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Abstract: Cellulose-based membrane materials allow for separations in both aqueous solutions and
organic solvents. The addition of nanocomposites into cellulose structure is facilitated through steric
interaction and strong hydrogen bonding with the hydroxy groups present within cellulose. An ionic
liquid, 1-ethyl-3-methylimidazolium acetate, was used as a solvent for microcrystalline cellulose to
incorporate graphene oxide quantum dots into cellulose membranes. In this work, other composite
materials such as, iron oxide nanoparticles, polyacrylic acid, and lignin sulfonate have all been
uniformly incorporated into cellulose membranes utilizing ionic liquid cosolvents. Integration of
iron into cellulose membranes resulted in high selectivity (>99%) of neutral red and methylene blue
model dyes separation over salts with a high permeability of 17 LMH/bar. With non-aqueous (alcohol)
solvent, iron–cellulose composite membranes become less selective and more permeable, suggesting
the interaction of iron ions cellulose OH groups plays a major role in pore structure. Polyacrylic acid
was integrated into cellulose membranes to add pH responsive behavior and capacity for metal ion
capture. Calcium capture of 55 mg Ca2+/g membrane was observed for PAA-cellulose membranes.
Lignin sulfonate was also incorporated into cellulose membranes to add strong negative charge and
a steric barrier to enhance antifouling behavior. Lignin sulfonate was also functionalized on the
commercial DOW NF270 nanofiltration membranes via esterification of hydroxy groups with carboxyl
group present on the membrane surface. Antifouling behavior was observed for both lignin-cellulose
composite and commercial membranes functionalized with lignin. Up to 90% recovery of water flux
after repeated cycles of fouling was observed for both types of lignin functionalized membranes
while flux recovery of up to 60% was observed for unmodified membranes.

Keywords: nanocomposite; ionic liquid; selective separation; water application

1. Introduction

Cellulose is the most abundant biopolymer on the earth. The structural significance of cellulose
toward life on Earth is profound, as it makes up most of the cell wall in plants, providing structural
support. Cellulose within the cell wall of plants arranges itself in a mesoporous structure to sterically
prevent enzymatic decomposition [1]. The robust characteristics of cellulose fibers have been utilized
by humans for millennia. The use of cellulose fibers as a membrane-like material arguably began
when humans first began making textiles out of cotton in the 6th millennium BC in modern day India
and Pakistan [2]. Cellulose fibers remain an effective material for physical size-based separations of
particulates such as algae clusters that act as carriers for cholera [3,4]. Beyond particle separation,
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the polymer network of cellulose materials has been investigated for the separation of smaller organic
molecules. Transport of solutes through cellulose membranes has been of interest in the scientific
community for many years. Dating back to the 1950s, hindered diffusion of small organic molecules in
aqueous solution through cellulose materials such as cellophane and sausage casings were studied [5].
Cellulose-derived polymers such as cellulose acetate have been widely used for membrane making,
but the modification required to enhance solubility in commercial solvents reduces robustness of
membrane during filtration of organic solvents [6].

The strong hydrogen bonding between cellulose chains poses challenges for dissolution and
processing of cellulosic material. New solvent developments have enabled synthesis of cellulose
membranes without modification of the chemical structure of cellulose. Regeneration of cellulose with
solvents such as N-methylmorpholine-N-oxide or basic conditions is being implemented to create
selective membranes [7–9]. Ionic liquids are being investigated as a new solvent for regeneration of
cellulose for membrane synthesis [10,11]. Membranes utilizing ionic liquid as a solvent have been
shown to perform in the ultrafiltration or nanofiltration regimes. This same ionic liquid approach
was used to spin cellulose hollow fibers [12]. Cellulose membranes prepared using ionic liquid have
been shown to be highly selective for organic dyes, rejecting 94% of Bromothymol Blue [13]. Cellulose
membranes have been shown to be effective at separating negatively charged oil emulsions from water
while maintaining minimum fouling [14].

Composite materials have been integrated into polymer membranes to enhance properties and
performance. Cellulose is a particularly interesting polymer for the integration of composite materials
through hydrogen bonding via the hydroxy groups, which aid steric entanglement in nanocomposite
retention. This allows for retention of composite materials that strongly interact with hydroxy groups
such as layered double hydroxide [15]. Incorporation of graphene quantum dots into cellulose via
ionic liquid was demonstrated to add negative charge and improve the selectivity of model dyes [16].

