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Abstract

Aiming to improve the formability of a HSAS Docol 1500 Bor, hot processing maps were obtained
based on Prasad, Babu and Murty instability criteria. The hot processing maps based on the above
instability criteria are similar and the explanation of its similarity is given. Recrystallization and
misorientation in typical quenched specimens were observed by using SEM with a EBSD system. It
was found that the fraction values of HAGBs in quenched martensite are all below 0.4 under
experimental conditions. Flow location bands occurs at lower deformation temperatures and higher
strain rates. The textures in martensite mainly include (110)//ND and (110)//RD components.
Based on N-W OR, the textures in deformed austenite are mostly (111) //ND and (112)//RD)
components. Prasad and Babu instability criteria are more conservative than Murty instability
criterion in obtaining the processing maps of the tested steel. To reduce the anisotropy of quenched
workpieces because of the textures at room temperature, the quenching temperature in the stamping
process of the tested steel should be lower.

1. Introduction

The high strength automobile steels (HSAS) with high yield strength and high tensile strength have been widely
used in production of automobile stamping parts. To improve the formability of HSAS, many studies have been
carried out on the composition [ 1], mechanical properties [2], processing technologies etc [3, 4]. The processing
map is an effective and popular tool to study the deformation behaviors of a wide range of materials such as steels
[5], aluminum alloys [6] and Ni-based superalloys [7]. By using processing map, the instability regimes can be
predicted and the optimized process parameters can be obtained [8, 9].

Many researchers have proposed some stability and instability criteria of materials [10, 11]. Gegel and Malas
constructed similar stability criteria by using Lyapunov functional stability criterion [12, 13]. Prasad [14], Babu
[15], Murty and Rao [16] had developed different instability criteria based on the maximum principle of
irreversible thermodynamics applied to large plastic rheology. Some typical research works had been carried out
to compare the prediction accuracy of these stability or instability criteria [17-20]. Li et al constructed the
processing and instability maps of titanium alloy Ti-6.5A1-3.5Mo-1.5Zr-0.3Si based on the Prasad, Murty and
Malas criteria. Li et al found that the predicted results based on the Murty and Prasad criteria were not much
different, which were quite different from the results predicted by the Malas criterion [17]. Wang et al proved
that the Gegel and Alexander-Malas stability criteria were mathematically equivalent and thus predicted the
same unstable region in ultrahigh strength stainless steels [18]. Zhou et al compared the processing maps of
superalloy GH4742 with different instability criteria of Prasad, Gegel, Malas, Murty and Semiatin. The results
show that Murty instability criterion was most suitable for superalloy GH4742 [19].

For the high strength automobile steel (HSAS) products, the microstructure obtained is homogeneous
quenched martensite after hot stamping and quenching processes. The microstructure characteristics of

© 2019 IOP Publishing Ltd
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quenched martensite affect the performance of workpieces to a large extent, which inherit from austenite at high
temperatures [21, 22].

In this work, the hot deformation behaviours of a HSAS are studied by using the processing maps
constructed based on different criteria at isothermal compression conditions. Furtherly, the influence of
deformation conditions on textures in the quenched microstructure are discussed theoretically by using
scanning electronic microscope (SEM) Canta650 with a EBSD system. The aim is to analyse the relationship
between the textures of quenched martensite and the deformation conditions at high temperatures.

2. Experimental procedure

2.1. Material and hot compression test

The chemical compositions of the tested HSAS Docol 1500 Bor are 0.22%C-0.2%Cr-1.15%Mn-0.3%Si-0.003%
B-0.03%P-0.01%S in weight percentage. To dissolve the precipitates such as carbides and obtain a homogenous
microstructure, the tested steel was solution annealed. The solution temperature was 1120 °C and the solution
time is 3 h. The cylindrical specimen with dimensions of 8 mm x 15 mm from the homogenized piece were
isothermally compressed on a thermal-mechanical simulator Gleeble-3800. The specimens were heated to

1050 °C and held for 5 min to ensure the uniformity of temperatures then cooled with cooling rate of 10 °C/s to
the test temperatures of 900, 950, 1000 and 1050 °C and held for 3 min followed by compression tests at the
engineering strain of 0.2, 0.4 and 0.6, respectively, while the strain rates ranged from 0.01to 10 s~ *. Tantalum
sheets were stuck on the both end faces of cylindrical specimens to reduce friction. The specimens were
immediately quenched in water after compression tests.

