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lines where recombination is already up-regulated, as evidenced by GCl or SCE assay,
interfering with base-excision repair by using hmdUrd may cause synthetic lethality, as
hyper-recombinative cells may not be able to compensate by further up-regulating HR. |
had hoped that by using the extensively characterized NCI-60 panel and the Cancer
Genome Project database, | might be able to uncover a common genetic mechanism for
dysregulated recombination as a means for conferring genomic instability in cancer.

Surprisingly, | did not find any correlation between rDNA cluster instability on
GCl compared to SCE or hmdUrd sensitivity, although these experiments did yield
interesting findings. | was able to determine rDNA cluster instability on GCl is anti-
correlated with microsatellite instability, the result of a mismatch repair defect, which
led me to speculate that in general, genomic destabilization arises by a single
mechanism.

Sister chromatid exchange analysis of populations from twelve cell lines indicates
that the level of baseline sister chromatid exchange in the presence of BrdU varies
between cell lines, though none of the lines demonstrated the harlequin pattern of
gross destabilization characteristic of Bloom syndrome chromosomes, and thus are all
considered “stable” by SCE analysis. Sister chromatid exchange is therefore thought to
be cell-line dependent and able to change in culture; as even cell lines originally derived
from the same patient show varying levels of instability.

Unlike the XRCC-1 deficient CHO cells, none of the human cell lines which
demonstrated sensitivity to a single 10uM dose of hmdUrd were notable for base
excision repair defects, according to the Cancer Genome Project database, which
indicates that HmdUrd sensitivity may be conferred via some mechanism other than
inability to overcome damage by base excision repair.

At the present time, other members of the lab are pursuing some of the genetics
underlying rDNA gene cluster instability, particularly with regard to Bloom syndrome
and other RecQ helicases. Tandemly repeated gene clusters located elsewhere in the
genome are also being evaluated to determine whether gene cluster instability is an

rDNA-specific phenomenon.
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In the future, | will expand on the findings from Appendix A. | will undertake a
comprehensive analysis of rDNA GCl in clinical lung cancer patients to determine
whether their tumor GCI status has prognostic value or can be correlated with response
to chemotherapy. Current clinical staging is based on a number of factors including the
size and appearance of the tumor, whether or not there are multiple loci, lymph node
involvement, and metastasis to other organs. Our preliminary data indicate that
patients who demonstrate molecular GCl instability are otherwise clinically identical
their stable counterparts on presentation. It is reasonable to predict that although from
the clinical perspective patients may be similar, whether or not they are undergoing
remarkable genomic rearrangement at the molecular level may influence their
prognosis and/or clinical response to treatment.

Regardless of the outcome of my studies, the profoundly different GCI results
between patients of identical clinical status merits further investigation. | speculate that
the patients who demonstrate the laddering pattern on GCl indicative of ongoing rDNA
repeat destabilization may have a better long-term prognosis and/or response to
treatment. | have proposed using late-stage patients because lung cancer survival is
abysmal, less than five years; and a study of two years' duration will be sufficient to
determine whether there are any differences in survival between those with and
without ongoing instability. However, if | am able to extract reasonably intact DNA from
frozen tissue, it may be possible to use banked samples from patients with earlier stage
disease. | could use earlier stage samples, and thus interpret response to treatment in
patients whose intervention has been early enough to have some effect.

The marked ongoing instability in some but not all of the solid tumors | tested is
also intriguing. It has become apparent that the tumors of some non-small cell lung
cancer patients demonstrate genomic alterations such as fusions and translocations,
representing new targets for custom-designed therapeutics (Horn and Pao, 2009).
Because of their tendency for rearrangement, the rRNA genes, in addition to playing a
direct role in cell metabolism, may also drive oncogenesis via this mechanism. By

determining whether there is altered sequence context for the rRNA genes, | may
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uncover an exciting new therapeutic target for a clinical subset of NSCLC patients. |
hypothesize that for those patients who demonstrate temporal rDNA cluster instability,
translocation of the rRNA gene, promoter, and/or immediate upstream regulatory
region may be influencing expression of oncogenes to promote increased metabolism,
unrestrained proliferation, and/or avoidance of apoptosis. | have proposed experiments
using restriction digest, cloning, PCR, and sequencing to determine whether there are
alternative sequence contexts for the rRNA genes or regulatory elements that serve to

drive tumorigenesis in clinical cancer patients.

