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ABSTRACT OF THESIS 

 

 
WORK-RELATED CHANGES IN THE TRUNK STIFFNESS OF NURSING 

PERSONNEL 

 
 Low back pain (LBP) is a significant issue related to spinal stability and, therefore, 
to trunk stiffness. Due to the nature of their work, nursing personnel are exposed to 
potential risk factors for LBP, such as lifting and trunk flexion, which have been reported 
in the literature to lead to decreases in trunk stiffness. Consequently, the purpose of this 
study was to investigate potential occupational effects on the trunk stiffness in nursing 
personnel. Twenty-four nursing personnel participated in this study and completed two 
sessions (pre-shift and post-shift) during which two passive flexion tests (with and without 
an ~7.5-lb load) were conducted to characterize their trunk stiffness in upright standing. 
Overall, no work-related changes in trunk stiffness were found in this study. However, 
trunk stiffness was higher for the loading condition with the load being held in the subjects’ 
hands than for the condition without this load (p=0.002). Finding no work-related changes 
in trunk stiffness may have resulted from the heterogeneity of the recruited sample of 
nursing personnel and the potential recovery of trunk stiffness before their post-shift data 
collection sessions. Future studies should try to reduce participant heterogeneity and 
perform data collection closer to where the participants work.  
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CHAPTER 1: INTRODUCTION 

 Low back pain (LBP) is a health condition that involves missing work (U.S. 

Bureau of Labor Statistics, 2019) and large expenses (Dieleman et al., 2016). It is 

suggested to be related to spinal stability (Reeves et al., 2019) with LBP potentially 

leading to instability or instability potentially leading to LBP (Gardner-Morse et al., 

1995). Additionally, trunk stiffness is required for spinal stability (Bergmark, 1989) such 

that instability could arise from too little stiffness (McGill et al., 2003). Despite these 

associations, information regarding occupational effects on trunk stiffness appears to be 

limited. 

 Thus, the objective of this study was to ascertain the effects of occupational 

activities on trunk stiffness, specifically in nursing personnel. Trunk stiffness has been 

reported to decrease following exposure to potential LBP risk factors (e.g., lifting (Pope 

et al., 2002) or work-related trunk flexion (Hoogendoorn et al., 2000)) (Hendershot et al., 

2011; Toosizadeh et al., 2013). Since nursing personnel are exposed to various 

occupational risk factors for LBP, including the lifting and transportation of patients 

(Jang et al., 2007) and prolonged standing (Mendelek et al., 2011), it was hypothesized 

that the trunk stiffness of nursing personnel would decrease over the course of their work 

shifts. It was further hypothesized that nursing personnel with more physically 

demanding job activity levels would show a greater decrease than those with more 

sedentary job activity levels.  

 This thesis is organized into six chapters, including this chapter. The following 

chapters include a literature review about work-related/time-related changes in trunk 

stiffness and/or other relevant measures (Chapter 2); the methods used in this thesis to 
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characterize work-related changes in the trunk stiffness of nursing personnel (Chapter 3); 

the results of this thesis concerning the effects of work-related activities, physical 

activity, and loading condition on trunk stiffness (Chapter 4); a discussion of the results 

of and limitations in this thesis (Chapter 5); and recommendations for future studies 

(Chapter 6). 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

 Low back pain (LBP) is considerably problematic to human health. LBP has been 

reported to be an issue behind missing work in private industry such that for the issues of 

the lumbar back that involved missing work, 21.20% were related to pain and soreness in 

2018 (U.S. Bureau of Labor Statistics, 2019). Additionally, in 2013, LBP was one of two 

contributing factors that collectively resulted in personal spending of $87.6 billion for 

health-related purposes, ranking them among the top three healthcare-related 

expenditures for that year in the U.S. (Dieleman et al., 2016). Public spending for these 

two factors was $0.14 billion in the U.S. in 2013 (Dieleman et al., 2016).  

LBP and stability (or lack thereof) of the spine appear to exhibit a relationship 

(Reeves et al., 2019); however, the nature of this relationship is not consistently depicted 

in the literature. For example, it has been suggested that spinal instability may stem from 

tissue damage (McGill et al., 2003) or that back-related issues (potentially LBP) may 

produce this instability (Gardner-Morse et al., 1995). However, it also has been suggested 

that instability may be the culprit behind back pain (Gardner-Morse et al., 1995) and 

certain issues related to pain or strained tissues (van Dieën et al., 2003). There also exists 

an idea about the possibility of a lack of a well-defined relationship between LBP and 

spinal stability (Reeves et al., 2007).   

Stability relates to the state of a system’s equilibrium (Bergmark, 1989; Reeves et 

al., 2007) and its resilience against perturbations (Bergmark, 1989; Reeves et al., 2019;  

Reeves et al., 2007). A system with a stable equilibrium state will return to its initial 

equilibrium state after a perturbation, if it deviated in any way due to this perturbation, 
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while a system with an unstable equilibrium state will not (Reeves et al., 2019; Reeves et 

al., 2007). Furthermore, as regards biomechanics, spinal stability relates to how the spine 

moves when a perturbation occurs and whether it remains within its physiological range 

(Reeves et al., 2007). Therefore, spinal mechanical stability is directly influenced by the 

stiffness of the spine and lower back such that a minimum level of trunk stiffness is 

required for the spine to be stable (Bergmark, 1989). Trunk muscles and spinal tissues 

provide such a required stiffness for the spine and, therefore, play an important role in 

maintaining spinal stability (Reeves et al., 2019). While both trunk muscles and spinal 

tissues provide passive stiffness for spinal stability (Bergmark, 1989; Gardner-Morse et 

al., 1995; Reeves et al., 2019), muscles can also provide active stiffness relating to their 

activation (Gardner-Morse et al., 1995). It is important that the stiffness not be 

considerably more or less than what is needed so that certain issues can be avoided 

(McGill et al., 2003). These issues include immobility, which could result from 

exhibiting a superfluous amount of stiffness, and instability, which could result from 

exhibiting a scant amount of stiffness (McGill et al., 2003). 

Due to the importance of LBP and its links to missing work and spinal stability, 

which is associated with the stiffness of the spine and lower back (referred to as trunk 

stiffness hereafter), it would be beneficial to understand the effects of work-related 

factors and non-work-related factors on trunk stiffness. Therefore, the objective of this 

review is to provide a narrative summary of earlier research that has reported the effects 

of work-related and non-work-related factors on trunk stiffness and/or other measures 

that are relevant to trunk stiffness (e.g., range of motion of the trunk).  
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2.2 Methods 

 While conducting research for this literature review, certain keyword phrases 

were input to several databases (InfoKat Discovery through the University of Kentucky, 

PubMed, and ScienceDirect). These phrases consisted of different combinations of the 

keywords presented in Table 1.  

Table 1. Keyword groups that were used when researching articles. 

Group 1 Group 2 Group 3 Group 4 

lower back  stiffness occupational changes 

trunk flexibility work-related alterations 

lumbar compliance diurnal variations 

vertebral column range of motion circadian 
 

spine      

     

Abstracts of articles that were found were assessed to determine their relevance. This 

relevance was based on whether the article discussed an in vivo human study that 

recounted changes in trunk stiffness or that discussed related measures. Moreover, 

additional articles were found by looking into the references of the identified articles.  

2.3 Results 

 A total of 21 articles met our review criteria. Fifteen of these articles discussed 

different forms of trunk stiffness (e.g., effective, intrinsic, [average] bending, rotational 

stiffness) or other stiffness measures of the lumbar spine (Beach et al., 2005; Brown and 

McGill, 2009; Cholewicki et al., 2000; Drake and Callaghan, 2008; Gardner-Morse and 

Stokes, 2001; Granata and Rogers, 2007; Hendershot et al., 2011; Hodges et al., 2009; 

Miller et al., 2013; Parkinson et al., 2004; Shojaei et al., 2016; Shojaei et al., 2018; 

Toosizadeh et al., 2013; Vazirian et al., 2016; Vette et al., 2014). Among the reviewed 
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articles, twelve (Table 2) discussed time-related changes in a measure of trunk stiffness 

(e.g., intrinsic stiffness) or range of motion of the lumbar spine or trunk (Adams et al., 

1987; Beach et al., 2005; Callaghan and McGill, 2001; Drake and Callaghan, 2008; Dunk 

and Callaghan, 2010; Ensink et al., 1996; Fathallah et al., 1995; Hendershot et al., 2011; 

Kastelic et al., 2018; Miller et al., 2013; Parkinson et al., 2004; Toosizadeh et al., 2013). 

