Factors Influencing Final Outcomes in Patients with Shoulder Pain: A Retrospective Review

Timothy L. Uhl
University of Kentucky, tluhl2@uky.edu

Enrique V. Smith-Forbes
Fort Sam Houston Clinic, e_vsft12@hotmail.com

Arthur J. Nitz
University of Kentucky, arthur.nitz@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/rehabsci_facpub

Part of the Rehabilitation and Therapy Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.
Factors Influencing Final Outcomes in Patients with Shoulder Pain: A Retrospective Review

Digital Object Identifier (DOI)
https://doi.org/10.1016/j.jht.2017.04.004

Notes/Citation Information
Published in Journal of Hand Therapy, v. 30, issue 2, p. 200-207.
© 2017 Hanley & Belfus, an imprint of Elsevier Inc.
This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

This article is available at UKnowledge: https://uknowledge.uky.edu/rehabsci_facpub/68
Factors Influencing Final Outcomes in Patients with Shoulder Pain: A Retrospective Review
ABSTRACT:

Study Design:

Retrospective cohort.

Introduction:

Rehabilitation interventions are commonly prescribed for patients with shoulder pain, but it is unclear what factors may help clinicians’ prognosis for final outcomes.

Purpose of the Study:

To determine what factors are the best predictors of improved patient-reported outcomes at discharge in patients with shoulder pain.

Methods:

Retrospective chart review of 128 patients presenting with shoulder pain to an outpatient physical therapy clinic. Chart review captured data regarding patient demographics, treatment interventions, patient history, and patient-reported outcome scores. The primary dependent variable was the overall change score of the QuickDASH (initial – discharge). Thirty-eight predictor variables were entered into a forward stepwise multivariate linear regression model to determine which variables and to what degree contributed to the dependent variable.

Results:

The linear regression model identified five predictor variables that yielded an $R = .74$ and adjusted $R^2 = .538$ ($P < .001$). The five predictor variables identified in order of
explained variance are QuickDASH change at the 5th visit, a total number of visits, initial
QuickDASH score, scapular retraction exercise, and age.

Discussion: Early change scores, equal to minimal detectable change scores on
patient-reported outcomes appear to be strong indicators that patients with shoulder
pain are on a positive trajectory to benefit from rehabilitation.

Conclusion:

Using patient-reported outcomes throughout care, not just at the start and end of care,
will provide therapist feedback regarding patient’s progress and indicate treatment
effectiveness.

Keywords: Patient-reported outcome, QuickDASH, physical therapy, prognosis

Levels of Evidence: Level: 4
1.0 Introduction:

Shoulder pain is a common and debilitating diagnosis in health care with a 1-year prevalence reaching up to 47% in the adult population.\(^1\) It is second, only to low back pain in prevalence of musculoskeletal conditions for those seeking care.\(^2\) Shoulder pain is often associated with unfavorable outcomes with roughly 40-50% of all new episodes of shoulder pain patients presenting to a primary care setting, who still report symptoms 6 to 12 months later.\(^3-5\)

Research to determine which interventions and factors contribute to positive outcomes with rehabilitation intervention is growing but is inconsistent. A systematic search of the literature identified 16 studies that focused on the prognosis of shoulder disorders; only six, were designated as “high quality”.\(^6\) Strong evidence exists that high pain intensity and middle age (45-54) are associated with poor outcomes. There is moderate evidence that prognostic factors for shoulder pain such as long duration of complaints, and high disability score at baseline predict a poor outcome in primary care.\(^6-8\) Many prognostic factors were considered in these 16 studies such as sex, mechanism of injury, psychological factors, work demands, anatomical factors and impairments of motion and strength.\(^6\) However the vast majority of the prognostic factors were identified only at baseline.

There is compelling evidence in the literature indicating exercise and patient education decreases pain and improves function at short-term and long-term follow-up for patients with impingement syndrome.\(^9,10\) Additional interventions such as
mobilization, modalities, and stretching interventions are commonly used to treat
shoulder impingement syndrome with limited evidence to support their use.11 Clinicians are often faced with questions relating to identifying prognostic factors that will determine a patient’s positive outcome. Treatment approaches may vary based on the presence or absence of a number of prognostic factors. There are many factors related to history, co-morbidities, psychological state, physical impairments, work demands, physical examination findings and patient self-report perceptions of function that can contribute to a patient’s outcome. It is not known how much each of these items is weighted in contributing to a patient’s prognosis.

