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ABSTRACT OF THESIS 

 

 
CHARACTERIZATION OF MODULATION AND COHERENCE IN 

SENSORIMOTOR RHYTHMS USING DIFFERENT 
ELECTROENCEPHALOGRAPHIC SIGNAL DERIVATIONS 

 

Electroencephalography (EEG) is a widely used technique for monitoring and 
analyzing brain activity in experimental, diagnostic, and therapeutic applications. Since 
EEG is sensitive to noise and artefact sources, referential signals at different locations can 
be combined in different ways to improve signal quality and better localize cortical activity. 
Four signal derivations were compared against referential EEG in terms of their ability to 
measure the alpha rhythm modulation (or reactivity) and spatial coherence associated with 
an eye closure task: a common average reference (CAR), a local average reference (LAR), 
a large Laplacian (LL), and a focal Laplacian (FL) estimated using a specialized electrode. 
Results showed significant differences in the alpha reactivity averaged across all electrodes 
between EEG derivations: the CAR showed significantly greater reactivity than all other 
derivations while the LL showed significantly lower reactivity compared to all other 
derivations. No significant differences in alpha reactivity were found between the 
referential EEG, LAR, and FL when averaged across all locations. LL and FL displayed a 
trend of increasing alpha reactivity from frontal to occipital regions while the CAR and 
LAR showed no such trend. The referential EEG showed a linear decrease in spatial 
coherence as distance increased while the FL showed an exponential decrease. Further, the 
referential EEG showed no change in spatial coherence related to eye closure while all 
other derivations showed a significant increase. The focal Laplacian improves detection of 
alpha reactivity and signal localization without the need for multiple electrodes. 

 
KEYWORDS: EEG, Tripolar EEG, Hilbert Transform, Spatial Filter, Mean Phase 

Coherence  
 
 
 
 

 

Stephen Roy Dundon 
(Name of Student) 

 
6/16/2021 

            Date 



 
 

 
 
 
 
 
 
 
 
 
 
 

CHARACTERIZATION OF MODULATION AND COHERENCE IN 
SENSORIMOTOR RHYTHMS USING DIFFERENT 

ELECTROENCEPHALOGRAPHIC SIGNAL DERIVATIONS 
 
 

By 
Stephen Roy Dundon 

 

 

 
 
 
 
 
 
 
 
 

Dr. Sridhar Sunderam 
Director of Thesis 

 
Dr. Sridhar Sunderam 

Director of Graduate Studies 
 

6/16/2021 
            Date 

 
 
 
 
 

 



iii 
 

 
ACKNOWLEDGMENTS 

Though the following thesis is an individual work it benefited from, and likely 

would not exist without, the insights, direction, and support from several people. First, my 

advisor, Dr. Sridhar Sunderam, for offering me the opportunity to do this research and his 

tireless efforts to help me clarify my work. His dedication to his scholarship and students 

is an inspiration. In addition, I would like to thank Dr. Amir al-Bakri and Chase Haddix, 

for their support and instruction when I was first starting out in EEG research. Finally, in 

addition to the technical assistance of those above I would like to thank my family and 

friends for believing in me even when I didn’t. 



iv 
 

 
TABLE OF CONTENTS 

 

ACKNOWLEDGMENTS .......................................................................................................................... iii 

LIST OF TABLES ....................................................................................................................................... vi 

 Introduction ............................................................................................................. 1 

1.1 Motivation ............................................................................................................................... 1 

1.2 Overview of Approach ............................................................................................................. 2 

1.3 Background ............................................................................................................................. 2 
1.3.1 EEG and Neurophysiology ............................................................................................ 2 
1.3.2 Alpha Waves .................................................................................................................. 3 

 Methods .................................................................................................................... 4 

2.1 Overview .................................................................................................................................. 4 

2.2 Data Collection ....................................................................................................................... 4 
2.2.1 Subjects .......................................................................................................................... 4 
2.2.2 Tripolar Concentric Ring Electrodes ............................................................................. 4 
2.2.3 Tasks .............................................................................................................................. 5 

2.3 Signal Analysis ........................................................................................................................ 7 
2.3.1 Overview ........................................................................................................................ 8 
2.3.2 Common Average Reference ......................................................................................... 8 
2.3.3 Local Average Reference ............................................................................................... 9 
2.3.4 Laplacian ........................................................................................................................ 9 
2.3.5 Electrode Holders ........................................................................................................ 14 

2.4 Amplitude of event-related alpha modulation in terms of signal power ................................ 17 

2.5 Spatial localization measured through signal coherence ...................................................... 18 

 Results .................................................................................................................... 20 

3.1 Effect of Impedance on Powerline Noise and Alpha Detection ............................................. 20 

3.2 3.2 Effect of Spatial Filtering on the Strength of Alpha Reactivity ....................................... 22 

3.3 Effect of Spatial Filtering on Alpha Band EEG Coherence Between Regions ...................... 25 

 Discussion ............................................................................................................... 29 

4.1 Overview ................................................................................................................................ 29 

4.2 Impedance vs Preparation Time ............................................................................................ 29 

4.3 Alpha Reactivity to Eye closure ............................................................................................. 29 

4.4 Relation between MPC and Electrode Placement ................................................................. 31 

4.5 Conclusion ............................................................................................................................. 32 

4.6 Future directions ................................................................................................................... 32 



v 
 

Bibliography ................................................................................................................................................ 33 

VITA ............................................................................................................................................................. 35 

 

 
 

 

 

 

 



vi 
 

LIST OF TABLES 

Table 1 Summary of statistics for the signal-impedance comparisons. ............................ 22 



vii 
 

LIST OF FIGURES 

Figure 2.1 Subject seated with cap and electrodes on. ....................................................... 7 

Figure 2.2 Close up of electrodes in the cap ....................................................................... 7 

Figure 2.3 Formula for calculating the voltage for a given location using the CAR method.
............................................................................................................................................. 9 

Figure 2.4 LAR formula for the F3 electrode ..................................................................... 9 

Figure 2.5 The Taylor series expansion for calculating the Laplacian for a location on a 2 
dimensional grid................................................................................................................ 10 

Figure 2.6 Example of a center electrode ......................................................................... 11 

Figure 2.7 Simplified formula for the Laplacian of a center electrode ............................. 11 

Figure 2.8 Example of an edge electrode .......................................................................... 12 

Figure 2.9 Simplified formula for the Laplacian for an edge electrode ............................ 12 

Figure 2.10 Example of a corner electrode ....................................................................... 13 

