

x, otherwise
(7.3)

68



There are some extensions of ReLU functions as activation function, basic rule is
when x < 0, we define σ(x) = ax, where a can be either a fixed value or random.
Leaky ReLU[211], Parametric ReLU[209] and random ReLU[212] are all this type of
extension.

There exists a smoother alternative to the non-saturating activation function
called the Exponential Linear Unit (ELU)[213]. ELU is defined as follows:

ELU(x) =

{
a(exp(x)− 1), if x < 0

x, otherwise
(7.4)

While ELU is slower compared to the ReLU activation function, it effectively avoids
issues such as the dying gradient problem and non-smooth gradients. In a study
by [214], it was demonstrated that by modifying the function for negative inputs to
ELU(x) = a(exp(bx)− 1), the convergence of ReLU can be accelerated.

In addition to the choice of initialization and activation functions, Ioffe and
Szegedy[215] proposed a method called batch normalization, which normalizes each
input in each layer. This technique considerably reduces the vanishing/exploding gra-
dient problem. Further research, such as the work by[216], has shown that combining
dropout ([217]) with batch normalization can yield promising results.

For the purpose of continuously adjusting the learning rate in neural networks,
especially in the context of Recurrent Neural Networks (RNNs)[218],introduced a
typical approach known as gradient clipping.

7.1.2 Instability and Oscillation

In the earlier discussion on optimization methods in Chapter 1, we introduced
the concept of the ”learning rate.” When utilizing a fixed learning rate, setting it
too small can result in slow convergence of the gradient descent method. Conversely,
choosing a learning rate that is too large can lead to the model converging to multiple
points, causing oscillations and instability in the training process. It is essential to
strike a balance and select an appropriate learning rate to ensure effective and effi-
cient convergence of the optimization algorithm.

A commonly employed approach to adjust the learning rate is through the use of
a learning rate schedule. Since the learning rate is a hyperparameter that requires
tuning, various strategies can be applied to adapt it. These include tuning the global
learning rate (as discussed in [219]), layer-wise learning rate, neuron-wise learning
rate, or even a parameter-wise learning rate (resembling a diagonal Newton method,
as described in [220]).

In the context of neural networks, [221] and [222] propose the utilization of a
second-order diagonal Newton approximation, where each parameter is assigned a
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different learning rate. This approach ensures that the learning rate adapts to indi-
vidual parameters, promoting effective optimization.

Several adaptive learning rate techniques have gained considerable attention in
the neural network community. For instance, Adagrad ([223]) dynamically adjusts
the learning rate for each parameter based on the historical gradient information, al-
lowing for efficient learning rate adaptation. Another notable method is the adaptive
learning rate approach introduced by [224], which claims to eliminate the need for
manual tuning of the learning rate hyperparameter entirely.

These adaptive learning rate procedures offer alternatives to manually tuning the
learning rate and can contribute to improved optimization performance in neural net-
works.

Another approach to mitigate oscillation in the training of neural networks is re-
ferred to as momentum. In the context of Stochastic Gradient Descent (SGD), where
a random parameter is chosen to update all parameters using its gradient, researchers
proposed a method to smooth out these gradients by taking the average of previously
applied gradients. This smoothing technique, described in [225] and [226], involves
updating a gradient average as ḡ ←− (1−β)ḡ+βg. By doing so, the idea is to reduce
noise and oscillations that can occur during the gradient descent process.

Polyak averaging, introduced in [227] and based on the work by [228], and other
methods such as those proposed by [229] and [230], also incorporate some form of mo-
mentum to accelerate convex optimization [231]. Additionally, researchers like [232],
[233], and [234] have suggested using second-order derivative information to further
enhance the momentum method’s speed.

These techniques for adjusting the learning rate in gradient descent can gener-
ally alleviate the effects of oscillation and instability during neural network model
training. They create a more stable learning environment compared to traditional
neural network approaches. By applying these adjustments to the learning rate, we
can stabilize the fitting process of neural networks and gain deeper insights into the
relationship between neural networks and statistical non-linear models.