The role of early response to rehabilitation has demonstrated limited evidence in predicting long-term outcomes. Researchers investigated the effects of early self-reported changes in levels of disability and pain levels in patients with acute back pain seeking chiropractic care.12 Axen et al.,12 found that improvement in pain and disability after visit 2 increased the odds of a positive treatment outcome by an 2.9 odds ratio compared to patients with no improvement. This response was further investigated in 2422 patients presenting with multiple musculoskeletal conditions to chiropractors in the United Kingdom over an 8 year period.13 The best predictor of a positive outcome at the tenth visit in those patients with persistent musculoskeletal pain was self-reported improvement by the fifth visit. These authors suggested that early changes may be more important as predictors in musculoskeletal conditions than variables measured at baseline.13

It is hoped that the acquired knowledge of the prognostic factors that contribute to the successful outcomes of patients with shoulder pain will help provide more
informed clinical decision-making among health care practitioners. The gained
information can be provided to patients regarding their plan of care and opportunity for a
successful outcome. Based on the previous research we sought to be as inclusive as
possible in retrospectively examining the charts plus our own clinical observations led
us to incorporate the early treatment interventions and change scores of patient-self
reports as prognostic factors accounting for the large number of factors used in this
study. The objective of this study was to determine what factors are associated with a
positive outcome in patients with shoulder pain presenting to a physical therapy clinic in
a general orthopedic practice population. Specifically, we sought to identify which early
interventions, historical presentation, and demographic variables are most associated
with contributing to a positive outcome in patients presenting with shoulder pain.

2.0 Methods

We conducted a retrospective study involving patients presenting to a single
outpatient physical therapy clinic with shoulder pain between the years 2008-2010. The
outpatient clinic was located in the southern region of the United States representing a
typical general outpatient orthopedic clinic seeking care for shoulder pain. This clinic
had instituted patient-reported outcome data collection as a standard operating
procedure in the fall of 2006. This clinic used the QuickDASH to track disability scores
for upper extremity injuries. Subject data was obtained by performing systematic chart
reviews of patients with shoulder pain. Data was subsequently entered into an SPSS
version 22 (IBM, Armonk, NY) for statistical analysis. The retrospective chart review
was approved by the university’s institution review board, IRB# 10-0765-X1B before
initiation of this study.
The QuickDASH is a shortened version of the original disability of the arm, shoulder and hand (DASH) questionnaire.14 The QuickDASH is an 11 item disability scale ranging from 0 reflecting no disability to 100 indicating severe disability and has been found to be highly correlated with the full DASH.14 The QuickDASH has demonstrated excellent reliability in patients with shoulder pain (ICC = 0.90) with minimal detectable change (MDC) = 11.2 and minimally clinically important differences (MCID) = 8 in patients with shoulder pain.15

\textbf{2.1 Subjects}

Two hundred eighty-nine patient charts were reviewed. Potential subjects were excluded from analysis if any of the following were present: a history of shoulder surgery (n=12), neurological involvement (n=26), shoulder instability (n=6), severe loss of motion, suggesting adhesive capsulitis (n=57) or a positive lag sign, suggesting rotator cuff tear (n=1) and if the QuickDASH score at visit 5 was not recorded (n=8). One hundred seventy-nine patient charts were available to extract data. Neurological involvement was identified by an abnormal dermatome, myotome or deep tendon reflex test.16 A positive apprehension sign, anterior or posterior drawer test was considered indicative of shoulder instability.17 Severe loss of motion was found to be present if the patient lacked greater than 50\% of the normal physiologic range of motion.18 Finally, lag signs included a positive drop arm test, lift off test or external rotation lag sign.17

The terminology of shoulder pain was used in this study as this was a retrospective review and all patients were not screened with a standard evaluation for a particular pathology. We made an effort to exclude patients reporting history or physical
examination findings consistent with instability, adhesive capsulitis, neurological involvement, and rotator cuff tears, presuming the remaining patients are likely to have rotator cuff impingement, the most common diagnosis in patients with shoulder pain. There is a strong bias that most of these patients had some level of rotator cuff inflammation or impingement which is challenging to classify. We were unable to confirm this diagnosis, therefore the terminology of shoulder pain was retained for this study.