Figure 2.11 Simplified formula for the Laplacian of a corner electrode .......................... 13 

Figure 2.12- EEG signal derivations. ................................................................................ 14 

Figure 2.13 Electrode holder assembly. ............................................................................ 15 

Figure 2.14 Electrode holder model seen from below. ..................................................... 16 

Figure 2.15 A TCRE in the holder .................................................................................... 16 

Figure 2.16 Formula for the calculation of mean phase coherence. ................................. 18 

Figure 2.17 Proportional distances between electrodes in the montage. .......................... 19 

Figure 3.1 Relation between the powerline noise in the signal and impedance ............... 21 

Figure 3.2 Relation between the alpha power in the signal and impedance ..................... 21 

Figure 3.3 The average change in the magnitude of the Hilbert envelope of the alpha band 
in response to eye closure. ................................................................................................ 23 



viii 
 

Figure 3.4 The distribution of the alpha reactivity of each region.................................... 24 

Figure 3.5 The mean difference between the alpha reactivity of compared regions. ....... 24 

Figure 3.6 Mean phase coherence reactivity. .................................................................... 26 

Figure 3.7 MPC responses divided by the mean of the first 3 seconds ............................ 26 

Figure 3.8 MPC vs Distance between electrodes for each of the signal derivations. ....... 27 

Figure 3.9 An illistative example of the MPC compared to distance ............................... 28 

Figure 4.1 When the common average has significantly greater power ........................... 30 

 
 
 
 
 
 



1 
 

  INTRODUCTION 

1.1 Motivation 

Epilepsy is a seizure disorder that affects nearly 1% of the world’s population 

(Mormann, Lehnertz, David, & Elger, 2000). Commonly held theories of the underlying 

pathology include abnormal neuronal synchronization that drives seizure propagation 

across the brain (Bragin, Engel Jr, Wilson, Fried, & Mathern, 1999). 

Electroencephalography (EEG) is a common tool for the diagnosis of various forms of 

epilepsy (Bartolomei et al., 1999). When seizures cannot be controlled through 

medication, areas of the brain believed to be epileptogenic zones may be surgically 

removed if they do not interfere with normal functions like speech and movement. 

Identification of these zones is done through analysis of intracranial EEG (iEEG) using 

electrodes placed directly on the cortex or inserted into deeper structures (Mormann et al., 

2000; Schevon et al., 2007). Since placing an iEEG is an invasive procedure it is desirable 

to place the electrodes in as few locations as is necessary. A first approximate location 

may be determined through surface EEG and an improved localization of activity from the 

scalp is of great value. 

EEG is usually obtained by measuring the electrical potential between each 

individual sensing electrode and a reference electrode affixed to a different location on the 

scalp with conductive gel; this is termed referential EEG measurement (Teplan, 2002). 

However, signal quality is critically dependent on preparing the scalp in a way that lowers 

the impedance between the sensing electrode and the reference as much as possible (Li, 

Wang, & Duan, 2017). Furthermore, since EEG is susceptible to many noise and artefact 
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sources, multiple referential signals are often combined in different ways to improve the 

signal-to-noise ratio and better localize cortical activity.].  

1.2 Overview of Approach 

This work is an attempt to determine how best to quantify and localize sensorimotor 

rhythm dynamics from the EEG. We compare four spatial filtering methods that combine 

multiple referential EEG (eEEG) signals against eEEG alone in terms of their ability to 

measure “alpha reactivity” – that is, the emergence of 8-13 Hz alpha oscillations in the 

EEG upon eye closure – in terms of their power and spatial synchrony measured using: 1. 

A common average reference (CAR); 2. A local average reference (LAR); 3. A large 

Laplacian approximation (LL), and a focal Laplacian (FL) estimated using a tripolar 

concentric ring electrode (TCRE). Further, a custom designed electrode cap was developed 

to make subject preparation faster and more convenient. The design is evaluated based on 

the quality of the signals in terms of electrode impedance and signal-to-noise ratio 

estimates gathered during this study. 

1.3 Background 

1.3.1 EEG and Neurophysiology  

Electroencephalography (EEG) is a widely used technique for monitoring and 

analyzing brain activity in experimental, diagnostic, and therapeutic applications 

(Collinger et al., 2013; Guger et al., 2017; Luu, Nakagome, He, & Contreras-Vidal, 2017). 

Excitatory and inhibitory activity at the dendrites of large columns of neurons near the 

cortical surface causes changes in local electrical potential through the flow of charged 
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ions across the membrane. The human brain has an average of 104  neurons per mm3 

(Teplan, 2002) while the average scalp EEG electrode covers an area of approximately 1.6 

cm2 (Lopez-Gordo, Sanchez-Morillo, & Valle, 2014). Because of this mismatch in scale, 

as well as the signal distortion that come from passing through the tissues between the 

electrode and the cortex, the spatial resolution of the EEG is very poor. 

 Further complicating analysis of the EEG is the contamination of both subject-

induced and environmental artefacts. The changes in voltage being recorded are in the 

microvolt range (Teplan, 2002), small enough to be obscured by powerline interference 

(60 Hz in America, 50 Hz in Europe and Asia). Subject motion or muscle activation from 

activities such as blinking or swallowing can also cause changes in the recorded voltages 

and distort EEG recordings.  

1.3.2 Alpha Waves 

 The alpha rhythm, an 8-13 Hz oscillation in average voltage, is a commonly used 

for studies in brain dynamics as well as for signal quality evaluation because it is both easy 

to identify on sight and easily induced. When the eyes close there is a dramatic increase in 

the power of the alpha band, particularly in the visual cortex in the occipital region. This 

effect, known as the Berger effect (Kirschfeld, 2005), was theorized to be a resumption of 

an idling rhythm induced by the lack of input (Toscani, Marzi, Righi, Viggiano, & Baldassi, 

2010). However, other studies suggest that the change in alpha is correlated with changes 

of attention to visual stimuli rather than input itself (Clayton, Yeung, & Cohen Kadosh, 

2018). 
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 METHODS 

2.1 Overview 

The purpose of this study is to compare the abilities of different spatial filtering 

techniques to characterize and localize features of the EEG. 11 subjects were recruited to 

the study, which was approved by the IRB at the University of Kentucky. After obtaining 

informed consent, subjects were seated in front of a computer display and led through a 

sequence of repetitive actions that included repetitive eye closure and hand contraction. 

Specialized electrodes were used to simultaneously record referential and Laplacian scalp 

potentials at 12 locations on the scalp during this protocol. The data were analyzed using 

five different spatial filters to characterize the relative changes in alpha rhythm power and 

spatial coherence during the eye closure and motor tasks. 

