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ABSTRACT OF DISSERTATION 
 
 
 

SPECIALTY POULTRY PRODUCTION: IMPACT OF GENOTYPE, FEED 
STRATEGIES, ALTERNATIVE FEEDSTUFFS, AND DIETARY ENZYMES ON THE 
GROWTH PERFORMANCE AND CARCASS CHARACTERISTICS OF HERITAGE 

BREED CHICKENS 
 

There is a growing market for specialty poultry production using alternative genotypes 
and management systems. However, producers interested in specialty poultry production 
face several challenges. One challenge is that little published data exists regarding the 
growth and production parameters for alternative genotypes like slow-growing meat 
strains and heritage breeds. To address this challenge, research at the University of 
Kentucky examined the effect of feed strategies, alternative feedstuffs, and dietary 
enzymes on the growth and performance of heritage breeds of chicken used for either 
egg- or meat-production. The first trial documented the growth and nutrient intake of 
pullets from three heritage breeds (Rhode Island Red, Barred Plymouth Rock, and Black 
Australorp) and three egg-laying strains (Red Star, Black Star, and ISA Brown) on a self-
selection feeding program through nineteen weeks of age. The second trial documented 
the growth and nutrient intake of males from those same three heritage breeds, a slow-
growing meat-type strain (Red Ranger), and males and females from a fast-growing 
meat-type strain (Cornish Cross). Birds used a self-selection feeding program and were 
grown to a common weight of 2300 grams. Carcass characteristics of these birds were 
evaluated in the third trial. The fourth trial evaluated the partial replacement of corn and 
soybean meal with alternative feedstuffs (field peas, buckwheat, and flax seed) and 
dietary enzymes on the performance of straight-run commercial broilers and two 
alternative breeds of chickens: males from a Black Sex-Link cross and straight-run Rhode 
Island Reds. The fifth trial examined the use of sorghum and field peas to completely 
replace corn and soybean meal in formulated diets for two heritage breeds (Rhode Island 
Red and Barred Plymouth Rock). Results of these trials showed that heritage breed 
pullets had similar growth parameters and nutrient intake as commercial egg-laying 
strains. Heritage breed cockerels grew significantly slower and exhibited poorer feed 
efficiency than meat-type birds, but seemed to tolerate low nutrient density diets better. 
Overall, the findings of these studies could help producers interested in raising slow-
growing meat-type chickens and heritage breeds create accurate business plans and 
determine if they can profitably produce meat and/or eggs for niche markets.
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CHAPTER 1: Literature review 

1.1 Introduction 

The poultry industry has spent decades figuring out how to quickly and efficiently 

produce enough chicken meat and eggs to keep up with growing consumer demand. To 

this end, chicken genetics companies have emphasized commercial traits such as rapid 

growth rate and efficient feed conversion. Now, a typical meat-type chicken grows to 

twice the size of a bird from 50 years ago in half the time while consuming less feed per 

pound of gain. Similarly, egg-type chicken strains produce more eggs. This selection 

process resulted in birds that can provide a large quantity of meat and eggs to meet 

consumer demand with relatively low production costs. However, the intensive selection 

for production traits has not been without its drawbacks.  

Alongside improvements in production traits, several undesirable traits have also 

arisen. In meat-type birds, these undesirable traits include muscle myopathies 

(Richardson et al., 1980; Siller, 1985; Fanatico et al., 2007b; Castellini et al., 2008; 

Bailey et al., 2015), skeletal anomalies (Kestin et al., 1992; Lilburn, 1994; Rath et al., 

2000; Corr et al., 2003; Paxton et al., 2013), and reduced adaptive immune function 

(Cheema et al., 2003; Schmidt et al., 2009; Zuidhof et al., 2014). Additionally, the 

restricted feeding programs that the parent stock of meat-type birds must be raised on to 

limit their growth presents an animal welfare concern (Weerd et al., 2009; De Jong and 

Guémené, 2011). In strains selected for high egg production traits, there is a high 

prevalence of keel bone fractures and deformities (Scholz et al., 2007; Weerd et al., 2009; 

Casey-Trott et al., 2015) which also represents an animal welfare concern.  

With supply demands met, choices abound throughout the agricultural industry 

and producers are looking to set themselves apart. Additionally, consumers have become 

more concerned about their health, the lives of the animals they consume, and the impact 

they have on the planet. These concerns have resulted in a shift in consumer preferences 

towards food and farm practices that are viewed as more humane and natural and have 

sparked a debate over how food should be raised (Innes and Cranfield, 2009) and what 

food animals should be fed (Sapkota et al., 2007). Consumers want to purchase the 

“right” things, but most don’t know what that is so they have a lot of questions about the 
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food they consume: Are genetically modified organisms safe to consume? What about 

animals fed genetically modified organisms? Does the agricultural industry care about the 

welfare of their animals, or just profits? Are organic practices safer? Are they healthier? 

These are all questions that consumers wrestle with when purchasing food for their 

families. These questions and concerns have helped to fuel a growing niche market for 

specialty poultry production systems which include organic, free-range, pasture-raised, 

cage-free, antibiotic-free, etc.  Regardless of whether these specialty systems are 

intrinsically better or not, they represent a growing portion of the agricultural market. 

Capitalizing on this demand, large fast food companies like McDonald’s and 

Burger King have announced moves towards using eggs sourced from suppliers that 

utilize cage-free egg production. Other major retailers like Whole Foods Markets Inc. 

have announced moves towards purchasing only slow-growing chickens which grow at a 

rate of approximately 50 grams per day and reach a marketable size about 23% slower 

than the industry standard (Gee, 2016). However, slow-growing chickens currently make 

up only a small fraction (1-3%) of the commercially available chicken genetic stock 

around the world (Gee, 2016) and many slow-growing genotypes are only available in 

Europe. Therefore, U.S.-based retailers cannot make this transition happen overnight. 

1.2  Chicken genotypes 

Modern commercial poultry production relies on multi-generational crosses to 

produce fast-growing meat birds and high-producing egg birds. These commercial strains 

have been heavily selected for traits suitable for intensive production systems. Meat-type 

strains have been selected for rapid growth and meat production, while egg-type strains 

have been selected for persistency of lay and increased egg size. While these intensively-

selected strains perform admirably in modern production systems, they may not be well-

suited to alternative systems. (Fanatico et al., 2009). Therefore, interest has risen in using 

slower-growing strains of meat birds and hardier strains of laying hens. In the United 

States, a few slow-growing meat-type and moderate-producing egg-type strains have 

been developed, but there are not enough of them to meet the total demand. Therefore, 

one alternative is to consider using dual-purpose heritage breeds. 
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1.2.1 Dual-purpose heritage breeds 

A heritage breed is one that physically conforms to the standards of the American 

Poultry Association, mates naturally, has a slow growth rate, and a long, productive 

lifespan. By definition, a breed is a group of animals with similar characteristics that will 

produce offspring with the same characteristics when bred together. In other words, each 

generation will look the same and possess the same production characteristics. Typically, 

new breeds in agriculture are developed due to geographic isolation or for specific 

purposes. Most heritage breeds were developed in the 19th century and continue to be 

marketed with the same claims regarding meat- and egg-production that were made at the 

time (Ussery, 2008).  When compared with modern commercial strains, these breeds are 

said to have better fertility, better foraging ability, improved longevity, better disease 

resistance, and better tolerance to heat and cold than modern commercial strains 

(Heinrichs and Schrider, 2005). If true, these traits would make them better suited to 

specialty production systems than commercial strains, but most of the evidence to 

potentially support these claims is anecdotal. With that said, there is little doubt that 

heritage breeds represent an important reservoir of genetic traits that may be, or have 

already been, lost through intensive selection which could be vital to food security (Dale, 

2003; Smith, 2004; Will, 2014).  

Unfortunately, very little research has been done to assist producers interested in 

raising heritage breeds. When scientific data exists, it is from the 1940s and 1950s and is 

of little value today due to advances in nutrition and changes in bird genetics. Since the 

industry moved towards high-production genotypes, most heritage breeds have been 

selected for show traits (plumage, color, etc) rather than production traits. Therefore, 

important production characteristics such as growth rate, feed efficiency, and dressing 

percentage are simply not known for most breeds which leaves producers without 

accurate data with which to formulate business plans or to determine how to price their 

products.  

1.2.1.1 Rhode Island Red 

The Rhode Island Red is a red-feathered heavy egg-laying breed developed in 

Rhode Island in the 1880’s and 1890’s. The Rhode Island Red is one of the most popular 

heritage breeds of chicken in America and is what many people picture when they think 



 

4 
 

of heritage breed chickens (Floyd, 2015). Rhode Island Reds lay brown eggs and are 

expected to produce between 200 and 300 eggs a year. Rhode Island Reds are also known 

for their hardiness and their ability to produce eggs in marginal conditions (Will, 2014). 

Females are expected to mature to a live weight of 2.9 kilograms while males are 

expected to mature to 3.9 kilograms. 

1.2.1.2 Plymouth Rock 

The Plymouth Rock was developed in New England in the 19th century. The 

breed’s most common color, the barred pattern (black feathers with white bars), is due to 

a dominant sex-linked gene. The Plymouth Rock is one of the most popular heritage 

breeds because they are relatively friendly and docile (Floyd, 2015). Additionally, the 

breed is well known for its hardiness, broodiness, and its meat- and egg-production 

relative to other heritage breeds (Will, 2014). Plymouth Rocks produce a brown egg. 

Females are expected to mature to a live weight of 3.4 kilograms while males are 

expected to mature to 4.3 kilograms.  

1.2.1.3 Black Australorp 

The Black Australorp was developed in Australia and introduced to the United 

States in the 1920s. It was initially selected as a meat-producer, but was later developed 

for its egg-production qualities. While a typical Black Australorp can be expected to lay 

about 250 eggs per year, one hen set a world record when she laid 364 eggs in 365 days 

(Will, 2014). Today, the Black Australorp has also become the meat bird preferred by 

some ethnic populations because of its black feathers and dark shanks. Murray 

McMurray Hatchery describes the Black Australorp as excellent meat producers and 

good egg producers with good heat and cold tolerance. Females are expected to mature to 

2.9 kilograms while males are expected to mature to 3.9 kilograms. 

1.2.2 Meat-type strains 

Commercial fast-growing meat-type strains have been developed with a focus on 

rapid growth and efficient conversion of feed to meat. While interest in slow-growing 

chickens has increased, slow-growing chickens currently make up a small fraction (1-3%) 

of commercial chicken genetics globally (Gee, 2016). The European Union, which has a 

longer history of specialty poultry production, has several slower-growing meat chicken 
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strains commercially available, but these strains aren’t available in the United States 

(Fanatico et al., 2009). 

1.2.2.1 Cornish x Rock Cross 

The Cornish Cross is a white-feathered, yellow-skinned, fast-growing meaty 

chicken originally produced by crossing Cornish chickens on Plymouth Rock chickens. 

Multiple commercial strains are now produced through a variety of multi-generational 

crosses that have been intensively selected for meat production traits. Murray McMurray 

Hatchery describes their Cornish Cross as a great meat producer with good cold 

tolerance, but poor egg production and poor heat tolerance. The Cornish Cross is 

expected to have a 70% live to dress weight yield with a unique physical conformation of 

broad breasts and big thighs. Depending on their feeding programs, males will reach a 2.3 

kilogram live weight in 6 to 8 weeks. Females are expected to take about a week longer 

to reach the same body weight. As with other hybrid strains, the Cornish Cross is a hybrid 

that will not breed true. Additionally, the Cornish Cross birds are at risk of leg problems 

and other issues due to their rapid growth.  

1.2.2.2 Red Ranger 

The Red Ranger is one of the few slower-growing meat-type strains of chicken 

available in the United States. It is a red-feathered and is expected to reach 1.4 to 1.8 

kilograms by 8 weeks of age. Anderson et al. (2015) described the Red Ranger as a “heat-

tolerant meat bird with moderate egg production”. Murray McMurray Hatchery 

advertises the Red Ranger as an excellent forager with excellent meat production and 

suggests a 3.0 kilogram live weight at about 80 days of age. The Red Ranger is supposed 

to have a 70% dressed-weight yield with breast in natural proportion to leg meat. Red 

Rangers are not recommended for reproduction because they are a hybrid strain and will 

not breed true. 

1.2.3 Egg-type strains 

Egg-type strains were developed with a focus on production parameters such as 

persistence of lay and increased egg sizes (Jones et al., 2001; Leenstra et al., 2016). 

While these birds are not used for meat production, a few studies have examined the 
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viability of egg-type males as meat birds in response to the backlash against the culling of 

male chicks within the egg industry (Lichovnikova et al., 2009; Bertechini et al., 2014). 

Several of the older egg-type strains utilize sex-link crosses. A sex-link cross is one in 

which the chick can be sexed by the color of its down at the time of hatch. This method 

of sexing is easier and cheaper than vent sexing or raising birds until secondary sex 

characteristics begin to develop. Sex-link chickens are produced by crossing two breeds 

or strains with specific color traits to create a hybrid. This process takes advantage of 

color inheritance in chickens. Males are homogametic, so they carry two copies of the Z 

sex chromosome. Females are heterogametes carrying one Z sex chromosome and one W 

sex chromosome. The genes for some colors are carried on the Z sex chromosome, so 

males have two copies and females have one copy of these genes.  

One common sex-link cross is produced using a barred hen and a solid male. The 

barred feather color results from a copy of the black gene and the barring gene. When a 

barred hen is crossed on a solid male, the male chicks get a dose of the barring gene 

while the female offspring do not. This results in barred sons and solid daughters. At 

hatch, the female chicks are solid black while the males are black with a white dot on 

their heads. On the other hand, a barred male mated on a solid female will produce all 

barred offspring.  

Another common sex-link cross is produced by taking advantage of the silver 

gene which is often found in white chickens. The silver gene is dominant, so it requires 

only one dose for expression. When a female hen with the silver gene is crossed on a 

non-white male, the male offspring will be white (silver) and the female offspring will be 

colored like the sire. When a solid-colored male is used, male chicks have yellow down 

and females will usually be red or buff. When a barred male is used, the male chicks will 

have yellow down and the female chicks will be black with white dots and grow to have 

barred feathers.  

1.2.3.1  Black Star 

The Black Star is a Black Sex-Link hybrid. At hatch, pullets are solid black and 

feather out black. Males hatch out black with a white dot on their heads and feather out 

with black/white barred feathers. The Black Star lays brown eggs. Murray McMurray 

Hatchery advertises the Black Star as a wonderful layer with good heat tolerance, 



 

7 
 

excellent cold tolerance, and good foraging capabilities. Females should begin laying 

eggs around 22 to 24 weeks of age and mature to a live weight a little over 2.3 kilograms. 

Males are expected to reach a standard butcher weight at 16 to 20 weeks of age and 

mature to about 3.6 kilograms.  

1.2.3.2 Red Star 

The Red Star is a red sex-link hybrid developed by Hendrix Genetics. At hatch, 

males are white and feather out to pure white. Females hatch out a reddish orange color 

and feather out some combination of red and buff. Murray McMurray Hatchery 

advertises the Red Star as a great egg layer and decent meat bird with good foraging 

abilities, good heat tolerance, and excellent cold tolerance. Females lay brown eggs and 

should begin lay around 18 to 20 weeks of age and mature to about 2.7 kilograms. Males 

should reach a standard butcher weight at 16 to 20 weeks of age and mature to about 3.6 

kilograms.  

1.2.3.3 ISA Brown 

The ISA Brown is a sex-link cross produced by the Institut de Selection Animale 

by crossing  Rhode Island Red type male on a commercial White Leghorn female. ISA 

Browns are prolific layers and lay a brown egg. 

1.3 Research on alternative genotypes 

While some research has been done to compare the production characteristics of 

fast-growing and slow-growing meat-type birds, little data exists regarding the 

production parameters of heritage breeds.  

1.3.1 Research on heritage breeds 

One of the few recent publications specific to heritage breed production traits was 

a study by McCrea et al. (2014) comparing the production of Delaware chickens to a 

modern broiler. Birds were placed as hatched and were raised in indoor floor pens with 

natural day lengths. The Delaware chickens took 15 weeks to reach the same live body 

weight as a 6-week-old broiler, and required twice as much feed (Feed conversion ratio: 

1.75 grams of feed per gram gain for broilers; 3.46 grams of feed per gram gain for 

Delaware chickens). Additionally, the Delaware chickens had lower carcass dressing 
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percent than broilers (65 vs 68%) despite being processed at the same live weight. 

However, Delaware chickens exhibited lower mortality than broilers (1.6 vs 11.8%), 

though the authors noted that their sample size was small. 

While the McCrea et al. (2014) study was one of the only studies to look at 

production traits, several researchers have studied heritage breeds to evaluate their 

susceptibility to Salmonella species. Eggs produced by chickens from non-commercial 

breeds and strains had varying ability to restrict the penetration of Salmonella (Jones et 

al., 2004). Kaur et al. (2013) found differences in the thickness of shell layers as well as 

in profiles of the matrix proteins that control crystal formation during eggshell production 

which could influence the size and shape of pores in the shell. Rathgeber et al. (2013) 

found that the eggs produced by Barred Plymouth Rock were similar in size to those 

produced by a commercial laying hen (Lohmann LSL-Lite), but their shells were weaker. 

However, bacterial penetration of Barred Plymouth Rock shells was lower. These results 

indicated that eggshell resistance to Salmonella was influenced by breed, but could not be 

explained by shell quality differences. Finally, research by Anderson et al. (2015) 

identified the Dark Cornish, New Hampshire Red, Red Ranger, and Sicilian Buttercup 

among chicken breeds and strains found to have low susceptibility to Salmonella 

colonization. 

1.3.2 Research on egg-type males 

Worldwide, 3.34 billion day-old female egg-laying type chicks are hatched each 

year, and a similar number of male chicks are discarded (Bertechini et al., 2014). Egg 

producers have been under pressure to change their production practices (Mench et al., 

2011) which has led researchers to consider uses for the male egg-laying type chicks.   

A study by Bertechini et al. (2014) examined the utility of males from white- or brown-

egg-laying strains as meat birds. Their data is included in Table 1.1. At 42 days of age, 

birds from the brown-egg-laying strain were heavier than birds from the white-egg-laying 

strain (788 vs. 622 grams) and both were significantly lighter than a typical meat-type 

bird would have been. The authors noted that the composition of the breast meat muscle 

of the egg-laying strains were similar to that of broilers, but the breast meat had lower L*, 

higher a*, and lower b* than typically seen in the literature for broilers (Broiler values: 

L* = 55.0 a* = 2.2 b* = 9.6; Van Laack 2000). However, drip loss after 48-hour storage 
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was lower than literature values for broilers (0.59 vs 1.42% at 48 hours; (Sirri et al., 

2010)). Despite the low body weight, the authors suggested the egg-laying strains could 

be a viable option for meat production in some situations. 

 

Table 1.1. Production parameters of males from white- and brown-egg-laying strains at 

42 days of age (Bertechini et al., 2014)* 

 White Brown Average SEM 
Growth performance     
   Feed intake (days 1-42) 1595 b 1652 a 1623 13.8 
   Body weight gain (days 1-42) 606 b 741 a 673 7.9 
   Feed conversion (days 1-42) 2.6 b 2.2 a 2.4 0.02 
   Final body weight (42 days of age) 622 b 788 a 705 8.2 
     
Carcass and part yields     
   Carcass dressed ready to cook  
      (w/o viscera, feet, head, neck) 

61 b 62 a 61.4 0.45 

   Breast yield (% of carcass) 19.8 a 18.4 b 19.1 0.28 
   Thigh & drumstick yield (% of carcass) 25.9 b 27.4 a 26.7 0.26 
     
Breast meat characteristics     
   Drip loss (24 hours) 0.48 0.51 0.50 0.03 
   Drip loss (48 hours) 0.55 0.62 0.59 0.04 
   Lightness (L*) 39.55 40.55 40.05 0.25 
   Redness (a*) 4.47 5.26 4.87 0.21 
   Yellowness (b*) 6.63 6.5 6.72 0.27 
*Means in the same row without common superscripts are different (P < 0.05) 
 

In another study, Lichovnikova et al. (2009) compared the meat quality of males 

from a laying hybrid (ISA Brown) to a fast- growing broiler (Ross 308) raised under free-

range conditions. The study compared the two strains at the same age at two different 

processing time points (49 and 90 days of age). As expected, the Ross 308 birds had 

higher live weights, carcass yields, breast meat yields than the ISA Browns. However, 

ISA Brown breast meat had a lower proportion of fat, significantly higher pH, and had 

better acceptability scores from a taste panel at 90 days of age. Therefore, the authors 

concluded that, from a meat quality standpoint, laying males are acceptable for 

alternative poultry meat production systems. 
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1.3.3 Research on slow-growing meat-type strains 

Over the past several years, slow-growing broiler strains which reach a 

marketable weight in about 81 days have gained popularity in the European Union (EU) 

thanks to changes in organic legislation within the EU. While statistics aren’t available on 

the exact numbers of slow-growing broilers in the EU, industry experts estimate they 

make up between 5 and 10% of total broiler production (Van Horne and Bondt, 2013). 

Currently, these slow-growing strains make up a very small portion of the poultry market 

in the United States. Most of their use is within the culinary community where slower-

growing breeds are touted as having a richer flavor (Kronsberg, 2014). However, the use 

of slower-growing breeds may increase if methionine is removed from organic 

production or consumers continue to put pressure on retailers.  

Due to the interest in these slower-growing strains, a growing body of literature 

exists regarding the growth performance, carcass characteristics, and meat quality of 

these strains. Rack et al. (2009) conducted a study to evaluate the effect of self-selection 

feeding and pasture access on slow- and fast-growing broilers fed diets devoid of 

synthetic methionine. When compared with slow-growing genotypes, fast-growing 

genotypes demonstrated superior growth performance and carcass characteristics. 

However, while the performance of the fast-growing birds was reduced when they were 

housed on pasture, slower-growing birds did not experience a reduction in performance.  

Fanatico et al. have conducted numerous experiments to compare the performance of 

different genotypes (slow-growing, medium-growing, and fast-growing) raised indoors or 

with outdoor access. As expected, Fanatico et al. (2008) found that fast-growing 

genotypes had higher breast meat yield, whereas slow-growing genotypes had higher 

wing and leg yields. Interestingly, the breast meat of the slow-growing birds had more 

protein and a-tocopherol and half the amount of fat than the meat of fast-growing birds 

(Fanatico et al., 2007b). 

In one study comparing a slow-growing genotype (81-day grow out) to two 

medium-growing genotypes (67-day grow out) and a commercial fast-growing genotype 

(53-day grow out) raised either indoors or outdoors, Fanatico et al. (2005a) found that 

slow-growing birds spent more time outside and were more active than fast-growing 

birds. Fanatico et al. (2008) found slow-growing birds demonstrate better gait scores and 
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lower incidence of tibial dyschondroplasia. Taken together, this may explain the findings 

of Rack et al. (2009) which showed that access to pasture decreased performance for the 

fast-growing broilers while having no effect on the growth of slow-growing broilers. 

In another study where birds were provided with either a standard diet or a low-nutrient-

density diet, slow-growing birds demonstrated reduced weight gain when fed a low-

nutrient-density diet. However, birds from fast-growing genotypes increased their feed 

intake such that their body weight gain was unaffected, though breast yield was reduced 

and the birds exhibited poorer feed efficiency (Fanatico et al., 2008).   

Additionally, Fanatico et al. (2005a) found differences in the meat quality of the 

genotypes with slow-growing birds having paler, less red breast meat with poorer water 

holding capacity when compared with meat from fast-growing birds. In the same 

experiment, a consumer panel considered meat from all treatments to be tender and weak 

in flavor with overall hedonics scores in the categories of “like slightly” or “neither like 

nor dislike” (Fanatico et al., 2006a). In a follow-up study, Fanatico et al. (2007a) 

compared the sensory attributes of chicken meat from a slow-growing genotype (91-day 

grow-out) to that of a fast-growing genotype (63-day grow-out) and found no significant 

differences in overall liking by a consumer panel. However, a trained descriptive panel 

described the meat from the slow-growing genotype as having more dark meat fat flavor 

than the fast-growing birds. Taken together, the results of these studies suggest that the 

claims within the culinary community that slow-growing birds have a richer flavor 

(Kronsberg, 2014) may be true, but the difference cannot be perceived by the average 

consumer. However, as suggested by the research by Napolitano et al. (2013), consumer 

preference for chicken breast may be more affected by information on production than by 

the sensory properties of the product. Therefore, providing information on product labels 

that suggests better production practices may increase consumer preference for these 

products regardless of whether the consumer can perceive an actual difference in flavor 

or texture. 

1.3.4 Research on historical broiler lines 

Additional research has been conducted to compare modern broilers with 

unselected, random-bred populations that have been maintained at various universities. 

While these birds are no longer used in the commercial industry, they represent an 
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important resource which may help to identify and characterize the genetic changes that 

have taken place through intensive selection. Most of this research has focused on the 

effect of intensive selection on meat-type birds, but has also explored some of the 

changes in high-producing commercial laying hens. 

In a series of experiments, Havenstein et al. noted substantial growth 

improvement when comparing a random-bred bird representative of the 1957 genetics 

versus an Arbor Acres bird which is representative of the 1991 genetics (Havenstein et 

al., 1994a; Havenstein et al., 1994b) and a Ross 308 which is representative of the 2001 

genetics (Havenstein et al., 2003b, a).  

Schmidt et al. (2009) compared the tissue growth of a heritage broiler line 

maintained at the University of Illinois (UIUC) and a Ross 708 broiler. The UIUC 

heritage line was a New Hampshire x Plymouth Rock cross developed in the 1950s to 

represent the typical broiler utilized during that time. The UIUC has been maintained as a 

random-bred population since its development. The Ross 708 line was introduced in the 

early 2000s as a high-yielding meat chicken. Therefore, comparing these two lines 

provides insight into the changes that have occurred as a result of genetic selection for 

increased growth rate and feed efficiency over the span of 50 years. While Schmidt et al. 

(2009)  found no difference between the lines for body weight at hatch, the Ross 708 line 

exhibited significantly faster growth rates. The Ross 708 averaged a live weight of 1.8 

kilograms within 5 weeks post-hatch whereas the UIUC line averaged only about 1 

kilogram over that same time period. Additionally, Looking at specific tissues shows a 

change in tissue accretion. At 5 weeks post-hatch, the breast muscle of the UIUC heritage 

line constituted 9% of the total body mass, whereas the breast muscle of the Ross 708 

line constituted 18% of the total body mass. Additionally, the relative length of the small 

intestine was longer in the in the Ross 708 than in the UIUC. However, the relative 

weight of the heart muscle was smaller for the Ross 708 birds. When birds of equivalent 

mass were compared, the UIUC birds had larger hearts than the Ross 708 birds. The Ross 

708 line had greater feed efficiency than the UIUC line throughout the experiment. Taken 

together, this demonstrates a clear difference in tissue accretion between the two lines 

and begs the question as to how the bird’s nutrient needs may have changed over time.  



 

13 
 

Zuidhof et al. (2014) compared a commercial Ross 308 strain (representative of the 

genetic stock available in 2005) to two University of Alberta Meat Control strains (one 

unselected since 1957, the other unselected since 1978). Birds were raised on a modern 

nutritional program to 56 days of age. Through their analyses,  Zuidhof et al. (2014) 

found that broiler growth increased by over 400% with a concurrent 50% reduction in 

feed conversion ratio from 1957 to 2005.  

 Collins et al. (2014) raised a flock of 1955 meat-type chickens (the Athens 

Canadian Random Bred [ACRB]) alongside a flock of 2012 meat-type chickens (Cobb 

500). ACRB were found to be significantly smaller at every age and exhibited a different 

body conformation. Specifically, the ACRB had significantly heavier feet, wings, internal 

organs, and feathers, and significantly smaller breast and leg muscles than the Cobb 500 

broilers. Similar to previous findings, the Cobb 500 broiler had smaller organs as a 

percentage of body weight. 

1.4 Alternative feeding strategies: self-selection feeding 

Wild animals living in natural environments depend on instinct and appetite to 

select from available feeds in their environment to provide the nutrition needed to grow 

and reproduce. When animals are domesticated, their freedom of choice is restricted and 

their dietary needs must be met by their caretakers. Significant research has been 

conducted to determine the nutrient requirements of poultry species. Leeson and 

Summers (2001) defined a nutrient requirement as “the minimum amount of the nutrient 

required to produce the best weight gain, feed efficiency, etc. and the lack of any signs of 

nutritional deficiency,” which are often referred to as the “minimum nutrients needs.” 

Nutrient requirements for poultry raised in North America have been based on the 

recommendations of the National Research Council (NRC). However, the last NRC 

publication of nutrient requirements of poultry was published in 1994 and is now out of 

date (Applegate and Angel, 2014).  

Current research has continued to evaluate the requirements of poultry tailored to 

specific strains and genotypes developed for chicken meat or egg production. The data 

from this research is used to formulate complete diets designed to meet the bird’s needs 

and maximize production. However, none of this data has been produced for heritage 

breeds and there is currently no set of nutritional standards designed specifically for 
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heritage breeds. Therefore, it would be difficult to formulate a complete diet for these 

breeds with accuracy.  

One feeding strategy that can be used to address this concern is to provide 

multiple feed choices from which the bird can choose. This feeding strategy has been 

described in the literature as “choice feeding”, “self-selection feeding”, and “cafeteria-

style feeding”. In some instances, the term “free-choice feeding” is used; however, this 

term is confusing because it can also be used to describe feeding a single diet on an ad 

libitum basis. Henceforth, the term “self-selection feeding” will be used. The basic 

principle of self-selection feeding is that individual birds reared in a flock are able to 

select various feed ingredients in combination to meet their specific nutrient needs. This 

provides a theoretical advantage over a formulated diet based on the average requirement 

for the flock which supplies more than the requirement for some birds and less than the 

requirement for others. While underfeeding birds has the obvious implication of limiting 

growth and development, overfeeding birds can negatively impact bird health, feed costs, 

and the environment. Particularly in regards to nitrogen and phosphorus, when dietary 

levels are higher than the bird’s requirement, excess supply is excreted in the feces and 

can remain in the environment as pollution. 

Practical application of self-selection feeding typically involves offering a protein 

source, an energy source, and, In the case of laying hens, a calcium source. Pearl and 

Fairchild (1921) were some of the first to study self-selection feeding in poultry, citing 

concerns about feeding birds to meet an average requirement when appetite and 

performance are highly individualistic biological concerns. Since then, many researchers 

have demonstrated the ability of chickens to select a balanced diet from a choice of 

multiple feed ingredients (Graham, 1934; Leeson and Caston, 1993; Rovee-Collier et al., 

1996; Olver and Malan, 2000; Sahin, 2003; Fanatico et al., 2013). Most research 

regarding self-selection feeding provides two choices: one high in protein/low in energy 

and one low in protein/high in energy. Some research has compared a protein concentrate 

and a grain such as whole wheat or cracked corn (Clark et al., 2009). A few studies have 

also compared the bird’s ability to select between diets deficient or adequate in specific 

nutrients.  
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1.4.1 Factors affecting feed selection and intake 

Feed intake is regulated by complex homeostatic mechanisms which may be 

influenced by genetic selection, prior experience, and physiological state (Denbow, 

1999). Early self-selection feeding studies focusing on rats (Richter et al., 1938) and 

swine (Evvard, 1915) indicated that these animals were able to self-select a diet to 

provide adequate nutrition to maintain normal growth and activity. In fact, in the swine 

study, pigs offered a choice of feeds grew more rapidly than pigs fed a complete diet. 

This suggests that feed choices were made due to a “special appetite” rather than trial and 

error. This is consistent with the results of Covasa and Forbes (1996) which showed that, 

when feed choices are provided from an early age, self-selection-fed chickens offered 

whole wheat and a standard grower diet do not need special prior training.  

Color, taste, and location can all help birds to identify and differentiate between 

foods with different nutrient compositions. Chickens have smaller olfactory epithelium 

and fewer olfactory receptor genes than other domesticated animals such as the pig, cow, 

dog, cat, and horse that have been studied (Roura et al., 2008). However, Balog and 

Millar (1989) noted that flavor can initially influence feed intake and food preference, but 

birds seem to learn that there is no nutritional benefit to the different flavors. For 

example, chickens will readily consume solutions of sucrose (Jacobs and Scott, 1957), 

glucose (Azahan and Forbes, 1989) and citric acid (Balog and Millar, 1989). However, 

they will not drink solutions of saccharin, salt or quinine (Jacobs and Scott, 1957). 