82



Appendix A

Human rRNA Gene Clusters Are Recombinational Hotspots in Cancer
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Abstract

The gene that produces the precursor RNA transcript to the
three largest structural rRNA molecules (rDNA) is present in
multiple copies and organized into gene clusters. The 10 hu-
man rDNA clusters represent <0.5% of the diploid human ge-
nome but are critically important for cellular viability.
Individual genes within rDNA clusters possess very high levels
of sequence identity with respect to each other and are pres-
ent in high local concentration, making them ideal substrates
for genomic rearrangement driven by dysregulated homolo-
gous recombination. We recently developed a sensitive physi-
cal assay capable of detecting recombination-mediated
genomic restructuring in the rDNA by monitoring changes
in lengths of the individual clusters. To prove that this dysre-
gulated recombination is a potential driving force of genomic
instability in human cancer, we assayed the rDNA for structur-
al rearrangements in prospectively recruited adult patients
with either lung or colorectal cancer, and pediatric patients
with leukemia. We find that over half of the adult solid tumors
show detectable rDNA rearrangements relative to either sur-
rounding nontumor tissue or normal peripheral blood. In con-
trast, we find a greatly reduced frequency of rDNA alterations
in pediatric leukemia. This finding makes rDNA restructuring
one of the most common chromosomal alterations in adult
solid tumors, illustrates the dynamic plasticity of the human
genome, and may prove to have either prognostic or predictive
value in disease progression. [Cancer Res 2009;69(23):9096-104]

Introduction

The human rRNA gene clusters (rDNA clusters) produce 45S
precursor transcripts, subsequently processed to make three of
the four structural RNA components of the ribosome, and are crit-
ically required for protein synthesis and cellular viability. The
rDNA clusters comprising collectively hundreds of gene copies
are located on the short arms of the five human acrocentric
chromosome pairs (13p12, 14p12, 15p12, 21pl12, 22p12: OMIM
180450-180454) and are generally organized with individual genes
in head-to-tail tandemly repeated arrays (1). Each individual gene
is each 43-kb in length (2), with near perfect sequence conserva-
tion. Extremely high sequence similarity combined with the length
of the individual repeats makes both shotgun-based and directed
sequencing approaches to genome sequence assembly of the rDNA
impossible. As a result, the rDNA clusters are one of the largest
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remaining components of the human genome with no representa-
tion in the Human Genome Project.

The highly repetitive nature of these clustered genomic repeats
also prevents the application of commonly used techniques to in-
vestigate genomic instability such as array-based comparative ge-
nome hybridization, single nucleotide polymorphism (SNP)
analysis, and high-throughput paired end sequencing approaches.
Nevertheless, the very considerations that make the rDNA clusters
difficult to study by conventional means also make the rDNA bio-
logically interesting from a genomic stability perspective. The
sequence conservation, repeat length, and high relative local con-
centration of the repeats involving multiple chromosomal loci are,
in principle, conducive to cluster restructuring by homologous re-
combination. We previously physically characterized human rDNA
cluster lengths, finding an average of 600 repeats per diploid ge-
nome spread over the 10 rDNA clusters, subject to wide person-
to-person variability driven by strong meiotic recombination; the
number of gene repeats per cluster changes with a frequency of
~10% per cluster per meiosis (3). The high meiotic recombination
frequency phenotype of the rDNA leads us to consider whether the
rDNA clusters could serve as sentinel biomarkers for dysregulated
mitotic recombination in cancer.

Dysregulated recombination has the potential to mediate ge-
nomic restructuring in cancer (reviewed in ref. 4). We recently
showed that changes in rDNA cluster lengths in cultured mitotic
human cells are potential indicators of recombination-mediated
genomic destabilization by showing a 10- or 100-fold increase in
the frequency of spontaneous rDNA cluster restructuring in cells
deficient for the ataxia-telangiectasia mutated (ATM) protein or
the Bloom syndrome protein, respectively (5), in line with the in-
creased prevalence of malignancy in ATM (6) and Bloom syndrome
(7) patients. To determine whether the rDNA clusters are restruc-
tured in sporadic cancers generally as well as in cancer predispo-
sition syndromes such as ATM and Bloom syndrome, we
prospectively recruited lung cancer, colorectal cancer, and pediat-
ric leukemia patients for molecular analysis of their disease.

Lung and colorectal cancers are the leading and second leading
cause of American deaths from cancer, accounting for 28% and 9%
of all cancer deaths, respectively (8). Notably, both lung and colorec-
tal cancers derive from tissues with potentially substantial exposure
to environmental genotoxic agents. Many potential environmental
carcinogens, including specifically those in tobacco smoke, are po-
tent inducers of sister chromatid exchange (9-11), which is thought
to occur by a recombination-based mechanism (12). Ordinarily,
mammalian cells efficiently suppress recombination-mediated ge-
nomic rearrangements (13, 14), but damage or loss of this control
of recombination, combined with protracted recombination induc-
tion by environmental agents, may significantly impact the etiology
of tumors in these organs. Evidence suggesting potential cancer eti-
ology relevance for dysregulated recombination, particularly in the
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case of lung cancer, includes both the overexpression of recombina-
tion genes (15) and ATM defects commonly found in this tissue (16).
Conversely, pediatric leukemia is thought to be driven by specific
chromosomal events, rather than the gradual accumulation of ma-
lignant features caused by many years accumulating molecular ge-
nomic insults (17). This work reports the result of testing the
hypothesis that dysregulated recombination is a significant feature
of primarily sporadic adult lung and colorectal cancers rather than
pediatric leukemias.