2.2.Microstructure observation

The room temperature microstructures after deformation at 900 °C and strain rates of 0.01-10 s~ 'were carefully
examined on an optical microscope. The quenched specimens were sliced along the longitudinal direction, then
prepared by mechanical polishing and revealed by using 4 wt% Nital etching for 9 s.

Microstructure evolution in instability and stability domains was observed by using SEM with a EBSD
system. Then some typical deformed specimens were selected and sliced along the longitudinal direction for
EBSD examination, which were carefully prepared first by mechanical polishing and followed by electro-
polishing in a perchloric acid solution (8 vol% HClO,, 90 vol% C,HsOH and 2 vol% C3;HgO3) at 17 V for 20 s.
The EBSD analysis was performed by S-4800 field emission scanning electron microscopy coupled with a fully
automated with a TSL-OIM™ EBSD attachment, operated at 25 kV. For the compressed specimens in this work,
scans were performed over an area of 250 ym X 50 pm with a step size 0f 0.3—1.5 um depending on the
grain size.

3. Experimental results

3.1. Flow Stresses during deformation and the deformed microstructures

Figure 1 shows the flow stress curves of the tested steels during compression tests at different temperatures and
strain rates. The critical stress o, critical strain &, peak stress Op and peak strain €p was shownin figure 1. The
critical strain was the valley value of the df/do—o curves, where 6 was the work hardening rate, § = (9o /9¢):
[23,24]. It can be seen from figure 1 that the flow tresses decrease with increasing deformation temperatures or
decreasing strain rates. At higher temperatures such as 1000 and 1050 °C, the flow stress curves show obvious
peaks at all experimental strain rates, which indicate that continue dynamic recrystallization (DRX) occurs
during hot compression. In contract, at lower temperatures such as 900 and 950 °C, the most of the flow stress
curves are nearly flat, which shows the typical characteristic of dynamic recovery (DRV) during hot deformation.

Figure 2 show the strain hardening rate-true stress curves at 950 °C and strains of 0.01,0.1, 1and 10 s~ '. The
strain hardening rate will taper off to zero when no DRX occurs. The presence of DRX causes a downward
inflection in the strain hardening rate-true stress curves, leading to zero and negative strain hardening rates,
which corresponds to peak and post peak softening, respectively. In this work, the stress peaks can be precisely
measured as 58.2, 79.3 and103.3 MPa for HSAS Docol 1500 Bor steel at strain rates o£0.01,0.1,1 and 10 s ™",
respectively.

Figure 3 shows the transformed martensite after at 950 °C and strain rates of 0.01, 0.1, 1 and 10 s~ ! when the
strain is 0.6. It can be seen from figure 3 that a large amount of lath martensite exits in the deformed specimens.
The morphology of quenched martensite grains reflects that the deformed grain size decreases with increasing
strain rates. At the strain rates of 1 and 10 s !, the finer martensite grain results from the deformed austinite at
high temperatures, where DRV is the major phenomena as shown in figures 3(c) and (d). Because martensitic
transformation occurs after deformation, the deformation streamline at high temperatures could not be seen

2



10P Publishing

Mater. Res. Express 6 (2019) 076538

ZYangetal

(a) 240
220
200
180
160
140
120
100
80
60
40
20

Stress(MPa)

0.3 0.5

Strain

200

0.6

0.7

0.8

0.9

Stress(MPa)

02 03 04

Strain

Figure 1. True stress-strain curves of Steel Docol 1500 Bor during hot compression: (a) 900 °C, (b) 950 °C, (c) 1000 °C, (d) 1050 °C.
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Figure 3. Microstructures of specimens deformed at 950 °C and different strain rates: (a) 0.01 sTL10.1s L (©ls L (d)10s L

clearly. However, the local deformation bands can also be observed in figures 3(c) and (d), which indicates the
occurrence of flow localization.

