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Distinct patterns of default mode and executive control network circuitry
contribute to present and future executive function in older adults

Christopher A. Brown a, Frederick A. Schmitt b,c,d, Charles D. Smith b,c,e, Brian T. Gold a,b,e,*

a Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
b Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
c Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
d Department of Psychiatry, University of Kentucky, Lexington, KY, 40536, USA
e Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, 40536, USA

A B S T R A C T

Executive function (EF) performance in older adults has been linked with functional and structural profiles within the executive control network (ECN) and default
mode network (DMN), white matter hyperintensities (WMH) burden and levels of Alzheimer's disease (AD) pathology. Here, we simultaneously explored the unique
contributions of these factors to baseline and longitudinal EF performance in older adults. Thirty-two cognitively normal (CN) older adults underwent neuropsy-
chological testing at baseline and annually for three years. Neuroimaging and AD pathology measures were collected at baseline. Separate linear regression models
were used to determine which of these variables predicted composite EF scores at baseline and/or average annual change in composite ΔEF scores over the three-year
follow-up period. Results demonstrated that low DMN deactivation, high ECN activation and WMH burden were the main predictors of EF scores at baseline. In
contrast, poor DMN and ECN WMmicrostructure and higher AD pathology predicted greater annual decline in EF scores. Subsequent mediation analysis demonstrated
that DMN WM microstructure uniquely mediated the relationship between AD pathology and ΔEF. These results suggest that functional activation patterns within the
DMN and ECN and WMHs contribute to baseline EF while structural connectivity within these networks impact longitudinal EF performance in older adults.

1. Introduction

Executive function (EF) describes the human capacity for flexible and
adaptive thought processes, such as working memory, task switching,
and inhibitory control (Miller and Cohen, 2001). Cognitively normal
(CN) older adults show significant declines in EF compared to younger
adults (Zelazo et al., 2004). Furthermore, decline in EF is associated with
poorer quality of life and decreased functional independence in older
adults (Bell-McGinty et al., 2002; Pathy et al., 2006). However, the
mechanisms contributing to decreased EF in CN older adults are poorly
understood. These mechanisms may include alterations in brain function
and structure, accumulating white matter hyperintensities (WMH)
and/or Alzheimer's disease (AD) pathology.

Much of the research seeking to identify functional mechanisms
contributing to EF declines in older adults have focused on regions
belonging to the executive-control network (ECN). The majority of
studies have demonstrated that functional brain activity within portions
of the ECN increase with age (Grady, 2012; Spreng et al., 2010). How-
ever, studies examining how these age-related increases in activity are
associated with EF performance have been equivocal, with some finding
no relationship (Grady, 2012) and others finding that increased activity

is associated with poorer task performance (Stern, 2009; Zhu et al.,
2015). This has led researchers to view this activity as either a sign of
reduced efficiency (Stern, 2009; Zhu et al., 2015) or a failed attempt at
compensation (Grady, 2012; Park and Reuter-Lorenz, 2009).

More recent research suggests that other networks may also play an
important role in EF in older adults. In particular, the default mode
network (DMN) may be an important contributor to EF performance in
older adults. The DMN is a set of regions that are most active at rest and
decrease in activity during externally-directed tasks. The DMN is thought
to be primarily responsible for internally-focused thought processes, such
as autobiographical memory and experience of the self, which must be
decreased during externally-directed tasks (Andrews-Hanna et al., 2014;
Buckner et al., 2005; Raichle et al., 2001). However, the ability to
decrease activity in the DMN during tasks, termed deactivation, de-
creases linearly across the adult lifespan (Grady et al., 2006). Due to its
role in autobiographical memory, much of the research examining the
DMN's role in cognition has focused on memory (Buckner et al., 2005;
Gould et al., 2006; Lustig et al., 2003; Vannini et al., 2012), while fewer
have explored associations with EF. However, there is some evidence that
age-related reduction in DMN deactivation is associated with poorer EF
task performance (Brown et al., 2015; Persson et al., 2007).
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In addition to functional activation patterns, alterations in ECN and
DMN structural connectivity (i.e., white matter microstructure) may
contribute to reduced EF in older adults. White matter (WM) micro-
structure refers to the organizational coherence and density of WM and
can be assessed in vivo through the use of diffusion tensor imaging (DTI).
Declines in microstructural properties of WM are consistently observed in
aging and are thought to reflect decreased myelin and/or axonal density
(Bartzokis et al., 2004; Beaulieu, 2002; Salat et al., 2005). Early work
examining DTI and EF relationships primarily focused on frontal WM and
fronto-parietal association tracts belonging to the ECN, such as the su-
perior longitudinal fasciculus (Gold et al., 2010; Madden et al., 2004),
but recent work has also demonstrated relationships between micro-
structure in WM pathways connecting DMN regions and EF performance
(Brown et al., 2015).

Finally, EF performance in older adults may also be influenced by the
accumulation of neuropathology. The most prevalent neuropathology in
aging is AD pathology, which consists of amyloid plaques made up of
β-amyloid (Aβ) and neurofibrillary tangles made up of tau (Glenner and
Wong, 1984; Grundke-Iqbal et al., 1986). Importantly, AD pathology is
present in approximately 30% of CN older adults over the age of 65,
representing a prolonged preclinical disease stage during which pathol-
ogy accumulates but no clinical signs are present (Morris et al., 1996;
Price et al., 2009; Sperling et al., 2009). The most sensitive and specific
marker of AD pathology is the CSF tau/Aβ42 ratio (Shaw et al., 2009), and
several studies have demonstrated that higher CSF tau/Aβ42 ratios pre-
dict future decline (Fagan et al., 2007; Vos et al., 2013). While AD is
typically thought of as primarily affectingmemory in early disease stages,
several studies have demonstrated poorer performance on tests of EF
during preclinical disease stages (Albert et al., 2001; Almkvist, 1996;
Blacker et al., 2007).

In addition to AD pathology, many older adults also harbor significant
levels of cerebrovascular disease (CVD) pathology. The most commonly
used in vivo marker of CVD pathology is the presence of WMH assessed
using fluid attenuated inversion recovery (FLAIR) imaging (Breteler
et al., 1994; COHEN et al., 2002). These areas of WMH correspond with
areas of axonal and myelin loss post-mortem and often occur in areas
with reduced vascular integrity and increased inflammatory infiltrate
(Grafton et al., 1991; Young et al., 2008). WMHs are seen in approxi-
mately 90% of CN older adults aged 60–90 (de Leeuw, 2001) and have
been associated with poorer EF during preclinical disease stages (COHEN
et al., 2002; Debette and Markus, 2010).

It is relevant to note that the functional, structural, and pathological
mechanisms described above frequently overlap, and, in fact, are them-
selves associated with each other. For example, previous studies have
demonstrated associations between neuropathology and functional ac-
tivity (Hedden et al., 2012; Oh et al., 2015; Sperling et al., 2009), be-
tween neuropathology and WM microstructure (Gold et al., 2014;
Kantarci et al., 2014; Taylor et al., 2007), and between WM micro-
structure and functional activity (Brown et al., 2015; Daselaar et al.,
2013; Zhu et al., 2015). Despite this fact, a majority studies examining
how each of these measures impact EF in aging have focused on only
functional, structural or pathological mechanisms.

