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a b s t r a c t 

Excessive brain iron negatively affects working memory and related processes but the impact of cortical iron 

on task-relevant, cortical brain networks is unknown. We hypothesized that high cortical iron concentration 

may disrupt functional circuitry within cortical networks supporting working memory performance. Fifty-five 

healthy older adults completed an N-Back working memory paradigm while functional magnetic resonance imag- 

ing (fMRI) was performed. Participants also underwent quantitative susceptibility mapping (QSM) imaging for 

assessment of non-heme brain iron concentration. Additionally, pseudo continuous arterial spin labeling scans 

were obtained to control for potential contributions of cerebral blood volume and structural brain images were 

used to control for contributions of brain volume. Task performance was positively correlated with strength of 

task-based functional connectivity (tFC) between brain regions of the frontoparietal working memory network. 

However, higher cortical iron concentration was associated with lower tFC within this frontoparietal network 

and with poorer working memory performance after controlling for both cerebral blood flow and brain volume. 

Our results suggest that high cortical iron concentration disrupts communication within frontoparietal networks 

supporting working memory and is associated with reduced working memory performance in older adults. 

1. Introduction 

Non-heme iron is crucial for many cellular processes includ- 

ing adenosine triphosphate (ATP) generation in mitochondria, neu- 

rotransmitter synthesis and myelin generation ( Mills et al., 2010 ; 

Todorich et al., 2009 ; Raz and Daugherty 2018 ). However, non-heme 

iron is a potent oxidizer that can contribute to oxidative stress, inter- 

fere with neurotransmission and lead to cell death ( Zecca et al., 2004 ; 

Moos et al., 2007 ; Ke and Qian, 2007 ; Becerril-Ortega et al., 2014 ; 

Hare and Double, 2016 ; Matak et al., 2016 ). Thus, non-heme iron is 

typically sequestered in iron storage complexes such as ferritin, which 

release it in a tightly regulated manner ( Hentze, Muckenthaler and An- 

drews, 2004 ; Moos et al., 2007 ). 

Normal aging perturbs the iron sequestration process, leading to non- 

heme iron accumulation outside of storage complexes ( Lauffer, 1992 ; 

Wayne Martin et al., 1998 ; Zecca et al., 2004 ). Age related increases 

in non-heme brain iron have been repeatedly linked with poorer 
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1 Contributed to the design of the experiment, the collection and analyses of the data, and writing the manuscript. 
2 Contributed to the analyses of the data and writing the manuscript. 

working memory performance (cross-sectional: Bartzokis et al., 2011 ; 

Darki et al., 2016 ; longitudinal: Daugherty, Haacke and Raz, 2015 ) 

as well as declines in other cognitive and motor domains (cross- 

sectional: Sullivan et al., 2009 ; Penke et al., 2012 ; Rodrigue et al., 

2012 ; Ayton et al., 2017 ). Further, longitudinal brain iron accumula- 

tion has also been linked with corresponding declines in brain struc- 

tural volumes. A specific pattern that has been reported in recent stud- 

ies has been that age-related iron accumulation in the basal ganglia and 

hippocampus predict subsequent atrophy in these structures and cor- 

responding cognitive declines (e.g. Daugherty, Haacke and Raz, 2015 ; 

Daugherty and Raz, 2016 ). 

Interestingly, relationships between regional brain iron concentra- 

tions and performance (e.g. general cognitive ability, working mem- 

ory, episodic memory and motor performance) have been reported even 

when no relationships are detected between iron and regional brain 

volumes ( Sullivan et al., 2009 ; Penke et al., 2012 ; Kim et al., 2017 ; 

Van Bergen et al., 2018 ; Acosta-Cabronero et al., 2018 ). Together, this 

pattern of results suggests that some iron-mediated cognitive alterations 
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may relate to disruption of functional brain systems that are not di- 

rectly related to changes in brain volume. Consistent with this possibil- 

ity, results from recent studies have shown that striatal iron concentra- 

tion is negatively associated with BOLD magnitude ( Kalpouzos et al., 

2017 ), BOLD modulation ( Rodrigue et al., 2020 ) and reduced resting- 

state functional coherence between striatal networks and the rest of the 

brain ( Salami et al., 2018 ) but not with corresponding structural volume 

(both Kalpouzos et al., 2017 ; Salami et al., 2018 ). 

