














3.3. Predicting longitudinal change in EF scores

All participants remained cognitively normal at follow-up withMMSE
>27 and CDR-SB¼ 0 at all time points. EF declined �0.04� 0.228 units
annually over the 3-year follow-up period. Higher baseline EF scores
were associated with more negative ΔEF scores (r¼�0.46, p¼ .011).
Separate linear regression analyses were performed for the DMN and
ECN to determine whether imaging and neuropathology measures could
predictΔEF scores after controlling for baseline EF. Results indicated that
ΔEF scores were predicted by the full DMNmodel (F5,23¼ 6.61, p¼ .001)
after first entering baseline EF into the model (F-change4,23¼ 5.24,
p¼ .004). In this model, the only significant predictor other than baseline
EF was FA in DMN-naWM (β¼ 0.38, t¼ 2.35, p¼ .027), while DMN
deactivation (β¼ 0.14, t¼ 0.99, p¼ .385), CSF tau/Aβ42 (β¼�0.23,
t¼�1.45, p¼ .161), and WMH volume (β¼�0.15, t¼�1.02, p¼ .320)
all failed to reach significance. The first step of backward selection
(F4,24¼ 6.61, p< .001) removed DMN deactivation, and the final step
removed WMH volume, leaving both FA in DMN-naWM (β¼ 0.44,
t¼ 2.80, p¼ .010) and CSF tau/Aβ42 (β¼�0.26, t¼�1.75, p¼ .093) as

predictors in the final model (F3,25¼ 10.59, p< .001) (Fig. 5a). Similarly,
results indicated that ΔEF scores were predicted by the full ECN model
(F5,23¼ 7.01, p< .001) after first entering baseline EF into the model (F-
change4,23¼ 5.63, p¼ .003). In this model, both FA in ECN-naWM
(β¼ 0.41, t¼ 2.71, p¼ .013), CSF tau/Aβ42 (β¼�0.41, t¼�2.63,
p¼ .015) were significant, while neither ECN activation (β¼ 0.23,
t¼ 1.46, p¼ .159) nor WMH volume (β¼�0.17, t¼�1.18, p¼ .249)
were significant predictors. The first step of backward selection
(F4,24¼ 8.28, p< .001) removed WMH volume, and the final step
removed ECN activation, leaving both FA in ECN-WM (β¼ 0.39, t¼ 2.60,
p¼ .016) and CSF tau/Aβ42 (β¼�0.31, t¼�2.08, p¼ .048) as pre-
dictors in the final model (F3,25¼ 9.96, p< .001) (Fig. 5b).

As FA in DMN-WM and FA in ECN-WM were highly correlated,
mediation models were run with only one of the variables entered at a
time. Therefore, 4 mediation models were run: 1) CSF tau/Aβ42 as a
mediator of the FA in DMN-naWM and ΔEF score relationship, 2) CSF
tau/Aβ42 as a mediator of the FA in ECN-naWM and ΔEF score rela-
tionship, 3) FA in DMN-naWM as a mediator of the CSF tau/Aβ42-and
ΔEF score relationship, and 4) FA in ECN-naWM as a mediator of the CSF

Fig. 2. DMN and ECN WM Templates. A: WM pathways
connecting the DMN (blue) and ECN (green) with areas
connecting both shown in red. B:WM pathways unique to the
DMN include portions of the corpus callosum (CC) splenium
and genu, cingulum, superior longitudinal fasciculus (SLF),
and inferior longitudinal fasciculus (ILF). C: WM pathways
unique to the ECN include portions of the SLF, CC-genu, and
ILF. D: WM pathways that connected both DMN and ECN
regions included portions of the CC genu and splenium and
ILF. A-D: WM pathways were identified using probabilistic
tractography and averaging individual results to form a single
group template. The regions identified in the functional
templates (Fig. 1) were used as seeds for tractography.
Superior-lateral view on left and lateral view on right.

Table 2
Baseline relationships between imaging and CSF measures.

