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ARTICLE

Chromosome Xq23 is associated with lower
atherogenic lipid concentrations and favorable
cardiometabolic indices

Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart

disease (CHD). However, X chromosome genetic variation is understudied for blood lipids

in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole

X chromosome sequencing study of 65,322 multi-ancestry participants and perform repli-

cation among 456,893 European participants. Common alleles on chromosome Xq23

are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides

(min P= 8.5 × 10−72), with similar effects for males and females. Chromosome Xq23

lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and

591,247 controls (P= 1.7 × 10−4), and reduced odds for diabetes mellitus type 2 among

54,095 cases and 573,885 controls (P= 1.4 × 10−5). Although we observe an association

with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses

indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral

adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression,

particularly in adipose tissue, with reduced concentrations of blood lipids.

https://doi.org/10.1038/s41467-021-22339-1 OPEN

A full list of authors and their affiliations appears at the end of the paper.
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Mendelian, population, and functional genetic analyses of
blood lipids (total cholesterol, low-density lipoprotein
cholesterol [LDL-C], high-density lipoprotein choles-

terol [HDL-C], and triglycerides) have yielded important funda-
mental insights regarding the root causes of coronary heart
disease (CHD)1,2. For example, rare and common autosomal
genomic variation influencing LDL-C, correspondingly influence
CHD risk3–6. Such observations buttress clinical recommenda-
tions and bolster efforts to discover and validate lipid-related
drug targets for CHD risk reduction7–9.

Although the X chromosome comprises 5% of the genome, it
has only been studied in a few genome-wide association analyses
for blood lipids and coronary disease10–13. Major reasons for
exclusion include incomplete coverage on genotyping arrays,
potential discrepancies in genotyping quality on arrays due to
haploinsufficiency in men, imputation and analytic challenges,
and somatic X inactivation across tissues in women. Deep-
coverage whole-genome sequencing (WGS) and analysis of the X
chromosome now offers the promise for uniform coverage and
high-fidelity genotyping for both sexes14.

While differences in lipid levels and CHD risk by sex are well
established15,16, X chromosome dosage is also linked to lipid
differences. Monosomy X (45X, Turner syndrome) is linked to
dyslipidemia and premature CHD17–19. While obesity and
gonadal deficiency was long believed to be the primary con-
tributor to these phenotypes, women with Turner syndrome have
higher total cholesterol, LDL-C, and triglyceride concentrations
than age- and body composition-matched 46XX women with
premature ovarian failure19,20. Men with an additional X chro-
mosome (47XXY, Klinefelter syndrome) also suffer from infer-
tility with higher rates of obesity, dyslipidemia, and CHD21,22.
Furthermore, adult gonadectomized mice with XY, XX, and XXY
chromosomes, regardless of gonadal sex, demonstrate dose-
dependent changes in lipid levels23. Such observations, suggest
that apparent sexual dimorphism in lipid levels may be explained
by the sex chromosomes themselves.

Our study aims to discover X chromosome genomic variation
associated with blood lipid levels among 65,322 multi-ancestry
individuals with high-coverage whole X chromosome sequencing
and available lipids in the NHLBI Trans-Omics for Precision
Medicine (TOPMed) program24. Independent serial replication is
performed in up to 390,606 and 66,287 individuals with GWAS
array and lipids available in the UK Biobank and Nord-Trøndelag
Health (HUNT) study, respectively25,26. We further evaluate
the phenotypic consequences of lipid-associated variation in the
UK Biobank, HUNT, and 176,899 additional participants of
FinnGen27. Lastly, we perform colocalization analyses to pinpoint
the possible causal gene in association regions. Here, we char-
acterize an X chromosome locus associated with lipids and related
cardiometabolic traits and prioritize CHRDL1 as the causal gene.

Results
Baseline characteristics, blood lipids, and chromosome X
genotypes. TOPMed sequences were aggregated and aligned, and
variants were called by the TOPMed Informatics Research Cen-
ter. A total of 65,367 out of 140,000 individuals in TOPMed freeze
8 with WGS data, including X chromosome sequence data had
harmonized lipid levels available (Supplementary Fig. 1). Forty-
five individuals with anomalous X chromosome copy number
were excluded, leaving 65,322 individuals for analysis. 40,577
(62.1%) individuals were female and mean (standard deviation
[SD]) age was 52.4 (14.9) years. Across all 21 included cohorts,
29,513 (45.2%) were white, 16,431 (25.2%) black, 13,432 (20.6%)
Hispanic, 4714 (7.2%) Asian, 1182 (1.8%) Samoan, and 50 (0.1%)

Native American (Supplementary Table 1; Supplementary Fig. 2).
The included studies were largely observational cohorts with
some variations in ascertainment schemes as described in the
Supplementary Note. Blood lipid distributions were generally
similar across cohorts with some differences due to differences in
study design and ancestry (Supplementary Table 2 and Supple-
mentary Fig. 3). After adjusting for lipid-lowering medicines
within each cohort and ancestry, we generated residuals within
each cohort and race group adjusted for age, age2, sex, 11 prin-
cipal components of ancestry, and cohort-specific covariates.
These residuals were inverse rank normalized and multiplied by
the standard deviation within each cohort and race group to
obtain effects in mg/dl units (see Methods) (Supplementary
Fig. 4).

Among 65,322 TOPMed participants with lipid levels and
WGS, we identified 19,898,222 total variants on the X chromo-
some by WGS. Of these variants, 88,008 (0.4%) were nonsynon-
ymous variants and 4632 (0.02%) were rare (MAF < 1%)
predicted protein-truncating variants. As expected, participants
of African ancestry had the most X chromosome variants
(Fig. 1a). Likely due to sample size differences, there were overall
more total variants observed in our dataset among white
participants compared to other ancestries (Fig. 1b). Within the
X chromosome, females had a greater average [SD] number of
variants per individual (133,255 [22,455]) than males (90,117
[12,166]), as expected (Supplementary Table 3). Generally, most
of the variation observed across individuals was uncommon (i.e.,
98.8% of variants had MAF < 5%) (Supplementary Table 4).