Most of the articles included in this review mentioned certain limitations in their studies; 

however, for the articles whose results were not included, their limitations did not appear 

to render the articles unusable.  
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Table 2. The studies that were reviewed that discussed relevant time-related changes. 
                  

Study 
Sample 

Size 
Description of Sample Research Set-Up 

Description of 
Task/Condition 

Results 

     Male Female     
Range of Motion-

Related 
Stiffness-Related 

Adams et al. 
(1987) 

21 

Number 11 10 2 sessions: early morning, 
late afternoon; electronic 
inclinometers: L1 spinous 

process, S1 spinous 
process 

forward bending: 
sitting, straightened 

legs 

increase (early 
morning to late 

afternoon) 
‐‐‐ Age (years) 32.7 20.6 

Status healthy  
         

Beach et al. 
(2005) 

12 

Number 6 6 

3 sessions: before 2 hours 
of sitting, after each hour; 

frictionless surface; 
floating cradle 

sitting over a 2-hour 
period; passive 

flexion: lying down 
‐‐‐ 

increase (from before 
two hours of sitting to 

after sitting for one 
hour), no change (from 

after sitting for one 
hour to after sitting for 

two hours) - for one 
stiffness zone 

Age (years) 24.5 23.3 

Height (cm) 177 162 

Body Mass 
(kg) 

76.8 58.6 

Status healthy  
         

Callaghan and 
McGill (2001) 

8 

Number 8 ‐‐‐ 4 measurements: before 3 
minutes of standing, after 

this 3 minutes of 
standing/before 2 hours of 

sitting, after 2 hours of 
sitting/before another 3 

minutes of standing, and 
after the second 3 minutes 

of standing; 3SPACE 
ISOTRAK (sacrum, 

T12/L1 level) 

3 minutes of standing 
(twice); 2 hours of 

sitting 

increase (no statistical 
significance) 

‐‐‐ 

Age (years) 22.4 ‐‐‐ 

Height (cm) 174.7 ‐‐‐ 

Body Mass 
(kg) 

74.4 ‐‐‐ 

Status healthy  ‐‐‐ 
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Table 2. (continued) 
                   

Drake and 
Callaghan 

(2008) 
10 

Number 10 ‐‐‐ 

2 sessions: 8 a.m., 3 p.m.; 
cradle (for kneeling); 
frictionless surface 

kneeling; axial 
twisting; 7 postures 

‐‐‐  no diurnal variations 

Age (years) 23.3 ‐‐‐ 

Height (cm) 179 ‐‐‐ 
Body Mass 

(kg) 
75.6 ‐‐‐ 

Status healthy ‐‐‐ 
         

Dunk and 
Callaghan 

(2010) 
32 

Number 8 8 

2 measurements: pre-
sitting, post-sitting; 
accelerometers: L1 

spinous process, S2 level 

sitting - 90 minutes; 
upright standing 

followed by bending 
to touch toes  

decrease (post-sitting)  ‐‐‐ 

Age (years) 24.0 25.9 

Height (cm) 180 167 

Body Mass 
(kg) 

74.0 64.4 

Status healthy 

Number 8 8 

Age (years) 22.8 27.0 

Height (cm) 178 170 

Body Mass 
(kg) 

81.3 70.7 

Status sitting-induced LBP 
         

Ensink et al. 
(1996) 

29 

Number ‐‐‐ ‐‐‐ 

3 sessions: 8-9 a.m., 12-1 
p.m., 4-5 p.m.; 

inclinometers: T12 spinous 
process, S1 spinous 

process 

maximum extension, 
maximum flexion: no 

knee-bending 

increase (between 8-9 
a.m. and 4-5 p.m.) 

‐‐‐ 

Age (years) 18-60 

Height (cm) 173.0 

Body Mass 
(kg) 

77.2 

Status 
patients - "chronic low back pain 

or leg pain" 
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Table 2. (continued) 
                  

Fathallah et al. 
(1995) 

21 

Number 21 ‐‐‐ 

3 sessions: morning, 
afternoon, evening; 
monitor system and 

harness (thorax, pelvis); 
potentiometers 

slow-paced 
movements: initial 

posture to “maximum 
range of motion” then 

back to the initial 
posture; 3 planes 

increase (morning to 
afternoon to evening) 
- sagittal plane (not 

statistically 
significant) 

‐‐‐ 

Age (years) 25.03 ‐‐‐ 

Height (cm) 179.70 ‐‐‐ 
Body Mass 

(kg) 
77.80 ‐‐‐ 

Status 

"screened with 
regard to any 

history of back 
disorders" 

‐‐‐ 

         

Hendershot et 
al. (2011) 

12 

Number 6 6 

frame; harness (chest); leg 
rotation; 2 or 16 minutes at 

leg rotation angle; 
perturbations (T8 spinal 

level) 

upright upper body; 
leg rotation 

‐‐‐ 

decrease (after 2 
minutes of maximum 

flexion), decrease 
(after 16 minutes of 
maximum flexion) 

Age (years) 23 22 

Height (cm) 180.3 166.1 

Body Mass 
(kg) 

75.3 60.1 

Status healthy 
         

Kastelic et al. 
(2018) 

17 

Number 
9 (office 
workers) 

8 (office 
workers) 

2 sessions: before the 
subject worked, after the 
subject worked; inertial 

measurement units: S1, L1 

subjects started 
upright, flexed, and 
then ended upright  

no changes (from 
before to after a work 
shift of their subjects) 

‐‐‐ 

Age (years) 42.2 

Height (cm) 176 

Body Mass 
(kg) 

76.5 

Status healthy 
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Table 2. (continued) 
                  

Miller et al. 
(2013) 

17 

Number 
8 (triathlon 

club members) 
‐‐‐ 

two time periods (post-
triathlon): 1-2 days, 4-5 

days; frame; harness near 
T8 spinal level; 

perturbations (T8 spinal 
level) 

upright trunk; sitting 
(90°) on a platform 

‐‐‐ 

decrease for the 
control group, no 
changes for the 

exercise-induced LBP 
group (between 1- to 
2-day mark and 4- to 
5-day mark for both)  

Age (years) 20.7 ‐‐‐ 

Height (cm) 183 ‐‐‐ 
Body Mass 

(kg) 
72.9 ‐‐‐ 

Status 
"recurrent, 

acute eiLBP"  
‐‐‐ 

Number 
9 (triathlon 

club members) 
‐‐‐ 

Age (years) 20.4 ‐‐‐ 

Height (cm) 179 ‐‐‐ 
Body Mass 

(kg) 
70.8 ‐‐‐ 

Status healthy ‐‐‐ 
         

Parkinson et al. 
(2004) 

8 

Number 8 ‐‐‐ 
4 sessions: before any 

lifting, after each of the 
three periods of lifting; 

frictionless table; 
moveable cradle   

lifting and carrying an 
object a specified 

distance, then 
replacing it on the 

ground  

‐‐‐ 

changes between the 
periods of lifting (not 
significantly affected 

by the lifting)  

Age (years) 24.6 ‐‐‐ 

Height (cm) 183 ‐‐‐ 
Body Mass 

(kg) 
84.6 ‐‐‐ 

Status healthy ‐‐‐ 
         

Toosizadeh et 
al. (2013) 

12 

Number 6 6 

2 measurements: pre-
lifting and post-lifting; 
perturbations (T8 spinal 

level); 3 angles; 2 rates for 
lifting  

“repetitive dynamic 
lifting” - 40 minutes 

‐‐‐ 

decrease (over 40 
minutes when all of 
the conditions were 
considered together)   

Age (years) 22 24 

Height (cm) 182.1 165.2 

Body Mass 
(kg) 

75.9 59.1 

Status healthy  
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2.3.1 Description of Stiffness 

Trunk stiffness was determined by assuming either an elastic or a viscoelastic 

model of the trunk, lower back, or lumbar spine, depending on the study and the stiffness 

it measured (Beach et al., 2005; Brown and McGill, 2009; Cholewicki et al., 2000; Drake 

and Callaghan, 2008; Gardner-Morse and Stokes, 2001; Granata and Rogers, 2007; 

Hendershot et al., 2011; Hodges et al., 2009; Miller et al., 2013; Parkinson et al., 2004; 

Shojaei et al., 2016; Shojaei et al., 2018; Toosizadeh et al., 2013; Vazirian et al., 2016; 

Vette et al., 2014). The studies that implemented an elastic model described stiffness as 

the change in moment over the change in angle between two time points (Drake and 

Callaghan, 2008; Shojaei et al., 2018) or by using moment-angle curves that were based 

on passive flexion that resulted from an externally-applied force and occurred while the 

subjects were lying down (Beach et al., 2005; Parkinson et al., 2004). Drake and 

Callaghan (2008) also used an externally-applied force, but this force resulted in axial 

rotation (passive), which occurred while their subjects knelt. Beach et al. (2005) used the 

trend-line slopes associated with their moment-angle curves to determine their stiffness 

measure, while Parkinson et al. (2004) used differentiation based on their moment-angle 

curves to determine their stiffness measure. In contrast, Shojaei et al. (2018) obtained 

their trunk kinematics and kinetics via passive rotation of their subjects’ legs from 

upright standing to the appropriate angle to upright standing. 