In the present study, we sought to explore the relative contributions
of both DMN and ECN functional and structural profiles andmeasures of
neuropathology to EF in cognitively normal (CN) older adults. We first
sought to explore how these measures associate with standardized
neuropsychological measures cross-sectionally. Second, we examined
how these DMN and ECN measures may predict longitudinal EF neu-
ropsychological performance over-and-above effects of neuropa-
thology. We hypothesized that both DMN and ECN function/structure
would be associated with cross-sectional EF performance on standard-
ized neuropsychological measures. Further, we predicted that baseline
DMN and ECN function and/or structure may mediate the effects of
neuropathology on change in EF neuropsychological performance over
time.

2. Methods

2.1. Participants

Written informed consent was obtained from each participant under
an approved University of Kentucky Institutional Review Board protocol.
Thirty-two CN older adults (age at baseline: 66–93 years old) were
selected from one of our previous neuroimaging studies (Brown et al.,
2018) of 39 CN older adults (ages 65–93) based on availability of lon-
gitudinal neuropsychological testing and quality baseline neuroimaging
data. The original cohort was recruited from a larger cohort of CN older
adults followed by the University of Kentucky Sanders-Brown Center on
Aging (SBCoA), which has been described previously (Schmitt et al.,
2012). Exclusion criteria for all participants were significant head injury
(operationally defined as loss of consciousness for greater than five mi-
nutes), heart disease, psychiatric or neurological disorder, claustro-
phobia, pacemakers, or presence of metal fragments and/or metallic
implants contraindicated for MRI. Seven participants from the original
cohort were excluded from the current study due to: poor neuroimaging
data quality (n¼ 4, see (Brown et al., 2018) for details), decision not to
enroll in neuropsychological testing portion of the study (n¼ 2) or loss to
follow-up after baseline visit (n¼ 1). Neuropsychological data was
available for 32 participants at baseline and this data was used in the
cross-sectional analyses. Neuropsychological data was available for 31
participants at one-year follow-up, for 29 participants at two-year fol-
low-up, and 28 participants at three-year follow-up. The average number
of annual visits (including baseline) available per participant was
3.75� 0.51 (range¼ 2–4, median¼ 4). Three individuals were identified
as outliers in average ΔEF score (>3 SD from mean) and were not
included in the regression analyses. Therefore, a total of 29 participants
were included in longitudinal analyses. Baseline demographics and mean
outcome measures are reported for the initial group of 32 participants
and the subgroup of 29 participants used in longitudinal analyses in
Table 1 (all values represent baseline data except for the average annual
change in EF). At baseline, 7/32 participants were Aβ42 þ, of which 4/7
participants were tau/Aβ42 þ based on established thresholds.

2.2. Evaluation of EF

All participants underwent the standard battery of neuropsychologi-
cal tests included in the UDS-2 at baseline. Individuals returned annually
to undergo the UDS battery (Weintraub et al., 2002). At follow-up testing
sessions, participants completed the UDS-3. The UDS-2 and UDS-3 are

Table 1
Demographic and outcome measures.

Baseline Group
(n¼ 32)

Longitudinal Subgroup
(n¼ 29)

Age 77.7 (6.57) 77.8 (6.82)
Sex (M:F) 14:18 13:16
Education 16.5 (2.41) 16.7 (2.44)
DMN-naWM FA 0.58 (0.026) 0.58 (0.027)
DMN Deactivation Magnitude (%
signal change)

0.10 (0.119) 0.11 (0.109)

ECN-naWM FA 0.57 (0.028) 0.57 (0.029)
ECN Activation Magnitude (%
signal change)

0.20 (0.212) 0.18 (0.215)

CSF Aβ42 (pg/mL) 271.4 (79.21) 270.2 (79.11)
CSF Tau (pg/mL) 56.9 (16.29) 57.2 (16.75)
CSF Tau/Aβ42 0.24 (0.140) 0.24 (0.142)
WMH Volume/ICV 0.011 (0.007) 0.011 (.007)
MMSE* 30 (27–30) 30 (27–30)
CDR-SB* 0 (0–0) 0 (0–0)
Baseline EF Composite �0.12 (0.907) 0.08 (0.621)
Average Annual ΔEF – �0.04 (0.228)

Mean (S.D.) for individuals included in baseline analyses (left) and longitudinal
analyses (right). All measures reflect values at baseline except for the Average
Annual ΔEF. *Median (range) are provided for MMSE and CDR-SB scores.
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not identical. Thus, EF-related tests common to the UDS-2 and UDS-3
were selected for use in the present study: Trailmaking Part A (TM-A),
Trailmaking Part B (TM-B), and the Digit Symbol test from the Wechsler
Adult Intelligence Scale-IV (WAIS-DS). Raw scores were first standard-
ized based on age, sex, and education using scores generated from the
larger SBCoA cohort, as previously described (Kryscio et al., 2016). Age,
sex, and education-standardized scores for TM-A were then regressed out
of TM-B and WAIS-DS standardized scores in order to exclude compo-
nents of raw processing and motor speed common to all tests (Salthouse,
2011). The resulting residuals were then combined to form a composite
EF score by subtracting the TM-B residuals (higher scores¼worse per-
formance) from the WAIS-DS residuals (higher scores¼ better perfor-
mance) and dividing by 2. Therefore, higher EF composite scores
reflected better performance.

The EF composite was calculated for each participant at each visit.
One-year change between each visit was calculated by subtracting the EF
score of the current visit from the previous visit (i.e. EF composite at Year
1 visit – EF composite at baseline visit). Our study focused on average
annual EF change rates. Thus, each participant's average annual change in
EF was calculated by averaging all of that individual's available one-year
change scores (average the change from year 0 to year 1, year 1 to year 2,
and year 2 to year 3).

2.3. CSF sampling and analysis

Lumbar puncture was performed following an overnight fast, as
previously described (Gold et al., 2014). Samples were shipped on dry ice
to the Biomarker Research Laboratory at the University of Pennsylvania
Medical Center, where the xMAP Luminex Platform (Luminex Corp,
Austin TX) with Innogenetics (INNO-BIA, AlzBio3; Ghent, Belgium)
immunoassay kit was used to measure CSF concentrations of Aβ42 and
total tau as previously described (Shaw et al., 2009). The CSF tau/Aβ42
was then calculated and used in analyses due to its high sensitivity and
specificity for AD pathology (Shaw et al., 2009). The CSF tau/Aβ42 ratios
were log-transformed before statistical analyses due to their skewed
distribution.

2.4. fMRI paradigm

Participants performed a visual working memory paradigm during
fMRI scanning. The paradigm was a modified delayed-match-to-sample
task with multiple targets and repeating intervening distractors, which
increases demands on executive processes (Jiang, 2000; Kane and Engle,
2002). The task paradigm has been described in detail previously (Brown
et al., 2018; Gold et al., 2017). Briefly, participants were asked to ‘hold in
mind’ two target images and indicate whether or not each of 12 serially
presented sample images represented a match with either target image.
These sample images were one of four repeating images that were either
one of the two target images or one of two repeating distractor images.
Each fMRI run consisted of 8 working memory task blocks (28s each) and
9 visual baseline blocks (10s each), which occurred between task blocks
and at the start and end of each run. Participants performed two fMRI
runs. Relationships between fMRI activation/deactivation patterns and
working memory task performance in the present participants have been
reported previously (Brown et al., 2018; Gold et al., 2017). In the present
study, we focused on the relationships between activation/deactivation
magnitudes and neuropsychological performance.