Beyond modifying membrane pore structure, the development of composite and blended materials
brings additional properties that improve membrane performance and expand membrane application.
Polyacids, particularly polyacrylic acid (PAA) have been incorporated into membrane supports to
allow for strong negative charge, metal capture, and pH responsive behavior. PAA has been crosslinked
within a PAA membrane pore to functionalize the pore with carboxyl groups for metal capture and
in-situ nanoparticle functionalization [17]. PAA has also been grafted onto cellulose nanofiber mats for
use in the capture of heavy metals [18]. Lignin, a complex plant-derived polymer, is another material
that has capacity for heavy metal capture [19]. Due to the abundance of hydrophilic groups, lignin can
be incorporated as a composite material with other polymers. Composite SPEEK/lignin membranes
have been demonstrated to create a tighter pore structure than conventional Nafion membranes while
allowing for enhanced proton transport [20].

The objective in this work was to further expand on our previous research studying cellulose
graphene oxide quantum dots (GQD) membranes into other composite materials to further improve
membrane performance and demonstrate flexibility of this technique for membrane development.
Iron (III), polyacrylic acid, and lignin sulfonate were all investigated as composite materials for
integration within the cellulose membrane domain. Membrane permeability and selectivity was
studied for each composite type. Other useful properties unique to each composite material were
observed such as metal capture and antifouling properties. Lignin sulfonate was also functionalized
onto the surface of commercial NF membrane (NF270) to demonstrate antifouling behavior of the
functionalized membrane surface through the creation of strong acid sulfonate groups on the surface.

2. Materials and Methods

2.1. Materials

1-ethyl-3-methylimidazolium acetate (EMIMAc, HPLC grade) was purchased from Sigma Aldrich
(St. Louis, MO, USA. Avicel® PH-101 microcrystalline cellulose (50 µm, cotton linter source) was
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purchased from Sigma Aldrich. Nonwoven polyester backing material from Solecta Membranes was
used as a support for membrane formation. Blue dextran (MW: 5000 Da; 10,000 Da) were purchased from
Sigma Aldrich for use in membrane pore size characterization. Solutes used in selectivity studies can
be seen in Table 1. Methylene Blue and Neutral Red (Sigma Aldrich) were used as model dies to study
rejection of molecules <1000 Da. A model dimer (2-(2-Methoxyphenoxy)-1-(4-methoxyphenyl)ethanol)
was provided by Dr. Mark Crocker’s lab in the Center for Applied Energy Research. Ferric chloride
(Fisher Scientific, Hanover Park, IL, USA) was used as an iron (III) source in composite membrane
synthesis. Lignosulfonic acid sodium salt was purchased from Beantown Chemical LLC, Hudson,
NH, USA. as a lignin sulfonate source. Humic acid (technical grade) and bovine serum albumin were
purchased from Sigma Aldrich for antifouling study. Na2SO4 (1000 mg/L Fisher Scientific) was used to
characterized nanofiltration membrane performance. The country of origin for all membranes and
chemicals use was the United States of America.

Table 1. Model dyes tested for rejection.

Model Solute Molecular Wt. (Da) Structure

β-O-4 Model Dimer 282
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Three types of Cellulose composite membranes were studied: cellulose iron, cellulose PAA,
and cellulose lignin sulfonate composite membranes. A summary of the composition of the various
membranes can be seen in Table 2. Control membranes of 10 wt% cellulose were also studied.
All membranes were created using 1-ethyl-3-methylimidazolium as a solvent. The desired amount
of composite material was dispersed into the ionic liquid at 80 ◦C for one hour. This is to ensure full
dispersion of the composite material in the ionic liquid before dissolution of cellulose increases the
casting solution viscosity. After composite material dispersion, 5–10 wt% cellulose was added into the
casting solution and physically mixed in then dissolved at 80 ◦C for 8 to 24 h until the cellulose was
completely dissolved.

Membranes were cast on nonwoven fiber backing. Polyester support material was affixed to a
glass plate using tape. The casting solution was poured directly onto the backing at 80 ◦C and cast
directly onto the polyester backing using a doctor blade set to 150 µm. The polyester backing was then
submerged in a water gelation bath for 10 min to allow time for membrane formation. The resulting
membrane was stored in DI water at a temperature of 4 ◦C until use.
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Table 2. Composite membranes studied with compositions and relevant properties.