Materials and Methods

Human investigations were performed after approval by the University
of Kentucky Institutional Review Board and Markey Cancer Center Proto-
col Review Committee, and in accordance with an assurance filed with and
approved by the Department of Health and Human Services. Informed con-
sent was obtained from University of Kentucky Medical Center patients
undergoing surgical resection for either lung or colorectal cancer, or from
the parents of pediatric patients being treated for leukemia. For patients
with solid tumors, peripheral blood was drawn before surgery. After sur-
gery, resected specimens were examined by the Division of Surgical Pathol-
ogy, and pieces of both tumor and surrounding nontumor tissue were
removed for analysis. Leukemia patients had either peripheral blood or
bone marrow aspirates removed for analysis periodically throughout the
course of their treatment. All patient samples are referred to in this work
by study code names.

Sample processing. Solid tissues were rinsed on ice in RPMI1640 con-
taining antibiotics and 10% fetal bovine serum (RPMI/FBS). Tissues were
then disaggregated to single cells mechanically either by gentle scraping
and mincing, or by mincing in RPMI/FBS and processing in a 50-um pore
size Medicon unit in a MediMachine followed by debris removal by filtra-
tion with a 70-um pore size Filcon (all from Becton Dickinson). For whole
blood and bone marrow aspirates, leukocytes were isolated by ammonium
chloride lysis. No digestive enzymes were used in the preparation of any of
the single-cell suspensions. Single-cell suspensions of either leukocytes or
solid tissues had DNA-containing cells quantified by vital staining with 2
pg/mL acridine orange followed by flow cytometric analysis with a 488-nm
argon-ion laser triggering acquisition on green fluorescence (DNA content)
essentially as described (18). Single-cell suspensions were adjusted to 1 x
107 cells/mL final concentration in 0.8% low-melting-temperature agarose
and allowed to solidify. High-molecular-weight genomic DNA was prepared
from this solid phase cell suspension by treatment with 1% sarkosyl/
500 mmol/L EDTA/0.5 mg/mL proteinase K at 50°C for at least 16 h, fol-
lowed by treatment with phenylmethylsulfonyl fluoride, extensive rinsing,
and final equilibration in 50% glycerol/10 mmol/L Tris/1 mmol/L EDTA
(pH 8.0) and long-term storage at -20 C.

Southern blot analysis. The rDNA clusters were analyzed by pulsed-
field gel electrophoresis and Southern blotting as described (3). Approx-
imately 1 ug genomic DNA in a 10-pL solid-phase agarose slice was
equilibrated with appropriate restriction digestion buffer and was digested
by EcoRV (New England Biolabs) to liberate intact rDNA clusters from bulk
genomic DNA. Agarose slices containing digested genomic DNA were sealed
into the wells of a 1% Pulse Field Certified agarose (Bio-Rad) gel in
44.5 mmol/L Tris/44.5 mmol/L boric acid/1.0 mmol/L EDTA [pH 8.0; 0.5x
Tris-borate EDTA (TBE)]. The gels were run using a CHEF-MAPPER (Bio-
Rad) in 0.5x TBE for 24 h at 6 V/cm field strength, switching between 120°
separated field vectors (frequency, 3-90 s) using a “ramp factor” of 0.357
(Bio-Rad) at a constant temperature of 14°C to achieve approximately linear
size resolution of between 30 kb and 1 Mb.

Following electrophoresis, gels were equilibrated to 0.5% final concentra-
tion glycerol and dried at 65°C. Dried gels were rehydrated with water, de-
natured with 0.4 N NaOH/0.8 mol/L NaCl, neutralized with 0.5 mol/L Tris
(pH 8.0)/0.8 mol/L NaCl, and prehybridized at 65 C in 2x SSC (300 mmol/L
NaCl/30 mmol/L Na-citrate) with 7% SDS and 0.5% casein. Gels were
probed overnight at 65°C in fresh prehybridization solution using the
rDNA-specific radiolabeled PCR products of primers 5'-GGGCTCGA-

GATTTGGGACGTCAGCTTCTG and 5'-GGGTCTAGAGTGCTCCC-
TTCCTCTGTGAG on pBSrDNALI, a pBluescript-based (Stratagene)
plasmid containing a subcloned and sequenced segment of the human
rDNA intergenic spacer, generated by using the aforementioned primers
to amplify human genomic DNA (3). Gels were rinsed at 65°C with 2x
§SC/0.1% SDS followed by 0.5 x SSC/0.1% SDS, briefly equilibrated with
2x SSC, and developed by exposing a Phosphorlmager cassette with subse-
quent imaging in a PhosphorImager (Molecular Dynamics). Raw data were
obtained in TIFF format and processed using Adobe Photoshop. All images
were processed en bloc. In no case did image processing either obscure
bands from the raw data, or cause bands not apparent in the raw data
to appear.