7.1.3 Local Optima

Training deeper neural networks poses a greater challenge compared to shallow
ones due to an increased likelihood of missing out on superior minima when starting
from random initialization. Extensive research has demonstrated this phenomenon in
both supervised deep learning techniques ([235], [236], and [237]) and unsupervised
deep learning techniques ([238]). Consequently, the application of appropriate initial-
ization schemes can substantially enhance performance.
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The study presented in [239] reveals that different initializations consistently lead
to distinct effective local minima. By employing unsupervised pretraining, it becomes
possible to discover minima that outperform those obtained through random initial-
ization. Another approach known as ”curriculum learning” has been proposed ([240],
[241], and [242]). This method involves commencing the learning process with an eas-
ier optimization task, such as a convex problem, and gradually transitioning to more
challenging tasks that closely align with the actual objective of interest. In addition,
[243] suggests an initialization technique that initializes weights to ensure that the
Jacobian of each layer has singular values close to 1. This initialization strategy helps
establish appropriate initial values within the correct range.

These three types of difficulties in neural network and some solutions/remedy
plans has been discussed above, however, how to statistically interpret these advanced
method to better fit neural network can be studied in the future.

7.2 Advanced Neural Network

In contrast to traditional artificial neural network (ANN) methods, neural net-
works have evolved and diversified in multiple ways. In this context, we will intro-
duce two commonly employed advanced neural network frameworks that facilitate the
construction of future intervals and enable the learning of statistical characteristics
within these models. These frameworks serve as fundamental structures for building
the majority of neural networks utilized today.

7.2.1 Convolutional Neural Network

Drawing inspiration from the organization of the visual cortex and the connec-
tivity patterns of neurons in the human brain, the Convolutional Neural Network
(ConvNet) has been developed based on this neuron connection method. ConvNets
are primarily utilized in computer vision and image-based data domains.

The core component of ConvNets lies in their ability to process image data, which
is distinct and presents unique challenges. Images exhibit spatial and temporal de-
pendencies that are inherently difficult to handle using traditional methods of data
processing. ConvNets have proven to be highly effective in addressing these chal-
lenges and extracting meaningful features from image data.

ConvNets incorporate two essential types of layers: kernels (filters) and pooling
layers. A kernel, also known as a filter, is a small matrix that is applied to an image
to extract specific features. On the other hand, pooling layers perform dimensionality
reduction and statistical extraction on the image data.

Following the dimension processing performed by the kernel and pooling layers,
a feed-forward neural network is employed to accomplish classification or regression
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Figure 7.1: Neuron Structure CNN

tasks. For further in-depth information about ConvNets, please refer to [244]. This
resource provides detailed insights into ConvNet architectures and their applications.

7.2.2 Recurrent Neural Network

Recurrent neural networks (RNNs)[245] are widely used in the analysis of sequen-
tial data. Unlike traditional neural networks, which assume independence among
samples, RNNs are designed to incorporate dependencies between data points.

In sequential data, all input observations inherently exhibit auto-correlation. To
account for this, we can unfold the input matrix X into a sequence of individual ob-
servations: [x1, x2, ..., xt], where the subscript t represents the time point at which a
specific observation was fed into the model. Instead of solely outputting yt at each
time point, we also introduce another hidden variable at as a hidden output. This
hidden variable is utilized in the model fitting of the subsequent observation. Con-
sequently, at each time step, both the information from the current input and the
historical information captured by at can be leveraged.

Figure 7.2: Neuron Structure RNN

The figure depicted above illustrates a single neuron within a recurrent neural
network (RNN). By combining multiple neurons, we can form a layer, and stacking
multiple layers results in a feed-forward neural network. This serves as the funda-
mental structure of a recurrent neural network.
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When historical data is incorporated into an RNN using the aforementioned struc-
ture, we can only obtain one-step-ahead information. Consequently, alternative meth-
ods have been developed to facilitate long-term memory and selectively ”forget” ir-
relevant information. Among these methods, two widely used approaches in practical
applications are Long Short-term Memory (LSTM) [246] and Gated Recurrent Unit
(GRU) [247]. By employing variance estimations in sequential data prediction us-
ing these advanced neural networks, we can achieve confidence intervals or tolerance
intervals similar to those employed in traditional statistical methods.