2.2 Chart Review Procedures

Patient charts were systematically reviewed extracting information regarding exclusion criterion (5 variables), treatment received in first 5 visits (20 variables), treatment frequency (2 variables) demographical information (4 variables), comorbidities (4 variables), historical data (4 variables), physical examination (2 variables) and QuickDASH scores at three time points (initial, visit 5, and discharge). The dependent variable is the Overall QuickDASH change score which was calculated from the change between the initial and discharge QuickDASH scores. The QuickDASH change score at the 5th visit was calculated as the difference between the initial and visit 5 QuickDASH scores. Nine continuous predictor variable were extracted: age, height, weight, duration of symptoms, pain levels, treatment frequency, the total number of treatments, initial QuickDASH score, change at 5th visit QuickDASH score. Descriptive analysis of continuous data is presented with mean and 95% confidence intervals in Table 1.

Nine binomial variables were extracted as present or absent and coded as 1 or 0, respectively. The chart was reviewed for the presence of four comorbidities; history of
cancer, use of tobacco, use of alcohol, history of diabetes. These were the primary
comorbidities filled out on the standard medical history form completed by patients at
intake. Additionally, four historical variables, previous injury in the shoulder and work-
related injury were coded on the excel spreadsheet. The last two binomial variables
coded were mechanism of injury atraumatic = 1, and traumatic = 0 and sex was coded
as 1 for males and 0 for females. The final variable from physical examination was the
presence of limited elevation which was coded as present if the chart record indicated
shoulder elevation less than 140° on the involved shoulder. This value was used based
on previous research identifying 156 ± 12° as typical flexion available in patients with
shoulder pain. The value of 140 was decided upon based on measurement error
ranging from 3-7° around 144°. The frequency count of all these potential predictor
variables are presented in Table 1.

2.3 Treatment Variable Descriptions

The therapist providing treatment recorded the specific modality, if applied, for
each treatment and pertinent details of that application including number of minutes
applied, specific anatomical site of application and numerical settings on the machine
where applicable which is the standard practice for this clinic and is useful for
subsequent treatments. The twenty treatment predictor variables were treated as
continuous data ranging from 0 to 5 depending on the number of treatments received
during the first five visits for the purposes of this project. For example, if a patient
received an ultrasound three times during first five treatments they would be coded as
three in the ultrasound variable. A zero would be coded in a treatment variable if
nowhere in the notes was there an indication that a patient received a particular
intervention. The mean, 95% confidence interval, and frequency counts for each treatment category are presented in Table 1. This study only recorded data from the first five visits as our primary interest was how early interventions and early QuickDASH change scores would affect final outcomes. Previous research had demonstrated dramatic changes early during intervention, which was consistent with our clinical observations.23

Treatment counts were used in this study as this was a retrospective study. The specific parameters of each treatment were not documented and varied between therapists based on individual therapist clinical decisions for their patient. We chose to use treatment counts to document what occurs in a typical rehabilitation intervention for shoulder pain. Ideally, having a standard treatment protocol for all patients would have strengthened the study but this would not represent what is typically occurring in outpatient physical therapy clinic with multiple therapists treating patients. Five treatment modalities were recorded to indicate if a patient either did or did not receive the intervention as part of their treatment for each of the five visits. The modality had to be directed to the shoulder to be counted. Manual therapy interventions were categorized into three variables. Spine mobilizations were treatment interventions directed at cervical and thoracic joints regardless of the intensity of the mobilization. Glenohumeral mobilization was manual therapy treatment to gain range of motion in any direction of the shoulder regardless of the intensity. Soft-tissue mobilization was a massage or myofascial release techniques directed at surrounding shoulder and scapular musculature. Various exercises were prescribed so instead of specifying each exercise we categorized exercises into eleven components based on mode and
direction. The mode was either passive range of motion (PROM), active assistive range of motion (AAROM), or resistive range of motion (RROM). The three primary directions identified were flexion regardless of the plane of elevation, internal and external rotation irrespective of the amount of arm abduction. Strengthening exercises at this clinic focused on scapular exercises, so two additional categories of RROM were added for scapular protraction and retraction: exercises representing scapular punches and pinches using various resistive loads. Education regarding postural correction for forward head or shoulders was counted as a postural exercise intervention.