Results

We assay for dyregulated recombination in the rDNA by exam-
ining changes in the physical length of individual rDNA clusters
(Fig. 1). Every person has a unique configuration of these rDNA
clusters (3), so the cluster lengths vary from person to person.
Where possible, we compare the rDNA cluster lengths found in
surgically excised nearby nontumor tissue to the gene cluster
lengths found in the tumor itself, and to gene cluster lengths from
the patients' peripheral blood as an additional control (lanes N, T,
and B, respectively). Our prior experiences with both human blood
and cell lines indicated that analysis of gene cluster lengths from
50 kb to ~1 Mb is the most informative range for detecting recom-
bination-mediated alterations (3, 5), so this is the methodology we
followed in this present work. Gene clusters larger than 1 Mb all run

NTB NTB NTDB NTB
WMEE R IJIEEEIIEEEIEEES
>_
B —
P> m— —
> — > —
Stable Stable Instability Ongoing
with before instability
fragility expansion

Figure 1. Patterns of genomic instability in the rDNA. In each case lanes are
nontumor tissue (N), tumor tissue (T), and peripheral blood (B). The grouped
bands at the star represent unresolved gene clusters larger than 1 Mb. The lower
limit of resolution of the gel is 50 kb. ®, breakage from fragile DNA not involving
actual chromosomal restructuring. », new bands found in tumors and not in
nontumor tissue. >, new bands found in a fraction of tumor tissue but not
nontumor tissue. Arrows, bands found in nontumor tissue but underrepresented
in tumor tissue.
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Figure 2. Lung squamous cell carcinoma rDNA

TIBBO-JU RESCA-BO OFIAT-MA  XEPRY-DA  PANIU-HA
mod mod mod mod mod/poor
chemo/XRT T\l.NQ‘Mx TS.N“MX Ta,Nth Ta,No,Mx
yT2NoMy 50 ppy 100ppy  yes yes

56 ppy

stability analysis. rDNA clusters resolved up to 1 Mb

QIPPI-SH in length (%). N, nontumor tissue; T, tumor tissue;

mod/poor B, peripheral blood. ®, sample fragility; », new major
bands found in tumors; >, new minor bands found in

Ta,N2,My tumors. Coded patient names are indicated below

unk each gel. Differentiation status of tumors: mod,
moderately differentiated; mod/poor, moderately to
poorly differentiated; poor, poorly differentiated.

Any clinical pretreatment is indicated as chemotherapy
and radiation therapy (chemo/XRT). Pathologic staging
of tumors is indicated. Smoking history is given in
person-pack-years (ppy) or when the patient is a
smoker but smoking history has not been obtained
(yes); unk, unknown.

JIMIL-GE VEKOR-CH BONTA-DA WOFUT-BR
poor poor poor poor
TaNyMx  TaNuMyx  pTaNoMx  Ty,No,My
60 ppy yes yes 102 ppy

together unresolved at the top of the gel in the region (indicated by
the %) under these electrophoretic conditions, otherwise all unique
gene clusters shorter than 1 Mb are resolved as individual bands.
If the rDNA clusters are stable under mitotic cellular expansion,
the banding pattern found in tumor cells will match that found
in nontumor cells (Fig. 1, Stable). Occasionally, we observe a rela-
tively low-molecular-weight ladder of bands at the bottom of the gel
in tumor and normal tissues (Fig. 1, Sample fragility), consistent

with the 43 kb rDNA individual gene repeat length. These bands
appear to arise from stochastic, low-frequency fragile-site breakage
in individual rDNA repeats during the genomic DNA isolation pro-
cedure itself rather than from bona fide chromosomal alterations in
cells, since the intensities of these bands follows a smooth Gaussian
distribution and is not dependent on liberation of the gene clusters
from bulk genomic DNA by restriction enzyme digestion. Although
this fragility may contribute to initiating chromosomal alterations

Cancer Res 2009; 69: (23). December 1, 2009
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in gene cluster lengths, we do not consider a low-molecular-weight
banding pattern on its own to be indicative of genomic instability.