However, the impact of cortical iron on brain networks directly sup- 

porting cognitive task performance remains unknown. Based on previ- 

ous literature focused on striatal iron content ( Rodrigue et al., 2020 ; 

Salami et al., 2018 ), we hypothesized that excessive brain iron may 

disrupt large-scale functional networks directly supporting task per- 

formance in older adults. More specifically, we would expect exces- 

sive iron to disrupt functional connectivity within task-relevant net- 

works because (1) excessive iron is known to interfere with proper 

neurotransmission ( Zecca et al., 2004 ; Becerril-Ortega et al., 2014 ), 

which is required to support functional connectivity of large scale 

brain networks ( Duncan et al., 2013 ; Kapogiannis et al., 2013 ) and 

(2) age-related cognitive declines tend to progress along connected 

brain networks ( Greicius and Kimmel, 2012 ; Damoiseaux et al., 2012 ; 

Damoiseaux 2017 ). 

Here, we explored this possibility by evaluating the impact of corti- 

cal iron concentration on neighboring cortical functional-connectivity 

brain networks directly supporting working memory performance in 

older adults. The cognitive domain of working memory was selected 

due to the established negative association between brain iron con- 

centration and working memory performance ( Bartzokis et al., 2011 ; 

Daugherty, Haacke and Raz, 2015 ; Darki et al., 2016 ). Working mem- 

ory is also of functional relevance in that it declines significantly with 

aging and is considered a contributing source of other age-related cogni- 

tive deficits including long-term memory, decision making and problem 

solving ( Zacks et al., 2000 ; Park and Hedden 2001 ; Reuter-Lorenz and 

Sylvester, 2005 ; Glisky, 2007 ; Blacker et al., 2007 ; Belleville et al., 

2008 ). 

Participants completed an N-Back working memory paradigm while 

functional magnetic resonance imaging (fMRI) was performed and also 

received a separate QSM scan ( Wang and Liu, 2015 ; Wang et al., 2017 ) 

for estimation of non-heme brain iron concentration. QSM capitalizes 

on the fact that paramagnetic iron is the dominant source of mag- 

netic susceptibility in gray matter, augmenting the magnetic field in 

a roughly linear manner and yielding iron estimates highly correlated 

with postmortem tissue iron concentrations ( Langkammer et al., 2012 ; 

Sun et al., 2015 ; Hametner et al. 2018 ; Fukunaga et al. 2010 ). Im- 

portantly, QSM is sensitive to non-heme iron concentrations in both 

cortical gray matter regions ( Fukunaga et al. 2010 ; Liu et al. 2012 ; 

Hametner et al. 2018 ; Kagerer et al. 2020 ) and subcortical structures 

( Li et al., 2014 ; Ayton et al., 2017 ; Van Bergen et al., 2018 ). 

However, the QSM signal is not specific to non-heme iron. In par- 

ticular, heme iron (which binds oxygen to hemoglobin in blood) can 

contribute to the QSM signal in its deoxygenated state. To control for 

contributions of cerebral blood volume to the QSM signal, pseudo con- 

tinuous arterial spin labeling (PCASL) scans were obtained and CBF 

was included as a covariate in QSM-related analyses. Further, to control 

for potential structural contributions to our QSM-function relationships, 

structural volume was added as a covariate in QSM-analyses. 

2. Materials and Methods 

2.1. Participants 

Fifty-six healthy older adults were recruited for the experiment (31 

women, age range 61-86 years). All participants provided informed con- 

sent under a protocol approved by the Institutional Review Board of the 

University of Kentucky. Participants were recruited from an existing lon- 

gitudinal cohort at the Sanders-Brown Center on Aging ( Schmitt et al., 

Table 1 

Group Demographics and Mean Cogni- 

tive Measures 

n 55 

Age (years) 72.07 ± 5.32 

M:F 24:31 

Education (years) 16.51 ± 2.40 

MMSE 1 28.93 ± 1.26 

MoCA 2 26.67 ± 2.662 

Mean ± standard deviation is shown 

for participants. 
1 MMSE: Mini-Mental State Exam, 

collected for 47 participants. 
2 MoCA: Montreal Cognitive Assess- 

ment, collected for 55 participants. 