DMN Deactivation magnitude FA in DMN-naWM ECN Activation Magnitude FA in ECN-naWM WMH Volume CSF tau/Aβ42

DMN Deactivation magnitude – 0.40 (.025) ¡0.48 (.005) 0.33 (.062) �0.13 (.494) ¡0.39 (.029)
FA in DMN-naWM – ¡0.38 (.032) 0.91 (.000) �0.26 (.152) ¡0.35 (.047)
ECN Activation Magnitude – ¡0.40 (.022) 0.20 (.262) 0.39 (.026)
FA in ECN-naWM – �0.22 (.231) �0.32 (.071)
WMH Volume – �0.04 (.827)
CSF tau/Aβ42 –

Values are Pearson-r with p-values in parentheses. Significant (p< .05) relationships are shown in bold. All analyses had n¼ 32.
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tau/Aβ42 and ΔEF score relationship. In all models, baseline EF was used
as a covariate on ΔEF scores. Results of the first two mediation analyses
(Fig. 6c and d) found that CSF tau/Aβ42 did not mediate the effect of FA in
DMN-naWM (c’¼ 0.44 [0.11, 0.76], ab¼ 0.11 [-0.01, 0.35]), nor did it
mediate the effect of FA in ECN-naWM (c’¼ 0.39 [0.08, 0.71], ab¼ 0.11
[-0.02, 0.41]) on ΔEF scores. Results of the third model (Fig. 6a)
demonstrated that FA in DMN-naWM fully mediated the relationship
between CSF tau/Aβ42 and ΔEF scores (ab¼�0.19 [-0.53, �0.01],
c’¼�0.26 [-0.57, 0.047]). Finally, the results of the fourth model
(Fig. 6b) demonstrated that FA in ECN-WM partially mediated
(ab¼�0.15 [-0.405, �0.01]) the significant effect of CSF tau/Aβ42 on
ΔEF scores (c’¼�0.30 [-0.61, �0.002]).

3.4. Linear mixed modeling

Linear-mixed models were used to assess how baseline measures
predicted the change in EF over time. For each model, time was input as a
continuous variable in years, with the baseline visit as year 0. DMN
deactivation magnitude, FA in DMN-naWM, ECN activation magnitude,
FA in ECN-naWM, WMH volume, and CSF tau/Aβ42 were entered in
separate models as main effects, along with a time� baseline predictor
interaction. Results of these models are shown in Table 3 and found that
the only two predictors with a significant interaction with time were FA
in DMN-naWM and FA in ECN-naWM. An additional model was run using
both FA in DMN-naWM and FA in ECN-naWM along with their in-
teractions with time, but no predictor other than time was significant
(Table 4). A final full model was run using the addition of FA in DMN-
naWM� FA in ECN-naWM and FA in DMN-naWM� FA in ECN-
naWM� time interactions. Results are provided in Table 4 and demon-
strated significant FA in DMN-naWM� time, FA in ECN-naWM� time,
and FA in DMN-naWM� FA in ECN-naWM� time interactions.

4. Discussion

We explored the relative contributions of functional and structural
brain profiles, WMH burden and AD pathology to baseline and longitu-
dinal EF performance in older adults. Results indicated that baseline EF
was best predicted by ECN activation and DMN deactivation magnitudes
andWMH volume. In contrast,ΔEF was predicted by DMN-WMand ECN-
WM microstructure and AD pathological markers. However, DMN WM
microstructure mediated the relationship between AD pathology and
ΔEF. Together, our findings suggest that WMH volume and DMN/ECN
functional patterns contribute to current EF performance of older adults,
while measures of DMN and ECN WMmicrostructure appear to be better
predictors of their future EF performance.

4.1. Baseline EF is associated with WMH volume, ECN activation, and
DMN deactivation

In the present study, WMH volume, ECN activation, and DMN deac-
tivation magnitude predicted baseline EF performance. These findings
are consistent with separate studies which have demonstrated that
greater WMH volume (COHEN et al., 2002; Debette and Markus, 2010),
higher ECN activity (Rypma et al., 2006; Stern, 2009; Zhu et al., 2015),
and less DMN deactivation (Brown et al., 2015; Persson et al., 2007;
Prakash et al., 2012) are all associated with poorer performance during
tasks placing high demands on EF in older adults. This study extends
findings in previous studies concerning ECN and DMN activity to more
broadly used clinical measures of EF (as has been shown with previous
studies concerning WMHs). Further, the composite measure of EF uti-
lized in the present study provides a global estimate of EF that is less tied
to potentially idiosyncratic single measure results (Crane et al., 2008).