2.5. Image acquisition

All images were collected using a Siemens Trio TIM 3 Tesla scanner
with a 32-channel head coil at the University of Kentucky Magnetic
Resonance Imaging and Spectroscopy Center (MRISC). The protocol
consisted of the following sequences collected in the order in which they
are listed: 1) High-resolution T1-weighted anatomical image, 2) Two
task-fMRI blood-oxygen level dependent (BOLD) T2*-weighted

functional imaging runs, 3) one resting state (rs)-fMRI BOLD T2*-
weighted functional imaging run, 4) diffusion tensor imaging (DTI), 5)
fluid-attenuated inversion recovery (FLAIR) imaging.

The high-resolution T1-weighted image was acquired using
magnetization-prepared rapid echo gradient-echo (MPRAGE) sequence
[Repetition time (TR)¼ 2530ms, Echo time (TE)¼ 2.26ms, inversion
time (TI)¼ 1100ms, Flip angle¼ 7�, acquisition ma-
trix¼ 256� 256� 176, field of view (FOV)¼ 256� 256mm, 1mm
isotropic voxels]. Task- and rs-fMRI were acquired using gradient-echo
echo-planar imaging (EPI) [TR¼ 2000ms, TE¼ 27ms, Flip
angle¼ 83�, acquisition matrix¼ 64� 64, FOV¼ 243� 243mm,
3.8 mm isotropic voxels, 36 interleaved slices]. DTI was acquired using a
double-spin echo EPI sequence [TR¼ 8000ms, TE¼ 96ms, Flip
angle¼ 90�, FOV¼ 224� 224mm, 2mm isotropic voxels, 52 contiguous
slices] with 60 non-collinear encoding directions (b¼ 1000 s/mm2) plus
8 images without diffusion weighting (b0). FLAIR images were collected
using a fat-saturated, turbo-spin echo (TSE) sequence [TR¼ 9000ms,
TE¼ 89ms, TI¼ 2500ms, Flip Angle¼ 90�, Refocusing Angle¼ 130�,
acquisition matrix¼ 256� 174� 34, 1� 1� 4mm voxels].

2.6. Functional imaging analysis

Analyses focused on participant's mean functional activation/deacti-
vation magnitude within two network templates: the DMN and ECN. The
templates were developed in our previous studies that involved both
younger and older adults (Brown et al., 2018; Gold et al., 2017). These
templates were utilized instead of using a standard rs-fMRI template,
such as Stanford rs-fMRI atlases, as they incorporate data from older
adults, and are thus more appropriate for the study of older adults. The
template development has been described in full detail elsewhere (Brown
et al., 2018). Briefly, the functional templates were developed using the
following steps. The FMRIB software library (FSL) version 5.0.9 (Jen-
kinson et al., 2012; Smith et al., 2004) was used for pre-processing and
analysis of neuroimaging data. Following motion correction and
non-linear registration to the MNI152 T1 2mm3, both task- and rs-fMRI
data were scrubbed for motion with both regression of motion parame-
ters and removal of motion outliers using a frame-wise displacement
threshold of >0.5mm (Power et al., 2012). Further nuisance regression
removed signal of white matter and CSF (Brown et al., 2018). The re-
siduals from these pre-processing steps were then used for time-series
analyses.

The templates were formed by performing independent component
analysis separately for each task- and rs-fMRI run, averaging DMN/ECN
components from task-based runs, andmasking themwith the DMN/ECN
component from rs-fMRI in order to include regions showing activation/
deactivation during the task and connectivity at rest (Brown et al., 2018).
Using this approach, only regions showing task-related activity that were
part of the canonical resting-state networks were included our final
templates (Fig. 1). Subsequent analyses focused on BOLD magnitude
within the functional templates. These functional templates are available
for use and can be downloaded from our lab website (https://sites.goog
le.com/site/btgoldlaboratory/, also available at http://doi.org/10
.13140/RG.2.2.34709.78567).

Time-series were extracted from the functional templates (Fig. 1).
BOLD signal during baseline was computed by averaging the middle 6s of
all baseline blocks (in order to avoid the upshoot and downshoot asso-
ciated with the onset/offset of blocks). BOLD signal during the task was
computed by averaging the middle 6s of all working memory blocks (to
parallel sampling of baseline blocks). Activation/deactivation within the
functional templates was then computed as percent signal change by
subtracting the BOLD signal during the baseline from BOLD signal during
the task and multiplying by 100. For ease of interpretation, deactivation
magnitude within the functional DMN template is reported by inverting
the sign of % signal change (i.e. more negative % signal change is rep-
resented as more positive deactivation magnitude).
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2.7. FLAIR analysis

FLAIR images were used to measure WMH volume and aid the
development of a DTI-based microstructural templates within normal
appearing white matter (naWM)with the same participants (Brown et al.,
2018). A semi-automated process was used to identify WMH as previ-
ously described (Gold et al., 2017; Smith et al., 2016). Briefly, T1
structural images and FLAIR images were both corrected for in-
homogeneities using the N3 correction in MIPAV (http://mipav.cit.nih
.gov), and T1 images were then segmented using FreeSurfer (Dale
et al., 1999; Fischl et al., 2002) to create a WM template. The resulting
WM template was linearly registered to the FLAIR image using FLIRT,
then dilated once in 2.5 days usingMIPAV, and finally underwent a 1mm
Gaussian blur using FSL's SUSAN. The resulting mask was then applied to
the FLAIR image, and a histogram of voxel-intensities for the FLAIR-WM
image was generated. After applying a two-Gaussian model in order to
identify the mean and standard deviation of the dominant fit, the
FLAIR-WM image was thresholded to include only voxels >2.33 SD
above this mean to form aWMHmask. This mask was manually edited to
remove artefactual voxels in regions between lateral ventricles and in
inferior slices (Smith et al., 2016). WMH volume was then calculated
using fslstats and normalized to intracranial volume (ICV). Normalized
WMH volumes were log-transformed prior to inclusion in statistical
analyses.

The WMH mask was further used in the creation of DTI-based
microstructural templates within naWM. Specifically, the WMH mask
was registered to the average b0 image from DTI to restrict subsequent
DTI analyses (described in section 2.8) to regions of naWM. The TBSS
non-FA pipeline was used to register WMH masks in diffusion space to
the FMRIB58 1mm template (Smith et al., 2006), which were then used
to determine naWM for each participant (described in section 2.8).