X chromosome single-variant association with lipid levels. In
single-variant discovery analyses in TOPMed, we performed X
chromosome-wide association analyses for genetic variants with
minor allele count >20 that are not in the pseudoautosomal
region, yielding 2.2 million analyzed of the 19.8 million detected.
To maximize power, all samples (i.e., males and females) were
included in the linear mixed model association analyses with SD-
adjusted residuals of lipid levels as the outcome, where adjust-
ments included sex (Supplementary Fig. 5).

Across variants assessed, we found 21 variants showing
suggestive evidence (P < 1 × 10−6) of association with lipids in
TOPMed (Supplementary Table 5 and Supplementary Fig. 6). We
evaluated these associations for replication, serially, in the UK
Biobank (N= 390,606) (Supplementary Table 6) and HUNT
(66,635) (Supplementary Table 7). Three variants showed
evidence of replication (P < 0.05/21= 0.002) in UK Biobank
and in HUNT and additionally met a stringent threshold for
statistical significance in the meta-analysis (alpha= 0.05/2.2 M
variants/4 traits= 5.7 × 10−9) (Table 1).

The three variants occurred on chrXq23 and were all in at least
moderate linkage disequilibrium across all included TOPMed
participants (Supplementary Fig. 7 and Supplementary Table 8).
They were also in moderate linkage disequilibrium with a
previously described nearby variant, rs598547112, (r2 0.61–0.76).
All three associated variants in our dataset have similar
nonreference allele frequency (0.34–0.43), which was also similar
between males and females. We observed similar associations for
both males and females within TOPMed except male rs5985504-
T carriers had greater decrease in triglycerides compared to
female rs5985504-T carriers (Pinteraction= 0.001) (Supplementary
Table 9).

The minor alleles for these variants are common in all
TOPMed ancestries except for Asian Americans (MAF 0.02) and
Samoans (MAF 0.01). Nevertheless, effect estimates were largely
of similar magnitude across ancestries in TOPMed for total
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cholesterol (Supplementary Table 10) with no evidence of
heterogeneity (Pheterogeneity > 0.05).

The three chrXq23 variants were associated with reduced
atherogenic lipoproteins (i.e., total cholesterol, triglycerides, and
LDL-C) (Table 1). The rs5942634-T allele is an intergenic variant
and is 8 kb downstream from RTL9 (also referred to as RGAG1 in
the literature), and was the top variant for total cholesterol,
associated with 1.95 mg/dl lower concentration (P= 2 × 10−16).
The rs5942648-A allele occurs 81 kb downstream, is intergenic
between RTL9 and CHRDL1, and was the top variant for LDL-C,
associated with 1.53 mg/dl lower concentration (P= 1 × 10−12).
The rs5985504-T allele resides 60 kb further downstream and is
68 kb from CHRDL1 and was the top variant for log(triglycerides)
leading to 2% lower triglycerides concentration (P= 4 × 10−11).
Overall, the associated variants reside within a ~0.22Mb linkage
disequilibrium block spanning RTL9 and CHRDL1 (Supplemen-
tary Fig. 7). Within this block, variants within predicted active
adult liver enhancers are in proximity to both the RTL9 and
CHRDL1 genes (Supplementary Fig. 8). Only two variants reside
within both an adult liver enhancer and DNase hypersensitivity
site—rs2883091 in an intron of RTL9, and rs2143760 residing
4 kb from CHRDL1 but 214 kb from RTL9. These variants are in
at least moderate linkage disequilibrium (r2 > 0.60) with the top
associated variants in the locus. Virtual 4 C data additionally
demonstrate a contact between the rs5985504 site and upstream
of CHRDL1 (Supplementary Fig. 9).

To determine whether our signal was independent of
previously reported variants in the region, we performed
conditional analysis for the associated between total cholesterol
and rs5942634 with rs594305711, rs598547112, and rs594293713

(Supplementary Table 11). Previously reported SNPs were highly
associated with total cholesterol when the variants were
individually modeled. However, after adjusting for our reported
total cholesterol variant (rs5942634), the known variants have
dramatically lower effect estimates and are no longer associated
with total cholesterol. On the other hand, rs5942634 remains
marginally associated with total cholesterol and with a less of a
change in effect size after adjusting for the three known variants.
Similar results were obtained when adjusting the association
between total cholesterol and rs5942634 for the individual

previously reported variants in the region (results not shown).
This indicates that rs5942634 is only partially explained by the
three reported variants.

Phenome-wide association Of Chrxq23 variants. Given prior
genetic associations of LDL-C-lowering and triglyceride-lowering
autosomal variants with lower risk for CHD, we hypothesized
that sex chromosome variants lowering LDL-C or triglycerides
would also lower risk for CHD. In HUNT, UK Biobank, and
FinnGen (Supplementary Table 12), we observed that the top
lipid-lowering alleles at this locus showed a reduced risk for CHD
(Fig. 2). We found a 0.98 (95% CI 0.96, 0.99; P= 1.7 × 10−4) odds
of CHD for each rs5942634-T allele, the lead cholesterol-lowering
variant (alpha= 0.05 for the single haplotype assessment), and a
correlation between the effect sizes of variants on total cholesterol
in the chrXq23 locus and the effect sizes of these variants on CAD
(r= 0.25), T2D (r= 0.33), and BMI (r=−0.34) (Supplementary
Fig. 10).