Moreover, our results from multivariate analyses suggest, that among
a number of potential predictors, functional activation in the ECN,

Fig. 3. Prediction of EF at Baseline by WMH volume, DMN deactivation, and ECN activation. A-B: Partial regression plots of baseline EF against WMH volume
(A) and DMN deactivation (B) simultaneously. C-D: Partial regression plots of EF against WMH volume (C) and ECN activation (D) simultaneously. A-D: All values are
mean-centered. The thick dashed line represents the linear best-fit and thin dashed lines are the 95% confidence interval for the predicted response. Includes all
baseline participants (n¼ 32). The three participants not included in the longitudinal analyses are indicated by arrows.
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deactivation in the DMN and WMH burden contributed to baseline EF
performance in older adults. The finding that the association between
ECN activation and EF was mediated by the indirect effects of WMH
volume and DMN deactivation suggests that increased ECN activity may
represent a compensatory response to greater levels of structural lesions
in the form of WMHs and greater levels of ongoing activity in the DMN
during the task. Notably, ECN activation was negatively correlated with
EF performance. Therefore, increased ECN activity may represent a failed
attempt at compensation and/or a sign of reduced efficiency (Barulli and
Stern, 2013; Zhu et al., 2015).

In addition, greater levels of ongoing activity in the DMN during the
task would be expected to negatively affect EF performance because it
would result in greater ongoing internally-focused processes (Brown
et al., 2015; Persson et al., 2007). Therefore, greater EF resources may be
needed to suppress interference from ongoing DMN processes, possibly
leaving fewer EF resources to devote to the task-at-hand. In contrast,
those who successfully deactivate the DMN appear to be able to “free-up”
neural resources for use in EF processes required by the task-at-hand.

As noted, WMH volume was also a significant predictor of baseline EF
performance. This suggests that other factors outside of the observed
functional alterations may serve as the mechanism by which WMHs

contribute to poorer EF. Previous studies have suggested that WMHs may
contribute to poor EF directly through disconnection of neural networks
or indirectly through neurodegeneration secondary to vascular compro-
mise (Brown et al., 2007; Debette and Markus, 2010). The latter is more
consistent with our current results as WM microstructure did not predict
baseline EF performance in the present study.

4.2. Longitudinal change in EF is predicted by baseline DMN and ECN WM
microstructure

Our results indicated that baseline WM microstructure predicted
longitudinal decline in EF over a three-year follow-up period. Previous
results have shown that baselineWMmicrostructure (averaged across the
entire brain) predicts longitudinal change in working memory (Charlton
et al., 2010), and WM microstructure (averaged across several major
tracts including the cingulum and corpus callosum) predicts fluid intel-
ligence (Ritchie et al., 2015) over a period of years. In the current study,
both microstructure within DMN WM pathways and within ECN WM
pathways predicted longitudinal decline in EF in separate regression
analyses.

Furthermore, results of linear mixed-modeling indicated that DMN
and ECN WM microstructure appear to both independently and syner-
gistically predict longitudinal change in EF. Together these results pro-
vide new evidence that WMmicrostructure within the ECN and DMN are
strong predictors of longitudinal decline in performance on standardized
neuropsychological tests of EF. These standardized neuropsychological
EF tests are used as part of the diagnostic criteria for mild cognitive
impairment (MCI) (Albert et al., 2011) and have been found to predict
development of MCI and AD (Albert et al., 2001; Blacker et al., 2007;
Gibbons et al., 2012). Therefore, with further refinement, the present
DMN and ECN naWM templates may aid prediction of future cognitive
decline and clinical diagnosis.

4.3. Longitudinal change in EF is predicted by AD pathology

The present study found that baseline CSF tau/Aβ42 ratios also pre-
dicted change in EF over the three-year follow-up period. A large body of
work has focused on the use of AD markers to predict memory decline
(Hedden et al., 2013), as well as prediction of clinical progression (Fagan
et al., 2007; Vos et al., 2013). In contrast, less work has examined if AD
pathology is predictive of EF performance declines. Several studies have
demonstrated that increased AD pathology is associated with poorer EF
performance cross-sectionally (Hedden et al., 2013; Oh et al., 2012), and
one study demonstrated that higher CSF tau/Aβ42 ratios predict longi-
tudinal decline in EF in CN older adults and those with MCI (van Harten
et al., 2013). Our results are consistent with these findings in suggesting
that baseline AD pathology impacts subsequent EF functioning.