Most of the studies that implemented a viscoelastic model described stiffness via 

system identification (Brown and McGill, 2009; Cholewicki et al., 2000; Gardner-Morse 

and Stokes, 2001; Granata and Rogers, 2007; Hendershot et al., 2011; Hodges et al., 

2009; Miller et al., 2013; Toosizadeh et al., 2013; Vazirian et al., 2016; Vette et al., 
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2014); however, one study described stiffness as the change in moment over the change 

in angle between two time points (Shojaei et al., 2016). Shojaei et al. (2016) obtained 

their lower back kinematics and kinetics via passive rotation of their subjects’ legs from 

upright standing to one of two angles to upright standing, and the angle was maintained 

for four minutes. The studies that employed system identification related kinetics (force 

and/or moment) to kinematics (displacement and/or rotation) to characterize the 

parameters (including stiffness) of the mechanical model (or models) that each study 

assumed to represent the mechanical behavior of the trunk (Brown and McGill, 2009; 

Cholewicki et al., 2000; Gardner-Morse and Stokes, 2001; Granata and Rogers, 2007; 

Hendershot et al., 2011; Hodges et al., 2009; Miller et al., 2013; Toosizadeh et al., 2013; 

Vazirian et al., 2016; Vette et al., 2014). Depending on the study, the kinetics 

corresponded to the applied force(s) (Gardner-Morse and Stokes, 2001; Granata and 

Rogers, 2007; Hodges et al., 2009; Vette et al., 2014), trunk kinetics (Hendershot et al., 

2011; Miller et al., 2013; Toosizadeh et al., 2013; Vazirian et al., 2016), the moments 

related to trunk mass and the applied force(s) (Cholewicki et al., 2000; Vette et al., 2014), 

or zero torso moment (Brown and McGill, 2009). The kinematics corresponded to trunk 

displacement (Gardner-Morse and Stokes, 2001; Hendershot et al., 2011; Hodges et al., 

2009; Miller et al., 2013; Toosizadeh et al., 2013; Vazirian et al., 2016), trunk rotation 

(Brown and McGill, 2009; Cholewicki et al., 2000), both trunk displacement and trunk 

rotation – depending on the model (Vette et al., 2014), or torso (T8 level) displacement 

(Granata and Rogers, 2007). These kinetics and kinematics were obtained under force 

perturbations tests (Gardner-Morse and Stokes, 2001; Granata and Rogers, 2007; Vette et 

al., 2014), including weight release (Hodges et al., 2009) and quick release (Brown and 
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McGill, 2009; Cholewicki et al., 2000), or position perturbations tests (Hendershot et al., 

2011; Miller et al., 2013; Toosizadeh et al., 2013; Vazirian et al., 2016). To determine the 

parameters (e.g., stiffness) of the mechanical model (or models) that was (were) used, 

least squares-related methods (Brown and McGill, 2009; Granata and Rogers, 2007; 

Hodges et al., 2009; Miller et al., 2013; Toosizadeh et al., 2013; Vazirian et al., 2016), 

error minimization (Hendershot et al., 2011), good/best match procedures (Cholewicki et 

al., 2000; Vette et al., 2014), or nonlinear curve-fitting (Gardner-Morse and Stokes, 2001) 

was/were employed. Although these studies implemented a viscoelastic model, some of 

them determined their results while disregarding damping; however, each system’s 

damping response probably influenced the corresponding results (Gardner-Morse and 

Stokes, 2001; Hendershot et al., 2011; Miller et al., 2013; Toosizadeh et al., 2013; 

Vazirian et al., 2016).   

2.3.2 Time-Related Changes 

 Six of the twelve articles that discussed time-related changes pertained to trunk 

stiffness (Beach et al., 2005; Drake and Callaghan, 2008; Hendershot et al., 2011; Miller 

et al., 2013; Parkinson et al., 2004; Toosizadeh et al., 2013), while the other six pertained 

to range of motion of the lumbar spine or trunk (Adams et al., 1987; Callaghan and 

McGill, 2001; Dunk and Callaghan, 2010; Ensink et al., 1996; Fathallah et al., 1995; 

Kastelic et al., 2018).  

2.3.2.1 Trunk Stiffness 

 Hendershot et al. (2011), Miller et al. (2013) and Toosizadeh et al. (2013) 

measured “intrinsic trunk stiffness” using perturbations applied to the T8 spinal level. 

The perturbations in Hendershot et al. (2011) occurred before and after each subject’s 
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legs were rotated upwards from standing to the appropriate angles (based on a flexion-

relaxation angle of trunk muscles) and remained at these angles for either 2 minutes or 16 

minutes. Hendershot et al. (2011) reported a 23% decrease in trunk stiffness (from ~4230 

N/m to ~3250 N/m) after their subjects had remained at maximum flexion for 2 minutes 

and a 22% decrease in trunk stiffness (from ~4230 N/m to ~3296 N/m) after their 

subjects had remained at maximum flexion for 16 minutes,1 but the significance of these 

decreases with respect to time was not clearly mentioned. The study conducted by 

Toosizadeh et al. (2013) included “repetitive dynamic lifting” that lasted for 40 minutes 

and involved bending forward from standing to both pick up the load to be lifted and then 

replace this load (with load handles at certain percentages of each subject’s maximum 

flexion). They reported a decrease of ~6.98% in “intrinsic trunk stiffness” (from ~7550 

N/m to ~7030 N/m)1 over 40 minutes when all of the conditions (three angles, two rates 

for lifting) were considered together (Toosizadeh et al., 2013).  However, they mentioned 

how this decrease may have been underestimated due to the method used in this study 

(Toosizadeh et al., 2013). Miller et al. (2013) required their subjects (i.e., individuals who 

experienced exercise-induced LBP and controls) to sit during testing, and this testing 

occurred 1-2 days post-triathlon and then 4-5 days post-triathlon (same timeframe for 

both groups). Miller et al. (2013) reported a lower (~7 N/mm [~7000 N/m]) “intrinsic 

trunk stiffness” at the 4- to 5-day mark compared to the 1- to 2-day mark (~9 N/mm 

[~9000 N/m]) – a decrease of ~22.2% – for the control group but the same “intrinsic 

trunk stiffness” (~9 N/mm [~9000 N/m]) at both the 1- to 2-day mark and 4- to 5-day 

mark for the exercise-induced LBP group.1  

                                                 
1 These values were estimated using data presented in the cited study. 
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 Parkinson et al. (2004) reported stiffness values for varying proportions of the 

maximum flexion that was measured at the beginning of their testing period, and these 

stiffness values were obtained before any lifting (subjects lifted and carried an object a 

certain distance before replacing it on the ground) and after each of the three periods of 

lifting (30 minutes/period). They found that although changes in stiffness did exist 

between the periods of lifting, stiffness at each of the included angles was not 

significantly affected by the lifting involved in their study (Parkinson et al., 2004). Beach 

et al. (2005) reported stiffness-related values for three sessions (before two hours of 

sitting and after each hour) and three different stiffness zones. Only one of these zones, 

the zone corresponding to the middle range of the initial trial’s maximum lumbar flexion, 

illustrated session-related statistical significance in that the first session (before two hours 

of sitting) significantly differed from both the second (after sitting for one hour) and third 

(after sitting for two hours) sessions, but the second and third sessions did not 

significantly differ from each other (Beach et al., 2005). More specifically, the stiffness-

related value increased from before two hours of sitting to after sitting for one hour but 

did not change from after sitting for one hour to after sitting for two hours (Beach et al., 

2005). However, Beach et al. (2005) did not rigorously control what their subjects did or 

how long they had been out of bed before coming in for testing, did not measure the 

activation of the abdominal muscles, and mentioned how tissue loads varied between 

subjects while sitting. Furthermore, Drake and Callaghan (2008) found that “average 

axial twist stiffness” did not exhibit diurnal variations (between 8 a.m. and 3 p.m.). 
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2.3.2.2 Range of Motion of the Trunk/Lumbar Spine 

The methods that were used to measure the range of motion of the lumbar spine 

varied. Adams et al. (1987) measured this range of motion with electronic inclinometers 

positioned on the L1 spinous process and the S1 spinous process of their subjects as they 

bent forward maximally while sitting with straightened legs. Ensink et al. (1996) used 

inclinometers positioned on the T12 spinous process and the S1 spinous process and had 

their subjects undergo maximum flexion. Kastelic et al. (2018) and Dunk and Callaghan 

(2010) measured this range of motion using inertial measurement units or accelerometers 

while their subjects underwent maximum flexion from upright standing, but Dunk and 

Callaghan (2010) also instructed their subjects to touch their toes. Callaghan and McGill 

(2001) used a 3SPACE ISOTRAK with the sacrum as the source location and the T12/L1 

level as the sensor location, and they used a protocol that began with testing range of 

motion, followed by 3 minutes of standing, then a second testing of range of motion, 

followed by 2 hours of sitting, then a third testing of range of motion, followed by a 

second 3 minutes of standing, and finally, a fourth testing of range of motion. Fathallah et 

al. (1995) measured trunk range of motion using a motion monitor-harness system on the 

thorax and pelvis of subjects while they moved from an initial posture to their  

“maximum range of motion” and then back to the initial posture.  

