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RESEARCH ARTICLE
10.1002/2017WR020607

Reducing equifinality using isotopes in a process-based stream
nitrogen model highlights the flux of algal nitrogen from
agricultural streams
William I. Ford1 , James F. Fox1, and Erik Pollock2

1University of Kentucky, Lexington, Kentucky, USA, 2University of Arkansas, Stable Isotope Laboratory, Fayetteville,
Arkansas, USA

Abstract The fate of bioavailable nitrogen species transported through agricultural landscapes remains
highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a
new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem
Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization,
i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and
permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass-balance
equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic
matter mass-balance subroutines and a robust GLUE-like uncertainty analysis. We test the model in an
agriculturally impacted, third-order stream reach located in the Bluegrass Region of Central Kentucky.
Results of the multiobjective model evaluation for the model application highlight the ability of sediment
nitrogen fingerprints including elemental concentrations and stable N isotope signatures to reduce
equifinality of the stream N model. Advancements in the numerical simulations allow for illumination of the
significance of algal sloughing fluxes for the first time in relation to denitrification. Broadly, model estimates
suggest that denitrification is slightly greater than algal N sloughing (10.7% and 6.3% of dissolved N load on
average), highlighting the potential for overestimation of denitrification by 37%. We highlight the
significance of the transient N pool given the potential for the N store to be regenerated to the water
column in downstream reaches, leading to harmful and nuisance algal bloom development.

1. Introduction

Agricultural landscapes produce runoff and seepage highly concentrated in dissolved inorganic nitrogen
(DIN), which can be partially self-mitigated in stream corridors via high rates of biological removal [Seitzinger
et al., 2002; Alexander et al., 2008; Mulholland et al., 2008; Seitzinger, 2008; Manis et al., 2014]. However,
researchers continue to question the transformation of DIN in agricultural streams and we now recognize
that secondary processes that are commonly overlooked, e.g., algal N fate, may have a substantial role
within stream nitrogen cycling [Ford et al., 2015; Webster et al., 2016]. In turn, these secondary processes
have the potential to mask estimates of perceived dominant processes, such as denitrification. The motiva-
tion of this paper is improving the predictive capacity of nutrient pathways in agricultural streams. We
develop a numerical modeling framework for stream nutrient dynamics that aims to reduce uncertainty of
the fluvial nitrogen cycle assessment, and address the gap in knowledge surrounding the fate of biologically
assimilated N [Webster et al., 2016].

Tightly coupled physical and biogeochemical processes govern the stream nitrogen cycle in fluvial land-
scapes (Figure 1) [Peterson et al., 2001; Birgand et al., 2007; Fox et al., 2010; Sebestyen et al., 2014]. Benthic
autotrophs assimilate dissolved nitrogen during primary production and the fate of benthic algae can follow
several pathways including physical sloughing (i.e., erosion) out of the stream reach, mineralization and
denitrification by heterotrophs, or mineralization and regeneration to the water column [Peterson et al.,
2001; Birgand et al., 2007; Webster et al., 2016]. Fluvial nitrogen researchers now recognize the pairing of car-
bon and nitrogen cycles in stream channels. Organic matter breakdown, stabilization and mineralization
impact particulate C and N storage and regeneration simultaneously, while organic carbon quality and
quantity impacts rates of microbial N processing, namely nitrifying and denitrifying bacteria [Arango and
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Tank, 2008; Martinelli et al., 2011; Lane et al., 2013; Ford and Fox, 2014, 2015; Hotchkiss and Hall, 2015].
Researchers desire continuous and integrated estimates of nitrogen fluxes for assessing the net function of
the fluvial system, regardless of the apparent complexity of nitrogen dynamics [Seitzinger, 2008]. Nutrient
concentration data from streams cannot feasibly provide continuous records of processes either because
the processes are unable to be measured in situ, or because of economic constraints. Validated numerical
models that simulate the stream N cycle at high temporal resolutions provide an effective tool for quantify-
ing continuous estimates of fluxes across a range of timescales.

A precursor to confidently simulating nitrogen fluxes within the agricultural stream ecosystem is recogni-
tion of the potential for equifinality in numerical modeling results. Equifinality refers to the uncertainty of
parameters in process-based numerical models that can lead to a broad range of multiple parameter sets
(i.e., realities) and in turn broad range of acceptable solutions [Beven, 2006; Adiyanti et al., 2016]. Over-
parameterization of numerical models for stream nitrogen suggest the high potential for equifinality. Recent
research suggests that these advanced model calibration and uncertainty subroutines might be coupled
with ambient isotope tracers to reduce equifinality within water quality modeling [Ford and Fox, 2015; Fox
and Martin, 2015; Adiyanti et al., 2016].

We propose several possible approaches that might address problems with equifinality within numerical
modeling of stream nitrogen dynamics including: (1) the use of novel multiobjective calibration procedures
with multiple response variables, (2) the use of nitrogen stable isotopes as a response variable to assist with
calibration, and (3) application a robust uncertainty estimation procedure to quantify the extent of nutrient
equifinality. Multiobjective calibration enables modelers to establish numerical-based criteria that considers
calibration statistics for multiple model response variables or evaluation of model performance at several
different timescales [van Griensven and Bauwens, 2003; Rode et al., 2007; Ford and Fox, 2015]. Therefore,
researchers can evaluate and reduce parameter ranges based on their sensitivity to unique or multiple
responses, which in turn reduces the solution space of the results. Stable nitrogen isotope signatures, typi-
cally expressed in d15N notation, are suggested as a potentially useful response variable within multiobjec-
tive calibration. Ambient d15N provide a fingerprint of the mixture of N sources and their in-stream
transformations that alter the relative amount of N-15 atoms to N-14 atoms [Kendall and McDonnell, 1998;
Kendall et al., 2001; Ford et al., 2015]. Ambient d15N signatures of a nitrogen phase (i.e., org-N, NO2

3 , and
NH1

4 ) provides an extra equation in the set of biogeochemical reactions being solved for the total nitrogen
mass balance, and therefore shows efficacy for assisting with reducing equifinality. Finally, the Generalized

Figure 1. Perceptual model of elemental and isotope N exchanges in low-gradient agroecosystem streams (modified from Peterson et al.
[2001]).
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Likelihood Uncertainty Estimation (GLUE) framework provides a widely accepted approach for quantifying
equifinality from numerical modeling in order that the researcher can place appropriate bounds on model
results. The GLUE framework comprises Monte Carlo simulations of parameter sets with evaluation of model
output against measured data to provide multiple acceptable parameterizations [Beven and Binley, 1992;
Dean et al., 2009; Gong et al., 2011].

As researchers reduce equifinality within numerical model simulations of stream nitrogen dynamics, the
potential exists for elucidating previously under-appreciated fluxes in terms of their magnitude. We find
that one nitrogen flux that has received little attention is algal nitrogen sloughing and stabilization [Ford
and Fox, 2017] and their relative comparison with permanent removal via denitrification. Agricultural
streams often are rich in autotrophic production that can exert control on benthic and transported sedi-
ment organic matter composition at seasonal and longer-term timescales via algal stabilization, i.e., break-
down and integration of algae into benthic storage zones [Arango and Tank, 2008; Griffiths et al., 2012; Ford
and Fox, 2017], Further, nitrogen focused studies from agricultural streams suggest that organic carbon and
nitrogen transformations are tightly coupled [Butturini et al., 1999; Arango et al., 2007; Arango and Tank,
2008; Newcomer et al., 2012]. Based on our previous work, the authors recognize the potential for benthic
algae fate and transport to impact nutrient processes and net nitrogen fluxes through its significance to
agroecosystem C budgets [Ford and Fox 2014, 2015; Hotchkiss and Hall, 2015; Ford and Fox, 2017] prompting
the motivation to quantify the fluxes in this paper. Further, the authors recognize the importance of algal
sloughing in that under estimation of algal sloughing as a temporary sink of nitrogen could result in overes-
timation of denitrification, a permanent removal pathway, and therefore overestimate net nutrient attenua-
tion by the stream. Failure to recognize the fate of algal nitrogen could result in unforeseen algal blooms in
streams and downstream water bodies as delivered nitrate from agricultural streams drops yet algal nitro-
gen is able to mineralize and become available for primary production.

The author’s objective was to reduce equifinality in numerical modeling and thereafter estimate nitrogen
fluxes and removal in an agricultural stream. The authors place emphasis upon coupled carbon and nitro-
gen processes that stabilize algal nitrogen and slough algal nitrogen from the streambed and to compare
with denitrification. Novel features of this research are: a renewed investigation of net nitrogen removal in
agricultural streams by explicitly considering the algal nitrogen pool; the use of ambient-level nitrogen sta-
ble isotopes within a multiobjective calibration procedure; and the use of a numerical model and robust
uncertainty analysis that tightly couples carbon and nitrogen processes in an agricultural stream; the incor-
poration of these features has, to our knowledge, not been reported.