Additionally, Phillips and Strojan (2007) found that chickens were able to detect high 

levels of iron, copper, and zinc in feed, but could not detect cadmium, lead, or selenium 

at concentrations just below toxicity levels. Kutlu and Forbes (1993) found that broiler 

chicks were better able to select between an ascorbic-acid-supplemented food and an 

unsupplemented food when the foods were colored with red or green dye than when the 

foods were not colored. Therefore, visual cues are probably more useful to chickens than 

oral cues when distinguishing between feeds.  

Finally, it is important to recognize the limitations of this ability. In order for a 

bird to successfully select a balanced diet, the choices must be able to meet the 

requirements when consumed in combination. And birds must be given sufficient time to 

experiment and adapt to the diet. Yo et al. (1997) found that broiler chickens initially 
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rejected a new form of concentrate (pellets instead of mash) when it was offered. When 

non-complementary imbalanced foods are presented, the bird must choose a suitable 

compromise between over-ingesting some nutrients and under-ingesting others. Based on 

this theory, Raubenheimer and Simpson (1997) developed a framework to describe this 

phenomenon and the metabolic mechanisms underlying nutritional homeostasis. 

1.4.2 Self-selection feeding studies in egg-type pullets and laying hens 

Egg-type pullets grow relatively slowly; therefore, their requirement for protein 

through about 14 weeks of age is primarily related to muscle deposition and feather 

development. However, as the reproductive system begins to rapidly develop around 

fifteen weeks of age, pullets’ protein requirements increase markedly.  

In self-selection-fed pullets, self-selection of crude protein increased at sexual maturity 

(Scott and Balnave, 1989). Olver and Malan (2000) fed Amberlink pullets a choice of 

protein concentrate, whole yellow corn, and limestone powder from seven to sixteen 

weeks of age. They found that self-selection-fed birds, when compared with pullets 

receiving a pullet grower diet, were heavier at 16 weeks of age and began laying eggs 

earlier even though they consumed less feed. When these birds were followed through the 

laying period, there were no differences in hen day production or Haugh unit score, but 

the self-selection-fed hens had significantly heavier eggs, thicker eggshells, darker yolks, 

and better feed conversion ratios than hens fed the control diet. Additionally, self-

selection feeding appears to improve egg mass output for hens housed in hot 

temperatures (Scott and Balnave, 1988, 1989). 

Early experiments involving self-selection-fed laying hens indicated that 

providing hens with self-selected diets allowed for satisfactory (Kempster, 1917) or even 

improved (Rugg, 1925) egg production. Graham (1934) evaluated self-selection feeding 

among individual hens and found considerable variation in the intake of each feed by 

each bird. However, Noble et al. (1993) noted genetic differences in self-selection 

abilities with White Rocks demonstrating an almost immediate preference for a balanced 

diet while White Leghorns showed minimal preference. This difference in response 

between the two genetic stocks suggests that some genetic stocks are better able to make 

rapid adjustments to feed consumption to overcome amino acid deficiencies.  
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 Steinruck and Kirchgessner (1992) used a self-selection feeding trial to examine 

the extent to which single-caged hens could self-regulate their protein intake during the 

first laying period. The hens were fed either an 8 or 11% crude protein diet alongside 

either an 11 or 23% crude protein diet. The total protein intake varied by self-selection 

feeding treatment, but all hens consumed self-selected diets of between 15 and 19% crude 

protein. Therefore, it appears that the laying hens were able to select a combination of 

diets to successfully meet their requirements for production. Steinruck and Kirchgessner 

(1993a) followed up this study with a trial to determine the effect of sensory cues such as 

color and flavor on the hen’s ability to discriminate between two feed choices. Hens were 

offered a deficient 8% crude protein diet which was either colored, flavored, marked by 

both cues, or unaltered. When the hens were subsequently presented with this same 

deficient diet and a 17% crude protein diet, hens completely rejected the deficient diet, 

particularly when it was marked with both a color and flavor cue. Finally, Steinruck and 

Krichgessner (1993) demonstrated hen’s innate ability to self-select between a deficient 

diet (8% crude protein) and a normal diet (17% crude protein).After 10 weeks of 

consuming either a deficient, appropriate, or excessive supply of protein, the hens 

showed an immediate response in selecting higher amounts of the normal diet and self-

selected diets resulting in a protein level of about 15% regardless of their previous dietary 

treatment.  

Taken together, these results suggest laying hens have an innate ability to meet 

their protein, energy, and calcium requirements. However, the ability for laying hens to 

self-select to meet requirements for micronutrients is less clear. Results of a study by 

Zuberbuehler et al. (2002) indicated young selenium-deficient laying hens can improve 

their selenium balance when offered a choice of two feeds (one high in selenium and one 

low) by preferentially selecting the high selenium diet. However, Loetscher et al. (2014) 

found that laying hens offered a choice of antioxidant-enriched or normal diets showed 

no intrinsic need to select antioxidant-enriched diets  

1.4.3 Self-selection feeding studies in meat-type birds 

A variety of self-selection feeding studies have been conducted to evaluate the 

different aspects of feed and nutrient intake in meat-type birds.  
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Regardless of the feed choices provided, self-selection-fed birds consumed more energy 

and less protein than conventionally-fed birds and often had greater fat content in the 

viscera. (Leeson and Caston, 1993; Sahin, 2003; Cerrate et al., 2007; Syafwan et al., 

2012; Fanatico et al., 2013; Catanese et al., 2015). However, Cerrate et al. (2007) showed 

that protein intake tended to increase as broilers aged. Additionally, broilers seem to have 

the capacity to regulate their calcium intake when provided with a separate calcium 

source. Wilkinson et al. (2014) offered birds a formulated diet and a separate calcium 

source. As the formulated diet decreased in calcium concentration, the birds’ 

consumption of the calcium source increased. At the conclusion of the study, there were 

no differences in toe ash which indicated that broilers can self-select calcium to meet 

their requirements. 

While self-selection feeding is believed to improve growth performance, the 

literature does not seem to support that claim. In some experiments, self-selection feeding 

had no effect on performance. Sahin (2003) offered broilers a concentrate feed and either 

wheat, sorghum, or corn. Regardless of the cereal, self-selection feeding had no effect on 

growth, body components, or feed efficiency. In a study comparing self-selection feeding 

for birds reared in either high or normal temperatures, Syafwan et al. (2012) found that 

self-selection-fed birds had similar feed intake, body weight gain, and feed efficiency 

when compared with control-fed birds at high temperatures. Based on the results of Rack 

et al. (2008) self-selection feeding did not improve performance or carcass characteristics 

of fast- or slow-growing broilers which indicates this is not limited to one genotype. 

Clark et al. (2009) replaced various portions of the corn fraction of a complete broiler diet 

with cracked corn. They found that, alongside a concentrate pellet, up to 25% of the 

dietary corn can be fed directly as cracked corn from 0 to 41 days of age without a 

negative impact on the growth performance of broilers.   

In other experiments, self-selection feeding reduced carcass yield despite having 

no effect on growth performance. Fanatico et al. (2013) found that self-selection-fed birds 

selected diets lower in crude protein (13%) than the formulated diet (20%). While this 

reduced protein intake did not affect final live weight, self-selection-fed birds had lower 

ready-to-cook yields and breast yields. Leeson and Caston (1993) had similar results. 

They found that self-selection feeding with either a starter diet and cracked corn or a 
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starter diet and wheat had no effect on body weight at 49 days of age, but depressed 

eviscerated carcass weight. This is consistent with other studies which showed that 

carcass yields were reduced for self-selection-fed birds (Cerrate et al., 2007). However, in 

another self-selection feeding study (Ozek et al., 2012), carcass yield was not affected. 

In other experiments, self-selection-fed birds exhibited poor growth performance 

when compared with birds fed a complete diet. This was particularly evident when less 

digestible feedstuffs were utilized. For example, Amerah and Ravindran (2008) found 

that birds offered a choice of whole wheat and protein concentrate had lower weight gain 

and feed intake, and poorer feed conversion ratios when compared with birds provided 

with a complete diet. Cerrate et al. (2007) also found that self-selection fed birds had 

lower body weights, poorer feed conversion, and poorer carcass characteristics than did 

birds fed single diets or starter and finisher diets. Catanese et al. (2015) found a negative 

effect of self-selection feeding on body weight, weight gain and feed conversion 

efficiency. Ozek et al. (2012) started Ross 308 broiler chicks on a self-selection feeding 

program with whole triticale at 1 day of age and found lower weight gains, higher feed 

consumption, and poorer feed efficiency.  However, digestive functions were not 

negatively altered by free choice feeding with triticale and/or dietary enzyme inclusion. 

While these experiments utilized a variety of feedstuffs and management 

practices, these results, when taken together, suggest broilers self-select diets to meet a 

requirement other than maximal growth or carcass yield. Also, self-selection-fed birds 

consistently consumed diets that were lower in protein, and therefore less expensive, than 

their counterparts fed formulated diets (Sahin, 2003; Fanatico et al., 2013). Consequently, 

utilizing a self-selection feeding strategy could be advantageous depending on the 

circumstances. 

Additionally, self-selection-feeding appears to have a positive impact on birds’ 

stress response and general health. When compared with birds fed complete diets, self-

selection-fed birds were better able to handle stressors such as handling and transport 

(Malheiros et al., 2003), and were less susceptible to coccidiosis (Forbes and Covasa, 

1995; Gabriel et al., 2003). Gabriel et al. (2003) suggested that these results were due to 

the effect of whole wheat on the digestive physiology and intestinal microflora. This has 

important implications as the use of feed additives such as antimicrobials are removed 
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from the feed. However, self-selection feeding failed to ameliorate oxidative stress 

caused by high temperatures experienced by meat-type birds(Aydilek et al., 2012). 

1.4.4 Practical application of self-selection feeding 

Self-selection feeding has several practical implications. Leeson and Caston 

(1993) found that feed costs could be reduced when broilers were given free-choice 

selection of cereal grains. Experiments by Sahin (2003) showed similar results – broilers 

finished on a self-selection feeding program consumed less protein than control birds 

without a detrimental effect on body components or feed efficiency. Therefore, feed 

savings achieved through self-selection feeding seem to be the result of a reduction in the 

consumption of protein, which is an expensive ingredient in most formulated diets. 

Self-selection feeding can allow small-scale farmers who do not have access to 

the computer programs required to properly balance home-mixed rations to better provide 

for their flocks. Utilizing a pre-mixed protein concentrate, small-scale producers may 

incorporate alternative energy sources without needing to formulate or mix diets. These 

sources may include whole grains and home-grown feeds, both of which could represent 

a significant cost savings. The use of whole grains in particular reduces the costs of 

grinding, mixing, and many of the handling procedures associated with mash and pellet 

production. 

Self-selection feeding may also have important implications for producers in 

countries where corn and soybeans are not readily available. Because self-selection 

feeding doesn’t require precision feed formulation, it offers a method through which 

unconventional feedstuffs and feedstuffs with unknown nutritive value may be utilized. 

For example, Madiya et al. (2003) used a self-selection feeding trial to evaluate the use of 

bakery waste material as an alternative energy source. While the control group was 

significantly heavier and consumed significantly more feed than the self-selection-fed 

birds, the authors noted that the self-selection feeding method resulted in approximately 

15% higher profit margins. In these cases, reductions in growth may be outweighed by 

savings in feed costs. 
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1.5 Alternative feed ingredients 

 Poultry feed requires sources of protein, energy, vitamins, and minerals. In 

conventional chicken diets in the United States, corn serves as the main energy source 

and soybean meal as the main protein source. When the price of corn and soybeans go up, 

there is increased interest in alternative feedstuffs. In addition, more than 90% of the corn 

and soybean crops in the United States are genetically modified organisms (GMO). As a 

way to differentiate their product from conventional chicken meat or egg production, 

small- and medium-sized farms may consider using vegetarian diets that do not include 

animal products (such as meat & bone meal or tallow/lard) and that are not corn/soybean 

meal based. Alternative feedstuffs include, but are not limited to pearl millet, naked oats, 

sorghum, buckwheat, flax, and field peas. There is some early research looking at the 

suitability of individual feedstuffs as substitutes for corn or soybean meal in poultry diets, 

but there is very little research into the use of combinations of these alternative crops as 

the sole ingredients in a complete poultry feed. Some of the proposed feed ingredients 

contain anti-nutritive factors (e.g., β-glucans, pentosans) which may limit their use when 

feed enzymes are not included. Organic feed regulations allow for the use of non-GMO 

feed enzymes (USDA 2012a; USDA 2012b). 

1.5.1 Pearl millet 

Pearl millet (Pennisetum typhoides) is a highly-drought resistant crop which can 

be grown in a short, dry summer season, even in infertile sandy soils. Pearl millet has 

relatively high protein content at 10-16% (Burton et al., 1972) and metabolizable energy 

of around 3300 kcal/kg (Adeola et al., 1994). Pearl millet is rich in oil with an average fat 

content of above 5%  (Rooney, 1978). Because pearl millet is higher in protein than corn, 

diets formulated with pearl millet require less soybean meal.  

 Dozier et al. (2005) found that pearl millet-based diets had acceptable grinding 

and pelleting performance when compared with typical corn-soybean meal-based diets. 

While pearl millet is typically ground, laying hens appear to have the capacity to digest 

unground pearl millet seeds when included in the diet at moderate levels (Garcia and 

Dale, 2006). Including whole pearl millet in a broiler diet up to 20% did not affect growth 

performance or carcass yield, but gizzard size increased in birds fed diets containing 10% 

or more pearl millet (Hidalgo et al., 2004). Broilers fed the pelleted pearl millet-based 
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diets presented lower feed intake, better feed conversion ratio, lower gizzard and heart 

percentages, and higher carcass weight when compared with corn-based diets (Torres et 

al., 2013). 

Total replacement of corn by pearl millet significantly improved body weight and 

feed conversion with either no or positive effects on digesta viscosity, gut health, or gut 

microflora (Baurhoo et al., 2011a; Batonon-Alavo et al., 2015; Afsharmanesh et al., 

2016). Supplementation of NSP-hydrolyzing enzymes can enhance feed utilization and 

increase apparent ileal digestibility of crude protein and amino acids enhance feed 

utilization (Baurhoo et al., 2011b; Leite et al., 2012), particularly during the starter phase 

(Rao et al., 2004). However, for broilers and broiler breeder hens, replacing corn with 

pearl millet resulted in higher abdominal fat deposition (Rao et al., 2000; Torres et al., 

2013).  

Fully replacing corn with pearl millet in the diets of broiler breeder layers did not 

affect hen-day egg production (Rao et al., 2000). However, pearl millet appears to 

improve the fatty acid profile of eggs. According to Collins et al. (1997), pearl millet 

increased total and long chain n-3 fatty acids and decreased n-6 fatty acids in eggs 

without affecting production parameters. Furthermore, Amini and Ruiz-Feria (2007) 

found that pearl millet can be used instead of corn in layer diets to obtain n-3 fatty acid 

enriched eggs with less flaxseed.  

1.5.2 Naked oats 

Naked oats are a cultivar of Avena sativa, the same species as ‘common oats’. 

However, naked oats have a dominant gene which gives rise to a phenotype with a non-

lignified husk which readily detaches during harvesting (Ougham et al, 1996). Evidence 

is accumulating on the suitability of naked oats for inclusion in poultry diets up to a high 

concentration (Hsun and Maurice, 1992; Cave and Burrows, 1993; MacLean et al., 1993) 

with or without enzyme supplementation (Brenes et al., 1993). The metabolizable energy 

yield of naked oats is similar to that of corn and higher than that of wheat (MacLeod et 

al., 2008). Naked oats are higher in essential amino acids than wheat or barley which 

offers the possibility of replacing soy and animal proteins. Additionally, naked oats have 

high concentrations of polyunsaturated oils and significant antioxidant activity which 
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may improve egg and meat quality. However, oats are high in β-glucans which may be 

detrimental.  

1.5.3 Sorghum 

 Sorghum (Sorghum bicolor), also referred to as milo, is generally grown in warm 

climates and is well-suited to low rainfall areas. The digestible energy value for sorghum 

is similar to corn, but it has more crude protein. Sorghum’s use in poultry diets was 

limited due to lack of pigmenting ability and high tannins in “bird resistant” varieties 

(Petersen, 1969). Tannins inhibit digestive enzyme activity and form complexes with 

protein that resist digestion.  However, low tannin varieties are readily available now. 

Additionally, the industry movement towards further-processed products allows for 

greater variations in chicken skin color. Several studies on sorghum in poultry diets have 

focused on improving methods used to estimate digestible energy and protein content to 

allow for more precise feed formulation (Lemme et al., 2004; Ravindran et al., 2005; 

Ebadi et al., 2011; Sedghi et al., 2011). Some studies have shown that sorghum-based 

diets had no effect on feed intake, but decreased growth performance when compared 

with corn-based diets (Batonon-Alavo et al., 2015). However, sorghum-based diets 

supplemented with enzymes showed no negative effects, suggesting the combination is a 

viable strategy to improve the nutritional value of the diets and performance results (Leite 

et al., 2012). 

1.5.4 Field peas 

Field peas (Pisum sativum)  contain 20-29% crude protein which makes them 

suitable as a potential protein-energy source for poultry. However, replacement of a large 

portion of the soybean meal with field peas can result in slightly reduced performance of 

growing chickens and laying hens (Farrell et al., 1999; Tuunainen et al., 2016), Nalle et 

al. (2011) found that broilers fed diets containing as much as 20% field peas had similar 

growth performance as broilers fed a corn-soy control. Based on their experiments, 

Farrell et al. (1999) suggested field peas inclusion be limited to 30% of the diet for 

broilers. The presence of α-galactosides has been proposed as the cause of the poorer 

growth of the chickens, but the cause of the reduced performance of the laying hens was 
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not known. Peas have high levels of starch, and pea starch is less digestible than the 

starch of any other cereal grain.  

1.5.5 Flax seed 

 Flax seed contain high levels of protein (26%) and oil (41%) and are an excellent 

source of omega-3 fatty acids, particularly linolenic acid. Flax is currently used in poultry 

feeds to alter the fatty acid composition of eggs and produced omega-3 enriched eggs 

(Amini and Ruiz-Feria, 2007; Nanjappan et al., 2013). However, inclusion of high levels 

of flaxseed (>10%) resulted in a decrease in overall egg acceptability as assessed by 

aroma and flavor (Collins et al., 1997). Flax seed has also been shown to be successful in 

the production of omega-3 enriched chicken meat, although the use of full-fat flax seed 

resulted in lower live weights and smaller carcasses. For flax seed to be digested, the hard 

outer shell must be broken open through grinding. Otherwise, the unbroken flax seed 

passes through the digestive tract, retaining all its nutrients. 

1.5.6 Buckwheat 

 Buckwheat (Fagopyrum sagittatum) was a popular poultry feed in the early 1900s 

and has seen an increase in production in some areas of the Midwest (Jacob, 2007). 

While little data is available on its use, the literature suggests that buckwheat has 

reasonable feeding value, roughly comparable to oats or wheat (Leiber et al., 2009). The 

grain contains 11-13% crude protein and is the best source of lysine among the feed 

grains, and is the only grain not lysine deficient (Jacob and Carter, 2008). Unfortunately, 

buckwheat also contains fagopyrin, a compound which causes photosensitization of light-

skinned animals. Therefore, high inclusion of buckwheat in diets for broilers raised 

outdoors may result in increased incidence of carcass downgrading due to skin sun burns.  

1.5.7 Enzymes 

Digestive enzymes are vital players in the digestive system that catalyze the 

reactions that break feed down into nutrients which can be absorbed and utilized within 

the body. While chickens produce endogenous enzymes, their diets are often 

supplemented with exogenous enzymes, especially those that are not produced by the 

chicken (Bedford and Partridge, 2001). Supplementation of enzymes has alleviated some 

industry challenges by reducing feed costs and improving gastrointestinal tract problems 
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through improvement of nutrient utilization (Khattak et al., 2006). Enzymes are 

particularly valuable when feedstuffs high in non-starch polysaccharides (NSP) or other 

indigestible factors are utilized. High concentrations of NSP’s in the diet can increase gut 

viscosity and reduce weight gain resulting in poorer feed efficiency.  

 Tahir et al. (2008) showed that cellulose, hemicellulose, and pectinase 

supplementation improved carcass weight and feed efficiency in a low-protein corn-soy-

based diet. Similarly, Wu et al. (2004) demonstrated an improvement in feed conversion 

when birds were fed wheat or barley-based diets supplemented with xylanase. Xylanase 

breaks down the β-1,4 linkages in arabinoxylans into dimers that can be further reduced 

into fructose molecules (Bedford and Partridge, 2001). Supplementation with β-

glucanases can alleviate the negative effects of wheat- and barely-based broiler diets by 

degrading the aleurone layer and releasing nutrients from the grain endosperm. The result 

is an improvement in weight gain and feed efficiency (Mathlouthi et al., 2002). While the 

chicken’s pancreas secretes endogenous α-amylase and proteases which degrade starch 

and polypeptide chains, respectively, further improvements have been noted with 

exogenous supplementation (Gracia et al., 2003; Angel et al., 2011). Additionally, Angel 

et al. (2011) noted improvements in bird performance when birds fed low-protein diets 

(20.5% crude protein) were supplemented at 400 mg/kg. Finally, supplementation with 

phytase improves feed utilization by releasing phytate-bound minerals, proteins, and 

starches in the diet (Murai et al., 2002). Additionally, phytase supplementation can 

reduce the need for additional inorganic phosphorus.  

Because each enzyme acts in a different way, supplementation with an enzyme 

complex with multiple activities is common in poultry diets. Wu et al. (2004) described 

the effects of xylanase and phytase supplementation individually, and in combination. 

When birds were fed a wheat-soy basal diet, supplementation with phytase and xylanase 

seemed to have a synergistic effect which increased villus height in the ileum and crypt 

depth in the jejunum and ileum. 

Allzyme SSF® is a natural enzyme complex produced through solid-state 

fermentation of a selected strain of Aspergillus niger. It contains cellulases, xylanases, 

glucanases, phytases, proteases, and has been used in diets for poultry, pigs, and fish 

(Min et al., 2009; Yadava et al., 2009; Deniz et al., 2013; Passos et al., 2015; Zhao et al., 
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2015). Meta-analyses on the use of Allzyme SSF® in broiler (Hooge et al., 2010a) and 

layer (Hooge et al., 2010b) diets showed improvements in body weight and egg mass 

when compared to negative controls. This enzyme complex improves the digestibility of 

amino acids, energy, calcium, and phosphorus particularly when the diet contains 

ingredients with low digestibility.  

1.6 Gaps in the literature 

From this review, it is clear that there are some gaps in the literature, particularly 

in regards to the growth performance and carcass characteristics of heritage breeds and 

the utilization of alternative feedstuffs for these breeds. This dissertation presents data 

from several studies and attempts to address some of these gaps. First, heritage breed 

pullets were evaluated as replacements for egg-laying strains and heritage breed 

cockerels were evaluated as meat-type birds. Because the nutrient requirements for 

heritage breeds are not known, a self-selection feeding program was employed to allow 

the birds to determine their own nutrient and energy intake. The data from these studies 

was used to guide the formulation of complete diets using alternative feedstuffs to replace 

corn and soybean meal which were then evaluated for suitability. The ultimate goal of 

these experiments was to provide small- and medium-flock producers interested in 

heritage breed chickens and/or slow-growing meat-type strains with the information they 

need to create accurate business plans.  
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CHAPTER 2: Growth performance, nutrient and energy intake of alternative breed 

replacement pullets provided through the use of a self-selection feeding program 

 

2.1 Abstract 

Due to the recent resurgence in the popularity of keeping small flocks of chickens, 

interest in the production characteristics of heritage chicken breeds has increased. The 

objective of this study was to determine the growth performance, and the nutrient and 

energy intake of alternative chicken breeds as replacement pullets using a self-selection 

feeding program. Seventy-five day-old chicks per genotype (Rhode Island Red, Barred 

Plymouth Rock, Black Australorp, Black Star, Red Star, and ISA Brown) were divided 

into three replicate groups which were randomly assigned to floor pens with 892 square 

centimeters per bird. All chicks received a complete diet for the first two weeks, and then 

were transitioned to a self-selection feeding program using four feed choices provided on 

an ad libitum basis. The feed choices included a protein concentrate (39% CP with added 

vitamins and minerals) without added methionine and three grains similar in energy 

content, but differing in protein and methionine content (cracked corn, naked oats, and 

pearl millet). The feeds were randomly allocated to four identical feeders within each pen 

and the location of the feeders was rotated 2-3 times per week. At 133 days of age, 

individual body weight averaged 1630 g for Red Star, 1623 g for Black Star, 1612 g for 

Black Australorp, 1565 g for Barred Plymouth Rock, 1523 g for ISA Brown, and 1471 g 

for Rhode Island Red pullets. The body weights of the Red Star, Black Star, and Black 

Australorp pullets were significantly different (P < 0.05) from that of the ISA Brown and 

Rhode Island Red pullets. The body weights for the Barred Plymouth Rock pullets were 

significantly higher from the Rhode Island Red pullets. Average daily feed intake (58.5 

grams/bird/day) from placement (1 day of age) through the end of the study was similar 

(P > 0.05) among the genotypes. Additionally, diet selection was similar (P > 0.05) 

among the genotypes. Free-choice feed selection for all genotypes resulted in a diet 

containing approximately 3098 kcal ME/kg, 15.3% protein, 0.26% methionine, 0.70% 

lysine, 0.51% calcium, and 0.29% phosphorus. Self-selection resulted in diets that were 

sufficient in protein, methionine, and phosphorus, but lower in calcium and higher in 

energy than National Research Council (1994) recommendations. 
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2.2 Introduction 

Due to the recent resurgence in the popularity of keeping small flocks of chickens, 

interest in heritage chicken breeds has increased. Heritage breeds are those that 

physically conform to the standards of the American Poultry Association, mate naturally, 

have a slow growth rate, and a long, productive lifespan. The heritage breeds selected for 

this study were the Rhode Island Red, the Barred Plymouth Rock, and the Black 

Australorp. These breeds were selected because Rhode Island Reds and Barred Plymouth 

Rocks are two of the most commonly raised heritage breeds. Black Australorps were 

selected because they are popular with ethnic markets. ISA Brown pullets were used as a 

commercial control. Black Star and Red Star pullets were used to represent a less heavily 

selected strain. All six of these breeds/strains typically lay brown eggs which are 

preferred by consumers in some markets.  

Heritage breed chickens are typically fed a complete diet formulated for 

commercial pullets or broilers. However, because the nutrient requirements for the 

heritage breeds are not known and may be different from commercial strains, feeding 

these diets may overfeed or underfeed these breeds Therefore, a self-selection feeding 

strategy was employed to allow the birds to choose from different feeds in order to meet 

their individual requirements. In a self-selection feeding program, chickens are typically 

offered a protein source, an energy source, and, for layers, a calcium source. However, 

chickens are natural foragers and should be capable of selecting from multiple feed 

sources. Therefore, these birds were provided with a protein concentrate and three energy 

sources which differed in protein (particularly with regard to methionine) content. Given 

proper selection by the chickens, a theoretically adequate diet should have been 

consumed.  

In order to profitably raise chickens, producers need to know how quickly they 

grow, how much feed they consume, and what their nutrient requirements are. However, 

there is little to no published data available regarding the production characteristics for 

heritage breeds. The objective of this study was to determine the growth rate, and feed 

and nutrient intake of three heritage breed chickens as replacement pullets for egg-laying 

flocks. 
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2.3 Materials and methods 

Experiments were conducted at the Alltech-University of Kentucky Research 

Alliance Poultry Farm. All procedures for this study were conducted under protocols 

approved by the University of Kentucky Institutional Animal Care and Use Committee. 

This trial was conducted from October 2012 to March 2013.  

2.3.1 Birds and housing 

One-day-old female chicks from each of three heritage breeds (Rhode Island Red, 

Barred Plymouth Rock, and Black Australorp) and two egg-laying strains (Black Star and 

Red Star) were purchased from Murray McMurray Hatchery (Webster City, IA) and 

shipped via USPS air mail. Additionally, one-day-old female ISA Brown chicks were 

purchased from Cal-Maine Foods, Inc. to serve as a commercial control. The ISA Brown 

chicks were one week younger than the other breeds and strains throughout the 

experiment; therefore, data for the ISA Browns was matched by age. 

Upon arrival, chicks from each genotype (n = 75 per genotype) were weighed and 

assigned to a pen (n = 3 per genotype). The chicks were housed in 1.22- x 1.83-meter 

floor pens on clean wood shavings with a space allocation of 892 square centimeters per 

bird. Birds were brooded at approximately 30.6°C for the first four weeks, then 

temperatures were reduced to ~21.1°C from 5 to 11 weeks of age, and finally to 15.6°C 

from 12 to 20 weeks of age. Overall, the temperature averaged 20.4°C. The lighting 

program provided 22 hours of light from placement through 10 weeks of age. At 10 

weeks of age, light was reduced to 16 hours per day and remained at that level through 

the end of the experiment. Birds were monitored through 133 days of age.  

2.3.2 Feeding 

All birds were fed a nutritionally complete commercial-type starter diet (22% CP, 

3084 kcal ME/kg) from 1 to 14 days of age. At 14 days of age, birds were transitioned to 

a self-selection feeding program consisting of four feed choices: a protein concentrate 

(39% CP), cracked corn, pearl millet, and rolled naked oats. These ingredients were 

chosen and the protein concentrate was formulated in order to provide the birds with 

choices so that they could theoretically self-select a balanced diet. The nutrient 

composition of each feed choice is shown in Table 2.1.The protein concentrate consisted 
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of buckwheat, solvent-extracted soybean meal, fishmeal, field peas, dicalcium phosphate, 

limestone, salt, a vitamin-mineral premix, and an enzyme complex (Allzyme SSF®, 

Alltech Inc., Nicholasville, KY). Integral® (Alltech Inc., Nicholasville, KY), a 

glucomannan containing yeast product, was added to the protein concentrate to reduce 

potential mycotoxin absorption in the birds. The protein concentrate formulation is show 

in Table 2.2. Each feed ingredient was randomly allocated to one of four identical 

feeders. Feeder location was rotated two to three times per week. All feed ingredients 

were offered on an ad libitum basis. Water was offered on an ad libitum basis using a 

nipple watering system 

2.3.3 Data collection 

Chicks were weighed at the time of placement (1 day of age) and then weekly 

through 133 days of age on a pen basis to calculate average daily gain. To determine 

uniformity, birds were weighed individually at 56, 70, 84, 98, 112, and 126 days of age. 

Bird uniformity within breed was determined on a pen basis and was calculated as the 

percentage of pullets that had a body weight within ± 15% of the flock average at a given 

age. Consumption of each feed ingredient was measured two to three times per week 

before feeders were rotated. Ingredient consumption was measured separately and then 

combined to determine average daily feed intake. Daily mortality was also recorded and 

accounted for in calculations. 

2.3.4 Statistical analysis 

This experiment had a completely randomized block design with the experimental 

unit as the pen blocked by location within the room. Data for this experiment were 

analyzed as a one-way analysis of variance using the general linear model procedures of 

SAS® (SAS v. 9.3, Cary, NC) with genotype as the dependent variable. The replicate pen 

of birds served as the experimental unit. Fisher’s least significant difference test was used 

to determine differences among means with a significance set at P < 0.05.  
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2.4 Results 

2.4.1 Body weight 

Weekly pullet body weights from 1 through 133 days of age are reported in Table 

2.3. At 1 day of age, body weights differed (P < 0.05) among genotypes. The ISA Brown 

pullets were the heaviest at 35 grams. The heritage breeds differed, with the Rhode Island 

Red pullets (34 grams) being heavier (P < 0.05) than both the Barred Plymouth Rock and 

Black Australorp pullets (32 grams). The Black Star and Red Star pullets were the 

lightest at 29 grams. 

From 14 through 35 days of age, the average individual body weights were 

similar (P > 0.05) among genotypes. However, from 42 to 133 days of age, Rhode Island 

Red pullets were lighter (P < 0.05) than Barred Plymouth Rock, Black Australorp, Red 

Star, and Black Star pullets. 

At 133 days of age, the body weights of Red Star, Black Star, and Black 

Australorp pullets were heavier (P < 0.05) than those of ISA Brown and Rhode Island 

Red pullets. The average body weights of Barred Plymouth Rock pullets were heavier (P 

< 0.05) than the Rhode Island Red pullets. 