3.2. Processing maps

Atpresent, the processing map has become a very powerful approach to optimize the hot working processes and
further control the microstructures and properties of the metal products. Basing on the dynamic materials
model (DMM), The total power P absorbed by the work piece is the sum of two complementary functions:

P:a-ézG—i—]:j;Eadé—}—j;aéda (1)

where G, ], 0 and ¢ represent the power dissipations in the form of a temperature rising, the one caused by
microstructure evolution such as DRX, DRV and phase transition, the flow stress and the strain rate,
respectively.

The strain rate sensitivity, m describes the power portioning between G and J, which can be expressed as
follows:

_d] _ d(no) _ Alno
G d(ng)  Alng

(@)

The efficiency of power dissipation, 7 presents the power dissipated through microstructure changes during

hot deformation, which could be derived as a function of strain rate sensitivity:
gL .
Jmax  m+ 1

where /i, is the theoretically maximum value of J. Then the power dissipation map plotting the efficiency of
power dissipation 7 against temperatures and strain rates can be obtained, in which different domains with
various 7 values present the diverse microstructural mechanism. It is generally accepted that the domains with
high efficiency are considered as the optimum deformation conditions. However, for the instances that instable
plastic deformation or flow localization occur, the efficiency of power dissipation alone is not sufficient to
identify the unsafe domains. Fortunately, this problem has been overcame in virtue of instability criterion p(&,
T) for plastic flow proposed by Ziegler [25].
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8111( n )
m+ 1

Olng

Equation (4) is deduced by the assumption that the flow stress-strain rate curve follows a power-law relation
o = K&™, in which m is constant. However, m varies with ¢ in reality. Murty and Rao proposed an instability
criterion applicable for any type of stress-strain rate curves [16].

& T) = +m<0 (4)

e =22 —1<0 )
Y
where 7, is the efficiency of power dissipation in instability criterion &y (&, T), which should be deduced by its
original definition.
]max P/2 P o€ Jo

It is assumed that the flow stress-strain rate curve between 0 and &,,,;, follows the constitutive equation
o = K&™, the value of m between 0 and ¢&,,;, can be replaced by the gradient of Ine-Iné curve at the strain rate of
&min- Then the equation (6) can be modified as follows:

1 o0& : <
Mt = 2[1 B a_s((m + l)éémi.. ’ fémm Odgﬂ "’

Babu et al deduced another instability criterion based on the one proposed by Murty, which was also
applicable for any type of stress-strain rate curves.

(& T) = 8_m. L m2<0 (8)
Olné

Figures 4, 5 and 6 are the processing maps at different engineering strain based on the instability criteria &p(¢,
T), &g (&, T)and &u((é, T), respectively. The processing maps based on the instability criteria &p(é, T) and &g (¢,
T) are very similar at each strain. At the engineering strain of 0.2, unstable regions exit in the regions with high
temperatures and high stain rates as shown in figures 4(a) and 5(a). The unstable regions move to the regions
with low temperatures and high strain rates, which become larger with increasing strain as shown in figures 4(b),
(¢), 5(b) and (¢). No unstable region exits in the processing maps based on the instability criterion £ (¢, T) at the
engineering strain of 0.2 as shown in figure 6(a). The processing maps based on the instability criterion &g (¢, T)
at the large engineering strain show the same rule with those built based on the instability criteria {p(&, T) and &g
(&, T), of which the unstable regions are slightly smaller than those built based on the instability criteria &p(&, T)
and &g (¢, T) as shown in figures 6(b) and (¢). The distribution rules of 7) values in the processing maps built
based on instability criterion £y;(€, T) are roughly the same as those based on instability criteria {p(£, T) and &g
(&, T), while the maximum 7 values are present in different deformation conditions as shown in figures 4, 5
and 6.