2.2 Data Collection 

2.2.1 Subjects 

A total of 11 healthy individuals (mean age 25.5 ± 4.7 years) were recruited from 

the student body at the University of Kentucky and the general population from 18-32 years 

of age, with no restrictions on dominant hand or ethnic/minority status. 

2.2.2 Tripolar Concentric Ring Electrodes 

This study makes use of a new kind of electrode called a tripolar concentric ring 

electrode (TCRE). The outer ring of the TCRE measures voltages the same as a 

conventional gold cup electrode which allows simultaneous recording of an EEG and 

calculating the Laplacian of the central disk. As no other distant electrodes are needed this 
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single electrode offers a more focal Laplacian estimate independent of any other recordings 

(Alzahrani, 2019). This focal Laplacian has been shown to offer improved spatial 

resolution over other methods of estimating the Laplacian (Liu, Makeyev, & Besio, 2020). 

However, application of electrodes individually is a time-consuming process. 

Electrode placement must be precisely marked prior to scrubbing the scalp and attaching 

the electrodes with an adhesive, conductive paste. There is a limit on how long subjects 

can be expected to sit for studies in a laboratory setting and the more time that is required 

to set up the equipment the less time there is for actual data collection. It is therefore 

common practice in laboratory setting to embed electrodes into a cap that will hold all the 

electrodes in place simultaneously, requiring only a brief time spent measuring to align the 

cap and inject a conductive gel. To this end a set of electrode holders were developed for 

easier electrode placement and scalp preparation. 

2.2.3 Tasks 

Brief EEG recordings were made using a commercially available triconcentric ring 

electrode (TCRE) system (t-Interface 20, CREmedical, Kingston, RI, USA) and a biosignal 

amplifier (g.HIamp 256 biosignal amplifier, g.tec) from subjects who were instructed to 

engage in an alpha modulation task followed by a movement task. For the alpha modulation 

task subjects were instructed to alternate between opening and closing their eyes for 30 

seconds five times in succession. This sequence was repeated twice for each subject 

yielding a total of 10 periods with the eyes closed and 10 with the eyes open for each 

subject.  
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Subjects were seated comfortably during the tasks in front of a computer monitor. 

Gold cup electrodes were attached using Ten20 conductive electrode gel to the right and 

left mastoids to serve as reference and ground, respectively. The impedance between the 

ground and reference electrodes was verified to be below 3 kΩ. Impedance values were 

measured using a checktrode (1089 mk III, UFI, California). The subject then put on the 

elastic cap with 3D-printed holders for the TCREs embedded in it at 12 scalp locations (F3, 

Fz, F4, C3, Cz, C4, P3, Pz, P4, PO7, POz, and PO8) according to the International 10-20 

system of electrode placement. The cap was centered on the subject’s scalp so that Cz was 

located midway between the nasion and inion and the right and left tragus. The scalp was 

then abraded to reduce skin impedance using a cotton swab and Nuprep gel. Using a plastic 

syringe, TD-246 conductive paste (Florida Research Instruments) was applied to each 

recording location on the scalp and surface of the corresponding TCRE to ensure good 

contact. Impedances between each TCREs and the reference electrode were measured 

using the checktrode and ranged from 6.0 to 24.4 kΩ with a median value of 10.5 kΩ over 

all recordings. The TCREs were connected to the t-interface, with a gain of ~187x, which 

was then connected to the g.tech biosignal amplifier through a g.HIamp headbox. Signals 

were passed through a 0.1-100 Hz Butterworth bandpass filter prior to sampling at 256 Hz. 
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Figure 2.1 Subject seated with cap and electrodes on. 

 

Figure 2.2 Close up of electrodes in the cap 

2.3 Signal Analysis 
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2.3.1 Overview 

The EEG is sensitive to artefacts and signal quality is critical to avoid coming to 

the wrong conclusion in any analysis. The reading at the reference electrode, placed at an 

electrically inactive location on the body such as the mastoid or earlobe, is removed from 

the sensing electrode placed at the location of interest at which neural activity is to be 

examined. Any electrical signal present in the earlobe can be safely assumed to not be 

related to activity in the brain.  

Five different signals were derived for each TCRE lead: 1. The EEG potential 

(eEEG) measured from the outer ring of the TCRE (this is equivalent to conventional 

referential EEG); 2. A common average referenced signal (CAR) obtained by subtracting 

the mean over all twelve eEEG signals from the sensing electrode in the location of interest; 

3. A local average reference (LAR) using the same method as the CAR but using the mean 

of each electrode and its nearest neighbors instead of all 12; 4. A  local Laplacian potential 

(LL) estimated using finite difference approximations; and 5.  A focal Laplacian (FL) 

estimated in hardware by combining the potentials measured at the three concentric rings 

of the TCRE (Besio, Koka, Aakula, & Dai, 2006). 

2.3.2 Common Average Reference 

Rather than use a single reference location, the average of all the electrodes is often 

used. This derivation, known as a common average reference, has the effect of removing 

common mode artefacts (Ludwig et al., 2009)– i.e., artefacts that contaminate all electrodes 

– and is particularly useful in noisy recordings where small variations are expected(Essl & 
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Rappelsberger, 1998). The voltage for the CAR derivation for a given electrode is 

calculated by subtracting the mean voltage of all the electrodes in the montage from the 

electrode being referenced. 

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑉𝑉𝑘𝑘 −�
𝑉𝑉𝑖𝑖
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

 

Figure 2.3 Formula for calculating the voltage for a given location using the CAR method. 
In this formula Vk is the voltage of the electrode for the location being considered and n is 
the total number of electrodes in the montage. 

2.3.3 Local Average Reference 

For the LAR derivation the method is similar to the CAR but with a subset of the 

electrodes. The mean of the sensing electrode’s voltage and the voltages of 4 nearby 

electrodes is subtracted from the voltage of the sensing electrode. The 4 nearby electrodes 

were chosen in keeping with the electrodes used in the Laplacian derivation. 

𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑉𝑉𝐹𝐹3 −
𝑉𝑉𝐹𝐹3 + 𝑉𝑉𝐹𝐹𝐹𝐹 + 𝑉𝑉𝐹𝐹4 + 𝑉𝑉𝐶𝐶3 + 𝑉𝑉𝑃𝑃3

5
  

Figure 2.4 LAR formula for the F3 electrode 

 

2.3.4 Laplacian 

The Laplacian calculates the divergence of the gradient of a function in space. For 

an EEG this means looking at the overall distribution of voltages to find the current being 
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injected at a particular location. This can be estimated in the EEG using the finite difference 

method. 