When examining the data entered into the excel spreadsheet 51 subjects had at least one missing predictor variable, therefore, these subject were removed, leaving 128 subjects available for the forward stepwise regression model.

2.4 Data Analysis

A multivariate linear regression analysis was conducted to determine which of the 38 predictor variables were most prognostic in estimating final outcome on the QuickDASH score. The outcome or dependent variable (Y) was the overall QuickDASH change score. The predictor variables were entered into a forward stepwise linear regression using SPSS version 22 (IBM, Corporation, Armonk NY). A forward stepwise method places the predictor variable with the highest correlated to the outcome variable into the equation first. A p-value of ≤ .05 was required for a predictor variable to enter the equation at each step requiring that the addition of other predictor variables had to contribute to estimating the outcome variable significantly. Additionally, at each step a
p-value ≥ 0.1 was used to remove a predictor variable that exceeded this value at each step in developing the regression model. The adjusted R^2 value was determined at each step to evaluate the explained variance by the predictor variables. The variable inflation factor was monitored at each step to assure predictor variables entered were not highly correlated and identify potential multicollinearity between predictor variables added to the equation.

3.0 Results

The multivariate linear regression analysis revealed a model with an adjusted $R^2 = .538$ ($P < .001$) accounting for 5 variables entered into the equation. (Table 2) The five variables in order were QuickDASH change score at 5 visits, Total visits, Initial QuickDASH score, RROM Scapular retraction, and Age. The resulting regression equation was able to account for approximately half of the variance of the change in perceived level of disability measured by the QuickDASH in patients with shoulder pain with a standard error of the estimate equal to 10.5 points. The resulting equation:

$$Y \text{ (Overall QuickDASH change score)} = .62(\text{QuickDASH change score at 5th visit}) + .73(\text{Total visits}) + .238(\text{Initial QuickDASH score}) + 1.22(\text{RROM scapular retraction}) - .165(\text{Age}) - 4.69.$$

<<Insert Table 2>>

4.0 Discussion

The objective of this study was to determine what factors are associated with a positive outcome in patients with shoulder pain presenting to a physical therapy clinic in
a general orthopedic practice population. With the recent emphasis on value-based health care24, 25 and estimating final outcomes through the use of G-codes26 clinicians need to establish and refine reasonable predictors for patient outcomes. The current study predicts short-term outcomes, as indicated by patient self-reported outcomes using the QuickDASH change scores and provides clinicians a potential tool to estimate outcome change scores in patients with shoulder pain.

\textbf{4.1 Comparison to Previous Studies}

Previous studies have investigated short-term outcome predictors for patients with shoulder pain. A systematic review of shoulder disorders found strong evidence that high pain intensity predicts poor outcomes in primary care populations. It also revealed moderate evidence for long duration of complaints and high disability score at baseline.6 Similar findings were obtained in another systematic review, which found only two prognostic factors associated with outcome in two or more studies, duration of pain and baseline function.27 All of these measures were included in this study however our results differed. Baseline pain level was not predictive of an overall change of the QuickDASH score, and higher initial QuickDASH scores were associated with greater change scores. It is logical and commonly reported that higher scores are predictive of greater change as there is more opportunity for change.28 Based on previous studies we expected the duration of symptoms and pain levels to be predictive of change scores.6 These results were not observed in this study. The previous systematic reviews were primarily in prospective cohort studies and the current study is a retrospective cohort limiting the impact of this study’s findings related to these two variables. In reviewing our data duration of symptoms ranged from very acute at .2 months to very chronic - 161
months. However, duration of symptoms was skewed toward the acute end of the continuum as 61% of all 128 subjects identified their duration of symptoms as less than or equal to 4 months. This relatively tight distribution was observed for baseline pain measures as 64% of all subjects rated their pain between 4 and 7 on a numeric pain rating scale. The lack of variability for each of these predictor variables likely contributes to their absence in the final regression model.

Previous studies investigating short-term outcomes of physical therapy lasting 3 months in duration found older age to predict greater disability at discharge. The use of age as a predictor is consistent with the results from the current study. We identified age as a negative predictor, indicating the greater the age, the poorer our outcome. However, this is a non-modifiable predictor variable and was a significant but weak predictor of final outcome as it was the last variable included in the regression model. Clinicians need to remember that in a regression model, it is the combination of variables that create the model, rather than a single variable and the relative importance is indicated by explained variance which in this case only contributed 1.5% of the explained variance.