 Adams et al. (1987) reported a 5.0° increase in lumbar flexion from early morning 

to late afternoon. Callaghan and McGill (2001) reported a 1.1% increase in “[p]eak 

lumber spine flexion” after the first three minutes of standing compared to before this 

standing, a 0.1% increase in “[p]eak lumber spine flexion” after two hours of sitting 

compared to before the first three minutes of standing, and a 2.8% increase in “[p]eak 
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lumber spine flexion” after the second three minutes of standing compared to before the 

first three minutes of standing – none of these had statistical significance. Ensink et al. 

(1996) reported an ~25.78% increase in “[t]otal lumbar range of motion” (from 54.30° to 

68.30°) and an ~26.30% increase in range of flexion (from 42.20° to 53.30°) from 8-9 

a.m. to 4-5 p.m. Fathallah et al. (1995) reported increases in the “percentage of maximum 

range of motion” from one hour after their subjects got up for the day (morning) to four 

hours after this (afternoon) to another four hours later (evening) (discrete time points) in 

the sagittal plane, but these did not have statistical significance. Kastelic et al. (2018) 

reported no changes in “lumbar range of motion” from before to after a work shift of their 

subjects, while Dunk and Callaghan (2010) reported how after their subjects had sat for 

90 minutes, “lumbar spine range of motion” was lower, and this was the same for their 

subjects with and without LBP related to sitting.  

2.4 Discussion 

 The purpose of this narrative review was to compile information that is relevant to 

work-related changes in trunk stiffness and/or other measures that are related to trunk 

stiffness (e.g., range of motion of the trunk). This review was structured in such a way so 

as to first introduce the motivation for the research and how this motivation, in a way, is 

related to spinal stability and then provide a summary of studies that discussed trunk 

stiffness or related measures.  

When describing trunk stiffness, studies either assumed an elastic model or a 

viscoelastic model of the part of the trunk/spine that was investigated (Beach et al., 2005; 

Brown and McGill, 2009; Cholewicki et al., 2000; Drake and Callaghan, 2008; Gardner-

Morse and Stokes, 2001; Granata and Rogers, 2007; Hendershot et al., 2011; Hodges et 
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al., 2009; Miller et al., 2013; Parkinson et al., 2004; Shojaei et al., 2016; Shojaei et al., 

2018; Toosizadeh et al., 2013; Vazirian et al., 2016; Vette et al., 2014). The studies that 

implemented an elastic model determined stiffness from moment-angle curves (Beach et 

al., 2005; Parkinson et al., 2004) or by dividing the change in moment by the change in 

angle between two time points (Drake and Callaghan, 2008; Shojaei et al., 2018). These 

studies used protocols involving passive flexion (Beach et al., 2005; Parkinson et al., 

2004), axial rotation (passive) (Drake and Callaghan, 2008), or passive rotation of the 

participants’ legs (Shojaei et al., 2018). The studies that implemented a viscoelastic 

model determined stiffness by dividing the change in moment by the change in angle 

between two time points (Shojaei et al., 2016) or using a system identification 

methodology (Brown and McGill, 2009; Cholewicki et al., 2000; Gardner-Morse and 

Stokes, 2001; Granata and Rogers, 2007; Hendershot et al., 2011; Hodges et al., 2009; 

Miller et al., 2013; Toosizadeh et al., 2013; Vazirian et al., 2016; Vette et al., 2014). For 

all of the studies that involved system identification, kinetics were related to kinematics 

to characterize the corresponding model parameters; however, what the kinetics and 

kinematics corresponded to varied between these studies, in addition to how they were 

obtained and how the model parameters were determined (Brown and McGill, 2009; 

Cholewicki et al., 2000; Gardner-Morse and Stokes, 2001; Granata and Rogers, 2007; 

Hendershot et al., 2011; Hodges et al., 2009; Miller et al., 2013; Toosizadeh et al., 2013; 

Vazirian et al., 2016; Vette et al., 2014). Furthermore, because some of the studies that 

implemented a viscoelastic model disregarded damping when determining stiffness 

(Gardner-Morse and Stokes, 2001; Hendershot et al., 2011; Miller et al., 2013; 

Toosizadeh et al., 2013; Vazirian et al., 2016), it is important to consider the potential 
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implications of such an assumption on the results and their physiological accuracy and 

ability to be interpreted (Toosizadeh et al., 2013).   

 Time-related changes in trunk stiffness that were reported in the literature were 

contradictory and included decreases, with some potentially being non-significant with 

regard to time (Hendershot et al., 2011; Miller et al., 2013; Toosizadeh et al., 2013); an 

increase (Beach et al., 2005); non-significant changes (Parkinson et al., 2004); and/or no 

changes/no diurnal variations (Beach et al., 2005; Drake and Callaghan, 2008; Miller et 

al., 2013). As evidenced, Miller et al. (2013) and Beach et al. (2005) reported a decrease 

or increase and no change for their data, depending on the group (Miller et al., 2013) or 

the session (Beach et al., 2005), while the other studies reported either changes or no 

diurnal variations (Drake and Callaghan, 2008; Hendershot et al., 2011; Parkinson et al., 

2004; Toosizadeh et al., 2013). Hendershot et al. (2011) and Toosizadeh et al. (2013) 

reported decreases/a decrease in trunk stiffness over time; however, Hendershot et al. 

(2011) reported larger, but not clearly defined as significant with respect to time, 

decreases (23% after 2 minutes of maximum flexion and 22% after 16 minutes of 

maximum flexion), while Toosizadeh et al. (2013) reported a smaller, but significant, 

decrease (~6.98% after “repetitive dynamic lifting” occurred over 40 minutes when all of 

the conditions were considered together). The magnitudes of their stiffness values also 

differed such that those reported by Toosizadeh et al. (2013) were >1.5 times larger than 

those reported by Hendershot et al. (2011). Miller et al. (2013) reported stiffness 

magnitudes that were similar to (~7000 N/m) or larger than (~9000 N/m) those in 

Toosizadeh et al. (2013), whose reported range was ~7030-7550 N/m, and >1.5 times 

larger than those in Hendershot et al. (2011), whose reported range was ~3250-4230 N/m. 
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Despite this large difference in magnitudes between Miller et al. (2013) and Hendershot 

et al. (2011), trunk stiffness decreased similarly in both studies (~22.2% [for one group; 

the other group exhibited no change] vs. 22% and 23%, respectively). Additionally, 

among the reviewed articles that discussed stiffness, only Drake and Callaghan (2008) 

considered a length of time (seven hours) that was similar to the length of a workday.   

 The differences in trunk stiffness between the Hendershot et al. (2011), Miller et 

al. (2013), and Toosizadeh et al. (2013) studies may have resulted from the different 

activities (passive rotation for Hendershot et al. (2011), lifting for Toosizadeh et al. 

(2013), and triathlon for Miller et al. (2013)) the participants performed before any 

testing or performed or underwent between pre- and post-testing. The differences in trunk 

stiffness between Hendershot et al. (2011), Miller et al. (2013), and Toosizadeh et al. 

(2013) also may have resulted from the posture adopted during the perturbations: sitting 

upright (Miller et al., 2013) vs. standing upright (Hendershot et al., 2011; Toosizadeh et 

al., 2013). When standing upright, the tissues of the lower back have only a small passive 

contribution to stiffness (Shojaei et al., 2016). Additionally, according to a study that 

compared sitting and standing, when sitting, certain tissues’ “passive force contribution” 

was greater; however, the subjects sat with greater flexion than when they were standing 

and did not always stand in an upright manner and the study investigated range of 

motion, not stiffness (Callaghan and McGill, 2001). 