2.4.2 Uniformity 

Uniformity was calculated for each pen as the percent of the birds within 15% of 

the average body weight of the pen. Uniformity was calculated every other week from 56 

to 126 days of age and reported in Table 2.4. For each week, there were no differences 

among the breeds; however, uniformity was relatively low overall. From 42 to 98 days of 

age, average uniformity was below 62% with considerable variation between replicates. 

At 98 days of age, several small birds were culled from each pen which improved 

uniformity. By 126 days of age, an average uniformity of 77.6 ± 7.4% had been achieved 

and there were no differences among breeds (P > 0.05). 

2.4.3 Feed intake  

The cumulative average daily feed intake (58.5 ± 1.8 grams/bird/day; P > 0.05) 

from 21 to 132 days of age was similar among the genotypes (Table 2.5). There was no 

effect of feeder location on feed intake for any of the breeds or strains (P > 0.05). When 

examined on a weekly basis (Table 2.6), average daily feed intake in grams per bird per 
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day was similar (P > 0.05) among the genotypes for most weeks. Additionally, average 

daily feed intake increased over time with 21-day-old pullets consuming approximately 

32 grams of feed per day and 126-day-old pullets consuming approximately 78 grams of 

feed per day. 

2.4.4 Energy and nutrient intake 

2.4.4.1 Energy 

During the self-selection feeding program from 21 to 132 days of age, pullets 

consumed an average of 182 ± 5 kcal ME per bird per day with no differences (P > 0.05) 

among genotypes (Table 2.5). When examined on a weekly basis (Table 2.7), average 

daily energy intake was similar (P > 0.05) among the genotypes for most weeks. 

2.4.4.2 Protein 

During the self-selection feeding program from 21 to 132 days of age, pullets 

consumed an average of 8.99 ± 0.49 grams of protein per bird per day with no differences 

(P > 0.05) among genotypes (Table 2.5). On a weekly basis, protein consumption 

expressed in grams per bird per day was similar among genotypes for most weeks (Table 

2.8). 

2.4.4.3 Methionine 

During the self-selection feeding program from 21 to 132 days of age, pullets 

consumed an average of 0.15 ± 0.01 grams of methionine per bird per day with no 

differences (P > 0.05) among genotypes (Table 2.5). On a weekly basis, methionine 

consumption expressed in milligrams per bird per day was similar (P > 0.05) among 

genotypes for most weeks (Table 2.9). 

2.4.4.4 Lysine 

During the self-selection feeding program from 21 to 132 days of age, pullets 

consumed an average of 0.41 ± 0.03 grams of lysine per bird per day with no differences 

(P > 0.05) among genotypes (Table 2.5). On a weekly basis, lysine consumption 

expressed in grams per bird per day was similar (P > 0.05) among genotypes for most 

weeks (Table 2.10). 
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2.4.4.5 Calcium 

During the self-selection feeding program from 21 to 132 days of age, pullets 

consumed an average of 0.30 ± 0.02 grams of calcium per bird per day with no 

differences (P > 0.05) among genotypes (Table 2.5). On a weekly basis, calcium 

consumption expressed in grams per bird per day was similar (P > 0.05) among 

genotypes for most weeks (Table 2.11). 

2.4.4.6 Phosphorus 

During the self-selection feeding program from 21 to 132 days of age, pullets 

consumed an average of 0.17 ± 0.01 grams of phosphorus per bird per day with no 

differences (P > 0.05) among genotypes (Table 2.5). On a weekly basis, phosphorus 

consumption expressed in grams per bird per day was similar (P > 0.05) among 

genotypes for most weeks (Table 2.12). 

2.4.5 Composition of the self-selected diet  

There were no differences in overall diet selection among breeds or strains (P > 

0.05). All pullets selected a diet that consisted of 3,098 ± 17 kcal ME/kg, 15.3 ± 0.4% 

crude protein, 0.26 ± 0.01% methionine, 0.70 ± 0.03% lysine, 0.51 ± 0.03% calcium, and 

0.29 ± 0.01% phosphorus (Table 2.13).  

 

2.5 Discussion 

Despite the increased interest in heritage chicken breeds due to the resurgence in 

the popularity of keeping small flocks of chickens, little to no published data is available 

regarding the production characteristics of heritage breeds. This study was conducted in 

order determine the growth rate, and feed and nutrient intake of three heritage chicken 

breeds (Rhode Island Red, Barred Plymouth Rock, and Black Australorp) used as 

replacement pullets for egg-laying flocks. Because the nutrient requirements of these 

breeds are not known, a self-selection feeding program was employed using four 

nutritionally distinct feed choices.  

While the initial body weights of the chicks varied among genotypes, it is unclear 

whether this was due to inherent genetic differences or other factors because this study 

did not control for breeder age, egg weight, or hatching time which may also influence 
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early chick weights (Hulet et al., 2007; Zakaria and Omar, 2013; Mbajiorgu and 

Ramaphala, 2014; Bergoug et al., 2015; Nangsuay et al., 2015). During the self-selection 

feeding program consisting of a protein concentrate (39% CP), cracked corn, pearl millet, 

and rolled naked oats, pullets from all six genotypes demonstrated similar growth rates. 

However, average body weights at a given age varied among genotypes and flock 

uniformity within each breed was low.  

At 126 days of age, the Black Austrlorp, Barred Plymouth Rock, Black Star, and 

Red Star pullets achieved weights consistent with the expected body weights published 

by the National Research Council (1994) for brown-egg-laying pullets. However, the 

Rhode Island Reds and ISA Browns fell short of the expected body weights published for 

both brown-egg-laying pullets (National Research Council, 1994) and for ISA Brown 

pullets (Institut de Sélection Animale). This begs the question as to whether the pullets 

were selecting diets that met their requirements. However, previous studies by Steinruck 

and Kirchgessner (1992, 1993a, 1993b) and others suggest that pullets and laying hens 

are capable of balancing their own diets when given a choice of feeds with either a 

deficient or excessive supply of protein. 

In the present study, the average feed intake each week was similar (P > 0.05) 

among the genotypes for most weeks and fell within a range similar to the expected 

values for ISA Browns and brown-egg-laying pullets (Institut de Sélection Animale; 

National Research Council, 1994). On a weekly basis, average daily intake of energy, 

protein, methionine, lysine, calcium, and phosphorus were similar among genotypes. This 

suggests pullets were making similar selections from the feeders regardless of genotype.  

For most weeks, average daily energy intake fell within or above the ranges 

published for ISA Browns and brown-egg-laying pullets. This is consistent with the 

literature on self-selection feeding which shows that self-selection-fed birds tend to 

consume more energy and less protein than birds fed complete diets (Leeson and Caston, 

1993; Sahin, 2003; Cerrate et al., 2007; Syafwan et al., 2012; Fanatico et al., 2013; 

Catanese et al., 2015).  

Average daily protein intake was consistent with expected values for most weeks 

(Institut de Sélection Animale; National Research Council, 1994). Average daily 

methionine consumption were typically higher than the National Research Council 
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(1994) recommendations for brown-egg-laying pullets, but below the recommended 

values for ISA Browns (Institut de Sélection Animale). However, no deficiency 

symptoms were identified which suggests methionine requirements were met. Average 

daily lysine intake for most weeks was higher than National Research Council (1994) 

recommendations for brown-egg-laying pullets, but similar to or lower than ISA Brown 

recommendations (Institut de Sélection Animale). Throughout the experiment, calcium 

consumption each week was consistently lower than recommendations for either ISA 

Browns or brown-egg-laying strains (Institut de Sélection Animale; National Research 

Council, 1994). Additionally, there was no evidence of increasing calcium consumption 

as pullets neared sexual maturity. However, this may have been a result of the ingredients 

available which were relatively low in calcium. Offering a separate calcium source may 

have increased calcium intake. On the other hand, phosphorus consumption typically 

exceeded expected values based on recommendations for brown-egg-laying strains 

(National Research Council, 1994), but fell short of recommendations for ISA Browns 

(Institut de Sélection Animale). 

The overall nutrient intake during the self-selection feeding program was similar 

among the genotypes with pullets selecting an average diet consisting of 3,098 ± 17 kcal 

ME/kg, 15.3 ± 0.4% crude protein, 0.26 ± 0.01% methionine, 0.70 ± 0.03% lysine, 0.51 ± 

0.03% calcium, and 0.29 ± 0.01% phosphorus. Consequently, self-selection resulted in 

diets that were sufficient in protein, methionine, lysine, and phosphorus, but lower in 

calcium and higher in energy than National Research Council (1994) recommendations. 

This suggests that heritage breed pullets likely have similar nutrient requirements to 

pullets from commercial brown-egg-laying strains during rearing phase. Therefore, based 

on the data from this study, pullets from heritage breeds and sex-link strains can be fed 

and managed similarly to commercial egg-type pullets through 133 days of age.  

A subsequent study, Jacob (2014) followed these pullets into lay and showed that 

the ISA Brown hens laid their first eggs at approximately 148 days of age, which was 

significantly earlier than any of the heritage breeds, Black Stars, and Red Stars. 

Furthermore, the ISA Brown hens had higher average hen day egg production (Appendix 

C, page 165) and produced larger eggs (Appendix D, page 166) when compared with the 

heritage breed, Black Star, and Red Star hens. These results suggest that heritage breed 
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hens are not an economically viable alternative to commercial egg-laying strains. 

However, further research is needed to evaluate the potential viability of heritage breed 

hens in alternative production systems such as aviaries, free-ranger, and pasture-based 

systems.   
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2.6 Tables 

Table 2.1. Analyzed nutrient composition of self-selection feed choices  

Nutrient Protein 
Concentrate 

Cracked 
Corn 

Pearl Millet Rolled 
Naked Oats 

Energy, kcal ME/kg (calculated) 2163 3390 3240 3180 
Crude protein, % 39.0 7.9 11.6 14.4 
Methionine, % 0.51 0.16 0.28 0.23 
Lysine, % 2.47 0.27 0.20 0.58 
Calcium, % 2.14 0.01 0.05 0.84 
Phosphorus, % available 1.10 0.09 0.10 0.17 
 

Table 2.2. Protein concentrate formulation 

Ingredient Inclusion level 
Buckwheat 13.40% 
Soybean meal, solvent extracted 64.78% 
Fishmeal 4.36% 
Field peas 8.93% 
Dicalcium phosphate 4.47% 
Limestone 2.01% 
Salt 1.01% 
Vitamin-mineral premix 1 0.56% 
Integral® 2 0.45% 
Enzyme complex 3 0.04% 
1 Akey Layer Starter Breeder Premix (Akey, Lewisburg, OH) 

2 Integral® (Alltech Inc., Nicholasville, KY) 

3 Allzyme-SSF® (Alltech Inc., Nicholasville, KY) 
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CHAPTER 3: Growth performance, nutrient and energy intake and patterns of alternative 

breeds used for meat production provided through the use of a self-selection feeding 

program 

 

3.1 Abstract 

This study was conducted to determine the nutrient and energy intake of 

alternative chicken breeds used for meat production through a self-selection feeding 

program. Seventy-five day-old chicks per genotype (Cornish Cross males (CCM), 

Cornish Cross females (CCF), Red Rangers males (RR), and males from three heritage 

breeds of Rhode Island Red (RIR), Barred Plymouth Rock (BPR), and Black Australorp 

(BA)) were divided into three replicate groups and randomly assigned to floor pens with 

space allocated at 892 cm2/bird. All chicks received a complete diet for the first two 

weeks, and then were transitioned to a self-selection feeding program using four feed 

choices provided on an ad libitum basis. The feed choices included a protein concentrate 

(39% CP) without added methionine and three grains that were similar in energy content, 

but differed in protein and methionine content (cracked corn, rolled naked oats, and pearl 

millet). The feeds were randomly allocated to four identical feeders within each pen and 

the location of the feeders was rotated 2-3 times per week. All birds were grown to 2300 

grams. CCM, CCF, RR, and the heritage breeds reached this weight at 47, 52, 63, and 

138 days respectively. During the self-selection feeding program, all genotypes 

demonstrated a linear pattern of growth vs time (R2 = 0.98-0.99), but slopes for the meat-

type birds were steeper (P < 0.01). The average daily gain was 58.3, 49.1, 39.6, and 16.4 

grams/bird/day for CCM, CCF, RR, and the heritage breeds respectively (P < 0.0001). 

The heritage breeds had a significantly poorer (P < 0.0001) feed efficiency than the 

meat-type birds (5.8 vs 2.2 grams feed/gram gain).  Models for intake of feed, 

metabolizable energy, crude protein, and methionine all showed linear relationships to 

BW for meat-type birds (R2 = 0.78-0.95) and a quadratic (P < 0.01) relationship to BW 

for the heritage breeds (R2 = 0.96). At any given BW, the meat-type birds consumed 

more energy, CP, and Met than the heritage breeds (P < 0.01). On a dietary concentration 

basis, the self-selected diets of the meat-type birds were lower in energy (P < 0.0001), 
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and higher in protein (P < 0.0001) than the heritage breeds. Methionine intake varied (P 

< 0.0001) by genotype with CCM having the highest (0.32%), followed by the CCF and 

RR (0.31%), and was lowest in the heritage breeds (0.27%). Based on self-selection, the 

nutrient and energy intake varied by genotype and should be considered when rearing 

these heritage breeds. 

 

3.2 Introduction 

In recent years, interest in slower-growing alternatives to the intensively selected 

commercial meat-type chickens has grown. Slower-growing breeds and strains are 

believed to be better suited to specialty production systems such as free range and 

pasture-raised poultry.  

In an effort to describe the changes that have occurred in the modern meat-type 

bird, several studies have been done to compare modern commercial strains to a variety 

of unselected lines from the 1950s, 1970s, and 1990s that are maintained by universities. 

(Cheema et al., 2003; Havenstein et al., 2003b, a; Schmidt et al., 2009; Zuidhof et al., 

2014) Additionally, some research has been done to compare today’s fast-growing strains 

with slower-growing strains that are commercially available.(Fanatico et al., 2005a; 

Fanatico et al., 2005b; Fanatico et al., 2006a; Fanatico et al., 2006b; Rack et al., 2009; 

Carrasco et al., 2014), and some studies have looked at the use of egg-layer-type males 

for meat production ((Lichovnikova et al., 2009; Bertechini et al., 2014).  However, little 

to no data exists regarding the production parameters of heritage breeds. Heritage breeds 

are those that physically conform to the standards of the American Poultry Association, 

mate naturally, have a slow growth rate, and a long, productive lifespan. The heritage 

breeds selected for this study were the Rhode Island Red, the Barred Plymouth Rock, and 

the Black Australorp. These breeds were selected because Rhode Island Reds and Barred 

Plymouth Rocks are two of the most commonly raised heritage breeds. Black Australorps 

were selected because they are popular with ethnic markets. Red Rangers were used to 

represent a slow-growing meat-type strain. Cornish Crosses were used to represent a fast-

growing meat-type strain. 

Heritage breed chickens raised for meat are typically provided a complete diet 

designed for meat-type birds. However, because the nutrient requirements for the heritage 
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breeds are not known and may be different from commercial strains, feeding these diets 

may overfeed or underfeed these breeds. Therefore, a self-selection feeding strategy was 

employed to allow the birds to choose from different feeds in order to meet their 

individual requirements. In a self-selection feeding program, growing meat-type chickens 

would typically be offered two feed choices: a protein source and an energy source. 

However, chickens are natural foragers and should be capable of selecting from more 

than two feed sources. Therefore, these birds were provided with a protein concentrate 

and three energy sources which differed in protein (particularly methionine) content. 

Given proper selection by the chickens, a theoretically adequate diet should have been 

consumed.  

In order to profitably raise chickens, producers need to know how quickly they 

grow, how much feed they consume, and what their nutrient requirements are. However, 

there is little to no published data available regarding the production characteristics for 

heritage breeds. Therefore, the objective of this study was to determine the growth rate 

and nutrient intake of heritage breed chickens used for meat production and to compare 

their performance with meat-type chickens. 

 

3.3 Materials and methods 

Experiments were conducted at the Alltech-University of Kentucky Research 

Alliance Poultry Farm. All procedures for this study were conducted under protocols 

approved by the University of Kentucky Institutional Animal Care and Use Committee. 

This trial was conducted from October 2012 to February 2013. 

3.3.1 Birds and housing 

One-day-old chicks were purchased from Murray McMurray Hatchery (Webster 

City, IA) and shipped via USPS air mail. The meat-type strains used were the Cornish 

Cross (males, females) and the Red Ranger (males). Heritage breeds used were the Rhode 

Island Red (males), Barred Plymouth Rock (males), and Black Australorp (males).  

Upon arrival, chicks from each genotype (n = 75 per genotype) were weighed and 

assigned to a pen (n = 3 per genotype). The chicks were housed in 1.22- x 1.83-meter 

floor pens on clean wood shavings with a space allocation of 892 square centimeters per 
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bird. Birds were grown to a common weight of 2300 grams which is a typical target 

weight for small flocks. Broiler males, broiler females, and Red Ranger males were 

raised to 49, 56, and 63 days of age respectively. The heritage breeds (Rhode Island 

Reds, Barred Plymouth Rocks, and Black Australorps) were raised to 140 days of age. 

Birds were brooded at approximately 30.6°C for the first four weeks, then 

temperatures were reduced to ~21.1°C from 5 to 11 weeks of age, and finally to 15.6°C 

from 12 to 20 weeks of age. The average temperatures experienced by Cornish Cross 

males (28.2°C), Cornish Cross females (27.2°C), Red Ranger males (26.3°C), and 

heritage breeds (20.4°C) from placement through processing differed due to differing 

grow-out times. The lighting program consisted of 22 hours of light per day from 1 day 

of age through 10 weeks of age. When the birds reached 10 weeks of age, light was 

reduced to 16 hours per day and remained at that level through the end of the experiment. 

3.3.2 Feeding 

All birds were fed a nutritionally complete commercial-type starter diet (22% CP, 

3084 kcal ME/kg) from 1 to 14 days of age. At 14 days of age, birds were transitioned to 

a self-selection feeding program consisting of four feed choices: a protein concentrate 

(39% CP with added vitamins and minerals), cracked corn, pearl millet, and rolled naked 

oats. These ingredients were chosen and the protein concentrate was formulated in order 

to provide the birds with choices so that they could theoretically self-select a balanced 

diet. The nutrient composition of each feed choice is shown in Table 3.1. The protein 

concentrate consisted of buckwheat, solvent-extracted soybean meal, fishmeal, field peas, 

dicalcium phosphate, limestone, salt, a vitamin-mineral premix, and an enzyme complex 

(Allzyme SSF®, Alltech Inc., Nicholasville, KY. Integral® (Alltech Inc., Nicholasville, 

KY), a glucomannan containing yeast product, was added to the protein concentrate to 

reduce potential mycotoxin absorption in the birds. The protein concentrate formulation 

is shown in Table 3.2. Each feed ingredient was randomly allocated to one of four 

identical feeders. Feeder location was rotated two to three times per week. All feed 

ingredients were offered on an ad libitum basis. Water was offered on an ad libitum basis 

using a nipple watering system. 

At 70 days of age, the heritage breed birds had not yet reached the target weight, 

so they were split into two groups. Ten birds from each pen were moved as a group to a 
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new pen where they were provided a complete commercial-type starter diet (22% CP, 

3084 kcal ME/kg). The other birds remained in their pen on the original self-selection 

diet. For both feeding strategies, the same feeders were used and feed and water were 

offered on an ad libitum basis. 

3.3.3  Data collection 

Chicks were weighed at the time of placement (1 day of age) and then once 

weekly through processing. Because birds were raised to a common weight of 2300 

grams, processing occurred at different times for different genotypes. Cornish Cross 

males, Cornish Cross females, and Red Ranger males were raised to 49, 56, and 63 days 

of age respectively. The heritage breeds (Rhode Island Reds, Barred Plymouth Rocks, 

and Black Australorps) were raised to about 140 days of age. 

Average daily gain was calculated on a pen basis from 1 day of age to processing. 

Consumption of each feed ingredient was measured two to three times per week before 

feeders were rotated. Ingredient consumption was measured separately and then 

combined to determine average daily feed intake. Feed conversion ratio was calculated as 

grams of feed required per gram of gain. Daily mortality was also monitored and 

accounted for in calculations for gain and feed intake. 

3.3.4 Statistical analysis 

This experiment had a completely randomized block design with the experimental 

unit as the pen blocked by location within the room. Data for this experiment were 

analyzed for analysis of variance using the general linear model procedures of SAS® 

(SAS v. 9.3, Cary, NC) with genotype as the dependent variable. The replicate pen of 

birds served as the experimental unit. Fisher’s least significant difference test was used to 

determine differences among means with a significance set at P < 0.05.  

Linear and nonlinear models were constructed to describe the growth and nutrient 

intake patterns for each type of bird from 21 days of age to processing at a body weight 

of 2300 grams. Slopes were analyzed as a one-way analysis of variance using the general 

linear model procedures of SAS® with genotype as the dependent variable and 

significance set at P < 0.05.  
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3.4 Results and discussion 

3.4.1 Body weight 

The average body weight for each breed was recorded each week from 1 day of 

age through processing at a 2300-gram live weight. These values are reported in Table 

3.3. At 1 day of age, the body weights differed among breeds and strains. The Red 

Ranger males were the heaviest (P < 0.0001) at 40 grams, followed by the Cornish Cross 

males at 35 grams, and the Black Australorp males at 32 grams. The Cornish Cross 

females, Rhode Island Red males and Barred Plymouth Rock males were the lightest (P 

< 0.05) at 30 grams. This is consistent with the results of Paul (2015) which evaluated 

chicks from the same hatchery. While the differences noted in initial body weight may be 

influenced by genotype, other factors such as breeder flock age, egg size, and hatch time 

may also play a role (Hulet et al., 2007; Zakaria and Omar, 2013; Mbajiorgu and 

Ramaphala, 2014; Bergoug et al., 2015; Nangsuay et al., 2015). 

By 14 days of age, the Cornish Cross males were heavier (P < 0.05) than the 

Cornish cross females, and both were heavier (P < 0.05) than the Red Ranger males. All 

three meat-type strains were heavier (P < 0.05) than the heritage breeds. This pattern 

continued each week through processing. 

The target weight of 2300 grams was achieved by 49, 56, and 63 days of age 

respectively for the Cornish Cross males, Cornish Cross females, and Red Ranger males 

(Table 3.3). In the case of both the Cornish Cross males and females, the target weight 

was overshot by about 300 grams. Extrapolating from growth rate, it would be expected 

that the Cornish Cross males and females reached 2300 grams at about 47 and 52 days of 

age respectively (Table 3.4). This is consistent with the literature and the National 

Research Council (1994) expected values for broilers.  

Throughout the trial, the heritage breeds consistently exhibited low body weights. 

In fact, during the period from 21 days of age through 56 days of age, the body weights 

of the heritage breed males utilized in this study fell below the values published for 

brown-egg-layer pullets (National Research Council, 1994). At 35 days of age, the 

heritage breeds averaged 348 ± 22 grams which is only 1.16-fold heavier than the weight 

Jackson and Diamond (1996) reported for Red Jungle Fowl (300 grams) at that age. This 
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suggests that the early growth rate of these heritage breeds has not significantly improved 

from their wild ancestors. 

At 63 days of age, the average body weight of the heritage breed males was 847 ± 

28 grams which exceeded the expected body weight for brown-egg-layer pullets with an 

(National Research Council, 1994). From that point forward, the heritage breed males 

maintained body weights well above the expected values for brown-egg-layer pullets 

with an (National Research Council, 1994).  

Additionally, some differences were noted among the heritage breeds. From 70 

through 91 days of age, Rhode Island Reds had heavier (P < 0.05) body weights when 

compared to Barred Plymouth Rocks and Black Australorps. However, from 98 days of 

age on, body weights were similar (P > 0.05) among the heritage breeds. The heritage 

breeds reached the target weight of 2300 grams between 133 and 140 days of age. This 

was nearly three times as long as it took the Cornish Cross males in the study to reach 

that same weight.    

3.4.2 Average daily gain 

During the self-selection feeding program, the average daily gain differed (P < 

0.0001) among genotypes. The overall average daily gain was 58.3, 49.1, 39.6, and 16.4 

grams/bird/day for Cornish Cross males, Cornish Cross females, Red Rangers, and the 

heritage breeds respectively (Table 3.4). The overall average daily gain for the Cornish 

Cross males in this study was similar to the average daily gain reported by Havenstein et 

al. (2003b) for the Ross 308 which was developed in 2001 and is still utilized today. 

Meanwhile, the overall average daily gain for the slow-growing genotype (Red Ranger) 

utilized in this study was similar to that reported by Havenstein et al. (1994a) for the 

Arbor Acres broiler which was representative of the genetics available in 1991. Finally, 

the overall average daily gain for the heritage breeds utilized in this study was similar to 

the average daily gain reported by Havenstein et al. (1994a); Havenstein et al. (2003b) for 

the Athens-Canadian random-bred birds which are an unselected line of meat-type birds 

maintained since 1957. 

Average daily gain by week for each genotype is presented in Table 3.5. During 

each week, Cornish cross males consistently exhibited higher (P < 0.05) average daily 

gain than Cornish cross females, and both exhibited higher (P < 0.05) average daily gain 
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than Red Ranger males. All three meat-type strains exhibited higher (P < 0.05) average 

daily gain when compared with the heritage breeds. Among the heritage breeds, average 

daily gain was similar (P > 0.05) with the exception of one week where average daily 

gain was higher (P < 0.05) for Rhode Island Reds than Barred Plymouth Rocks.  

Overall, the average daily gain data from the present study is consistent with the 

literature which shows that heritage breeds have slower growth rates than broilers 

(McCrea et al., 2014), and selection for meat production has increased growth rates for 

modern broiler strains (Havenstein et al., 1994a; Havenstein et al., 1994b; Cheema et al., 

2003; Havenstein et al., 2003b, a; Schmidt et al., 2009; Zuidhof et al., 2014). 

Additionally, the results of this study suggest that the slow-growing meat-type strain 

(Red Rangers) utilized exhibits a similar growth rate to the meat-type birds used in the 

late 1970s through the early 1990s (Havenstein et al., 1994a; Zuidhof et al., 2014). 

3.4.3 Feed intake  

During the self-selection feeding program, the overall average daily feed intake 

differed (P < 0.0001) among genotypes (Table 3.4). The Cornish Cross males consumed 

more (P < 0.05) feed per day than the Cornish Cross females, and both consumed more 

(P < 0.05) feed per day than the Red Rangers. All the meat-type birds consumed more (P 

< 0.05) feed per day than the heritage breeds. Within the heritage breeds, Rhode Island 

Reds consumed more (P < 0.05) feed per day than Barred Plymouth Rocks and Black 

Australorps. 

Average daily feed intake by week is presented in Table 3.6. For each week, the 

average daily feed intake for Cornish Cross males was higher than the expected values 

published by the National Research Council (1994) for male broilers. Similarly, Cornish 

Cross females met or exceeded the expected average daily feed intake for female broilers 

during most weeks (National Research Council, 1994). For the Red Ranger males, 

average daily feed intake was initially higher than the expected values for either male or 

female broilers, but fell below the expected intake at 35 days of age (National Research 

Council, 1994). Feed consumption for heritage breeds typically exceeded the expected 

feed intake for brown-egg-laying pullets, but was lower than the expected feed intake for 

broilers (National Research Council, 1994). 
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At each time point from placement through processing, the meat-type birds 

consumed more (P < 0.0001) feed per day than the heritage breeds. Each week, Cornish 

Cross males consumed more (P < 0.05) feed than Red Rangers with the feed 

consumption of the Cornish Cross females typically falling somewhere in between. For 

most weeks, there were no differences (P > 0.05) in feed intake among the heritage 

breeds. However, when there were differences, Rhode Island Reds typically consumed 

more (P < 0.05) feed than the other breeds. The highest average daily feed intake for 

heritage breeds was only around 100 grams of feed per bird per day which was about half 

of the maximum feed intake observed for the Cornish Cross males during the study. This 

is consistent with the results of McCrea et al. (2014) which showed that the feed intake of 

the Delaware (a heritage breed chicken) increased throughout the 14-week grow-out 

period, but never reached the same level of feed intake achieved by broilers at the end of 

their grow-out.   

3.4.4 Feed efficiency  

Average feed efficiency from placement at 1 day of age through processing at a 

2300-gram live weight was expressed as grams of feed per gram of gain and is listed by 

genotype in Table 3.4. The Cornish Cross males had better (P < 0.05) feed efficiency 

than the Cornish Cross females, and both had better (P < 0.05) feed efficiency than the 

Red Rangers. All of the meat-type birds had better (P < 0.0001) feed efficiency than the 

heritage breeds.  

The heritage breeds in the present study exhibited a feed efficiency of 

approximately 3.96 grams of feed per gram of gain which is similar to that found by 

McCrea et al. (2014) for Delaware chickens which are another heritage breed. In that 

study, the Delaware chickens exhibited a feed conversion ratio of 3.46 grams of feed per 

gram of gain which was about twice that of the broilers utilized in that study. 

In another study, Zuidhof et al. (2014) compared the performance of a 

commercial Ross 308 strain (representative of the genetic stock available in 2005) to two 

University of Alberta Meat Control strains (one unselected since 1957, the other 

unselected since 1978). When Zuidhof et al. (2014) raised these birds on a modern 

nutritional program to 56 days of age, they found that broiler growth increased by over 

400% with a concurrent 50% reduction in feed conversion ratio from 1957 to 2005. This 
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is very similar to what the results of the present study with Cornish Cross males 

achieving 355% higher growth rates while consuming 51% less feed per gram of gain 

when compared with the heritage breed males.   

3.4.4.1 Energy and nutrient intake 

Average energy and nutrient intake for meat-type birds and heritage breeds during 

the self-selection feeding program from 21 days of age to processing at a 2300-gram live 

weight was reported in Table 3.7.  

3.4.4.1.1 Energy 
During the self-selection feeding program, the overall average energy intake (kcal 

ME/bird/day) followed a similar pattern to feed intake. The Cornish Cross males 

consumed the most (P < 0.05) energy per day (442 kcal ME/bird/day) followed by the 

Cornish Cross females and Red Rangers (381 kcal ME/bird/day) and then the heritage 

breeds. Within the heritage breeds, Rhode Island Reds (241 kcal ME/bird/day) consumed 

more (P < 0.05) energy per day than Barred Plymouth Rocks (202 kcal ME/bird/day), 

with Black Australorps (225 kcal ME/bird/day) intermediate.  

Average daily energy intake for each week is presented in Table 3.8. The energy 

consumption pattern tends to follow the overall consumption pattern. Energy intake for 

Cornish Cross males and Cornish Cross females were similar to or exceeded expected 

values for male and female broilers, respectively (National Research Council, 1994). 

Energy intake for Red Rangers was similar to expected values for female broilers through 

35 days of age, but fell below the expected values in the following weeks (National 

Research Council, 1994). The heritage breed males typically met or exceeded expected 

energy intake for brown-egg-laying pullets, but were lower than expected for either male 

or female broilers (National Research Council, 1994).  

3.4.4.1.2 Protein 
During the self-selection feeding program, the overall average protein intake 

(grams/bird/day) was higher (P < 0.0001) for meat-type birds than heritage breeds (Table 

3.7). Within the meat-type birds, protein consumption was higher (P < 0.05) for Cornish 

Cross males than Cornish Cross females, and both were higher than Red Rangers. Within 
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the heritage breeds, protein consumption was highest (P < 0.05) for Rhode Island Reds 

and lowest (P < 0.05) for Barred Plymouth Rocks with Black Australorps intermediate.  

Average daily protein intake for each week is presented in Table 3.9. Cornish 

Cross males typically exceeded expected intake for broiler males, while Cornish Cross 

females typically met expected intake for broiler females (National Research Council, 

1994). Protein intake for Red Rangers was similar to expected values for broiler females 

through 35 days of age, and then fell below those expected values (National Research 

Council, 1994). Average daily protein intake for heritage breed males was similar to, or 

exceeded, the expected values for brown-egg-laying pullets during most weeks (National 

Research Council, 1994).  

