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Figure 10. Multiyear (2005–2010) seasonal mean pCO2 elevation (no-biology run minus control run), in the Gulf of Mexico dur-
ing (a) spring, (b) summer, (c) fall, and (d) winter.

Figure 11. Scatter plots of the multiyear mean pCO2 drop (no-biology run minus control run) and surface NCP in NGoM (left) and open
ocean (right).
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Figure 12. Differences in model-simulated primary production and pCO2 between the 2004–2010 and the 1904–1910 periods (2005–2010
minus 1905–1910 seasonal mean condition). For (a) and (c) blue color indicates increased primary production during 2004–2010; for (b)
and (d) red color indicates reduced pCO2 during 2004–2010.

tion (r value: 0.80) throughout the year, while its correla-
tions with surface temperature and DIC concentration were
significant only for part of the year (for detailed season-by-
season correlations see Table 2). Although our model sug-
gests that the shelf-wide pCO2 distribution was positively
correlated with DIN concentration, this is not contrary to
findings of the above-mentioned observational studies; that
is, the high DIN stimulates primary production should be
negatively correlated with sea surface pCO2. Instead, the
high DIN concentration, together with the low salinity, was
a signal of rich DIC from the riverine inputs and, potentially,
the light-limited conditions due to the high suspended sedi-
ment and dissolved organic matter concentrations within the
river plume. In other words, CO2 outgassing from oversatu-
rated plume water overwhelmed the CO2 influx induced by
“biological pump” in the areas near the river mouths.

To further link pCO2 dynamics with biological processes
stimulated by river inputs, we plotted the pCO2 and DIC
averaged over spring and summer seasons (high flow from
the Mississippi) against surface salinity of the control run
and no-biology run in Fig. 14. Seawater pCO2 decreased
almost linearly as salinity increased in the no-biology run
(Fig. 14b). During spring and summer when river discharge
and DIC inputs were high, the high-pCO2 and low-salinity
waters around the Mississippi River delta (86–88 ◦W, red-
dish points) can be easily differentiated from the high-
salinity and low-pCO2 waters on the Texas Shelf (92–
95◦W, bluish points). The DIC–salinity relationship for wa-
ters around the Mississippi River delta (reddish points in Fig.
14d) fell below the conservative mixing relationship for the

river end member calculated using in situ data collected in
the spring and summer of 2008 by Cai et al. (2011a). For
locations to the west, the DIC–salinity relationship reflected
a mixture of waters from the Texas Shelf (bluish points) and
those from the Atchafalaya River (yellowish-greenish points)
likely with differing end members.

When biological processes were included, the shelf water
exhibited large spatial and seasonal variability (left panels).
A pCO2 minimum was simulated in mid-salinity waters (30–
33 psu) during spring and summer, which is consistent with
the curve derived by Huang et al. (2015) using ship mea-
surements. Compared with the no-biology run, pCO2 was
reduced significantly and exhibited a wider range in the con-
trol run. The biological removal of sea surface CO2 was most
salient in waters around the Mississippi River delta. The dif-
ference in pCO2 between waters around the delta and the
Texas Shelf became more salient. The DIC–salinity relation-
ship for locations around the Mississippi River delta (reddish
points in Fig. 14c) indicated a significant carbon removal
along the salinity gradient. For waters on the Texas Shelf,
the DIC–salinity relationship was confined to higher salin-
ities and slightly increased compared with the no-biology
run (bluish points in Fig. 14c). The DIC increase on the
Texas Shelf in the control run could be linked with the ben-
thic respiration in this region proposed by Hetland and Di-
Marco (2007).
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Figure 13. Six-year mean (2005–2010) surface conditions simulated by the model for (a) pCO2 (ppm), (b) temperature (◦C), (c) salinity,
(d) dissolved inorganic carbon (mmol C m−3), (e) dissolved inorganic nitrogen (NO3+NH4) (mmol N m−3), and (f) alkalinity (mEq m−3).

Table 2. Spatial correlation coefficients between pCO2, sea surface temperature (SST), sea surface salinity (SSS), dissolved inorganic nitrate
(DIN: NO3+NH4), dissolved inorganic carbon (DIC), alkalinity (ALK), and primary production (P-Prod) on the Louisiana Shelf and in the
open ocean (multiyear mean of 2005–2010, control run).