The current study supports previous research that identified incorporating active interventions as prognostic of positive outcomes in patients with shoulder pain. It is interesting to note that no other intervention was strongly correlated with a positive outcome other than resistive scapular retraction exercises. A substantial number of the patients included in this study exhibited signs and symptoms of impingement syndrome, though we did not specifically limit this study to patients with symptoms of impingement alone. Because we excluded patients with significant motion restrictions
and clinical findings consistent with shoulder instability, the majority of the remaining
patients demonstrated rotator cuff involvement. Exercises focusing on scapular
retraction provide benefit by increasing subacromial space31, 32 and thereby reducing
shoulder pain and dysfunction23, 33, 34. Experienced therapists note that scapular
exercise is a fundamental element in their treatment of patients with shoulder pain likely
to have sub-acromial impingement35.

Another factor that was a positive predictor of overall change in QuickDASH
score in the current study was the total number of therapy visits. Though the aim of any
treatment protocol is to achieve established goals in as timely a manner as possible,
this information suggests there is important value in ultimate patient outcome by
persisting with a treatment regimen, even if progress occurs at a slow pace. Given this
evidence, therapists should be encouraged to persist in pursuing treatment goals and
continue to evaluate specific features of treatment interventions, especially working to
see that patient’s “buy in” to the value of disciplined compliance with the prescribed
exercise regimen35. In making this recommendation, it is recognized that beyond some,
as yet, unidentified upper threshold of visit number, the positive predictive characteristic
indicated by our research probably fades in value. We did not seek to establish that
upper limit of visits as that was not the focus of the current study.

The results of the current study provide treating clinicians with useful information
to track patient progress and modify treatment interventions based on that progress.
The variable in our study most closely associated with predicting a successful patient
response was the QuickDASH change score at the 5th therapy visit. This variable by
itself was capable of explaining 40\% of the variance of the overall change in the
QuickDash score at discharge. Tate et al.,23 demonstrated graphically in their report that patients with shoulder impingement who exhibited significant improvement had at 2 weeks improved by approximately 15 points. Their sample was only 10 patients, but our findings agree and support their conclusions and a similar trend of early improvement in patient-reported outcomes. This is consistent with the current study as the average improvement of all patients in our study was 11 points improvement with a 95% confidence interval ranging from 9-13 points. This meets and exceeds the minimally clinically important difference of 8 points identified as meaningful improvement in patients with shoulder pain.15 The use of patient-reported outcomes throughout the course of care, and not just at the beginning and end of treatment, is valuable as indicated by the results of the current study. This is important as it allows therapists the opportunity to adjust therapeutic intervention in an effort to prevent protracted pain and disability when patients do not self-report clinically meaningful functional progress. Failure to note substantial progress during the first five therapy visits should alert clinicians to examine the range of interventions for any given patient.13

4.2 Clinical Implications

The linear regression equation created from this dataset provides clinicians with a tool to estimate QuickDASH change score at discharge. This equation indicates that all variables are positive predictors of the overall QuickDASH change score except for age. The age variable has a negative sign indicating that for every year older the overall QuickDASH change score is decreased by .16 units. Any value can be applied to estimate the overall change in QuickDASH score. For the following example, the mean values for each predictive variable from Table 1 were used.
QuickDASH change score at 5th visit = 11

Total visits = 12

Initial QuickDASH score = 40

RROM scapular retraction = 4

Age = 50

Constant = -4.69

Equation (.62(11) + .73(12) + .238(40) + 1.22(4) - .165(50) - 4.69) = 17

Applying the regression equation presented in the results section with mean values yields an estimated change score equal to 17 points. In applying this equation, the standard error of estimate, which equals 10.5 also has to be taken into consideration. The standard error of estimate for a regression equation functions similar to a standard deviation of the mean, which would indicate that change score could vary from 6.5 to 27.5 points. The wide range of scores is explained by the fact that the equation only explains approximately 50% of the variance of the overall QuickDASH change score and indicates that other factors not considered may contribute to the final outcome. This equation is not a perfect estimator of final change score but provides clinicians with the major predictor variables to consider and a useful tool to estimate prognosis.