Composite
Material

Wt%
Composite

Wt%
Cellulose

Casting Solution
Viscosity (Pa*s)

Water
Permeability

(LMH/bar) (pH=7)

Rejection (%)
5kDa Blue

Dextran

Iron 4 5 6.8 17.4 >99

PAA 2 5 44 267 44

Lignin 5 10 96 17.5 59

Cellulose only 0 10 22.8 9.6 75

2.3. Zeta Potential Characterization

Zeta potential of cellulose and GQD cellulose membranes was measured by an Anton Paar Surpass
1 Electrokinetic Analyzer, Ashland, VA, USA. The adjustable gap cell was used with a 100 µm gap
and 0.01 M KCl electrolyte solution. Acid titration was done with 0.01 M HCl. A 400 mBar pressure
difference was used for all measurements.

2.4. Contact Angle Characterization

The contact angle for deionized ultrafiltered water was measured using the Kruss DSA 100,
Matthews, NC, USA. Captive bubble method was used to determine contact angle do to water
absorption in the cellulose membranes and to prevent deformation of surface structure during drying.
At least 3 spots per membrane sample were analyzed to correct for any variance in surface morphology.

2.5. Membrane Performance

Membrane performance was characterized by using the Sterlitech HP4750 stirred cell to perform
convective studies. Water permeability was determined for each membrane by measuring the
volumetric flux of deionized ultrafiltered (DIUF) water at 1.4, 2.76, and 4.14 bar respectively. Methylene
blue (5 mg/L) and neutral red (5 mg/L), as well as various molecular weights (5 kDa and 10 kD at
concentrations of 100 mg/L) of Blue Dextran, were filtered through the membrane. The permeate was
collected and dye concentration for the feed, permeate, and remaining retentate was analyzed using
the VWR UV-6300PC Spectrophotometer.

For cellulose–lignin composite membranes, antifouling properties were analyzed by testing
permeability of 100 mg/L humic acid solution at pH of 5.6 in a crossflow system.

2.6. Divalent Ion Capture by Cellulose-PAA Membranes

Ca2+ capture in cellulose PAA composite membranes was carried out following the procedure
used by Islam et al. [17]. The cellulose PAA membrane was added to a Sterlitech HP4750 filtration cell
and soaked in about 110 mL of DI water at a pH of 10. After soaking, about 15 mL of fresh DI water
(pH » 4.5–5.5) was passed through the membrane and the pH of the permeate was verified to be 7 or
higher. For the Ca2+ capture, an aqueous CaCl2·2H2O solution (»1.79 mM, pH = 6.5–7) was prepared
with non-deoxygenated, DI water and a 10-mL sample of this solution was taken. To capture Ca2+,
about 200 mL of fresh solution was passed through the membrane in 50-mL increments using pressures
mostly in the range of 0.28–0.62 bar. At the end of each increment, a 10-mL sample of the collected
permeate was taken and the rest of the permeate was disposed of before continuing the filtration.

Ca2+ captured was quantified by inductively coupled plasma optical emission spectroscopy. Ca2+

captured within the membrane case measured and located using energy-dispersive X-ray spectroscopy.

2.7. Lignin Sulfonate Functionalized Nanofiltration Membrane

Functionalized membranes were created by placing a 40 cm2 area of NF270 into a circular metal
cell, an O-ring is typically found on these cells at the base to create a seal. A 10 wt% LS (lignin sulfonate)
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solution in water was poured over a 40 cm2 area NF270 nanofiltration membrane. Sufficient volume
of lignin sulfonate was applied to cover the entire membrane surface. The cell was then placed in
an oven at 90 ◦C for approximately 2 h. After taking the functionalized membrane out of the cell,
it was then thoroughly rinsed with DI water to remove residual LS that may not have bonded to the
membrane. LS presence on the membrane surface can be visually confirmed by light brown tint on the
membrane surface.