On the other hand, if a tumor has lost control over recombina-
tion, the configuration of gene cluster lengths in the tumor will be
different, relative to nontumor cells (5). If the rDNA cluster length
restructuring occurred before clonal expansion of the prototumor
cell, for example in the lungs of a heavy smoker, the altered length
gene clusters will be present in the entirety of the subsequent tu-
mor. In this case, some bands found in nontumor tissue may be

lost in the tumor, and new bands become evident (Fig. 1, Instability
before expansion). These new bands (Fig. 1, ») show intensities
proportional to their length. Tumor samples are commonly con-
taminated with nontumor tissue, so fainter bands in the tumor
sample occurring at the same position as bands found in normal
tissue likely represent contaminating normal tissue rather than
heterogeneity of cluster lengths within the tumor itself. Finally,
gene cluster lengths may have changed both before clonal expan-
sion of the prototumor cell and also during the clonal expansion
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Figure 3. Lung adenocarcinoma rDNA . . - {
stability analysis. rDNA clusters resolved . v =5
up to 1 Mbin Iength (k). N, nontumor — -
tissue; 7, tumor lissue; B, peripheral blood. MILST-BR  PHAZL-SA TIPOR-PA GLOAK-EU PARLA-CA SEBON-CL UGOBI-FO
@, sample fragility; >, new major bands well mod mod mod mod mod mod/poor

found in tumors; >, new minor bands
found in tumors. Coded patient names are

TiNgMy  TaNgMyx  TaNoMx  TiNyMyx  ToNgMy ToNgMx — TaNoMy

indicated below each gel. Differentiation yes 20 ppy 44 ppy unk yes 35 ppy 20 ppy
status of tumors: mod, moderately
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differentiated. Pathologic staging of tumors - [T | [ e = =] [ — —
is indicated. Smoking history is given in - : . %3
person-pack-years (ppy), or when the -
patient is a smoker but smoking history has ‘A,
not been obtained (yes); unk, unknown.
- ;O >
:
.
- .‘ 41 ~
¢ £, E
‘ | -
" e
) -,_‘:'
)| (B >
- - ﬂ o
w L & :
_*. - -
CEVAT-MA KABIG-NI EVIEN-RA MEERY-BE MUVID-DO FOBIK-TE IBINA-KE
mod/poor  mod/poor mod/poor mod/poor  poor poor poor
TuNaMy  pTaNgMy  TyNaM;  pTyNgMyx  ToNyMy  TaNg My T2,No.Mx
yes yes 60 ppy yes 60 ppy yes 100 ppy

www.aacrjournals.org gg%q Cancer Res 2009; 69: (23). December 1, 2009



Cancer Research

N T B BNTNTBNTB NTB
[

well mod
T2rNOrMX TSINGIMX
unk 5 ppy

BT NTB

SAGOF-GR VOBLE-JO DAPEB-MA

mod
T25N11MX
unk

FONET-VI  COBEZ-WI

mod

mod/poor

T31 NGv MX pTa-No- MX

unk

82 ppy

B T BNT NTB

= f=" - ® | [@ -
: -
| |- - -
2 -
: Wil 5
z o oy R
| |- - 2
LD v - 23 _: :‘
. B (BN e
. B L
‘-: H %_‘ oz | g
. 3 hy M- 3 & e
3 q 3 '\-"'__;‘.' *‘ﬁi‘ .
g 3 -%"—i’é x5
i g - ..-: ® - ad 1'5'-
. ¢ o } S 5 a
. pe %"' o5,
. o] [B 250
| .'E.-'- 1—. .

RIZON-HE ARPIC-RO
mucinous  mucinous
Ta,No,Mx Ta‘Nﬂ,Mx
no no

EBETH-DA PULAB-GE
metastatic metastatic
fromlung no
yes

SNARG-GE
metastatic
from lung

60 ppy

of the new tumor. Alterations that occurred after the tumor began
clonal expansion will manifest as new bands, but with reduced
intensity (Fig. 1, Ongoing instability, »). The degree to which the
intensity of these “minor bands” is reduced relative to the intensi-

Figure 4. Colon adenocarcinoma rDNA stability analysis.
rDNA clusters resolved up to 1 Mb in length (). N,
nontumor tissue; T, tumor tissue; B, peripheral blood. @,
sample fragility; », new major bands found in tumors; >,
new minor bands found in tumors. Coded patient names
are indicated below each gel. Differentiation status of
tumors: mod, moderately differentiated; mod/poor,
moderately to poorly differentiated; alternatively, tumors
are classified as either mucinous or metastatic. Pathologic
staging of nonmetastatic tumors is indicated. From

lung, likely metastatic colon adenocarcinoma surgically
excised from lung tissue. Smoking history is given in
person-pack-years (ppy), or when the patient is a smoker
but smoking history has not been obtained (yes); no, for
a nonsmoker, unk, unknown.

ties of the “major new bands” in the tumor is determined by
the fraction of the tumor made up of cells with these alterations;
the later in the clonal expansion the gene cluster alteration
occurred, the fainter the minor intensity bands will be. In contrast

Cancer Res 2009; 69: (23). December 1, 2009
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to the “Sample fragility” bands, new minor bands in the tumor oc-
cur at high molecular weights, do not vary smoothly in intensity,
and are dependent on liberation from bulk genomic DNA by re-
striction digestion before visualization on the gels.