4.4. DMN WM microstructure mediates the relationship between the tau/
Aβ42 ratio and ΔEF

A key finding of the present study was that DMN WM microstructure
mediated the relationship between the tau/Aβ42 ratio and ΔEF. Our
mediation results provide the first evidence to our knowledge that AD
pathology is associated with change in EF over time, in part, through its
relationship with DMN WM microstructure. In addition, ECN WM
microstructure partially mediated the relationship between the tau/Aβ42
ratio and ΔEF. This may represent the stronger association between AD
pathology and the DMN at these early disease stages, and indicates the
importance of WM microstructure in the AD pathological process. It is
thus worth considering how Aβ42 and tau may negatively affect WM
microstructure. Aβ42 has been show to disrupt myelin sheath formation
and is toxic to oligodendrocytes responsible for maintenance and repair
of myelin (Horiuchi et al., 2012; Lee et al., 2004; Xu et al., 2001). Further,
abnormal aggregation of tau contributes to microtubule destabilization
due to the loss of normal tau function (Alonso et al., 1994). Finally, tau

Fig. 4. Results of mediation models for baseline EF. A-C: Results of Preacher
and Hayes mediation analyses with significant direct or indirect effects indi-
cated by solid arrows and non-significant direct or indirect effects shown by
dashed arrows. Standardized β-coefficients are shown next to the corresponding
path with significant effects shown in bold and non-significant effects in italics.
For all models, the total effect of X on Y (c) is shown above the horizontal arrow,
while the direct effect of X on Y (c’) after accounting for indirect effects is shown
below the horizontal arrow. A: Results indicated that the indirect effects of DMN
deactivation and ECN activation did not mediate the significant direct effect of
WMH volume on baseline EF. B: Results indicated that the effect of ECN acti-
vation on baseline EF was mediated by the total indirect effects of DMN deac-
tivation and WMH volume, but not by either individual indirect effect. C:
Results indicated that the effect of DMN deactivation on baseline EF was
mediated by the indirect effect of ECN activation but not of WMH volume.
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and Aβ42 interact to disrupt fast axonal transport (FAT), which in turn
contributes to decline in axonal, myelin, and synaptic integrity (Bartzo-
kis, 2011; Vossel et al., 2015, 2010).

The direct effect of both DMN and ECNWMmicrostructure on change

in EF suggests that additional, non-AD-related pathological changes in EF
are also predicted by WM microstructure. Of relevance, we used FLAIR
imaging to identify and mask out areas of WMH in order to study normal
appearing WM (Brown et al., 2018). WMHs are ubiquitous in aging (de

Fig. 5. Prediction of longitudinal ΔEF by baseline measures. A-B: Partial regression plots of average annual ΔEF against CSF tau/Aβ42 (A) and FA in DMN-naWM
(B) simultaneously. C-D: Partial regression plots of average annual ΔEF against CSF tau/Aβ42 (C) and FA in ECN-naWM (D). A-D: All values are demeaned. The thick
dashed lines represent the linear best-fit and thin dashed lines are the 95% confidence intervals for the predicted response. Includes subset of participants included in
longitudinal analyses (n¼ 29).