Equation (5) can be modified as follows:

EuE T) =2m — ZPTI <0 ©)

Take partial differentiation of ¢ on both sides of equation (9):

om do o]
——o0t +m—i+mo—— <0 10
(%Ue maés mo 2z (10)
The differential form of the formula] = L 0 &do are shown as follows:
] =é&do = é@dé = Eﬁodé = modt (11)
5 o dg
Then,
om Oo om oo
—o0éE+m— < 0= + <0 12
o - MaE oz ome (12

Both sides of the equation (12) are divided by o, then the instability criterion &g (£, T)can be obtained as same
as equation (8).
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Figure 4. Processing maps for Steel Docol 1500 Bor generated at engineering strains of: (a) 0.2, (b) 0.4, and (¢c) 0.6 based on the

The instability criterion &, (¢, T) can be expressed as follows:

() o)
m+ 1 m+1) Om

e T) = +m<O0
& ) 8( m ) om Olne¢
m+4 1
Then,
. m-+ 1 1 om
e, T) = +m<O0
“ED m+ D2ome
G T =—19m
m(m + 1) dlné
Because:
GePo1<227 i icmi1om>o
o 0¢
and:
]<G§ﬂ l=m<1
dG

13)

(14)

15)

(16)

17)

It can be known from equations (16) and (17) that 0 < m < 1.Therefore, the instability criterion &, (¢, T)

can be modified as follows:

om

§p(&s T)=8 +m?r 4+ m <0

In¢

(18)

It can be found that an extra m” exits in the instability criterion &y (€, T) by comparing equations (8) and (18).
Because 0 < m < 1, m’ haslittle influence on the calculation results of equation (18). Then it can be known that
the instability criterion &, (¢, T), &g (€, T) and {(&, T) are the same in theory, which can be used to explain the

similarity reflected in figures 4, 5 and 6.
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Figure 5. Processing maps for Steel Docol 1500 Bor generated at engineering strains of: (a) 0.2, (b) 0.4 and (c) 0.6 based on the
instability criterion {g(&, T).

3.3. Recrystallization and texture analysis
Martensitic transformation is non-diffusive phase transformation. The size of austenite at high temperatures
determine the size of quenched martensite. Then, the size of quenched martensite can be used to study the
degree of recrystallization of deformed austenite. In this work, the grain tolerance angle of 1° was used to
determine whether two neighbouring scan points belong to the same grain. Figure 7 shows the misorientation
angle distributions of quenched martensite grains under different deformation conditions.

It can be seen that the fraction of high angle grain boundaries (HAGBs)(15°~180°) of martensite increase
with increasing the deformation temperatures and deceasing strain rates of parent austenite at the same strain as
shown in figure 7. At the engineering strain of 0.2, the fraction values of HAGBs of martensite at the deformation
temperature of 1050 °C and strain rates of 1 and 10 s~

rateof1 s~

are 0.286 and 0.268, respectively, while those at the strain
" and temperatures of 950 and 1050 °C are 0.286 and 0.31, respectively. The same change law exists at

the engineering strain of 0.6 as shown in figures 7(e)—(h). At the same time, the fraction of HAGBs of martensite
increases with increasing strain at the same temperatures and strain rates as shown in figures 7(d) and (h), which

increases from 0.299 to 0.366 at the deformation temperature of 1050 °C and strain rates of 10 s~

! when

engineering strain increases from 0.2 to 0.6. The increasing of the fraction of HAGBs of martensite means that
more recrystallization has completed in deformed parent austenite at high temperatures. However, referring to
figure 1, no complete dynamic recrystallization occurs at temperatures of 950, 1050 °C and strain rates of 1,

10s™

figures 7(a)—(d).

The experimental orientation relationship (OR) between plate martensite and prior austenite is close to the
Nishiyama—Wassermann (N-W) OR ({111}, [[{110}, (112), |[(110),). These textures in lath martensite
influence the plasticity at low temperatures, causing different deformation behavior along different directions of
the sheet workpieces. For correlating anisotropic properties of the HSAS products with textures, it is necessary to
describe the textures in a quantitative way. To achieve the statistical purpose, in several uniform deformation
region was selected and the quenched martensite textures under specific deformation conditions was measured
by using TSL OIM analysis software, of which the typical grain distribution was shown in figure 8.