Through examining the data from a different perspective, clinicians should focus on achieving an eleven point change or greater in the first five visits. The data was further evaluated to determine how likely a change of 11 points at visit 5 predicts a
QuickDASH change score of 17 or greater at discharge. Fifty-five out of the 128 patients had an overall QuickDASH change score greater than 17. Forty-one out of 55 or 74.5% of those patients had a change of 11 or more points on the QuickDASH at visit 5. This left 73 patients with an overall QuickDASH change score under 17 points. Fifty-three out of 73 or 72.6% of those patients had a QuickDASH change score under 11 points at visit 5. This change value has been found to be the minimal detectable change score with the QuickDASH in patients with shoulder pain.15 This demonstrates that early use of patient-reported outcomes provide clinicians with the patient's perspective of how they are recovering from their shoulder injury and is essential in patient-centered evidence-based rehabilitation.36-39

4.3 Limitations

A number of limitations exist in the present study. This is a retrospective study which has a common limitation of missing data. This study is no different. A lack of objective data in the chart reviews relating to inclusion criteria limited our ability to diagnose patients with a specific condition such as subacromial impingement syndrome. It is very challenging, and much debate is ongoing in the literature regarding how to categorize these patients.21, 40 We attempted to include potential patients by using reasonably strict exclusion criterion to limit our patient population, since advanced imaging was not available for all patients during this retrospective review of physical therapy notes. As a retrospective study all patients information is derived from either self-report or from therapist reported findings. There are details that could have contributed to the explaining final outcomes that were not able to be obtained or coded in a manner to allow adequate investigation such as continuous measures of motion.
and strength measures in a standard manner. Future studies may be designed to create a more stringent inclusion criteria related to diagnosing sub-acromial impingement and using a prospective, rather than a retrospective design.

Another significant limitation refers to the generalizability of the results. The study was conducted in a single outpatient facility in the south region of the United States with only four treating therapists. It is unknown whether the results of our study will apply to other patient populations in different clinical settings. Future research should seek to replicate the present study in various regions of the country with a different cohort of patients to improve the generalizability of these results. Additionally, the specific intervention parameters were not well defined in this study. For example, it is not clear what aspects of the joint capsule were targeted with glenohumeral mobilization. More accurate treatment descriptions in a prospective, more controlled study may assist future therapists in determining specific treatment plans for their patients. Finally, the number of patients included in this study (n=128) was relatively low considering the number of variables considered in the regression model and may have led to less reliable results. Future research would benefit from including a larger number of patients in a similar study.

4.4 Conclusion

The goal of this study was to identify the best predictors of patient-reported outcome change scores at discharge in patients with shoulder pain. We identified four positive predictive factors with the greatest predictor being QuichDASH change score at visit 5 using a retrospective design. The other three positive predictive factors were the
number of patient visits, initial QuickDASH score, and incorporation of scapular retraction resistive exercises. The only negative predictor was the age of the patient, which is not modifiable. A change score of 11 points, equivalent to the minimal detectable change score for the QuickDASH, early in rehabilitation is a positive indication that patients with shoulder pain are on a positive trajectory to achieving a good outcome with rehabilitation.
5.0 References

14. Gummesson C, Ward MM, Atroshi I. The shortened disabilities of the arm, shoulder and hand questionnaire (QuickDASH): validity and reliability based on
responses within the full-length DASH. *BMC musculoskeletal disorders.* 2006;7:44.

36. Jaeschke RZ, Guyatt GH, Sackett DL. Users' guides to the medical literature III how to use an article about a diagnostic test are the results of the study valid? *Journal of the American Medical Association.* 1994;271:389-391.

Table 1. Description of data extracted from 128 patients’ charts. Continuous data presented with means, standard deviation and 95% confidence intervals of the means. Binomial data is presented as frequency counts.