 Time-related changes in range of motion were also mixed, with some studies 

reporting increases/an increase, not all of which were significant (Adams et al., 1987; 

Callaghan and McGill, 2001; Ensink et al., 1996; Fathallah et al., 1995), and others 

reporting no change (Kastelic et al., 2018) or a decrease (Dunk and Callaghan, 2010). 
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Adams et al. (1987) and Ensink et al. (1996) investigated similar measures over a similar 

period of time; however, the increase in the range of motion reported by Ensink et al. 

(1996) was >2 times larger than the increase reported by Adams et al. (1987). 

Additionally, the increases in range of motion reported by Callaghan and McGill (2001) 

and Fathallah et al. (1995) had no statistical significance. Dunk and Callaghan (2010) 

included a time period for testing of only 90 minutes, which was much shorter than the 

time periods of Adams et al. (1987), Ensink et al. (1996), Fathallah et al. (1995), and 

Kastelic et al. (2018) but slightly similar to the time period of Callaghan and McGill 

(2001). Of these six studies, Kastelic et al. (2018) seemed to be the only one in which 

data were collected based on an actual workday, with subjects coming in before they 

worked and after they worked. 

 Two of the studies that were mentioned in this review compared LBP and control 

groups in relation to trunk stiffness (Hodges et al., 2009; Miller et al., 2013). Hodges et 

al. (2009) reported a significantly lower “effective trunk stiffness” (1641 N/m) for the 

control group compared to 1997 N/m for the recurrent LBP group for forward 

perturbations – the LBP group had an ~1.217 times larger stiffness. Compared to Hodges 

et al. (2009), Miller et al. (2013) reported larger stiffness values (~7000-9000 N/m), with 

a similar “intrinsic trunk stiffness” (~9000 N/m) for their two groups at the 1- to 2-day 

mark and a significantly higher “intrinsic trunk stiffness” (~9000 N/m) for the group with 

exercise-induced LBP than for the control group (~7000 N/m) at the 4- to 5-day mark. 

Two of these three scenarios demonstrated higher trunk stiffness values for people with 

LBP (either recurrent or exercise-induced), potentially illustrating some kind of 

relationship between trunk stiffness and LBP.  
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2.5 Conclusion 

Despite the association of trunk stiffness with spinal stability and spinal stability 

with LBP (with its link to missing work), there seems to be a limited amount of 

information concerning work-related changes in trunk stiffness. Of the articles that were 

reviewed and that discussed stiffness, only one used a large enough timeframe (seven 

hours) that could be considered to be similar to the length of a workday. Additionally, 

only one of the reviewed articles seemed to base their data collection on an actual 

workday and it investigated range of motion, not trunk stiffness. Therefore, future studies 

should investigate how trunk stiffness is affected by 8-hour (at least) workdays, 

considering various types of jobs and both control and LBP populations. This would aid 

in understanding workday-related changes in trunk stiffness and how trunk stiffness may 

differ between people with and without LBP while considering their workdays.    
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CHAPTER 3: METHODS 

3.1 Study Design 

 This study was a repeated measures study that involved 24 research participants 

(33 total, but stiffness data were collected from 24 only) who each completed two data 

collection sessions. Participants were nursing personnel, including RNs (two were Board 

Certified, two were CPNs, two were CCRPs, two were CCRNs, and two were TCRNs), 

NCTs, and an FNP-BC, who worked 8- to 12-hour shifts and were employed by the 

University of Kentucky HealthCare System. They were recruited into two equal-sized 

groups based on their job activity levels: more physically demanding (denoted ‘active’) 

vs. more sedentary (sitting for ≥50% of their shifts; denoted ‘inactive’). The demographic 

data of the study population are provided in Table 3. The inclusion criteria were an age 

between 20 and 60 years old, employment as a nurse or as other nursing personnel with 

8- to 12-hour shifts, and freedom from back pain over the past 12-month period that 

would have necessitated missing work or visiting a doctor. The primary exclusion 

criterion was a history of spinal surgery. The presence of certain musculoskeletal 

disorders that were deemed by the researchers to have potentially negative effects on 

participant safety and the study’s results also was considered to be an exclusion criterion. 

Data were not collected until each participant had completed consenting and screening 

procedures that were approved by the University of Kentucky Institutional Review 

Board. 
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Table 3. Demographic data (mean ± S.D. for age, body mass, and height) of the two 
study groups along with their p-values from independent t-tests.   

  Job Activity Level   
  Inactive Active p-value 

Gender ‐‐‐ ‐‐‐ ‐‐‐ 
Male 0 3 ‐‐‐ 

Female 12 9 ‐‐‐ 
Age (years) 46.8 ± 9.5 30.6 ± 10.2 0.001* 
Body Mass (kg) 67.6 ± 13.6 68.3 ± 10.7 0.887 
Height (cm) 163.46 ± 3.86 166.79 ± 9.56 0.281 

  *statistically significant 
 

3.2 Data Collection Procedure 

 Each participant came in for data collection before and after his or her work shift, 

and each session took ~30 minutes to complete. The session before the participant’s shift 

involved the consenting and screening processes and the pre-shift data collection, while 

the session after the participant’s shift involved collecting the post-shift data and 

establishing the activities he or she had performed during the shift so that a better 

understanding of the participant’s job activity level could be obtained. Data collection for 

both sessions involved several tests:  

 two forward bending and backward return tests – one at a slow, comfortable pace 

and one at a faster pace (both with self-selected paces, three repetitions each);  

 a manual material handling test with an ~15-lb load (three repetitions); and 

 two passive flexion tests in an in-house testing frame – one test involving an ~7.5-

lb load being held by the participant and the other test not involving this load.   

In each session, the forward bending and backward return tests were performed first, 

followed by the manual material handling test, and then the two passive flexion tests. 

However, both the order of the two forward bending and backward return tests (slow 



 

25 
 

pace and faster pace) and that of the two passive flexion tests (with and without the ~7.5-

lb load) were randomized for both sessions per participant.  

 Before data collection occurred, each participant was instrumented with inertial 

measurement units (IMUs; Xsens, Enschede, The Netherlands) that were placed on straps 

on the back at about the T12 spinal level, on the sacrum at about the S1 spinal level, on 

the outside-facing portion of the shanks right above the ankles, and on the outside-facing 

portion of the thighs right above the knees (Figure 1). The participant then was instructed 

to stand on a force plate (AMTI, Watertown, Massachusetts) to perform the forward 

bending and backward return tests and the manual material handling test. For the forward 

bending and backward return tests, the participant began in an upright position with his or 

her arms crossed over his or her chest, bent forward to his or her maximum lumbar 

flexion, and then returned to the upright position. Additionally, for the slow forward 

bending and backward return test, the participant held the initial and the maximum 

lumbar flexion positions for ~5 seconds each, while for the fast forward bending and 

backward return test, the participant bent forward to his or her maximum lumbar flexion 

and immediately returned to the upright position. These tests were performed in a manner 

similar to earlier studies – Shojaei et al. (2018) and Shojaei et al. (2017). Manual material 

handling involved the participant starting in an upright position, waiting ~5 seconds, 

bending forward (while also bending his or her knees) to pick up an ~15-lb load from 

blocks on the floor and bringing this load to chest height, holding the load at chest height 

for ~5 seconds, bending forward and placing the load back on the blocks near its initial 

position, and then returning to the upright position (Figure 2).    
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Figure 2. The manual material handling test. Participants ended this test in the posture shown in 
the leftmost image of this figure. 