7.3 Advanced Variance Estimation Method

We can delve into more advanced techniques for estimating variance in order to
construct intervals. As discussed earlier in Chapter 2, there are several alternative
methods available that can be utilized for this objective.

7.3.1 Variational Inference

In my research, I encounter numerous intractable distributions. To address this
challenge, I employ variational inference, a method for approximating empirical dis-
tributions based on theoretical parametric distributions.

The primary objective of variational inference in my research is to provide an
analytical approximation to the posterior probability of certain unobserved variables,
enabling statistical inference on these variables. Variational inference can be viewed
as an alternative to Monte Carlo sampling and an extension of the Expectation-
Maximization (EM) algorithm.

The distribution of X given some unobserved data Z is approximated by Q(X),
which is selected from a family of distributions of simpler form than P (X | Z) (e.g.,
a family of Gaussian distributions). The goal is to make Q(Z) similar to the true
posterior distribution P (Z | X).

Similar to logistic regression, we utilize the Kullback-Leibler (KL) divergence as
the loss function for variational inference. KL divergence measures the difference
between two probability distributions. The formula for calculating continuous KL
divergence is as follows:

DKL(P ||Q) =

∫ ∞
−∞

P (x)log
P (x)

Q(x)
dx (7.5)

Here, P represents the proposed probability distribution, and Q is the reference dis-
tribution.
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KL divergence is closely related to the Evidence Lower Bound (ELBO), which
explains the term ”ELBO” as follows:

log(p(x)) = log

∫
q(θ)p(x|θ)

q(θ)

= logEq[
p(x, θ)

q(θ)
]

≥ Eq[log
p(x, θ)

q(θ)
] = ELBO

(7.6)

The inequality arises from the Markov Inequality, and ELBO serves as a lower bound
for the logarithm of the probability. In fact, the difference between log(p(x)) and
ELBO is the KL divergence.

Minimizing KL divergence minimizes the discrepancy between the theoretical dis-
tribution q(x|θ) and the empirical distribution p(x) by updating the parameter θ
using inference methods. Consequently, we can assume that the true population dis-
tribution of predictions is p(y). By employing a theoretical distribution q(y|θ, w) to
estimate the true population distribution, and assuming the theoretical distribution
has parametric forms for statistical intervals, we can obtain statistical intervals for
the predictions of neural networks.

The method described above was introduced in [248]. Variational inference has
also been applied in RNN and CNN frameworks. Along this line, numerous dis-
cussions can be conducted in the future regarding different parameter settings for
variational inference and other variance estimation methods based on variational in-
ference.

7.3.2 Delete-d Jackknife

In Chapter 4, we introduced the concept of delete-1 jackknife, where one ob-
servation is omitted at a time to build jackknife samples. However, an alternative
approach called delete-d jackknife allows for the omission of d observations to create
jackknife samples. By excluding d observations in each iteration, we can generate

(
n
d

)
jackknife samples, with each sample having a size of n-d.

The formula for the delete-d jackknife estimator of variance is as follows:

n− d
d ∗
(
n
d

)∑(θ̂(Z) − θ̂.)2

When d is close to n/2, the number of combinations can become extremely large,
which can lead to computational challenges. Therefore, it is preferable to choose d
closer to n. However, even with a smaller d, the computational resources required
for delete-d jackknife can still be substantial. As a result, delete-d jackknife may not
be the most suitable method for constructing confidence intervals in neural network
applications.
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7.4 Neural Network and Logistic Regression

In [135] and [136], there was also discussion in logistic regression. When applying
sum of squares error or KL - distance as loss function, the back propagation update
of parameters should give neural network and logistic regression similar output.