2.8. DTI analysis

Analyses focused on participant's mean FA values within DMN and
ECN naWM templates developed using data from our previous study that
included both younger and older adults. Mean FA was selected as it
provides a summary measure of overall WM organization and is the most
common DTI metric used for correlations with cognition in the literature.
Mean diffusivity was not analyzed in this study as it is strongly negatively

correlated with FA. The DTI analysis procedures used to develop the WM
templates is described in detail elsewhere (Brown et al., 2018). Previous
work from our laboratory has shown that including data from both
younger and older adults in development of white matter templates
provides a more accurate template for use in aging populations than
using data from younger or older adults only (Brown et al., 2017). In
order to allow for easier reproducibility of these data, all templates used
in this study have been made available on publicly accessible websites
(https://sites.google.com/site/btgoldlaboratory/ and http://doi.org/10
.13140/RG.2.2.34709.78567). Briefly, the WM templates were devel-
oped using the following steps. The templates were generated from in-
dividual tractography results in our previous study after data had
undergone the standard pre-processing described below.

Tractography was performed using BEDPOSTX and PROBTRACKX2
in network mode with the regions identified in each functional template
(DMN or ECN) as seed regions (Behrens et al., 2007). Successful
streamlines were those that started in one seed region from the functional
template and ended in another seed region from the functional template
without violating standard curvature, distance, and FA thresholds. Indi-
vidual tractography results were corrected for total streamlines attemp-
ted and waytotal, registered to standard space using transformations
from tract-based spatial statistics (TBSS), and then averaged and
thresholded to form group templates of DMN and ECN WM pathways.

FMRIB's Diffusion Toolbox (FDT) v.3.0 was used for processing and
analyses as previously described (Brown et al., 2018). Initial
pre-processing included use of EDDY for motion and eddy-current
correction with automatic replacement of outliers (Andersson et al.,
2016; Andersson and Sotiropoulos, 2016), brain extraction using the
average b0 image, and generation of a voxel-wise tensor model using
DTIFIT. The voxel-wise tensor model was used to generate an FA image,
which was then registered to the FMRIB58 FA 1mm template using the
tract-based spatial statistics (TBSS) pipeline (Smith et al., 2006). A group
skeleton was formed using a threshold of FA > 0.2 and individual
participant data was projected onto this skeleton in order to minimize
partial volume effects and correct for residual misalignments. The group
templates were then masked by the mean FA skeleton to form skeleton-
ized WM templates. FA was then measured within individualized
DMN-naWM and ECN-naWM masks. These individualized naWM masks
were formed by masking the group skeleton templates by each partici-
pant's WMH image in FMRIB58 1mm space (described above) and

Fig. 1. DMN and ECN Functional Templates. DMN and
ECN regions identified using ICA on both task- and rs-fMRI.
The task-fMRI components were masked by the correspond-
ing rs-fMRI components to create a template of regions
showing activation/deactivation during the task and con-
nectivity at rest. A: The DMN functional template includes
the posterior cingulate cortex/precuneus (PCC/pC), ventro-
medial prefrontal cortex (vMPFC), dorsomedial prefrontal
cortex (dMPFC), lateral temporal cortices (LTC), lateral pa-
rietal/occipital cortices (LPC/LOC), and portions of the hip-
pocampus and parahippocampal gyrus (HC/PHG). B: The
ECN functional template includes bilateral dorsolateral pre-
frontal cortex (DLPFC), frontal eye fields (FEF), lateral pari-
etal cortices (LPC), and middle temporal gyri (MTG). Both:
These regions were used to extract time-series for functional
analyses and as seeds for probabilistic tractography. Surf Ice
(https://www.nitrc.org/projects/surfice/) was used to create
this display of the DMN template on the surface of the
MNI152 T1 brain.
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including only voxels that were not part of the WMHs (i.e. naWM). The
average FA within each participant's DMN-naWM and ECN-naWM skel-
eton masks was then calculated using fslstats.

2.9. Statistical analyses

SPSS 24 (IBM, Chicago, IL) was used for all statistical analyses. Cross-
sectional relationships between potential correlates of EF were first
explored using bivariate correlations between our independent variables:
DMN deactivation, FA in DMN-naWM, ECN activation, FA in ECN-naWM,
WMH volume, and CSF tau/Aβ42 ratio. Multiple linear regression was
then used to explore the relationship between these predictors and
baseline EF with a backward selection step to identify only the significant
predictors (elimination criteria of p> .10). Due to high co-linearity be-
tween FA in DMN-naWM and ECN-naWM, regressions were initially run
separately for each network. In cases where multiple measures remained
in the final model, mediation models were used to explore how these
measures contribute to baseline EF.

Longitudinal analyses examined whether any neuroimaging or
neuropathology measures could predict average annual change in EF
(ΔEF) scores after controlling for baseline EF scores. Similar to baseline
analyses, multiple linear regression analyses were performed separately
for each network (DMN or ECN) with a backward selection step to
identify only the significant predictors (elimination criteria of p> .10). In
cases where multiple measures remained in the final model, mediation
models were used to explore how these measures contribute to ΔEF
scores.

Due to the presence of multivariate relationships, Preacher and Hayes
mediation analyses (Hayes, 2013) were used to determine if any vari-
ables mediated the relationships between another variable and EF scores.
This analysis seeks to examine whether the total effect (c) of some pre-
dictor (X) on the outcome measure (Y) is due to a significant direct effect
(c’) of X on Y or instead is explained by an indirect effect (ab) of X on Y
through a mediator variable (M). Significance was tested using 5000
bootstrap samples to calculate bias-corrected 95% confidence intervals.
Indirect effects with bootstrapped 95% confidence intervals not crossing
0 were considered significant.

2.10. Supplemental analysis

A supplementary analysis utilized linear mixed modeling rather than
the average yearly change in EF to evaluate the impact of each baseline
measure on longitudinal change in EF. In these analyses, time was used as
a continuous variable in years with the baseline visit as year 0. Additional
predictors included FA in DMN-naWM, FA in ECN-naWM, DMN deacti-
vation magnitude, ECN activation magnitude, WMH volume and CSF
tau/Aβ42. Both main effects and the time� predictor interaction were
assessed for each model. For all models, REML was used for estimation
and a compound symmetry variance structure was used for repeated ef-
fects. As six separate primary models were run, those interactions with
p< .05/6¼ 0.0083 were considered significant. A final model was run
using those predictors found to have a significant predictor� time
interaction in the primary models.

3. Results

3.1. Functional and WM templates

The DMN and ECN functional templates created from data from our
previous study with younger and older adults (Brown et al., 2018) are
shown in Fig. 1. The functional DMN template includes bilateral medial
prefrontal, posterior cingulate, dorsomedial prefrontal, lateral parieta-
l/occipital, and lateral parietal cortices, as well as the left para-
hippocampal gyrus and right hippocampus (Fig. 1a). The ECN template
includes portions of the dorsolateral prefrontal cortex, dorsal parietal
cortices, and lateral temporal cortices (Fig. 1b). The DMN regions are

consistent with those described as canonical DMN regions (Buckner et al.,
2005), while the ECN regions are most consistent with the superordinate
cognitive control network (Cole and Schneider, 2007; Niendam et al.,
2012).

The structural DMN and ECN WM templates are shown in Fig. 2. The
DMN-WM template consists of WMpathways connecting DMN functional
regions (i.e. deactivations) within the same participants including por-
tions of the cingulum, superior longitudinal fasciculus, inferior longitu-
dinal fasciculus, fornix, corpus callosum genu, and corpus callosum
splenium. The ECN template consists of WM pathways connecting ECN
functional regions (i.e. activations) within the same participants
including portions of the superior longitudinal fasciculus, corpus cal-
losum genu, corpus callosum splenium, and inferior fronto-occipital
fasciculus.