 The finite difference method for approximating the Laplacian is based on a Taylor 

series expansion of the spatial potential function and follows the approach developed in 

(Carvalhaes & de Barros, 2015). For a bivariate function, as is needed for a two 

dimensional grid of electrodes, partial derivatives are used for the expansion. 

𝑉𝑉(𝑎𝑎 + ℎ1, 𝑏𝑏 + ℎ2)

= 𝑉𝑉(𝑎𝑎, 𝑏𝑏) + �
𝜕𝜕𝜕𝜕(𝑎𝑎, 𝑏𝑏)
𝜕𝜕𝜕𝜕

ℎ1 +
𝜕𝜕𝜕𝜕(𝑎𝑎, 𝑏𝑏)
𝜕𝜕𝜕𝜕

ℎ2�    

+
1
2
�
𝜕𝜕2𝑉𝑉(𝑎𝑎, 𝑏𝑏)
𝜕𝜕2𝑥𝑥

ℎ12 +
𝜕𝜕2𝑉𝑉(𝑎𝑎, 𝑏𝑏)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

ℎ1ℎ2 +
𝜕𝜕2𝑉𝑉(𝑎𝑎, 𝑏𝑏)
𝜕𝜕2𝑦𝑦

ℎ22�

+
1
6
�
𝜕𝜕3𝑉𝑉(𝑎𝑎, 𝑏𝑏)
𝜕𝜕3𝑥𝑥

ℎ13 +
𝜕𝜕3𝑉𝑉(𝑎𝑎, 𝑏𝑏)
𝜕𝜕2𝑥𝑥𝑥𝑥𝑥𝑥

ℎ12ℎ2 +
𝜕𝜕3𝑉𝑉(𝑎𝑎, 𝑏𝑏)
𝜕𝜕𝜕𝜕𝜕𝜕2𝑦𝑦

ℎ1ℎ22 +
𝜕𝜕3𝑉𝑉(𝑎𝑎, 𝑏𝑏)
𝜕𝜕3𝑦𝑦

ℎ23�

+ ⋯ 

Figure 2.5 The Taylor series expansion for calculating the Laplacian for a location on a 2 
dimensional grid 

h1 and h2 are incremental distances along x and y directions. Note that we have 

made the simplifying assumption of a two-dimensional grid of electrodes with no effect of 

curvature of the scalp. In the montage used, we have 3 conditions for which we will need 

to simplify the equation above: 1. Center: where the electrode has 4 electrodes surrounding 

it in the anteroposterior and lateral directions (a “plus” neighborhood); 2. Edge: where there 

are 3 immediate neighboring electrodes; and 3. Corner: where there are only two 
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immediate electrode neighbors. These approximations have been described and validated 

in the literature (Carvalhaes & de Barros, 2015). 

 

Figure 2.6 Example of a center electrode 

𝐿𝐿𝐿𝐿𝐿𝐿�𝑉𝑉(𝑎𝑎, 𝑏𝑏)� ≈
𝑉𝑉(𝑎𝑎 + ℎ, 𝑏𝑏) + 𝑉𝑉(𝑎𝑎 − ℎ, 𝑏𝑏) + 𝑉𝑉(𝑎𝑎, 𝑏𝑏 + ℎ) + 𝑉𝑉(𝑎𝑎, 𝑏𝑏 − ℎ) − 4𝑉𝑉(𝑎𝑎, 𝑏𝑏)

ℎ2
 

Figure 2.7 Simplified formula for the Laplacian of a center electrode 
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Figure 2.8 Example of an edge electrode 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑉𝑉(0, 𝑏𝑏)) ≈
𝑉𝑉(2ℎ, 𝑏𝑏) − 2𝑉𝑉(ℎ, 𝑏𝑏) + 𝑉𝑉(0, 𝑏𝑏 + ℎ) + 𝑉𝑉(0, 𝑏𝑏 − ℎ) − 𝑉𝑉(0, 𝑏𝑏)

ℎ2
 

Figure 2.9 Simplified formula for the Laplacian for an edge electrode 
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Figure 2.10 Example of a corner electrode 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑉𝑉(0, 𝑏𝑏)) ≈
𝑉𝑉(2ℎ, 𝑏𝑏) − 2𝑉𝑉(ℎ, 𝑏𝑏) + 𝑉𝑉(0, 𝑏𝑏 − 2ℎ) − 2𝑉𝑉(0, 𝑏𝑏 − ℎ) + 2𝑉𝑉(0, 𝑏𝑏)

ℎ2
 

Figure 2.11 Simplified formula for the Laplacian of a corner electrode 

 



14 
 

 

Figure 2.12- EEG signal derivations.  All signals were normalized for visual comparison.  

2.3.5 Electrode Holders 

Custom electrode holders were designed using a ring and cylinder design. Holders 

were 3D-printed from thermoplastic polylactic acid (PLA) and thermoplastic polyurethane 

(TPU). The ring portion of the holders were inserted into an elastic cap at the desired 10-

20 locations. This cap was then stretched over the subject’s scalp and centered. The 

opening in the rings was large enough to access the scalp for cleaning with Nuprep and a 

cotton swab. TD-246 was also applied through this opening. Electrodes were inserted into 

the TPU cylinder and held firmly in place with a .5 mm thick lip. The cylinder was then 

inserted into the ring and twisted clockwise to lock the cylinder into the ring. 
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Figure 2.13 Electrode holder assembly. Red arrows indicate direction of motion for 
insertion. 
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Figure 2.14 Electrode holder model seen from below. The thin lip around the edge is 
flexible enough to allow the electrode to be inserted. The holder is flexible and deforms 
slightly when the electrode is inserted, which allows the electrode to be held firmly in place 

 

Figure 2.15 A TCRE in the holder 

The higher impedance values are known to reduce the amplitude of an EEG signal 

reducing the signal to noise ratio (SNR). The generally accepted maximum value of 

impedance with TCRE’s is 10 kΩ (Besio et al., 2006; Besio & Prasad, 2006; Koka & Besio, 

2007; Mathewson, Harrison, & Kizuk, 2017), slightly lower than the mean impedance 

value recorded in this experiment, though some say up to 20 kΩ is acceptable (Lopez-

Gordo et al., 2014). To evaluate the effect that higher impedance has on this recording 
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setup two comparisons were made. First, the percentage of the signal that was powerline 

noise was calculated taking the power of the powerline band (58-62 Hz) and dividing it by 

the total power of the signal. This percentage was then compared to the measured 

impedance using the Pearson correlation coefficient. This was repeated for the five signal 

derivations to be analyzed in this study. Second, as we are primarily looking at the alpha 

band in this study, we also looked for any differences in the percentage of the signal in the 

alpha band. The power of the alpha band over the entire recording was divided by the total 

power of the recorded signal after using a 4th order Butterworth band stop digital filter to 

remove the powerline noise. This alpha percentage was then also compared to impedance 

for all derivations using the Pearson correlation coefficient.  