To explore the range of phenotypes associated with the
chrXq23 locus, we evaluated the associations of each of these
three variants with 80 manually curated diverse clinical traits and
conditions in the UK Biobank (Supplementary Table 13). Given
the high degree of correlation among these variants, phenome-
wide association results were similar (Supplementary Tables 14-
16). As expected, the strongest associations were for reduced odds
of hypercholesterolemia. Associations reaching a P < 6.3 × 10−4

(P < 0.05/80 traits) included reduced odds for diabetes mellitus
type 2 (T2D), hypertension, and glaucoma, but increased odds for
ever smoking as well as increased body-mass index (BMI) and
body fat percentage. Notably, we observed lower odds of T2D for
rs5942648 (OR= 0.97; 95% CI 0.96, 0.99; P= 1.4 × 10−5) (Fig. 2).

We additionally explored the association between each of these
three variants with lipoprotein subspecies identified through
nuclear magnetic resonance spectroscopy (NMR) within the
Framingham Heart Study and Multi-Ethnic Study of Athero-
sclerosis cohorts (up to 6356 individuals). While we did not find
any associations that passed a Bonferroni-corrected significance
threshold (0.05/(3 SNPs × 16 lipoprotein subspecies)= 0.001;
Supplementary Table 17), we found two lipoprotein subspecies
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associated with suggestive evidence (p < 0.05), including greater
concentration of medium HDL particles (but no effect on small
or large HDL particles) and greater LDL size. We assessed for
evidence of replication for indices related to LDL size (alpha 0.05)
since the chrX variants associated with LDL-C. Among 6443
participants of the Atherosclerosis Risk in Communities cohort,
we concordantly observed a −0.034 SD (P= 0.022) lower
concentration of small dense LDL for rs5942648-A. Among
365,365 participants of the UK Biobank, when using LDL-C/
apolipoprotein B ratio as a proxy for LDL particle size, we
observed a nominal increase in LDL size even with adjusting for
both LDL-C and apolipoprotein B (Beta= 1.1 × 10−5, P= 0.048).

To better characterize effects on adiposity given the aforemen-
tioned clinical phenotype associations, we evaluated the associa-
tion between rs5942634-T and body composition measurements
in the UK Biobank. Although rs5942634-T was associated with
increased BMI, it was associated with slightly reduced waist-to-
hip ratio adjusted for BMI (Beta=−6.3 × 10−4, SE= 1.1 × 10−4,
P= 1.3 × 10−8). rs5942634-T is associated with both increased
truncal fat mass (Beta= 63 g, SE= 10 g, P= 4.0 × 10−10) as well
as increased total peripheral fat mass, with increase of 21 g
(P= 3.6 × 10−12) of the right leg, 20 g (P= 3.4 × 10−12) of the left
leg, 7 g (P= 4.1 × 10−7) of the right arm, and 8 g (P= 1.7 × 10−9)
of the left arm (Supplementary Table 18). Additionally, among
4750 unrelated UK Biobank participants with abdominal MRI
measures available, rs5942634-T was associated with log-
transformed inverse rank standardized increased abdominal
subcutaneous adipose tissue (Beta=+0.43, SE= 0.15, P= 5.9 ×
10−3) but decreased visceral adipose fat (Beta=−1.12, SE= 0.14,
P= 1.1 × 10−15) to a greater degree. Given nine adiposity
traits assessed, Bonferroni-corrected significance was assigned at
0.05/9= 5.6 × 10−3.

Rare pathogenic variants in CHRDL1 were previously linked to
X-linked recessive megalocornea, a condition characterized by
enlarged corneal diameters with associated complications,
including reduced visual acuity. Given these prior observations,
we asked whether common variants associated with cholesterol at
the CHRDL1 locus were associated with differences in visual
acuity. Among 112,842 UK Biobank participants (46.5% women;
median age at assessment 58.5 years), we observed no association
of lipid-associated chrXq23 alleles with altered visual acuity (P >
0.05; Supplementary Table 19). Given our sample size of 112,842
and SNP frequency of 34.4%, we had >99% power to detect effects
>1/10th of a standard deviation unit of visual acuity at an alpha
of 0.05.

Gene expression analyses at chromosome Xq23. We leveraged
the GTEx eQTL data to better understand the gene or genes
in the region that are influencing atherogenic lipid levels. Our most
significant SNP, rs5942634, was associated with reduced expression
of CHRDL1 in skeletal muscle (beta=−0.17, P= 1.2 × 10−11),
subcutaneous adipose (beta=−0.16, P= 8.6 × 10−8), visceral
adipose (beta=−0.17, P= 4.3 × 10−6), and liver (beta=−0.25,
P= 5.9 × 10−5). Additionally, rs5942634 was associated with
increased expression of RTL9 in skeletal muscle (beta= 0.18,
P= 2.7 × 10−5; Supplementary Table 20).

Interrogating eQTL data for a single variant may lead to biased
interpretations for causal gene inference. Therefore, we colocalized
eQTL results for 8 genes (i.e., ACSL4, TMEM164, AMMECR1,
RTL9, CHRDL1, PAK3, CAPN6, DCX) within the ChrXq23 region
across prespecified lipid-related tissues (i.e., subcutaneous adipose,
terminal ileum, visceral omentum adipose, whole blood, liver, and
skeletal muscle) to relate aggregate blood lipid-association data with
gene expression data. We observe that increased gene expression of
CHRDL1 shows consistent colocalization with decreased cholesterolT
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across tissues, indicating that CHRDL1 is the likely causal gene in
the region (Fig. 3, Supplementary Fig. 11, and Supplementary
Table 21).

Rare chromosome X variant association analyses. We per-
formed SKAT gene-based tests of rare variants (MAF < 1%)
across the X chromosome implemented by the GENESIS
package within the TOPMed samples. We tested a maximum
of 746 genes with more than 1 rare variant and at least 10
individuals carrying a minor allele with each lipid trait. No
genes reached a Bonferroni-corrected significance threshold
(0.05/746= 6.7 × 10−5; Supplementary Table 22).