3.2. Baseline relationships

There was a strong correlation between both accuracy (r¼ 0.43,
p¼ .014) and reaction time (r¼�0.54, p¼ .001) on the fMRI task used to
generate the functional templates and baseline EF scores in the present
sample. At baseline, many of the neuroimaging and neuropathology
measures were correlated (Table 2). Results of multiple linear regression
indicated that baseline EF was predicted by the full DMN model
(F4,27¼ 3.83, p¼ .014). In this model, DMN deactivation was the only
significant predictor (β¼ 0.45, t¼ 2.55, p¼ .012), while FA in DMN-
naWM (β¼ 0.09, t¼ 0.53, p¼ .602), CSF tau/Aβ42 (β¼ 0.129, t¼ 0.74,
p¼ .465), and WMH volume (β¼�0.32, t¼�1.99, p¼ .057) were not
significant predictors. The first step of backward selection (F3,28¼ 5.15,
p¼ .006) removed FA in DMN-naWM, and the final step removed CSF
tau/Aβ42, leaving both DMN deactivation (β¼ 0.43, t¼ 2.84, p¼ .008)
and WMH volume (β¼�0.35, t¼�2.33, p¼ .027) as predictors in the
final model (F2,29¼ 7.68, p¼ .002) (Fig. 3a). Similarly, results indicated
that baseline EF was also predicted by the full ECN model (F4,27¼ 2.90,
p¼ .040). In this model, ECN activation approached significance
(β¼�0.38, t¼�2.03, p¼ .052), while FA in ECN-WM (β¼ 0.06,
t¼ 0.33, p¼ .742), CSF tau/Aβ42 (β¼ 0.094, t¼ 0.52, p¼ .609), and
WMH volume (β¼�0.31, t¼�1.85, p¼ .075) were not significant
predictors. The first step of backward selection (F3,28¼ 3.96, p¼ .018)
removed FA in ECN-WM, and the final step removed CSF tau/Aβ42,
leaving both ECN activation (β¼�0.365, t¼�2.29, p¼ .030) and WMH
volume (β¼�0.33, t¼�2.08, p¼ .047) as predictors in the final model
(F2,29¼ 5.92, p¼ .007) (Fig. 3b).

Several mediation models were then run to explore the potential
mediation effects. The first model explored whether DMN deactivation
and/or ECN activation mediated the effect of WMH volume on EF
(Fig. 4a). Results of this model demonstrated that neither the combined
(ab¼�0.08 [-0.33, 0.03]) or individual indirect effects of ECN activation
(ab¼�0.04 [-0.35, 0.03]) and DMN deactivation (ab¼�0.04 [-0.16,
0.01]) mediated the significant direct effect (c’¼�0.32 [-0.63, �0.01])
of WMH volume on baseline EF. The second model explored whether
DMN deactivation and/or WMH volume mediated the relationship be-
tween ECN activation and EF (Fig. 4b). Results demonstrated that the
combined indirect effect of DMN deactivation and WMH volume
(ab¼�0.23 [-0.66, �0.002]) mediated the relationship between ECN
activation and EF (c’¼�0.21 [-0.56, 0.15]), but neither the individual
indirect effect of WMH volume (ab¼�0.07 [-0.23, 0.007]) nor of DMN
deactivation (ab¼�0.16 [-0.58, 0.009]) was significant. The final model
explored whether ECN activation and/or WMH volume mediated the
relationship between DMN deactivation and EF (Fig. 4c). Results
demonstrated that while neither the combined indirect effect (ab¼ 0.14
[-0.002, 0.42] nor the indirect effect of WMH volume (ab¼ 0.04 [-0.05,
0.20] mediated the relationship between DMN deactivation and EF, the
indirect effect of ECN activation (ab¼ 0.099 [0.001, 0.322]) did signif-
icantly mediate this relationship (c’¼ 0.33 [-0.02, 0.68]).
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3.3. Predicting longitudinal change in EF scores

All participants remained cognitively normal at follow-up withMMSE
>27 and CDR-SB¼ 0 at all time points. EF declined �0.04� 0.228 units
annually over the 3-year follow-up period. Higher baseline EF scores
were associated with more negative ΔEF scores (r¼�0.46, p¼ .011).
Separate linear regression analyses were performed for the DMN and
ECN to determine whether imaging and neuropathology measures could
predictΔEF scores after controlling for baseline EF. Results indicated that
ΔEF scores were predicted by the full DMNmodel (F5,23¼ 6.61, p¼ .001)
after first entering baseline EF into the model (F-change4,23¼ 5.24,
p¼ .004). In this model, the only significant predictor other than baseline
EF was FA in DMN-naWM (β¼ 0.38, t¼ 2.35, p¼ .027), while DMN
deactivation (β¼ 0.14, t¼ 0.99, p¼ .385), CSF tau/Aβ42 (β¼�0.23,
t¼�1.45, p¼ .161), and WMH volume (β¼�0.15, t¼�1.02, p¼ .320)
all failed to reach significance. The first step of backward selection
(F4,24¼ 6.61, p< .001) removed DMN deactivation, and the final step
removed WMH volume, leaving both FA in DMN-naWM (β¼ 0.44,
t¼ 2.80, p¼ .010) and CSF tau/Aβ42 (β¼�0.26, t¼�1.75, p¼ .093) as

predictors in the final model (F3,25¼ 10.59, p< .001) (Fig. 5a). Similarly,
results indicated that ΔEF scores were predicted by the full ECN model
(F5,23¼ 7.01, p< .001) after first entering baseline EF into the model (F-
change4,23¼ 5.63, p¼ .003). In this model, both FA in ECN-naWM
(β¼ 0.41, t¼ 2.71, p¼ .013), CSF tau/Aβ42 (β¼�0.41, t¼�2.63,
p¼ .015) were significant, while neither ECN activation (β¼ 0.23,
t¼ 1.46, p¼ .159) nor WMH volume (β¼�0.17, t¼�1.18, p¼ .249)
were significant predictors. The first step of backward selection
(F4,24¼ 8.28, p< .001) removed WMH volume, and the final step
removed ECN activation, leaving both FA in ECN-WM (β¼ 0.39, t¼ 2.60,
p¼ .016) and CSF tau/Aβ42 (β¼�0.31, t¼�2.08, p¼ .048) as pre-
dictors in the final model (F3,25¼ 9.96, p< .001) (Fig. 5b).

As FA in DMN-WM and FA in ECN-WM were highly correlated,
mediation models were run with only one of the variables entered at a
time. Therefore, 4 mediation models were run: 1) CSF tau/Aβ42 as a
mediator of the FA in DMN-naWM and ΔEF score relationship, 2) CSF
tau/Aβ42 as a mediator of the FA in ECN-naWM and ΔEF score rela-
tionship, 3) FA in DMN-naWM as a mediator of the CSF tau/Aβ42-and
ΔEF score relationship, and 4) FA in ECN-naWM as a mediator of the CSF

Fig. 2. DMN and ECN WM Templates. A: WM pathways
connecting the DMN (blue) and ECN (green) with areas
connecting both shown in red. B:WM pathways unique to the
DMN include portions of the corpus callosum (CC) splenium
and genu, cingulum, superior longitudinal fasciculus (SLF),
and inferior longitudinal fasciculus (ILF). C: WM pathways
unique to the ECN include portions of the SLF, CC-genu, and
ILF. D: WM pathways that connected both DMN and ECN
regions included portions of the CC genu and splenium and
ILF. A-D: WM pathways were identified using probabilistic
tractography and averaging individual results to form a single
group template. The regions identified in the functional
templates (Fig. 1) were used as seeds for tractography.
Superior-lateral view on left and lateral view on right.