In fact, when a single layer neural network was applied in the [249] dataset. The
logistic regression coefficient are the same as either using KL distance as loss function
or sum of square errors in [135]. However, when I did a simulation on the following
model:

logit(y) = 4− 0.2x1 − 0.3 ∗ x2
When x1 is a random number from 0 or 1 with 0.5 probability, and x2 is a random
number from standard normal distribution. Using the LogisticRegression in sklearn,
the optimization method used in this model is ’lbfgs’[250], I achieved 3.895 as inter-
cept, and (0.2358, -0.2772) as regressed coefficient.

However, when I used keras to build a single neuron single layer neural network,
and initialized all coefficient using a normal distribution with mean 0 and standard
deviation 0.05, when Adam optimization is used, the coefficient achieved are 1.335
for intercept, (0.733, 1.343) as regressed coefficient. When I checked the ROC-score,
logistic regression returned 0.764, while NN returned 0.502. The difference is large,
and logistic regression seems to fit an more optimal situation.

It seems that logistic regression in Keras structure are more sensitive to intercept,
which means when normalize those variables, the model may have a better fitting.
Moreover, if learning rate was tuned in Adam optimizer, the coefficient could be
achieved in a better stage. Although neural network has so many parameters to
tune, people like to use neural network than logistic regression is because, people
sacrifice model complexity to achieve better prediction.

In future research, if neural network’s coefficient can be replicated as logistic
regression, maybe we can have better understanding in logistic regression misspecifi-
cation as well.
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Chapter 8 Conclusion

Although neural network has been applied to various fields, distinct characteris-
tics and requirements innate from neural network makes neural network differentiate
from traditional statistical methods. As a result, their exploration in statistical analy-
ses has been relatively limited, but there are ongoing efforts to bridge the gap between
these two approaches. In my research, I focused on connecting neural networks with
traditional linear models and incorporating statistical intervals into neural networks.
Based on this research, several conclusions were drawn:

• Evaluation of Statistical Intervals: To assess the application of statistical in-
tervals in neural networks, coverage analysis was employed. Parametric and
nonparametric methods were explored to construct statistical intervals on neu-
ral networks, and their coverage was analyzed.

• Parametric Statistical Intervals: For the application of parametric statistical
intervals in neural networks, variance estimation methods were investigated for
neural network predictions. In the study of direct variance estimation, it was
observed that robust estimation with neighborhood information outperformed
the direct use of standard error on the neighborhood. The former method ex-
hibited greater stability and closer adherence to the nominal coverage when the
neighborhood size was small. In the case of resampling estimation on variance,
the infinitesimal jackknife method demonstrated coverage levels closer to the
nominal level compared to other traditional methods.

• Nonparametric Statistical Interval: The bootstrap resampling method was em-
ployed for constructing statistical intervals in neural networks. When compared
to the parametric method, the bootstrap method is more computationally com-
plex and may be challenging to apply in real-world scenarios. Although the
coverage of the bootstrap method was found to be closer to the nominal level
when only resampling under output was applied in prediction variance estima-
tion, the computational complexity and practical considerations associated with
the bootstrap method should be taken into account.

• Tolerance Interval: In the context of considering neural networks as nonpara-
metric models, nonparametric regression was applied to neural networks under
a one-dimensional nonlinear underlying model. The results demonstrated that
the nonparametric regression approach outperformed the assumption of normal
errors in the parametric tolerance interval. Even in cases where the underlying
dataset exhibited a linear relationship, neural networks still exhibited better
performance when treated as a nonparametric regression model, as evidenced
by coverage levels closer to the nominal level.
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• Comparison between Neural Network and Generalized Linear Model: In situa-
tions where the dimensionality is low, linear regression models tend to provide
better fitting even in the presence of misspecification. This observation also
holds true for cases where logistic regression is required. However, as the di-
mensionality increases or when multiple outcomes need to be classified, neural
networks consistently outperform generalized linear models in terms of evalua-
tion metrics. Neural networks exhibit superior performance in high-dimensional
scenarios or when handling multi-class classification tasks.