2012 ) and the Lexington community. All participants were cognitively 

intact based on clinical consensus diagnosis and scores from the Uniform 

Data Set (UDS2) used by US ADCs (procedure outlined in Morris et al., 

2006 ) or a score of 26 or higher on the Montreal Cognitive Assessment 

(MoCA; Nasreddine et al., 2005 ). The UDS2 includes a comprehensive 

battery of neuropsychological tests assessing global cognition, memory 

encoding, memory retrieval, semantic memory, working memory, atten- 

tion, executive function, processing speed, and verbal retrieval. 

Exclusion criteria were significant head injury (defined as loss of 

consciousness for more than five minutes), heart disease, neurological or 

psychiatric disorders, claustrophobia, pacemakers, the presence of metal 

fragments or any metal implants that are incompatible with MRI, dis- 

eases affecting the blood (anemia, kidney/heart disease etc.) or signif- 

icant brain abnormalities detected during imaging. A neuroradiologist 

(F.D.R.) evaluated the T1W and FLAIR images for evidence of stroke or 

other abnormalities. One participant was excluded from the sample due 

to the presence of an old stroke within the right motor cortex. Detailed 

characteristics of the final group of participants are shown in Table 1 . 

Table 1 . Group demographics and mean cognitive measures. The 

table lists the total number of participants, mean ( ± sd) for age, 

male/female distribution, years of education, Mini-Mental State Exam 

(MMSE) and Montreal Cognitive Assessment (MoCA) scores. 

2.2. Task Design 

Participants performed a visual working memory paradigm (N-Back 

task; adapted from Hakun and Johnson, 2017 ), comprised of three task 

conditions: a control condition (Compare), a 1-Back condition and a 2- 

Back condition within the context of a blocked design ( Fig. 1 ). Task 

stimuli consisted of eight consonant letters, presented in black, at the 

center of the display, against a white background. For each condition, 

stimulus/trial duration was 2 s and trials were separated by 500 ms of 

fixation. 

The experiment was divided into two 240 s fMRI runs. Each run con- 

sisted of three task blocks (one of each condition) with fifteen trials each 

(30 trials per condition total) and four fixation blocks (visual baseline). 

Each task block lasted 40 s and each fixation block lasted 30 s. During 

the Compare condition, participants indicated whether two (randomly 

selected) letters presented side-by-side were the same or different via 

button presses. In seven out of the fifteen trials of the Compare con- 

dition, the letters matched. During the 1-Back condition, participants 

were asked to judge whether the letter on the current trial matches the 

one presented immediately prior to the present letter. During the 2-Back 

condition, participants decided if the letter on the current trial matches 

with the one presented two items prior to the present letter. For the 

1-Back and 2-Back conditions, four out of the fifteen trials of this task 

(randomly selected) comprised a match. Responses were made using 

MRI compatible response buttons (one in each hand). Participants were 

asked to press the right button for “same ” judgments and press the left 
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Fig. 1. Example stimuli and sample trials from the N-Back task. The letter “S ”

next to trial panels indicates match trials in which a “same ” response was re- 

quired while the letter “D ” appearing next to trial panels depicts a non-match 

trial in which a “different ” response was required. A. Example trial displays from 

the Compare, visual control condition. B. Example trial displays from the 1-Back 

condition. C. Example trial displays from the 2-Back condition. 

button for “different ” judgments. Participants were asked to respond as 

quickly and accurately as possible and completed a brief practice session 

on the N-Back task prior to entering the MRI scanner. 

The experiment, implemented in E-prime 3.0, was run on a Windows- 

10 based PC. Stimuli were presented via an analog projector on a 

200 × 100 mm 

2 screen (visual angle: 20° horizontal x 10° vertical), 

mounted 550 mm away from the participants’ eyes and situated at the 

bore opening of the MRI scanner. The experiment was presented at a 

resolution of 1280 × 1024 pixels and participants viewed the projection 

screen via a mirror attached to the head coil of the scanner. 