Table 2
Baseline relationships between imaging and CSF measures.

DMN Deactivation magnitude FA in DMN-naWM ECN Activation Magnitude FA in ECN-naWM WMH Volume CSF tau/Aβ42

DMN Deactivation magnitude – 0.40 (.025) ¡0.48 (.005) 0.33 (.062) �0.13 (.494) ¡0.39 (.029)
FA in DMN-naWM – ¡0.38 (.032) 0.91 (.000) �0.26 (.152) ¡0.35 (.047)
ECN Activation Magnitude – ¡0.40 (.022) 0.20 (.262) 0.39 (.026)
FA in ECN-naWM – �0.22 (.231) �0.32 (.071)
WMH Volume – �0.04 (.827)
CSF tau/Aβ42 –

Values are Pearson-r with p-values in parentheses. Significant (p< .05) relationships are shown in bold. All analyses had n¼ 32.
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tau/Aβ42 and ΔEF score relationship. In all models, baseline EF was used
as a covariate on ΔEF scores. Results of the first two mediation analyses
(Fig. 6c and d) found that CSF tau/Aβ42 did not mediate the effect of FA in
DMN-naWM (c’¼ 0.44 [0.11, 0.76], ab¼ 0.11 [-0.01, 0.35]), nor did it
mediate the effect of FA in ECN-naWM (c’¼ 0.39 [0.08, 0.71], ab¼ 0.11
[-0.02, 0.41]) on ΔEF scores. Results of the third model (Fig. 6a)
demonstrated that FA in DMN-naWM fully mediated the relationship
between CSF tau/Aβ42 and ΔEF scores (ab¼�0.19 [-0.53, �0.01],
c’¼�0.26 [-0.57, 0.047]). Finally, the results of the fourth model
(Fig. 6b) demonstrated that FA in ECN-WM partially mediated
(ab¼�0.15 [-0.405, �0.01]) the significant effect of CSF tau/Aβ42 on
ΔEF scores (c’¼�0.30 [-0.61, �0.002]).

3.4. Linear mixed modeling

Linear-mixed models were used to assess how baseline measures
predicted the change in EF over time. For each model, time was input as a
continuous variable in years, with the baseline visit as year 0. DMN
deactivation magnitude, FA in DMN-naWM, ECN activation magnitude,
FA in ECN-naWM, WMH volume, and CSF tau/Aβ42 were entered in
separate models as main effects, along with a time� baseline predictor
interaction. Results of these models are shown in Table 3 and found that
the only two predictors with a significant interaction with time were FA
in DMN-naWM and FA in ECN-naWM. An additional model was run using
both FA in DMN-naWM and FA in ECN-naWM along with their in-
teractions with time, but no predictor other than time was significant
(Table 4). A final full model was run using the addition of FA in DMN-
naWM� FA in ECN-naWM and FA in DMN-naWM� FA in ECN-
naWM� time interactions. Results are provided in Table 4 and demon-
strated significant FA in DMN-naWM� time, FA in ECN-naWM� time,
and FA in DMN-naWM� FA in ECN-naWM� time interactions.

4. Discussion

We explored the relative contributions of functional and structural
brain profiles, WMH burden and AD pathology to baseline and longitu-
dinal EF performance in older adults. Results indicated that baseline EF
was best predicted by ECN activation and DMN deactivation magnitudes
andWMH volume. In contrast,ΔEF was predicted by DMN-WMand ECN-
WM microstructure and AD pathological markers. However, DMN WM
microstructure mediated the relationship between AD pathology and
ΔEF. Together, our findings suggest that WMH volume and DMN/ECN
functional patterns contribute to current EF performance of older adults,
while measures of DMN and ECN WMmicrostructure appear to be better
predictors of their future EF performance.

4.1. Baseline EF is associated with WMH volume, ECN activation, and
DMN deactivation

In the present study, WMH volume, ECN activation, and DMN deac-
tivation magnitude predicted baseline EF performance. These findings
are consistent with separate studies which have demonstrated that
greater WMH volume (COHEN et al., 2002; Debette and Markus, 2010),
higher ECN activity (Rypma et al., 2006; Stern, 2009; Zhu et al., 2015),
and less DMN deactivation (Brown et al., 2015; Persson et al., 2007;
Prakash et al., 2012) are all associated with poorer performance during
tasks placing high demands on EF in older adults. This study extends
findings in previous studies concerning ECN and DMN activity to more
broadly used clinical measures of EF (as has been shown with previous
studies concerning WMHs). Further, the composite measure of EF uti-
lized in the present study provides a global estimate of EF that is less tied
to potentially idiosyncratic single measure results (Crane et al., 2008).

Moreover, our results from multivariate analyses suggest, that among
a number of potential predictors, functional activation in the ECN,

Fig. 3. Prediction of EF at Baseline by WMH volume, DMN deactivation, and ECN activation. A-B: Partial regression plots of baseline EF against WMH volume
(A) and DMN deactivation (B) simultaneously. C-D: Partial regression plots of EF against WMH volume (C) and ECN activation (D) simultaneously. A-D: All values are
mean-centered. The thick dashed line represents the linear best-fit and thin dashed lines are the 95% confidence interval for the predicted response. Includes all
baseline participants (n¼ 32). The three participants not included in the longitudinal analyses are indicated by arrows.
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deactivation in the DMN and WMH burden contributed to baseline EF
performance in older adults. The finding that the association between
ECN activation and EF was mediated by the indirect effects of WMH
volume and DMN deactivation suggests that increased ECN activity may
represent a compensatory response to greater levels of structural lesions
in the form of WMHs and greater levels of ongoing activity in the DMN
during the task. Notably, ECN activation was negatively correlated with
EF performance. Therefore, increased ECN activity may represent a failed
attempt at compensation and/or a sign of reduced efficiency (Barulli and
Stern, 2013; Zhu et al., 2015).

In addition, greater levels of ongoing activity in the DMN during the
task would be expected to negatively affect EF performance because it
would result in greater ongoing internally-focused processes (Brown
et al., 2015; Persson et al., 2007). Therefore, greater EF resources may be
needed to suppress interference from ongoing DMN processes, possibly
leaving fewer EF resources to devote to the task-at-hand. In contrast,
those who successfully deactivate the DMN appear to be able to “free-up”
neural resources for use in EF processes required by the task-at-hand.

As noted, WMH volume was also a significant predictor of baseline EF
performance. This suggests that other factors outside of the observed
functional alterations may serve as the mechanism by which WMHs

contribute to poorer EF. Previous studies have suggested that WMHs may
contribute to poor EF directly through disconnection of neural networks
or indirectly through neurodegeneration secondary to vascular compro-
mise (Brown et al., 2007; Debette and Markus, 2010). The latter is more
consistent with our current results as WM microstructure did not predict
baseline EF performance in the present study.