3.4.4.1.3 Methionine 
During the self-selection feeding program, the overall average methionine intake 

(grams/bird/day) followed a similar pattern as for protein intake except Cornish Cross 

females and Red Rangers did not differ (Table 3.7). Within the meat-type birds, 

methionine consumption was higher (P < 0.05) for Cornish Cross males (0.47 

grams/bird/day) than for the other two strains (0.39 grams/bird/day). Within the heritage 

breeds, methionine consumption was highest (P < 0.05) for Rhode Island Reds (0.22 

grams/bird/day) and lowest for Barred Plymouth Rocks (0.18 grams/bird/day) with Black 

Australorps (0.20 grams/bird/day) intermediate. 

Average daily methionine intake for each week is presented in Table 3.10. 

Average daily methionine intake (grams/bird/day) for Cornish Cross males was lower 

than the expected values for male broilers for most weeks, but exceeded the expectations 

for female broilers after 28 days of age (National Research Council, 1994). Cornish Cross 

females and Red Ranger males consumed less methionine than expected for either male 

or female broilers, but greatly exceeded the expectations for brown-egg-laying pullets 

(National Research Council, 1994). Methionine intake for heritage breed males exceeded 

the expected values for brown-egg-laying pullets for most weeks (National Research 

Council, 1994).  

3.4.4.1.4 Lysine 
During the self-selection feeding program, the overall average lysine intake 

(grams/bird/day) was higher (P < 0.0001) for meat-type birds than for heritage breed 
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males (Table 3.7). Within the meat-type birds, lysine consumption was higher (P < 0.05) 

for Cornish Cross males (1.63 grams/bird/day) than Cornish Cross females (1.22 

grams/bird/day), and both were higher than Red Rangers (1.05 grams/bird/day). The 

average consumption of lysine by heritage breed males was 0.53 grams/bird/day with no 

difference (P > 0.05) among the breeds. 

Average daily lysine intake for each week is presented in Table 3.11. Lysine 

intake for Cornish Cross males and Cornish Cross females exceeded the lysine intake 

expected for broiler males and females, respectively (National Research Council, 1994). 

Lysine intake for Red Rangers was similar to the expected lysine intake of broiler 

females through 35 days of age, and then fell below those values (National Research 

Council, 1994). Heritage breeds initially met the expected lysine values for brown-egg-

laying pullets, and then greatly exceed them (National Research Council, 1994). 

3.4.4.1.5 Calcium 
During the self-selection feeding program, the overall average calcium intake 

(grams/bird/day) was higher (P < 0.0001) for meat-type birds than heritage breeds (Table 

3.7). Within the meat-type birds, calcium consumption was higher (P < 0.05) for Cornish 

Cross males (1.35 grams/bird/day) than Cornish Cross females (0.96 grams/bird/day), 

and both were higher (P < 0.05) than Red Rangers (0.79 grams/bird/day). The average 

consumption of calcium for heritage breed males was 0.39 grams/bird/day and did not 

differ (P > 0.05) among the three heritage breeds. 

Average daily calcium intake for each week is presented in Table 3.12. Cornish 

Cross males met or exceeded the expected calcium intake of broiler males (National 

Research Council, 1994). Cornish Cross females initially met the expected calcium intake 

of broiler females, and then fell below expectations after 35 days of age (National 

Research Council, 1994). Calcium intake for Red Rangers fell below expectations for 

broiler males and females, but nearly doubled expected values for brown-egg-laying 

pullets (National Research Council, 1994). Calcium intake for heritage breed chickens 

fell below expected values for brown-egg-laying pullet through 70 days of age, and then 

increased to be more in line with expected values after 77 days of age (National Research 

Council, 1994). 
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3.4.4.1.6 Phosphorus 
During the self-selection feeding program, the overall average phosphorus intake 

(grams/bird/day) was higher (P < 0.0001) for meat-type birds than heritage breed males 

(Table 22). Within the meat-type birds, average daily phosphorus consumption was 

higher (P < 0.05) for Cornish Cross males (0.69 grams/bird/day) than for Cornish Cross 

females (0.52 grams/bird/day), and both had higher (P < 0.05) phosphorus consumption 

than Red Rangers (0.45 grams/bird/day). Average daily consumption of phosphorus for 

the heritage breeds was 0.22 grams/bird/day and there were no differences (P > 0.05) 

among the three heritage breeds. 

Average daily phosphorus intake for each week is presented in Table 3.13. 

Cornish Cross males and females exceeded the expected phosphorus intake for broiler 

males and females, respectively (National Research Council, 1994). Phosphorus intake 

for Red Ranger males was similar to the expected values for broiler females (National 

Research Council, 1994). Heritage breeds consumed similar amounts of phosphorus to 

the expected values for brown-egg-laying pullets through 70 days of age, and then 

exceeded expected levels thereafter (National Research Council, 1994). 

3.4.5 Modeling growth and feed intake patterns 

3.4.5.1 Growth pattern 
Linear and nonlinear models were constructed to describe the growth patterns for 

each type of bird from 21 days of age to processing at a body weight of 2300 grams 

(Figure 3.1). All of the linear models for growth vs. time provided a good fit to the data 

(Table 3.14). Models for the meat-type birds had steeper (P < 0.01) slopes than those for 

the heritage breeds. At any given age, the meat-type birds were heavier (P < 0.01) than 

the heritage breeds.  

3.4.5.2 Feed, energy, and nutrient intake patterns 

Linear and nonlinear models were constructed to describe the feed, energy, and 

nutrient intake patterns for each type of bird from 21 days of age through processing at a 

body weight of 2300 grams. For example, Figure 3.2 shows the patterns of average daily 

feed intake in grams/bird/day versus body weight in kilograms for each genotype. One 

equation was used for all three heritage breeds because there was no significant 
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difference among those breeds. The equations for the best-fit lines shown in Figure 3.2 

are listed in Table 3.15.  

Consumption of feed (grams/bird/day), energy (kcal ME/bird/day), crude protein 

(grams/bird/day), and methionine (grams/bird/day) all showed linear relationships to 

body weight for meat-type birds (R2 = 0.78 - 0.95) and a quadratic (P < 0.01) relationship 

to body weight for the heritage breeds (R2 = 0.96). At any given body weight, the meat-

type birds consumed more (P < 0.01) energy, crude protein, and methionine than the 

heritage breeds. At any given feed intake, the meat-type birds consumed less energy, 

more crude protein, and more methionine than the heritage breeds (P < 0.01).  

The difference in these relationships may be a reflection of the different growth 

rates of the genotypes. Due to the fast growth rate of the meat-type birds, a large portion 

of the nutrients consumed go towards growth rather than maintenance. On the other hand, 

the heritage breeds grow slower and put more nutrients towards maintenance, particularly 

as they reach maturity. Additionally, broilers would be expected to reach heavier weights 

at maturity than the heritage breeds. 

Finally, linear models were constructed to describe the relationship between 

energy intake (kcal/bird/day) and feed intake (grams/bird/day) for each genotype. The 

equations for the best-fit lines are listed in Table 3.16. All showed a strong linear 

relationship (R2 > 0.99, P = 0.0001) with the equation for the Cornish Cross males having 

a steeper (P < 0.05) slope than those for the other genotypes.  

3.4.6 Composition of self-selected diets 

The overall nutrient composition of the self-selected diets varied by genotype 

(Table 3.17). The Cornish Cross males, Cornish Cross females and Red Rangers selected 

diets lower in energy (2887 vs. 2950 vs. 2982 vs. 3068 kcal ME/kg, SEM = 10; P < 

0.0001), and higher in protein (20.8 vs. 19.2 vs. 18.3 vs. 16.2%, SEM = 0.3; P < 0.0001) 

than the heritage breeds. Methionine intake varied (P < 0.0001) by genotype with 

Cornish Cross males having the highest intake (0.32%), followed by the Cornish Cross 

females and Red Rangers (0.31%), and the heritage breeds having the lowest methionine 

intake (0.27%).  
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3.4.7 Effect of feeding strategy on heritage breeds 

At 70 days of age, the Rhode Island Red, Barred Plymouth Rock, and Black 

Australorp males averaged 945 grams. To evaluate the effect of the self-selection feeding 

program versus a complete diet, 10 birds per pen were moved into new pens and provided 

with a complete broiler starter diet (22% CP; 3084 kcal ME/kg). The remaining 10 to 15 

birds were left in the pen and continued to receive the self-selection feed choices. This 

approximately doubled the space allocation per bird. The effect of feeding strategy on 

average daily gain, average daily feed intake, and average feed:gain from 70 to a 2300-

gram live weight was reported in Table 3.18. The effect of feeding strategy on average 

daily consumption of energy, protein, and methionine was reported in Table 3.19. 

For all three heritage breeds, switching to a complete broiler starter diet resulted 

in increased average daily gain (22.4 vs 18.8 grams/bird/day; SEM = 0.6; P < 0.0001) 

without a change in average daily feed intake (91.9 ± 3.6 grams/bird/day; P > 0.05). This 

suggests that the birds are not balancing their diets to maximize growth. Additionally, it 

must be acknowledged that the higher nutrient density of the broiler starter diet may have 

triggered some compensatory growth for birds that were underfed on the self-selection 

feeding program. Compensatory growth is the accelerated growth of an organism 

following a period of slowed development due to nutrient deprivation. During 

compensatory growth, broiler chickens often exhibit higher than normal feed intake 

relative to their body weight (Zubair and Leeson, 1996). In the present study, there was 

no difference (P> 0.05) in feed intake between birds on the broiler starter and birds using 

the self-selection feeding program. However, birds on the broiler starter diet exhibited 

improved feed conversion when compared with birds on the self-selection feeding 

program (4.21 vs 4.82 grams of feed per gram of gain; SEM = 0.15; P < 0.05) which 

suggests some of the additional nutrients in the broiler starter were put towards growth.  

Energy intake (kcal ME/bird/day) was similar (P < 0.05) between feeding 

strategies which is consistent with the literature that suggests birds eat foremost to meet 

an appetite for energy. Because the complete broiler starter diet contained higher levels of 

protein and amino acids than the self-selected diets, the birds fed the broiler starter diet 

consumed more protein and methionine per bird per day than those remaining on self-

selection consumed. This is consistent with the literature which shows that self-selection-
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fed birds often consume less protein than would be provided in a formulated diet (Sahin, 

2003; Fanatico et al., 2013). This was not surprising considering the birds on the self-

selection feeding program in the present study selected diets that were relatively high in 

energy and low in crude protein when compared with the broiler starter diet. That pattern 

of selection is consistent with the literature which shows that birds using self-selection 

feeding programs consume more energy and less protein than birds fed complete diets 

(Leeson and Caston, 1993; Sahin, 2003; Cerrate et al., 2007; Syafwan et al., 2012; 

Fanatico et al., 2013; Catanese et al., 2015).  

 

3.5 Summary and conclusions 

When provided with the same feed choices, heritage breeds exhibited 

significantly slower growth rates than either fast- or slow-growing meat-type strains. In 

this study, the heritage breeds required 2.8x more time than the Cornish Cross males to 

reach the targeted live weight of 2300 grams. Additionally, the slow-growing meat-type 

strain (Red Rangers) studied required about 1.3x longer than the Cornish Cross males to 

achieve the targeted weight.  

While the heritage breeds did consume less feed per day than the meat-type 

strains, they exhibited poor feed efficiency which resulted in higher overall feed intake to 

reach the same body weight. When some of the heritage breed males were switched onto 

a commercial broiler starter diet (22% CP; 3084 kcal ME/kg) at 70 days of age, average 

daily gain and feed efficiency for heritage breeds was improved when compared with 

those remaining on the self-selection feeding program. However, these birds still required 

nearly twice as much feed per gram of gain than fast-growing broiler strains require. 

Therefore, regardless of the feeding strategy employed, producers interested in raising 

heritage breeds will need to provide these birds with more feed than would typically be 

provided to a broiler.  

The diets that the heritage breeds self-selected were higher in energy, but lower in 

protein and methionine than the diets selected by the meat-type birds. This suggests 

heritage breeds may have lower nutrient requirements which would allow for the use of 

lower-nutrient-density diets and more marginal feedstuffs. It may also make these breeds 

potentially useful in alternative production systems such as organic which restrict or ban 
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synthetic amino acid supplementation (USDA 2012a; USDA 2012b).. However, further 

research would need to be conducted to determine the actual nutrient requirements for 

these, and other, heritage breeds. Additionally, further research is needed to determine the 

carcass characteristics and meat quality of heritage breeds. 
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3.6 Tables  
 

Table 3.1. Analyzed nutrient composition of self-selection feed choices 

Nutrient Protein 
Concentrate 

Cracked 
Corn 

Pearl Millet Rolled       
Naked Oats 

Energy, kcal ME/kg 
(calculated) 

2163 3390 3240 3180 

Crude protein, % 39.0 7.9 11.6 14.4 
Methionine, % 0.51 0.16 0.28 0.23 
Lysine, % 2.47 0.27 0.20 0.58 
Calcium, % 2.14 0.01 0.05 0.84 
Phosphorus, % available 1.10 0.09 0.10 0.17 

 

Table 3.2. Protein concentrate formulation 

Ingredient Inclusion level 
Buckwheat 13.40% 
Soybean meal, solvent extracted 64.78% 
Fishmeal 4.36% 
Field peas 8.93% 
Dicalcium phosphate 4.47% 
Limestone 2.01% 
Salt 1.01% 
Vitamin-mineral premix 1 0.56% 
Integral® 2 0.45% 
Enzyme complex 3 0.04% 
1 Akey Layer Starter Breeder Premix (Akey, Lewisburg, OH) 

2 Integral® (Alltech Inc., Nicholasville, KY) 

3 Allzyme-SSF® (Alltech Inc., Nicholasville, KY) 
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3.7 Figures 
 

 

Figure 3.1. Pattern of average body weight (grams) versus time (days) for meat-type birds 
and heritage breeds from 21 days of age to a 2300-gram live weight 

 

 

Figure 3.2. Pattern of average daily feed intake (grams/bird/day) versus body weight 
(kilograms) for meat-type chickens and heritage breeds from 0.25 to 2.5 kilograms 
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CHAPTER 4: Carcass traits of alternative breed meat birds provided either a self-selected 

feeding program or a complete broiler starter diet. 

4.1 Abstract 

Due to the recent resurgence in the popularity of keeping small flocks of chickens, 

interest in the production characteristics of heritage chicken breeds has increased. This 

study was conducted to evaluate the carcass yield of alternative chicken genotypes raised 

for meat production. Birds were raised on a self-selection feeding program that included a 

protein concentrate (39% CP with added vitamins and minerals) without added 

methionine and three grains that were similar in energy content, but differed in protein 

and methionine content (cracked corn, naked oats, and pearl millet). The chickens 

utilized were Cornish Cross males (CCM), Cornish Cross females (CCF), Red Rangers 

males (RR), and males from three heritage breeds (Rhode Island Red (RIR), Barred 

Plymouth Rock (BPR), and Black Australorp (BA). Birds were processed after the 

average body weight for the genotype reached 2300 grams. CCM, CCF, and RR reached 

this weight by 49, 56, and 63 days of age respectively. At 70 days of age, the heritage 

breeds had not yet reached target weight and were split into two groups – one remaining 

on self-selection and one placed on a complete broiler starter diet (3084 kcal ME/kg, 22% 

CP). The heritage breeds reached target weight by 140 days of age. The parameters 

measured at processing included live weight, carcass weight without giblets (WOG), part 

weights (boneless breasts with skin, whole legs, and wings), fat pad weight, and organ 

weights. CCM and CCF had higher WOG yields when compared with the other 

genotypes (74.8 vs. 67.4%, SEM = 1.2%; P < 0.0001). CCF had higher boneless breast 

yields than CCM, and both had higher boneless breast yields than the other genotypes 

(33.5 vs. 31.2 vs. 19.2%, SEM = 0.7%; P < 0.0001). Conversely, whole leg and wing 

yields were lower (P < 0.0001) for the CCM and CCF than for the other genotypes. As a 

percentage of live weight, liver weights were higher (P < 0.0001) for the CCM, CCF, and 

RR than for the heritage breeds. CCM, CCF, and RR had smaller (P = 0.0001) gizzards 

than the heritage breeds on self-selection diets. Heritage breeds switched to broiler starter 

had smaller (P < 0.05) gizzards and smaller (P < 0.05) fat pads than those remaining on 

self-selection. However, there was no difference (P > 0.05) in carcass, liver, heart, or 

lung yields between heritage breeds using the two feeding strategies.  
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4.2 Introduction 

While heritage breeds and slow-growing genotypes currently make up a small 

portion of the global commercial chicken meat industry, there is growing interest in 

utilizing these breeds. Proponents of these breeds suggest they have better fertility, better 

foraging ability, improved longevity, better disease resistance, and better tolerance to heat 

and cold than modern commercial strains (Heinrichs and Schrider, 2005). If true, these 

may make these birds particularly well-suited to specialty production systems such as 

organic and free-range. However, there is little to no data available to producers 

interested in raising these breeds. One of the few published studies regarding a heritage 

breed found that, at the same body weight, Delaware chickens (a heritage breed) had 

lower WOG yields than commercial meat-type birds (McCrea et al., 2014). This agrees 

with the general findings of other researchers that slow-growing meat-type strains have 

lower WOG and breast yields than fast-growing strains  (Havenstein et al., 2003a; 

Fanatico et al., 2005c; Golian et al., 2007; Chen et al., 2013; Del Castilho et al., 2013; 

Collins et al., 2014). This is not surprising considering the visual difference in 

conformation between the broad breasted modern broilers and other types of chickens. 

However, the production characteristics including carcass and part yields are vital 

information for producers needing to formulate business plans or determine how to price 

their products. Therefore, the objective of this study was to evaluate the carcass and part 

yields of males from three heritage breeds and compare these with a slow-growing meat-

type strain (Red Ranger) and a fast-growing meat-type strain (Cornish  Cross). 

4.3 Materials and methods 

This experiment was conducted at the Alltech-University of Kentucky Research 

Alliance Poultry Farm. All procedures for this study were conducted under protocols 

approved by the University of Kentucky Institutional Animal Care and Use Committee 

(IACUC). This study utilized the birds from the experiment in Chapter 3.   

4.3.1 Animals and husbandry 

Birds were raised on a self-selection feeding program that included a protein 

concentrate (39% CP) without added methionine and three grains that were similar in 

energy content, but differed in protein and methionine content (cracked corn, naked oats, 
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and pearl millet). The breeds utilized were Cornish Cross males, Cornish Cross females, 

Red Rangers males, and males from three heritage breeds (Rhode Island Red, Barred 

Plymouth Rock, and Black Australorp). Birds were processed when the average body 

weight for the genotype reached 2300 grams. Cornish Cross males, Cornish Cross 

females, and Red Ranger males reached this weight by 49, 56, and 63 days of age 

respectively. At 70 days of age, the heritage breeds had not yet reached target weight and 

were split into two groups – one remaining on self-selection and one placed on a 

complete broiler starter diet (3084 ME kcal/kg, 22% CP). The heritage breeds reached 

target weight by 140 days of age. 

4.3.2 Data collection 

Due to expected differences in growth rates, birds were processed when the 

average body weight for a genotype reached 2300 grams. Therefore, Cornish Cross 

males, Cornish Cross females, and Red Ranger males were processed at 52, 60, and 69 

days of age respectively, and Rhode Island Red, Barred Plymouth Rock, and Black 

Australorp males were processed at 148 days of age. Feed was removed 10 hours before 

processing. At processing, four birds per pen were weighed, and then euthanized by 

electrical stunning followed by exsanguination in accordance with University of 

Kentucky IACUC approved procedures. After euthanasia, birds were immersed in a hot 

water bath and then de-feathered using a semi-automated chicken plucker. The head, 

neck, feet, and internal organs were removed to determine a hot carcass weight. The 

heart, liver, lungs, gizzard, and abdominal fat (fat pad) weights were recorded. Following 

a 3-hour chill, the cold carcass weight without giblets (WOG) was recorded and then 

breast filets (pectoralis major – deboned with and without skin), tenders (pectoralis 

minor), wings, and whole legs were removed from each carcass and weighed to 

determine part yields. 

4.3.3 Statistical analyses 

Data for this experiment were subjected to statistical analysis of variance using 

the general linear model function of SAS® (SAS v. 9.3, Cary, NC) with genotype as the 

dependent variable. The replicate pen of birds served as the experimental unit. Fisher’s 
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least significant difference test was used to determine significance among means with a 

significance set at P < 0.05. 

To compare the effect of a complete broiler starter vs. self-selection feeding, 

analysis of variance was conducted for the data using the general linear model function of 

SAS® (SAS v. 9.3, Cary, NC) with feeding strategy as the dependent variable. The 

replicate pen of birds served as the experimental unit. Fisher’s least significant difference 

test was used to determine differences among means with a significance set at P < 0.05. 

 

4.4 Results 

4.4.1 Live weight 

The intent was to process birds at a common weight of 2300 grams. However, due 

to issues with scheduling, the live weight of all but the Barred Plymouth Rock birds 

exceeded the target of 2300 grams at processing. The Cornish Cross males, Cornish 

Cross females, Red Ranger males, and heritage breeds were processed at 52, 60, 69, and 

148 days of age respectively. The average live weight for the processed birds from each 

genotype is shown in Table 4.1. The Cornish Cross males and females (2766 grams) were 

heavier than the heritage breeds (2366 grams), and the Red Rangers were intermediate at 

2628 grams (SEM = 79; P < 0.0001).  

4.4.2 Chilled carcass weight without giblets (WOG) yield 

The average weight of the chilled carcass without giblets (WOG), expressed in 

grams and listed in Table 4.1, followed a similar pattern to live weight with the exception 

of the Red Ranger. Chilled WOG weights were higher (P < 0.01) for Cornish Cross 

males and females than for Red Rangers or the heritage breeds. Expressed as a 

percentage of the live weight (Table 4.2), the chilled WOG yield was higher for Cornish 

Cross males and females (74.8%) than for the other breeds (67.4%; SEM = 1.2%; P = 

0.0001).  

4.4.3 Abdominal fat yield 

The average weight of the abdominal fat (fat pad) for each genotype was reported 

in Table 4.1. Fat pad weight was similar among genotypes (45.4 ± 7.2 grams; P > 0.05), 
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but there were differences (P < 0.05) among genotypes in fat pad yield as a percentage of 

the live weight as shown in Table 4.2.   

4.4.4 Visceral organ yields 

4.4.4.1 Liver 
The average weight of the liver for each genotype was reported in Table 4.1. On a 

weight-basis, the meat-type birds (Cornish Cross males, Cornish Cross females, and Red 

Ranger males) had heavier livers than the heritage breeds (45.5 vs 26.4 grams; SEM = 

1.8; P = 0.0001). This pattern remains when liver yield is expressed as a percentage of 

the live weight as shown in Table 4.2. The meat-type birds had higher liver yields than 

the heritage breeds (1.7 vs 1.1%; SEM = 0.06%; P = 0.0001).  

4.4.4.2 Heart 
The average weight of the heart for each genotype was reported in Table 4.1. 

Heart weights varied by genotype with Red Rangers having heavier (P < 0.05) hearts 

than Cornish Cross males, and both having heavier (P < 0.05) hearts than the heritage 

breeds. Within the heritage breeds, Rhode Island Reds had heavier (P < 0.05) hearts than 

Black Australorps and both had heavier (P < 0.05) hearts than Barred Plymouth Rocks. 

The heart weight for Cornish Cross females was intermediate between Rhode Island Reds 

and Black Australorps. When expressed as a percentage of the live weight (Table 4.2), 

heart yield was highest for Red Rangers (0.55%) and lowest for Cornish Cross females 

(0.41%) with the other genotypes intermediate (SEM = 0.02%; P < 0.01).  

4.4.4.3  Gizzard 
Gizzard weights varied by genotype with heritage breeds having heavier (P < 

0.05) gizzards than meat-type birds as shown in Table 4.1. When expressed as a 

percentage of live weight  (Table 4.2), the gizzard yield was highest for the Barred 

Plymouth Rock birds (2.64%), followed by the other two heritage breeds (2.09%), with 

the meat-type  birds having the lowest gizzard yield (1.46%; SEM = 0.09%; P = 0.0001) 

4.4.4.4 Lung 
Lung weights varied (P < 0.05) by genotype with no consistent pattern as shown 

in Table 4.1. When expressed as a percentage of live weight (Table 4.2), the lung yield 
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was higher for the Red Ranger males (0.72%) than for any of the other genotypes 

(0.55%; SEM = 0.04%; P < 0.05).  

4.4.5 Boneless breast yield (with and without skin) 

The average weight of the boneless breasts (pectoralis major) with and without 

skin for each genotype is listed in Table 4.3.  Boneless breasts with skin were weighed 

for all genotypes. Cornish Cross females had heavier (P < 0.05) boneless breast with skin 

weights than Cornish Cross males (699 vs 638 grams), and both Cornish Cross birds had 

heavier (P < 0.05) boneless breast with skin weights than the Red Ranger males (362 

grams). The heritage breeds had the lowest (P < 0.05) boneless breast with skin weights 

(299 grams) with no difference among the three breeds. When expressed as a percentage 

of the chilled WOG weight (Table 4.4), boneless breast with skin yield was higher for the 

Cornish Cross females (33.5%) than for the Cornish Cross males (31.2%), and both had 

higher yields than the other genotypes (19.2%; SEM = 0.7%; P = 0.0001). 

Boneless, skinless breast weights were obtained for all genotypes except for the 

Cornish Cross males and followed a similar pattern. Cornish Cross females had higher (P 

= 0.0001) boneless, skinless breast weights than the Red Rangers and heritage breeds. 

Boneless, skinless breast yield as a percentage of the chilled WOG weight was also 

higher (P = 0.0001) for Cornish Cross females than for the Red Rangers and heritage 

breeds.  

4.4.6 Whole leg yield 

The average whole leg weight, which included both the thigh and the drumstick, 

for each genotype was reported in Table 4.3. There were no differences among the 

genotypes for the weight of the whole leg (590 ± 21 grams; P > 0.05). However, when 

expressed as a percentage of the chilled WOG weight (Table 4.4), whole leg yield was 

higher (P < 0.05) for the heritage breeds (36.2%) than for the Red Ranger males (34.1%), 

and both were higher than the Cornish Cross males (30.3%). The Cornish Cross females 

had the lowest whole leg yield (27.9%; SEM = 0.2%; P < 0.0001).   

4.4.7 Wing with tip yield 

Both wings (with tip) were weighed and the average weight for each genotype 

was reported in Table 4.3. On a weight basis, the Red Ranger males had heavier (P < 
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0.05) wings than the Black Australorp and the Barred Plymouth Rock, and the other 

genotypes were intermediary with no clear pattern. However, a clear pattern emerges 

when wing yield is expressed as a percentage of the chilled WOG weight as reported in 

Table 4.4.  The heritage breeds had the largest wing yield (12.5%), followed by the Red 

Ranger males (13%), with the Cornish Cross males and females having the lowest wing 

yield (10.2%; SEM = 0.2%; P = 0.0001). 

4.4.8 Effect of feeding strategy 

At 70 days of age, about half of the heritage breed birds in each pen were 

switched on to a broiler starter. The effect of breed and feeding strategy on chilled WOG, 

fat pad, and organ yields at 148 days of age were reported in Table 4.5. There was no 

effect (P > 0.05) of breed or feeding strategy on chilled WOG yield or lung yield as a 

percentage of live weight. However, heritage breeds on self-selection diets had greater 

gizzard yields (2.27 vs 1.92%, SEM = 0.08%; P < 0.01) and greater fat pad yields (1.79 

vs 0.94%, SEM = 0.12%; P < 0.001) than those switched to broiler starter.  

While there was no main effect of breed or diet on liver yield, an interactive effect 

of breed x diet was noted. For Rhode Island Reds, birds fed broiler starter had greater 

liver yields than birds on self-selection feeding. Meanwhile, the opposite was true for 

Barred Plymouth Rocks with birds on the broiler starter diet having lower liver yields 

than birds on self-selection feeding. Finally, there was no difference in liver yields 

between the two feeding strategies for Black Australorps.  

The effect of breed and feeding strategy on breast (boneless, with and without 

skin), whole leg, and wing yields as a percentage of the chilled WOG weight were 

reported in Table 4.6. There was no difference (P > 0.05) in part yields between the 

feeding strategies. With the exception of wing yield, part yields were similar (P > 0.05) 

among breeds. Black Australorps had lower (P < 0.05) wing yields than either Rhode 

Island Reds or Barred Plymouth Rocks. 

 

4.5 Discussion 

Previous research (Chapter 3) showed that males from three heritage breeds 

(Rhode Island Red, Barred Plymouth Rock, and Black Australorp) and a slow-growing 
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meat-type strain (Red Ranger) had slower growth rates and poorer feed efficiency than 

fast-growing meat-type strains (Cornish Cross). Additionally, the heritage breeds were 

shown to self-select diets that were higher in energy and lower in protein than the diets 

selected by fast-growing meat-type chickens. However, the implications of this growth 

depression and difference in diet selection on carcass yield were unclear. Therefore, this 

study was conducted to evaluate the carcass and part yields of the heritage breeds and the 

slow-growing meat-type strain. 

4.5.1 Use of alternative genotypes 

At a common live weight of approximately 2300 grams, Cornish Cross males and 

females had higher chilled WOG yields than Red Rangers or heritage breeds (74.8 vs 

67.4%, SEM = 1.2%; P < 0.05). These results are consistent with the findings of McCrea 

et al. (2014) which showed that Delaware chickens (a heritage breed) had lower WOG 

yields than a commercial broiler strain. Additionally, Collins et al. (2014) showed that the 

Athens Canadian Random Bred meat-type chickens (representative of 1950’s genetics) 

had lower carcass yields than Cobb 500 high-yielding broilers at 6, 8, and 10 weeks of 

age.  

Additionally, there was a conformational difference in the carcasses of Red 

Rangers and heritage breeds when compared with Cornish Crosses. When compared with 

the Cornish Cross, the Red Ranger and heritage breeds had lower boneless breast and 

higher whole leg and wing yields as a percentage of their respective chilled WOG 

weights. These results are consistent with the findings of a study by Fanatico et al. (2008) 

which showed that slow-growing genotypes had lower breast meat yields, but higher 

wing and leg yields than fast-growing genotypes. Furthermore, the results make sense in 

the context of selection pressure placed on broilers which has increased the overall 

muscle mass of the chicken, with particular emphasis on breast muscle production 

(Havenstein et al., 2003b; Schmidt et al., 2009; Zuidhof et al., 2014). The average breast 

yield of the heritage breeds utilized in this study was actually similar to the breast yield 

(~19.1 ± 0.3%) reported by Bertechini et al. (2014) for males from white- and brown-

egg-laying strains. 

Zuidhof et al. (2014) reported that commercial selection pressures have reduced 

fat deposition in broilers. This is partially supported by the data from the present study 
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which showed that heritage breeds had higher abdominal fat yields than Cornish Cross 

males. However, Cornish Cross females had similar abdominal fat yields as heritage 

breeds. This may be a reflection of the dietary choices these breeds made on the self-

selection feeding program which were described in Chapter 3. 

While the effect of genotype on the yield of visceral organs has not been 

extensively studied, a few differences between fast- and slow-growing meat-type birds 

have been noted in the literature. In one such study, Collins et al. (2014) found that 

Athens Canadian Random-bred birds (representative of 1950s meat-type chickens) had 

significantly higher internal organ weights relative to their body weight than Cobb 500 

broilers at 6, 8, and 10 weeks of age. In the present study, differences among the 

genotypes for relative visceral organ weights were also noted. In particular, on the self-

selection diet, heritage breeds had larger gizzards than the Cornish Cross birds which 

could allow the birds to better process larger feedstuffs. Additionally, the relative lung 

capacity for Red Rangers was higher than that of either fast-growing meat-type strains or 

heritage breeds. However, there was no difference in relative lung capacity for heritage 

breeds when compared with Cornish Cross males. This contradicts the findings of 

Havenstein et al. (1994b, 2003a) which reported significantly smaller relative lung 

weights in modern broilers when compared with historical stains like the Athens 

Canadian Random Bred.  

In the present study, the relative heart weights for the three heritage breeds were 

similar to that of the Cornish Cross males. This disagrees with the findings of Schmidt et 

al. (2009) which compared the tissue growth of a heritage broiler line maintained at the 

University of Illinois (UIUC) and a Ross 708 broiler. The UIUC heritage line was a New 

Hampshire x Plymouth Rock cross developed in the 1950s to represent the typical broiler 

utilized during that time. The UIUC has been maintained as a random-bred population 

since its development. The Ross 708 line was introduced in the early 2000s as a high-

yielding meat chicken. Schmidt et al. (2009) noted that the relative weight of the heart 

muscle was smaller for the Ross 708 birds. When birds of equivalent mass were 

compared, the UIUC birds had larger hearts than the Ross 708 birds. On the other hand, 

Schmidt et al. (2009) found that comparably sized UIUC and Ross 708 birds had 

comparably sized livers, while the heritage breeds in the present study had smaller livers 
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than both the fast-and slow-growing meat-type birds. One factor that may explain the 

difference in findings is that Schmidt et al. (2009) evaluated organ yields at 35 days of 

age and the average live weights were smaller for both the UIUC and the Ross 708 than 

the live weight of the birds in the present study.  