Discussion
Using deep-coverage next-generation sequencing of the X chro-
mosome in the NHLBI TOPMed program, we identified a locus
that was previously associated with lipids in primarily European
ancestry datasets, which we now extend to diverse ancestries
along with strong replication in two independent studies. In
addition to replicating the associations of chrXq23 lipid-lowering
alleles with reduced odds for CHD, we also observe associations
with reduced T2D odds and favorable adiposity indices. These

observations allow us to draw several conclusions about X
chromosome genetic variation with blood lipid levels, as well as
related cardiometabolic effects.

First, bioinformatic analyses implicate CHRDL1 as a candidate
causal gene for the association of chrXq23 variants with lipids.
Based on genomic proximity of the strongest signal, RTL9 was
assigned as the likely causal gene in prior work12. However,
colocalization analyses strongly prioritize increased CHRDL1
gene expression in lipid-related, particularly adipose, tissues with
reduced lipoprotein measures over other genes in the region.
CHRDL1 is not a previously known Mendelian lipid gene. In our
study, disruptive rare coding variants in CHRDL1 were not sig-
nificantly associated with lipids, nor was any gene in the region.

Second, despite observing an association with increased BMI,
chrXq23 lipid-associated alleles may lead to favorable effects on
adiposity. We observed that chrXq23 lipid-lowering alleles were
associated with increased gluteofemoral adipose tissue. Auto-
somal alleles similarly linked to expansion of gluteofemoral adi-
pose tissue are associated with favorable risk for CHD and
T2D28,29. Autosomal alleles associated with body fat distribution
are also associated with various functional adipose measures,
including morphology, lipolysis, and lipogenesis30. Recent gene
expression analyses of human adipose-derived stromal cells
showed persistent upregulation of CHRDL1 after inducing
adipogenesis31. CHRDL1 is believed to influence adipogenic dif-
ferentiation in human isolated preadipocytes32. Comparative gene
expression analyses suggest relatively greater CHRDL1 expression
in subcutaneous versus visceral fat32,33. In our analyses, the
chrXq23 lipid-lowering alleles were associated with an increase in
abdominal subcutaneous adipose tissue but a decrease in visceral
adipose tissue. A proteomic discovery analysis showed that
increasing circulating CHRDL1 concentrations were associated
with increased birth weight but decreased triglycerides and
homeostatic model assessment of insulin resistance34.

Third, chrXq23 lipid-lowering alleles have favorable cardio-
metabolic effects that appear to reduce risk for CHD and T2D.
Our results for CHD at chrXq23 are consistent with prior work at
this locus12, and extend to prior observational epidemiology,
genetic, functional, and clinical trial evidence implying a causal
relationship between reduced LDL-C and reduced CHD risk35. In
aggregate, autosomal LDL-C-reducing alleles are associated with
increased T2D risk but the effects are inconsistent across indivi-
dual variants7,36,37. In meta-analyses of randomized controlled
trials, statins are associated with a modestly increased risk of
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Fig. 2 Association of lead cholesterol-lowering chrXq23 variant rs5942634-T with reduced odds of coronary heart disease and diabetes mellitus type
2. The lead cholesterol-lowering allele at chrXq23 (i.e., rs5942634-T) and evidence of association with coronary heart disease and diabetes mellitus type 2
in each of three datasets in black, UK Biobank, HUNT, and FinnGEN, as well as meta-analysis in blue are shown. Odds ratios (OR) and 95% confidence
intervals around the odds ratios are displayed.
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Fig. 3 Colocalization of expression of genes at chrXq23 in subcutaneous
adipose tissue with blood cholesterol effects strongly implicates CHRDL1.
The x-axis represents eight genes in the chrXq23 locus and y-axis
represents standardized gene expression effect estimates in subcutaneous
adipose tissues with 95% confidence intervals. Accounting for linkage
disequilibrium, standardized effects and evidence of associations of
cholesterol-lowering alleles were correlated with gene expression of genes
at chrXq23 (ACSL4, TMEM164, AMMECR1, RTL9, CHRDL1, PAK3, CAPN6,
and DCX).
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incident T2D38,39. The effects of triglyceride-lowering alleles and
T2D risk are generally inconsistent40–42. Common triglyceride-
lowering variants at LPL and ANGPTL4 p.E40K in the lipoprotein
lipase pathway are associated with reduced triglyceride con-
centrations, CHD odds, and T2D risk40,43,44. Rare loss-of-function
variants in ANGPTL3, also implicated in the lipoprotein lipase
pathway, are associated with reduced LDL-C and triglyceride
concentrations as well as reduced CHD odds but favorable effects
on T2D risk have not yet been observed40,45,46. However, we
uniquely describe a genetic locus associated with reduced LDL-C
concentrations, reduced triglyceride concentrations, lower CHD
risk, and lower T2D risk. Similarly, we observed that lipid-
lowering chrXq23 alleles were independently associated with
increased LDL-C/apoB ratio, which has been independently
associated with reduced CHD and T2D risk in observational
epidemiologic studies47–50. These data imply that therapeutic
modulation of the causal pathway may lead diverse favorable
cardiometabolic indices. Whether implicated variants influence
the lipoprotein lipase pathway or represent a novel lipid-related
pathway for combined CHD and T2D should be addressed by
future research.

Fourth, common lipid-associated variants linked to increased
CHRDL1 expression are not associated with visual acuity mea-
sures. Ventropin, the product of CHRDL1, was first described as a
bone morphogenic protein 4 inhibitor and a regulator of retinal
development51. Pathogenic disruptive variants in CHRDL1 are
implied in X-linked megalocornea52. However, common lipid-
associated variants linked to increased CHRDL1 expression in the
present study do not associate with measures of visual acuity in
the UK Biobank. These data imply that therapeutic modulation to
recapitulate the protective effects associated with chrXq23 lipid-
lowering alleles is not anticipated to lead to on-target adverse
visual acuity effects.