<table>
<thead>
<tr>
<th>Data Category</th>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>95% CI Lower Boundary</th>
<th>95% CI Upper Boundary</th>
<th>Present</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Overall Change QuickDASH score</td>
<td>16.72</td>
<td>15.54</td>
<td>14.03</td>
<td>19.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comorbidities</td>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>122</td>
</tr>
<tr>
<td>Comorbidities</td>
<td>Alcohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>94</td>
<td>34</td>
</tr>
<tr>
<td>Comorbidities</td>
<td>Tobacco</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>110</td>
</tr>
<tr>
<td>Comorbidities</td>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>113</td>
</tr>
<tr>
<td>Dash Score</td>
<td>Initial QuickDash score</td>
<td>39.81</td>
<td>16.55</td>
<td>36.95</td>
<td>42.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dash Score</td>
<td>QuickDash change score at 5th visit</td>
<td>11.10</td>
<td>12.91</td>
<td>8.87</td>
<td>13.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demographics</td>
<td>Age</td>
<td>52.83</td>
<td>12.23</td>
<td>50.71</td>
<td>54.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demographics</td>
<td>Sex</td>
<td>74 females</td>
<td>54 males</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demographics</td>
<td>Height (cm)</td>
<td>170.51</td>
<td>10.59</td>
<td>168.68</td>
<td>172.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demographics</td>
<td>Weight (kg)</td>
<td>83.79</td>
<td>21.68</td>
<td>80.04</td>
<td>87.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>Mechanism</td>
<td>90 atraumatic</td>
<td>38 traumatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>Duration of symptoms (months)</td>
<td>7.61</td>
<td>17.02</td>
<td>4.66</td>
<td>10.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>Work related</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>Previous injury</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Physical Exam</td>
<td>Limited shoulder elevation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79</td>
<td>49</td>
</tr>
<tr>
<td>Physical Exam</td>
<td>Pain (NPRS)</td>
<td>5.60</td>
<td>2.09</td>
<td>5.24</td>
<td>5.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>IFC</td>
<td>0.59</td>
<td>1.61</td>
<td>0.31</td>
<td>0.87</td>
<td>16</td>
<td>112</td>
</tr>
<tr>
<td>Treatment</td>
<td>TENS</td>
<td>1.97</td>
<td>2.40</td>
<td>1.55</td>
<td>2.39</td>
<td>55</td>
<td>73</td>
</tr>
<tr>
<td>Treatment</td>
<td>Muscle stimulation</td>
<td>1.45</td>
<td>2.24</td>
<td>1.06</td>
<td>1.84</td>
<td>39</td>
<td>89</td>
</tr>
<tr>
<td>Treatment</td>
<td>Iontophoresis</td>
<td>Ultrasound</td>
<td>Spine Mobilization</td>
<td>Glenohumeral mobilization</td>
<td>Soft tissue mobilization</td>
<td>PROM flexion</td>
<td>PROM external rotation</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
Absent = number of people in the sample that did not receive the treatment or did not have the condition

Rx = Treatment category

IFC = Interferential current

TENS = Transcutaneous electrical nerve stimulation

PROM = Passive range of motion

AAROM = Active assistive range of motion

RROM = Resistive range of motion
Table 2. Regression analysis results with predictor variables present in order of entry into the forward stepwise regression model

<table>
<thead>
<tr>
<th>Variable</th>
<th>R value</th>
<th>Adjusted R²</th>
<th>Beta</th>
<th>Beta CI<sub>.025</sub> Lower Boundary</th>
<th>Beta CI<sub>.025</sub> Upper Boundary</th>
<th>Significance</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuickDash change score at 5<sup>th</sup> visit</td>
<td>.636</td>
<td>.400</td>
<td>.620</td>
<td>.459</td>
<td>.780</td>
<td>.000</td>
<td>1.24</td>
</tr>
<tr>
<td>Total visits Initial QuickDash score</td>
<td>.690</td>
<td>.468</td>
<td>.730</td>
<td>.402</td>
<td>1.058</td>
<td>.000</td>
<td>1.062</td>
</tr>
<tr>
<td>RROM scapular retraction Age</td>
<td>.723</td>
<td>.510</td>
<td>.238</td>
<td>.108</td>
<td>.361</td>
<td>.000</td>
<td>1.266</td>
</tr>
<tr>
<td></td>
<td>.735</td>
<td>.525</td>
<td>1.22</td>
<td>.100</td>
<td>2.345</td>
<td>.033</td>
<td>1.061</td>
</tr>
<tr>
<td></td>
<td>.746</td>
<td>.538</td>
<td>-.165</td>
<td>-.318</td>
<td>-.013</td>
<td>.034</td>
<td>1.01</td>
</tr>
</tbody>
</table>

R = regression correlation values

VIF = Variable inflation factor

CI = Confidence Interval