Correlation coefficient (R value) SST SSS DIC DIN ALK P-Prod

pCO2 on the NGoM Spring −0.24 −0.81 −0.12 0.86 −0.77 0.36
Summer 0.63 −0.65 0.65 0.66 −0.17 0.35
Fall −0.66 −0.87 0.86 0.78 0.17 0.58
Winter −0.67 -0.89 0.45 0.89 −0.90 0.23
Annual −0.64 −0.82 0.63 0.82 −0.65 0.47

pCO2 in open ocean Spring 0.11 0.17 0.76 −0.27 −0.70 −0.41
Summer −0.11 −0.11 0.99 −0.29 −0.91 −0.43
Fall 0.04 0.08 0.96 −0.77 −0.88 −0.76
Winter 0.04 −0.05 0.75 −0.49 −0.69 −0.55
Annual −0.17 0.05 0.93 −0.50 -0.85 −0.59

5.2 Open ocean

In the open ocean, the distribution of surface pCO2 was
strongly related to the surface DIC (r value: 0.93) and al-
kalinity throughout the year (r value: −0.85, for detailed
season-by-season correlations see Table 2). An influence of
DIN and primary production was evident in fall and win-
ter months when wind-induced upwelling was strong (Xue
et al., 2013). The dependence of pCO2 on DIC and alka-

linity makes the Loop Current an important factor control-
ling the regional air–sea CO2 flux. In addition to a relatively
high temperature, the Loop Current water is also character-
ized by low DIC and high alkalinity (Wang et al., 2013, and
references therein). The multiyear mean sea surface tem-
perature in Fig. 13b shows persistent warm water mass in
the form of the Loop Current, which carries the carbon-
ate characteristics of the Caribbean water (i.e. low DIC and
high alkalinity, Fig. 13e and f). Surface pCO2 in this warm
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Figure 14. Six-year (2005–2010) spring–summer mean condition of model-simulated sea surface pCO2 and DIC against salinity for the
control run (a, c) and no-biology run (b, d) on the NGoM Shelf; also shown are longitude with colors (note that the Mississippi River delta is
located around 89◦W and Atchafalaya River delta is located around 91◦W). Also shown in (c) and (d) are conservative mixing relationships
for river end members from Cai et al. (2011a).

water mass was significantly lower than surrounding shelf
waters (Fig. 13a), making the Loop Current a strong CO2
sink throughout the year (Fig. 7a–d). Any changes in the
Caribbean water’s carbonate characteristics will affect the
carbon budget in the GoM as well as waters further down-
stream in the Gulf Stream. This is also illustrated by the high
pCO2 difference between the control run and no-biology run
in Fig. 10 as well as the poor correlation between the pCO2
drop (difference between control and no-biology runs) and
NCP in the open ocean (Fig. 11b).

5.3 Carbon budget estimation and model uncertainty

Based on our model simulations, we conclude
that the GoM is an overall CO2 sink, taking up
1.11± 0.84× 1012 mol C yr−1 from the air. This esti-
mation is comparable to those based on in situ observations,
e.g. 1.48× 1012 mol C yr−1 (Coble et al., 2010) and
0.30× 1012 mol C yr−1 (Robbins et al., 2014). These re-
cent estimates are in stark contrast to the earlier SOCCR
report (Takahashi et al., 2007), which found the GoM
to be a CO2 source (1.58× 1012 mol C yr−1, the GoM
and Caribbean Sea combined). In addition, we estimated
that the GoM received ∼ 2.18× 1012 mol C yr−1 from
rivers, the majority of which was from the Mississippi–

Atchafalaya River (∼ 1.80× 1012 mol C yr−1). These
two DIC sources (air, ∼ 1.11× 1012 mol C yr−1, plus
river, ∼ 2.18× 1012 mol C yr−1) is comparable to the
DIC transported out of the GoM by the Loop Current
(∼ 3.30× 1012 mol C yr−1; Wang et al., 2013). Such a
balance cannot be achieved using the CO2 flux estimated by
Robbins et al. (2014). Nevertheless, here our intent is not to
close the carbon budget, considering the large uncertainties
involved and discussed below. Indeed, the ultimate CO2
source and/or sink term would be dependent on the relative
contribution of both DIC and nutrients to the upper layer of
the ocean as well as the biogeochemical alteration therein
(Dai et al., 2013).