Important limitations should be considered in the interpreta-
tion of our findings. First, our genetic association analyses of the X
chromosome do not account for random X inactivation.
Accounting for random X inactivation is expected to modestly
improve power and thus our approach biases our findings toward
the null53,54. We found that there was slightly higher variance
of total cholesterol in heterozygous females (sd= 44.1 mg/dl)
compared to homozygous females (homozygous ref sd= 43.0,
homozygous alt sd= 43.9) of rs5942634 using the Levene’s Test
for Homogeneity of variance (P= 0.002), indicating this locus
may be subject to random X inactivation. Second, while our in
silico analyses and prior literature strongly implicate CHRDL1 as
the causal gene, additional analyses including perturbational
experiments in model systems are necessary to confirm our
hypotheses. Furthermore, whether additional cis-acting or trans-
acting gene expression for other genes are additionally relevant for
the observed effects on blood lipids are currently unknown. Third,
chrXq23 lipid-lowering alleles were associated with both increased
truncal and gluteofemoral adiposity indices, and whether the
former associations result in adverse clinical consequences is not
known. Nevertheless, phenome-wide association analyses did not
reveal concerning clinical phenotype associations related to
modest increases in BMI. Notably, chrXq23 lipid-lowering alleles
were associated with decreased visceral adipose tissue.

In conclusion, we observe a consistent association of chrXq23
alleles with reduced total cholesterol, LDL-C, triglycerides, CHD,
and T2D. Despite an increase in BMI, these alleles were favorably
associated with increased gluteofemoral and abdominal sub-
cutaneous adiposity, decreased visceral adiposity, and increased
LDL-C/apolipoprotein B ratio. Colocalization analyses strongly
implicate increased CHRDL1 expression in adipose tissues with
these favorable cardiometabolic indices, pointing to CHRDL1 as
the leading candidate gene in the region.

Methods
Study participants. For discovery, 65,322 individuals from 21 studies in the freeze
8 release of the NHLBI TOPMed Program with WGS passing central quality
control by the TOPMed Informatics Research Core and blood lipid data available
were included for analysis (Supplementary Fig. 1). The included studies are
Atherosclerosis Risk in Communities study (ARIC, 7991), Old Order Amish
(Amish, 1083), Mt Sinai BioMe Biobank (BioMe, 9857), Coronary Artery Risk
Development in Young Adults (CARDIA, 3054), Cleveland Family Study (CFS,
577), Cardiovascular Health Study (CHS, 2773), Diabetes Heart Study (DHS, 365),
Framingham Heart Study (FHS, 3990), Genetic Epidemiology Network of Arter-
iopathy (GENOA, 1,044), Genetics of Lipid-Lowering Drugs and Diet Network
(GOLDN, 924), Genetic Epidemiology Network of Salt Sensitivity (GenSalt, 1770),
Genetic Studies of Atherosclerosis Risk (GeneSTAR, 1755), Hispanic Community
Health Study—Study of Latinos (HCHS/SOL, 7391), Hypertension Genetic Epi-
demiology Network and Genetic Epidemiology Network of Arteriopathy (Hyper-
GEN, 1853), Jackson Heart Study (JHS, 2846), Multi-Ethnic Study of
Atherosclerosis (MESA, 5283), Massachusetts General Hospital Atrial Fibrillation
Study (MGH_AF, 683), San Antonio Family Study (SAFS, 617), Samoan Adiposity
Study (Samoan, 1182), Taiwan Study of Hypertension using Rare Variants (THRV,
1976), and Women’s Health Initiative (WHI, 8305) (Please refer to the Supple-
mentary Note for additional details). Study participants provided consent per each
study’s IRB approved protocol. These data were secondarily analyzed through a
protocol approved by the Partners Healthcare IRB and Boston University IRB.

For lipid replication, 69,635 participants from the Nord-Trøndelag Health
(HUNT) study and 390,606 participants of the UK Biobank with genome-wide
array data and lipid data were included. The HUNT study is a longitudinal,
repetitive population-based health survey conducted in the county of Nord-
Trøndelag, Norway26. Since 1984, the adult population in the county has been
examined three times, through HUNT1 (1984–86), HUNT2 (1995–97), and
HUNT3 (2006–08). A fourth survey, HUNT4 (2017–2019), is ongoing. HUNT was
approved by the Data Inspectorate and the Regional Ethics Committee for Medical
Research in Norway (REK: 2014/144). All HUNT participants gave informed
consent. Approximately 120,000 individuals have participated in HUNT1–HUNT3
with extensive phenotypic measurements and biological samples. The subset of
these participants that have been genotyped (~70,000) using Illumina
HumanCoreExome v1.0 and 1.1 and imputed with Minimac3 using a combined
HRC and HUNT-specific WGS reference panel are included in the current study.
The UK Biobank is a large, prospective cohort of ~500,000 United Kingdom
residents aged 40–69 years25,55. Patients provided answers to questions regarding
socio-demographic, lifestyle, and health-related factors; additionally, participants
provided blood, urine, and saliva for genetic and other future assays. Genotyping
was performed on a custom Affymetrix array followed by imputation. Various
additional measurements were performed on all recruited participants (e.g.,
electrocardiography, etc) and some measurements in subsets (e.g., cardiac magnetic
resonance imaging, etc). Study participants provided consent per the UK Biobank’s
IRB approved protocol. We excluded UK Biobank individuals that met the
following criteria: (1) Individuals whose submitted gender is not same as inferred
gender; (2) Individuals with putative sex chromosome aneuploidy; (3) Individuals
with second degree or higher degree relatives; and (4) Individuals who withdrawn
consent. We analyzed individuals who were British white separately from those
that were not considered British White. These data were secondarily analyzed
through a protocol approved by the Partners Healthcare IRB.