From figure 8, it can be seen that the textures in the quenched martensite in this work mainly include
(110)//ND ({110}(001), {110} (—110), {110}(—112) and {110}(1-12)), (110)//RD ({001}(110), {110}

!, respectively, when the strain was 0.2, which leads to the low fraction of HAGBs as shown in

7
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Figure 6. Processing maps for Steel Docol 1500 Bor generated at engineering strains of: (a) 0.2, (b) 0.4 and (c) 0.6 based on the
instability criterion {y(€, T).

(1-10), {110}(—110), {112}(—110) and {112}(1-10)) and relatively fewer (001) //ND ({001} (100) and {001}
(110)), of which the former two components belong to ( fiber and o fiber, respectively. The measured OR of the
quenched martensite in this work is closed to the N-W OR.

Atthe engineering strain of 0.2 as shown in figures 8(a), (b), (c) and (d), The measured orientation has no
obvious preferred orientation and no texture exit in quenched martensite, which should result from no
preferred orientation appears in deformed austenite at high temperatures because of the low strain. Meanwhile,
the fraction values of recrystallization at the strain rates of 1 and 10 s~ ' at the temperature of 950 °C have no
significant difference, while the same situation exits at the temperature of 1050 °C as shown in figures 7(c) and
(d). Therefore, the deformation is easy to occur at the engineering strain of 0.2 and the presences of the Unstable
zones Ip and Iy in figures 4(a) and 5(a) are not reasonable, which agrees with literature [17]. Then the processing
maps based on the instability criterion £y(£, T) are more reasonable compared with the two ones based on the
instability criteria £p(&, T) and (&, T) as shown in figures 4(a), 5(a) and 6(a).

For figures 8(e), (f), (g) and (h) at the engineering strain of 0.6, the distributions of textures show obvious
preferred orientation. The quenched martensite texture mainly includes (110) //ND and (110)//RD
components, which correspond to the (111)//ND and (112)//RD texture components in recrystallization
austenite after compression deformation at high temperatures. In generally, recrystallization of compression-
deformed steel tends to retain the deformation texture component [111]//ND [26]. Then the recrystallization
austenite has the similar texture characteristics with the deformed austenite. For figures 8(f) and (g), the fraction
of quenched martensite texture components (110)//ND is less, from which we can deduce that less deformed
austenite texture components (111)//ND appears. Then the deformability of tested steels was deteriorated,
which verify the correctness of the processing maps in this work. At room temperature, the fraction of
martensite texture component (110) //ND increased with increasing deformation temperatures and decreasing
deformation rates, which has the same variation rule with the austenite dynamic recrystallization at high
temperature. Then the (111)//ND texture mainly results from recrystallized austenite. The content of the
textures in quenched martensite is lower at the deformation temperature of 900 °C, which is beneficial to reduce
the anisotropy of workpieces. Therefore, the quenching temperature in the stamping process of the tested steel
can be lower, for example, 900 °C.
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4, Conclusion

The following conclusions can be drawn from this work:

(1) The processing maps adopting the instability criteria £p(&, T) and (&, T) are relatively more
conservative compared with that using the instability criterion &y (&, T), which are more reliable.

(2) HAGBs in quenched martensite increase with increasing deformation temperatures and deceasing strain
rates of deformed austenite at the same strain, which also increase with increasing strain. In this work, the
fraction values of HAGBs in quenched martensite are all less than 0.4 under all deformation conditions.

(3) For steel Docol 1500 Bor, no texture appears in quenched martensite at the engineering strain of 0.2. The
deformed austenite texture mainly include (111) //ND and (112)//RD) components at the engineering strain
0f 0.6. The recrystallization texture component (111)//ND in deformed austenite decreases with decreasing the
deformation temperatures and increasing the strain rates. The flow location bands, the decrease of DRX and
texture component (111)//ND deteriorates the deformability of tested steels.

(4) Generally, the texture in quenched martensite mainly includes (110) //ND and (110)//RD components. The
content of textures in quenched martensite is lower at the deformation temperature of 900 °C. To reduce the anisotropy
of quenched workpieces, the quenching temperature in the stamping process of the tested steel should be lower.
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