A crossflow apparatus allowed for testing the anti-fouling properties of both the functionalized
and unfunctionalized membrane. The cross-flow apparatus was run at a flowrate of approximately
1.5 liters/min for both the equilibration stage, fouling stage, and tangential washing stage. Before any
anti-fouling testing could be done, the membrane was precompacted at 10.4 bar with deionized water
to equilibrate the membrane before the fouling agent. After this equilibration period, a bovine albumin
serum (BSA) solution was run through the apparatus and volume of permeate measured. After 30 min
into the fouling stage, the membrane surface was rinsed with deionized water (pH = 5.6) for 10 min.
Na2SO4 (1000 mg/L Fisher Scientific, Hanover Park, IL, USA) rejection was also determined in the
crossflow cell at 10.4 bar.

2.8. Bacteria Fouling Studies

R. palustris strain CGA009 (ATCC BAA-98) was purchased from ATCC (American Type Culture
Collection, NY, NY, USA). Solid media cultures were isolated on tryptic soy broth agar plates. Liquid
cultures were pre-grown in tryptic soy broth purchased from Hardy Diagnostics, Santa maria, CA,
USA, which contains (g L−1) casein peptone, 17; soy peptone, 3; NaCl, 5; K2HPO4, 2.5; Dextrose, 2.5.
Pre-grown liquid cultures were concentrated by centrifugation at 2500 rpm for 5 mins and washed
3 times with minimal media to use as an inoculant.

R. palustris adhered to membranes were grown using a modified minimal media [21] that
contained (g L−1) Na2HPO4, 6.8; KH2PO4, 2.9; NaCl, 1.3; MgSO4 7H2O, 0.4; CaCl2 2H2O, 0.075;
thiamine hydrochloride 0.001. Trace elements were provided by adding 10 mL L−1 of a solution
containing (g L−1) FeCl3 6H2O, 1.66; ZnCl2, 0.17; MnCl2, 0.06; CoCl2 6H2O, 0.06; CuCl2 2H2O, 0.04;
CaCl2 2H2O, 0.73; and Na2MoO4 2H2O, 0.06. sodium glutamate (3.5–7 mM), and acetate (70 mM) were
utilized as primary nitrogen and carbon sources.

Solutions of minimal media were diluted 1:10 with phosphate buffer (pH~7.2) for inoculation
on the membrane surface. Inoculation of cellulose membranes was carried out by convectively
passing 15 mL of the diluted media through the membrane at 1.4 bar in a stirred membrane cell.
After inoculation the membranes were removed from the cell and submerged in minimal growth
media in the absence of light for 10 days to allow some time for bacterial growth. The overall goal was
to simulate bacteria deposition and growth on the membrane surface over long-term operation.

Bacteria adhered membranes were chemically fixed [22] prior to critical point drying by dosing
growth media containing an inoculated membrane with glutaraldehyde (50% from) to bring the
solution to 2.5% glutaraldehyde, and left to sit for 2 h at 25 ◦C. The media slowly replaced with ethanol
by removing media and adding ethanol to bring the ethanol concentration up to 25%, 50%, 75%, 85%,
and 96%, leaving the solution to rest for 1 h between adding ethanol.

3. Results and Discussion

3.1. Summary of Membranes

A summary of composite membrane compositions and properties is given in Table 2. Permeability
of all composite membrane was shown to be improved over unmodified cellulose membranes. Iron was
the only composite material demonstrated to improve the selectivity of cellulose membranes for small
molecules. There are many factors that impact membrane selectivity, only a few of which this work will
address, but casting viscosity and wt% may be one property which can be better optimized to improve
membrane performance. The focus on this work is to highlight the possibilities of incorporating
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composite materials into cellulose membranes and the unique benefits composite materials bring to
membrane performance.

3.2. Iron Cellulose Composite Membranes

Prior work integrating graphene oxide quantum dots (GQDs) showed potential for suitably small
nanomaterials to increase selectivity via improving the structure of the selective cellulose network by
linking cellulose chains via hydrogen bonding. Nanocomposite membranes prepared with GQD were
found to show over 80% rejection of methylene blue and greater than 95% rejection of 5000 kDa blue
dextran while maintaining permeability over 12 LMH/bar. Due to difficulties in purification of GQD,
it is desired to investigate other composite materials that can be incorporated at higher concentrations
while maintaining controlled particle size.

