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Abstract—Advanced control techniques may be used to regu-
late the operation of residential appliances to establish a virtual
power plant. The electric water heater may be regarded as a
“uni-directional battery” and a major component of a hybrid
residential energy storage system. One of the main constraints
of implementing demand response with EWH relates to the
unpredictable customer behavior, which influences the domestic
water tank temperature as well as the EWH operation cycle.
This study analyzes the operation of multiple water heaters and
develops an aggregated generic water heater load curve for the
average residential customer based on experimental data re-
trieved from the A.O. Smith Corporation. An equivalent thermal
model capable of capturing the typical customer behavior and
estimating the per unit hot water usage was developed. The
proposed aggregated generic EWH load curve was validated
through an example demand response program, in which the
morning peak demand is shed in order to store the surplus PV
power at midday in the EWH. Based on the representative hot
water draw profile and the electric power profile, the change in
average tank temperature was estimated and maintained within
the customer acceptable range.

Index Terms—Electric Water Heater (EWH), Generic Curve,
Demand Response (DR), Smart Home, Virtual Power Plant
(VPP), Smart Grid.

I. INTRODUCTION

The near-ubiquity of Electric water heaters (EWHs) make
them one of the most advantageous appliances to participate
in the virtual power plant (VPP) operation for residential
buildings. Due to the large thermal mass of water tanks,
EWHs could be regarded as a heat reservoir as well as an
energy sink. The good insulation of EWH tanks lead to high
equivalent resistances, resulting in less energy loss [1]. These
properties allow EWHs to, for a short period of time, shed
grid power while maintaining the water temperature at the
reference temperature. On the other hand, EWHs can also
be used to absorb surplus PV generation. There are multiple
benefits of incorporating EWHs into home energy management
as the PV penetration keeps rising. Recent research indicate
that incorporating EWHs could lead up to 30% reduction in
battery capacity for residential homes [2].

The water heating load makes up a great portion of a
typical total house load [3]. The unpredictability of customer
behavior makes quantifying the benefits of controlling EWHs
difficult. A typical aggregated load for EWHs has a morning
and evening peak [4]. User comfort needs to be ensured while

implementing the demand response (DR) calls for the moni-
toring of the water tank temperature. The water temperature
in the tank must be high enough to meet the user demand
and cannot exceed the stipulated safety reference. However,
technologies such as mixing valves may be integrated to
allow the water tank temperature up to 145F remain within
acceptable operation range [5], [6].

In previous studies, the hot water draws for 48 representative
days were evaluated based on measured data from California
homes [7]. The proposed schedules are used in the California
Building Energy Code Compliance for Residencial buildings
(CBECC-Res) [8]. Another study calculates the aggregated
EWH load by relating to the hot water usage activities [9]. An
EWH demonstration report shows the reduction in both power
and electricity usage that is possible [10]. The Smart Water
Heater Simulator in the EPRI DERMS simulation framework
emulates a smart water heater with communications capabili-
ties [11].

In this paper, the aggregated generic load for residential
EWHs is proposed based on experimental data retrieved from
the industrial collaborator, A.O. Smith. The dynamic relation-
ship among EWH working status, tank temperature, and hot
water usage is identified and evaluated using equivalent ther-
mal models. An aggregated generic curve for hot water usage,
which represents the average user behavior, is also proposed.
The VPP control through DR was implemented by shifting
the morning peak to the midday when the PV generation
is relatively high. The results from this study indicate that
maintaining the tank temperature within acceptable ranges is
possible while participating in DR.

II. ELECTRIC WATER HEATER PROJECT OVERVIEW

In 2018, the A.O. Smith group in conjunction with Lowe’s
initiated a program to explore the potential benefits of smart
EWHs for the grid and analyze trends in customer behaviors.
Approximately 800 customers with the “EnergySmart” EWH
model participated in the program, in which appliance usage
data was retrieved and evaluated. The EWH heater models
include an optional CTA-2045 port adaptor and utility com-
munication module to ensure smart communication with their
provider. (Fig. 1).

The first year of this two-year project witnessed a growing
number of participants, peaking at nearly 500 electric water

Authors’ manuscript version accepted for publication. The final published version is copyrighted by IEEE and will be available as: H. Gong, O. M. Akeyo, ,T. Rooney, B. Branecky,
and D. M. Ionel, “Aggregated Generic Load Curve for Residential Electric Water Heaters,” Rec. 2021 IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, Aug
2021, 5p. ©2021 IEEE Copyright Notice. “Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”



Fig. 1. The illustrative parts of A.O.Smith “EnergySmart” model and CTA-
2045 standard port. The “EnergySmart” model is smart grid ready and
implements standardized communications for demand response.