2.3. Behavioral Data Analyses 

Behavioral data collected during the scans were first imported to 

Excel in order to calculate D-prime ( Stanislaw and Todorov, 1999 ) for 

each of the N-Back task conditions. D-prime was log transformed in all 

analyses involving MRI-based measures under the assumption that large 

differences in D-prime are typically associated with smaller differences 

in MRI-based measures. Log D-prime was then used in SPSS to conduct 

subsequent ANOVAs and linear regression analyses in conjunction with 

the QSM and tFC measures of interest. 

2.4. Imaging Protocol 

Participants were scanned with a Siemens 3T PRISMA Fit scan- 

ner (software ver. E11C), using a 64-channel head-coil, at the Univer- 

sity of Kentucky Magnetic Resonance Imaging and Spectroscopy Center 

(MRISC). The following sequences were collected: 1) a high resolution, 

multi-echo, T1-weighted anatomical image (MEMPR); 2) two fMRI T2 ∗ 

runs, 3) double-echo gradient echo field map images for spatial distor- 

tion correction of the fMRI data; 4) a high-resolution, flow compen- 

sated, multi-echo, 3D spoiled GRE sequence for Quantitative Susceptibil- 

ity Mapping (QSM); and 5) a Pseudo Continuous Arterial Spin Labelling 

(PCASL) perfusion image (3D-GRASE acquisition with background sup- 

pression). Several other sequences were collected during the scanning 

session related to other scientific questions and are not discussed further 

here. 

The MEMPR sequence had four echoes [repetition time 

(TR) = 2530 ms; first echo time (TE1) = 1.69 ms echo time spac- 

ing ( ΔTE) = 1.86 ms, flip angle (FA) = 7°] and covered the entire brain 

[176 slices, field of view = 256 mm, parallel imaging (GRAPPA), accel- 

eration factor = 2, 1 mm isotropic voxels, scan duration = 5.53 min]. 

The MEMPR sequence was used to optimize the Freesurfer cortical 

segmentation and improve the accuracy of the gray matter lobar masks 

( Van der Kouwe et al., 2008 ). The two fMRI runs were acquired with 

an echo-planar imaging sequence (EPI; TR = 2500ms, TE = 30ms, flip 

angle = 90°, resolution = 3.0 mm isotropic voxels, 64 × 64 matrix, 

field of view = 192 mm, 40 axial slices covering the whole brain). The 

GRE field map scan was acquired right after the second EPI sequence 

at the same resolution, field of view and number of axial slices as 

the EPI sequences. A high-resolution, flow compensated, multi-echo, 

3D spoiled GRE sequence in the sagittal plane with eight echoes 

(TR/TE1/ ΔTE/FA = 24ms/2.98ms/2.53ms/15°) was acquired and 

used to create QSM images. The entire brain was covered [acquisition 

matrix = 224 × 224 × 144, parallel imaging (GRAPPA) accelera- 

tion = 2, 1.2 mm isotropic voxels and scan duration = 6.18 min]. 

The PCASL sequence parameters were as follows: 36 slices, resolu- 

tion = 3.4 × 3.4 × 4.0 mm, FOV = 220 mm, TR = 5070 ms, inflow 

time = 4.525 s, labelling duration = 2.025 s, nine tagged-untagged pairs 

and a single T1-corrected, M 0 calibration image for CBF quantification 

and scan duration = 5.09 min]. 