2. Methods

2.1. Model Formulation
We formulate a numerical model with the intent to reduce equifinality in the stream nitrogen cycle and
quantify fluxes from nitrogen pools for agriculturally impacted streams. The model simulates characteristics
of agricultural streams that include: (i) the potential for upland agriculture practices that could prompt his-
torical or current soil erosion and runoff from the land surface to the stream corridor; (ii) the potential for
relatively high nutrient loading to streams due to fertilizer or manure application within the agricultural
regions; (iii) relatively lowland topography that could promote the presence of fine sediments and particu-
late organic carbon within the stream corridor; (iv) the potential for particulate organic matter sources
within the stream corridor from various allochthonous sources including soils, litter, and detritus; (v) the
potential for autochthonous primary production due to benthic autotrophs within the shallow water condi-
tions of the agricultural streams that can receive sunlight at the stream bottom; and (vi) the potential pres-
ence of an aerobic surficial layer in the benthos in which heterotrophy is pronounced.

We formulated the numerical nitrogen model to simulate the stream nitrogen cycle by considering water,
sediment, algae, carbon, and nitrogen transformations. The numerical model is termed TRANSFER. TRANSFER
stands for Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration, reflecting
both the transfer of nitrogen within agricultural streams and the emphasis of the model to assist with
improving stream ecosystems. Figure 2 depicts major subroutines that are simultaneously processed across
dissolved and particulate pools within TRANSFER. Specifically, new routines include a N elemental mass-
balance model and N isotope mass-balance model that considers dissolved inorganic N, algal, and sediment
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N species. Several of the TRANSFER numerical subroutines including hydraulic, sediment transport, algal
mass balance, C elemental mass balance, and C isotope mass balance have been previously published else-
where and the references are included in Figure 2 and briefly discussed below. TRANSFER runs within For-
tran and the numerical code was compiled with the Intel Fortran Composer in Visual Studio 2015. The user
manually defines spatial and temporal constraints including reach length, channel geometry, time step,
timeframe and parameterization associated with input and calibration parameters.
2.1.1. ISOFLOC Model: Water, Sediment, and Carbon Subroutines
ISOFLOC simulates the hydrology-hydraulics, sediment, and organic carbon dynamics within TRANSFER and
is based off previous publications [Rutherford et al., 2000; Russo and Fox, 2012; Ford and Fox, 2014, 2015]. We
provide a brief explanation; however, the detailed model description, formulation, and model evaluation
procedures are described elsewhere [Ford and Fox, 2015]. ISOFLOC is a reach-scale mass-balance model that
simulates organic and inorganic C phases continuously including dissolved inorganic carbon (DIC), algal
particulate organic carbon (APOC), and fine particulate organic carbon (FPOC). The ISOFLOC model includes
a hydraulic and sediment transport model to assess the impact of erosion-deposition dynamics on the com-
position of benthic and transported particulate carbon compositions. In addition to tight coupling of the
physical and biological processes, a second feature of the model is its inclusion of stable C isotopes for con-
straining model equifinality. The model simulates isotope mass balances of DIC, APOC, and FPOC continu-
ously and incorporate them as a response variable in model evaluation.
2.1.2. Particulate Nitrogen Mass-Balance Subroutine
We develop the particulate nitrogen model in TRANSFER in the present study, which serves as the basis for
physical and biological interactions of DIN with the benthic surficial fine-grained laminae (SFGL) layer by
building on organic matter dynamics previously simulated in ISOFLOC. The SFGL is a 5–10 mm aerobic, floc-
culant sediment layer composed of fluvial sediment deposits, autotrophic biota and heterotrophic bacteria,
and is a well-recognized feature in the benthos of low-gradient, low-order agroecosystems with cohesive
sediments [Droppo et al., 2005; Russo and Fox, 2012; Ford and Fox, 2014; Zahraeifard et al., 2014]. Particulate
nitrogen includes fine and coarse nitrogen pools comprised primarily of benthic algal biomass and fine par-
ticulate sediment particles and aggregates from upland sediment sources [Ford and Fox, 2014, 2015]. The
nature of low-gradient, human disturbed systems suggests relatively minor inputs from leaf litter and

Figure 2. Flow chart for the TRANSFER modeling tool and model evaluation data collection needs. The ISOFLOC submodel incorporates
sediment, algae, and carbon mass-balance submodels.
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detritus since they are small relative to algae and fine particulate nitrogen (FPN) [Griffiths et al., 2012; Ford
et al., 2014]. TRANSFER simulates coarse particulate N to be composed soley of algal particulate N (APN).
TRANSFER simulates the mass balance of APN (kgN) considering inputs from biological assimilation of DIN
and outputs from mineralization, decomposition to fine particulate nitrogen and scouring due to bulk
sloughing of the algal mat

APNj
i5APNj

i212SloughMat2N
j
i1ðAssimj

i2Min
Mat

j
i2DECAlg ae

Mat

j
iÞSABedDt; (1)

where i is the time step identifier, j is the stream reach identifier, SloughMat-N (kgN) is the mass of nitrogen
lost from the stream reach due to algal sloughing, Assim (kgN m22 d21) is the algal biomass assimilation
rate, MinMat is the endogenous algal respiration rate (kgN m22 d21), DECMat (kgN m22 d21) is the microbial
breakdown rate of coarse algae to SFGL algae, SA (m2) is the surface area of the bed source, and Dt is the
model time step. We estimate sloughing of APN by dividing the sloughed algal C, from ISOFLOC simulations
using the carbon to nitrogen mass ratio of the algal mat, C:NMat calculated during the previous time step as

SloughMat2N
j
i5min k sj

i f 2sMat
cr

� �
qMat

S SABedDt;APOCj
i21

h i
=C : NMat

j
i21; (2)

where k (m21) is the erodibility coefficient, sf (Pa) is the shear stress of the fluid at the centroid of the ero-
sion source, scr

Mat (Pa) is the critical shear stress of the algal mat, qs
Mat (kgC m23) is the bulk density of the

algal mat, and APOC is the algal particulate organic carbon mass in the streambed calculated in ISOFLOC.
We assume that sloughed algae are exported from the watershed in the same time step that are eroded,
since algal material is relatively neutrally buoyant and would not be expected to settle out of suspension
during flow conditions that would induce sloughing. We assume nonrate-limiting conditions of DIN assimi-
lation as follows:

Assimj
i5

Fixj
i 1APOCj

i Col

C : NAssim
; (3)

where Fix (kgC m22 d21) is the carbon fixation rate, APOCcol (kgC m22 d21) is the algal carbon colonization
rate, and C:NAssim (kgC kgN21) is the atomic carbon to nitrogen ratio of newly assimilated algae and is
parameterized by the user. TRANSFER assumes mineralization of the coarse algal mat to occur simulta-
neously with endogenous respiration as follows:

MinMat
j
i5Re sMat

j
i=C : NMin2Alg ae; (4)

where ResMat (kgC m22 d21) is CO2 respired from algal endogenous respiration calculated in ISOFLOC, and
C : NMin2Alg ae (kgC kgN21) is an endogenous mineralization calibration coefficient that accounts for variable
rates between algal C and N recycling. The simulated mass of algae decomposed from the algal mat to
SFGL algae follows a temperature-dependent bacteria degradation rate like that simulated for C in ISOFLOC
[White et al., 1991; Ford and Fox, 2015]

DECAlg ae
Mat

j
i5

APNj
i21 � 10�½2cDEC2APN1ð0:031 � TÞ�

SABedDt
; (5)

where cDEC-APN is the APN decomposition coefficient [White et al., 1991]. We simulate fine particulate nitro-
gen composition in the SFGL as a function of erosion-deposition dynamics, production of algal FPN from
APN decomposition, and mineralization of SFGL algae to ammonium as follows:

CFPN2SFGL
j
i5

NUpland
SFGL

j
i1NAlg ae

SFGL
j
i

S
SFGL

j
i

; (6)

where CFPN-SFGL (kgN kg sed21) is the sediment nitrogen concentration in the SFGL layer, SSFGL (kg sed) is
the supply of SFGL in the bed, NUpland

SFGL (kgN) is the mass of nitrogen in the SFGL associated with upland sedi-
ments and is modeled as a function of deposition of upland sediments and erosion of the SFGL, and NAlgae

SFGL

(kgN) is the mass of nitrogen in the SFGL associated with algal biomass and is modeled as a function of min-
eralization of fine algae (MinSFGL), decomposition of course algae, and erosion of the SFGL. The model simu-
lates mass of algal N mineralized, MinSFGL, by microbes from the SFGL algae pool to follow similar
temperature-dependent patterns to decomposition of the coarse algal mat

Water Resources Research 10.1002/2017WR020607

FORD ET AL. EQUIFINALITY REDUCTION OF A STREAM MODEL 6543



MinSFGL
j
i5

NAlg ae
SFGL

j
i21 � 10�½2cMin2SFGL2Alg ae1ð0:031 � TÞ�

SABedDt
; (7)

where cMin2SFGL2Alg ae is the algal SFGL N mineralization coefficient.