4.5.2 Use of alternative feeding strategies for heritage breeds 

The results of Chapter 3 indicated that heritage breeds on a broiler starter diet had 

higher average daily gain and improved feed efficiency when compared to those on the 

self-selection feeding program. When the carcasses of these birds were examined, 

heritage breeds using a self-selection feeding program had larger gizzards. 

Additionally, birds on the self-selection feeding program had larger fat pads than 

those fed a complete broiler starter diet. This is consistent with the literature which shows 

that regardless of the feed choices provided, self-selection-fed birds consumed more 

energy and less protein than conventionally-fed birds and often had greater fat content in 

the viscera. (Leeson and Caston, 1993; Sahin, 2003; Cerrate et al., 2007; Syafwan et al., 

2012; Fanatico et al., 2013; Catanese et al., 2015). 

Feeding strategy had no effect on chilled WOG yield as a percentage of the live 

weight or part yields as a percentage of the chilled WOG weight. This is consistent with 

some of the literature which suggests self-selection feeding does not affect carcass yield 

(Rack et al., 2008; Ozek et al., 2012). However, additional literature suggests self-

selection feeding reduced carcass yield when compared with feeding formulated diets 

(Leeson and Caston, 1993; Fanatico et al., 2013). These differences may simply be a 

reflection of the differences in the nutrient composition of the diets used in the studies, 

but they also suggest that the effects of self-selection feeding vary and may be affected 

by a number of factors. 

4.6 Conclusions 
Based on the results of this study, it is clear that genetic selection of meat-type 

birds has effectively improved both growth performance and carcass yields of these birds 

when compared with heritage breeds. Therefore, more heritage breed chickens are needed 

to produce the same amount of meat as a single fast-growing meat-type bird. The 

inefficiency of the heritage breed chickens makes them a poor, unsustainable choice for 
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us in meat production, particularly on a large scale. While slow-growing meat-type 

strains such as the Red Ranger are a more viable option than heritage breed chickens, 

these strains will also require more feed and produce less meat per bird than fast-growing 

meat-type strains. Consequently, producers interested in utilizing slow-growing meat-

type birds and/or heritage breeds need to command a premium price to make their 

products economically viable. In the current marketplace, this likely means utilizing an 

alternative production system such as free-range or pasture poultry. However, further 

research would need to be done to determine whether this type of management affects the 

carcass and part yields for these birds. Additionally, the effect of genotype and 

management system on meat quality traits such as texture, flavor, color, and oxidative 

stability would need to be evaluated.  
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CHAPTER 5: Effects of alternative feedstuffs and dietary enzymes on the growth 

performance, carcass yield, and meat quality of alternative breed chickens 

 

5.1 Abstract 

This study was conducted to assess the effect of replacing corn and soybean meal 

with alternative feedstuffs and dietary enzymes on the performance and carcass 

characteristics of straight-run commercial broilers (BR) and two alternative breeds of 

chickens: males from a Black Sex-Link cross (BSL) and straight-run Rhode Island Reds 

(RIR). A 3 x 5 factorial arrangement of breeds and dietary treatments was used with the 

following isocaloric (3000 kcal ME/kg) and isonitrogenous (20% CP) diets: 1. Corn-

soybean meal (CSM) based diet; 2. ~30% of CSM in Diet 1 replaced with field peas 

(Peas); 3. Diet 2 with a dietary enzyme complex (Allzyme SSF®, Alltech Inc., 

Nicholasville, KY) added at 0.02% of diet (Peas+); 4. ~50% of CS in Diet 1 replaced 

with a 3:1:1 ratio of field peas, buckwheat, and flax seed (Mix); 5. Diet 4 with 0.02% 

Allzyme SSF® added (Mix+). Twelve chicks per pen were placed for three replicates of 

BR and RIR, and two replicates of BSL males. Birds were housed in floor pens (0.19 

m2/bird) with diets and water provided on an ad libitum basis. Average daily feed intake 

and average daily gain were higher (P < 0.05) for BRs than for BSL males, which in turn 

were higher than RIRs. BRs had lower (P < 0.05) feed:gain ratios when compared with 

the BSL males and the RIR birds. Replacing 30% of the CSM with field peas did not alter 

growth performance of chicks. However, replacing 50% of the CSM with a 3:1:1 ratio of 

field peas, buckwheat and flax seed reduced (P < 0.05) average daily gain and increased 

(P < 0.05) average daily feed intake resulting in poorer (P < 0.05) feed:gain ratios. These 

negative effects were alleviated by adding enzymes to the diet.  

Two males and two females from each pen of BR (42 days of age) and RIR (96 

days of age), and four males from each pen of BSL (96 days of age) were weighed and 

processed. Average live weight was 2073 grams for BR males, 2067 grams for BR 

females, 1796 grams for RIR males, and 1328 grams for RIR females, and 1916 grams 

for BSL males. Main effects of breed, sex, and diet, as well as interactive effects were 

evaluated.  BR breast meat was redder (P < 0.05) than RIR and BSL breast meat. Breast 
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meat of birds fed CSM was yellower (P < 0.05) than that of those fed other diets. Drip 

loss was not affected (P > 0.05) by breed or dietary treatment for boneless skinless breast 

or leg quarters. For breast and thigh meat samples, Thirobarbituric Acid Reactive 

Substances (TBARS) increased during storage. At each time point, BR had lower (P < 

0.05) TBARS values than RIR and BSL. Birds fed CSM, Peas, and Peas+ had lower (P < 

0.05) TBARS values than birds fed Mix and Mix+. Birds fed Mix+ had lower (P < 0.05) 

TBARS values than birds fed Mix.  

In summary, broilers had better growth performance than BSL males and RIRs. 

For all three breeds, field peas replaced 30% of the CSM diet without reducing growth 

performance or carcass yields. However, a 50% replacement of CSM with a 3:1:1 ratio of 

field peas, buckwheat, and flax seed reduced growth performance and carcass yield. 

Additionally, the latter diet negatively affected lipid peroxidation, but this effect was 

mitigated through the inclusion of dietary enzymes. 

5.2 Introduction 

As interest in alternatives to the conventionally-produced meat-type birds grows, 

the demand for slower-growing meat-type birds has grown. Unfortunately, these strains 

make up only a small portion of the global broiler industry and many breeds are only 

available in Europe (Gee, 2016). One alternative that would be readily available are 

layer-type males. Worldwide, 3.34 billion day-old female egg-laying type chicks are 

hatched each year, and a similar number of male chicks are discarded (Bertechini et al., 

2014). Egg producers have been under pressure to change their production practices 

(Mench et al., 2011) which provides further benefits to the use of egg-laying-type males 

as meat birds. Rather than cull billions of male chicks a year, these chicks could serve to 

fill this niche market. Unlike the slow-growing meat-type strains, demand for egg-laying-

type males is unlikely to outpace supply. There have been a few studies looking at egg-

laying-type males as meat birds; however, these studies have fed birds typical broiler 

diets.  While these studies found low body weights after a typical broiler-length grow-out 

(Bertechini et al., 2014), the meat quality for these birds was deemed to be acceptable 

(Lichovnikova et al., 2009; Bertechini et al., 2014) 

In the present study, three genotypes were compared: commercial broilers (Cobb 

700), Rhode Island Reds, and males from a Black Sex-Link cross. Rhode Island Reds are 
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one of the most popular heritage breeds of chicken in America. The Black Sex-Link cross 

utilized in this study was created by crossing Rhode Island Red roosters on Barred 

Plymouth Rock hens. The inheritance of the barring gene (which is carried on the Z sex 

chromosome) produces chicks which can be sexed by the color of their down at hatch. 

This enables males and females to easily be identified even without an experienced chick 

sexer. In turn, males and females can be raised separately with their intended purpose 

(meat or egg production) in mind from day one. 

Rhode Island Reds and Black Sex-Link crosses are more likely to be used in 

alternative production systems such as organic, free-range, or pasture poultry than in 

conventional production systems. Therefore, diet is another aspect that must be 

considered consider. This study utilized alternative ingredients such as field peas, 

buckwheat, and flax seed to partially replace corn and soybean meal in the diets. These 

types of feeds are more prevalent in organic systems where producers cannot use 

genetically modified crops (USDA 2012a; USDA 2012b)., so the ability of these 

chickens to adapt to alternative ingredients in their diets, whether naturally or through the 

use of exogenous enzymes added to the diet, is important. Therefore, the objective of this 

study was to evaluate the replacement of corn and soybean meal with alternative 

feedstuffs and dietary enzymes on the performance and carcass characteristics of straight-

run commercial broilers, straight-run Rhode Island Reds, and males from a Black Sex-

Link cross. 

5.3 Materials and methods 

Experiments were conducted at the Alltech-University of Kentucky Research 

Alliance Poultry Farm. All procedures for this study were conducted under protocols 

approved by the University of Kentucky Institutional Animal Care and Use Committee 

(IACUC). This trial was conducted from April 2014 through July 2014.  

5.3.1 Animals, dietary treatments, and husbandry 

The fifteen experimental treatments utilized a 3 x 5 factorial arrangement which 

consisted of 3 genotypes and 5 diets. The genotypes utilized were a commercial broiler 

(as hatched), Rhode Island Red (as hatched), and a Black Sex-Link cross (males only). 

The chicks were produced from the University of Kentucky’s breeder flocks. The 
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commercial broiler utilized was the Cobb 700 which is a high-yielding meat-type strain 

commonly used for meat production. The Black Sex-Link cross utilized in this study was 

created by crossing Rhode Island Red roosters on Barred Plymouth Rock hens. The 

parent stock was initially purchased as chicks from Murray McMurray Hatchery 

(Webster City, IA). 

The following isocaloric (3000 kcal AMEn/kg) and isonitrogenous (20% CP) 

diets were used: Diet 1) corn-soybean meal (CSM); Diet 2) ~30% of the CSM-based diet 

replaced with field peas; Diet 3) Diet 2 with and enzyme complex (Allzyme SSF®, 

Alltech Inc., Nicholasville, KY) added; Diet 4) ~50% of the CSM replaced with a 3:1:1 

mixture of field peas, buckwheat, and flax; and Diet 5) Diet 4 with the enzyme complex 

added. Integral® (Alltech Inc., Nicholasville, KY), a glucomannan containing yeast 

product, was added to each diet at a 0.1% inclusion level to reduce potential mycotoxin 

absorption in the birds. The diet composition and nutrient content of each diet is 

described in Table 5.1. Three replicate groups of 12 chicks were placed for each genotype 

x diet combination for Rhode Island Red and broilers. However, due to insufficient 

numbers of males hatched from the Black Sex-Link cross, there were only two replicate 

groups of 12 chicks placed for each treatment of Black Sex-Link birds.   

Chicks were housed in floor pens bedded with dried pine shavings. The floor pen 

dimensions were 1.22 x 1.83 meters which provided 0.19 square meters of space to each 

bird. Birds were brooded at 29.4°C for three weeks with temperature reduced each week 

until reaching ambient outdoor temperatures. The average temperature experienced by 

broilers was 26.7°C, while the average temperature experienced by Rhode Island Red and 

Black Sex-Link birds was 25°C. The lighting program provided 22 hours of light per day 

throughout the experiment. Feed was provided on an ad libitum basis in a hanging tube 

feeder. Water was provided on an ad libitum basis via a nipple drinking system with three 

nipples per pen. 

5.3.2 Growth performance 

Chicks were weighed at the time of placement (1 day of age) and then weekly 

through processing at 42 days of age (broilers) or 96 days of age (Rhode Island Red and 

Black Sex-Link birds). Average daily gain and was calculated on a pen basis. Weekly 

feed consumption was recorded for each pen and used to calculate average daily feed 
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intake. Feed conversion ratio was calculated as grams of feed consumed per gram of 

body weight gain. Daily mortality was monitored and accounted for in average daily gain 

and average daily feed intake calculations. 

5.3.3 Carcass yield and sample collection 

Due to expected differences in growth rates, broilers were processed at 42 days of 

age, while the Rhode Island Red and Black Sex-Link birds were processed at 96 days of 

age. At processing, two males and two females from each broiler and Rhode Island Red 

treatment, and four males from each Black Sex-Link treatment per pen were euthanized 

via electrical stunning followed by exsanguination in accordance with University of 

Kentucky IACUC approved procedures. After euthanasia, birds were immersed in hot 

water bath and then de-feathered using a semi-automated chicken plucker. The digestive 

tract, giblets (heart, liver, gizzard, and neck), lungs, feet, and shanks were removed. 

Abdominal fat (fat pad) weights were recorded (expressed as a percentage of live 

weight). Following a 3-hour chill, the chilled carcass weight without giblets (WOG) was 

recorded (expressed as a percentage of the live weight) and then breast filets (pectoralis 

major – deboned, skinless), tenders (pectoralis minor), wings, and leg quarters were 

removed from each carcass and weighed to determine part yields. Breast filets and leg 

quarters were retained and stored on ice for meat quality analysis.  

5.3.4 Drip loss and color score analysis 

Drip loss was measured using the suspension method. Deboned, skinless breast 

filets (1 filet/pen) and leg quarters (1 quarter/pen) were weighed and individually 

suspended in sealed, gallon-sized plastic storage bags. Bagged breast filets and leg 

quarters were stored at 4°C. After 3 and 7 days of storage, each sample was weighed and 

percent drip loss was calculated (expressed as a percentage of the initial weight). 

Additionally, color changes in the breast fillets were measured objectively for the 

Commission Internationale de l'Eclairage (CIE) values of lightness (L*), redness (a*), 

and yellowness (b*) using CR-310 Chroma Meter (Minolta Co, Ltd., Osaka, Japan) 

calibrated against a white tile. Color measurements were measured in duplicate on the 

ventral surface of each breast filet on day 0, 3, and 7 of storage. 
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5.3.5 Oxidative stability 

The effect of genotype and dietary treatment on lipid oxidation of raw breast filets 

and chicken thighs was assessed by measuring thiobarbituric acid reactive species 

(TBARS) according to procedures similar to Paul (2015). One breast filet (deboned, 

skinless) and one thigh (deboned, skinless) were used per pen. Each breast filet and thigh 

sample was cut into three equal sections. Each section was separately placed onto a 

Styrofoam tray with a moisture pad and then covered with polyvinyl chloride (PVC) 

overwrap and stored in a retail cooler set to 2°C under 1300 lux fluorescent lighting. 

TBARS assay was performed at 1, 3, and 7 days of storage. For the TBARS assay, 5 

grams of meat were homogenized in 22.5 ml of 11 trichloroacetic acid (TCA) solution 

using an Ultra-Turrax® T25 rotor-stator homogenizer and saw tooth dispersing element 

(IKA® Works, Inc., Wilmington, NC). The homogenate was filtered through Whatman #1 

filter paper (in duplicate). Then 1 ml of the filtrate was mixed with 1 ml of 20 mM 

thiobarbituric acid (TBA) and incubated at 25°C. A blank was prepared by mixing 2ml of 

11 TCA solution with 2ml of 20 mM TBA solution. After 20 hours of incubation, the 

absorbance of the malondialdehyde (MDA) in the solution was read at 532 nm on a 

Thermo Scientific GENESYSTM 10S UV-Vis Spectrophotometer. Given the MDA 

extinction coefficient factor of 1.56 x 105M-1cm-1, the concentration of MDA (expressed 

as mg MDA/kg meat) was calculated based upon Beer’s Law (1852) and the following 

equation:  

𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑀𝐴𝐴

𝐿𝐶𝐶𝐿𝐶ℎ (1)𝑥𝑥
𝑥

1𝐿
𝑇𝐶𝑇𝑇𝑇𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

Where, ABS refers to absorbance of MDA at 532 nm, Length refers to 
path length of the sample, K (a constant) refers to the product of the 
extinction coefficient factor and molecular weight of MDA, and Tissue 
Concentration accounts for the concentration of the meat sample after 
homogenization and dilution in TCA and TBA solutions. 

 

5.3.6 Bone quality 

At 42 days of age (broilers) and 96 days of age (Black Sex-Link males and Rhode 

Island Red birds), two birds per pen were randomly selected and euthanized by argon gas 

asphyxiation followed by cervical dislocation. Left tibae and humeri were collected and 
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pooled by pen for breaking strength analysis via Instron Testing Instrument (Model 

4301). Excess soft tissue was removed from the bone shaft prior to analysis of breaking 

strength. Bones were placed flat on a raised platform where a stainless steel wedge probe 

aligned perpendicular to the center of the bone shafts applied 100 kilograms of force at a 

speed of 40 millimeters per second until the bones fractured. Right tibae and humeri were 

collected and pooled by pen for percent ash analysis. Bones were boiled in deionized 

water for 15 minutes to remove flesh and dried at 105°C for a minimum of 12 hours. 

Bones were then de-fatted in changes of petroleum ether until petroleum ether solution 

appeared to be free of fat residues. De-fatted bones were dried overnight at 105°C in a 

forced air oven and then ashed at 600°C for 6 hours in a muffler furnace. Ash percent was 

calculated on a dry matter basis. 

5.3.7 Statistical analyses 

For growth performance, color score, and bone quality, an analysis of variance for 

a 3 x 5 factorial arrangement of treatments was conducted using the general linear model 

procedures of SAS® (SAS v. 9.3, Cary, NC). This analysis allowed for the determination 

of the main effect of genotype, the main effect of diet, and the interactive effects of 

genotype and diet. To determine the effect of sex on carcass and part yields, an analysis 

of variance for a 2 x 2 x 5 factorial arrangement of genotype, sex, and diet was 

conducted. For TBARS, an analysis of variance 2 x 2 x 5 factorial arrangement of 

genotype, tissue, and diet was used. Fisher’s least significant difference test was used to 

determine differences among means with significance set at P < 0.05. 

5.4 Results 

5.4.1 Growth performance 

Growth performance was monitored from 1 day of age until processing (42 days 

of age for broilers and 96 days of age for Black Sex-Link males and Rhode Island Red 

birds). Parameters measured included average daily gain, average daily feed intake, and 

feed conversion ratio (Table 5.2). No breeds x diet interactions (P > 0.05) were observed 

for growth performance parameters, so only main effects were reported. 
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5.4.1.1 Effect of breed 

Initial body weight for broiler chicks (45.4 ± 0.5 grams) was higher (P < 0.05) 

than the initial body weights of Black Sex-Link and Rhode Island Red chicks (42.3 ± 0.3 

grams). Broilers had higher (P < 0.01) average daily gain than Black Sex-Link males, and 

both had higher (P < 0.05) average daily gain than Rhode Island Red birds. At 

processing, average body weight was 1994 grams for broilers, 1860 grams for Black Sex-

Link males, and 1577 grams for Rhode Island Red birds. Average daily feed intake for 

broilers was higher (P < 0.05) than that of Black Sex-Link males was higher, and both 

consumed more (P < 0.05) feed per day than the Rhode Island Red birds. Broilers had 

better (P < 0.0001) feed conversion than either Black Sex-Link males or Rhode Island 

Red birds.  

5.4.1.2 Effect of diet 

The initial body weight of chicks at placement was similar (P > 0.05) among 

dietary treatments, but there was a main effect of dietary treatment on growth 

performance. Replacing 30% of the CSM-based diet with field peas had no effect (P > 

0.05) on average daily gain, average daily feed intake, or feed:gain ratios. However, 

replacing 50% of the CSM-based diet with a 3:1:1 ratio of field peas, buckwheat and flax 

seed reduced (P < 0.05) average daily gain and increased (P < 0.05) average daily feed 

intake resulting in poorer (P < 0.01) feed:gain ratios. The addition of the dietary enzyme 

complex alleviated some of these negative effects. 

5.4.2 Carcass yield: Broilers vs. Rhode Island Reds (males and females) 

Broilers were processed at 42 days of age and Rhode Island Reds were processed 

at 96 days of age. Two males and two females from each pen were weighed and 

processed in order to evaluate the effects of breed, diet, and sex on carcass yield. The 

main effects of breed, sex, and diet on carcass and part weights are reported in Table 5.3 

and interactive effects are reported in Table 5.4. The main effects of breed, sex, and diet 

on carcass and part yields are reported in Table 5.5 and the interactive effects are reported 

in Table 5.6. 
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5.4.2.1 Live weight 

Broilers had heavier (P < 0.0001) live weights than Rhode Island Reds, and males 

had heavier (P < 0.0001) live weights than females. However, there was an interactive 

effect of breed x sex for live weights (P < 0.0001). While the average live weights of 

male and female broilers were similar (P > 0.05) at 2070 grams, Rhode Island Red males 

were heavier than Rhode Island Red females (1796 vs. 1328 grams, SEM = 44; P < 0.05).  

A main effect of diet was also noted. Replacing 30% of the CSM-based diet with 

field peas had no effect (P > 0.05) on live weight when compared with the CSM-based 

diet. However, replacing 50% of the CSM-based diet with a 3:1:1 mixture of field peas, 

buckwheat, and flax seed reduced (P < 0.05) live weight regardless of whether 

exogenous enzymes were added to the diet. Additionally, a breed x diet interaction (P < 

0.05) was noted with the 50% replacement diet resulting in greater live weight depression 

for broilers than for Rhode Island Reds. 

5.4.2.2 Chilled carcass without giblets (WOG) 

The weights of the chilled carcass without giblets (WOG) followed the same 

patterns as live weight. As a percentage of live weight, the chilled WOG yield was higher 

(P < 0.0001) for broilers than Rhode Island Reds with no effect (P > 0.05) of sex or 

interactive effect of sex x genotype.  

A main effect of diet was also noted (P < 0.0001). Replacing 30% of the CSM-

based diet with field peas did not affect chilled WOG yield (P > 0.05). However, 

replacing 50% of the CSM-based diet with a 3:1:1 ratio of field peas, buckwheat and flax 

seed reduced (P < 0.05) the chilled WOG yield regardless of whether dietary enzyme was 

added to the diet. Additionally, a breed x diet interaction (P < 0.0001) was noted – chilled 

WOG yields were depressed by the 50% replacement diets for broilers, but not for Rhode 

Island Reds. 

5.4.2.3 Abdominal fat (fat pad) 

Abdominal fat (fat pad) weight was not affected (P > 0.05) by genotype, sex, or 

interactive effects. However, as a percentage of the live weight, fat pad yields were 

higher (P < 0.0001) for Rhode Island Reds than for broilers, and were higher (P < 0.05) 

for males than for females. Additionally, a genotype x sex interaction was noted with 
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broiler males having higher (P < 0.05) fat pad yields than broilers females, while Rhode 

Island Red females had higher (P < 0.05) fat pad yields than Rhode Island Red males.  

A main effect of diet (P < 0.0001) was noted for both abdominal fat pad weight 

and yield as a percentage of live weight. Replacing 30% of the CSM-based diet with field 

peas did not affect (P > 0.05) fat pad weight or fat pad yield. However, replacing 50% of 

the CSM-based diet with a 3:1:1 ratio of field peas, buckwheat and flax seed reduced (P 

< 0.05) fat pad weight and yield regardless of whether dietary enzyme was added to the 

diet. Additionally, a genotype x diet interaction was noted for fat pad yield with a greater 

(P < 0.05) reduction in fat pad yield for Rhode Island Reds fed the 50% replacement diet 

than for the broilers fed the same diet. 

5.4.2.4 Breast filets (pectoralis major) 

Boneless, skinless breast filet (pectoralis major) weights were heavier for broilers 

than Rhode Island Reds (442 vs 166 grams; SEM = 2; P < 0.05). When expressed as a 

percentage of live weight, breast filet yield was higher for broilers than Rhode Island 

Reds (27.9 vs 15.9%; SEM = 0.3; P < 0.0001).While the breast filet weights from males 

were heavier (P < 0.0001) than those from females, there was no main effect (P > 0.05) 

of sex on breast filet yield as a percentage of the chilled WOG weight. Interestingly, there 

was a genotype x sex effect (P < 0.001) for both breast filet weight and breast filet yield. 

Breast filet weights were similar (P > 0.05) between male and female broilers, but Rhode 

Island Red males had heavier (P < 0.05) breast filets than Rhode Island Red females. As 

a percentage of live weight, breast filet yields were higher (P < 0.05) for female broilers 

than for male broilers. Conversely, Rhode Island Red females had higher (P < 0.05) 

breast filet yields than Rhode Island Red males.  

A main effect of diet (P < 0.0001) was noted for both breast weight and breast 

yield as a percentage of chilled WOG weight. Replacing 30% of the CSM-based diet with 

field peas did not affect (P > 0.05) breast filet weight or yield. However, replacing 50% 

of the CSM-based diet with a 3:1:1 ratio of field peas, buckwheat and flax seed reduced 

(P < 0.05) breast filet weight and yield regardless of whether dietary enzyme was added 

to the diet. A genotype x diet interactive effect (P < 0.001) was noted for both breast 

weight and breast yield as a percentage of live weight. There was a genotype x diet 

interactive effect (P < 0.001) with Rhode Island Reds having similar (P > 0.05)  breast 
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filet weights and yields regardless of diet, while broilers had reduced breast filet weights 

and yields when 50% of the CSM-based diet was replaced with a 3:1:1 mixture of field 

peas, buckwheat, and flax seed. 

5.4.2.5 Tenders (pectoralis minor) 

Tender (pectoralis minor) weights were heavier for broilers than for Rhode Island 

Reds (84.4 vs 44.8 grams; SEM = 1.7; P < 0.0001). As a percentage of the live weight, 

tender yields were higher for broilers than for Rhode Island Reds (5.4 vs 4.3%; SEM = 

0.1%; P < 0.0001). No main effect of sex on tender weights was noted, but tender yields 

were higher (P < 0.05) for females than for males. A breed x sex interaction was noted – 

tender weights and yields were similar (P > 0.05) between male and female Broilers, but 

tender weights were heavier (P < 0.05) for Rhode Island Red males than for Rhode Island 

Red females. Conversely, when expressed as a percentage of WOG weight, tender yields 

were lower (P < 0.05) for Rhode Island Red males than for Rhode Island Red females.  

A main effect of diet (P < 0.0001) was noted for both tender weight and tender 

yield as a percentage of chilled WOG weight. Replacing 30% of the CSM-based diet with 

field peas did not affect (P > 0.05) tender weight or yield. However, replacing 50% of the 

CSM-based diet with a 3:1:1 ratio of field peas, buckwheat and flax seed reduced (P < 

0.05) tender weight and yield regardless of whether dietary enzymes were added to the 

diet. Additionally, there was a genotype x diet interactive effect with Rhode Island Reds 

having similar (P > 0.05) tender weights regardless of diet while broilers had reduced (P 

< 0.05) tender weights when 50% of the CSM-based diet was replaced with a 3:1:1 

mixture of field peas, buckwheat, and flax seed. However, this diet x genotype interaction 

disappears when tender yield is expressed as a percentage of WOG weight. Therefore, 

tender weights would likely have been similar if the live weights had not been different. 

5.4.2.6 Wings 

Broilers had heavier wings than Rhode Island Reds (160 vs 145 grams; SEM = 

2.5; P < 0.0001). However, when expressed as a percentage of the WOG weight, wing 

yield is lower for broilers than for Rhode Island Reds (10.4 vs 14.0%; SEM = 0.1%; P < 

0.0001). Males had heavier wings than females and a breed x sex interaction was noted, 
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but the difference and the interaction disappear when wing yield is expressed as a 

percentage of the WOG weight.  

A main effect of diet (P < 0.0001) was noted for both wing weight and wing yield 

as a percentage of chilled WOG weight. Replacing 30% of the CSM-based diet with field 

peas did not affect (P > 0.05) wing weight or yield. However, replacing 50% of the CSM-

based diet with a 3:1:1 ratio of field peas, buckwheat and flax seed reduced (P < 0.05) 

wing weight and yield regardless of whether dietary enzyme was added to the diet. No 

genotype x diet interaction was noted for wing weight or yield. 

5.4.2.7 Leg quarters 

Broilers had heavier leg quarters than Rhode Island Reds (612 vs 483 grams; 

SEM = 10; P < 0.0001). However, as a percentage of the chilled WOG weight, leg 

quarters made up less of the carcass for broilers than for Rhode Island Reds (39.5 vs 

46.2%; SEM = 0.2%; P < 0.0001). Males had heavier (P < 0.0001) leg quarters and 

higher (P < 0.0001) leg quarter yields than females, but a breed x sex interaction was also 

noted. Leg quarter weights and yields were similar (P > 0.05) for male and female 

broilers, but Rhode Island Red males had heavier (P < 0.05) leg quarters than Rhode 

Island Red females. 

A main effect of diet (P < 0.0001) was noted for both leg quarter weight and leg 

quarter yield as a percentage of chilled WOG weight. Replacing 30% of the CSM-based 

diet with field peas did not affect (P > 0.05) leg quarter weight or yield. However, 

replacing 50% of the CSM-based diet with a 3:1:1 ratio of field peas, buckwheat and flax 

seed reduced (P < 0.05) leg quarter weight and yield regardless of whether dietary 

enzymes were added to the diet. No genotype x diet interaction (P > 0.05) was noted for 

leg quarter weight, but an interactive effect was noted for leg quarter yield. Replacing 

50% of the CSM-based diet with a 3:1:1 mixture of field peas, buckwheat, and flax seed 

increased (P < 0.05) the percentage of leg quarter in relation to the carcass for broilers, 

but had no effect (P > 0.05) for Rhode Island Reds. 

5.4.3 Carcass yield: Black Sex-Link males 
Four males from each pen of Black Sex-Links were weighed and processed at 96 

days of age. Carcass characteristics were evaluated and compared with broiler males (42 

days of age) and Rhode Island Red males (96 days of age). Data from females was 
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excluded from these analyses. The main effects of genotype and diet, and the interactive 

effect of genotype x diet for carcass and part weights are reported in Table 5.7 and Table 

5.8, and the effect for carcass and part yields are reported in Table 5.9. 

5.4.3.1 Live weight 

Black Sex-Link males had lower live weights than broilers males (1916 vs 2073; 

SEM = 35; P < 0.01), but heavier live weights than Rhode Island Red males (1796 

grams). There was no diet x genotype interaction for live weight. 

5.4.3.2 Carcass yield 

The weight of the chilled carcass without giblets (WOG) followed a similar 

pattern as live weight. As a percentage of live weight, the chilled WOG yield for Black 

Sex-Link males was lower than for male broilers (67.6 vs. 74.6%), but was higher than 

that of Rhode Island Red males (66.8%; SEM = 0.28; P < 0.0001). A genotype x diet 

interaction was noted with the addition of dietary enzymes to the 50% replacement diet 

improving (P < 0.05) chilled WOG yield for Black Sex-Link males and Rhode Island 

Red males, but not for broiler males.  

5.4.3.3 Abdominal fat (fat pad) 

Black Sex-Link males had heavier (P < 0.05) fat pad weights than either Rhode 

Island Reds or broiler males. As a percentage of live weight, fat pad yields were higher 

for Black Sex-Link males than for Rhode Island Red males and broiler males (1.7 vs 

1.2%; SEM = 0.1%; P < 0.05). There was no interaction between genotype and diet for 

fat pad weight or yield. 

5.4.3.4 Breast filets (pectoralis major) 

Broiler males had heavier boneless, skinless breast filets (pectoralis major) than 

Black Sex-Link and Rhode Island Red males (449 vs 193 grams; SEM = 9; P < 0.05). As 

a percentage of the chilled WOG weight, breast filet yield was higher for broiler males 

than for the other two breeds (28.6 vs 15.5%; SEM = 0.3%; P < 0.05). An interactive 

effect of diet x genotype was noted for breast filet weight and yield with diet having an 

effect on the breast filet yield of broiler males, but not on Rhode Island Red or Black 

Sex-Link males.  
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5.4.3.5 Tenders (pectoralis minor) 

Black Sex-Link males had lower tender (pectoralis minor) weights than broiler 

males (56 vs 84 grams), but both had higher tender weight than Rhode Island Red males 

(49 grams; SEM = 1.8; P < 0.0001). As a percentage of the chilled WOG weight, tender 

yields were similar (P > 0.05) between Black Sex-Link and Rhode Island Red males 

(4.2%), and both were lower than broiler males (5.4%; SEM = 0.1; P < 0.0001). No 

interactive effects of genotype x diet (P > 0.05) were noted for tender weight or yield. 