2.4 Amplitude of event-related alpha modulation in terms of signal power 

Each of the four signals thus derived were then filtered into the alpha band (8-13 Hz) 

using a 4th order Butterworth digital filter applied in both directions to recover phase and 

the envelope of the Hilbert transform calculated. The magnitude of the Hilbert envelope, a 

measure of the instantaneous power of a signal (Benitez, Gaydecki, Zaidi, & Fitzpatrick, 

2001; Johansson, 1999), was further lowpass-filtered down to 1 Hz to reduce noise 

fluctuation and then scaled by the mean value in the 3-second period immediately before 

eye closure. The average value of the scaled envelope in the 10-second period after eye 

closure was used as an estimate of alpha reactivity. The alpha reactivity produced by the 

five signal derivations were compared using repeated measures analysis of variance 

(rmANOVA) and post hoc analysis using Tukey’s honest significant difference test 

(Tukey’s HSD).  
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2.5 Spatial localization measured through signal coherence 

Using the phase angle calculated with the Hilbert transform mean phase coherence 

(MPC), a measure of phase synchrony, was used to identify mutual interference between 

the signals generated in different regions. 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
� |𝑒𝑒𝑗𝑗(𝛷𝛷𝑖𝑖1−𝛷𝛷𝑖𝑖2)
𝑁𝑁

𝑖𝑖=1

| 

Figure 2.16 Formula for the calculation of mean phase coherence. Φ is the instantaneous 
phase angle calculated by the Hilbert transform. 

For each of the derived signals the MPC of each 30 second window of eye closure was 

calculated for each of the 66 possible unique electrode pairs using the Hilbert phase angle. 

The resulting sets of MPC were compared to the distance between the electrodes.  

 Distance between electrodes was calculated assuming a standardized distance 

based on the 10-20 method of electrode placement. The distance between neighboring 

electrodes, such as Pz and POz or Cz and C1, is assumed to be 1. The PO electrodes are 

far enough back on the scalp that this assumption no longer appears to be true so electrodes 

PO7 and PO8 were selected as the closest option to keep a rectangular montage. 
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Figure 2.17 Proportional distances between electrodes in the montage.  Most are two 
increments apart but the distance between P and PO is only 1. These electrodes were chosen 
to keep the montage as rectangular as possible for LL calculations. 

To identify any response in MPC related to alpha modulation the MPC for each of the 

derived signals was again calculated but in a three second moving window advancing with 

a one quarter second increment. The mean MPC for the ten seconds post eye closure was 

divided by the mean MPC for the three seconds preceding eye closure and compared using 

an rmANOVA and Tukey’s HSD. 
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 RESULTS 

3.1 Effect of Impedance on Powerline Noise and Alpha Detection 

The impedance at an electrode did not have a significant impact on the signal-to-

noise ratio of the EEG recorded from it. The powerline noise, estimated here as the average 

percent of the signal power in the 58-62 Hz band, is shown to be more impacted by the 

signal derivation applied than by the impedance. None of the signal derivations show a 

meaningful correlation between line noise and electrode impedance (r2 < 0.035). However, 

there was considerable variation in the powerline noise depending on which signal 

derivation was used. The FL shows lower mean powerline noise of 35.42%, less than half 

that of CAR which was the second lowest at 71.20%. 

The percentage of the power in the alpha band was also shown to not be correlated 

with impedance. In this case the FL and CAR methods showed greater percentage of alpha 

in their signals, but no signal derivations showed any correlation between alpha and 

impedance (r2< 0.057). 
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Figure 3.1 Relation between the powerline noise in the signal and impedance of the 
electrode for each derivation. Most of the signals have very high line noise, which does 
partially obscure the underlying signals without a notch filter, but notice this is not the case 
for the FL. 

 

Figure 3.2 Relation between the alpha power in the signal and impedance  of the electrode 
for each derivation. These percentages are after a notch filter has remove the powerline 
noise. 
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Table 1 Summary of statistics for the signal-impedance comparisons. 

Derivation Mean % powerline noise r2 Mean % alpha r2 

eEEG 74.15 0.0044 9.25 0.024 

CAR 71.20 0.0056 13.16 0.057 

LAR 80.81 0.035 7.59 0.057 

LL 79.15 0.0014 7.49 0.064 

FL 35.42 0.00027 18.06 0.0035 

3.2 3.2 Effect of Spatial Filtering on the Strength of Alpha Reactivity 

 Averaging the alpha reactivity of the derived signals across all subjects and 

channels shows significant (p<.05) differences. The CAR derivation showed significantly 

greater alpha reactivity than any other method while the eEEG, LAR, and FL were all 

significantly (p<.05) more reactive than the LL.  

Comparing the differences in alpha reactivity between regions (Frontal, Central, 

Parietal, and Parietal-Occipital) reveals a general trend of increased alpha reactivity as the 

electrodes move from the anterior to the posterior of the of the scalp. This difference is 

most pronounced in the LL derivation with a clear difference between the anterior (F and 

C) versus posterior (P and PO). Further, the CAR derivation showed greater alpha 

reactivity in all regions compared to the other methods. 

 Comparing the mean differences between regions clarified the general trend of 

alpha reactivity increasing from anterior to posterior regions. The LL shows this gradient 

most clearly with each region showing significantly (p<.05) greater reactivity than the 
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preceding region. Both the FL and eEEG also show this trend though not perfectly; the C 

electrodes registered as slightly, though not significantly, lower in reactivity than the F 

electrodes in both derivations and the eEEG only shows significant difference between the 

anterior regions (F and C) and the posterior regions (P and PO). The CAR and LAR 

however did not follow this trend with the C region registering as the least reactive region.

 

Figure 3.3 The average change in the magnitude of the Hilbert envelope of the alpha band 
in response to eye closure. Each signal is scaled by dividing the signal by the mean of the 
first 3 seconds.  
*indicates significantly (p<.05) greater alpha reactivity than all other derivations. 
** indicates significantly (p<.05) lower alpha reactivity than all other derivations 
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Figure 3.4 The distribution of the alpha reactivity of each region. The grey line indicates 
the overall mean alpha reactivity of the derivation. 