4.2. Longitudinal change in EF is predicted by baseline DMN and ECN WM
microstructure

Our results indicated that baseline WM microstructure predicted
longitudinal decline in EF over a three-year follow-up period. Previous
results have shown that baselineWMmicrostructure (averaged across the
entire brain) predicts longitudinal change in working memory (Charlton
et al., 2010), and WM microstructure (averaged across several major
tracts including the cingulum and corpus callosum) predicts fluid intel-
ligence (Ritchie et al., 2015) over a period of years. In the current study,
both microstructure within DMN WM pathways and within ECN WM
pathways predicted longitudinal decline in EF in separate regression
analyses.

Furthermore, results of linear mixed-modeling indicated that DMN
and ECN WM microstructure appear to both independently and syner-
gistically predict longitudinal change in EF. Together these results pro-
vide new evidence that WMmicrostructure within the ECN and DMN are
strong predictors of longitudinal decline in performance on standardized
neuropsychological tests of EF. These standardized neuropsychological
EF tests are used as part of the diagnostic criteria for mild cognitive
impairment (MCI) (Albert et al., 2011) and have been found to predict
development of MCI and AD (Albert et al., 2001; Blacker et al., 2007;
Gibbons et al., 2012). Therefore, with further refinement, the present
DMN and ECN naWM templates may aid prediction of future cognitive
decline and clinical diagnosis.

4.3. Longitudinal change in EF is predicted by AD pathology

The present study found that baseline CSF tau/Aβ42 ratios also pre-
dicted change in EF over the three-year follow-up period. A large body of
work has focused on the use of AD markers to predict memory decline
(Hedden et al., 2013), as well as prediction of clinical progression (Fagan
et al., 2007; Vos et al., 2013). In contrast, less work has examined if AD
pathology is predictive of EF performance declines. Several studies have
demonstrated that increased AD pathology is associated with poorer EF
performance cross-sectionally (Hedden et al., 2013; Oh et al., 2012), and
one study demonstrated that higher CSF tau/Aβ42 ratios predict longi-
tudinal decline in EF in CN older adults and those with MCI (van Harten
et al., 2013). Our results are consistent with these findings in suggesting
that baseline AD pathology impacts subsequent EF functioning.

4.4. DMN WM microstructure mediates the relationship between the tau/
Aβ42 ratio and ΔEF

A key finding of the present study was that DMN WM microstructure
mediated the relationship between the tau/Aβ42 ratio and ΔEF. Our
mediation results provide the first evidence to our knowledge that AD
pathology is associated with change in EF over time, in part, through its
relationship with DMN WM microstructure. In addition, ECN WM
microstructure partially mediated the relationship between the tau/Aβ42
ratio and ΔEF. This may represent the stronger association between AD
pathology and the DMN at these early disease stages, and indicates the
importance of WM microstructure in the AD pathological process. It is
thus worth considering how Aβ42 and tau may negatively affect WM
microstructure. Aβ42 has been show to disrupt myelin sheath formation
and is toxic to oligodendrocytes responsible for maintenance and repair
of myelin (Horiuchi et al., 2012; Lee et al., 2004; Xu et al., 2001). Further,
abnormal aggregation of tau contributes to microtubule destabilization
due to the loss of normal tau function (Alonso et al., 1994). Finally, tau

Fig. 4. Results of mediation models for baseline EF. A-C: Results of Preacher
and Hayes mediation analyses with significant direct or indirect effects indi-
cated by solid arrows and non-significant direct or indirect effects shown by
dashed arrows. Standardized β-coefficients are shown next to the corresponding
path with significant effects shown in bold and non-significant effects in italics.
For all models, the total effect of X on Y (c) is shown above the horizontal arrow,
while the direct effect of X on Y (c’) after accounting for indirect effects is shown
below the horizontal arrow. A: Results indicated that the indirect effects of DMN
deactivation and ECN activation did not mediate the significant direct effect of
WMH volume on baseline EF. B: Results indicated that the effect of ECN acti-
vation on baseline EF was mediated by the total indirect effects of DMN deac-
tivation and WMH volume, but not by either individual indirect effect. C:
Results indicated that the effect of DMN deactivation on baseline EF was
mediated by the indirect effect of ECN activation but not of WMH volume.
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and Aβ42 interact to disrupt fast axonal transport (FAT), which in turn
contributes to decline in axonal, myelin, and synaptic integrity (Bartzo-
kis, 2011; Vossel et al., 2015, 2010).

The direct effect of both DMN and ECNWMmicrostructure on change

in EF suggests that additional, non-AD-related pathological changes in EF
are also predicted by WM microstructure. Of relevance, we used FLAIR
imaging to identify and mask out areas of WMH in order to study normal
appearing WM (Brown et al., 2018). WMHs are ubiquitous in aging (de

Fig. 5. Prediction of longitudinal ΔEF by baseline measures. A-B: Partial regression plots of average annual ΔEF against CSF tau/Aβ42 (A) and FA in DMN-naWM
(B) simultaneously. C-D: Partial regression plots of average annual ΔEF against CSF tau/Aβ42 (C) and FA in ECN-naWM (D). A-D: All values are demeaned. The thick
dashed lines represent the linear best-fit and thin dashed lines are the 95% confidence intervals for the predicted response. Includes subset of participants included in
longitudinal analyses (n¼ 29).

Fig. 6. Results of longitudinal mediation analyses. A-D: Results of Preacher and Hayes mediation analyses with significant direct or indirect effects indicated by
solid arrows with non-significant direct or indirect effects are shown by dashed arrows. Standardized β-coefficients are shown next to the corresponding path with
significant effects shown in bold and non-significant effects in italics. For all models, the total effect of X on Y (c) is shown above the horizontal arrow, while the direct
effect of X on Y (c’) after accounting for indirect effects is shown below the horizontal arrow. All models included the subset of participants used in longitudinal
analyses (n¼ 29). A: Results indicated that the relationship between CSF Tau/Aβ42 ratio and average annual ΔEF was mediated by FA in DMN-naWM. B: Results
indicated that the relationship between CSF Tau/Aβ42 ratio and average annual ΔEF was partially mediated by FA in ECN-naWM. C-D: Results indicated that CSF Tau/
Aβ42 did not mediate the relationship between FA in DMN-naWM and average annual ΔEF (C) or the relationship between FA in ECN-naWM and ΔEF (D).
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Leeuw, 2001) and are thought to primarily reflect areas of cerebrovas-
cular pathology resulting from a breakdown in vascular integrity (Young
et al., 2008). In contrast, declines in naWM are thought to reflect subtler
declines in the microstructural organization of WM (van Norden et al.,
2012). These changes may be the result of age-related declines in syn-
apses, axonal loss, or myelin breakdown, all of which would reduce WM
microstructure through loss of membrane density and organizational
coherence (Bartzokis et al., 2004; Marner et al., 2003; Masliah et al.,
1993; Tang et al., 1990). In addition, these changes may also reflect distal
effects in tracts negatively impacted by cerebrovascular pathology (van
Norden et al., 2012). Therefore, WM microstructure appears to be a
sensitive marker that likely reflects a combination of age-related, AD
pathology-related, and cerebrovascular pathology-related processes that
each contribute to poorer EF outcomes.