Figure 1. The orange IMUs are located on the back at about the T12 spinal level and on the 
sacrum at about the S1 spinal level (left) and on the outside-facing portion of the shanks right 
above the ankles and on the outside-facing portion of the thighs right above the knees (right). 
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For the passive flexion tests, each participant was fitted with a harness around his 

or her chest and thoracic spine prior to standing on the platform of the in-house testing 

frame (Figure 3). The center of rotation of this platform was (approximately) aligned with 

the participant’s hip by adjusting the platform’s height. A seatbelt-type restraint was 

buckled around the participant’s pelvis for safety reasons. Additionally, a rod was 

attached to the harness and adjusted horizontally so that the participant’s upper body was 

almost purely vertical in the initial position. For the passive flexion test with the ~7.5-lb 

load, the participant held the load beneath this rod and approximately in line with the 

participant’s chest (Figure 3). Furthermore, during the passive flexion tests, the platform 

on which the participant was standing was rotated upward to 70% of the maximum 

lumbar flexion observed during the slow forward bending and backward return test and 

then immediately brought back to approximately its initial position so that the legs were 

nearly vertical. This rotation was achieved via an actuator that rotated the platform at 

~3°/second, and the corresponding kinematic data were collected at 60 Hz via an IMU 

located on the top portion of the platform. The kinetic data corresponding to the tension 

or compression in the rod between the harness and the testing frame that occurred during 

this rotation were collected at a sampling rate greater than 2500 Hz via a load cell 

(Interface SMT2-2000N, Scottsdale, Arizona) positioned on the rod. MT Manager 

(Xsens, Enschede, The Netherlands) was used for the kinematic data collection, while 

MATLAB (The MathWorks, Inc., Natick, Massachusetts) was used for the kinetic data 

collection. Synchronization of the kinematic and kinetic data occurred via a trigger signal 

that was generated by MT Manager at the time the kinematic data first began to be 

collected and was detected by MATLAB, which already was running and collecting 
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kinetic data. After the participant’s legs were returned to a (nearly) vertical position, 

another signal was generated by MT Manager that indicated the end of kinematic data 

collection. This procedure for the passive flexion tests is similar to that of a previous 

study – Shojaei et al. (2018). 

 
 
 

 

θ 

Figure 3. The passive flexion test with the ~7.5-lb load. The passive flexion test without this 
load would look similar, but there would not be a load in the participant’s hands and the hands 
would be relaxing next to his or her thighs. (The red box outlines the IMU that was used to 
measure the platform kinematics, while the blue box outlines the load cell that was used to 
measure the corresponding kinetic data. The yellow arrow illustrates the direction in which the 
legs were rotated to reach 70% of the participant’s maximum lumbar flexion.) 
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3.3 Data Analysis  

 The kinematic data corresponding to the rotation of the participant’s legs by the 

testing frame were filtered via a fourth-order low-pass Butterworth filter with a cut-off 

frequency of 6 Hz (Shojaei et al., 2018). The kinetic data were filtered via a fourth-order 

low-pass Butterworth filter with a cut-off frequency of 50 Hz (Shojaei et al., 2018). 

Additionally, in-house MATLAB codes were developed to calculate two measures of 

trunk stiffness for each participant: 1) the average trunk stiffness over the entire flexion 

portion of each passive flexion test (i.e., from the beginning of the rotation of the 

participant’s legs [initial angle] to the maximum flexion angle) (hereafter called Stiffness 

Measure 1; Equation 1; Figure 4) and 2) the average trunk stiffness over a fixed range of 

flexion from the initial angle to a specific target angle that was the same for almost all of 

the participants’ data (hereafter called Stiffness Measure 2; Equation 2; Figure 5). This 

target angle was the minimum flexion angle used for the passive flexion tests among all 

participants, sessions, and conditions and had a value of approximately 12°.  
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∆𝑀
∆𝜃

ൌ
𝑀௠௔௫௜௠௨௠ ௔௡௚௟௘ െ 𝑀௜௡௜௧௜௔௟ ௔௡௚௟௘

𝜃௠௔௫௜௠௨௠ െ 𝜃௜௡௜௧௜௔௟

ൌ
൫𝐹௠௔௫௜௠௨௠ ௔௡௚௟௘ െ 𝐹௜௡௜௧௜௔௟ ௔௡௚௟௘൯ ∗ 𝑑

𝜃௠௔௫௜௠௨௠ െ 𝜃௜௡௜௧௜௔௟
 

 
(1) 

Wherein 𝑀௠௔௫௜௠௨௠ ௔௡௚௟௘ is the moment at the maximum flexion angle, 𝑀௜௡௜௧௜௔௟ ௔௡௚௟௘ is 

the moment at the beginning of rotation, 𝜃௠௔௫௜௠௨௠ is the maximum flexion angle, 𝜃௜௡௜௧௜௔௟ 

is the angle at the beginning of rotation, 𝐹௠௔௫௜௠௨௠ ௔௡௚௟௘ is the force at the maximum 
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flexion angle, 𝐹௜௡௜௧௜௔௟ ௔௡௚௟௘ is the force at the beginning of rotation, and 𝑑 is the vertical 

distance from ~1.25 in. below the S1 spinal level to the rod attached to the harness.   

  

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 2 ൌ
∆𝑀
∆𝜃

ൌ
𝑀௦௣௘௖௜௙௜௖ ௔௡௚௟௘ െ 𝑀௜௡௜௧௜௔௟ ௔௡௚௟௘

𝜃௦௣௘௖௜௙௜௖ െ 𝜃௜௡௜௧௜௔௟

ൌ
൫𝐹௦௣௘௖௜௙௜௖ ௔௡௚௟௘ െ 𝐹௜௡௜௧௜௔௟ ௔௡௚௟௘൯ ∗ 𝑑

𝜃௦௣௘௖௜௙௜௖ െ 𝜃௜௡௜௧௜௔௟
 

 

 

(2) 

 

Wherein 𝑀௦௣௘௖௜௙௜௖ ௔௡௚௟௘ is the moment at the specific target angle, 𝜃௦௣௘௖௜௙௜௖ is the specific 

target angle, 𝐹௦௣௘௖௜௙௜௖ ௔௡௚௟௘ is the force at the specific target angle, and the other variables 

are defined the same as above. 

Figure 4. Example data from one participant illustrating the beginning (black vertical line on 
the left) and end (black vertical line towards the middle) points for the calculation of Stiffness 
Measure 1.  
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3.4 Statistical Analysis 

 For each of the four main stiffness measure-loading condition combinations 

(excluding without load vs. with load), dependent and independent t-tests were performed 

using SPSS (IBM SPSS Statistics 26, IBM, Armonk, New York). For the dependent t-

tests, the dependent variable was either Stiffness Measure 1 or Stiffness Measure 2 and 

the independent variable was session (pre-shift vs. post-shift). For the independent t-tests, 

the dependent variable was the difference in the stiffness measure (either Stiffness 

Measure 1 or Stiffness Measure 2) between pre-shift and post-shift and the independent 

variable was job activity level (‘inactive’ vs. ‘active’). Additional analyses involved 

investigating the difference in trunk stiffness between the two loading conditions (with 

Figure 5. Example data from one participant illustrating the beginning (left black vertical 
line) point and the point at which the specific angle occurred for these data (right black 
vertical line) for the calculation of Stiffness Measure 2.  
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and without the ~7.5-lb load in the participant’s hands) for both stiffness measures using 

dependent t-tests. Depending on the data being analyzed, 0-3 participants’ data were 

excluded due to errors in the collected data. One-tailed p-values were calculated by hand 

using the outputs from SPSS, and adjusted p-values were calculated by hand using the 

Bonferroni-Holm correction. For the statistical analyses, p≤0.05 indicated statistical 

significance. Power analyses were performed in R (R Version 4.0.4 [2021-02-15], The R 

Foundation for Statistical Computing, Vienna, Austria) using the ‘pwr’ package (R 

Package Version 1.3-0, Stephane Champely [2020]).  
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CHAPTER 4: RESULTS 

 The results of this study are summarized in Tables 4, 5, and 6 and described in 

more detail in the following sections.  

Table 4. Mean ± S.D. of Stiffness Measure 1 and Stiffness Measure 2 for each session 
and loading condition, along with the corresponding p-values. 

  Session   

  Pre-Shift Post-Shift p-value 
Stiffness Measure 1 (Nm/rad) ‐‐‐ ‐‐‐ ‐‐‐ 

Without Load (n=22) 47 ± 23 39 ± 19 0.156 [adjusted] 
With Load (n=21) 53 ± 25 48 ± 25 0.260 [adjusted] 

Stiffness Measure 2 (Nm/rad) ‐‐‐ ‐‐‐ ‐‐‐ 
Without Load (n=24) 44 ± 25 45 ± 30 0.553 [adjusted] 

With Load (n=23) 54 ± 30 52 ± 27 0.768 [adjusted] 

        
Table 5. Mean ± S.D. of the difference in Stiffness Measure 1 and the difference in 
Stiffness Measure 2 for each job activity level and loading condition, along with the 
corresponding p-values. 