We notice that, during summer months, our model sim-
ulated a higher surface pCO2 than ship measurements on
the NGoM Shelf (Fig. 6a). As discussed in Sect. 5.1, a large
part of the strong CO2 degassing was simulated on the Texas
Shelf. However, a close examination of the distribution of
available ship measurements indicates that data points on the
Texas Shelf are fairly sparse and sporadic (Fig. 5), which
may partially explain the mismatch between model and ship
measurements in Fig. 6a. For instance, in the summer of 2010
when more ship measurements were available on the NGoM
Shelf, both model and observation indicated a high pCO2
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in the summer. In addition, pCO2 in the Mississippi plume
was very sensitive to river DIC inputs. Our specification of
riverine DIC (e.g. alkalinity plus 50) was based on limited
measurements and may not reflect the true seasonal and inter-
annual variability of alkalinity–DIC relationship. The current
model resolution (∼ 5 km) may not be high enough to re-
produce small-scale circulation patterns associated with the
Mississippi River plume. The complexity of the food web
and uncertainty in model parameterization (e.g. rudimenta-
rily represented denitrification, remineralization, particular
organic matters, the lack of phosphate and silicate compo-
nents) warrant further investigation.

6 Summary

A coupled physical–biogeochemical model was used to hind-
cast surface pCO2 in the GoM from January 2004 to Decem-
ber 2010. Favorable comparisons were found when validat-
ing model solutions against ship measurements on the Gulf-
wide scale, indicating that this coupled model can reproduce
observed pCO2 variability in the GoM. Time series of spa-
tially averaged pCO2 for both shelf and open ocean waters
exhibit significant seasonal variability, with high values in
August and low values in February. Model-simulated pCO2
values were elevated by 56 and 88 ppm for the entire Gulf and
the NGoM Shelf, respectively, when the biological sources
and sinks of carbon were disabled (i.e., the no-biology run).
Without biological processes, the GoM shifts to a strong
carbon source with a outflux rate of 2.10 mol C m−2 yr−1.
Another sensitivity test examining river conditions from the
1904–1910 period (reduced NO3 and comparable DIC) sup-
ported the view that the impact of river inputs were mainly
limited to the NGoM Shelf, which under the conditions of
the simulation acted as a CO2 source with an outflux rate of
0.61 mol C m−2 yr−1.

The Mississippi–Atchafalaya River plume is the domi-
nant factor controlling the pCO2 distribution on the NGoM
Shelf. Although the NGoM Shelf is overall a CO2 sink, high-
surface pCO2 was simulated in relatively shallow waters, in-
duced by both oversaturated plume water. pCO2 in the open
ocean is controlled largely by the low-DIC, high-alkalinity
Loop Current water from the Caribbean Sea.

Our model simulations characterize the GoM as an over-
all CO2 sink, taking up ∼ 1.11± 0.84× 1012 mol C yr−1

from the air. Together with the enormous riverine input
(∼ 2.18× 1012 mol C yr−1), this inorganic carbon influx was
comparable with the DIC export through the Loop Current
estimated by an earlier study. More accurate model predic-
tions of water column DIC concentration will require more
in situ data for improved specification of riverine DIC in-
puts, model DIC initial conditions, and further process stud-
ies to refine model parameterizations so as to better account
for complex carbon dynamics in the coastal ocean.

7 Data availability

The operational mode of the SABGOM model is located
at http://omgsrv1.meas.ncsu.edu:8080/ocean-circulation/.
Data of daily nowcast/forecast model output are hosted
at http://omgsrv1.meas.ncsu.edu:8080/thredds/sabgom_
catalog.html. Data used in all figures for the hindcast
simulation can be obtained by contacting the corresponding
author. All data used to generate the figures can be assessed
publicly at https://www.cct.lsu.edu/~zxue/BG-2014-391/.
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Appendix A: Calculation of seawater pCO2

The seawater pCO2 was calculated following Zeebe and
Wolf-Gladrow (2001) as follows:

pCO2 = DIC · [H+]2/([H+]2+K1 · [H+] +K1 ·K2)/f, (A1)

where DIC is the dissolved inorganic carbon and
was given by model input. K1 and K2 are constants
of carbonic acid, K1 =[H+] · [HCO−3 ]/[H2CO3] and
K2 =[H+] · [CO2−

3 ]/[HCO3], and were calculated following
Millero (1995) using data from Mehrbach et al. (1973) as
follows:

logK1 = 62.008− 1/T · 3670.7− logT · 9.7944
+ S · (0.0118− S · 0.000116), (A2)

logK2 =−4.777− 1/T · 1394.7− logT · 9.7944
+ S · (0.0184− S · 0.000118), (A3)

where in Eqs. (A2) and (A3) the T is for water temperature
(unit: K) and S is for salinity.