 

Figure 3.5 The mean difference between the alpha reactivity of compared regions.  A * 
indicates significance with p <0.05 
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3.3 Effect of Spatial Filtering on Alpha Band EEG Coherence Between Regions  

 MPC is greatly affected by spatial derivation. The eEEG is shown to have 

significantly higher MPC than any other derivation. Further, MPC can be seen to respond 

to eye closure. The eEEG was the only derivation to not have a change in MPC in response 

to eye closure. The CAR derivation had the largest change in MPC in response to eye 

closure in both absolute and relative terms. 

Distance between electrodes is shown to influence MPC. The eEEG is shown to 

have a linearly decreasing MPC as distance between electrodes increases. In the CAR, 

LAR, and LL derivations there is no relation between MPC and distance. In the FL we see 

a sharp decrease in the MPC at first before the trend levels off. 
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Figure 3.6 Mean phase coherence reactivity.  The eEEG has the highest MPC and does not 
change significantly in response to eye closer. All other derivations show a significant 
(p<.05) increases in MPC when the eyes close. 

 

Figure 3.7 MPC responses divided by the mean of the first 3 seconds . This shows the CAR 
has a significantly (p<.05) greater response than any other dervation. 
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Figure 3.8 MPC vs Distance between electrodes for each of the signal derivations. The 
eEEG shows a relatively steady decrease in MPC as distance increases. There is a slight 
“stair step” like appearance to the values but that is not correlated with the difference 
between the distances observed. The FL shows a pronounced decrease in MPC over the 
first few comparisons before leveling out to a consistently low MPC.  
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Figure 3.9 An illistative example of the MPC compared to distance (Martínez-Cagigal, 
2021). These results are for the F3 electrode but they are typical. The F3 electrode has an 
MPC of 1 in all cases because the signal is being compared to itself.Notice the CAR has a 
band of low MPC in the middle before it increases again.The eEEG has High over all MPC 
as well a steady decrease while the FL has a sharper decline. 
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 DISCUSSION 

4.1 Overview  

This work demonstrates the variability of signal characteristics depending on the 

signal derivation used. When considering signal localization the FL, through the use of 

TCREs, offers an improved ability to detect gradations in alpha reactivity and more focal 

signals as demonstrated by the rapid decay of MPC with increasing distance between 

electrodes. 

4.2 Impedance vs Preparation Time 

The variation in signal quality was not shown to be correlated with impedance in 

the ranges tested. Combined with improved set up times from the use of the cap the 

electrode cap as designed can be a useful tool to improve set up times without reducing 

signal quality. Further, the FL showed far less 60 Hz artefact than any other filtering 

method while the CAR method showed far more. This indicates that even with greater 

impedance values the use of TCREs can offer reduced signal noise compared to other 

filtering methods.  

4.3 Alpha Reactivity to Eye closure 

The simplicity of the CAR operation, in which you take the average of all available 

EEG signals and subtract that from each one, makes it an attractive choice for a spatial 

filter. However, it works on the assumption that common mode artefacts affect all channels 

similarly. By taking the average the individual variations are smoothed over and the 

common mode signal is emphasized and can be removed. However, if we assume the alpha 



30 
 

rhythm is mainly concentrated in the posterior regions of the cortex the CAR would induce 

a “false” alpha rhythm in the anterior regions by subtraction. This “false” alpha rhythm 

would be phase shifted by 180 degrees but would have more alpha power, and possibly 

reactivity, than it should. Therefore, the CAR should be used with caution and examined 

for possible skewing. 

 

Figure 4.1 When the common average has significantly greater power in a particular 
bandwidth than a particular EEG signal subtracting the common average can cause an 
artificial increase in the power of that bandwidth. This set of signals shows some channels 
(F3, Fz, and F4 particularly between 110 s and 111 s) where the common average has a 
stronger alpha rhythm than the original EEG and has therefore induced a phase shifted 
alpha rhythm into it when it is subtracted out. Though not conclusive, this raises the 
possibility that the alpha reactivity in the CAR derivation is an artefact from high alpha 
reactivity in the posterior regions. More analysis is needed to conclude whether this 
artificial increase in alpha power is common enough and spatially focused enough to skew 
the results. 

Though the LL had the lowest average alpha reactivity it had the highest spatial 

variation. In figure 15 the mean alpha reactivity progressively increases as we go from 
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anterior to posterior locations on the scalp, and so does the difference in the means. As 

alpha modulation is expected to be greatest in the posterior regions (Cantero, Atienza, & 

Salas, 2002) this gradient showed the LL derivation to have better spatial resolution in 

detecting alpha reactivity. The FL was nearly as selective as the LL only failing to identify 

a significant difference between the F and C regions. 

4.4 Relation between MPC and Electrode Placement  

Using MPC as a measure of spatial correlation in neural activity between locations 

on the cortex allows us to study signal localization by measuring changes in MPC as a 

function of the distance between the electrodes. If we assume that spatially distant locations 

are less likely to be connected (except through volume conduction) we expect MPC to 

decrease with distance. Therefore, the more rapidly the MPC decays with distance the 

better the spatial filter is deemed at localizing the signal. 

 This is shown clearly in the eEEG data, as the distance between electrodes increase 

there is a linear decrease in the MPC. In the FL however there is an exponential decrease 

showing that MPC drops quickly to a low value and then levels off once the electrodes are 

farther than adjacent in the montage used here (see figure 10). This suggests that the FL is 

better at filtering common mode artefact. The CAR, LAR, and LL all did not decrease in 

MPC with distance.  

 Phase coherence is often used to study coupling of cortical regions (Fein, Raz, 

Brown, & Merrin, 1988) and a method of quantifying the mutual information in two 

signals.  It has been suggested that any conclusions about physiological responses, i.e., 
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assuming communication between cortical regions, drawn from phase analysis should be 

done with caution (Fein et al., 1988; Rappelsberger, 1989; Schiff, 2005; Thatcher, 2010). 

However, as we are not looking to the phase as an indication of communication between 

regions but instead as a measure of interference caused by signals in distant regions of the 

brain this is not an issue. 

4.5 Conclusion 

 Isolating epileptogenic zones in the cortex is necessary for the treatment of epilepsy 

that is not well controlled with medication. Improvements to signal localization in scalp 

EEG can reduce the area that needs to be examined with invasive intracranial EEG when 

identifying epileptogenic zones. The FL derived from the TCRE offers improved detection 

of signal dynamics and signal localization compared to a conventional EEG without the 

need for multiple electrodes. 