  Job Activity Level   
  Inactive Active p-value 
Difference in Stiffness Measure 1 (Nm/rad) ‐‐‐ ‐‐‐ ‐‐‐ 

Without Load (n=22) 0.86 ± 23 -15 ± 27 0.156 [adjusted] 
With Load (n=21) 0.36 ± 22 -10 ± 19 0.260 [adjusted] 

Difference in Stiffness Measure 2 (Nm/rad) ‐‐‐ ‐‐‐ ‐‐‐ 
Without Load (n=24) 14 ± 49 -11 ± 31 0.146 [adjusted] 

With Load (n=23) -0.21 ± 29 -3.3 ± 27 0.768 [adjusted] 

        
Table 6. Mean ± S.D. of Stiffness Measure 1 and Stiffness Measure 2 for each loading 
condition along with the corresponding p-values. 

  Loading Condition   
  Without Load With Load p-value 
Stiffness Measure 1 (Nm/rad) (n=42) 43 ± 21 51 ± 25 0.002* 

Stiffness Measure 2 (Nm/rad) (n=46) 45 ± 28 53 ± 28 0.086 

 *statistically significant  
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4.1 Stiffness Measure 1  

4.1.1 The Effects of Work-Related Activities  

 For the loading condition without the load (n=22: 10 inactive, 12 active), the 

mean difference in Stiffness Measure 1 for post-shift minus pre-shift was not statistically 

significant (p=0.156 [adjusted]), with 39 ± 19 Nm/rad for post-shift and 47 ± 23 Nm/rad 

for pre-shift (Figure 6A). For the loading condition with the load (n=21: 10 inactive, 11 

active), the mean difference in Stiffness Measure 1 for post-shift minus pre-shift was also 

not statistically significant (p=0.260 [adjusted]), with 48 ± 25 Nm/rad for post-shift and 

53 ± 25 Nm/rad for pre-shift (Figure 6B). 

 

 
Figure 6. Mean ± S.D. of Stiffness Measure 1 for pre-shift vs. post-shift for the loading  
conditions without the load (A) and with the load (B). The error bars represent ± 1 S.D.  

A 

B 
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4.1.2 The Effects of Physical Activity 

 For the loading condition without the load (n=22: 10 inactive, 12 active), job 

activity level had no statistically significant effect on the difference in Stiffness Measure 

1 between pre-shift and post-shift (p=0.156 [adjusted]), with 0.86 ± 23 Nm/rad for 

‘inactive’ and -15 ± 27 Nm/rad for ‘active’ (Figure 7A). For the loading condition with 

the load (n=21: 10 inactive, 11 active), job activity level also did not statistically 

significantly affect the difference in Stiffness Measure 1 between pre-shift and post-shift 

(p=0.260 [adjusted]), with 0.36 ± 22 Nm/rad for ‘inactive’ and -10 ± 19 Nm/rad for 

‘active’ (Figure 7B). 

 

 
Figure 7. Mean ± S.D. of the difference in Stiffness Measure 1 (post-shift minus pre-
shift) for the ‘active’ vs. ‘inactive’ job activity levels for the loading conditions without 
the load (A) and with the load (B). The error bars represent ± 1 S.D.  

A 

B 
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4.1.3 The Effects of Loading Condition (Without vs. With Load) [n=42] 

 The mean difference in Stiffness Measure 1 for the loading condition without the 

load minus the loading condition with the load was statistically significant (p=0.002), 

with the loading condition with the load (51 ± 25 Nm/rad) having an ~7.1 Nm/rad greater 

Stiffness Measure 1, on average, than the loading condition without the load (43 ± 21 

Nm/rad; Figure 8).  

 
Figure 8. Mean ± S.D. of Stiffness Measure 1 for the loading condition without the load 
vs. the loading condition with the load. The error bars represent ± 1 S.D.  

 
 

4.2 Stiffness Measure 2  

4.2.1 The Effects of Work-Related Activities 

 For the loading condition without the load (n=24: 12 inactive, 12 active), the 

mean difference in Stiffness Measure 2 for post-shift minus pre-shift was not statistically 

significant (p=0.553 [adjusted]), with 45 ± 30 Nm/rad for post-shift and 44 ± 25 Nm/rad 

for pre-shift (Figure 9A). For the loading condition with the load (n=23: 12 inactive, 11 
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active), the mean difference in Stiffness Measure 2 for post-shift minus pre-shift was also 

not statistically significant (p=0.768 [adjusted]), with 52 ± 27 Nm/rad for post-shift and 

54 ± 30 Nm/rad for pre-shift (Figure 9B). 

 

 
Figure 9. Mean ± S.D. of Stiffness Measure 2 for pre-shift vs. post-shift for the loading 
conditions without the load (A) and with the load (B). The error bars represent ± 1 S.D.  
 

4.2.2 The Effects of Physical Activity 

 For the loading condition without the load (n=24: 12 inactive, 12 active), job 

activity level had no statistically significant effect on the difference in Stiffness Measure 

2 between pre-shift and post-shift (p=0.146 [adjusted]), with 14 ± 49 Nm/rad for 

‘inactive’ and -11 ± 31 Nm/rad for ‘active’ (Figure 10A). For the loading condition with 

B 

A 
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the load (n=23: 12 inactive, 11 active), job activity level also did not have a statistically 

significant effect on the difference in Stiffness Measure 2 between pre-shift and post-shift 

(p=0.768 [adjusted]), with -0.21 ± 29 Nm/rad for ‘inactive’ and -3.3 ± 27 Nm/rad for 

‘active’ (Figure 10B).  

 

 
Figure 10. Mean ± S.D. of the difference in Stiffness Measure 2 (post-shift minus pre-
shift) for the ‘active’ vs. ‘inactive’ job activity levels for the loading conditions without 
the load (A) and with the load (B). The error bars represent ± 1 S.D. 

 
 
 

A 

B 
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4.2.3 The Effects of Loading Condition (Without vs. With Load) [n=46] 

 The mean difference in Stiffness Measure 2 for the loading condition without the 

load minus the loading condition with the load was not statistically significant (p=0.086), 

with 45 ± 28 Nm/rad for the loading condition without the load and 53 ± 28 Nm/rad for 

the loading condition with the load (Figure 11). 

 
Figure 11. Mean ± S.D. of Stiffness Measure 2 for the loading condition without the load 
vs. the loading condition with the load. The error bars represent ± 1 S.D.  
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CHAPTER 5: DISCUSSION   

 The objective of this study was to investigate potential occupational and work-

related effects on trunk stiffness in nursing personnel. It was hypothesized that trunk 

stiffness would decrease over the course of a work shift for all nursing personnel but 

more so in personnel with more physically demanding job activity levels. Overall, the 

findings of this study did not support what we hypothesized since no significant changes 

occurred from pre-shift to post-shift and both job activity levels had statistically similar 

differences in the corresponding trunk stiffness measure (post-shift minus pre-shift) for 

our four trunk stiffness measure-loading condition combinations (excluding without load 

vs. with load). 

5.1 Analysis of Results 

 Our hypothesis concerning the decrease in trunk stiffness over the course of a 

work shift for nursing personnel was motivated by the reported changes in stiffness 

measures and range of motion of the lumbar spine mentioned in earlier studies. For 

example, Adams et al. (1987) reported an increased range of motion of the lumbar spine 

from early morning to late afternoon. Furthermore, short periods of exposure to potential 

physical risk factors for LBP (e.g., lifting (Pope et al., 2002) or work-related trunk 

flexion (Hoogendoorn et al., 2000)) have been reported in the literature to result in 

decreases in trunk stiffness measures (Hendershot et al., 2011; Toosizadeh et al., 2013). 

Due to the work environment of nursing personnel, who perform such activities as lifting 

and transporting patients (Jang et al., 2007) and are exposed to prolonged standing 

(Mendelek et al., 2011), they are exposed to various LBP risk factors for longer durations 

than those mentioned in earlier studies. Therefore, it was expected that there would be a 
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work-related decrease in the trunk stiffness of nursing personnel; however, our results did 

not support this hypothesis. It is possible that certain potential LBP risk factors, such as 

prolonged sitting (Mendelek et al., 2011), could have an effect on trunk stiffness opposite 

to that mentioned previously. For instance, Beach et al. (2005) reported an increased 

stiffness occurring after sedentary activities. Therefore, our findings of no work-related 

changes in our trunk stiffness measures could have resulted from the effects of potential 

LBP risk factors contradicting each other such that there would have been no net work-

related change in trunk stiffness. This is consistent with Drake and Callaghan (2008) who 

reported no variations in their stiffness measure (“axial twist stiffness”) between 8 a.m. 

and 3 p.m. (similar length of time to our study but a different stiffness measure) and 

Kastelic et al. (2018) who reported no work-related changes in “lumbar range of motion” 

(corresponding to an actual workday, similar to our study).  