The f in Eq. (A1) is the correction term for non-ideality
and was calculated from Weiss and Price (1980). [H+] is
solved using the fifth-order polynomial bracket and bisection
method with the following five coefficients:

p5= 1, (A4)
p4=−Alk−Kb−K1, (A5)
p3= DIC ·K1−Alk · (Kb+K1)+Kb · borate+Kw

−Kb ·K1−K1 ·K2, (A6)
p2= DIC · (Kb ·K1+ 2 ·K1 ·K2)−Alk · (Kb ·K1

+K1 ·K2)+Kb · borate ·K1+ (Kw ·Kb

+Kw ·K1−Kb ·K1 ·K2), (A7)
p1= 2 ·DIC ·Kb ·K1 ·K2−Alk ·Kb ·K1 ·K2

+Kb · borate ·K1 ·K2+Kw ·Kb ·K1+Kw ·K1 ·K2, (A8)
p0=Kw ·Kb ·K1 ·K2, (A9)

where Alk is for total alkalinity (unit: milliequivalent per
liter) and was given by model input. Kw is ion prod-
uct of water ([H+] · [OH−]) and Kb is the constant of
boric acid ([H+] · [BO−2 ]/[HBO2]), calculated following
Millero (1995):

lnKb =−8966.90+ 2890.51 · S0.5
− 77.942 · S

+ 1.726 · S1.5
− 0.0993 · S2)/T

+ (148.0248+ 137.194 · S0.5
+ 1.62247 · S

+ (−24.4344− 25.085 · S0.5
− 0.2474 · S)

· lnT + 0.053105 · S0.5
· T ), (A10)

lnKw = 148.9802− 13847.26/T − 23.6521 · lnT

+ (−0.977+ 118.67/T + 1.0495 · lnT ) · S0.5

− 0.01615 · S), (A11)

and borate stands for the concentrations for borate and was
calculated following Uppström (1974).

borate= 0.000232 · S/1.80655/10.811 (A12)

Appendix B: Model initial and boundary condition
setup for DIC and alkalinity

The initial and boundary conditions for DIC follow the rela-
tionship between DIC and sea surface temperature (SST) for
the western (sub)tropical Atlantic waters described in Lee et
al. (2000) as follows:

DIC= 1940+1.842 ·(SST−29)+0.468 ·(SST−29)2. (B1)

For alkalinity, we use the relationship among DIC and SST
and sea surface salinity (SSS) for the sub(tropical) waters de-
scribed in Lee et al. (2006) as follows:

Alkalinity= 2305+ 58.66 · (SSS− 35)+ 2.32
· (SSS− 35) · (SSS− 35)− 1.41
· (SST− 20)+ 0.040 · (SST− 20)

· (SST− 20). (B2)

Appendix C: Air–sea CO2 flux calculation

The air–sea CO2 flux was calculated following Wanninkhof
(1992) as follows:

F =K · (pCO2 air−pCO2 water), (C1)

where pCO2 air is the air pCO2, and pCO2 water was cal-
culated from Eq. (A1). F is the air–sea CO2 flux (unit: mil-
limole C m−2 day−1).

K = kL, (C2)

where L is the solubility of CO2 and was calculated follow-
ing Weiss (1974) as follows:

lnL=−60.2409+ 93.4517/T + 23.3585 ·Log(T )

+S · (0.023517+ T · (−0.023656+ 0.0047036 · T )) (C3)

and the k in Eq. (C2) is the gas transfer velocity and was
calculated using

k = 0.31u2(Sc/660)−0.5, (C4)

where u is the wind speed at 10 m above sea level from
the North America Regional Reanalysis dataset. Sc is the
Schmidt number and was set to

Sc= 2073.1−125.62 ·T +36276 ·T 2
−0.043219 ·T 3. (C5)
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