After conducting preliminary research on neural networks, we discovered that
while certain statistical intervals can be directly applied to neural networks, we en-
countered several challenges during our investigation. These challenges are outlined
below:

• Since neural network are complex and highly non-linear models, it is really chal-
lenging to directly interpret the inner workings and understand the relationships
between input features and output predictions through neural network models.
Based on the reason above, post hoc analysis is oftenly used to understand
the relationships between input features and output predictions and determine
the confidence level of the network’s predictions and evaluate its reliability.
However, ad-hoc analysis are seldom used in neural network inference, making
neural network hard to be explained.

• While Chapter 7 presented several approaches to mitigate suboptimal conver-
gence and address gradient explosion or vanishing issues in neural network
model fitting, it is important to note that certain challenges may still arise.
Specifically, when the dimensionality of the variables is not large and the sam-
ple size is small, it is quite common to observe frequent oscillation around the
”0” point.

• When the sample size is relatively small, it has been observed in multiple re-
search studies, including my own, that neural networks may not perform as
effectively as traditional linear regression or logistic regression models when
the model is misspecified. Specifically, in the context of medical data, logistic
regression has demonstrated comparable predictive power to linear regression
models.

Based on the experience above, some further analysis can be studied:

• There is a burgeoning interest in bridging the gap between statistical method-
ologies and neural network techniques. The exploration of statistical properties
and methodologies within the realm of neural networks represents a compelling
and continuously evolving area of research. For instance, well-established tech-
niques such as dropout have been scrutinized as potential resampling methods
in the context of statistical inference. Acquiring a deeper understanding of
the underlying mechanisms not only facilitates better comprehension of neural
networks but also enhances their application across diverse domains.
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• Advanced deep learning methods, including neural networks such as Genera-
tive Adversarial Networks (GANs), Convolutional Neural Networks (CNNs),
and Recurrent Neural Networks (RNNs), pose challenges when it comes to es-
timating their variance. These challenges primarily arise from concerns related
to interpretability and the substantial computational requirements involved.
However, by leveraging resampling techniques and direct estimation methods,
researchers can construct statistical intervals for these advanced neural networks
and interpret their results in a more statistically meaningful manner.

• Advanced variance estimation method, such as variational inference, has been
applied to neural network prediction already. By leveraging variational in-
ference and Bayesian estimation in nonparametric regression, researchers can
obtain more robust and interpretable results, gain insights into the uncertainty
of the estimated relationships, and make informed decisions based on a more
comprehensive understanding of the data.

This paper explores the application of various statistical methods to neural net-
works, although the depth of analysis in these studies is relatively limited. There
is significant potential for further exploration and research in this field, making it
highly worthwhile to pursue. By delving deeper into statistical analyses applied to
neural networks, researchers can uncover valuable insights and advance our under-
standing of the complex interactions between statistical methods and deep learning.
With numerous unexplored areas awaiting investigation, this field holds promising
opportunities for novel discoveries and advancements.
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Chapter 9 Appendix

9.1 Proof of unbiased estimator of jackknife

We define P ∗ = (P ∗1 , ..., P
∗
n) be vector of probabilities satisfying 0 < P ∗i < 1 and∑n

1 P
∗
i = 1, also F̂ ∗ = F̂ (P ∗) putting mass P ∗i on xi. Hence we define a θ̂∗

θ̂∗ = T (P ∗) ≡ t(F̂ ∗(P ∗)) (9.1)

Our statistics can be explained as a set of vectors P ∗ satisfying 0 ≤ P ∗i ≤ 1 and∑n
1 P
∗
i = 1, this set of vector is considered as an simplex and denoted by Sn. (Can

be consider as assign weight in sample statistics)
If we define

P 0 = (
1

n
,

1

n
, ...,

1

n
)T (9.2)

then T (P 0) is the observed value of statistics. The jackknife value of statistic are

θ̂(i) = T (P (i)) (9.3)

where

P (i) = (
1

n− 1
, ..., 0,

1

n− 1
, ...,

1

n− 1
)T , where 0 is on the ith place (9.4)