We first analyzed lung squamous cell carcinoma (Fig. 2). Four of
11 patients, TIBBO-JU, PANIU-HA, AFILA-PA, and JIMIL-GE show
no differences between observed gene cluster lengths in tumor rel-
ative to nontumor tissues indicating rDNA cluster stability. Two
more patients, RESCA-BO and OFIAT-MA, show the same gene
cluster profiles between tumor and nontumor cells, with the excep-
tion of an even laddering of bands in the lower part of the gel (s)
consistent with fragility in the isolated genomic DNA. We therefore
also consider these tumors to be gene cluster stable. The stability
of TIBBO-JU is particularly remarkable because this tumor was a
recurrence following both chemotherapy and radiation treatment.
Clearly, the intense genomic damage from treatment does not nec-
essarily cause loss of gene cluster stability, nor is loss of gene clus-
ter stability necessarily required for poor response to therapy.

The remaining five lung squamous cell carcinomas all show ev-
idence of structural alteration in the rDNA. XEPRY-DA, QIPPI-SH,
and VEKOR-CH show bands found in tumor cells not present in
either blood or surrounding nontumor cells (Fig. 2, »). In XEPRY-
DA and VEKOR-CH, each novel band is ~30% the intensity of the
bands found in nontumor tissue. This is consistent with either the
rearrangements occurring early in the clonal expansion of the ini-
tial prototumor cell, or in the pretumor lung tissue before the ini-
tiation of clonal expansion, in which case the tumor would make
up 30% of the cells in the tumor sample, with the remaining 70%
being normal tissue. The novel bands in QIPPI-SH are on the order
of intensity of bands in nontumor tissue, suggesting that these ge-
nomic alterations preceded clonal tumor cell expansion.

Finally, two of the poorly differentiated lung squamous cell car-
cinomas, BONTA-DA and WOFUT-BR, show evidence of extensive
and ongoing recombinational instability. In both cases, there are
new major bands in the tumors not found in nontumor tissue
(Fig. 2, »). Significantly, there are additionally several high-molecu-
lar-weight minor intensity bands (Fig. 2, *). The presence of both
new major and minor intensity bands indicates that not only were
the rDNA clusters altered in the pretumor tissue as might be ex-
pected for cells under genotoxic pressure from tobacco exposure,
but that these gene clusters continued to structurally rearrange in
the early history of the tumor after the prototumor cells had al-
ready become committed to clonal expansion.

We see a similar level of gene cluster restructuring in lung
adenocarcinomas (Fig. 3). In 6 of 14 cases, there is no evidence
for rDNA cluster rearrangement. In PHAZL-SA, SEBON-CL, and
IBINA-KE gene, cluster lengths in all of nontumor, tumor, and
blood samples are longer than the ~1-Mb resolution limit of the
gels. This absence of resolved size differences in the gene clusters
from the tumor samples compared with the nontumor controls
indicates that these tumors did not undergo recombination-medi-
ated gene cluster alterations, although we cannot preclude altera-
tions in the unresolved gene cluster lengths larger than 1 Mb in
these patients. The banding patterns in MILST-BR, PARLA-CA,
and CEVAT-MA are also the same between tumor and either pe-
ripheral blood or normal lung, indicating gene cluster stability;
however, UGOBI-FO, KABIG-NI, and EVIEN-RA show evidence of
pretumor alteration with new major bands, but no new minor
banding. The remaining five tumors, TIPOR-PA, GLOAK-EU,
MEERY-BE, MUVID-DO, and FOBIK-TE, all show both new major
and minor intensity bands, consistent with a period of dysregu-

lated recombination both before and immediately following com-
mitment to clonal tumor cell expansion.