The effects of lipid-associated X chromosome variants on CHD risk were
estimated in 69,635 participants of HUNT, 390,606 British White participants of
UK Biobank, and 176,899 participants of FinnGen. The effects on risk of diabetes
mellitus were estimated in 69,635 participants of HUNT, 390,606 participants of
UK Biobank, and 171,087 participants of FinnGen. FinnGen (https://www.finngen.
fi/en) is a large biobank study that aims to genotype 500,000 Finns on a FinnGen
ThermoFisher Axiom custom array, with the current data freeze comprising
181,820 Finnish individuals27. FinnGen includes prospective epidemiological and
disease-based cohorts, and hospital biobank samples. The data were linked by the
unique national personal identification numbers to national hospital discharge
(available from 1968), death (1969-), cancer (1953-), and medication
reimbursement (1995-) registries and disease endpoints were defined by
harmonizing the International Classification of Diseases (ICD) revisions 8, 9, and
10, cancer-specific ICD-O-3 and ATC-codes. The FinnGen project is approved by
Finnish Institute for Health and Welfare (THL).

Sequencing, genotyping, and quality control of TOPmed. Whole-genome
sequencing of at least 30× was performed across six sequencing centers using PCR-
free library preparation kits for TOPMed samples24. In most cases, all samples for a
given study were sequenced at the same center. Samples were excluded if estimated
contamination by verifyBamId was >3%{Jun, 2012 #278} or <95% of the genome
attained >10× coverage. The reads were centrally realigned at the TOPMed
Informatics Research Center (IRC) to human genome build GRCh38 at each center
using BWA-MEM56,57. Joint variant discovery was subsequently performed with
the ‘GotCloud’ pipeline by the IRC58. The variant calling software tools are under
active development; updated versions can be accessed at http://github.com/atks/vt,
http://github.com/hyunminkang/apigenome, and https://github.com/statgen/
topmed_variant_calling. Using sequencing quality metrics, a catalogue of
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previously discovered variants, and variants with Mendelian inconsistencies from
included families, variant-level quality controlled was performed using a support
vector machine algorithm. Sample-level quality control was performed by the
TOPMed IRC and Data Coordinating Center (DCC) to remove samples genotypic/
reported inconsistencies for pedigree and sex, and substantial discordance with
prior genome-wide array genotyping. Only variants and samples that passed
quality control were included in the call set.

One individual from duplicate pairs identified by the DCC was removed,
retaining the individual with lipid levels available when one did not have lipid
levels. If both individuals had lipid levels, one individual was randomly selected.
Individuals were excluded when their genotype determine sex did not match
phenotype reported sex (n= 6) and individuals <18 years old where excluded
(n= 865).

Blood lipid measurements and phenotypic modeling. Conventionally measured
fasting blood lipids, including total cholesterol, LDL-C, HDL-C, and triglycerides,
were included for analysis. Harmonization of the lipid values, lipid-lowering
medication status, and fasting status at lipid blood draw was performed by the
TOPMed Data Coordinating Center. LDL-C was either calculated by the Friede-
wald equation when triglycerides were <400 mg/dl or directly measured. Given the
average effect of lipid-lowering medicines, when lipid-lowering medicines (largely
statins) were present, total cholesterol was adjusted by dividing by 0.8 and LDL-C
by dividing by 0.7, as previously done2. Triglycerides were natural log transformed
for analysis. Standard deviation scaled inverse-normalized residuals adjusting for
age, age2, sex, the first 11 PCs of ancestry (as recommended by the TOPMed DCC),
as well as cohort-specific covariates (study site or known founder mutations),
where created within each study by self-reported race. Effect sizes are reported in
mg/dl or log(mg/dl) for TG.

Coronary heart disease and diabetes mellitus type 2 phenotyping. In the UK
Biobank, we used National Health System OPCS-4 (Office of Population, Census
and Surveys: Classification of Interventions and Procedures, version 4) codes
K40.1-40.4, K41.1-41.4, K45.1-45.5, K49.1-49.2, K49.8-49.9, K50.2, K75.1-75.4, or
K75.8-75.9 to indicate the presence of coronary heart disease. For diabetes mellitus
type 2 classification in the UK Biobank, we used the presence of OPCS-4 codes
E11.0-E11.9 or ICD9 code 1223.

Coronary heart disease (CHD) in HUNT was defined as individuals with self-
reported coronary artery bypass, angioplasty, or stent placement or with diagnosis
of myocardial infarction or chronic ischemic heart disease based on at least one
occurrence of the following codes: ICD9: 410, 411, 412, 414.0, 414.8, 414.9 or
ICD10: I21, I22, I23, I24, I25.1, I25.2, I25.5, I25.6, I25.7, I25.8, I25.9. Individuals
with angina were excluded from controls. Type II diabetes was defined based on at
least 1 occurrence of the following diagnosis codes: ICD9: 250.00, 250.02, 250.10,
250.12, 250.20, 250.22, 250.30, 250.32, 250.40, 250.42, 250.50, 250.52, 250.60,
250.62, 250.70, 250.72, 250.80, 250.82, 250.90, 250.92 ICD10: E11 or by diagnosis of
diabetes during HUNT clinical examinations (nonfasting serum or blood glucose >
11.1 mmol/L or Hemoglobin A1C > 6.5%).