We define linear statistic T (P ∗) be

T (P ∗) = c0 + (P ∗ − P 0)TU (9.5)

when c0 is constant and U = (U1, ..., Un)T satisfying
∑n

1 Ui = 0

Theorem 3. For a linear statistic, the jackknife estimates of bias is identically 0

Proof. We know that T passes through all points, (P (i),T(P (i))) for i=1,2,...,n, as
well as (P 0,T(P 0))

c0 = T (P 0)

θ̂(i) = c0 + (P (i) − P 0)TU
(9.6)
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Hence, ˆbiasjack = (n− 1)(θ̂(.) − θ̂), and

θ̂(.) − θ̂ =
∑

(
θ(i)
n
− θ̂)

=
∑

(P (i) − P 0)TU

=
∑
i

{( 1

n− 1
− 1

n
)U1 + ...− 1

n
Ui + ...+ (

1

n− 1
− 1

n
)Un}

=
∑
i

{
∑
j 6=i

(
1

n− 1
− 1

n
)Uj −

1

n
Ui}

=
∑
i

{−(
1

n− 1
− 1

n
)Ui −

1

n
Ui}

=
∑
i

−(
1

n− 1
Ui)

= 0

(9.7)

9.2 Proof of Jackknife as Approximation to Boostrap

For any statistic, jackknife estimate for T (P ∗) is almost the same as the bootstrap
variance for a certain linear approximation to T (P ∗).

Theorem 4. Suppose linear statistic T (LIN) is a unique hyperplane passing through
the jackknife points (P (i),T(P (i))) for i = 1,2,...,n, Then

var∗T (LIN) =
n− 1

n
varjackθ̂ (9.8)

where varjackθ̂ is the jackknife estimate of variance for θ̂. In other words, the jackknife

estimate of variance for θ̂ = t(F̂ ) equals n/n-1 times bootstrap estimate of variance
for TLIN .

Proof. To solve a set of n linear equations

θ̂(i) = TLIN(P (i)) (9.9)

we can obtain
c0 = θ̂; Ui = (n− 1)(θ̂(i) − θ̂(.)) (9.10)

and
var∗T

LIN(P ∗) = UT (V ar∗P
∗)U + 2UTCov∗(P

∗)

=
1

n2
UTU

=
n− 1

n
{n− 1

n

∑
(θ̂(i) − θ̂(.))2}

(9.11)
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9.3 Proof of coefficient of variation in standard error estimation

9.4 Iteratively Reweighted Least Squares in Logistic Regression

First we derive log likelihood in a new form, here logp− log(1− p) = βTxi:

l(β) =
∑

(yilogp+ (1− yi)log(1− p))

=
∑

(yilog(p)− yilog(1− p) + log(1− p))

=
∑

(yiβ
Txi − log(1 + eβ

T xi))

(9.12)

The first order derivative is

∂l(β)

∂β
=
∑

xiyi −
xie

βT xi

1 + eβT xi

=
∑

(xi(yi − p)) = XT (y − p)
(9.13)

To solve this equation to be 0, we have to use Newton-Raphson algorithm, which
requires Hessian matrix:

∂2l(β)

∂β∂βT
=
∑

xix
T
i p(1− p) = −XTWX (9.14)

The Newton step will be

βnew = βold + (XTWX)−1XT (y − p)
= (XTWX)−1XTW (XβoldW−1(y − p))
= (XTWX)−1XTWz

(9.15)

since each iteration p changes, so is W , z. Hence global minimum may not be
achieved by the property of Newton-Raphson algorithm, and this is called iteratively
reweighted least square in the algorithm.
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[123] Guotai Wang, Wenqi Li, Sébastien Ourselin, and Tom Vercauteren. Automatic
brain tumor segmentation using convolutional neural networks with test-time
augmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Trau-
matic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in
Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised
Selected Papers, Part II 4, pages 61–72. Springer, 2019.

[124] Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien Ourselin,
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