Fig. 2. Daily number of EWH in service. Approximately 800 participants
were involved in the program and an increase from inception till early 2019
can be observed before the gradual decline.

heaters recorded per day in early 2019 (Fig. 2 ). Based on
the reported data, up to 100 participants opted out of the
program at inception and only 140 EWHs participated through
the entire length of the project (Fig. 3).

III. MATHEMATICAL MODEL

This study presents an approach for developing an aggre-
gated generic power curve for aggregated EWHs based on
the experimental data retrieved from the Lowe’s project. The
operation status (ON or OFF) of each EWH participating in the
programs was collected and analyzed at 1-minute resolution.
For this program, it is assumed that all the EWH are rated for
5kW.

The daily power curve for EWHs is influenced by multiple
factors including the hot water usage, outlet and inlet water
temperature, duct insulation, heating element efficiency and
other user-influenced parameters. Hence, there is variation in
the power curve from one EWH unit to the other. A typical
residential EWH would normally have two or three short
heating cycles daily. Only when the number of EWHs being

Fig. 3. Participant engagement over the duration of the research. Reduction
in the number of participants in some cases were attributed to changes in
internet settings and monitoring hardware devices being disconnected.

Fig. 4. Example day aggregated power transfer. The aggregated generic profile
was developed based on data retrieved from 450 EWHs.

analyzed is fairly large is the aggregated EWH power relatively
smooth with trends.

In another experimental study conducted in the approxi-
mately the same time frame, a different group of researchers
from Oak ridge National Lab considered a field pilot demon-
strator that involves only 50 EWHs [4]. The results from such
limited number of samples somewhat follow the trend noted
in our proposed generic load curve, but the variations are
much larger due to limited aggregation effect. In this study, a
systematic search was carried out to recursively reducing the
number of EWHs until the trend established by the full data
was still obvious. To this end, only workdays with more than
450 EWHs online were analyzed. The generic EWH power
curve of the selected workdays is presented in Fig. 4.

The measured power profile from 450 EWHs were used to
develop an aggregated generic load profile to represent the
typical power flow for multiple EWHs (Fig. 4). The estimated
standby loss in the early morning was low because of the im-
proved insulation [4]. This proposed aggregated generic EWH
load curve can be employed for estimating expected morning



Fig. 5. Example day EWH cummulated energy. The average daily electricity
usage for each EWH is approximately 11kWh.

Table I
THE P.U. VALUE OF AVERAGE EWH POWER

Hour 0 3 6 9 15 18 20 24
Power
[p.u.] 0.1 0.33 1.5 1 0.75 1.25 1.25 0.33

and evening peak demands as well as evaluate the anticipated
standby losses from multiple EWHs. This techniques uses the
least amount of data points to develop an aggregated generic
curve that can be used for the modeling of aggregated EWH
load (Table I). Based on the aggregated generic curve the
cumulative energy for the 450 EWHs considered was recorded
as 5,016kWh for the example day evaluated (Fig. 5). Hence,
the average daily electricity usage for each EWH can be
computed as 11kWh. In this approach, the per-unit base value
for the proposed aggregated generic curve is defined as:

Pbase = E ⋅N
T

, (1)

where, E is the average daily electricity usage; N, the total
number of EWHs; and T, the duration in hours.

The equivalent thermal model is used to establish the daily
hot water usage in the study. The water temperature is mostly
determined by the input electric power, the standby heat loss,
and the hot water draw activities. These three major factors are
included in the heat transfer function of the water temperature,
as follows,

C
dθT (t)

dt
= S(t)PH(t)−
1

R
[θT (t) − θA] − ρcpW (t) [θT (t) − θW,C] , (2)

where C is the equivalent capacitance; S(t), the ON/OFF
status; defined respectively as:

C = V ⋅ ρ ⋅ cp. (3)

Table II
PARAMETERS FOR THE EQUIVALENT EWH MODEL.

Parameter Value or unit
Density of water ρ 993 kg/m3

Specific heat capacity of water cp 4,179 J/kg○C
Room air temperature θA 22 ○C
Temperature of cold water θW,C 10 ○C
Rated EWH heating rate PH 4.5 kW
Water tank volume V 50 gallon
Equivalent resistance R 1400 ○C/kW
Water temperature in the tank θT ○C
Hot water draw W m3/s

Fig. 6. Simulation results obtained based on (2). The data compares
satisfactorily with the experimental results from the NREL test published in
the EPRI report [12].