Finally, the model estimates transported FPN concentration (CFPN-T) by multiplying nitrogen weighted frac-
tions for the total suspended sediment load including bank (CFPN-Bank), bed (CFPN-SFGL), and upland (CFPN-

Upalnd) sources. We derive fractions from the sediment transport subroutine in the ISOFLOC model.
2.1.3. Dissolved Inorganic Nitrogen Mass-Balance Subroutine
TRANSFER continuously simulates DIN flux and nonconservative reactions within the aerobic SFGL layer and
anaerobic denitrification. TRANSFER models DIN flux at the outlet of each simulated reach using hydrologic
inputs of volumetric water flow rate (m3 s21), Qj

i , for a given spatial reach, j, and time step, i, and Qj
i can be

established using data-driven, conceptual, or process-based hydrologic models calibrated for the watershed.
We assume concentrations of dissolved constituents are well mixed vertically and laterally, as well as longitudi-
nally within the discretized reach segment. Longitudinal discretization of the stream into reaches requires the
potential limitation of spatial averaging nutrient concentrations and transformation rates such that streambed
hot spots of N and streambed passive zones are smoothed across the discretized reach; and the potential limi-
tation should be kept in mind when comparing point samples from the water column or streambed with
reach-averaged calibration parameters. Further, we assumed reactions in the streamwater were negligible since
turbidity is often low in low-order agricultural streams (i.e., periphyton is the predominant algal pool as
opposed to phytoplankton) and bacterial communities are assumed to be prominent in the SFGL. TRANSFER
estimates DIN concentration continuously for a specified nitrogen species X (i.e., NO3 or NH4) using a finite-
difference approximation to the governing advection-reaction differential equation [e.g., Webster et al., 2016] as

CX
j
i5½CX

j
i21V j

i211Rj
i
X 1ðQout

j21
i21CX

j21
i211QTrib

j
iC

Trib
X

j
i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Inflow

2Qout
j
iCX

j
i|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Outflow

ÞDt�=V j
i ; (8)

where C is the concentration of a specified DIN phase (kg m23), V is the volume of water in the stream reach
at the specified time step (m3), Trib denotes tributary inputs to the stream reach, and R (kgN) is the net reac-
tion flux (kg) and is modeled to include nonconservative biotic processes including assimilation, regenera-
tion, nitrification, and denitrification as

Rj
i

X
5½Minj

i 2Assimj
i

X �SABedDt6NIT j
i 2DENj

i ; (9)

where Min (kgN m22 d21) is the total mass of ammonium generated from organic matter mineralization
and is set to zero for the nitrate reaction equation. Assimilation demands of the algae are met first by
ammonium mineralized during the specified time step, ammonium in the water column, then nitrate. NIT
(kgN) is the mass of nitrified ammonium and is added for NO3 and subtracted for NH4. DEN (kgN) is the
mass of denitrified algae that is degassed from the stream channel and is set to zero for the NH4 pool. We
quantify Min as the sum of microbial and endogenous algal mineralization [DePinto and Verhoff, 1977] as

Minj
i5MinMat

j
i1MinSFGL

j
i: (10)

TRANSFER considers nitrification for both direct and indirect pathways; however, for the present study, we
place focus on indirect since NH4 concentrations are typically rapidly converted to NO3 in upper stretches
of a stream reach. We assume nonrate-limiting oxygen conditions in the SFGL are satisfied for indirect nitri-
fication, thus nitrification rates are modeled using results of Arango and Tank [2008] that suggest sediment
exchangeable NH4 availability and FPOC content of the SFGL (CFPOC-SFGL) are the primary drivers. Therefore,
we use a power function to simulate indirect nitrification, NIT (kgN kg sed21 d21) as

NIT j
i 5bINðCFPOC2SFGL

j
iÞ

aIN �S
SFGL

j
i � Dt; (11)

where CFPOC-SFGL (kgC kg sed21) is the carbon content of SFGL sediments which is calculated from ISOFLOC
simulations, aIN is the exponent calibration coefficient for indirect nitrification (assumed linear for the pre-
sent study), and bIN (kgN kgC21 d21) is the multiplicative coefficient and has the aforementioned units to
make the equation dimensionally homogenous. Since mineralized NH4 is extremely labile and can be assim-
ilated immediately we assume that all remaining mineralized NH4, following satisfaction of the IN rates, is
reuptaken by the benthos to satisfy assimilation requirements of the microbial community, with the remain-
der being regenerated to the water column, or stored in the pore water pool depending on flow conditions.
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Denitrification is impacted by NO3 concentration, sediment C content, and temperature; however, the func-
tional form of how these processes covary is not well understood and Arango and Tank [2008] found CFPOC-

SFGL to be the best descriptive variable in ag-disturbed streams. Therefore, we model denitrification rates,
DEN (kgN) using a power function as

DENj
i5bDenðCFPOC2SFGL

j
iÞ

aDen �S
SFGL

j
i � Dt; (12)

where aDen is the exponent calibration coefficient for denitrification and bDen (kgN kgC21 d21) is the multi-
plicative denitrification coefficient. TRANSFER does not explicitly account for redox conditions; however, it is
widely recognized that localized anoxic pockets, such as within algal mats, can be on the same order of
magnitude as denitrification in the anoxic layer [Pringle et al., 1988]. Therefore, we account for bulk denitrifi-
cation within the stream reach at the specified time step.

As a final note, we caution that dissolved organic nitrogen (DON) is not explicitly simulated in TRANSFER
due to a lack of seasonality in the response variable for agroecosystems. The reason for a lack of seasonality
of DON in temperate agricultural stream systems is likely that autochthonous leachate is highly labile and
therefore is mineralized shortly following release [Hotchkiss and Hall, 2015].
2.1.4. Stable Nitrogen Isotope Mass-Balance Subroutine
A novel feature of TRANSFER is the inclusion of stable isotopes as an additional model response variable to
help overcome the commonly reported equifinality problem of water quality models. Stable nitrogen iso-
tope mass balances with nitrogen advection as well as the potential for isotope fractionation during reac-
tions are simulated in TRANSFER for APN, FPN, and DIN pools. The isotopic signature of a particular nitrogen
pool given in terms of d (&) notation as

dj
i5dj

i21Xj
i211

X
dinputs

j
i X Inputs

j
i2
X

doutputs
j
i X outputs

j
i2
X

Efrac
j
i ln ðffrac

j
iÞ; (13)

where X represents the fraction of an element in a given pool and is parameterized using outputs from the
sediment model in ISOFLOC and the aforementioned N mass-balance model, E (&) is the enrichment factor
during an isotopic fractionation process and Rayleigh-type models are used to simulate fractionation [Sharp,
2007], and f is the fraction of a substrate remaining after the isotope fractionation process occurs and is
derived from the appropriate elemental model. In Rayleigh fractionation, EA-B is defined as

EA2B5
ð15N=14NÞA
ð15N=14NÞB

21

" #
31000; (14)

where A is the product and B is the reactant. Implementing known inputs, outputs, and fractionation pro-
cesses for APN, the isotopic submodel for APN is simulated as a weighted average of algal biomass from
the previous time step, newly assimilated NH4 and NO3 as follows:

d15NAPN
j
i5d15NAPN

j
i21XAPNi21j1d15NAssim2NO3XAssim2NO3

j
i1d15NAPN

j
i21XAssim2NH4

j
i; (15)

where d15N (&) is the nitrogen isotopic signature of a particular pool. TRANSFER does not currently simulate
the d15NNH4 due to the low levels of ammonium stemming from rapid nitrification in agricultural water-
sheds. Also, TRANSFER assumes that all mineralized SFGL algae will contribute to nitrification demands due
to the proximity to nitrifying biota and thus is not likely to be available for assimilation into the algal mat.
Therefore, TRANSFER estimates that the isotopic signature of reassimilated ammonium is the isotopic signa-
ture of the mineralized APN source (i.e., d15NAPN during the previous time step).