Other reasons for the lack of significant work-related changes in the trunk 

stiffness of the nursing personnel in this study could be the time between the end of the 

subjects’ shifts and when they arrived at the lab for data collection and their modes of 

transportation to the lab. Some subjects may have come soon after their shift ended, while 

others may have spent some more time at their job location before leaving to come to the 

lab for data collection. In addition, some subjects may have walked or ridden their 

bicycles to the lab, while others may have driven. The extra time and the different 

activities may have affected trunk stiffness by negating any changes that may have 

occurred during the subjects’ work shifts or by allowing the subjects to recover their 

initial, or almost their initial, trunk stiffness. As discussed by Hendershot et al. (2011), 

after 16 minutes of maximum flexion, trunk stiffness (intrinsic) was fully recovered at 
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~10 minutes. Thus, it is possible to recover trunk stiffness, even at ~10 minutes, which 

would have been close to the time it would have taken the subjects for this study to arrive 

at the lab for data collection.   

Our only significant finding was the higher Stiffness Measure 1 for the loading 

condition with the load being held in the subjects’ hands than for the condition without 

this load (p=0.002). This difference in trunk stiffness between loading conditions is 

consistent with Shojaei et al. (2018) who reported how “changes in trunk bending 

stiffness” were significantly affected by load magnitude such that increasing the 

magnitude resulted in increases in this stiffness. These corresponding increases in load 

magnitude and trunk stiffness could be due to increases in muscle activity that correspond 

to a higher equilibrium demand (Shojaei et al., 2018), as mentioned in Shojaei et al. 

(2018) who used a similar testing setup to ours. Similarly, Vazirian et al. (2016) reported 

a higher “trunk intrinsic stiffness” at their higher extension effort level (30% vs. 20%), 

and Gardner-Morse and Stokes (2001) reported a higher trunk stiffness at their 40% 

steady-state effort as compared to their 20% effort.  

5.2 Limitations 

 There were several limitations in this study. Most importantly, this study was 

greatly underpowered. Based on the results of this study and power being set to 80%, the 

necessary sample size (>2000 subjects) is much larger than our sample size, illustrating 

the degree to which our study was underpowered. Additionally, our study population was 

not homogeneous since there were differences in age (age range = 21-58), gender (3 of 

the 24 subjects were male), nursing unit (14 different units), and length of work shift (8-

12 hours). An error in the procedure for data collection resulted in the use of a flexion 
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angle for a subject that was not equal to 70% of the subject’s maximum flexion; however, 

since this angle was reasonable and similar to 70% of the maximum flexion for other 

subjects, the corresponding data were analyzed. The rod was not consistently adjusted 

horizontally to ensure an upright posture; thus, trunk stiffness would have been measured 

from an initial posture of flexion or extension. The largest positive force at the initial 

angle corresponded to a trunk extension of ~5.7° and the largest negative force at the 

initial angle corresponded to a trunk flexion of ~4.4°, but the corresponding changes in 

trunk stiffness were <10%. Due to the shapes of the force curves, the target angle for 

Stiffness Measure 2 could not be used for part of two subjects’ data. Therefore, the end 

point force and angle were based on the first peak in the force data after each subject’s 

legs had begun to be rotated. In addition, due to the shapes of the rotation curves for part 

of two subjects’ data, the codes picked the wrong index for the rotation angle and trunk 

stiffness was calculated by hand. Regarding statistical assumptions, for Stiffness Measure 

1 and the loading condition without the load, the Q-Q plot for the ‘active’ data was 

somewhat curvilinear, mainly in the middle, but was still considered to be approximately 

normal. In addition, for Stiffness Measure 2 and the loading condition with the load, the 

Q-Q plot for the ‘active’ data was slightly curvilinear in the middle but did not appear to 

be too non-normal.  
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CHAPTER 6: FUTURE STUDIES  

 Future studies should try to decrease the variability of their study population so 

that a large sample size could be avoided but significant work-related changes in trunk 

stiffness could still be detected. One potential method to form a less variable sample 

population could be recruiting subjects from one job population (e.g., nurses who work 

only in the Emergency Department) and with similar lengths of their work shifts (e.g., 

only ~8 hours or ~12 hours and not a range from 8-12 hours). Another method could be 

setting up the equipment for data collection closer to where the subjects work so that 

there would be less time between the end of their work shifts and the start of the post-

shift data collection session and fewer extraneous, non-work-related activities between 

the end of their work shifts and the start of the post-shift session. It may also be more 

beneficial to study subjects with either more physically demanding job activity levels or 

more sedentary job activity levels instead of including subjects with both job activity 

levels, which could allow for a deeper focus on potential time-related changes.  
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APPENDIX 

PARTICIPANT INFORMATION AND SCREENING FORM 

ሺForm-Mሻ 

 

Project Title: 

Work related diurnal changes in trunk mechanical behavior 

 

Investigators: 

Matt Ballard, Department of Biomedical Engineering, UK 
Maeve McDonald, Department of Biomedical Engineering, UK 

Clare Tyler, Department of Biomedical Engineering, UK 
Korbin Jackson, College of Engineering, UK 

Elizabeth Powell, Stroke and Spinal Cord Rehabilitation Program, UK 
Lumy Sawaki, Stroke and Spinal Cord Rehabilitation Program, UK 

Babak Bazrgari, Department of Biomedical Engineering, UK 
 

 

Contact Information: 

Maeve McDonald 
513 Robotics and Manufacturing Building 

Phone: 920-379-5050 
Email: maeve.mcdonald@uky.edu 

 

Participant #: __________ ሺfilled out by the experimenterሻ                          Date: ___________ 

 

Part I – Verification of Advertised Criteria 

Age group:  21-60  Other 

During the past 12 months, have you had any episode of back pain that resulted in visiting a 
doctor or missing a work day?  Yes No 

Are you a nurse? Yes No 

Does your job require you to sit most of the day? Yes No 

*** This section to be completed via email.  Invite participant for visit only if the underlined 
answers given. 
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Part II – Personal Information 

Name: ሺlastሻ ______________________________, ሺfirstሻ _____________________________________  

Phone: ___________________________ Email: _______________________________________ 

Address: _____________________________________________________________________________ 

    _____________________________________________________________________________ 

Age: _____________ 

Gender ሺplease circleሻ:    Male    Female 

Race ሺplease circleሻ: 

 Caucasian African-American Asian     Native American/Alaskan 

 Native Hawaiian/Pacific Islander Other: _________________________ 

Nursing Unit: _______________________ Number of years at current occupation: ____________ 

 

Part III – Medical History Relevant to the Project 

Have you had any history of the following?  If yes, please explain: 

1. Musculoskeletal problem 

a. Upper or lower back 

b. Shoulder and upper extremity 

c. Lower extremity 

2. Neuromuscular disease 

3. Spinal surgery 

4. Joint ሺhipሻ replacement 

5. Pregnancy during the past year 

6. Fall 

7. Problem caused by arthritis, muscle problem, broken bone, etc. that limits your 

ability to walk or bend your joints 

8. Any other disorders, illnesses or injuries that you feel might interfere with this 
study 
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Part IV – Habitual Physical Activities 

Choose the answer which best meets your conditions 

1. Level of physical activity in your work: low moderate high 

2. Frequency of sitting at work:  never seldom     sometimes often always 

3. Frequency of standing at work: never seldom     sometimes often always 

4. Frequency of walking at work:  never seldom     sometimes often always 

5. Frequency of heavy lifting at work: never seldom     sometimes often always 

6. Frequency of feeling tired after work: never seldom     sometimes often always 

7. Frequency of sweating at work: never seldom     sometimes often always 

8. In comparison with others close to your age is your work physically: 

Much heavier      Heavier As heavy Lighter  Much lighter 

9. Do you play sports: Yes No 

If yes: 

a. Which sport do you play most frequently? 

b. How many hours per week do you play? 

c. Which days of the week do you play? 

d. How many months per year do you play? 

If you play a second sport: 

e. Which sport do you play? 

f. How many hours per week do you play? 

g. Which days of the week do you play? 

h. How many months per year do you play? 

10. In comparison with others, your physical activity during leisure time is: 

Much more  More  The same Less  Much less 

11. Frequency of seating during leisure: never seldom     sometimes often always 

12. During leisure do you play sports never seldom     sometimes often always 

13. During leisure do you watch TV never seldom     sometimes often always 

14. During leisure do you walk  never seldom     sometimes often always 

15. During leisure do you cycle  never seldom     sometimes often always 

16. How many minutes per day do you walk and/or cycle to and from work, school and 

shopping? 

൏5   5 – 15  15 – 30  30 – 45  ൐45 
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