The colorectal tumor patients show a similar distribution of rDNA
cluster instability as the lung cancer patients. Of the 10 colon cancer
samples (Fig. 4), 4 appear stable (SAGOF-GR, FONET-VI, ARPIC-RO,
and EBETH-DA), 5 more show preclonal expansion alterations
(VOBLE-JO, DAPEB-MA, COBEZ-WI, RIZON-HE, and SNARG-GE),
whereas 1 shows both new major and minor bands indicative of
gene cluster restructuring both before and after tumor cell commit-
ment (PULAB-GE). The process of metastasis does not necessarily
involve recombinational gene cluster restructuring, as seen in the
colon tumor from EBETH-DA, which was surgically recovered from
a colon metastasis to lung. Likewise, it is notable that unlike the lung
cancer patients, in nearly all of whom have a smoking history, rDNA
cluster alterations are also seen in colon cancer patient tumors from
either nonsmokers (RIZON-HE, PULAB-GE) or individuals with a
relatively modest smoking history (VOBLE-JO).

The rectal cancers follow a similar pattern (Fig. 5). Two of
four patients (CLIMP-HA and DOOVA-CL) show light stochastic
breakage but are otherwise gene cluster stable. Two other patient
tumors show evidence of either pre-expansion (BINTA-CH) or
preclonal and postclonal expansion (WIVIT-HE) gene cluster
instability. Our experience was that nontumor rectal tissue was dif-
ficult to work with; so generally, we compared tumor gene cluster
structure to that from peripheral blood.

Architectural rearrangements in the rDNA clusters are less fre-
quent in the 12 pediatric leukemias we have examined (Fig. 6).
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Figure 5. Rectal adenocarcinoma rDNA stability analysis. rDNA clusters
resolved up to 1 Mb in length (). N, nontumor tissue; T, tumor tissue; B,
peripheral blood. ®, sample fragility; », new major bands found in tumors; >,
new minor bands found in tumors. Coded patient names are indicated below
each gel. Differentiation status of tumors: mod, moderately differentiated.
Pathologic staging of nonmetastatic tumors is indicated. Smoking history is given
in person-pack-years (ppy) or for a nonsmoker (no).
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Figure 6. Pediatric leukemia rDNA stability analysis. rDNA
clusters resolved up to 1 Mb in length (). L, leukemia:

13% 44% 72% 50% 22% 66%
pre-BALL pre-BALL pre-BALL mono AML pre-BALL pre-BALL

peripheral blood containing blasts; R, remission: peripheral
blood posttreatment with no detectable blasts; D, donor:
peripheral blood following engraftment of transplanted

LR LR LR LR
- e =
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-l "
3

GELTA-JA YOBIR-KA IMAR-RO NIPRY-JA RAMAH-LE
67% 36% 92% 85% 24%
pre-B ALL pre-BALL T-cell ALL pre-B ALL pre-B ALL

bone marrow from an allogeneic donor. Coded patient
names are indicated below each gel. The percentage
of blasts in leukemia samples is indicated. Leukemic
classification: pre-B ALL, pre—B-cell acute lymphocytic
leukemia; mono ALL, monocytic acute myelogenous
leukemia; T-cell ALL, T-cell acute lymphocytic leukemia.

PALT-BR
80%
pre-B ALL

Comparing peripheral blood containing blasts before or shortly
after the initiation of treatment to peripheral blood from the
same patients in remission with no residual detectable blasts
after recovery from induction chemotherapy shows the same pat-

tern of bands in 10 of the 12 different pediatric patients. Evidence
of pre-expansion rearrangement is detected in NIPRY-JA and
RAMAH-LE, with novel band intensities proportional to the fraction
of blasts found in these patients' peripheral blood. PALT-BR is an
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interesting, if tragic, case. We first encountered this 5-year-old boy
in remission 3 years after a diagnosis of and treatment for pre-B-cell
acute lymphocytic leukemia before his allogeneic stem cell trans-
plant. After his transplant, his peripheral blood shows the rDNA
cluster pattern of the engrafted donor marrow. Shortly after the
transplant, the patient relapses and we see a re-establishment of
his pretransplant rDNA cluster pattern 2 weeks before his death. Al-
though this individual underwent years of intensive chemotherapy
and full body irradiation, his disease shows no evidence of rDNA
cluster instability (remission versus posttransplant leukemia rDNA
cluster pattern, ignoring the bands from the donor marrow).

Discussion

Of the solid tumors analyzed for rDNA cluster instability, the
overall frequency of any observed rDNA cluster alteration is 54%
(21 of 39: 95% confidence interval, 39-68% by adjusted Wald meth-
od). Thirty-one percent (12 of 39) showed alterations consistent
with preclonal expansion alterations only, and a further 23% (9
of 39) showed evidence of recombination-mediated rDNA cluster
alterations both before the start of clonal tumor expansion as well
as in the several rounds of cell division immediately following com-
mitment to clonal expansion. No evidence of rDNA cluster insta-
bility was observed in 46% (18 of 39) of cases. Because the rDNA
clusters range in size up to 6 Mb and we only analyzed clusters
smaller than 1 Mb, the frequency of 54% observed gene cluster al-
terations is likely an underestimate.