TRANSFER continuously accounts for the stable isotopic composition of nitrate (d15NNO3) in the stream chan-
nel as a function of nitrification, assimilation, and denitrification, and advective flux into and out of the
stream reach as

d15NNO3
j
i5d15NNO3

j
i21 X NO3

j
i211d15NNO32in

j
i X NO32in

j
i1d15NAPN

j
i21 X NIT2APN

j
i

1d15NFPN2SFGL
j
i21 X NIT2FPN

j
i2EAssim2NO3

j
i ln ðfAssim

j
iÞ2EDEN ln ðfDEN

j
iÞ

: (16)

TRANSFER simulates the stable nitrogen isotope signature of FPN in the SFGL (d15NFPN-SFGL) as a mass bal-
ance considering deposition, decomposition of the algal mat and SFGL remaining from the previous time
step. Erosion and mineralization losses are accounted for in the fraction of FPN in the SFGL from the previ-
ous time step
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d15NFPN2SFGL
j
i5d15NFPN2SFGL

j
i21 X FPN2Bed

j
i211d15NAPN

j
i21XDECðAPNÞ

j
i1d15NUpland

j
iXD

j
i : (17)

Thereafter, TRANSFER estimates the nitrogen stable isotopic signature of suspended sediment (d15NFPN-T) as
a weighted average of sediment nitrogen source contributions and their associated isotopic signatures (i.e.,
d15NFPN-SFGL, d15NUpland, and d15NBank) which is derived from the sediment transport and N mass balance
modeling

d15NFPN2T
j
i5d15NFPN2SFGL

j
i X Transported

FPN2SFGL
j
i1d15NUpland

j
i X Transported

Upland
j
i1d15NBanks

j
i X Transported

Banks
j
i : (18)

2.1.5. Multiobjective Calibration and Uncertainty Subroutine
Building on the model evaluation routines in ISOFLOC, TRANSFER consists of (1) an exploratory, global sensi-
tivity analysis that utilizes quasi random Sobol sequences informed by nominal ranges established for site
specific conditions [Jansen, 1999; Sobol, 2001; Saltelli et al., 2010; Ford and Fox, 2015] and (2) a GLUE-like cali-
bration and validation of the model that considers equifinal solutions based on well-accepted statistical
metric criteria [Moriasi et al., 2007; Ford and Fox, 2015]. Figure 3 summarizes the process and detail are
described elsewhere [Ford and Fox, 2015].

2.2. Model Application
We apply TRANSFER to an 8 year simulation period in the South Elkhorn watershed (Figure 4) in order to
provide a case study of the model formulation, results, and evaluation. For the region, cohesive stream

Figure 3. Model calibration and uncertainty analysis procedure for evaluating TRANSFER in low-gradient ag-disturbed ecosystems.
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banks coupled with densely compacted fine legacy sediments overlying a bedrock controlled streambed
limit the prominence of hyporheic flow, and hence, we do not explicitly consider in the current model [Ford
and Fox, 2014]. We qualify the aforementioned exclusion of dissolved organic nitrogen (DON) for the cur-
rent case-study based on previous measurements of dissolved organic carbon in the watershed that hov-
ered around 1.5 mg/L and did not show distinct seasonality. Based on a conservatively low Redfield ratio
equal to 6.6:1 [Martiny et al., 2014], we estimate the DON concentration is 0.23 mg/L. Thus, DON is an order
of magnitude smaller than DIN for this system. This result corroborates well with other temperate agricul-
tural streams we have been working in where nitrate dominates N signatures and seasonality for TN year-
round. The TRANSFER application was simulated at a 30 min time step in six equivalently sized reaches over
the 8 year period that builds on previous modeling work in the watershed [Fox et al., 2010; Russo and Fox,
2012; Ford and Fox, 2015]. We refer the reader to the previous work for detailed site description and sup-
porting model work. Table 1 shows parameterization of the South Elkhorn TRANSFER application, including
parameter IDs, parameter descriptions, references, units, and nominal ranges, which was accomplished
through field-based measurements and literature parameterization.

We parameterize carbon to nitrogen atomic ratio of assimilated algal biomass (C:NAssim) and initial isotopic
signatures of the algal mat based on point sample measurements within the stream channel, which were
subsequently ground and combusted on an elemental analyzer interfaced with an Isotope Ratio Mass Spec-
trometer (IRMS) [Ford et al., 2015]. We assumed the factor to account for mineralization of coarse algal bio-
mass (C:NCoarse-min) had the same range as assimilated algae in order to ensure the C:N ratio of the algal mat
did not exceed reasonable bounds. Sediment N content (CFPN-Banks and CFPN-Upland) and isotopic signatures
(d15NBanks and d15NUplands) of potential sources were measured in the watershed using transported sediment
samples collected at high flows and grab samples from scouring banks, respectively, and were analyzed on
the IRMS [see Ford and Fox, 2015; Ford et al., 2015]. We derived concentrations (CNO3-In and CNH4-In) and N
isotope values of stream water nitrate from tributary measurements over the course of a 14 month

Figure 4. Model domain for the South Elkhorn watershed in the Bluegrass Region of Central Kentucky, USA.
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sampling period [Ford et al., 2015]. Nitrate concentration grab samples were analyzed at the Kentucky Geo-
logical Survey on a Dionex Ion Chromatograph using standard EPA protocol [ASTM, 1996].

As shown in Table 1, we use a variable nitrate isotope signature from 2006–2007, 2008, to 2009–2013.
Briefly we provide the following justification for this parameter modification. For 2006–2007, we have low
SFGL algal carbon (and thus low mineralization) due to the reset of the bed from a 100 year storm event
[Ford and Fox, 2017]. For this reason, most of the DIN transported in the main stem of the watershed will be
a mix of upland fertilizers and soils. During 2008, the watershed had extensive drought conditions during
summer and early fall, thus minimizing the ability of the upland sources to deliver NO3 to the stream [Ford
and Fox, 2014; Ford et al., 2014]. For this reason, we suspect connectivity of DIN to upland soils and fertilizers
is diminished and mineralization from upland tributaries becomes prominent. From 2009 to 2013, we have
an enriched SFGL algal N source coupled with upland connectivity suggesting a slight dampening of the
DIN pool [Ford and Fox, 2017].

Regarding literature-based parameterization, we utilized uncertainty bounds from the previous ISOFLOC
application in the watershed to propagate uncertainty of sediment and C submodules and breakdown of
organic N [Sinsabaugh et al., 1994; Webster et al., 1999; Alvarez and Guerrero, 2000; Jackson and Vallaire,
2007; Yoshimura et al., 2008; Ford and Fox, 2014, 2015]. We assumed losses from the FPN pool were associ-
ated with mineralization and we neglect the contributions of decomposition of fine particulate nitrogen
associated with soil nitrogen since these rates are typically orders of magnitude lower and were insensitive
for C dynamics in the aforementioned modeling studies. Exponent coefficients for the nitrification and deni-
trification models (aIN and aDEN) were set to one since previous studies of nitrification and denitrification in
agricultural based streams in Michigan have shown that processes vary linearly with sediment organic car-
bon content [Arango and Tank, 2008]. Rates of nitrification and denitrification were assumed to have com-
parable ranges, and vary over three orders of magnitude (102–104 mgN m22 h21), which is consistent with
rates in ag-streams [Arango and Tank, 2008; Mulholland et al., 2008]. Isotopic enrichment values associated
with assimilation of nitrate (EAssim-NO3) were parameterized from broad ranges found for algal and bacterial
uptake, while fractionations associated with denitrification (EDEN) were broadly parameterized to account
for benthic and riparian denitrification potential [Wada, 1980; Heaton, 1986; Montoya et al., 1991; Kendall
and McDonnell, 1998; Needoba et al., 2004; Kendall et al., 2007; Fox et al., 2010].

For multiobjective calibration, we collected 8 years of transported sediment samples using in situ sediment
traps [Phillips et al., 2000] that were analyzed for sediment N elemental (CFPN-T) and isotopic (d15NFPN-T) sig-
natures. Descriptions of sample processing and analysis are detailed elsewhere [Ford and Fox, 2014, 2015;
Ford et al., 2015]. In total, 205 samples were available for model evaluation, of which two-thirds were used
for model calibration and one-third was used for validation.

3. Results

3.1. Sensitivity Analysis Results
The sensitivity analysis results showed that the individual response variables (i.e., see CFPN-T, d15NFPN-T, and
DIN in Figure 4) were sensitive to different model parameters, which in turn provided efficacy to the multi-
objective calibration procedure applied in this study (Table 2). Further, we found that individual response
variable dependence upon sensitive parameters was well explained with respect to our understanding of
carbon and nitrogen processes within the stream, the details of which are explained below.