4.5. Baseline and longitudinal EF are predicted by different functional/
structural network measures

The DMN and ECN were found to be predictors of both baseline EF
and ΔEF. However, baseline EF was only predicted by DMN and ECN
functional patterns, while DMN and ECN WM microstructure were the
most direct predictors of ΔEF. It is unclear what may cause this shift, but
one possibility may be that functional brain measures reflect more dy-
namic processes that undergo greater day-to-day fluctuations and brain
function may thus be a better predictor of more proximal EF perfor-
mance. In contrast, measures of brain structure, which are often
considered measures of ‘brain reserve’, likely show less fluctuation over
short periods of time and would thus be expected to be more stable
predictors of future cognitive performance than functional measures.
While speculative, this possibility is generally in-line with a view that
compensatory functional mechanisms become less effective in the
context of increasing disruption of the structural network over time, thus
aspects of brain reserve become more important (Barulli and Stern,
2013).

4.6. Limitations

The current study has several limitations. First, while baseline mea-
sures predicted ΔEF, causality cannot be directly inferred from the pre-
sent results. For example, it is possible that some other unmeasured
variable may be responsible for the observed relationships and mediation
effects as these analyses are all hypothesis-driven correlational ap-
proaches. In addition, the present study had a limited sample size and
may have been underpowered to detect smaller effects on EF cross-
sectionally and longitudinally. Future work should use larger cohorts in
order to better detect subtler effects. Further, we examine only CN older
adults. It is unclear whether these relationships are maintained in states
of mild cognitive impairment and clinical dementia. Future studies
should seek to investigate the role of DMN WM and deactivation pre-
dicting EF in these later clinical stages. Finally, we treated AD pathology
as a continuous variable, but it is unclear whether the relationship be-
tween AD pathology and other measures may be different above and
below certain thresholds. Future studies should be performed with large
enough samples to assess the effects of AD pathology on brain structure/
function and EF both within sub- and supra-threshold groups and across
all participants.

4.7. Conclusions

The current study provides evidence for relationships between mul-
tiple functional and structural factors in the DMN and ECN and EF per-
formance on standardized neuropsychological measures. Further, our
results provide novel evidence that baseline AD pathology negatively

Table 3
Linear mixed-modeling results.

Predictor Model Fit Year Predictor Predictor� Year

FA in DMN-naWM AIC¼ 179.57 F1,78.9¼ 9.97 (p¼ .002)
β¼ -2.75 [-4.50, -1.02]

F1,47.8¼ 2.77 (p¼ .103)
β¼ 6.75 [-1.41, 14.91]

F1,78.9¼ 9.27 (p¼ .003)
β¼ 4.58 [1.59, 7.57]

DMN deactivation AIC¼ 200.41 F1,78.4¼ 7.64 (p¼ .007)
β¼ -0.16 [-0.28, -0.05]

F1,43.5¼ 0.73 (p¼ .396)
β¼�0.16 [-1.32, 3.28]

F1,77.9¼ 2.13 (p¼ .149)
β¼ 0.54 [-0.20, 1.27]

FA in ECN-naWM AIC¼ 178.55 F1,78.9¼ 13.83 (p < .001)
β¼ -3.03 [-4.66, -1.41]

F1,81.2¼ 0.26 (p¼ .871)
β¼�0.76 [-10.13, 8.60]

F1,79.0¼ 12.96 (p¼ .001)
β¼ 5.16 [2.31, 8.01]

ECN Activation AIC¼ 203.89 F1,78.9¼ 5.14 (p¼ .026)
β¼�0.13 [-0.23, �.02]

F1,76.0¼ 3.78 (p¼ .056)
β¼�1.35 [-2.74, 0.03]

F1,79.1¼ 0.54 (p¼ .464)
β¼ 0.15 [-0.25, 0.54]

WMH Volume AIC¼ 206.17 F1,78.2¼ 0.78 (p¼ .781)
β¼ 0.16 [-0.99, 1.32]

F1,79.1¼ 2.55 (p¼ .114)
β¼�0.34 [-0.77, 0.08]

F1,78.1¼ 0.20 (p¼ .655)
β¼�0.03 [ �0.15, 0.09]

CSF tau/Aβ42 AIC¼ 205.70 F1,78.3¼ 3.99 (p¼ .049)
β¼�0.29 [-0.57, �0.001]

F1,41.6¼ 0.002 (p¼ .97)
β¼ 0.27 [-1.27, 1.30]

F1,78.2¼ 1.83 (p¼ .181)
β¼�0.27 [-0.68, 0.13]

Results of separate linear mixed-models are shown in each row above. The model-fit is described by AIC, where lower values indicate a better fit. For each fixed-effect
the fit statistic and un-standardized β co-efficient estimates are provided with the p-value and [95% CI], respectively. Significant effects with p< .008 are indicated in
bold. All models included an intercept term.

Table 4
Linear Mixed Model Results using FA in DMN and FPCN naWM.

Predictor Model 1 AIC¼ 164.65 Model 2 AIC¼ 137.49

Time F1,78.0¼ 12.40
(p¼ .001)
β¼ -2.93 [-4.58,-
1.27]

F1,77.9¼ 5.50
(p¼ .022)
β¼ -41.1 [-76.0,-
6.20]

FA in DMN-naWM F1,46.8¼ 3.09
(p¼ .085)
β¼ 17.24
[-2.49,36.97]

F1,45.3¼ 3.18
(p¼ .081)
β¼�149.2
[-317.7,19.27]

FA in FPCN-naWM F1,47.3¼ 1.28
(p¼ .263)
β¼�10.5
[-29.2,8.16]

F1,45.4¼ 4.55
(p¼ .038)
β¼ -168.5 [-327.7,-
9.37]

FA in DMN-naWM x Time F1,79.6¼ 0.175
(p¼ .677)
β¼�1.56
[-9.01,5.88]

F1,77.6¼ 4.52
(p¼ .037)
β¼ 68.2
[4.31,132.2]

FA in FPCN-naWM x Time F1,80.1¼ 3.072
(p¼ .083)
β¼ 6.49 [-0.88,13.86]

F1,78.2¼ 5.60
(p¼ .020)
β¼ 74.27
[11.78,136.8]

FA in DMN-naWM x FA in
FPCN-naWM

N/A F1,45.4¼ 4.03
(p¼ .051)
β¼ 292.0
[-0.97,585.0]

FA in DMN-naWM x FA in
FPCN-naWM x Time

N/A F1,77.9¼ 4.76
(p¼ .032)
β¼ -123.6 [-236.4,-
10.83]

Results of separate linear mixed-models are shown in each column above. The
model-fit is described by AIC, where lower values indicate a better fit. For each
fixed-effect the fit statistic and un-standardized β co-efficient estimates are pro-
vided with the p-value and [95% CI], respectively. Both models included an
intercept term.
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impacts subsequent EF performance, in part, through its association with
poorer WM microstructure within the DMN. Measures of WM micro-
structure may thus aid the monitoring and assessment of future thera-
peutic interventions aimed at preventing longitudinal EF declines.
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