S(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if S(t − 1) = 1 & θT (t) ≥ θH(t)
1, if S(t − 1) = 0 & θT (t) ≤ θL(t)
S(t − 1), otherwise,

(4)

where θL and θH are the lower and upper band of the water
tank temperature. The definitions of other parameters are listed
in Table. II. It is worth noting that the water temperature in
the tank θT and the hot water draw W have only their units
listed in the table.

The performance test of a CTA-2045 equipped A. O. Smith
water heater was conducted by National Renewable Energy
Laboratory (NREL) and reported by Electric Power Research
Institute (EPRI) [12]. The case of “Normal Operation” from
the report was used for the validation of the parameter values
listed in Table. II, apart from the “Rated EWH heating rate
PH , which was set to 5.5kW only for this validation. The
simulation results, which were plotted in the same style as the
report, show satisfactory results (Fig. 6). The term “Energy
take” reflects the temperature of the water tank.

When the working status and power of the EWH and the
tank temperature are known, (2) can be re-written to calculate



Fig. 7. The calculated total daily hot water draw for 450 EWHs. The total
daily hot water usage was 27,427 gallons for 450 EWHs, an average of 61
gallons.

Fig. 8. Example demand response for aggregated electric water heater. This
approach demonstrates how the peak demand at the early hour of the day
(5:00–7:00) can be shifted to some time around midday (9:00–16:00), when
solar generation is relatively high.

the hot water usage:

W (t) = S(t)P (t) − 1
R
[θT (t) − θA]

ρcp [θT (t) − θW,C] . (5)

In the study, it is assumed that the average temperature of all
the water tanks is constant. When θT (t) = 125F , S(t) = 1, and
EWH power P (t) was replaced with the value of aggregated
eneric curve from Fig. 4, the aggregated hot water draw was
calculated using (5) and is shown in Fig. 7. The daily hot
water draw for each EWH was 61 gallons.

The per unit hot water draw was calculated based on (5),
with θT (t) = 125F , S(t) = 1, and the EWH power P (t)
replaced by the value from Fig. 4. The aggregated generic hot
water draw shown in Fig. 7 stands for the representative user
behavior and does not change when the DR is implemented.

Fig. 9. The average tank temperature for the EWHs participating in demand
response. The red dotted line marks the common preference of 115°F. The
example shows a significant reduction in tank temperature in the early hours
for the extreme condition when all the EWH were turned off. The recovery
around midday means EWHs can be used as storage for surplus PV power.

Fig. 10. Accumulated electricity usage of the EWH. from 5:00–7:00, the used
electricity remained the same in the DR case. In the afternoon, the electricity
usage caught up with the w/o DR case.

IV. EXAMPLE CASES OF DEMAND RESPONSE (DR)

The objective of demand response is to shed the EWH load
at critical time, and recover during the midday, as follows:

PD(t) =
⎧⎪⎪⎨⎪⎪⎩
0, if t ∈ TD
PO(t) + PR(t), if t ∈ TR,

(6)

where PD is the aggregated EWH load with DR; PR, the
aggregated recover power; PO, the original aggregated EWH
load without DR; TD, the set of time when DR is required; TR,
the set of time when recovery is required. It is worth noting
that not all EHWs will turn on during the recovery. Therefore,
it is assumed that PO(t) + PR(t) < P ⋅N .

An example demand response with TD = [5 ∶ 00,7 ∶ 00] and
TR = [9 ∶ 00,16 ∶ 00] is shown in Fig. 8. The fixed hot water
flow from Fig. 7 was used for the DR study. When the EWH’s
load was shed in the morning, the water temperature in the
tank dropped (Fig. 9). The example case in Fig. 9 shows the



maximum load reduction case scenario, which will result in
the temperature being too low. In which case some of the EWH
will not meet the customer comfort. A practical home energy
management would put the customer comfort as priority and
avoid the tank temperature being too low. The tank temperature
increased in the midday as the EWH started to recover from
9:00. In this example, it is assumed that the total electricity
usage for the w/ and w/o DR cases are equal (Fig. 10).

V. CONCLUSION

The proposed aggregated generic curves for the residential
EWH load and the hot water usage in this paper are the
first of its kind to the best of the authors‘ knowledge. The
aggregated generic curves were obtained based on two years
of experimental data from approximately 800 users collected
by the industrial collaborator, A.O. Smith. While monitoring
the temperature in the tank, this load curve may be employed
by EWHs for multiple applications including establishing
peak demand, power variation, daily energy profile and unit
utilization factor.

The detailed technical benefits of the example aggregated
generic curve were demonstrated through a demand response
program, in which the operation of the EWH was regulated to
reduce the peak power and store surplus solar generation. In
this approach, the residential setup was considered as a virtual
power plant with the EWH regarded as a “uni-directional”
energy storage operating within customer predefined water
tank temperature limits.
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