Results of the sensitivity analysis for the sediment nitrogen elemental (CFPN-T) response variable showed
sensitivity to model parameters that have a direct impact on SFGL nitrogen composition (see Table 2).
Parameters associated with coupling of carbon and nitrogen dynamics, including C:NAlgae, C:NCoarse-min,
DECAPN, and DECFPN-Algae, accounted for 68% of the variance of the sediment nitrogen content (CFPN-T)
response variable. The dependence of sediment nitrogen content upon coupled carbon and nitrogen
dynamics is further evidenced by the sum of first-order indices of 0.32 and total-order indices of 1.61 for the
sensitive parameters [see Saltelli et al., 2010]. This finding highlights the need to calibrate the carbon-
nitrogen parameters in concert to reduce equifinality associated with sediment nitrogen dynamics. CFPN-T

was not sensitive to inflowing nitrate concentration (CNO3-in), denitrification rates (bDEN), and nitrification
rates (bIN) suggesting they were insignificant in calibration. The reason for lack of sediment nitrogen depen-
dence on the nitrate variables is related to nonrate-limiting nitrate conditions for the agricultural stream
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[Ford et al., 2015]. In summary, we found the sediment nitrogen content (CFPN-T) response variable was more
sensitive to growth and decomposition of algal nitrogen as opposed to dissolved inorganic nitrogen.

Results of the sensitivity analysis for the sediment isotope (d15NFPN-T) response variable showed high depen-
dence upon dissolved inorganic nitrate transformation rates including algal uptake/regeneration, denitrifi-
cation, and inflowing DIN concentrations (see Table 2). d15NFPN-T was sensitive to the nitrate concentration
of the water column (N-NO3) due to the fact that the total nitrogen pool size (i.e., reservoir) impacts the iso-
topic composition of the product (d15NFPN-T) during fractionation. Further, the isotopic composition of the
nitrate pool (d15NNO3), enrichment during uptake (EFix-NO3) as well as rate of denitrification (bDEN) following
mineralization of organic nitrogen all can impact the isotopic composition of the sediment during fraction-
ation. We note that the isotope response variable only utilized 20% of simulations since many scenarios pro-
duced unrealistic conditions, therefore we caution that these indices are more qualitative as opposed to
quantitative representation of variance [Saltelli et al., 2010]. Nitrogen content and isotopic signatures of
bank and upland sediments were not highly sensitive to the (d15NFPN-T) response variable, and nor was the
nitrification parameter. Reasons for the result were that d15N of soils tend to have a fairly narrow range in
the uplands of the watershed [Fox et al., 2010; Ford, 2014] and isotope enrichment during nitrification tends
to be small so long as ammonification is rate limiting [Kendall et al., 2007].

3.2. Multiobjective Calibration Results
The sensitivity of CFPN-T and d15NFPN-T to different sets of model parameters point toward the sequence used
for phases of the multiobjective calibration as shown in Figure 4. First, we calibrated sediment nitrogen con-
tent (CFPN-T) for organic matter variables during phase one because N is nonrate limiting in the agricultural
stream. Then, we calibrated sediment N isotope response variable during phase two because the isotopic
variable of the product, and later the substrate for mineralization reactions, is sensitive to the dissolved
nitrogen concentration and its isotopic values and rates. Finally, we checked net dissolved inorganic nitro-
gen content in the water column (DIN: CNO3-N-T and CNH4-N) to ensure that the parameter space produces
results consistent with the measured nitrate and ammonium. The results of the sensitivity that lead to the
calibration method is noteworthy because few studies have reported use of sediment substrate nitrogen
variables for calibration purposes. Therefore, the sensitivity results reveal a new way to help calibrate and
validate numerical models for nutrient dynamics, which is discussed further below.

The ability of the multiobjective calibration subroutine to reduce equifinality of nitrogen dynamics solution
space is illustrated by observing the output histograms following each stage of calibration. First, we

Table 2. First-Order and Total-Order Sensitivity Indices for CFPN-T(av) and d15NFPN-T(av) for Each of the Sensitive Parameters in the FPN and
15N Mass Balancesa

Parameter

First-Order Index Si Total-Order Index STi

CFPN-T(av) d15NFPN-T(av)
b CFPN-T(av) d15NFPN-T(av)

b

ISOFLOC Uncertainty 0.050 0.055 0.264 0.055
C:NAssim 0.086 0.000 0.373 0.204
C:NMin-Algae 0.033 0.000 0.197 1.270
cDEC-APN 0.097 0.036 0.477 0.097
cMin-SFGL-Algae 0.057 0.000 0.297 0.042
CFPN-Upland 0.001 0.012 0.000 0.002
CFPN-Bank 0.000 0.000 0.000 0.000
bDEN 0.000 0.000 0.000 1.429
bIN 0.000 0.000 0.000 0.019
CNO3-N-In 0.000 0.030 0.000 0.095
CNH4-N-In 0.000 0.000 0.000 0.000
EDEN 0.000 0.016
EAssim 0.183 0.305
d15NUplands 0.000 0.014
d15NBanks 0.000 0.000
d15NNO3 0.190 0.623

aValues that were less than zero and associated with numerical integration of the Monte Carlo method in the sensitivity analysis are
assumed to have no impact on the model and thus are assumed equal to zero.

bResults for the isotope sensitivity analysis only include 20% of simulations that provided plausible results. Italicized numbers reflect
negative values due to errors induced from subsampling of Sobol sequence.
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consider algae dynamics in modeling (Figure 5, column one). The nonuniform, right-skewed distribution of
sloughed algae reflects the uncertainty output distribution of the ISOFLOC model [Ford and Fox, 2015].
From the raw parameterization results through Phase 2 of calibration, there is minor change in the shape of
the distribution; however, we see a shift in the minimum value following Phase 1 which is due to the sensi-
tivity of the CFPN-T response variable to algal sloughing parameters. Following Phase 3 of calibration, the dis-
tribution favors a slightly more bimodal distribution in which modes occur at 0.1 and 0.3 tN km22 yr21.

Equifinality is also reduced for the denitrification flux (Figure 5, column two) highlighting the efficacy of the
multiobjective calibration tool. The posterior solution space was uniformly distributed for raw results
(reflecting the Sobol sampling scheme) and remained uniformly distributed following Phase 1 of the calibra-
tion due to insensitivity of denitrification parameters on the CFPN-T response variable. Phase 2 (d15NFPN-T)
reduced equifinality because several parameterizations that produce denitrification fluxes in the 0.2–0.6 tN
km22 yr21 were rejected and we found development of a right-skewed histogram. Further, following Phase
3 of calibration (DIN) we found further constraint and development of a bimodal distribution similar to that
of sloughed algae.

Figure 5. Histograms of the posterior solution space for TRANSFER during phases of model calibration. The histograms illustrate the ability
of sequential model calibration to reduce equifinality for N fluxes for the South Elkhorn application.

Water Resources Research 10.1002/2017WR020607

FORD ET AL. EQUIFINALITY REDUCTION OF A STREAM MODEL 6551



Finally, we highlight equifinality reduction for nitrate fluxes (see Figure 5, column three). Like denitrification
fluxes, nitrate fluxes were uniformly distributed for precalibration and Phase 1 of the calibration which
reflects insensitivity to the CFPN-T response variable. We found nitrate fluxes to take on a unimodal distribu-
tion following Phase 2 of calibration, in which the range was narrowed by >0.1tN km2 yr21. The decrease in
outputs on the left side of the distribution reflected the decrease in rejection of high-end denitrification
estimates. When considering realities of DIN concentrations, Phase 3 further restricted the range of the his-
togram by more than 1 tN km22 yr21 which removed a number of equifinal parameterizations with low
denitrification rates (and low influent nitrate concentrations) that would meet statistical significance tests of
the sediment response variable.

To further quantify the equifinality reduction associated with the multiparameter calibration, we summarize
results of the sequential model phases in the top half of Table 3, and we summarize equifinality reduction
for model calibration that uses only the DIN response variables in the bottom half of Table 3. The effects of
the carbon modeling component to reducing algal sloughing uncertainty for C dynamics has been previ-
ously characterized as an 80% reduction in the solution parameter space using C elemental and isotope sig-
natures [Ford and Fox, 2015]. A similar finding is shown in Table 3 for the TRANSFER model. We find for
nitrogen that the additional sediment elemental response variable reduces uncertainty by 31%. As can be
seen, no additional calibration bonus was observed between Phase I and Phase III, so we did not consider
improvement of the solution space when calibrating with DIN alone. For denitrification, we find that the
multiresponse framework including stable N isotopes and DIN reduces uncertainty ranges of DEN by 12%;
however, a 0% improvement was found when calibrating only with the DIN pool. Likewise, the combined
uncertainty reduction of algae sloughing by the elemental model and denitrification resulted in 67% equi-
finality reduction for nitrate flux using our proposed model calibration framework, and a 44% reduction
when using solely DIN. The results show substantial reductions in the solution space (equifinality) when uti-

lizing sediment elemental and isotope
response variables.