5.4.3.6 Wings 

Black Sex-Link males had heavier wings than broiler males and Rhode Island Red 

males (180 vs 164 grams; SEM = 3; P < 0.05). As a percentage of the chilled WOG 

weight, wing yield was similar for Black Sex-Link males and Rhode Island Red males 

(14.0%), and both were higher than broiler males (10.4%; SEM = 0.1%; P < 0.05). No 

genotype x diet interaction was noted for wing weight or yield. 

5.4.3.7 Leg quarters 

Black Sex-Link males and broiler males had heavier leg quarter weights than 

Rhode Island Red males (611 vs 564 grams; SEM = 12; P < 0.01). However, when 

expressed as a percentage of the chilled WOG weight, Black Sex-Link males and Rhode 

Island Red males had greater leg quarter yields than broiler males (47.2 vs 39.3%; SEM = 

0.3%; P < 0.05). No genotype x diet interaction was noted for leg quarter weight or yield.  

5.4.4 Meat quality 

Samples were taken from one bird per pen for a total of 15 male broilers at 42 

days of age, and 15 male Rhode Island Reds and 10 male Black Sex-Links at 96 days of 

age.  Only males were used to eliminate the potential effect of sex on the results. 

However, it should be noted that the overall sample size was relatively low and that may 

have affected results. 

5.4.4.1 Breast meat color 

Breast meat color was measured using L*a*b* coordinates which were recorded 

in Table 5.11. No breed or diet effects (P > 0.05) were noted for lightness. Broiler breast 

meat was redder (P < 0.05) than Rhode Island Red and Black Sex-Link breast meat. 
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Breast meat of birds fed CSM-based diet was yellower (P < 0.05) than those fed other 

diets. 

5.4.4.2 Drip loss 

Drip loss was determined for boneless skinless breasts and leg quarters after 3 and 

7 days of storage (data not shown). After 3 days of storage, there were no differences (P 

> 0.05) among genotypes or diets for boneless skinless breasts (1.52 ± 0.71%) or leg 

quarters (0.24 ± 0.11%). After 7 days of storage, there were no differences (P > 0.05) 

among genotypes or diets for boneless skinless breast (3.00 ± 0.97%) or leg quarters 

(0.45 ± 0.19%).  

5.4.4.3 Thirobarbituric Acid Reactive Substances (TBARS) 

Boneless skinless breast filets and deboned skinless thighs were individually 

stored in PVC-overwrapped Styrofoam trays in a retail display cooler at 4°C for 6d. To 

determine lipid peroxidation, Thirobarbituric Acid Reactive Substances (TBARS), 5 

gram samples of each tissue were removed at day 1, 4, and 6. The main and interactive 

effects of tissue, genotype, and diet for TBARS values are reported in Table 5.12. There 

was no difference (P > 0.05) between TBARS values for breast and thigh. For all meat 

samples, TBARS increased (P < 0.05) over time. At each time point, broilers had lower 

(P < 0.05) TBARS values than Rhode Island Reds and Black Sex-Links. A main effect of 

diet was noted. Replacing 30% of the CSM-based diet with field peas did not affect 

TBARS values (P > 0.05). On the other hand, replacing 50% of the CSM-based diet with 

a 3:1:1 mixture of field peas, buckwheat, and flax seed increased (P < 0.05) TBARS 

values. However, birds fed the 50% replacement diet with the addition of dietary 

enzymes had lower (P < 0.05) TBARS values than those fed this diet without dietary 

enzymes. No interactive effects were noted.  

5.4.5 Bone quality 

Breaking strength and ash content for humerus and tibia were reported in Table 

5.13. Broilers had greater (P < 0.05) tibia and humerus breaking strength than Black Sex-

Links and Rhode Island Reds. Black Sex-Link bone breaking strength did not differ from 

that of the Rhode Island Reds. However, Rhode Island Reds and Black Sex-Links had 

higher (P < 0.05) tibia ash content and similar (P > 0.05) humerus ash content when 
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compared with broilers. Therefore, the increased breaking strength is not simply a 

reflection of increased mineral content.  

Diet had no effect (P > 0.05) on tibia breaking strength, humerus breaking 

strength, or humerus ash content. However, birds fed the CSM-based diets exhibited 

greater (P < 0.05) tibia ash content than birds fed the other diets. Additionally, birds fed 

the 30% replacement diet had greater (P < 0.05) tibia ash content than birds fed the 50% 

replacement diet. No interactive effect (P > 0.05) between genotype and diet was noted. 

 

5.5 Discussion 

This study was conducted to evaluate the replacement of corn and soybean meal 

with alternative feedstuffs and dietary enzymes on the performance and carcass 

characteristics of straight-run commercial broilers, straight-run Rhode Island Reds, and 

males from a Black Sex-Link cross. The commercial broiler strain utilized was the Cobb 

700 which is a high-yielding meat type strain commonly used in the industry today. 

Rhode Island Reds were utilized because they are one of the most common heritage 

breeds in the United States (Floyd, 2015). The Black Sex-Link cross utilized in this study 

was created by crossing Rhode Island Red roosters on Barred Plymouth Rock hen. The 

males from this cross were of particular interest because the females from this type of 

cross are often used as egg-layers, but the males have no real purpose. While these birds 

are not currently used for meat production, the backlash against culling of male chicks 

within the egg industry has created an interest in using egg-type males as meat birds 

(Lichovnikova et al., 2009; Mench et al., 2011; Bertechini et al., 2014).  

5.5.1 Use of alternative genotypes 

The initial body weight of the commercial broiler chicks in this study was higher 

than the initial body weights for either Black Sex-Link male chicks or Rhode Island Red 

chicks. This is likely a reflection of the genetic potential of these birds because they were 

hatched from breeder flocks of similar ages maintained under similar management at the 

University of Kentucky. Based on the limited literature comparing the growth rate of 

heritage breeds and egg-type chickens with the growth rate of meat-type chickens 

(Lichovnikova et al., 2009; Bertechini et al., 2014; McCrea et al., 2014) and previous 
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work at the University of Kentucky, the commercial broilers were expected to have better 

growth performance than Rhode Island Reds. In the present study, this held true with 

broilers demonstrating 252% faster growth rates with a concurrent 52% improvement in 

feed conversion when compared with the Rhode Island Reds. The broilers were therefore 

able to achieve higher body weights in significantly less time. Similarly, the commercial 

broilers achieved higher average daily gains with better feed conversion ratios than Black 

Sex-Link males. 

The Black Sex-Link males achieved higher average daily gains than the Rhode 

Island Red birds. However, the Black Sex-Link males also had higher average daily feed 

intake than the Rhode Island Red birds which resulted in similar feed conversion ratios 

for the two genotypes.  The lower growth performance of the Rhode Island Reds may be 

partially to that fact that they were placed and raised as hatched. Based on the data 

presented in previous studies (Chapter 2, Chapter 3), the Rhode Island Red females have 

slower growth rates than the Rhode Island Red males. This was also noted in the present 

study with Rhode Island Red males having significantly heavier live weights when 

compared to Rhode Island Red females of the same age. Therefore, it would be expected 

that a mixture of males and females would have reduced growth performance when 

compared with only males. Interestingly, when comparing the body weights of males 

from the Black Sex-Link cross to male Rhode Island Reds at 96 days of age, the Black 

Sex-Link males were about 100 grams heavier than Rhode Island Red males. This 

suggests that there is a difference in growth potential between these two genotypes. 

  While the intention was to evaluate the carcass and part yields of the different 

genotypes at a similar body weight, the broilers overshot the target weight before 

processing. Unfortunately, the heritage breeds could not be housed long enough to reach 

the body weight achieved by the broilers, so the live weight at processing was different. 

This adds a limitation to the results, but comparisons of carcass and part yields can still 

be made.  

The commercial broilers in this study had higher chilled WOG yields than either 

the Black Sex-Links or the Rhode Island Reds. This is consistent with the results of 

McCrea et al. (2014) which showed lower carcass dressing percent from Delaware 

chickens (another heritage breed) than for broilers. The chilled WOG yields of the Rhode 
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Island Reds and Black Sex-Link males in the present study were slightly higher than the 

carcass yield McCrea et al. (2014) reported for 15-week-old Delaware chickens. 

However, this may have been due to differences in dietary treatment and bird 

management.  The chilled WOG yield of the Black Sex-Link males in the present study 

was also higher than the carcass yield Bertechini et al. (2014) reported for egg-layer 

males. However, the egg-layer males were processed at only 42 days of age and only 

weighed about 700 grams. Their yields may have been different at a later processing age. 

Additionally, Collins et al. (2014) showed that the Athens Canadian Random Bred meat-

type chickens (representative of 1950’s genetics) had lower carcass yields than Cobb 500 

high-yielding broilers at 6, 8, and 10 weeks of age. 

When compared with Black Sex-Links and Rhode Island Reds, the conformation 

of the commercial broiler carcass was shifted towards white meat production with higher 

breast and tender yields, but lower leg and wing yields. This is consistent with the results 

of Chapter 4 which showed that heritage breeds had lower boneless breast and higher 

whole leg and wing yields as a percentage of their chilled WOG weights than either fast- 

(Cornish Cross) or slow-growing (Red Ranger) genotypes. Additionally, these results are 

consistent with the findings of a study by Fanatico et al. (2008) which showed that slow-

growing genotypes had lower breast meat yields, but higher wing and leg yields than fast-

growing genotypes. Furthermore, the results make sense in the context of selection 

pressure placed on broilers which has increased the overall muscle mass of the chicken, 

with particular emphasis on breast muscle production (Havenstein et al., 2003b; Schmidt 

et al., 2009; Zuidhof et al., 2014).  

Zuidhof et al. (2014) reported that commercial selection pressures have reduced 

fat deposition in broilers. This is supported by the data from the present study which 

showed that Rhode Island Reds had higher abdominal fat yields as a percentage of live 

weight than commercial broilers. However, a genotype x sex interaction was noted with 

male and female broilers having similar abdominal fat yields, but Rhode Island Red 

females having higher abdominal fat yields than Rhode Island Red males. When only 

males were compared, commercial broilers and Rhode Island Reds had similar abdominal 

fat yields. Additionally, the genotype x diet interaction observed for abdominal fat yield 

suggests the CSM-based diet and the 30% field peas diet may have oversupplied nutrients 
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for the Rhode Island Reds. When these birds were fed a lower-nutrient density diet where 

50% of the CSM-based diet was replaced with a 3:1:1 ratio of field peas, buckwheat, and 

flaxseed, Rhode Island Reds had similar abdominal fat yields as broilers. 

5.5.2 Use of alternative feedstuffs 

Poultry feed requires sources of protein, energy, vitamins, and minerals. In 

conventional chicken diets in the United States, corn serves as the main energy source 

and soybean meal as the main protein source. When the price of corn and soybeans go up, 

there is increased interest in alternative feedstuffs. In addition, more than 90% of the corn 

and soybean crops in the United States are genetically modified organisms (GMO). As a 

way to differentiate their products from conventional chicken meat or egg production, 

small- and medium-sized farms may also consider using vegetarian diets that do not 

include animal products and that are not corn/soybean meal based. However, formulating 

balanced diets using alternative feedstuffs can be challenging depending on the nutrients 

available in the feedstuff. 

The alternative feedstuffs evaluated in this study included field peas, buckwheat, 

and flax seed. Field peas were selected as the primary alternative feedstuff because peas 

are relatively high in protein at 20-29% crude protein. While high inclusion levels of field 

peas can reduce bird performance (Farrell et al., 1999; Tuunainen et al., 2016), Nalle et 

al. (2011) found that broilers fed diets containing as much as 20% field peas had similar 

growth performance as broilers fed a corn-soy control. Based on their experiments, 

Farrell et al. (1999) suggested field peas inclusion be limited to 30% of the diet for 

broilers. 

Flax seed was selected due to its high protein levels (26% CP) and its use in 

creating omega-3 enriched meat and eggs (Amini and Ruiz-Feria, 2007; Nanjappan et al., 

2013), particularly when utilized with enzyme supplementation (Jia et al., 2008). 

However, the literature suggests high levels of flax seed inclusion (>10%) lead to 

decreased product acceptability (Collins et al., 1997). Interest in buckwheat as a poultry 

feed has increased in some areas of the Midwest (Jacob, 2007). The grain contains 11-

13% crude protein and is the best source of lysine among the feed grains, and is the only 

grain not lysine deficient (Jacob and Carter, 2008). While little data is available on the 
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use of buckwheat, the literature suggests that buckwheat has reasonable feeding value 

roughly comparable to oats or wheat (Leiber et al., 2009).  

In the present study, the use of field peas to replace 30% of the CSM-based diet 

had no effect on growth performance, carcass and part yields, oxidative stability, or bone 

breaking strength for any of the genotypes. Therefore, field peas could be a viable 

alternative feedstuff to partially replace corn and soybean meal in diets for both meat-

type and heritage breed chickens. However, the low crude protein content of field peas 

when compared to soybean meal is limiting. Additionally, breast meat from the birds fed 

the diet containing 30% field peas was less yellow than breast meat from birds fed the 

CSM-based diet. Because consumers initially evaluate meat based on color, this 

difference could impact consumer perception of the product (Kennedy et al., 2005).  

Meanwhile, replacing 50% of the CSM-based diet with a 3:1:1 mixture of field 

peas, buckwheat, and flax seed reduced average daily gain and increased feed intake 

resulting in poorer feed conversion ratios. However, the addition of dietary enzyme 

alleviated some of these effects. Specifically, birds fed diets with the enzyme complex 

exhibited lower feed intake and better feed conversion than birds fed diets without the 

enzyme complex.  At processing, a genotype x diet interaction was noted. For broilers, 

birds fed the 50% replacement diet had lower body weights, lower chilled WOG yields, 

and lower breast yields than birds fed the other diets. Conversely, this diet had no effect 

on live weight, chilled WOG or part yields for Rhode Island Reds or Black Sex-Link 

males. These results are consistent with the findings of Rack et al. (2009) which found 

that, while the performance of fast-growing birds was reduced when they were housed on 

pasture, slower-growing birds did not experience a reduction in performance. The 

addition of the dietary enzyme complex did not affect carcass or part yields.  

5.6 Conclusions 

The results also suggest field peas can be used with or without dietary enzyme to 

replace 30% of the corn and soybean meal in diets for meat-type birds and heritage 

breeds without sacrificing growth performance or carcass yield. However, replacing 50% 

of the corn and soybean meal with a 3:1:1 ratio of field peas, buckwheat, and flaxseed 

negatively impacted growth performance for both meat-type and heritage breeds. 

Furthermore, this dietary formulation reduced chilled WOG and breast yields for 
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commercial broilers, but not for the heritage breed studied. The use of a dietary enzyme 

complex may improve some performance parameters; however, it did not appear to affect 

carcass and part yields.  

The results of the present study provide further evidence that heritage breeds such 

as the Rhode Island Red demonstrate poor growth parameters when compared with meat-

type birds. Additionally, while the Black Sex-Link cross demonstrated better 

performance than the Rhode Island Reds, their growth rate was still significantly slower 

and they demonstrated poorer feed conversion than that of the commercial broiler. 

However, as noted by Bertechini et al. (2014) the abundant potential supply of males 

from this type of cross due to practices within the laying industry may make them useful 

in certain situations. Ultimately, the findings of this study provides further evidence that 

their nutrient requirements are lower than those of fast-growing meat-type strains, and 

suggests heritage breeds are better able to utilize lower nutrient density diets. However, 

further research is needed to determine the extent to which alternative ingredients can be 

used to replace corn and soybean meal in diets for these breeds.  
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5.7 Tables 

Table 5.1. Diet composition and analyzed nutrient content for the corn-soybean meal 
based diet (CSM) and the peas and mix diets with or without an enzyme complex added 

 CSM Peas Peas 
+SSF 

Mix Mix 
+SSF 

Corn, % 65.83 43.86 43.86 29.56 29.56 
Soybean meal, % 31.00 18.50 18.50 13.77 13.77 
Buckwheat, % - - - 10.00 10.00 
Field peas, % - 30.00 30.00 30.00 30.00 
Flaxseed, % - - - 10.00 10.00 
Vegetable oil, % 1.18 3.57 3.57 2.77 2.77 
Limestone, % 1.33 1.32 1.32 1.40 1.40 
Dicalcium phosphate, % 1.82 1.85 1.85 1.63 1.63 
Salt, % 0.42 0.4 0.4 0.38 0.38 
Vitamin-mineral mix1, % 0.25 0.25 0.25 0.25 0.25 
DL-Methionine, % 0.17 0.25 0.25 0.24 0.24 
Enzyme complex2, % - - 0.02 - 0.02 
Integral® 3, % 0.10 0.10 0.10 0.10 0.10 
      
Energy, kcal ME/kg (calculated) 3000 3000 3000 3000 3000 
Crude protein, % 18.99 19.82 20.92 18.52 19.86 
Methionine, % 0.42 0.39 0.49 0.41 0.43 
Cysteine, % 0.32 0.28 0.30 0.28 0.28 
Lysine, % 1.16 1.20 1.31 1.21 1.20 
Crude fat, % 3.71 5.37 5.19 5.96 6.81 
Crude fiber, % 3.06 3.83 3.85 7.00 5.94 
Calcium,  (calculated) 1.00 1.00 1.00 1.00 1.00 
Phosphorus,  available (calculated) 0.45 0.45 0.45 0.45 0.45 
1 Akey Layer Starter Breeder Premix (Akey, Lewisburg, OH)  

2 Allzyme-SSF® (Alltech Inc., Nicholasville, KY)  

3 Integral® (Alltech Inc., Nicholasville, KY) 
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Table 5.2. Average daily gain, average daily feed intake, and feed:gain for birds from 1 
through 98 days of age* 

 

Average  
Daily Gain  
(grams/bird/day) 

Average Daily 
 Feed Intake  
(grams/bird/day) 

Average  
Feed to Gain 
(g feed/g gain) 

Genotype main effects    
   Broiler (straight-run) 37.5 ± 0.8 a 82.9 ± 2.8 a 2.31 ± 0.16 b 
   Black Sex-Link (male) 17.6 ± 1.0 b 75.8 ± 3.7 a 4.21 ± 0.21 a 
   Rhode Island Red (straight-run) 14.9 ± 0.8 c 65.6 ± 2.8 b 4.44 ± 0.16 a 
P-value <0.0001 0.0007 <0.0001 
Diet main effects    
   Corn-Soy 24.4 a 70.5 b 3.40 bc 
   Peas 24.8 a 67.8 b 3.05 c 
   Peas +SSF 24.6 a 72.5 b 3.39 bc 
   Mix 21.0 b 87.1 a 4.56 a 
   Mix + SSF 21.8 ab 75.6 b 3.83 b 
SEM 1.1 3.9 0.23 
P-value 0.0459 0.0172 0.0011 
Interactive effects    
Genotype Diet    
   Broiler Corn-Soy 41.9 80.7 1.93 
   Broiler Peas 40.3 79.6 1.98 
   Broiler Peas +SSF 39.8 72.9 1.83 
   Broiler Mix 31.7 100.7 3.44 
   Broiler Mix + SSF 33.8 80.5 2.36 
   BSL Corn-Soy 16.3 71.2 4.24 
   BSL Peas 18.2 66.1 3.55 
   BSL Peas +SSF 19.1 88.6 4.43 
   BSL Mix 17.2 76.7 4.35 
   BSL Mix + SSF 17.2 78.4 4.45 
   RIR Corn-Soy 14.9 59.7 4.04 
   RIR Peas 16.0 57.7 3.62 
   RIR Peas +SSF 14.8 58.0 3.93 
   RIR Mix 14.2 83.7 5.90 
   RIR Mix + SSF 14.5 67.7 4.69 
SEM 1.81 6.7 0.39 
P-value 0.0888 0.3202 0.3736 
RIR = Rhode Island Red, BSL = Black Sex-Link 
*Mean values are pen averages (genotype, n = 15 for broilers and RIR, n = 10 for BSL; 
diet main effects, n = 8; interactive effects, n = 3 for broilers and RIR and n = 2 for BSL 
for each diet) 
a,b,c Means within the same column without common letters are different (P < 0.05) 
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Table 5.7. Effect of genotype and diet on live weight, chilled carcass weight without 
giblets (WOG), and abdominal fat (fat pad) weight for male Black Sex-Links, Rhode 
Island Red birds, and broilers* 

 Live  
weight, g 

Chilled  
WOG weight, g 

Fat pad 
weight, g 

Genotype main effects    
   Broiler 2073 a 1552 a 23.7 b 
   Black Sex-Link (BSL) 1916 b 1296 b 33.7 a 
   Rhode Island Red (RIR) 1796 c 1199 c 24.9 b 
SEM 35 27 2.6 
P-value <0.0001 <0.0001 0.0062 
Diet main effects    
   Corn-Soy 1988 a 1404 a 27.5 abc 
   Peas 1995 a 1415 a 29.6 ab 
   Peas +SSF 2049 a 1461 a 34.6 a 
   Mix 1867 b 1271 b 25.5 bc 
   Mix + SSF 1740 c 1194 c 20.0 c 
SEM 43 33 3.2 
P-value <0.0001 <0.0001 0.0281 
Interactive effects    
   Genotype Diet    
   Broiler Corn-Soy 2122 1619 23.2 
   Broiler Peas 2193 1673 27.0 
   Broiler Peas +SSF 2241 1741 30.4 
   Broiler Mix 1978 1414 20.1 
   Broiler Mix + SSF 1828 1315 18.0 
   BSL Corn-Soy 2004 1361 33.1 
   BSL Peas 1963 1342 38.0 
   BSL Peas +SSF 1979 1353 37.3 
   BSL Mix 1902 1256 34.5 
   BSL Mix + SSF 1731 1169 25.8 
   RIR Corn-Soy 1839 1231 26.2 
   RIR Peas 1830 1231 23.7 
   RIR Peas +SSF 1928 1290 36.3 
   RIR Mix 1722 1144 22.0 
   RIR Mix + SSF 1661 1099 16.2 
SEM 77 60 5.8 
P-value 0.8703 0.3458 0.9695 
a,b,c Means within the same column without common letters are different (P < 0.05) 
Broilers were 42 days of age at processing, while Black Sex-Link and Rhode Island Reds 
were 96 days of age. 
*Mean values are average of 2 birds per pen for broilers and Rhode Island Reds and 4 
birds/pen for Black Sex-Links (genotype main effects, n = 15 for broilers and Rhode 
Island Reds and n = 10 for Black Sex-Links; diet main effects, n = 8; interactive effects, n 
= 3 for Rhode Island Reds and broilers and n = 2 for Black Sex-Links) 
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Table 5.8. Effect of genotype and diet on carcass part weights for male broilers, Black 
Sex-Links, Rhode Island Reds* 

 Boneless, skinless  
breast weight, g 

Tender  
weight, g 

Wing  
weight, g 

Leg 
quarter 
weight, g 

Genotype main effects     
   Broiler 449 a 84 a 160 b 608 a 
   Black Sex-Link (BSL) 201 b 56 b 180 a 613 a 
   Rhode Island Red (RIR) 185 b 49 c 167 b 564 b 
SEM 8.9 1.8 3.0 12 
P-value <0.0001 <0.0001 <0.0001 0.0055 
Diet main effects     
   Corn-Soy 294 a 67 a 175 a 615 a 
   Peas 297 a 67 a 174 a 627 a 
   Peas +SSF 318 a 67 a 176 a 630 a 
   Mix 251 b 61 b 163 b 565 b 
   Mix + SSF 232 b 54 c 157 b 539 b 
SEM 11.0 2.2 3.6 15 
P-value <0.0001 0.0001 0.0006 <0.0001 
Interactive effects     
   Genotype Diet     
   Broiler Corn-Soy 487 a 90 169 624 
   Broiler Peas 198 a 92 167 649 
   Broiler Peas +SSF 532 a 91 169 661 
   Broiler Mix 384 b 77 151 565 
   Broiler Mix + SSF 345 b 71 147 540 
   BSL Corn-Soy 216 c 59 187 640 
   BSL Peas 201 c 58 184 649 
   BSL Peas +SSF 216 c 59 187 625 
   BSL Mix 188 c 56 177 600 
   BSL Mix + SSF 183 c 49 164 554 
   RIR Corn-Soy 180 c 51 170 582 
   RIR Peas 191 c 51 171 582 
   RIR Peas +SSF 207 c 52 174 604 
   RIR Mix 182 c 49 162 531 
   RIR Mix + SSF 167 c 44 161 522 
SEM 20 4.0 6.6 26 
P-value 0.0004 0.5203 0.9718 0.9084 
a,b,c Means within the same column without common letters are different (P < 0.05) 
Broilers were 42 days of age at processing, while Black Sex-Link and Rhode Island Reds 
were 96 days of age. 
*Mean values are average of 2 birds per pen for broilers and Rhode Island Reds and 4 
birds/pen for Black Sex-Links (genotype main effects, n = 15 for broilers and Rhode 
Island Reds and n = 10 for Black Sex-Links; diet main effects, n = 8; interactive effects, n 
= 3 for Rhode Island Reds and broilers and n = 2 for Black Sex-Links) 
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Table 5.9. Effect of genotype and diet on carcass without giblets (WOG) yield and 
abdominal fat (fat pad) yield as a percentage of live weight for male broilers, Black Sex-
Links, Rhode Island Reds* 

 Chilled WOG Fat Pad 
Genotype main effects   
   Broiler 74.6 a 1.12 b 
   Black Sex-Link (BSL) 67.6 b 1.73 a 
   Rhode Island Red (RIR) 66.8 c 1.36 b 
SEM 0.28 0.12 
P-value <0.0001 0.0013 
Diet main effects   
   Corn-Soy 70.4 a 1.38 
   Peas 70.6 a 1.48 
   Peas +SSF 71.0 a 1.70 
   Mix 68.0 b 1.37 
   Mix + SSF 68.4 b 1.11 
SEM 0.34 0.15 
P-value <0.0001 0.1121 
Interactive effects   
   Genotype Diet   
   Broiler Corn-Soy 76.2 a 1.10 
   Broiler Peas 76.1 a 1.23 
   Broiler Peas +SSF 77.6 a 1.35 
   Broiler Mix 71.4 b 1.01 
   Broiler Mix + SSF 71.7 b 0.95 
   BSL Corn-Soy 67.9 cd 1.64 
   BSL Peas 68.4 c 1.90 
   BSL Peas +SSF 68.4 c 1.88 
   BSL Mix 66.0 e 1.83 
   BSL Mix + SSF 67.5 cde 1.43 
   RIR Corn-Soy 67.0 cde 1.41 
   RIR Peas 67.3 cde 1.31 
   RIR Peas +SSF 66.9 cde 1.87 
   RIR Mix 66.5 de 1.28 
   RIR Mix + SSF 66.1 cde 0.95 
SEM 0.62 0.28 
P-value <0.0001 0.9663 
a,b,c,d,e Means within the same column without common letters are different (P < 0.05) 
Broilers were 42 days of age at processing, while Black Sex-Link and Rhode Island Reds 
were 96 days of age. 
*Mean values are average of 2 birds per pen for broilers and Rhode Island Reds and 4 
birds/pen for Black Sex-Links (genotype main effects, n = 15 for broilers and Rhode 
Island Reds and n = 10 for Black Sex-Links; diet main effects, n = 8; interactive effects, n 
= 3 for Rhode Island Reds and broilers and n = 2 for Black Sex-Links) 
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Table 5.10. Effect of genotype and diet on part yields as a percentage of the chilled 
carcass weight without giblets for male broilers, Black Sex-Links, Rhode Island Reds* 

 Breasts 
(boneless, skinless) 

Tenders Wings Leg 
quarters 

Genotype main effects     
   Broiler 28.6 a 5.41 a 10.4 b 39.3 b 
   Black Sex-Link (BSL) 15.5 b 4.33 b 13.9 a 47.3 a 
   Rhode Island Red (RIR) 15.4 b 4.11 b 14.0 a 47.1 a 
SEM 0.29 0.09 0.11 0.27 
P-value <0.0001 <0.0001 <0.0001 <0.0001 
Diet main effects     
   Corn-Soy 20.1 ab 4.68 12.7 bc 44.3 bc 
   Peas 20.0 ab 4.63 12.5 c 44.8 ab 
   Peas +SSF 20.9 a 4.55 12.3 c 43.6 c 
   Mix 19.3 bc 4.71 13.0 ab 44.7 ab 
   Mix + SSF 18.8 c 4.50 13.3 a 45.4 a 
SEM 0.35 0.11 0.13 0.34 
P-value 0.0016 0.6374 <0.0001 0.0071 
Interactive effects     
   Genotype Diet     
   Broiler Corn-Soy 30.0 a 5.56 10.4 38.6 
   Broiler Peas 29.7 a 5.51 10.0 38.9 
   Broiler Peas +SSF 30.5 a 5.24 9.7 38.0 
   Broiler Mix 27.1 b 5.42 10.7 40.0 
   Broiler Mix + SSF 25.9 b 5.33 11.3 41.3 
   BSL Corn-Soy 15.8 c 4.33 13.7 47.0 
   BSL Peas 15.0 c 4.29 13.7 48.3 
   BSL Peas +SSF 16.0 c 4.36 13.8 46.1 
   BSL Mix 14.9 c 4.42 14.1 47.8 
   BSL Mix + SSF 15.6 c 4.23 14.1 47.3 
   RIR Corn-Soy 14.6 c 4.17 13.8 47.2 
   RIR Peas 15.5 c 4.10 13.8 47.3 
   RIR Peas +SSF 16.1 c 4.05 13.4 46.8 
   RIR Mix 15.9 c 4.29 14.2 46.4 
   RIR Mix + SSF 15.0 c 3.95 14.6 47.5 
SEM 0.65 0.20 0.24 0.61 
P-value 0.0012 0.9862 0.2733 0.0706 
a,b,c Means within the same column without common letters are different (P < 0.05) 
Broilers were 42 days of age at processing, while Black Sex-Link and Rhode Island Reds 
were 96 days of age. 
*Mean values are average of 2 birds per pen for broilers and Rhode Island Reds and 4 
birds/pen for Black Sex-Links (genotype main effects, n = 15 for broilers and Rhode 
Island Reds and n = 10 for Black Sex-Links; diet main effects, n = 8; interactive effects, n 
= 3 for Rhode Island Reds and broilers and n = 2 for Black Sex-Links) 
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Table 5.11. Effect of genotype and diet on breast meat color for broilers, Black Sex-
Links, Rhode Island Reds* 

 
Lightness (L*) Redness (a*) Yellowness (b*) 

Genotype main effects    
   Broiler 60.3 ± 0.4 11.6 ± 0.3 a 12.6 ± 0.3 
   Black Sex-Link 61.8 ± 0.7 7.9 ± 0.5 b 13.5 ± 0.5 
   Rhode Island Red  62.1 ± 0.6 8.0 ± 0.4 b 12.9 ± 0.4 
P-value 0.1255 <0.0001 0.3311 
Diet main effects    
   Corn-Soy 62.7 8.1 14.4 a 
   Peas 61.0 9.5 12.1 b 
   Peas +SSF 60.6 9.3 13.6 ab 
   Mix 61.7 9.3 12.3 b 
   Mix + SSF 60.9 9.5 12.5 b 
SEM 0.7 0.5 0.5 
P-value 0.2722 0.3468 0.0183 
a,b,c Means within the same column without common letters are different (P < 0.05) 
No interactive effect of genotype x diet (P > 0.05) 
Broilers were 42 days of age at processing, while Black Sex-Link and Rhode Island Reds 
were 96 days of age. 
*Mean values are average of 1 breast per pen (genotype main effects, n = 15 for broilers 
and Rhode Island Reds and n = 10 for Black Sex-Links; diet main effects, n = 8; 
interactive effects, n = 3 for Rhode Island Reds and broilers and n = 2 for Black Sex-
Links) 
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Table 5.12. Effect of tissue, genotype, and diet on thiobarbituric acid reactive substances 
(TBARS) of breast and thigh meat from broilers, Black Sex-Links, Rhode Island Reds* 

 TBARS (mg MDA/kg meat) 
 