Iron was readily incorporated as a composite material into the cellulose membrane domain, as
FeCl3 is highly dispersible in ionic liquids. Iron is well known to interact strongly with cellulose and to
bind to cellulose chains. This interaction along with steric effects ensure iron is retained within the
membrane structure after phase inversion. A clear sign of the presence of iron within the membrane
can been seen by the orange color the iron brings to the normally translucent cellulose membrane.
This can be seen in Figure 1. This effect has also been observed in our prior studies with graphene
oxide quantum dots as nanocomposites.
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Figure 1. Unmodified cellulose, graphene oxide quantum dots (GQD) cellulose, and iron cellulose
composite membranes.

While uses of iron in composite materials and membrane platforms is well known, the main
interest in this work was to understand if iron interaction with cellulose in the membrane effects
selectivity behavior of the membrane. Previous study of cellulose composite membranes has suggested
that selectivity behavior is largely due to a dense amorphous polymer layer that comprises the top
100–200 nm of the membrane. To better understand how iron and cellulose might be interact in the
amorphous selective layer, the pressure dependent flux behavior of the membrane was studied in
water and IPA solvents. As seen in Figure 2, water and isopropanol permeability behavior is unique
when compared to expected behavior for cellulose based membranes. Water flux plateaued off at
higher pressures, as previously observed in our studies of GQD cellulose composite membranes.
Permeability of the iron cellulose membranes was within standard deviation of previously studied
cellulose membranes, despite the iron composite casting solution having half the concentration of
cellulose, as compared to previously studied cellulose membranes. Ordinarily reduced concentration
of cellulose in the casting solution results in higher permeability. It is observed that the 4 wt.% of iron
(III) chloride in the casting solution contributes to the development of a dense layer at lower cellulose
concentrations. It is important to note that the 5 mg/L neutral red solution was permeated through the
membrane after IPA passage, demonstrating that the flux response is reversible with solvent exchange.
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Figure 2. Flux (LMH, liter/m2-bar) vs. pressure (bar) behavior for iron cellulose composite membranes
in water, isopropanol (IPA), and neutral red in water.

Further investigation of pressure dependent isopropanol flux gave unexpected results. Despite
the viscosity of IPA being roughly double that of water, the permeability remains the same. Isopropanol
permeability had previously been studied in cellulose membranes as seen in Figure 3 to observe the
effect of the polar solvent on membrane stability. When corrected for viscosity, isopropanol and water
flux behavior follow the same linear trend. This strongly suggests the membrane surface does not
swell when in contact with isopropanol. IPA flux was higher than what would be expected when
observing water permeability. This suggests that the membrane becomes more permeable when
exposed to isopropanol.

Flux behavior was also found to be reversible as solvent was varied between water and isopropanol.
No significant concentrations of iron ions were found to leach out of the membrane beyond the initial
formation of the membrane via phase inversion. Considering lack of evidence of significant leaching
and reversible flux response during solvent exchange, iron cellulose composite membranes can be
assumed to be reasonably stable in neutral or basic conditions. Water was kept above pH 5 for all iron
cellulose composite membrane experiments. At acidic pH complete ionization of iron oxide may result
in increased leaching of iron from the membrane domain.

Interestingly, water permeability was decreased at solvent mixtures of 25:75 and 50:50
isopropanol:water as compared to either pure water or pure isopropanol. The permeability at
different solvent concentrations can be seen in Figure 4. Strong water interaction within the cellulose
domain may provide a barrier for isopropanol diffusion into the membrane domain. Mao et al. has
observed that flux through cellulose membranes declined as isopropanol concentration increased
during pervaporation operation [9]. Membrane permeability increased for pure isopropanol solvent,
as iron is unable to be ionized after the 100% isopropanol solution removes residual water in the
membrane. Absence of Fe3+ ions decreases interaction between cellulose chains, which may be
responsible for the higher permeability in pure solvent conditions. When the membrane is rehydrated,
more ionization of iron particles to Fe3+ occurs and the selective layer becomes denser. This behavior
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could be of great interest for applications of membrane cleaning or desorption of contaminants from
the membrane surface.Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 20 
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Neutral red (~289 Da) and methylene blue (~320 Da) were completely rejected (>99%) during
filtration through the membrane using DI water as a solvent. As seen in Figure 5 rejection decreased
in isopropanol which is to be expected due as hydrophilic interaction decreases in isopropanol.
The increase of membrane permeability suggests the dense selective layer becomes more permeable.
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Figure 5. Dye rejection in iron cellulose composite membrane in water and isopropanol solvent.