2.5. fMRI Pre-processing 

Functional scans were first corrected for field inhomogeneity in- 

duced geometric distortions using FUGUE ( https://fsl.fmrib.ox.ac.uk/ 

fsl/fslwiki/FUGUE ) and the GRE field map data in FSL ( Jenkinson et al., 

2012 ; Smith et al., 2004 ). Subsequently the functional scans were mo- 

tion corrected and/or despiked where necessary ( https://afni.nimh.nih. 

gov/pub/dist/doc/program_help/3dDespike.html ), co-registered to 

their contrast-corrected (using Siemens Prescan Normalize option) 

anatomical image (after averaging the four echoes of the MEMPR into 

a single root mean square image), warped to MNI space, using the 

MNI ICBM152, 1mm, 6 th generation atlas ( Grabner et al., 2006 ) and a 

non-linear transformation (3dQwarp; https://afni.nimh.nih.gov/pub/ 

dist/doc/program_help/3dQwarp.html ), smoothed with a Gaussian 

kernel of 6.0 mm FWHM and mean-based intensity normalized (all 

volumes by the same factor) using AFNI ( Cox 1996 ). In addition, 

linear and non-linear trends (where necessary) were removed during 

pre-processing of the data and motion parameters were regressed 

separately for each run from all analyses. Lastly, all TR pairs in which 

the Euclidean Norm of the motion derivative exceeded 0.3 (the AFNI 

default for adults) were censored and removed from the analyses. 

2.6. fMRI Analyses 

Group-level, whole brain contrasts between N-back conditions were 

performed to identify the broad working memory network and to delin- 

eate seeds for subsequent functional connectivity analyses. The Group 

level analysis of the N-Back task was conducted using AFNI ( Cox 1996 ) 

and a linear mixed effects model (3dLME; Chen et al., 2013 ) with partic- 

ipant age added as a covariate. The resulting statistical maps were ad- 

justed for multiple comparisons using the false discovery rate approach 

at qFDR < 0.01. The functional contrast of 2-Back/2 + 1-Back/2 > Com- 

pare was used to identify brain regions in which activity for the N-Back 

task was greater than that of the visual control task. 

2.7. Functional Connectivity Preprocessing 

Additional pre-processing steps were performed prior to the 

functional connectivity analysis, according to the basic ANATI- 

COR regression-based approach (e.g. Jo et al., 2010 ; Gotts et al., 

2012 ; Stoddard et al., 2016 ). Using each participant’s anatomical 

scan (root mean square MEMPR), segmented ventricular, gray and 

white matter masks were created (using SPM12; http://www.fil.ion. 

ucl.ac.uk/spm/software/spm12/ ), for each participant. All masks were 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dDespike.html
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dQwarp.html
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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resampled to the EPI voxel resolution, and ventricle and white matter 

masks were eroded by one voxel (or by two voxels if we observed task- 

like components in the first three principal components of the PCA anal- 

ysis described below) to prevent partial volume effects with gray matter. 

Separate nuisance time series were then extracted for ventricles and 

white matter. In total, the nuisance regression for each participant com- 

prised 11 regressors of no interest: six motion parameters, one average 

ventricle time series, one localized estimate of white matter (averaging 

within a sphere of radius 20 mm centered on each voxel), and the first 

three principal components of all voxel time series from a combined 

ventricle and white matter mask, calculated after first detrending with 

AFNI’s second-order polynomial baseline model ( Stoddard et al., 2016 ; 

comparable to aCompCor in Behzadi et al., 2007 ). After this nuisance 

model was subtracted from each participant’s EPI data to obtain the 

cleaned residual time series, a task regression was performed to further 

remove any evoked responses from the blocks during the task (using 

the BLOCK model in AFNI’s 3dDeconvolve). The resulting time series 

were then extracted separately from blocks of different conditions, with 

blocks of the same type concatenated together for purposes of condition 

comparisons after adjusting for the delay in the BOLD signal in each 

block (6 s after the start of each block to 4 s after the end). Estimates of 

the level of residual global artifacts present in the residual time series 

(which include factors like head motion, cardiac and respiration effects, 

etc.) were calculated per condition for later use as nuisance covariates 

in group-level analyses using the global level of correlation or "GCOR" 

(e.g. Gotts et al., 2013 ; Saad et al., 2013 ), which is the grand average 

correlation of all gray matter voxels with each other. 