 Day 1 Day 4 Day 6 
Tissue main effects    
   Breast 0.041 0.102 0.161 
   Thigh 0.039 0.091 0.181 
SEM 0.003 0.004 0.015 
P-value 0.6016 0.0795 0.3339 
Genotype main effects    
   Broiler 0.025 b 0.071 b 0.113 b 
   Black Sex-Link 0.052 a 0.109 a 0.211 a 
   Rhode Island Red  0.043 a 0.112 a 0.190 a 
SEM 0.004 0.005 0.016 
P-value <0.0001 <0.0001 <0.0001 
Diet main effects    
   Corn-Soy 0.033 c 0.084 b 0.157 b 
   Peas 0.030 c 0.085 b 0.122 b 
   Peas +SSF 0.027 c 0.078 b 0.131 b 
   Mix 0.063 a 0.120 a 0.277 a 
   Mix + SSF 0.048 b 0.118 a 0.181 b 
SEM 0.005 0.007 0.023 
P-value <0.0001 <0.0001 <0.0001 
a,b,c Means within the same column without common letters are different (P < 0.05) 
TBARS were higher (P < 0.05) on day 4 than day 1 
TBARS were higher (P < 0.05) on day 6 than day 1 or day 4 
No interactive effect between tissue, genotype, or diet were noted for any days (P > 0.05) 
Broilers were 42 days of age at processing, while Black Sex-Link and Rhode Island Reds 
were 96 days of age. 
*Mean values are average of 1 sample per pen (tissue main effect, n = 40; genotype main 
effects, n = 30 for broilers and Rhode Island Reds and n = 20 for Black Sex-Links; diet 
main effects, n = 16; interactive effects, n = 3 for Rhode Island Reds and broilers and n = 
2 for Black Sex-Links) 
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Table 5.13. Effect of genotype and diet on the tibia and humerus breaking strength and 
ash content of broilers, Black Sex-Links, Rhode Island Reds* 

  

Tibia 
breaking 
strength, kg 
force 

Tibia  
Ash, % 

Humerus 
breaking 
strength, kg 
force 

Humerus  
Ash, % 

Genotype main effects     
   Broiler 40.3 ± 1.2 a 51.8 ± 0.3 b 41.0 ± 1.2 a 57.3 ± 1.2 
   Black Sex-Link 32.2 ± 1.6 b 54.8 ± 0.3 a 28.9 ± 1.6 b 58.8 ± 1.3 
   Rhode Island Red  28.1 ± 1.2 b 54.4 ± 0.3 a 27.9 ± 1.2 b 59.4 ± 1.2 
P-value  <0.0001 <0.0001 <0.0001 0.6153 
Diet main effects     
   Corn-Soy 37.4 55.7 a 36.1 57.1 
   Peas 32.0 53.8 b 34.5 59.8 
   Peas +SSF 30.5 53.7 b 32.6 60.5 
   Mix 34.0 52.8 bc 29.8 59.4 
   Mix + SSF 33.8 52.5 c 30.1 55.8 
SEM 0.18 0.39 1.7 1.7 
 P-value  0.0845 <0.0001 0.0513 0.2574 
a,b,c Means within the same column without common letters are different (P < 0.05) 
No interaction of genotype x diet (P > 0.05) 
Broilers were 42 days of age at processing, while Black Sex-Link and Rhode Island Reds 
were 96 days of age. 
*Mean values are average of 2 birds per pen (genotype main effects, n = 15 for broilers 
and Rhode Island Reds and n = 10 for Black Sex-Links; diet main effects, n = 8; 
interactive effects, n = 3 for Rhode Island Reds and broilers and n = 2 for Black Sex-
Links) 
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CHAPTER 6: Use of sorghum and field peas to replace corn and soybean meal in diets 

for heritage chicken breeds 

 

6.1 Abstract 

This study evaluated the use of sorghum and field peas as replacements for corn 

and soybean meal (CSM) in diets for two heritage breeds: Rhode Island Red (RIR) and 

Barred Plymouth Rock (BPR). A 2 x 5 factorial arrangement of breeds and dietary 

treatments was used with the following diets: 1) a CSM-based control, 2) 100% of corn 

and 20 of soybean meal in CSM diet replaced with sorghum (SSM), 3) SSM diet with a 

dietary enzyme complex (Allzyme® SSF, Alltech Inc., Nicholasville, KY) added (SSM+), 

4) complete replacement of CSM with a 2:1 ratio of field peas to sorghum (SFP), and 5) 

SFP diet with an enzyme complex added (SFP+). Replacement of soy limited dietary 

protein levels; therefore, CSM contained 20% CP, SSM/SSM+ contained 18.5% CP, and 

SFP/SFP+ contained 15.3% CP. Three replicate groups of 11 straight-run chicks per 

treatment were housed in floor pens with 0.2 square meters per bird. Diets and water 

were provided on an ad libitum basis and birds were grown to 98 days of age. Before 

analysis, average daily gain and feed intake values were corrected for the ratio of 

males:females in the pen.  RIR birds exhibited higher (P < 0.01) average daily gain than 

BPR, and achieved a higher (P < 0.05) final body weight. Additionally, a breed x diet 

interaction was noted for average daily gain with RIR birds fed SSM diets being heavier 

(P < 0.05) than BPR birds fed those same diets. ADFI (70.5 ± 1.5 g/bird/d) and feed:gain 

(4.2 ± 0.1 g feed/g gain) were similar between the breeds.  To account for differences in 

diet composition, dietary effects were analyzed on a nutrient intake to gain basis. Birds 

fed CSM had better (P < 0.05) feed:gain than birds fed SSM or SSM+ (3.3 vs 4.0 g 

feed/g gain), and all three had better feed:gain than birds fed SFP or SFP+ (4.8 g feed/g 

gain, SEM = 0.2; P < 0.01). At 98 days of age, two male birds per pen were processed 

and the carcasses were chilled for at least two hours. The chilled carcass without giblets 

(WOG) yields averaged 64.7 ± 0.5% of live weight and were similar (P > 0.05) among 

breeds and diets. As a percentage of chilled WOG weight, there were no differences (P > 

0.05) in relative parts weights. Breast meat of RIR birds was yellower (P < 0.05) than 

BPR breast meat, but there was no difference (P > 0.05) between breeds for lightness or 
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redness. A dietary effect was also noted. As corn and soybean meal were reduced in the 

diet, lightness and yellowness of the breast meat decreased (P < 0.05) while redness 

increased (P < 0.05). In conclusion, the use of sorghum and field peas with or without a 

dietary enzyme complex to replace corn and soybean meal may impair growth 

performance and alter breast meat color of heritage breeds, but it does not affect their 

carcass or part yields. Additionally, the breed x diet interaction for growth performance 

indicates a possible difference in dietary requirements between breeds. 

 

6.2 Introduction 

Growing interest in small flocks, urban poultry, and general alternatives to 

conventional chicken has led to an increase in interest in heritage breed chickens. 

Unfortunately, there is very little published data regarding the production parameters of 

these breeds. While the nutrient requirements of heritage breed chickens are not known, 

the results of previous experiments suggest that they are lower than those of commercial 

broilers.  This suggests the potential for the utilization of less common feedstuffs that 

may be lower in nutrient density than the typical corn- and soy- based diets. 

In a previous study (Chapter 5), Rhode Island Reds and commercial broilers were 

able to consume at least 30% field peas in place of corn and soybean meal in their diets 

without a corresponding reduction in growth rate or feed intake.  Additionally, while the 

carcass and breast yields of Rhode Island Reds were lower than those of commercial 

broilers, they were also less affected by the use of alternative feed ingredients. Therefore, 

this experiment aims to take a step further and completely replace corn and soybean meal 

with alternative ingredients. Field peas contain anywhere from 20-29% crude protein 

which makes them suitable as a potential protein-energy source. While this is 

significantly lower crude protein than is found in soybean meal, the use of a higher 

protein grain than corn may offset the reduction. Sorghum has been shown to have 

similar energy value to corn, but it has a higher protein content which may make it a 

suitable complement to field peas.   

The objective of this study was to evaluate the growth performance, carcass yield, 

bone strength, and meat color of Rhode Island Reds and Barred Plymouth Rocks fed 
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complete diets formulated using alternative feed ingredients (sorghum and field peas) to 

replace corn and soybean meal. 

 

6.3 Materials and methods 

Experiments were conducted at the Alltech-University of Kentucky Research 

Alliance Poultry Farm. All procedures for this study were conducted under protocols 

approved by the University of Kentucky Institutional Animal Care and Use Committee 

(IACUC). This trial was conducted from July 2014 through October 2014.  

6.3.1 Animals and dietary treatments 

The ten experimental treatments utilized a 2 x 5 factorial arrangement which 

consisted of 2 breeds and 5 diets. The breeds utilized were Rhode Island Red and Barred 

Plymouth Rock. The diets utilized were: 1) a corn- and soybean meal-based control 

(CSM), 2) 100% of corn and 20% of soybean meal in CSM diet replaced with sorghum 

(SSM), 3) SSM diet with a dietary enzyme complex (Allzyme® SSF, Alltech Inc.  

Nicholasville, KY) added (SSM+SSF), 4) complete replacement of CSM with a 2:1 ratio 

of field peas to sorghum (SFP), and 5) SFP diet with an enzyme complex added 

(SFP+SSF). Field peas contained only 20.5% crude protein compared with the 49.9% 

crude protein content of the soybean meal utilized. Therefore, replacement of soybean 

meal limited the dietary protein levels that could be achieved; resulting in the CSM-based 

diet containing 20% CP, the SSM and SSM+SSF diets containing 18.5% CP, and SFP 

and SFP+SSF diets containing 15.3% CP. The diet formulation and analyzed nutrient 

content of the diets are reported in Table 6.1.  

Chicks were produced from the University of Kentucky’s breeder flocks. For each 

breed and diet combination, three replicate groups of 11 straight-run chicks were placed. 

Chicks were housed in floor pens bedded with dried pine shavings. The floor pen 

dimensions were 1.22 x 1.83 meters which provided 0.20 square meters of space to each 

bird. Birds were brooded at 29.4°C for two weeks with temperature reduced 

incrementally until reaching ambient outdoor temperatures. The average temperature 

experienced was 22.8°C. The lighting program provided 22 hours of light per day 

throughout the experiment. Feed was provided on an ad libitum basis in a hanging tube 
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feeder. Water was provided on an ad libitum basis via a nipple drinking system with three 

nipples per pen. Birds were raised to 98 days of age. 

6.3.2 Growth performance measurements 

Chicks were weighed at the time of placement (1 day of age) and then weekly 

through processing at 98 days of age. Average daily gain was calculated on a pen basis. 

Feed intake was recorded weekly on a pen basis. The feed conversion ratio was 

calculated as grams of feed consumed per gram of gain. At the conclusion of the 

experiment, the number of males and females in each pen was counted and the ratio of 

males to females was used to adjust gain and feed data. Daily mortality was monitored 

and accounted for in gain and feed intake calculations. 

6.3.3 Carcass yield and sample collection 

Birds were processed at 98 days of age. At processing, two male birds per pen 

were euthanized via electrical stunning followed by exsanguination in accordance with 

University of Kentucky IACUC approved procedures. After euthanasia, birds were 

immersed in hot water bath and then de-feathered using a semi-automated chicken 

plucker. The digestive tract, giblets (heart, liver, gizzard, and neck), lungs, feet, and 

shanks were removed. Abdominal fat (fat pad) weights were recorded (expressed as a 

percentage of live weight). Following a 3-hour chill, the chilled carcass weight without 

giblets (WOG) was recorded (expressed as a percentage of live weight) and then breast 

filets (pectoralis major – deboned, skinless), breast tenders (pectoralis minor), wings, 

and leg quarters were removed from each carcass and weighed to determine part yields. 

Breast filets were retained and stored on ice for color score analysis.  

6.3.4 Breast filet color score analysis 

Breast filet color was measured objectively for the Commission Internationale de 

l'Eclairage (CIE) values of lightness (L*), redness (a*), and yellowness (b*) using CR-

310 Chroma Meter (Minolta Co, Ltd., Osaka, Japan)  calibrated against a white tile. 

Color measurements were measured in duplicate on the ventral surface of each breast 

filet. 
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6.3.5 Bone quality analysis 

At 98 days of age, two birds per pen were randomly selected and euthanized by 

argon gas asphyxiation followed by cervical dislocation. Left tibae and humeri were 

collected and pooled by pen for breaking strength analysis via Instron Testing Instrument 

(Model 4301). Excess soft tissue was removed from the bone shaft prior to analysis of 

breaking strength. Bones were placed flat on a raised platform where a stainless steel 

wedge probe aligned perpendicular to the center of the bone shafts applied 100 kilograms 

force at a speed of 40 millimeters per second until the bones fractured. Right tibae and 

humeri were collected and pooled by pen for percent ash analysis. Bones were defrosted 

overnight, then boiled in deionized water for 15 minutes to remove flesh and dried at 

105°C for a minimum of 12 hours. Bones were then de-fatted in changes of petroleum 

ether until petroleum ether solution appeared to be free of fat residues. De-fatted bones 

were dried overnight at 105°C in a forced air oven and then ashed at 600°C for 6 hours in 

a muffler furnace. Ash percent was calculated on a dry matter basis. 

6.3.6 Statistical analysis 

Analysis of variance for a 2 x 5 factorial arrangement of treatments was 

conducted using the general linear model procedures of SAS® (SAS v. 9.3, Cary, NC). 

This analysis allowed for the determination of the main effect of breed, the main effect of 

dietary treatment, and the interactive effects of breed and dietary treatment. Fisher’s least 

significant difference test was used to determine significant differences between means 

with a significance set at P < 0.05. 

 

6.4 Results 

6.4.1 Average body weight 

Average body weights at 1 and 98 days of age are reported in Table 6.2. At 

placement, initial body weight of chicks average 37.8 ± 0.3 grams and was similar (P > 

0.05) between breeds and among dietary treatments. However, final body weights at 98 

days of age differed (P < 0.01) between breeds and among diets. Rhode Island Red birds 

were heavier than Barred Plymouth Rock birds (1624 vs 1518 grams, SEM = 21, P < 

0.05). Birds fed CSM and SSM+SSF were heavier (P < 0.05) than birds fed SFP or 
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SFP+SSF. No breed x diet interaction (P > 0.05) was noted for initial or final body 

weights.  

6.4.2 Growth performance 

Growth performance data was normalized using the ratio of males to females in 

the pen because birds were raised straight-run and reported in Table 6.3. 

6.4.2.1 Average daily gain  

Average daily gain from 1 to 98 days of age differed by breed and diet. Rhode 

Island Red birds exhibited higher average daily gain than Barred Plymouth Rock birds 

(17.7 vs 16.5 grams/bird/day, SEM = 0.2, P < 0.01). A main effect of diet was noted. 

Birds fed the SSM-based diet were lighter (P < 0.05) than birds fed the CSM-based diet, 

but both were heavier (P < 0.05) than birds fed the SFP-based diet. However, the addition 

of dietary enzyme partially alleviated the reduction in average daily gain for birds on the 

SSM-based diet. An additional interaction of breed on diet was noted for average daily 

gain (P < 0.05). For Barred Plymouth Rocks, birds fed the CSM-based diet exhibited 

higher (P < 0.05) average daily gain than all of the other diets. On the other hand, Rhode 

Island Red birds fed SSM and SSM+SSF exhibited similar (P > 0.05) average daily gain 

to birds fed CSM, and birds on all three diets had higher (P < 0.05) average daily gain 

than birds fed SFP and SFP+SSF. 

6.4.2.2 Average daily feed intake 

Average daily feed intake from 1 to 98 days of age was similar between breeds 

(70.5 ± 1.5 grams/bird/day; P > 0.05), but differed among diets. Birds fed the CSM-based 

diet exhibited lower average daily feed intake (60.9 grams/bird/day) than birds fed SSM 

with or without SSF (69.3 grams/bird/day). The highest average daily feed intake was 

exhibited by birds fed SFP-based diets with or without SSF (76.7 grams/bird/day, SEM = 

2.4; P < 0.01). No interaction of breed and diet was noted for average daily feed intake (P 

> 0.05). 

6.4.2.3 Feed to gain 

Barred Plymouth Rock birds exhibited poorer feed to gain than Rhode Island Red 

birds (4.38 vs 3.99 grams feed/grams gain, SEM = 0.12, P < 0.05). A main effect of diet 
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was also noted. Birds fed CSM-based diets had better feed to gain (3.32 grams feed/gram 

gain) than birds fed SSM or SSM+SSF (4.04 grams feed/gram gain). Birds fed SFP or 

SFP+SSF had the poorest feed to gain (4.78 grams feed/gram gain, SEM = 0.18; P < 

0.0001). While there were dietary differences in average daily gain, the effect of diet on 

feed to gain reflected the increased ADFI of these diets. No breed x diet interaction were 

noted for feed to gain ratio (P > 0.05). 

6.4.3 Carcass characteristics 

6.4.3.1 Live weight of processed birds 

The two male birds selected for processing were within 10% of the average 

individual body weight for the males in their respective pens (Table 6.4). The live weight 

of the processed birds did not differ between the two breeds, but there were differences 

among live weights for the birds processed from each diet. For the birds selected for 

processing, the live weight of birds fed CSM was similar (P > 0.05) to those fed SSM or 

SSM+SSF (2017 grams). However, birds fed CSM were heavier than birds fed SFP or 

SFP+SSF (2088 vs. 1860 grams, P < 0.01). 

6.4.3.2 Chilled carcass weight without giblets (WOG) 

The average chilled carcass weight without giblets (WOG) were reported in Table 

6.4. Chilled WOG weight followed a similar pattern to the live weight with no difference 

(P > 0.05) between breeds, but a main effect of diet. Birds fed the SFP diet had lighter (P 

< 0.01) chilled WOG weights than birds fed the CSM diet or the SSM+SSF diet with the 

chilled WOG weights for birds fed the SSM diet being intermediate.  However, when 

expressed as a percentage of the live weight (Table 6.5), no differences were noted 

between breeds or among diets for either WOG (61.9 ± 0.3%, P > 0.05) or chilled WOG 

(64.7 ± 0.5%, P > 0.05).  

6.4.3.3 Abdominal fat (fat pad) 

The average weight of the abdominal fat (fat pad) for each treatment was reported 

in Table 6.4, and fat pad yield as a percentage of the live weight was reported in Table 

6.5. There was no difference (P > 0.05) in fat pad weight or yields as a percentage of the 
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live weight between breeds or among diets. While there was an interactive effect of breed 

x diet (P < 0.05) for both fat pad weight and yield, no clear pattern could be discerned.  

6.4.3.4 Cut-up part weights and yields 

As reported in Table 6.6, there were no differences (P > 0.05) on a weight basis 

between breeds for deboned skinless breast filets, tenders, wings, or leg quarters. 

However, there were differences (P < 0.05) in the weights of these parts among diets. 

These differences tended to follow the same trend as the differences in live weight. 

Therefore, the part weights were expressed as a percentage of the chilled WOG and 

reported in Table 6.7. When expressed as a percentage of the chilled WOG, there were no 

differences (P > 0.05) in deboned skinless breast filet yield (11.4 ± 0.2%), tender yield 

(4.7 ± 0.1%), wing yield (14.1 ± 0.2%), or leg quarter yield (49.1 ± 0.4%). No interactive 

effect of breed on diet was noted on either a weight- or yield-basis (P > 0.05). 

6.4.4 Breast meat color 

As reported in Table 6.8, there were significant treatment effects on the lightness 

(L*), redness (a*), and yellowness (b*) of breast meat. The breast meat of Rhode Island 

Red birds was yellower than the Barred Plymouth Rock breast meat (2.82 vs. 1.92, SEM 

= 0.14; P < 0.0001), but there was no difference (P > 0.05) between breeds for lightness 

or redness. A dietary effect was also noted – as corn and soybean meal were reduced in 

the diet, lightness and yellowness of the breast meat decreased while redness increased (P 

< 0.0001). No breed x diet interactions were observed (P > 0.05). 

6.4.5 Bone quality 

Bone breaking strength and ash content for humerus and tibia were reported in 

Table 6.9. The average breaking strength for tibae was 23.3 ± 0.7 kg force with no effect 

(P > 0.05) of breed or diet. The average breaking strength for humeri differed (P < 0.05) 

between breeds and among diets. Rhode Island Red birds had higher humerus breaking 

strength than Barred Plymouth Rock birds (20.7 vs 19.1, SEM = 0.5; P < 0.05).  Birds fed 

CSM-based diets exhibited higher (P < 0.01) humerus breaking strength than birds fed 

SFP with or without SSF, with birds fed SSM and SSM+SSF intermediate. However, 

there was no effect (P > 0.05) of breed or diet for tibia or humerus bone ash content. 
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Tibia ash averaged 58.5 ± 0.4% and humerus ash averaged 61.0 ± 0.4%. Therefore, the 

difference in strength is not a simple reflection of mineral content. 

 

6.5 Discussion 

Poultry diets in the United Sates typically utilize corn as the main energy source 

and soybean meal as the main protein source. However, there is increasing interest in the 

use of alternative feedstuffs, particularly in organic production where the use of 

genetically modified organisms (GMO) is not permitted (USDA 2012a; USDA 2012b). 

With more than 90% of the corn and soybean crops in the United States coming from 

GMO varieties, organic varieties demand a premium price which can be prohibitive for 

producers of small- and medium-size flocks. The use of alternative feedstuffs to partially 

or completely replace corn and soybean meal may reduce feed costs. It also provides a 

way for their producers to differentiate their products from conventional chicken meat or 

eggs. Unfortunately, formulating balanced diets using alternative feedstuffs can be 

challenging depending on the nutrients available in the feedstuff.  

Therefore, this study was conducted to evaluate the growth performance, carcass 

yield, bone strength, and meat color of Rhode Island Reds and Barred Plymouth Rocks 

fed complete diets formulated using alternative feed ingredients to replace corn and 

soybean meal. The alternative feedstuffs evaluated in this study were field peas and 

sorghum. Field peas were selected as the primary alternative feedstuff because peas are 

relatively high in protein at 20-29% crude protein. While high inclusion levels of field 

peas can reduce bird performance (Farrell et al., 1999; Tuunainen et al., 2016), Nalle et 

al. (2011) found that broilers fed diets containing as much as 20% field peas had similar 

growth performance as broilers fed a corn-soy control. Based on their experiments, 

Farrell et al. (1999) suggested field peas inclusion be limited to 30% of the diet for 

broilers. Additionally, the results of Chapter 5 indicated field peas can be used to replace 

30% of the corn and soybean meal in a diet with no effect on growth performance, or 

carcass and part yields. Sorghum was selected because it has similar digestible energy as 

corn, but more crude protein. Some studies have shown that sorghum-based diets had no 

effect on feed intake, but decreased growth performance when compared with corn-based 

diets (Batonon-Alavo et al., 2015). However, sorghum-based diets supplemented with 
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enzymes showed no negative effects, suggesting the combination is a viable strategy to 

improve the nutritional value of the diets and performance results (Leite et al., 2012) 

Based on the results of the study described in Chapter 3, Rhode Island Reds and 

Barred Plymouth Rocks were expected to demonstrate similar growth performance to one 

another.  However, some differences between the two breeds were noted in the present 

study. While Rhode Island Reds and Barred Plymouth Rocks exhibited similar average 

daily feed intakes during the present study, the Rhode Island Reds exhibited higher 

average daily gain and therefore better feed efficiency than the Barred Plymouth Rocks. 

One reason for this discrepancy is the breed x diet interaction noted for average daily 

gain. Both breeds had lower average daily gain when fed the SFP and SFP+SSF diets. 

However, for the Barred Plymouth Rocks, birds fed the SSM and SSM+SSF diets also 

had lower average daily gain than birds fed the CSM-based diet. On the other hand, 

Rhode Island Reds fed the SSM and SSM+SSF diets maintained growth performance at a 

level similar to that of birds on the CSM-based diet. This suggests that Rhode Island Reds 

were somehow better equipped to adapt to the sorghum-soy-based diet than Barred 

Plymouth Rocks were.  

As expected based on the results of the study described in Chapter 4, Rhode 

Island Reds and Barred Plymouth Rocks had similar carcass and part yields. However, 

there were some differences noted among the dietary treatments. Birds fed the SSM or 

SSM+SSF diets demonstrated similar live weights, similar carcass and part weights, and 

similar carcass and part yields when compared with birds fed the CSM-based diet. This 

suggests that sorghum is a viable replacement for corn in diets for heritage breeds even 

when it reduces the crude protein level of the diet. However, reducing the level at which 

corn is included in the diet reduced yellowness of the breast meat. Because consumers 

rely primarily on color when they initially evaluate meat  (Kennedy et al., 2005), this 

difference in color may impact consumer perception of the product. Whether this impact 

is positive or negative would depend on the consumer’s knowledge and experience. 

On the other hand, the birds fed the SFP or SFP+SSF diets had lower live weights 

at 98 days of age than birds fed the CSM-based diets. Birds fed the SFP or SFP+SSF 

diets also exhibited lower carcass and part weights than CSM-fed birds, the chilled WOG 

yield (as a percentage of the live weight) and the part weights (as a percentage of the 
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chilled WOG weight) were similar among the dietary treatments. Therefore, the lower 

nutrient density of the SFP and SFP+SSF diets does not seem to have altered body 

conformation. Based on these results, sorghum and field peas can be used to completely 

replace corn and soybean meal in diets for heritage breeds if the producer is willing to 

grow the birds longer and provide more feed. However, the effect on meat color is also 

something to consider with these diets because feeding the SFP and SFP+SSF diets 

resulted in darker breast meat that was more red and less yellow than the meat of birds 

fed the CSM-based diet. 

 

6.6 Conclusions 

The results of this study suggest that sorghum can be used with a dietary enzyme 

complex to completely replace corn and partially replace soybean meal in diets for 

heritage breeds without sacrificing average daily gain or carcass yields. However, this 

replacement may increase feed intake, reduce feed conversion, and alter breast meat 

color. Completely replacing corn and soybean meal with a combination of sorghum and 

field peas depressed growth, increased feed intake, and worsened feed conversion when 

compared with both the CSM- and SSM-based diets. In both cases, it is worth noting that 

supplemental amino acids were provided to fortify the diets. Data from previous studies 

and the literature suggest that heritage breeds have lower nutrient requirements than fast-

growing meat-type birds, so this fortification may not be necessary. However, additional 

trials are needed to determine the optimal nutrient levels for heritage breeds. 

Furthermore, the breed x diet interaction observed for growth performance indicates a 

possible difference in dietary requirements between breeds which could warrant further 

investigation. Additionally, further research is needed to determine how these alternative 

ingredients affect meat quality parameters (flavor, texture, water holding capacity, and 

oxidative stability) of heritage breeds.  
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6.7 Tables 

Table 6.1. Diet composition and analyzed nutrient content of a corn-soybean meal based 
diet (CSM), and sorghum-soy-based diets (SSM) or sorghum-field peas-based diets (SFP) 
with or without dietary enzyme (SSF). 

 CSM SSM SSM + SSF SFP SFP +SSF 
Corn, % 64.1 - - - - 
Soybean meal, % 30.7 24.7 24.7 - - 
Sorghum, % - 70.6 70.6 32.4 32.4 
Field peas, % - - - 60.2 60.2 
Vegetable oil, % 1.13 0.55 0.55 3.10 3.10 
Limestone, % 1.33 1.37 1.37 1.37 1.37 
Dicalcium phosphate, % 1.82 1.75 1.75 1.81 1.81 
Salt, % 0.42 0.38 0.38 0.38 0.38 
Vitamin-mineral premix 1, % 0.25 0.25 0.25 0.25 0.25 
DL-Methionine, % 0.17 0.23 0.23 0.40 0.40 
Threonine, % 0.11 0.17 0.17 0.08 0.08 
Tryptophan, % - - - 0.10 0.10 
Enzyme complex 2, % - - 0.02 - 0.02 
Integral® 3, % 0.10 0.10 0.10 0.10 0.10 
      
Energy, kcal ME/kg (calculated) 3000 3000 3000 2900 2900 
Crude protein, % 20.32 18.74 18.19 15.34 15.28 
Methionine, % 0.49 0.39 0.37 0.48 0.47 
Cysteine, % 0.31 0.26 0.23 0.22 0.21 
Lysine, % 1.12 0.87 0.80 1.07 1.04 
Crude fat, % 3.49 2.47 2.53 4.29 4.27 
Crude fiber, % 3.34 3.17 3.23 5.05 4.66 
Calcium 0.98 0.96 0.97 1.02 0.81 
Phosphorus,  total  0.74 0.67 0.69 0.61 0.54 
1 Akey Layer Starter Breeder Premix (Akey, Lewisburg, OH)  

2 Allzyme-SSF® (Alltech Inc., Nicholasville, KY)  

3 Integral® (Alltech Inc., Nicholasville, KY) 
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Table 6.2. Effect of breed and diet on body weights at 1 and 98 days of age for straight-
run Rhode Island Reds and Barred Plymouth Rocks* 

  Average body weight 
at 1 day of age (grams) 

Average body weight 
at 98 days of age (grams) 

Breed main effects   
   Barred Plymouth Rock (BPR) 37.3 1518 b 
   Rhode Island Red (RIR) 37.9 1624 a 
SEM 0.3 21 
P-value 0.1797 0.0070 
Diet main effects   
   CSM 37.9 1678 a 
   SSM 37.6  1594 ab 
   SSM +SSF 37.3 1658 a 
   SFP 37.7 1437 c 
   SFP + SSF 37.5  1489 bc 
SEM 0.4 33 
P-value 0.9314 0.0032 
Interactive effects   
Breed Diet   
   BPR    CSM 37.6 1707 
   BPR    SSM 37.7 1485 
   BPR    SSM +SSF 36.8 1537 
   BPR    SFP 37.1 1417 
   BPR    SFP + SSF 37.2 1446 
   RIR    CSM 38.2 1650 
   RIR    SSM 37.4 1703 
   RIR    SSM +SSF 37.9 1779 
   RIR    SFP 38.2 1458 
   RIR    SFP + SSF 37.7 1532 
SEM 0.6 47 
P-value 0.8110 0.0588 
*Mean values are pen averages (Breed main effects, n = 10; Diet main effects, n = 6; 
Interactive effects, n = 3) 
a,b,c Means within the same column without common letters are different (P < 0.05) 
CSM = corn/soy diet; SSM = sorghum/soybean diet; SFP = sorghum/field peas diets 
+SSF = enzyme complex added to the diet 
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Table 6.3. Effect of breed and diet on average daily gain, average daily feed intake, and 
feed to gain from 1 to 98 days of age (corrected for male:female ratio within pen) for 
straight-run Rhode Island Reds and Barred Plymouth Rocks* 

  Average  
daily gain 
(gram/bird/day) 

Average daily 
feed intake 
(gram/bird/day) 

Feed to Gain 
(grams of feed 
per gram gain) 

Breed main effects    
   Barred Plymouth Rock (BPR) 16.5 b 71.3 4.38 a 
   Rhode Island Red (RIR) 17.7 a 69.9 3.99 b 
SEM 0.24 1.5 0.12 
P-value 0.0020 0.5137 0.0279 
    Diet main effects    
   CSM 18.4 a 60.9 c 3.32 c 
   SSM 17.2 b 69.8 b 4.13 b 
   SSM +SSF 17.6 ab 68.8 b 3.94 b 
   SFP 15.9 c 75.5 a 4.75 a 
   SFP + SSF 16.3 c 77.9 a 4.80 a 
SEM 0.34 2.43 0.18 
P-value 0.0005 0.0011 <0.0001 
Interactive effects    
Breed Diet    
   BPR    CSM 18.6 a 60.5 3.25 
   BPR    SSM 16.1 b 73.3 4.62 
   BPR    SSM +SSF 16.2 b 70.1 4.32 
   BPR    SFP 15.5 b 76.4 4.92 
   BPR    SFP + SSF 15.9 b 76.3 4.81 
   RIR    CSM 18.1 a 61.3 3.38 
   RIR    SSM 18.3 a 66.4 3.64 
   RIR    SSM +SSF 19.0 a 67.6 3.55 
   RIR    SFP 16.3 b 74.5 4.58 
   RIR    SFP + SSF 16.6 b 79.5 4.80 
SEM 0.48 3.44 0.26 
P-value 0.0242 0.6619 0.1992 
*Mean values represent pen averages corrected for male:female ratio within the pen 
(Breed main effects, n = 10; Diet main effects, n = 6; Interactive effects, n = 3) 
a,b,c Means within the same column without common letters are different (P < 0.05) 
CSM = corn/soy diet; SSM = sorghum/soybean diet; SFP = sorghum/field peas diets 
+SSF = enzyme complex added to the diet 
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Table 6.4. Effect of breed and diet on live weight, chilled carcass weight without giblets 
(WOG), and abdominal fat (fat pad) weight for Barred Plymouth Rocks and Rhode Island 
Reds at 98 days of age 