Rejection studies with model dyes also suggests other factors contribute to solute selectivity other
than size exclusion. Selectivity vs. molecular weight for small model molecules is show in Figure 6.
Rejection of β-O-4 Model Dimer was only 10% despite the MW only being 7 Da less than neutral red.
The disparity in rejection can be attributed to interaction among the hydrophilic functional groups.
The positive dipoles of the amine groups in the dyes interacts more strongly with negative dipoles of
hydroxy groups in cellulose reducing rate of diffusion of the dyes through the membrane. Carboxyl
groups in the model dimer do not react as strongly. Rotational freedom in the model dimer may
also allow for the dimer to change confirmation as it moves through the membrane, thus increasing
diffusion rate. Ring structures in the model dyes prevent rotation within dyes as they move into the
membrane domain. Interaction among functional groups and molecular structure must be considered
when evaluating possible application of nanofiltration for small molecule separation.
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3.3. Polyacrylic Acid Cellulose Composite Membranes

Polyacrylic acid (PAA) has many negatively charged carboxyl groups which can be utilized for
pH responsive behavior, metal capture, and rejection of negatively charged ions. PAA disperses fully
in the ionic liquid solvent allowing even mixing with cellulose. Entanglement with cellulose chains
and hydrogen bonding with cellulose allow for the retention of PAA after phase inversion. The pKa
of carboxyl groups was useful in confirming its presence of PAA at the surface of the PAA cellulose
composite membranes. Zeta potential analysis (Figure 7) clearly shows that incorporating PAA into
cellulose membranes results in a greater magnitude of negative surface charge that corresponds to a
pKa shift at pH 3–5, as expected for carboxyl groups. This behavior has been demonstrated in our
previous studies with PAA functionalized PVDF (polyvinylidene fluoride) microfiltration membranes.
Due to the dissolution of PAA and cellulose together in ionic liquid, it is hypothesized that PAA was
also integrated through the depth of the membrane.Nanomaterials 2019, 9, x FOR PEER REVIEW 11 of 20 
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Figure 7. Zeta potential of cellulose (10 wt% cellulose in casting solution)1, and cellulose- polyacrylic
acid (PAA) membranes in the pH range of 3–9. PVDF 700 membrane obtained from Solecta Membrane
and PVDF-PAA (weight gain of 7.28% with functionalization) were synthesized for this study following
the procedure established in Islam et al. as a control system to demonstrate the impact of PAA
functionalization on membrane surface charge [17].

Further confirmation of PAA in the membrane was necessary to confirm presence beyond the
surface. Pressure dependent flux of PAA cellulose membranes were studied at below and above the
pKa of PAA. As observed in other PAA functionalized membranes, swelling should occur as carboxyl
groups are charged when pH increases above 3. Figure 8 shows the pH responsive behavior of the
functionalized membrane. The four-fold decrease in flux when transitioning to pH 7 from pH 3
strongly suggests presence of PAA throughout the entire selective layer of the composite membrane.
At high pH the swollen PAA creates a selective layer capable of rejecting 44% of 5kDa blue dextran,
while at low pH the PAA collapses, opening the membrane pores.