4.6 Future directions 

Further analysis of the CAR data is needed to identify how common and localized 

“false” alpha responses are. The motor task the subjects performed as part of this study will 

be analyzed using this methodology for identification of graded event related potentials in 

conjunction with other ongoing studies in our lab. 



33 
 

BIBLIOGRAPHY 

Alzahrani, S. I. (2019). A comparison of tri-polar concentric ring electrodes to disc 
electrodes for decoding real and imaginary finger movements. Colorado State 
University. Libraries,  

Bartolomei, F., Wendling, F., Vignal, J.-P., Kochen, S., Bellanger, J.-J., Badier, J.-M., . . . 
Chauvel, P. (1999). Seizures of temporal lobe epilepsy: identification of subtypes 
by coherence analysis using stereo-electro-encephalography. Clinical 
Neurophysiology, 110(10), 1741-1754.  

Benitez, D., Gaydecki, P., Zaidi, A., & Fitzpatrick, A. (2001). The use of the Hilbert 
transform in ECG signal analysis. Computers in biology and medicine, 31(5), 399-
406.  

Besio, W., Koka, K., Aakula, R., & Dai, W. J. I. t. o. b. e. (2006). Tri-polar concentric ring 
electrode development for Laplacian electroencephalography. 53(5), 926-933.  

Besio, W., & Prasad, A. (2006). Analysis of skin-electrode impedance using concentric 
ring electrode. Paper presented at the 2006 International Conference of the IEEE 
Engineering in Medicine and Biology Society. 

Bragin, A., Engel Jr, J., Wilson, C. L., Fried, I., & Mathern, G. W. (1999). Hippocampal 
and entorhinal cortex high‐frequency oscillations (100–500 Hz) in human epileptic 
brain and in kainic acid‐treated rats with chronic seizures. Epilepsia, 40(2), 127-
137.  

Cantero, J. L., Atienza, M., & Salas, R. M. (2002). Human alpha oscillations in 
wakefulness, drowsiness period, and REM sleep: different electroencephalographic 
phenomena within the alpha band. Neurophysiologie Clinique/Clinical 
Neurophysiology, 32(1), 54-71.  

Carvalhaes, C., & de Barros, J. A. (2015). The surface Laplacian technique in EEG: Theory 
and methods. International Journal of Psychophysiology, 97(3), 174-188.  

Clayton, M. S., Yeung, N., & Cohen Kadosh, R. (2018). The many characters of visual 
alpha oscillations. European Journal of Neuroscience, 48(7), 2498-2508.  

Collinger, J. L., Foldes, S., Bruns, T. M., Wodlinger, B., Gaunt, R., & Weber, D. J. (2013). 
Neuroprosthetic technology for individuals with spinal cord injury. The journal of 
spinal cord medicine, 36(4), 258-272. doi:10.1179/2045772313Y.0000000128 

Essl, M., & Rappelsberger, P. (1998). EEG cohererence and reference signals: 
experimental results and mathematical explanations. Medical and Biological 
Engineering and Computing, 36(4), 399-406.  

Fein, G., Raz, J., Brown, F. F., & Merrin, E. L. (1988). Common reference coherence data 
are confounded by power and phase effects. Electroencephalography and clinical 
Neurophysiology, 69(6), 581-584.  

Guger, C., Spataro, R., Allison, B. Z., Heilinger, A., Ortner, R., Cho, W., & La Bella, V. 
(2017). Complete Locked-in and Locked-in Patients: Command Following 
Assessment and Communication with Vibro-Tactile P300 and Motor Imagery 
Brain-Computer Interface Tools. Front Neurosci, 11, 251. 
doi:10.3389/fnins.2017.00251 

Johansson, M. (1999). The hilbert transform. Mathematics Master’s Thesis. Växjö 
University, Suecia. Disponible en internet: http://w3. msi. vxu. se/exarb/mj_ex. pdf, 
consultado el, 19.  



34 
 

Kirschfeld, K. (2005). The physical basis of alpha waves in the electroencephalogram and 
the origin of the “Berger effect”. Biological cybernetics, 92(3), 177-185.  

Koka, K., & Besio, W. G. (2007). Improvement of spatial selectivity and decrease of 
mutual information of tri-polar concentric ring electrodes. Journal of neuroscience 
methods, 165(2), 216-222.  

Li, G., Wang, S., & Duan, Y. Y. (2017). Towards gel-free electrodes: A systematic study 
of electrode-skin impedance. Sensors and Actuators B: Chemical, 241, 1244-1255.  

Liu, X., Makeyev, O., & Besio, W. (2020). Improved Spatial Resolution of 
Electroencephalogram Using Tripolar Concentric Ring Electrode Sensors. Journal 
of Sensors, 2020.  

Lopez-Gordo, M. A., Sanchez-Morillo, D., & Valle, F. P. (2014). Dry EEG electrodes. 
Sensors, 14(7), 12847-12870.  

Ludwig, K. A., Miriani, R. M., Langhals, N. B., Joseph, M. D., Anderson, D. J., & Kipke, 
D. R. (2009). Using a common average reference to improve cortical neuron 
recordings from microelectrode arrays. Journal of neurophysiology, 101(3), 1679-
1689.  

Luu, T. P., Nakagome, S., He, Y., & Contreras-Vidal, J. L. (2017). Real-time EEG-based 
brain-computer interface to a virtual avatar enhances cortical involvement in human 
treadmill walking. Scientific Reports, 7(1), 1-12.  

Martínez-Cagigal, V. (2021). Topographic EEG/MEG plot. MATLAB Central File 
Exchange. Retrieved from 
https://www.mathworks.com/matlabcentral/fileexchange/72729-topographic-eeg-
meg-plot 

Mathewson, K. E., Harrison, T. J., & Kizuk, S. A. (2017). High and dry? Comparing active 
dry EEG electrodes to active and passive wet electrodes. Psychophysiology, 54(1), 
74-82.  

Mormann, F., Lehnertz, K., David, P., & Elger, C. E. (2000). Mean phase coherence as a 
measure for phase synchronization and its application to the EEG of epilepsy 
patients. Physica D: Nonlinear Phenomena, 144(3-4), 358-369.  

Rappelsberger, P. (1989). The reference problem and mapping of coherence: a simulation 
study. Brain topography, 2(1), 63-72.  

Schevon, C. A., Cappell, J., Emerson, R., Isler, J., Grieve, P., Goodman, R., . . . Kuzniecky, 
R. (2007). Cortical abnormalities in epilepsy revealed by local EEG synchrony. 
Neuroimage, 35(1), 140-148.  