3.3. Model Goodness of Fit Results
The multiobjective calibration allowed
us to gain confidence in the results
from TRANSFER. Results of the multiob-
jective calibration and uncertainty anal-
yses showed the ability of TRANSFER to
capture SFGL nitrogen dynamics at sea-
sonal to multiyear timescales (see Table
4 and Figure 6). Comparison with mea-
sured CFPN-T data showed acceptable
statistics with optimum seasonally aver-
aged NSE values of 0.54 and 0.78
and RSR values of 0.68 and 0.47 for
calibration and validation, respectively.
Regarding event-to-event dynamics, the
model captures dynamics fairly well as
evidenced by the slight drop off in cali-
bration statistics, with optimum NSE

Table 3. Quantification of Equifinality Reduction From Multiobjective Calibration of the TRANSFER Model

Equifinality Reduction Metric
Precalibration

Size (%)
Phase I (% Size

of Original Space)
Phase II (% Size

of Original Space)
Phase III (% Size

of Original Space)

Solution space—model calibration from Figure 3
Total solution space for algae 100% 69% 69% 69%
Total solution space for DEN 100% 100% 93% 88%
Total solution space for DIN flux 100% 96% 89% 33%

Solution space—model calibration from DIN (no sediment variables)
Total solution space for DEN 100% 100%
Total solution space for DIN flux 100% 56%

Table 4. Goodness of Fit Statistics for the TRANSFER South Elkhorn Application
Following Multiobjective Calibration Using (a) Seasonally Averaged Model
Evaluation of Response Variables and (b) Event-Based Model Evaluation of
Response Variables

CFPN d15NFPN (Variable d15NNO3)

(a) Seasonal
Calibration

NSE 0.409–0.537 0.010–0.334
RSR 0.680–0.770 0.816–0.995
PBIAS 24.629–3.958 24.093–7.811

Validation
NSE 0.4160.782 0.008–0.641
RSR 0.466–0.764 0.599–0.996
PBIAS 26.690–1.374 23.946–4.986

(b) Event-Based
Calibration

NSE 0.248–0.350 20.307–0.035
RSR 0.806–0.867 0.983–1.144
PBIAS 28.675–0.392 24.593–7.696

Validation
NSE 0.100–0.337 20.809–0.188
RSR 0.814–0.949 1.090–1.345
PBIAS 26.682–20.691 23.181–5.865
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values of 0.35 and 0.34 for calibration and validation, respectively. The ability to capture event-based dynam-
ics reflects the ability of the model to capture timing of benthic biological and physical processes and parti-
tioning of source contributions for the bulk sediment nitrogen pool. Seasonal and event-based time series of
measured and modeled data (with uncertainty bounds) are found in Figure 6. In general, we found that sea-
sonal and long-term trends were captured with maximums occurring in late-fall and minimums in early
spring, consistent with trends observed for C dynamics [Ford and Fox, 2014, 2015]. Further, long-term
increases in CFPN-T were consistent between measurements and simulations. For the measured and modeled

Figure 6. Calibration for (a and b) CFPN-T and (c and d) d15NFPN-T for both (a, c) seasonal averaging and (b, d) event-based calibrations. Seasonally averaged modeled versus measured val-
ues are also plotted in aggregate and by season for (e) CFPN-T and (f) d15NFPN-T with reference 1:1 line. The average of the maximum-minimum range in a-c is plotted in Figures 6e and 6f.
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data, we found the average increased from 0.25 gN/100 gsed in 2006 to 0.35 gN/100 gsed in 2013. Similarly,
model results suggested an increase from 0.25 gN/100 gSed in 2006 to 0.35 gN/100 gSed in 2013.

Results of the calibration and uncertainty analysis for d15NFPN-T highlight the ability of the model to capture
seasonal and long-term dynamics of N fate and transport; however, some weaknesses in model predictions
were observed during winter and the event-based timescale. Seasonal peaks and valleys (e.g., 2006–2007),
abrupt changes due to a change in NO3 isotope source signature (e.g., 2008–2009) and reestablishment of
equilibrium were accurately reflected in model calibration for both sediment elemental and isotope
response variables, as evidenced by visual agreement in Figure 6 and seasonal statistics in Table 4. We
found deficiencies in the ability of the model to capture peaks in early to midwinter in 2010 and 2011 and
during the wet summer of 2009. In 2010 and 2011, measurements of CFPN-T at the watershed outlet showed
secondary peaks (i.e., following peaks in late fall) that were not captured by the numerical model. Secondary
peaks could be attributed to unforeseen abiotic processes (e.g., adsorption to variably charged sesquiox-
ides) in the SFGL [Ford et al., 2015]. Further, overprediction of measured data in spring-fall of 2009 likely
reflected deeper gully or bank erosion and transport from the watershed since the events occurred during
a wet summer with a high number of high intensity, short-duration storms [Ford and Fox, 2014]. Regarding
event-based timescales, statistical metrics suggest inferior predictions to a mean model for d15NFPN-T (i.e.,
RSR>1 and NSE<0), even for optimum statistics. In addition to the aforementioned anomalies, the poor sta-
tistical metrics during event-based timescales are likely attributed of the inability of the model to capture
rapid fluctuations of d15NFPN-T especially in 2008 and early 2009 resulting from a combination of measure-
ment error and inadequate simulation of spatiotemporal variability of processes [Fox et al., 2010].

For nitrate, we compared distributions of CNO3-N measured at the watershed outlet to the modeled distribu-
tion using a statistical t test. Of the 65 parameter sets that provided sufficient statistical fit for the sediment
calibration, only 23 were found to be statistically equivalent to the measured distribution for NO3 (two-
tailed P value <0.05). Figure 7 compares visual time series of the continuous modeled concentrations of
nitrate with sparsely collected data from the watershed outlet from 2010 to 2013. Somewhat surprisingly,
model simulations visually capture dynamics observed in the nitrate data without using a calibration proce-
dure focused on seasonality of the DIN pool, providing additional confidence in uptake and denitrification
estimates. While the calibration would be strengthened with additional nitrate data, we find this to be a
promising result considering the high cost in monitoring and analyzing nitrate concentrations due to high
temporal variability. Since ammonium concentrations were below detection limits, no graphical representa-
tion of ammonium dynamics was included.

3.4. Nitrogen Flux and Nitrate Removal Results
The posterior solution space from the final stage of the uncertainty analysis provided uncertainty estimates
for the annual fluvial nitrogen budget including downstream advective fluxes and net nitrogen removal
(see Table 5). Advective nitrate transport was the largest flux while sloughed algae, nitrification, fixation,

Figure 7. Time series (a) of modeled nitrate concentration results at the watershed outlet are compared with sparse grab samples that were collected and analyzed for NO3-N at the Ken-
tucky Geological Survey Laboratory. Daily averaged modeled results are compared with measured grab samples and plotted in aggregate and by season.
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and denitrification fluxes were generally an order of magnitude lower (approximately 10% of DIN). Fine par-
ticulate nitrogen and ammonium fluxes were two orders of magnitude lower. As expected, years with flow
rates above the 8 year average (i.e., 2006 and 2009, 2011, and 2013) had the highest downstream advective
fluxes of nitrate, sloughed algae, and sediment nitrogen. Less intuitive was the result that fixation was gen-
erally higher for high flow years, which we attribute to higher sloughing, reducing rate-limiting conditions
for population saturation. No distinct trends were observed for nitrification, denitrification, and fixation
from year to year.

We placed emphasis on algal sloughing at weekly to seasonal timescales given that few, if any, studies have
highlighted the flux and interestingly it was the same order of magnitude as denitrification (Figure 8).
Sloughed algae flux estimates from TRANSFER were lowest in spring and winter with moderate fluxes in
summer and high fluxes in fall. As a result, sloughed algae fluxes varied from 4% of the total downstream N
flux in winter to 14% in summer. On an event basis, sloughed algae fluxes had high variability; however,
periodically they accounted for upward of 45% of the downstream N-flux for a given event, with the highest
fluxes in late fall-early winter when large algal mats are subjected to high shear stresses from large storm
events (Figure 8a). More moderate flow conditions in summer and early fall (e.g., 2009) and nonrate-limiting
conditions for algal growth promoted smaller, yet more consistent contributions of algal sloughing on the
order of 20% of the downstream N flux (Figure 8b). Despite high flow conditions in winter and early spring,
little to no sloughing flux occurred due to nonfavorable growth conditions for algae following the mass
removal that occurred during high flows in the fall (Figure 8b).