PAA has been utilized for capture of metals due to the ion exchange capacity of the vast network of
carboxylic groups. Ion exchange capacity studied for this membrane using Ca2+ to better understand
the quantity of PAA in the membrane and the accessibility of PAA to ions transporting through.
Previous functionalized membrane platforms have not completely answered the question of whether
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the entirety of the hydrogel is available for ion exchange, or whether channeling occurs within the
hydrogel domain. In this scenario PAA is entangled along with the cellulose composite membrane
which should theoretically prevent channeling. Ca2+ adsorption is shown in Figure 9. This was not
observed in cellulose membranes. likely due to the constrained environment in which the PAA is
present. The cellulose-PAA membrane demonstrated a maximum Ca2+ capture of 0.27 mg, which
was equal to 0.055 g Ca2+/g membrane and 0.35 mol Ca2+/mol carboxyl; this result was confirmed
by a mass balance that indicated a 98.2% retention of the fed Ca2+ in either the permeate samples,
the retentate, or the membrane as well as a difference of 6.6% in measured concentration between the
50 ppm calibration curve sample and the duplicate of this sample. Ca2+ capture was roughly 70% of
the theoretical maximum and just over half of the 0.61 mol Ca2+/mol carboxyl that was calculated
for the spongy PVDF-PAA membrane reported in literature [23]. Ca2+ capture observed in spongy
PVDF-PAA membranes exceeded the theoretical value due to counter ion condensation phenomena
within the membrane.Nanomaterials 2019, 9, x FOR PEER REVIEW 12 of 20 
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Figure 9. Total Ca2+ capture of a 13.2-cm2 cellulose-PAA membrane during convective flow of CaCl2
(overall flux = 89 LMH and average pressure of 50-mL increments = 0.72 bar) and of a PVDF-PAA
membrane from literature after convective flow of CaCl2 [23]. Standard deviation was determined via
deviation of known samples after spiking with a separate known and thus represents analytical error
during inductively coupled plasma optical emission spectroscopy (ICP-OES).
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Electron dispersive x-ray spectroscopy of the PAA cellulose composite membrane was conducted
to determine where metal ion capture was occurring within the membrane. The EDS mapping
reveals that PAA cellulose membranes show even dispersion of divalent ions adsorbed throughout the
membrane, while PAA functionalized PVDF membranes show divalent ion adsorption only toward
the surface of the membrane. The EDS map (Figure 10) serves as further confirmation that PAA is
evenly dispersed throughout the membrane.
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3.4. Lignin Sulfonate Cellulose Composite Membranes

Lignin and cellulose are major constituents of woody plants and interact to create a robust structure
that is resistant to decomposition from bacteria and fungi even after the plant’s death. Lignin contains
many hydrophilic groups, including phenols which give antibacterial properties [24,25]. Houtman et
al. have determined through molecular simulation that hydrophilic groups allow for lignin to adsorb
to cellulose microfibrils [26]. Lignin sulfonate, a byproduct of chemical paper pulping industry, is an
inexpensive and commercially available source of lignin. The sulfonation process adds hydrophilicity
and allows for easy dissolution in 1-ethyl-3-methylimidazolium acetate [27]. Therefore, we sought to
use lignin sulfonate as a composite material for cellulose membrane creation. The primary objectives
were to determine the effectiveness of the lignin composite membrane and probe antibacterial behavior.

Water permeability of the lignin cellulose membrane was shown to be roughly double that of the
unmodified cellulose membrane (Figure 11). Likely hydrophobic regions of lignin sulfonate cause
opening of the selective layer due to poor interaction with cellulose after phase inversion. The viscosity
of the dope solutions was particularly high when lignin sulfonate was added as a composite, which
may further effect demixing during phase inversion. The rejection of 5000 Da blue dextran was
59%, and this is 16% lower than unmodified cellulose. Neutral red was shown to absorb strongly in
within the membrane, which indicates the potential of strong interaction with sulfonate groups within
the membrane.

In order to characterize the fouling of a 10 wt% cellulose in IL membrane functionalized with 2 wt%
lignin sulfonate, both a 10 wt% cellulose in IL membrane and a 10 wt% cellulose in IL membrane with
2 wt% lignin sulfonate (cellulose–lignin membrane) were placed in a cross-flow cell. 100 mg/L humic
acid solution was passed through the cross-flow cell and the flux of both membranes was recorded over
a total of 350 min. The black dotted lines indicate when both membranes were rinsed for 10 min with
deionized water (pH of 5.6) to measure the effect of irreversible fouling. The normalized water flux of
both the control membrane and the functionalized membrane are contained in Figure 12. The flux
of both the control membrane and the flux of the membrane functionalized with lignin sulfonate
decreased as more humic acid solution was passed. Error bars for each point indicate high water flux
reproducibility. However, after each tangential rinse with deionized water, there is far less irreversible
fouling of the functionalized membrane when compared to the control membrane. After only 10 min
of rinsing, the functionalized membranes almost completely returned to the initial volumetric flux as
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recorded before fouling, while the control membrane shows only about 50% recovery of volumetric
flux. Although the lignin sulfonate appears to have a negligible effect on the reversible fouling of the
membrane, the lignin sulfonate does have a significant effect on reducing the prevalence of irreversible
fouling of the functionalized membrane.
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control cellulose membrane during filtration of 100 mg/L humic acid solution. Normalized flux =

water flux with humic acid/pure water flux. pH = 5. Operating pressure = 10.4 bar. Vertical dashed
lines indicate points during the experiment where tangential washing (1.5 L/min) with deionized
ultrafiltered (DIUF) was performed to recover membrane flux. Trend lines (dotted) and flux error bars
are shown in the figure.