In FinnGen, CHD cases were defined as subjects with either an underlying or
direct cause of death with ICD codes I20-I25, I46, R96 or R98 (ICD10) or 410–414
or 798 (ICD9/8), a hospital discharge diagnosis with ICD codes I200, I21-I22
(ICD10) or 410, 4110 (ICD9/8) and/or a coronary revascularization procedure
(coronary artery bypass surgery procedure or coronary angioplasty, or an entry of
invasive cardiac procedures in the country-wide register. Type 2 diabetes was
defined as subjects with an underlying or direct cause of death or as the main or
side diagnosis at hospital discharge with ICD codes E11 (ICD10)/250(0–9)A
(ICD9) with ICD codes E11 (ICD10); 250(0–9)A (ICD-8/9) or at least three
prescription medicine purchases with ATC class A10B, or as the specially
reimbursed medication for diabetes. Cases with both type 2 and type 1 diabetes
mellitus were excluded. In these definitions, the ICD10, ICD9 and ICD-8 below
refer to the Finnish versions of the ICD codes.

UK Biobank phenotype ascertainment. Our approach to phenome-wide asso-
ciation analyses are similar to prior efforts59,60. Briefly, a phenome-wide associa-
tion analysis was performed to evaluate the associations of X chromosome lipid-
associated variants with a broad range of clinical phenotypes61. A total of 80
manually curated traits were classified according to a combination of self-report
and billing codes, except for the following which were based on corresponding UK
Biobank data fields: death (40000), ever smoked (20610), BMI (23104), and per-
centage body fat (23099) (Supplementary Table 13). Lipid-associated variants were
associated with each trait, using linear regression for continuous traits and logistic
regression for dichotomous traits, adjusting for age, sex, array type, and the first
five PCs in the model.

For adiposity analyses, body composition values were obtained using
bioelectrical impedance measurement (Category 100009) with a Tanita BC418MA
body composition analyzer. Separate readings for fat percentage, mass, and free
mass as well as predicted muscle mass are generated for the whole body, trunk,
each leg, and each arm. In linear regression analyses, lipid-associated variants were
associated with fat mass (in kilograms) for each of the aforementioned components
adjusting for age, sex, and the first five PCs in the model. We also separately

analyzed the association of lipid-associated variants with abdominal subcutaneous
adipose fat (22408) and visceral adipose fat (22407) among unrelated UK Biobank
participants with abdominal MRI measures available62. Each of these phenotypes
was natural log-transformed and inverse rank standardized; linear regression
models were then adjusted for age, sex, array type, and the first 11 PCs.

For visual acuity analyses, we included data where baseline visual acuity was
available for at least one eye and genotyping data was available in the UKBB63.
Methods from visual acuity assessment in UKBB were previously described. Briefly,
visual acuity was measured using the logarithm of the minimum angle of resolution
(“LogMAR”) chart (Precision Vision, LaSalle, Illinois, USA) at a distance of four
meters. Using one eye at a time, participants were tasked with identifying the five
letters displayed at the top row; they proceeded to read letters from successive rows,
which had progressively smaller text. The test was terminated when two or more of
the five letters on a given row were read incorrectly. Visual acuity was computed
based on the number of successfully read rows; the visual acuity result was
provided by the UK Biobank as Field ID 5208 (left eye) and Field ID 5201 (right
eye). Data from the right eye was available in 60,421 women and 51,245 men, while
data from the left eye was available in 60,402 women and 51,280 men. Linear mixed
models from the lme4 package in R (v3.6.1) were used to estimate the association if
each of the three variants with visual acuity, adjusting for age, sex, the first five PCs
in the model, as well as a random effect accounting for which eye was tested (left or
right).

Single-variant association analyses. For discovery, each single variant on the X
chromosome with at least 20 copies of the minor allele was analyzed for association
with each adjusted blood lipid residual across all TOPMed samples with lipid levels
available (see Blood lipids measurements and phenotypic modeling) using a fast
linear mixed model with kinship adjustment (SAIGE-QT, version 0.29.4.464) since
a large proportion of TOPMed participants are related in ENCORE (https://encore.
sph.umich.edu) additionally adjusting for the first 11 PCs in the model. SAIGE-QT
was specifically used to maximize computational efficiency given hosting and
kinship precomputation by the TOPMed Informatics Research Core. Heterozygous
and homozygous women were coded as having 1 or 2 nonreference alleles,
respectively. Hemizygous males were coded as having two reference alleles. This
modeling is consistent with random X inactivation of one of two X chromosomes
in females yet consistent expression of the single X chromosome in males.

For SNPs with suggestive evidence of association in TOPMed (P < 1 × 10−6), we
sought replication in UKBB. For replication in UKBB unrelated individuals, we
performed linear regression associations using R version 3.6.0. Covariates included
age, age2, sex, the first 10 PCs in the model, and genotyping array.

For replication in HUNT, a cohort within a founder population, plasma lipids
were analyzed using efficient linear mixed models implemented by BOLT-LMM
v2.3.165 with covariates for sex, age, age2, batch, and principle components 1–4.
CAD was analyzed using SAIGE with birth year, batch, sex, and principle
components 1–4 as covariates.

Covariates included in the models of association for each contributing study
were based on study characteristics and recommendations from study
investigators. We took loci reaching a suggestive association with lipid levels (P <
1 × 10−6) in TOPMed onto replication in UKBB and HUNT. For replication, we
used a significance level of 0.002 (Bonferroni correction for 21 loci) that met a
suggestive level of association in TOPMed. We used a fixed effects meta-analysis to
combine the association results from TOPMed, UKBB, and HUNT. We set the
statistical significance for our meta-analysis to be alpha= 5.7 × 10−9 (0.05/2.2 M
variants/4 traits= 5.7 × 10−9), which is more stringent than a standard genome-
wide significance threshold of 5 × 10−8. Heterogeneity of effect sizes in the meta-
analysis was determined through Cochran’s Q and I2 is reported. Additionally, we
tested for the interaction between rs5985504-T and sex on log triglycerides
adjusting for the same covariates as the main analysis.