 Live  
weight, g 

Chilled WOG  
weight, g 

Fat pad 
weight, g 

Breed main effects    
   Barred Plymouth Rock (BPR) 1960 1279 35.8 
   Rhode Island Red (RIR) 1976 1268 39.0 
SEM 32 23 3.3 
P-value 0.718 0.7196 0.4901 
Diet main effects    
   CSM 2088 a 1371 a 46.5 
   SSM 1971 ab 1276 ab 29.3 
   SSM +SSF 2062 a 1335 a 44.0 
   SFP 1833 b 1188 b 29.5 
   SFP + SSF 1887 b 1198 b 37.6 
SEM 50 36 5.1 
P-value 0.0024 0.0016 0.0619 
Interactive effects    
   Breed Diet    
   BPR    CSM 2112 1400 48.5 ab 
   BPR    SSM 1913 1247 22.0 c 
   BPR    SSM +SSF 2037 1333 31.3 bc 
   BPR    SFP 1859 1224 30.3 bc 
   BPR    SFP + SSF 1879 1195 46.7 ab 
   RIR    CSM 2063 1342 44.5 ab 
   RIR    SSM 2029 1306 36.5 abc 
   RIR    SSM +SSF 2087 1338 56.7 a 
   RIR    SFP 1808 1152 28.7 bc 
   RIR    SFP + SSF 1894 1202 28.5 bc 
SEM 70 50 7.3 
P-value 0.7351 0.7002 0.0406 
Mean values are averages of two birds per pen (Breed main effects, n = 10; Diet main 
effects, n = 6; Interactive effects, n = 3) 
a,b,c Means within the same column without common letters are different (P < 0.05) 
CSM = corn/soy diet; SSM = sorghum/soybean diet; SFP = sorghum/field peas diets 
+SSF = enzyme complex added to the diet 
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Table 6.5. Effect of breed and diet on chilled carcass yield without giblets (WOG), and 
abdominal fat (fat pad) yield as a percentage of live weight for Barred Plymouth Rocks 
and Rhode Island Reds at 98 days of age 

 % of live weight 
  Chilled WOG yield  Fat pad yield 
Breed main effects   
   Barred Plymouth Rock (BPR) 65.31 1.79 
   Rhode Island Red (RIR) 64.07 1.95 
SEM 0.47 0.15 
P-value 0.0771 0.4500 
Diet main effects   
   CSM 65.61 2.24 
   SSM 64.70 1.43 
   SSM +SSF 62.72 2.11 
   SFP 64.96 1.6 
   SFP + SSF 63.44 1.97 
SEM 0.75 0.24 
P-value 0.4146 0.1075 
Interactive effects   
Breed Diet   
   BPR    CSM 66.26 2.30 abc 
   BPR    SSM 65.14 1.06 d 
   BPR    SSM +SSF 65.39 1.48 cd 
   BPR    SFP 66.20 1.63 bcd 
   BPR    SFP + SSF 63.55 2.46 ab 
   RIR    CSM 64.96 2.17 abc 
   RIR    SSM 64.26 1.80 abcd 
   RIR    SSM +SSF 64.06 2.73 a 
   RIR    SFP 63.72 1.58 bcd 
   RIR    SFP + SSF 63.33 1.47 cd 
SEM 1.05 0.34 
P-value 0.8455 0.0198 
Mean values are averages of two birds per pen (Breed main effects, n = 10; Diet main 
effects, n = 6; Interactive effects, n = 3) 
a,b,c Means within the same column without common letters are different (P < 0.05) 
CSM = corn/soy diet; SSM = sorghum/soybean diet; SFP = sorghum/field peas diets 
+SSF = enzyme complex added to the diet 
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Table 6.6. Effect of breed and diet on average part weights for Barred Plymouth Rocks 
(BPR) and Rhode Island Reds (RIR) at 98 days of age 

 Boneless, 
skinless breast 

weight, g 

Tender 
weight, g 

Wing 
weight, g 

Leg quarter 
weight, g 

Breed main effects     
   BPR 148 60.5 179 627 
   RIR 142 58.8 178 623 
SEM 3.7 1.4 2.9 12.2 
P-value 0.2244 0.3807 0.9219 0.7976 
Diet main effects     
   CSM 159 a 65.8 a 187 a 673 a 
   SSM 149 ab 61.8 a 180 ab 619 ab 
   SSM +SSF 148 ab 62.7 a 186 a 660 a 
   SFP 134 b 53.8 b 167 b 592 b 
   SFP + SSF 135 b 54.3 b 173 b 581 b 
SEM 5.8 2.2 4.5 19.2 
P-value 0.0206 0.0008 0.0135 0.0035 
Interactive effects     
   Breed Diet     
   BPR    CSM 164 67.7 189 680 
   BPR    SSM 148 58.8 176 603 
   BPR    SSM +SSF 153 65.2 191 655 
   BPR    SFP 139 55.8 171 614 
   BPR    SFP + SSF 137 55.2 168 584 
   RIR    CSM 153 63.8 184 667 
   RIR    SSM 150 64.7 184 635 
   RIR    SSM +SSF 143 60.2 182 664 
   RIR    SFP 129 51.7 164 569 
   RIR    SFP + SSF 133 53.5 178 577 
SEM 8.2 3.20 6.40 27.2 
P-value 0.9271 0.4266 0.3912 0.7090 
Mean values are averages of two birds per pen (Breed main effects, n = 10; Diet main 
effects, n = 6; Interactive effects, n = 3) 
a,b,c Means within the same column without common letters are different (P < 0.05) 
CSM = corn/soy diet; SSM = sorghum/soybean diet; SFP = sorghum/field peas diets 
+SSF = enzyme complex added to the diet 
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Table 6.7. Effect of breed and diet on part yields as a percentage of live weight for Barred 
Plymouth Rocks (BPR) and Rhode Island Reds (RIR) at 98 days of age 

 % of live weight 
 Boneless, skinless 

breast yield 
Tender 
yield 

Wing 
yield 

Leg quarter 
yield 

Breed main effects     
   BPR 11.57 4.74 14.02 49.01 
   RIR 11.13 4.62 14.12 49.12 
SEM 0.16 0.08 0.16 0.36 
P-value 0.0522 0.2600 0.6508 0.8578 
Diet main effects     
   CSM 11.55 4.80 13.65 49.17 
   SSM 11.65 4.87 14.16 48.47 
   SSM +SSF 11.06 4.68 13.97 49.47 
   SFP 11.25 4.51 14.13 49.75 
   SFP + SSF 11.23 4.52 14.45 48.47 
SEM 0.25 0.12 0.26 0.57 
P-value 0.4293 0.1390 0.2782 0.3967 
Interactive effects     
   Breed Diet     
   BPR    CSM 11.71 4.85 13.54 48.65 
   BPR    SSM 11.88 4.78 14.18 48.27 
   BPR    SSM +SSF 11.45 4.89 14.37 49.22 
   BPR    SFP 11.36 4.57 13.97 50.11 
   BPR    SFP + SSF 11.45 4.61 14.05 48.82 
   RIR    CSM 11.39 4.76 13.76 49.68 
   RIR    SSM 11.43 4.96 14.15 48.67 
   RIR    SSM +SSF 10.66 4.48 13.56 49.72 
   RIR    SFP 11.15 4.46 14.28 49.40 
   RIR    SFP + SSF 11.02 4.43 14.86 48.12 
SEM 0.35 0.17 0.36 0.81 
P-value 0.9433 0.5383 0.2686 0.7644 
Mean values are averages of two birds per pen (Breed main effects, n = 10; Diet main 
effects, n = 6; Interactive effects, n = 3) 
a,b,c Means within the same column without common letters are different (P < 0.05) 
CSM = corn/soy diet; SSM = sorghum/soybean diet; SFP = sorghum/field peas diets; 
+SSF = enzyme complex added to the diet 
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Table 6.8. Effect of breed and diet on breast meat color of Rhode Island Reds (RIR) and 
Barred Plymouth Rocks (BPR) at 98 days of age 

  
Lightness (L*) Redness (a*) Yellowness (b*) 

Breed main effects    
   BPR 59.62 9.74 1.92 b 
   RIR 60.02 9.61 2.82 a 
SEM 0.31 0.16 0.14 
 P-value  0.3593 0.5625 <0.0001 

    
Diet main effects    
   CSM 62.71 a 8.30 b 4.96 a 
   SSM 62.71 a 8.88 b 1.55 c 
   SSM +SSF 62.19 a 8.96 b 1.25 c 
   SFP 56.52 b 11.10 a 2.36 b 

   SFP + SSF 54.97 c 11.14 a 1.72 c 
SEM 0.49 0.25 0.22 
 P-value  <0.0001 <0.0001 <0.0001 

Interactive effects    
Breed Diet    
   BPR    CSM 62.24 8.71 4.49 
   BPR    SSM 62.97 8.81 1.35 
   BPR    SSM +SSF 62.38 9.07 0.94 
   BPR    SFP 55.96 10.85 1.73 
   BPR    SFP + SSF 54.54 11.26 1.09 
   RIR    CSM 63.17 7.89 5.42 
   RIR    SSM 62.47 8.94 1.75 
   RIR    SSM +SSF 62.01 8.86 1.57 
   RIR    SFP 57.08 11.34 3.00 
   RIR    SFP + SSF 55.40 11.02 2.35 
SEM 0.70 0.35 0.31 
P-value 0.6518 0.4370 0.5564 
Mean values are averages of two birds per pen (Breed main effects, n = 10; Diet 
main effects, n = 6; Interactive effects, n = 3) 
a,b,c Means within the same column without common letters are different (P < 0.05) 
CSM = corn/soy diet; SSM = sorghum/soybean diet; SFP = sorghum/field peas diets 
+SSF = enzyme added to the diet 
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Table 6.9. Effect of breed and sex on the bone breaking strength and ash content of tibia 
and humerus for two Rhode Island Reds (RIR) and Barred Plymouth Rocks (BPR) at 98 
days of age 

  

Tibia 
breaking 
strength,  
kg force 

Tibia  
Ash, % 

Humerus 
breaking 
strength,  
kg force 

Humerus  
Ash, % 

     Breed main effects        BPR 22.8 58 19.1 b 61 
   RIR 23.7 59 20.7 a 61 
SEM 0.7 0.4 0.5 0.4 
 P-value  0.3820 0.0352 0.0356 0.7745 
     Diet main effects        CSM 23.7 59 22.0 a 61 
   SSM 22.3 58 20.7 ab 61 
   SSM +SSF 25.6 60 20.3 abc 60 
   SFP 22.8 57 18.1 c 61 
   SFP + SSF 21.8 59 18.4 bc 61 
SEM 1.1 0.6 0.8 0.7 
 P-value  0.1310 0.0498 0.0074 0.8124 
Interactive effects 

    Breed Diet     
   BPR    CSM 22.4 59 22.5 61 
   BPR    SSM 23.5 58 19.4 62 
   BPR    SSM +SSF 25.8 58 18.7 60 
   BPR    SFP 21.8 57 16.8 60 
   BPR    SFP + SSF 20.7 59 18.0 61 
   RIR    CSM 25.0 59 21.5 61 
   RIR    SSM 21.1 58 21.9 61 
   RIR    SSM +SSF 25.4 61 21.9 61 
   RIR    SFP 23.9 58 19.3 62 
   RIR    SFP + SSF 23.0 59 18.8 61 
SEM 1.5 0.8 1.2 1.0 
 P-value  0.4282 0.7691 0.3958 0.7484 
Mean values are averages of two birds per pen (Breed main effects, n = 10; Diet main 
effects, n = 6; Interactive effects, n = 3) 
a,b,c Means within the same column without common letters are different (P < 0.05) 
CSM = corn/soy diet; SSM = sorghum/soybean diet; SFP = sorghum/field peas diets 
+SSF = enzyme added to the diet 
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CHAPTER 7: Summary and conclusions 

 The objective of this research was to examine the effect of feed strategies, 

alternative feedstuffs, and dietary enzyme on the growth and performance of heritage 

breeds of chickens used for either egg- or meat-production.  

The first study (Chapter 2) utilized a self-selection feeding method to determine 

the growth performance of pullets from three heritage breeds (Rhode Island Red, Barred 

Plymouth Rock, and Black Australorp) and two sex-link strains (Black Star and Red 

Star). Pullets from all five genotypes demonstrated similar growth rates to those of 

commercial ISA Brown pullets. Overall feed and nutrient intake was similar among 

genotypes with pullets selected a diet that consisted of 3098 kcal ME/kg, 15.3% crude 

protein, 0.26% methionine, 0.70% lysine, 0.51% calcium, and 0.29% phosphorus. 

Therefore, self-selection resulted in diets that were sufficient in protein, methionine, 

lysine, and phosphorus, but lower in calcium and higher in energy than National 

Research Council (1994) recommendations. This indicated that heritage breed pullets 

likely have similar nutrient requirements to pullets from brown-egg-laying strains. 

However, a subsequent study showed that the heritage breed hens and the sex-link strains 

produced smaller eggs and had poor hen day production when compared with the ISA 

Brown hens (Jacob, 2014).  

The second study (Chapter 3) utilized a self-selection feeding method to 

determine the growth performance of males from three heritage breeds (Rhode Island 

Red, Barred Plymouth Rock, and Black Australorp) and a slow-growing meat-type strain 

(Red Ranger). Average daily gain for Red Rangers was lower than that of Cornish Cross 

males and females, but higher than that of the heritage breeds. Therefore, Red Ranger 

males and heritage breed males took about 1.3 and 2.8 times longer, respectively, than 

Cornish Cross males to reach a live weight of 2300 grams. Additionally, while heritage 

breeds consumed less feed per day than meat-type birds, they also exhibited poor feed 

efficiency which resulted in higher overall feed intake to reach the same body weight. 

The third study (Chapter 4) evaluated the carcass characteristics of the birds from 

the second study. At a common live weight of 2300 grams, Cornish Cross males and 

females had higher chilled WOG yields than Red Rangers or heritage breeds (74.8 vs 

67.4%). Additionally, there was a conformational difference observed for the carcasses of 



 

155 
 

Red Rangers and heritage breeds when compared with Cornish Cross carcasses. The 

Cornish Cross birds had higher boneless breast yields, and lower leg and wing yields, 

than the Red Rangers and heritage breeds. On the self-selection diet, heritage breeds had 

larger gizzards than the Cornish Cross birds which could allow the birds to better process 

larger feedstuffs.  

The fourth study (Chapter 5) evaluated the use of alternative feedstuffs (field 

peas, buckwheat, and flax seed) to partially replace corn and soybean meal (CSM) in 

diets for three genotypes (straight-run Cornish Crosses, males from a Black Sex-Link 

cross, and straight-run Rhode Island Reds). As expected based on previous research, 

Cornish Crosses had better growth performance and carcass yield than Black Sex-Link 

males and Rhode Island Reds. Percent carcass and breast filet yields of Rhode Island 

Reds were lower and more affected by sex, but less affected by feed ingredients, than 

commercial broilers. For all three breeds, field peas replaced 30% of the CSM-based diet 

without reducing performance. However, a 50% replacement of CSM-based diet with a 

3:1:1 mixture of field peas, buckwheat, and flax seed resulted in reduced performance. 

Additionally, the use of alternative breeds and feed ingredients was found to impact meat 

color and negatively affect lipid peroxidation, but the inclusion of dietary enzymes 

mitigated the effect on lipid peroxidation. 

The fifth study (Chapter 6) evaluated the use of sorghum and field peas as 

replacements for corn and soybean meal in diets for two heritage breeds: Rhode Island 

Reds and Barred Plymouth Rocks. While Rhode Island Reds and Barred Plymouth Rocks 

exhibited similar average feed intake, Rhode Island Reds exhibited higher average daily 

gain and therefore better feed efficiency. Additionally, Rhode Island Reds were better 

able to adapt to a sorghum- and soybean meal-based diet with or without dietary enzyme 

than Barred Plymouth Rocks. For both breeds, the use of sorghum and field peas with or 

without dietary enzymes did not affect carcass or part yields relative to live weight. 

However, lightness and yellowness of the breast meat decreased when the levels of corn 

and soybean meal were reduced in the diet. This could be a benefit or a concern 

depending on the market.  
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7.1 Use of heritage breeds and slow-growing meat-type strains 

Despite increased interest in the use of heritage breeds and slow-growing meat-

type strains for meat production, neither of these types are truly viable alternatives to the 

fast-growing genetics used today. Based on the results of the presented studies, the 

poultry industry cannot afford to go back to slower-growing chickens if it wants to 

continue to meet consumer demand for chicken meat. The issue is not simply that 

heritage breeds grow slower, but also that they have poorer feed conversion which 

requires more feed per gram of gain than a fast-growing meat-type bird would.  

The fast-growing meat-type strains utilized in these studies achieved 3.6x higher 

growth rates while consuming half as much feed per gram of gain than the heritage breed 

males. While the slow-growing meat-type strain (Red Ranger) utilized in these studies 

had better growth rates and feed conversion ratios than the heritage breeds, the fast-

growing meat-type strain still achieved 1.5x higher growth rates and consumed 15% less 

feed per gram of gain than these birds. For both heritage breeds and slow-growing meat-

type strains, this issue is compounded by relatively low carcass yields when compared 

with fast-growing meat-type strains. While these studies did not evaluate where the 

weight goes, visual appraisal of these birds suggest it is in longer limbs and increased 

feather coverage. However, this did not translate to stronger bones. In fact, the results of 

Chapter 5 showed that commercial broilers had higher bone breaking strength when 

compared with heritage breeds at the same body weight. 

As a result of their slow growth rates and low carcass yields, producing the same 

amount of meat using slow-growing genotypes would require more time, more feed, 

more land (for chicken houses and to grow feed), more trucks (to transport birds and 

feed), more fuel, more birds, more manpower, etc. While this may create new jobs, the 

additional resources required and the additional waste produced would have a 

catastrophic impact on both the economy and the environment. Therefore, the use of 

slower-growing breeds for meat production is neither economically nor environmentally 

sustainable except on a very small scale for premium niche markets. This is particularly 

true if these birds are being provided with high-nutrient-density diets which are 

formulated for fast-growing meat-type birds. While more work still needs to be done to 
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determine their precise nutrient requirements, heritage breeds seem to have lower nutrient 

requirements than fast-growing meat-type strains. 

Based on these findings, alternatives genotypes such as slow-growing meat-type 

birds and heritage breed chickens will remain a niche market in the United States. 

Producers interested in raising heritage breeds must take into consideration the increased 

feed costs and decreased yield when pricing their products. Additionally, sex-separate 

management where only males are used for meat production is advised due to the low 

growth rates of female heritage breeds. To this end, birds produced from sex-linked 

crosses offer a unique opportunity to easily divert males and females to different 

production streams. However, their growth performance and carcass yields are similar to 

that of heritage breeds, so raising these birds poses the same challenges as heritage breeds 

when it comes to production costs. 

7.2 Use of self-selection feeding program for heritage breeds 

Significant research has been conducted to determine the nutrient requirements of 

poultry species used in the commercial production of meat and eggs. The data from this 

research is used to formulate complete diets designed to meet the bird’s needs and 

maximize production. For producers interested in raising heritage breeds, the only 

recommendations available are the National Research Council (1994) recommendations 

for meat-type and egg-type chickens. However, these recommendations may not be 

appropriate for heritage breeds. Therefore, one of the goals of this project was to produce 

data to begin to determine the nutrient requirements of heritage breeds.  

With no nutritional standards specifically designed for heritage breeds, 

formulating a complete diet for these breeds with any accuracy would be difficult. 

Therefore, the first studies used a self-selection feeding program to determine the nutrient 

intake of heritage breed pullets and cockerels. Steinruck and Kirchgessner (1992, 1993a, 

1993b) and others suggest that pullets and laying hens are capable of balancing their own 

diets when given a choice of feeds with either a deficient or excessive supply of protein. 

Self-selection feeding has also been used in meat-type birds with varying degrees of 

success. While self-selection-fed birds had similar growth performance to birds fed 

complete diets in some studies, others showed decreased performance. Additionally, 

some studies have shown reduced carcass yields for self-selection-fed birds (Cerrate et 
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al., 2007), while others show no effect (Ozek et al., 2012). However, self-selection 

feeding programs have not been extensively studied in heritage breeds. 

7.2.1 Use of self-selection feeding program for pullets 

The results of the pullet study showed that Black Australorp, Barred Plymouth 

Rock, Black Star, and Red Star pullets were able to use a self-selection feeding program 

to achieve weights consistent with the expected body weights published by the National 

Research Council (1994) for brown-egg-laying pullets. However, the Rhode Island Reds 

and ISA Browns fell short of the expected body weights published for both brown-egg-

laying strain pullets (National Research Council, 1994) and for ISA Brown pullets 

(Institut de Sélection Animale). This begs the question as to whether these pullets were 

selecting diets that met their requirements.  

Based on the results of the self-selection feeding program, the average daily feed 

and nutrient intake for the heritage breeds was similar to that for the ISA Browns. 

Additionally, the nutrient composition of the self-selected diets resulted in diets that were 

sufficient in protein, methionine, lysine, and phosphorus, but lower in calcium and higher 

in energy than National Research Council (1994) recommendations. The higher than 

expected energy consumption is consistent with the literature on self-selection feeding 

which shows that self-selection-fed birds tend to consume more energy and less protein 

than birds fed complete diets (Leeson and Caston, 1993; Sahin, 2003; Cerrate et al., 2007; 

Syafwan et al., 2012; Fanatico et al., 2013; Catanese et al., 2015). Therefore, these results 

suggest that heritage breed pullets likely have similar nutrient requirements to pullets 

from commercial brown-egg-laying strains during the rearing phase. Consequently, the 

National Research Council (1994) recommendations for brown-egg-laying strain pullets 

should also be appropriate for heritage breed pullets. 

7.2.2 Use of self-selection feeding program for cockerels 

When a self-selection feeding program was used for heritage breed males, the 

birds showed a preference for higher energy, but lower protein diets than those selected 

by meat-type birds. The heritage breeds selected diets containing 16.2% crude protein 

and 3068 kcal ME/kg, while the fast-growing meat-type males selected diets containing 

20.8% crude protein and 2887 kcal ME/kg. Because feed intake in birds is heavily driven 
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by energy appetite, this difference in appetite for energy should be considered when 

formulating diets for heritage breeds.  

No signs of deficiency were noted which indicates the self-selected diet was not 

deficient. However, when some birds were switched on to a broiler starter diet (22% CP; 

3084 kcal ME/kg) part way through the study, their average daily gain was improved 

when compared with the bird remaining on self-selection. Additionally, the birds had 

similar average daily feed intake, but improved feed conversion. This suggests that the 

self-selected diet (16.2% CP; 3068 kcal ME/kg) was not sufficient to maximize growth.  

Rhode Island Reds were used in all of the studies presented. Therefore, they 

provide an interesting point of comparison between studies. On the self-selection feeding 

program, the Rhode Island Red males reached a live weight of 1814 grams at 105 days of 

age. However, in a another trial where Rhode Island Reds were provided with formulated 

diets (~19% CP; 3000 kcal ME/kg), this same weight was achieved at 96 days of age. 

While this difference could be attributed to the higher protein content of the formulate 

diet, a similar weight (1851 grams) was also achieved in 98 days with a lower crude 

protein diet (15.3% CP and 2900 kcal ME/kg) in another study. Lastly, in the final trial, 

Rhode Island Red males achieved an average body weight of 2060 grams at 98 days of 

age while receiving either a corn-soy diet (20% CP; 3000 kcal ME/kg) or a sorghum-soy 

based diet (18.4% CP; 3000 kcal ME/kg). This weight was not achieved in the self-

selection trial until around 119 days of age. 

The differences in growth rates observed in these trials provide further evidence 

that, while the self-selection feeding program were adequate to prevent nutritional 

deficiency, the resulting diets were not sufficient to maximize growth. However, other 

factors such as lighting program and stocking density differed in these trials and may be 

responsible for some of the difference observed.  

Finally, while the heritage breeds’ tendency to select diets higher in energy and 

lower in protein than meat-type birds could result in lower cost per pound of feed, the 

amount of extra feed required by these birds overall will undoubtedly exceed any 

potential savings. Therefore, the recommendation is to use complete diets for heritage 

breeds. Unfortunately, specific nutrient recommendations cannot be made based on these 
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results, so further research is needed to determine the nutrient requirements of heritage 

breed cockerels.  

7.3 Use of alternative feed ingredients and dietary enzymes 

Poultry feed requires sources of protein, energy, vitamins, and minerals. In 

conventional chicken diets in the United States, corn serves as the main energy source 

and soybean meal as the main protein source. However, more than 90% of the corn and 

soybean crops in the United States are genetically modified organisms (GMO). In some 

production systems, such as organic production, GMO ingredients products are not 

allowed (USDA 2012a; USDA 2012b). Additionally, there is a trend in the industry 

moving towards all vegetarian diets which do not utilize animal by products. Therefore, 

there is interest in finding alternative feed ingredients, particularly those with relatively 

high levels of protein. While some alternative protein sources have been identified, all 

present major challenges which limit their use (Burley et al., 2015). There is some early 

research looking at the suitability of individual feedstuffs as substitutes for corn or 

soybean meal in poultry diets, but there is very little research into the use of combinations 

of these alternative crops as the sole ingredients in a complete poultry feed. Some of the 

proposed feed ingredients contain anti-nutritive factors (e.g., β-glucans, pentosans) which 

may limit their use when feed enzymes are not included. Organic feed regulations allow 

for the use of non-GMO feed enzymes (USDA 2012a; USDA 2012b). 

In these studies, the alternative feed ingredients evaluated included pearl millet, 

naked oats, field peas, sorghum, buckwheat, and flax seed. These ingredients were 

selected because they contain higher levels of protein than corn and have previously been 

used in poultry diets. However, many of these ingredients have anti-nutritive factors 

which limit their utility beyond a certain inclusion level. Based on the literature, pearl 

millet, sorghum, and field peas showed the greatest potential utility as complete 

replacements for either corn or soybean meal. During the self-selection trials, birds 

readily accepted pearl millet as a stand-alone feed ingredient. While most of the birds 

showed a strong preference for corn over the other grains, the ingredient consumption 

pattern for the slow-growing meat-type bird (Red Ranger) showed a preference for pearl 

millet over corn. However, pearl millet is a relatively expensive feed ingredient, so it was 

not utilized in subsequent studies. Naked oats have been successfully used in some 
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studies (Burley et al., 2015), but they were not readily accepted by the birds in the present 

studies.  

Based on the results of these studies, field peas can be used with or without 

dietary enzyme to replace 30% of the corn and soybean meal in diets for meat-type birds 

and heritage breeds without sacrificing growth performance or carcass yield. Due to the 

limited protein value of field peas (20 to 29% CP), field peas could not be included at 

higher levels without significant amino acid supplementation. Therefore, a diet where 

50% of the corn and soybean meal was replaced with a 3:1:1 ratio of field peas, 

buckwheat, and flax seed was evaluated. This diet negatively affected growth 

performance for both meat-type and heritage breeds. Furthermore, this dietary 

formulation reduced chilled WOG and breast yields for commercial broilers, but not for 

the heritage breed studied. The use of a dietary enzyme complex was able to improve 

some performance parameters; however, it did not appear to affect carcass and part 

yields. 

In the final trial, sorghum was used to completely replace corn and a combination 

of sorghum and field peas was evaluated to completely replace corn and soybean meal. 

The results of this study suggested that sorghum can be used with a dietary enzyme 

complex to completely replace corn and partially replace soybean meal in diets for 

heritage breeds without sacrificing average daily gain or carcass yields. However, this 

replacement increased feed intake, reduced feed conversion, and altered breast meat 

color. Completely replacing corn and soybean meal with a combination of sorghum and 

field peas depressed growth, increased feed intake, and worsened feed conversion when 

compared with both the corn-soy and sorghum-soy diets.  

Based on the combined results, alternative ingredients can be utilized in the diets 

of heritage breeds. However, the utility of a particular ingredient is limited by  its nutrient 

composition. Ultimately, none of the alternative ingredients evaluated were able to 

completely replace corn and soybean meal. Therefore, these studies reconfirmed the 

reason why we feed corn and soybean meal to chickens. Using corn and soybean meal, it 

is very easy to formulate a wide variety of well-balanced diets to meet birds’ with 

minimal supplementation. Field peas provide a promising avenue for replacing soybean 

meal in the diets of heritage breeds, but the amino acid balance presents a challenge when 
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using it at higher inclusion levels. Finally, dietary enzymes can help birds overcome poor 

quality diets, but they will not alleviate all negative effects. 

7.4 Future directions 

When taken together, the results of this research indicate that the slow growth rate 

and poor feed efficiency of heritage breeds limit their utility as meat birds. However, the 

lower nutrient intakes of the heritage breeds suggest lower nutrient requirements when 

compared with meat-type birds which may enable heritage breeds to perform better in 

marginal environments where lower-nutrient-density diets are provided. Finally, through 

documentation of the growth performance and carcass characteristics of three heritage 

breeds, this research should provide producers interested in raising heritage breeds with 

some of the information needed to calculate potential expenses and determine the price 

needed to profit on their products.  

Further research needs to be done to determine the nutrient requirements for 

males from heritage breeds and slow-growing meat-type birds which optimize production 

characteristics. Particular attention should be given to improving feed conversion if these 

birds are going to be used. Additionally, while the results of these studies suggest 

heritage breed pullets have similar requirements as brown-egg-laying strain pullets, 

additional studies would need to evaluate their performance and nutrient needs during 

lay.   
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APPENDIX A: Nutrient specifications for brown-egg-laying strain pullets from hatch to 

18 weeks of age 

 

Age 0 to 6 weeks 6 to 12 weeks 12 to 18 weeks 18 weeks to first 
egg 

ME (kcal/kg) 2800 2800 2850 2850 
CP (%) 17.0 15.0 14.0 16.0 
Met (%) 0.28 0.23 0.19 0.21 
Met + Cys (%) 0.59 0.49 0.39 0.44 
Lys (%) 0.80 0.56 0.42 0.49 
Thr (%) 0.64 0.53 0.35 0.44 
Trp (%) 0.16 0.13 0.10 0.11 
Ca (%) 0.90 0.80 0.80 1.8 
Non-phytate P (%) 0.40 0.35 0.30 0.35 
Cl (min %) 0.12 0.11 0.11 0.11 
Na (min %) 0.15 0.15 0.15 0.15 
Adapted from National Research Council (1994)  
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APPENDIX B: Nutrient specifications for ISA Brown pullet diets from 1 day of age 

through beginning of lay 

 

 Starter Grower Pullet Pre-lay 
Days of Age 1 to 28 days 28 to 70 days 70 to 112 days 112 days to 2 lay 
ME (kcal/kg) 2950 2850 2750 2750 
CP (%) 20.5 19.0 16.0 17.0 
Met (%) 0.52 0.45 0.35 0.36 
Met + Cys (%) 0.86 0.76 0.62 0.65 
Lys (%) 1.16 0.98 0.74 0.80 
Thr (%) 0.78 0.66 0.50 0.54 
Trp (%) 0.21 0.19 0.16 0.17 
Ca (%) 1.08 1.10 1.10 2.05 
P ( available) 0.48 0.42 0.40 0.45 
Cl (min %) 0.15 0.15 0.15 0.15 
Na (min %) 0.17 0.17 0.17 0.17 
Adapted from ISA Brown Management Guide (Institut de Sélection Animale) 
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APPENDIX E: Nutrient specifications for broiler diets from 0 to 8 weeks of age 
 

Age 0 to 3 weeks 3 to 6 weeks 6 to 8 weeks 
ME (kcal/kg) 3200 3200 3200 
CP (%) 23 20 18 
Met (%) 0.50 0.38 0.32 
Met + Cys (%) 0.90 0.72 0.60 
Lys (%) 1.10 1.00 0.85 
Thr (%) 0.80 0.74 0.68 
Trp (%) 0.20 0.18 0.16 
Ca (%) 1.00 0.90 0.80 
Non-phytate P (%) 0.45 0.35 0.30 
Cl (min %) 0.20 0.15 0.12 
Na (min %) 0.20 0.15 0.12 
Adapted from National Research Council (1994) 
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