Beyond natural organic matter and proteins, a key contributor to membrane fouling are biofilms
formed by microorganisms that adsorb to the membrane surface. Since, it has been understood for



Nanomaterials 2019, 9, 867 14 of 17

many years that functional phenolic groups provide antimicrobial properties in lignin, the antimicrobial
properties of lignin sulfonate modified cellulose membrane was studied [28]. Lignin sulfonate modified
cellulose membranes were inoculated with bacteria by filtering a dilute solution of bacteria through the
membrane. The bacterial were then given dilute amounts of nutrients and allowed to grow. Bacteria
colonies were analyzed after fixation to qualitatively determine the rate of production of extracellular
matrix. The SEM images of the membrane surface after bacteria growth can be seen in Figure 13.Nanomaterials 2019, 9, x FOR PEER REVIEW 16 of 20 
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3.5. Lignin Sulfonate Functionalized Commercial Nanofiltration Membrane

Lignin sulfonate can also be directly functionalized onto the surface of commercial nanofiltration
membranes. Sulfonated lignin has shown potential antifouling properties when deposited onto the
surface of thin film composite membranes. This study looked to use heat to esterify lignin to the
surface of NF (nanofiltration) membranes. Membrane water permeability was shown to decreases
slightly after functionalization (Figure 14), but flux decline was less than 10 wt%. This decline in flux
was likely due to the surface functionalized layer adding resistance to flow through the membrane.
Lignin has a bulky branching structure that could cause additional hydraulic resistance to flow.
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Rejection of Na2SO4 (1000 mg/L solution) decreased to 97.3% from 98% after functionalization
with lignin sulfonate, which is within experimental error for the small samples of membrane tested
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(20 cm2). Zeta potential data also suggests reduction in the number of carboxyl groups on the surface
of the NF membrane (Figure 15).
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Figure 15. Zeta potential vs. pH for lignin functionalized and pristine NF270 membrane. 100 mg/L
KCl used as an electrolyte.

Most excitingly, lignin sulfonate functionalized membranes show promise for use as an antifouling
surface. BSA was used as a model foulant and passed through the membrane in cross flow operation.
BSA fouling during filtration can be seen in Figure 16. While lignin sulfonate appears to have
negligible impact on reversible fouling, irreversible fouling was shown to be far less prevalent after
functionalization with lignin sulfonate. Functionalized NF270 membranes showed almost complete
recovery of volumetric water flux after just 10 min of tangential flow rinsing with DI water while
the unmodified membrane flux only recovered to 40% of the initial value after rinsing. Lignin
functionalized NF270 membranes were shown to maintain 90% of the initial flux after the second
rinse cycle.
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4. Conclusions

This study has shown 1-ethyl-3-methyl imidazolium acetate ionic liquid can be utilized as a
cosolvent to integrate iron, polyacrylic acid (PAA), or lignin sulfonate with cellulose membrane.
Composite and blended materials were found to add unique properties such as pH responsive flux
and antibacterial behavior. Performance of iron–cellulose composite membranes demonstrates that
composite materials modify membrane structure and impact transport of solvent and solute through
the membrane. Membrane structure was observed to become less selective in solvent conditions
where affinity between iron and cellulose is reduced. Both steric entrapment and hydrogen bonding
allow for PAA to be incorporated into the cellulose membrane domain for hardness ion capture
applications. In the same manner, lignin sulfonate was incorporated covalently to reduce irreversible
fouling on the membrane surface. This antifouling behavior was also observed when lignin sulfonate
was functionalized onto the surface of the commercial NF270 membrane. Ultimately, as ionic liquids
continue to be used as solvents for membrane synthesis, composite material should be strongly
considered as means to add value or otherwise optimize membranes. Even inexpensive materials such
as iron or sulfonated lignin have shown potential as composite materials, and impart little additional
costs compared to the price of ionic liquid.
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