To determine the correlation of the effect sizes of variants on total cholesterol in
the chrXq23 locus and the effect sizes of these variants on CAD, T2D, and BMI, we
performed analysis of chrXq23 variation on these three outcomes adjusting for age,
age2, sex, genotyping array, and PCs in the UK Biobank, using the main effects
model assuming X inactivation. We correlated effect sizes of total
cholesterol–variants with effect sizes of variants on CAD, T2D, or BMI limiting to
total cholesterol–variants with a MAF > 0.05 and P < 0.05.

Expression quantitative trait analyses. We downloaded the v7 SNP gene asso-
ciation results in tissue-specific files from the GTEx portal (https://gtexportal.org/
home/datasets). We limited to six tissues that have been implicated in lipid biology
or CHD (Adipose_Subcutaneous, Small_Intestine_Terminal_Ileum, Adipose_-
Visceral_Omentum, Whole_Blood, Liver, Muscle_Skeletal) and looked at expres-
sion of eight genes within the ChrXq23 region (ACSL4, TMEM164, AMMECR1,
RTL9, CHRDL1, PAK3, CAPN6, DCX). We set our significance threshold to 0.001
(0.05/[6 tissues × 8 genes]). First, we determined eQTLs of our top association with
lipids. Second, we performed correlation of our lipid–variant associations with the
association of each of the eight genes expression on the variants using the gene
transcripts ± 100 KB. Lastly, we used the lmekin function in the R package kinship2
to run linear mixed effects models and predict the lipid–variant test statistic (Z=
beta/SE) from the expression–variant test statistic to adjust for the correlation
between the variants.
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Lipid subfractions association analyses. Concentrations of lipoprotein particles
were measured at LipoScience, Inc. (Raleigh, NC) using NMR spectroscopy on
plasma EDTA specimens. LipoScience has developed validated software for ana-
lysis of NMR measured LipoProfile spectra that uses an optimized deconvolution
algorithm to quantify lipoprotein subspecies66,67. MESA was measured with the
LipoProfile-III assay while FHS samples were measured with the LipoProfile-I
assay, which provides less accuracy for some measurements but is similar to
LipoProtein-III. We associated lipoprotein profiles with top associated SNPs within
up to 1,802 FHS and 4551 MESA participants adjusting for age, sex, and lipid-
lowering therapy.

For individuals who participated in ARIC study visit 4 (1996–1998), a
homogeneous assay method was used for the direct measurement of sdLDL-C in
plasma (sd-LDL-EX “Seiken”, Denka Seiken, Tokyo, Japan) on a Hitachi 917
automated chemistry analyzer68. We associated top associated SNPs with ARIC
participants adjusting for age, sex, lipid-lowering therapy, race, study center, and
the first 11 principal components of ancestry.

Rare variant association analyses. We performed the SKAT test to associate
aggregates of rare coding variants with blood lipid levels within TOPMed as
implemented by GENESIS v2.14.4 in the CHARGE Analysis Commons69,70. For
this gene-based test, high confidence loss-of-function (HC LOF by LOFTEE71) and
missense metaSVM72 damaging variants with MAF < 1% were collapsed into
regions based on the gene annotations generated by snpEff 4.3t (http://snpeff.
sourceforge.net/) using the GRCh38.86 database73.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Controlled access of the individual-level TOPMed data is available through dbGaP, and
the individual-level UK Biobank data are available upon application to the UK Biobank
(https://www.ukbiobank.ac.uk/). FinnGen summary-level data are fully freely available at
https://www.finngen.fi/en/access_results. Individual-level access to FinnGen and HUNT
cohorts may be obtained through reasonable request and suitable institutional review
board approvals. The dbGaP accessions for TOPMed cohorts are as follows:
Atherosclerosis Risk in Communities (ARIC) phs001211 and phs000280; Old Order
Amish phs000956 and phs000391; Mt Sinai BioMe Biobank phs001644 and phs000925;
Coronary Artery Risk Development in Young Adults (CARDIA) phs001612 and
phs000285; Cleveland Family Study (CFS) phs000954 and phs000284; Cardiovascular
Health Study (CHS) phs001368; Diabetes Heart Study (DHS) phs001412 and phs001012;
Framingham Heart Study (FHS) phs000974 and phs000007; Genetic Epidemiology
Network of Arteriopathy (GENOA) phs001345 and phs001238; Genetics of Lipid-
Lowering Drugs and Diet Network (GOLDN) phs001359 and phs000741; Genetic
Epidemiology Network of Salt Sensitivity (GenSalt) phs001217 and phs000784; Genetic
Studies of Atherosclerosis Risk (GeneSTAR) phs001218 and phs000375; Hispanic
Community Health Study—Study of Latinos (HCHS/SOL) phs001395 and phs000810;
Hypertension Genetic Epidemiology Network and Genetic Epidemiology Network of
Arteriopathy (HyperGEN) phs001293; Jackson Heart Study (JHS) phs000964 and
phs000286; Multi-Ethnic Study of Atherosclerosis (MESA) phs001416 and phs000209;
Massachusetts General Hospital Atrial Fibrillation Study (MGH_AF) phs001062 and
phs001001; San Antonio Family Study (SAFS) phs001215 and phs000462; Samoan
Adiposity Study phs000972 and phs000914; Taiwan Study of Hypertension using Rare
Variants (THRV) phs001387; Women’s Health Initiative (WHI) phs001237 and
phs000200. Source data are provided with this paper.

Code availability
The variant calling software tools are under active development; updated versions can be
accessed at http://github.com/atks/vt, http://github.com/hyunminkang/apigenome, and
https://github.com/statgen/topmed_variant_calling.
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