We used TRANSFER results to quantify net N removal by the stream channel and specifically partitioning
between permanent (denitrification) and transient (sloughing) removal pathways (Table 5). Results from the
uncertainty analysis showed an average net nitrate removal of 17% of inflowing nitrogen in the main stem of
the watershed. Net nitrogen removal varied widely under uncertainty predictions from 7% to 23% nitrate
removal annually. Of the fraction that is removed, an average estimate of 63% was removed via denitrification
and 37% was removed through algal sloughing (i.e., erosion). Seasonal partitioning between permanent (deni-
trification) and temporary (sloughed algae) nitrate removal pathways (Figure 8c) yielded similar results. Based
on flux estimates, summer and fall had the highest net nitrate removal rates with 38% and 51% of the
removal originating from algal sloughing and the remainder associated with denitrification. Winter and Spring
had less favorable removal rates with <30% of losses from sloughed algae in each season. Results show that
on an event basis, algal sloughing can constitute >90% of the net nitrogen removal, especially in late fall and
early winter if large algal mats are still present. As evidenced by comparison of Figures 8a and 8c, sloughing
consistently represents 50% or more of the net nitrogen flux on a weekly basis during high flow conditions.

4. Discussion

4.1. Equifinality Reduction Using TRANSFER
Our findings highlight TRANSFER’s efficacy to reduce equifinality of nitrogen model results by coupling a
multiobjective calibration subroutine with a unique set of calibration variables. Three features are note-

Table 5. Annual Fluvial Nitrogen Budget for Sediment and Dissolved Nitrogen Pools Including Algae, Fine Particulate Nitrogen, NO3,
and NH4

a

Nitrogen Flux (tN km22 yr21) 2006 2007 2008 2009 2010 2011 2012 2013 Average

Advective downstream fluxes
Q (m3 yr21) 1.53 0.93 1.19 1.55 0.81 1.58 0.78 1.38 1.23
NO3-IN 2.34–3.87 1.41–2.33 1.81–3.00 2.36–3.90 1.23–2.03 2.40–3.98 1.19–1.97 2.10–3.48 1.88–3.11
NO3-out 2.02–3.18 1.19–1.85 1.62–2.55 2.05–3.25 1.00–1.54 2.12–3.35 0.96–1.43 1.79–2.84 1.61–2.53
NH4-IN 0.01–0.01 0.00–0.00 0.01–0.01 0.01–0.01 0.00–0.00 0.01–0.01 0.00–0.00 0.01–0.01 0.01–0.01
NH4-Out 0.01–0.01 0.00–0.01 0.01–0.01 0.01–0.01 0.00–0.00 0.01–0.01 0.00–0.01 0.01–0.01 0.01–0.01
Transported FPN 0.05–0.07 0.02–0.02 0.03–0.04 0.04–0.04 0.02–0.02 0.04–0.04 0.01–0.01 0.03–0.04 0.03–0.04
Sloughed algae 0.10–0.60 0.05–0.41 0.03–0.33 0.10–0.49 0.03–0.25 0.07–0.55 0.03–0.37 0.08–0.41 0.06–0.43

Benthic transformation fluxes
Nitrification 0.07–0.33 0.07–0.35 0.07–0.33 0.07–0.31 0.08–0.37 0.08–0.31 0.10–0.41 0.07–0.34 0.08–0.35
Fixation 0.16–0.71 0.05–0.54 0.00–0.48 0.14–0.68 0.03–0.59 0.12–0.60 0.03–0.63 0.19–0.76 0.09–0.63
Denitrification 0.04–0.56 0.04–0.52 0.04–0.58 0.04–0.60 0.04–0.58 0.05–0.61 0.05–0.64 0.04–0.56 0.04–0.59

aFurther, uptake and transformations of N species are quantified directly each year, and on average, to partition permanent and tran-
sient removal pathways.
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worthy including: (1) the ability of sediment nitrogen to calibrate algal nitrogen dynamics; (2) the ability of
the stable isotope signature of sediment to calibrate dissolved nitrogen transformation; and (3) the impor-
tance of the ordering of stages within the multiobjective calibration subroutine.

We find that simulation of algal nitrogen fate is constrained using the sediment nitrogen response variable
(CFPN-T). Results highlight the sensitivity of algal nitrogen growth and decomposition parameters to the sedi-
ment nitrogen response and a lack of sensitivity to dissolved nitrogen parameters, e.g., concentrations,
denitrification, and ammonification (Table 2 and Figure 5). This finding occurs because algae growth and
decomposition dynamics control seasonal and annual variability of sediment nitrogen [Ford et al., 2015].
Biodegraded algae become integrated into the SFGL, which retains the algal nitrogen fingerprint to some
degree [Ford and Fox, 2014, 2015, 2017]. Algal nitrogen is not rate-limited by dissolved inorganic nitrogen
in the water column and thus we see insensitivity to these reactions. Therefore, sediment nitrogen is a
unique calibration tool for benthic algal nitrogen dynamics in streams.

We highlight that use of the ambient stable nitrogen isotopic signature of sediment as a model response
variable constrains dissolved nitrogen dynamics. Nitrogen integrated into the sediment algal pool will
reflect properties of nitrogen from its DIN source (NO3 and NH4), and the isotopic signatures have been
found to be sensitive to remineralization, nitrification, denitrification, preferential assimilation, and uptake

Figure 8. Time series of observed average weekly flow rate at the watershed outlet, fractions of sloughed algae, and nitrate contributing to downstream N fluxes, and fractions of
sloughed algae and denitrification contributing to permanent and transient nitrate removal pathways. Fluxes from 2008 are enhanced to highlight seasonal and event to event
dynamics.
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[Peterson et al., 1997; Kendall and McDonnell, 1998; Wollheim et al., 1999; Kendall et al., 2007; Hall et al., 2009].
Our findings highlight that inaccurate estimates of dissolved nitrogen parameters (e.g., denitrification) will
impact the isotopic signature of the nitrate source as well as transported sediment N and hence provide
unrealistic Sobol parameter sets in simulation. The stable isotope signature effectively discriminates
between those unrealistic conditions as compared to plausible equifinal solutions that meet criteria for
acceptance of model solutions. This idea, reflected in the sensitivity and calibration results of Figures 5 and
6 and Table 5, highlights the significance of sediment nitrogen isotope signatures in agroecosystems for
constraining dissolved nitrogen fluxes and thus reducing numerical model equifinality. We highlight the
feasibility of collection and analysis of ambient sediment N isotopes into routine sampling. Samples can be
collected on a weekly basis, stabilized and processed using accepted methods, and stored for extended
periods of time until ready for batch analysis [Phillips et al., 2000; Ford and Fox, 2015; Ford et al., 2015]. Unlike
dissolved N isotope measurements, sediment N isotope analysis is relatively inexpensive and is commonly
performed in stable isotope laboratories.

As a final innovative feature of the numerical modeling performed here, we highlight the importance of the
ordering of the multiobjective calibration approach. The sediment nitrogen and sediment nitrogen isotope
response variables impact the distribution of equifinal outputs of nonconservative algal sloughing, nitrifica-
tion, and denitrification. Without these intermediate calibration steps (i.e., purely calibrating with nitrate),
we would find a broad range of rates that would satisfy the statistical significance test used for nitrate and
ammonium because NO3 and NH4 are not very sensitive to mineralization rates, denitrification rates, and
uptake rates. The DIN calibration was critical for reducing the broad uncertainty in nitrate and ammonium
fluxes solution space, as well as further constraining denitrification and sloughing equifinality of parameter
spaces.

4.2. Algal Sloughing Within Freshwater Nitrogen Dynamics
Results of the TRANSFER application reveal the significance of algal sloughing relative to presumed impor-
tant removal pathways of DIN. Agricultural runoff with high dissolved nitrogen loads places strain on the
water bodies yet it is accepted that internal stream cycling may help to self-mitigate and remove nutrient
loads [Seitzinger, 2008]. For example, in the Mississippi River Basin for which this study is located, past
research has estimated that on the order of 50% of agricultural-associated nutrient runoff is removed by
the fluvial network prior to the water reaching the Gulf of Mexico [Alexander et al., 2008]. The present study
suggests that denitrification removes 10.7% of the dissolved nitrogen load within the third-order stream
system. Algal sloughing removes a slightly lower level of dissolved nitrogen from the stream system (6.3%
of dissolved N load annually). The remaining 83% is transported downstream as nitrate. TRANSFER results
predict sloughed algal nitrogen fluxes to be sometimes greater than traditionally important denitrification
and advective downstream nitrate transport (Table 5). Few previous studies have explicitly considered the
potential role of algae to temporarily or permanently store nitrogen within the fluvial system.