Fig. 6. Results of longitudinal mediation analyses. A-D: Results of Preacher and Hayes mediation analyses with significant direct or indirect effects indicated by
solid arrows with non-significant direct or indirect effects are shown by dashed arrows. Standardized β-coefficients are shown next to the corresponding path with
significant effects shown in bold and non-significant effects in italics. For all models, the total effect of X on Y (c) is shown above the horizontal arrow, while the direct
effect of X on Y (c’) after accounting for indirect effects is shown below the horizontal arrow. All models included the subset of participants used in longitudinal
analyses (n¼ 29). A: Results indicated that the relationship between CSF Tau/Aβ42 ratio and average annual ΔEF was mediated by FA in DMN-naWM. B: Results
indicated that the relationship between CSF Tau/Aβ42 ratio and average annual ΔEF was partially mediated by FA in ECN-naWM. C-D: Results indicated that CSF Tau/
Aβ42 did not mediate the relationship between FA in DMN-naWM and average annual ΔEF (C) or the relationship between FA in ECN-naWM and ΔEF (D).
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Leeuw, 2001) and are thought to primarily reflect areas of cerebrovas-
cular pathology resulting from a breakdown in vascular integrity (Young
et al., 2008). In contrast, declines in naWM are thought to reflect subtler
declines in the microstructural organization of WM (van Norden et al.,
2012). These changes may be the result of age-related declines in syn-
apses, axonal loss, or myelin breakdown, all of which would reduce WM
microstructure through loss of membrane density and organizational
coherence (Bartzokis et al., 2004; Marner et al., 2003; Masliah et al.,
1993; Tang et al., 1990). In addition, these changes may also reflect distal
effects in tracts negatively impacted by cerebrovascular pathology (van
Norden et al., 2012). Therefore, WM microstructure appears to be a
sensitive marker that likely reflects a combination of age-related, AD
pathology-related, and cerebrovascular pathology-related processes that
each contribute to poorer EF outcomes.

4.5. Baseline and longitudinal EF are predicted by different functional/
structural network measures

The DMN and ECN were found to be predictors of both baseline EF
and ΔEF. However, baseline EF was only predicted by DMN and ECN
functional patterns, while DMN and ECN WM microstructure were the
most direct predictors of ΔEF. It is unclear what may cause this shift, but
one possibility may be that functional brain measures reflect more dy-
namic processes that undergo greater day-to-day fluctuations and brain
function may thus be a better predictor of more proximal EF perfor-
mance. In contrast, measures of brain structure, which are often
considered measures of ‘brain reserve’, likely show less fluctuation over
short periods of time and would thus be expected to be more stable
predictors of future cognitive performance than functional measures.
While speculative, this possibility is generally in-line with a view that
compensatory functional mechanisms become less effective in the
context of increasing disruption of the structural network over time, thus
aspects of brain reserve become more important (Barulli and Stern,
2013).

4.6. Limitations

The current study has several limitations. First, while baseline mea-
sures predicted ΔEF, causality cannot be directly inferred from the pre-
sent results. For example, it is possible that some other unmeasured
variable may be responsible for the observed relationships and mediation
effects as these analyses are all hypothesis-driven correlational ap-
proaches. In addition, the present study had a limited sample size and
may have been underpowered to detect smaller effects on EF cross-
sectionally and longitudinally. Future work should use larger cohorts in
order to better detect subtler effects. Further, we examine only CN older
adults. It is unclear whether these relationships are maintained in states
of mild cognitive impairment and clinical dementia. Future studies
should seek to investigate the role of DMN WM and deactivation pre-
dicting EF in these later clinical stages. Finally, we treated AD pathology
as a continuous variable, but it is unclear whether the relationship be-
tween AD pathology and other measures may be different above and
below certain thresholds. Future studies should be performed with large
enough samples to assess the effects of AD pathology on brain structure/
function and EF both within sub- and supra-threshold groups and across
all participants.

4.7. Conclusions

The current study provides evidence for relationships between mul-
tiple functional and structural factors in the DMN and ECN and EF per-
formance on standardized neuropsychological measures. Further, our
results provide novel evidence that baseline AD pathology negatively

Table 3
Linear mixed-modeling results.

Predictor Model Fit Year Predictor Predictor� Year

FA in DMN-naWM AIC¼ 179.57 F1,78.9¼ 9.97 (p¼ .002)
β¼ -2.75 [-4.50, -1.02]

F1,47.8¼ 2.77 (p¼ .103)
β¼ 6.75 [-1.41, 14.91]

F1,78.9¼ 9.27 (p¼ .003)
β¼ 4.58 [1.59, 7.57]

DMN deactivation AIC¼ 200.41 F1,78.4¼ 7.64 (p¼ .007)
β¼ -0.16 [-0.28, -0.05]

F1,43.5¼ 0.73 (p¼ .396)
β¼�0.16 [-1.32, 3.28]