2.8. Functional Connectivity Analyses 

All positively activated regions from the fMRI, group-level functional 

contrast of 2-Back/2 + 1-Back/2 > Compare were used as seed regions of 

interest (ROIs) for the functional connectivity analyses which was con- 

ducted as follows: first, a numbered mask was created using all the seed 

ROIs with the voxels of each ROI in the mask assigned a different posi- 

tive integer value. Then, using this mask and the cleaned residual time 

series in all gray matter voxels (described in the functional connectivity 

pre-processing section), we calculated a correlation matrix comprised 

of Pearsons’s r values and their corresponding Fisher-Z transform (see 

3dNetCorr; Taylor and Saad, 2013 ) for the set of seed ROIs included 

in the mask, separately for each N-Back task condition (1-Back, 2-Back 

and Compare). Then for each participant, we subtracted the Compare 

correlation matrix from the average of the N-Back task matrices, as in 

the contrast of 2-Back/2 + 1-Back/2 > Compare used in the fMRI group 

level analysis previously. This resulted in a new correlation matrix cor- 

responding to the task-based functional connectivity between all seed 

ROIs. This new matrix was used to calculate average task-based func- 

tional connectivity (tFC) of each seed ROI with every other ROI (one 

average tFC value per seed ROI per participant), using the Fischer-Z 

transformed values (which yields normally distributed values). These, 

per seed, average connectivity values were then used in subsequent lin- 

ear regression analyses in SPSS with age, gender and GCOR (described in 

the functional connectivity pre-processing section; see also Gotts et al., 

2013 ) added as nuisance covariates to these condition comparisons. 

2.9. Volumetric Analyses 

Freesurfer 6.0 was used with the recon-all option (all available par- 

cellations) to segment each participant’s MEMPR scan. Next, lobar corti- 

cal gray matter (GM) masks were created as recommended by Freesurfer 

( https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation ) by 

joining together the relevant GM (cortical only) segmented struc- 

tures/masks associated with each of the four lobes. Masks of the 

caudate and putamen were also created from the corresponding 

Freesurfer segmented structures of the basal ganglia. The volume (in 

mm 

3 ) of these GM masks and the Freesurfer estimated intracranial 

volume (eICV, in mm 

3 ), were recorded for each participant for use in 

subsequent volumetric analyses. The same Freesurfer-derived cortical 

and subcortical masks used to extract volumetric data were also used 

to extract QSM and CBF values for the analyses described below. 

2.10. Quantitative Susceptibility Mapping (QSM) Processing 

GRE images were processed in MATLAB using the Morphology En- 

abled Dipole Inversion toolbox (MEDI toolbox, release of 11/06/2017; 

J. Liu et al., 2012; Liu et al., 2011a, 2011b; T. Liu et al., 2012 ). This ap- 

proach generates QSM images by inverting an estimate of the magnetic 

field that is structurally consistent with anatomy in order to generate a 

distribution of local magnetic susceptibility values. The required scans 

for the MEDI analyses are a phase image and a skull-stripped (using BET; 

Smith, 2002) magnitude image obtained during the same scan. 

The following steps were performed during MEDI: 1) non-linear fit- 

ting to the multi-echo data was used to estimate the magnetic field inho- 

mogeneity. 2) Phase unwrapping using the magnitude image as a guide 

( Liu et al., 2013 ). 3) Removal of the background field by applying a 

projection onto the dipole field (see Liu, Khalidov et al., 2011 ). 4) The 

remaining field was inverted to calculate the quantitative susceptibility 

map. Lastly 5) local magnetic susceptibility within cerebrospinal fluid 

(CSF; specifically within the lateral ventricles) was used to scale the 

QSM maps such that positive values corresponded to local magnetic sus- 

ceptibility greater than that of CSF and negative values corresponded to 

local magnetic susceptibility less than that of CSF. CSF within the lateral 

ventricles was selected as the reference for the QSM analyses because 

CSF susceptibility is fairly uniform and does not scale with participant 

demographic variables such as age and gender. 

For this reference step, ventricular masks were created separately 

for each participant as follows: The MEMPR was first registered to 

the GRE magnitude image using the AFNI function align_epi_anat.py 

( https://afni.nimh.nih.gov/pub/dist/doc/program_help/align_epi_anat. 

py.html ). Then using this magnitude aligned MEMPR scan 

in conjunction with ALVIN (see Kempton et al., 2011 ; 

https://sites.google.com/site/mrilateralventricle/ ) and SPM12, lat- 

eral ventricle masks were created for each participant. These masks 

were then eroded by one voxel to prevent partial volume effects 

with the surrounding subcortical gray and white matter, resampled 

to the QSM voxel resolution (1.2 mm isotropic), visually inspected 

for correctness while overlaid on both the GRE magnitude image and 

the aligned MEMPR image, and used in the MEDI toolbox as the CSF 

reference mask for each participant. 