We highlight a need to quantify the fate of sloughed algal nitrogen within the fluvial network and in down-
stream water bodies. Algae is a labile pool of organic matter and is recognized as carbon-rich and com-
posed of highly labile neutral sugars [Vieira and Myklestad, 1986; Waite et al., 1995; Lane et al., 2013]. One
end-member assumption based on traditional spiraling concepts is that all benthic-derived sloughed algae
has short turnover lengths within the fluvial network and algal nitrogen is remineralized to dissolved nitro-
gen. However, such an assumption neglects the potential for long-term sequestration of algal nitrogen,
analogous to findings for algal carbon in recent C isotope-tracer studies [Hotchkiss and Hall, 2015; Ford and
Fox, 2017]. Ultimately, the transient pool of nitrogen can be denitrified or rereleased as dissolved inorganic
nitrogen in downstream water bodies. The algal nitrogen fate question seems particularly relevant given
that recent carbon cycling research showed that benthic-derived sloughed algae was on the same order of
magnitude, and at times greater, than phytoplankton within downstream water bodies [Ford and Fox,
2017].

The fate of algal nitrogen as it leaves agricultural watersheds is likely intertwined with physical processes as
well as dissolved nitrogen and sediment nitrogen also exported from the watershed. Turbulent action of
small to intermediate streams have the high potential to disaggregate benthic algae [Jarvis et al., 2005] to
colloidal and dissolved size fractions that allows greater surface area for mineralization and possible denitri-
fication occurring on suspended particles in the water column. At the same time, the high amount of
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exopolymeric substances (i.e., mucilage) associated with algae promotes the potential for flocculation in
larger slower moving water bodies [Worner et al., 2002]. Settling of flocs in rivers, lakes, and estuaries allow
for the building of hybrid sediments when the autochthonous material combines with terrestrial derived
particulates [Droppo et al., 2005]. The net fate of algal-nitrogen within such hybrid sediments is not well
known although it is well recognized that both rerelease and denitrification both occur [Revsbech et al.,
2005]. For example, high dissolved nitrogen loads associated with agricultural runoff will be expected to
decrease during summer periods, such as in the Mississippi River Basin. In turn, stored algal-nitrogen in the
beds of large rivers, lakes, and estuaries provides bioavailable organic matter and a source of nitrogen for
nitrifying bacteria [Revsbech et al., 2005] which could increase water-borne nitrate for blue-green algal
blooms in late summer. As another example, further decreases of nitrate in the water column (<150 mg/L)
[Seitzinger et al., 2006; Arango and Tank, 2008] in late summer and fall would promote the onset of coupled
nitrification-denitrification in the beds of lakes, rivers and estuaries and provide permanent removal path-
way of the benthic-derived algal nitrogen from the fluvial system.

Taken together, some portion of the sloughed algal nitrogen is permanently removed from the fluvial net-
work while another portion is remineralized potentially promoting a decrease in downstream water quality.
Given that the magnitude of algal nitrogen leaving the watershed is on the order of 10%, further elucidating
its fate remains an open question for scientists focused on nutrient cycling and water quality (i.e., hazardous
algal blooms in late summer, early fall).

4.3. Applicability and Limitations of TRANSFER and Its Results
We find that the results of this study and model evaluation technique are transferable to other agroecosys-
tems with prominence of an active SFGL layer and nonrate-limiting nutrient conditions. We developed
TRANSFER based on a synthesis of nitrogen cycling perceptions in agroecosystems [Birgand et al., 2007; Mul-
holland et al., 2008] and findings of coupled C and N dynamics including importance of C quality for biotic
cycling, SFGL dynamics, and algal fate and transport [Arango and Tank, 2008; Ford and Fox, 2014, 2015]. The
results of the calibration (Figures 5–7 and Table 4) provide confidence in our conceptual model of nitrogen
cycling in streams and show the effectiveness of multiobjective calibration and uncertainty using ambient
sediment nitrogen elemental and isotopic signatures to reduce equifinality for nutrient cycling problems.
The flux rates parameterized through calibration in TRANSFER that are consistent with rates commonly
reported for fluvial agroecosystems further support our confidence in the model. As an example, uncer-
tainty bounds that show denitrification rates and fixation rates that range from 103 to 104 mg m22 h21 fall
in the middle to high end of rates reported in the literature for riverine systems [Mulholland et al., 2008].
High rates of fixation are reflective of the highly productive nature of open-canopy, high nutrient streams in
the watershed that create nonrate-limiting conditions for algal growth [Griffiths et al., 2012; Ford and Fox,
2014]. High rates of denitrification are likely supported by high quality carbon pools associated with algal
biomass and detritus accrued in the SFGL of the agroecosystem streams [Martinelli et al., 2011; Lane et al.,
2013; Ford et al., 2014].

While we find results and transferability of the model to nutrient-rich urban and agroecosystem streams
with low hyporheic exchange, we highlight limitations for applicability in contrasting landscapes. TRANSFER
was developed, primarily for agroecosystem streams, which tend to be fueled by autochthonous C sources
as opposed to allochthonous leaf litter and detritus due to open canopy cover, high nutrient conditions,
and low-gradient streambeds [Rutherford et al., 2000; Griffiths et al., 2012; Ford and Fox, 2014]. Nitrogen
dynamics in forested landscapes are heavily regulated by upland leaf litter and detritus and low nutrient
thresholds that can produce rate-limiting conditions for algal growth. In steep-gradient systems, it is per-
ceived that SFGL storage is small relative to its low-gradient counterparts, which will limit the ability of algal
stabilization to integrate DIN fingerprints across timescales. As a result, model applications in these land-
scapes may show lower sensitivity to the algal pool. Nevertheless, it is perceived that sediment isotopes will
be highly sensitive to processing of coarse leaf litter and detritus, and nutrient regeneration, which high-
lights their potential utility in such landscapes. Certainly, in organic rich catchments (e.g., peat), or phyto-
plankton dominated rivers, such as larger systems downstream, organic N in the water column may vary
substantially seasonally and may show high utility for informing in-stream models and reducing equifinality.
We suggest considering this response variable in future work to extend the current modelling framework to
such systems. Finally, TRANSFER does not explicitly simulate hyporheic exchange, which stems from the cur-
rent application in fine-textured soils with bedrock controlled streambeds. Nevertheless, this process can
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become important in porous sandy and gravel bed rivers [Trimmer et al., 2012]. The reactions and interac-
tions of groundwater and surface water could be easily integrated through addition of a subsurface nutrient
pool and lateral and vertical exchange terms between the surface and subsurface pool. We foresee this as
an exciting extension of the model and a promising area for future work.

While in general the TRANSFER model confirms our perceptions of nitrogen cycling, some of the event
based results show deficiency in model evaluation statistics and highlight areas for further research and
refinement. We surmise that the deficiency is likely reflective of epistemic uncertainty in model structure
and our lack of understanding of the anomalous mobilization of soil and sediment nitrogen and the anoma-
lous demobilization of dissolved N, such as occurring under stresses associated with drought followed by
hydrologic events or as occurring after rather inert sediment has blanketed the streambed during winter
months, respectively. We highlight that N fate and transport could be influenced by both biotic and abiotic
processes [see Ford et al., 2015] prompting the need for mesoscale laboratory experimentation. Related, the
(dis)connectivity of the stream corridor and its uplands can be heterogeneous in space and time. Epistemic
uncertainty in biogeochemical simulation of DIN transformation could also contribute to model deficiencies.
For instance, our model structure does not explicitly simulate redox conditions and explicit discretization of
zones for denitrification to occur. A recent study by Reisinger et al. [2016] highlighted the importance of
water column denitrification in large riverine systems to be on the same order of magnitude as benthic sed-
iment denitrification, which tends to dominate in headwater streams. Likewise, localized anoxic patches can
govern denitrification in benthic biofilms and sediment layers [Pringle et al., 1988]. Therefore, we foresee
several opportunities improve the perceptual and numerical model in TRANSFER.

To overcome some of these existing limitations, we expect that the model can be coupled with other exist-
ing field-based parameter quantification methods as well as innovative and smart high-resolution data col-
lection sensing systems. We expect that isotope injection studies could improve the parameterization of
the model, especially for autotrophic and heterotrophic productive time periods in which one might run
such studies. For example, stream augmentation via 15-N labeling allows quantification of biotic assimila-
tion, denitrification as well as regeneration within streams [Peterson et al., 2001; Mulholland et al., 2008] and
augmentation using 13-C labeling allows assessment of short-term and long-term algal fate [Hotchkiss and
Hall, 2015]. Temporally varying parameterization of the model based on results from injection studies could
perhaps provide stronger estimates and prediction potential for TRANSFER. In addition, high resolution
sensing of nitrate [e.g., Miller et al., 2016], for example, could provide enriched calibration data that could
allow for temporal variation of parameterization.
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