F1,77.9¼ 2.13 (p¼ .149)
β¼ 0.54 [-0.20, 1.27]

FA in ECN-naWM AIC¼ 178.55 F1,78.9¼ 13.83 (p < .001)
β¼ -3.03 [-4.66, -1.41]

F1,81.2¼ 0.26 (p¼ .871)
β¼�0.76 [-10.13, 8.60]

F1,79.0¼ 12.96 (p¼ .001)
β¼ 5.16 [2.31, 8.01]

ECN Activation AIC¼ 203.89 F1,78.9¼ 5.14 (p¼ .026)
β¼�0.13 [-0.23, �.02]

F1,76.0¼ 3.78 (p¼ .056)
β¼�1.35 [-2.74, 0.03]

F1,79.1¼ 0.54 (p¼ .464)
β¼ 0.15 [-0.25, 0.54]

WMH Volume AIC¼ 206.17 F1,78.2¼ 0.78 (p¼ .781)
β¼ 0.16 [-0.99, 1.32]

F1,79.1¼ 2.55 (p¼ .114)
β¼�0.34 [-0.77, 0.08]

F1,78.1¼ 0.20 (p¼ .655)
β¼�0.03 [ �0.15, 0.09]

CSF tau/Aβ42 AIC¼ 205.70 F1,78.3¼ 3.99 (p¼ .049)
β¼�0.29 [-0.57, �0.001]

F1,41.6¼ 0.002 (p¼ .97)
β¼ 0.27 [-1.27, 1.30]

F1,78.2¼ 1.83 (p¼ .181)
β¼�0.27 [-0.68, 0.13]

Results of separate linear mixed-models are shown in each row above. The model-fit is described by AIC, where lower values indicate a better fit. For each fixed-effect
the fit statistic and un-standardized β co-efficient estimates are provided with the p-value and [95% CI], respectively. Significant effects with p< .008 are indicated in
bold. All models included an intercept term.

Table 4
Linear Mixed Model Results using FA in DMN and FPCN naWM.

Predictor Model 1 AIC¼ 164.65 Model 2 AIC¼ 137.49

Time F1,78.0¼ 12.40
(p¼ .001)
β¼ -2.93 [-4.58,-
1.27]

F1,77.9¼ 5.50
(p¼ .022)
β¼ -41.1 [-76.0,-
6.20]

FA in DMN-naWM F1,46.8¼ 3.09
(p¼ .085)
β¼ 17.24
[-2.49,36.97]

F1,45.3¼ 3.18
(p¼ .081)
β¼�149.2
[-317.7,19.27]

FA in FPCN-naWM F1,47.3¼ 1.28
(p¼ .263)
β¼�10.5
[-29.2,8.16]

F1,45.4¼ 4.55
(p¼ .038)
β¼ -168.5 [-327.7,-
9.37]

FA in DMN-naWM x Time F1,79.6¼ 0.175
(p¼ .677)
β¼�1.56
[-9.01,5.88]

F1,77.6¼ 4.52
(p¼ .037)
β¼ 68.2
[4.31,132.2]

FA in FPCN-naWM x Time F1,80.1¼ 3.072
(p¼ .083)
β¼ 6.49 [-0.88,13.86]

F1,78.2¼ 5.60
(p¼ .020)
β¼ 74.27
[11.78,136.8]

FA in DMN-naWM x FA in
FPCN-naWM

N/A F1,45.4¼ 4.03
(p¼ .051)
β¼ 292.0
[-0.97,585.0]

FA in DMN-naWM x FA in
FPCN-naWM x Time

N/A F1,77.9¼ 4.76
(p¼ .032)
β¼ -123.6 [-236.4,-
10.83]

Results of separate linear mixed-models are shown in each column above. The
model-fit is described by AIC, where lower values indicate a better fit. For each
fixed-effect the fit statistic and un-standardized β co-efficient estimates are pro-
vided with the p-value and [95% CI], respectively. Both models included an
intercept term.
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impacts subsequent EF performance, in part, through its association with
poorer WM microstructure within the DMN. Measures of WM micro-
structure may thus aid the monitoring and assessment of future thera-
peutic interventions aimed at preventing longitudinal EF declines.
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