Schiff, S. J. (2005). Dangerous phase. Neuroinformatics, 3(4), 315.  
Teplan, M. (2002). Fundamentals of EEG measurement. Measurement science review, 

2(2), 1-11.  
Thatcher, R. W. (2010). Validity and reliability of quantitative electroencephalography. 

Journal of Neurotherapy, 14(2), 122-152.  
Toscani, M., Marzi, T., Righi, S., Viggiano, M. P., & Baldassi, S. (2010). Alpha waves: a 

neural signature of visual suppression. Experimental brain research, 207(3), 213-
219.  

 
  



35 
 

VITA 

Stephen Roy Dundon 

Education: 
Bachelor of Arts, May 2010 
Hanover College, Hanover, Indiana 
 
Bachelor of Science, May 2018 
University of Kentucky, Lexington, Kentucky 
 
Professional Positions: 
Research Assistant, Neural Systems Lab 
Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 
 

 


	CHARACTERIZATION OF MODULATION AND COHERENCE IN SENSORIMOTOR RHYTHMS USING DIFFERENT ELECTROENCEPHALOGRAPHIC SIGNAL DERIVATIONS
	Recommended Citation

	TITLE
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1.  Introduction
	1.1 Motivation
	1.2 Overview of Approach
	1.3 Background
	1.3.1 EEG and Neurophysiology
	1.3.2 Alpha Waves


	CHAPTER 2. Methods
	2.1 Overview
	2.2 Data Collection
	2.2.1 Subjects
	2.2.2 Tripolar Concentric Ring Electrodes
	2.2.3 Tasks
	Figure 2.1 Subject seated with cap and electrodes on.
	Figure 2.2 Close up of electrodes in the cap


	2.3 Signal Analysis
	2.3.1 Overview
	2.3.2 Common Average Reference
	Figure 2.3 Formula for calculating the voltage for a given location using the CAR method.
	In this formula Vk is the voltage of the electrode for the location being considered and n is the total number of electrodes in the montage.

	2.3.3 Local Average Reference
	Figure 2.4 LAR formula for the F3 electrode

	2.3.4 Laplacian
	Figure 2.5 The Taylor series expansion for calculating the Laplacian for a location on a 2 dimensional grid
	Figure 2.6 Example of a center electrode
	Figure 2.7 Simplified formula for the Laplacian of a center electrode
	Figure 2.8 Example of an edge electrode
	Figure 2.9 Simplified formula for the Laplacian for an edge electrode
	Figure 2.10 Example of a corner electrode
	Figure 2.11 Simplified formula for the Laplacian of a corner electrode
	Figure 2.12- EEG signal derivations.
	All signals were normalized for visual comparison.

	2.3.5 Electrode Holders
	Figure 2.13 Electrode holder assembly.
	Red arrows indicate direction of motion for insertion.
	Figure 2.14 Electrode holder model seen from below.
	The thin lip around the edge is flexible enough to allow the electrode to be inserted. The holder is flexible and deforms slightly when the electrode is inserted, which allows the electrode to be held firmly in place
	Figure 2.15 A TCRE in the holder


	2.4 Amplitude of event-related alpha modulation in terms of signal power
	2.5 Spatial localization measured through signal coherence
	Figure 2.16 Formula for the calculation of mean phase coherence.
	Φ is the instantaneous phase angle calculated by the Hilbert transform.
	Figure 2.17 Proportional distances between electrodes in the montage.
	Most are two increments apart but the distance between P and PO is only 1. These electrodes were chosen to keep the montage as rectangular as possible for LL calculations.


	CHAPTER 3. Results
	3.1 Effect of Impedance on Powerline Noise and Alpha Detection
	Figure 3.1 Relation between the powerline noise in the signal and impedance
	of the electrode for each derivation. Most of the signals have very high line noise, which does partially obscure the underlying signals without a notch filter, but notice this is not the case for the FL.
	Figure 3.2 Relation between the alpha power in the signal and impedance
	of the electrode for each derivation. These percentages are after a notch filter has remove the powerline noise.
	Table 1 Summary of statistics for the signal-impedance comparisons.

	3.2 3.2 Effect of Spatial Filtering on the Strength of Alpha Reactivity
	Figure 3.3 The average change in the magnitude of the Hilbert envelope of the alpha band in response to eye closure.
	Each signal is scaled by dividing the signal by the mean of the first 3 seconds.
	*indicates significantly (p<.05) greater alpha reactivity than all other derivations.
	** indicates significantly (p<.05) lower alpha reactivity than all other derivations
	Figure 3.4 The distribution of the alpha reactivity of each region.
	The grey line indicates the overall mean alpha reactivity of the derivation.
	Figure 3.5 The mean difference between the alpha reactivity of compared regions.
	A * indicates significance with p <0.05

	3.3 Effect of Spatial Filtering on Alpha Band EEG Coherence Between Regions
	Figure 3.6 Mean phase coherence reactivity.
	The eEEG has the highest MPC and does not change significantly in response to eye closer. All other derivations show a significant (p<.05) increases in MPC when the eyes close.
	Figure 3.7 MPC responses divided by the mean of the first 3 seconds
	. This shows the CAR has a significantly (p<.05) greater response than any other dervation.
	Figure 3.8 MPC vs Distance between electrodes for each of the signal derivations.
	The eEEG shows a relatively steady decrease in MPC as distance increases. There is a slight “stair step” like appearance to the values but that is not correlated with the difference between the distances observed. The FL shows a pronounced decrease i...
	Figure 3.9 An illistative example of the MPC compared to distance
	(Martínez-Cagigal, 2021). These results are for the F3 electrode but they are typical. The F3 electrode has an MPC of 1 in all cases because the signal is being compared to itself.Notice the CAR has a band of low MPC in the middle before it increases...


	CHAPTER 4. Discussion
	4.1 Overview
	4.2 Impedance vs Preparation Time
	4.3 Alpha Reactivity to Eye closure
	Figure 4.1 When the common average has significantly greater power
	in a particular bandwidth than a particular EEG signal subtracting the common average can cause an artificial increase in the power of that bandwidth.
	This set of signals shows some channels (F3, Fz, and F4 particularly between 110 s and 111 s) where the common average has a stronger alpha rhythm than the original EEG and has therefore induced a phase shifted alpha rhythm into it when it is subtrac...

	4.4 Relation between MPC and Electrode Placement
	4.5 Conclusion
	4.6 Future directions

	Bibliography
	VITA