Considering that the rDNA clusters only make up ~0.5% of the dip-
loid human genome, this alteration frequency of over 50% in human
solid tumors indicates that the rDNA clusters are extraordinarily sen-
sitive indicators of the capacity for human cancer to use recombina-
tion to alter submicroscopic genomic structure, and that this
submicroscopic genomic restructuring is one of the most frequent
chromosomal aberrations found in nonhereditary solid tumors. In
comparison, rDNA alteration in pediatric leukemia is only found in
~15% of cases. This frequency difference in cluster recombinational
restructuring between pediatric leukemia and adult solid tumors (P=
0.04 Fisher's two-tailed exact test) may reflect the adult tumors' pro-
gressive accumulation of genomic insults from both time and geno-
toxic environmental exposure, compared with more simple specific
translocation-driven disease in the pediatric patients.

The rDNA clusters are critical components of cellular metabo-
lism, so recombinational dysregulation in the rDNA may directly al-
ter the capacity for tumor cell growth. The hypermetabolic nature of
cancer cells requires expanded capacity for protein synthesis. Be-
cause rRNA production is rate limiting for the construction of
new ribosomes, instability in the rDNA clusters will allow for posi-
tive selection of subpopulations of cancer cells that have expanded
their rDNA complement. Upregulation of rRNA expression through
epigenetic derepression is already known in lung cancer (19), mak-
ing selectable gene amplification of the rRNA an additional effective
mechanism for producing the large number of required ribosomes
in hypermetabolic, relatively rapidly dividing tumor cells.

In addition to its direct contribution to tumor cell metabolism,
instability of the rDNA may be indicative of broader recombina-
tion-based genomic instability in repetitive genomic elements
and may serve as a sentinel biomarker for genomic alteration me-
diated by recombination between other high-similarity low-copy
repeated sequences (20). For example, dysregulated recombination
causing genomic restructuring of centromeric a-satellite repeats
may result in centromeric dysfunction, contributing to the aneu-

ploidy commonly seen in adult solid tumors (21). Intriguingly, oth-
er highly self-similar clustered gene loci in the human genome (22)
express protein products found with relative specificity only in
cancer and in highly recombination-active tissues such as testis:
the so-called “CT” genes (23). We are actively pursing whether
these loci are also recombinationally destabilized in cancer and
with what potential clinical relevance.

From a predictive standpoint, because DNA double-strand
breaks are potent inducers of homologous recombination in hu-
man cells (24) and many chemotherapeutic agents exert their gen-
otoxic effects through DNA double-strand breaks, the use of these
agents in tumors with dysregulated recombination may prove to
be problematic. Dysregulated recombination in tumor cells may
facilitate large-scale genomic restructuring in response to radiomi-
metic chemotherapy accelerating establishment of chemothera-
peutic resistance. Similarly, exposure to genotoxic agents from
tobacco in potentially numerous precancerous cells with dysregu-
lated recombination may contribute to the synchronous dissimilar
primary lung tumors sometimes found in heavy smokers.

We are continuing to follow and expand our enrolled patient
population to ascertain whether assaying rDNA restructuring in tu-
mor cells has prognostic and/or predictive value. Specifically, now
that we can divide solid tumor cancer patients into two approxi-
mately evenly populated cohorts, based on whether tumors either
do or do not display evidence of dysregulated recombination, we
will determine whether dysregulated recombination is informative
with regard to risk of tumor recurrence, with the disease-free sur-
vival interval postsurgery, and with overall survival. For patients
that undergo adjuvant chemotherapy or radiation therapy postsur-
gery, we will also determine whether the degree of responsiveness
to adjuvant therapy is influenced by the presence of dysregulated
recombination in the primary tumors. The dysregulated recombi-
nation cohort can be further subdivided, based on the presence or
absence of minor banding in the tumor sample, into patients for
whom the tumor was still actively recombining the rDNA clusters
during the initial phase of tumor clonal expansion and into those
for whom dysregulated recombination appeared to be restricted to
the interval before primary tumor clonal expansion, allowing fur-
ther fine-tuning of the potential clinical application of the assay.

In summary, we have detected structural alterations to the rRNA
gene clusters in over 50% of the adult solid tumors examined, mak-
ing these genomic rearrangements one of the most common spe-
cific chromosomal alterations in adult solid tumors. The functional
significance of the rDNA for the capacity of tumor cells to produce
protein, as well as the potential sentinel biomarker nature of the
rDNA for recombination-driven genomic alterations involving oth-
er highly conserved low-copy repetitive genomic elements, sug-
gests assaying rDNA cluster instability in tumors may prove to
have prognostic and/or predictive value.
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