2.11. GM Masks for QSM 

The same Freesurfer-derived cortical and subcortical GM lobar 

masks used to extract volumetric data were used to extract QSM data. 

This approach was adopted due to superior registration associated 

with the use of masks generated on each participant’s own individual 

morphology in native space, allowing for extraction of volumetric and 

QSM values in the same cortical structures ( Fig. 2 ). The following steps 

were used to register participants’ Freesurfer derived masks to their 

QSM images in native space: each participant’s high-resolution MEMPR 

was aligned to their high-resolution QSM magnitude image using the 

AFNI align_epi_anat.py function and a local Pearson correlation cost 

function. The resulting transformation matrices were then applied to 

each participants’ Freesurfer masks using the AFNI function 3dAllineate 

( https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dAllineate. 

html ) with a nearest neighbor interpolation method. Lastly, each mask 

was eroded by one voxel to prevent partial volume effects and then 

resampled to the QSM voxel resolution (i.e. from 1 mm isotropic to 

1.2 mm isotropic voxels). 

Values from QSM maps were then extracted from each of the 

magnitude-aligned, resampled and eroded GM masks for each partici- 

pant. Only positive QSM values (susceptibility greater than that of CSF 

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
https://afni.nimh.nih.gov/pub/dist/doc/program_help/align_epi_anat.py.html
https://sites.google.com/site/mrilateralventricle/
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dAllineate.html
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Fig. 2. Lobar cortical GM masks for QSM. A representative ex- 

ample of a single participant’s Freesurfer segmented parietal lobe 

cortical mask (in green) overlaid on their MEMPR image (A) 

and their QSM image (B). The QSM image depicts iron concen- 

tration in parts per billion (ppb) relative to CSF. Brighter areas 

on the QSM image have more iron concentration than CSF and 

darker areas less iron concentration than CSF (scaled between - 

100 to 100 ppb). The rostral boundary of the parietal lobe mask 

(central sulcus) is indicated with a dashed red line to highlight 

the anatomical correspondence of GM structures captured by the 

mask across image modalities. 

in the lateral ventricles) were extracted in order to limit QSM signal from 

myelin, associated with bordering white matter and neuropil, which 

has negative QSM values relative to CSF due to the diamagnetic effect 

of myelin on susceptibility (e.g. Wisnieff et al., 2015 ; Hametner et al., 

2018 ). Our rationale for use of positive voxels only is that this study 

focused on the effects of iron concentration, as opposed to myelin con- 

centration, on cognition and functional connectivity. 

To confirm that negative voxels in cortical GM represent QSM sig- 

nal from myelin, we performed secondary analyses using white matter 

(WM) as our reference region (instead of CSF). If myelin is the major 

source of negative QSM signal in our data then voxels in our gray mat- 

ter ROIs (which contained a mixture of positive and negative values 

when referenced to CSF) should only have positive values when refer- 

enced to WM. This is exactly what we found. With WM as the reference, 

all voxels in cortical GM were positive (Supplementary Figure 1). How- 

ever, because myelination varies between people, QSM values scaled to 

myelin do not correlate with age in any of the cortical ROIs. Given that 

iron is well-established to track with age, we opted to use CSF as the 

reference instead of WM and exclude negative voxels reflecting high 

myelin concentrations. Results from voxelwise analyses using this ap- 

proach demonstrated robust QSM signal in cortex, particularly within 

motor cortex, a region known to accumulate significant iron with age 

(Supplementary Figure 2). 

Normalized lobar QSM values were then created for each partici- 

pant by dividing the sum of positive QSM values from each mask by 

the total number of voxels of their corresponding GM mask, resulting in 

a final unit measure of iron concentration in parts per billion by mm 

3 

(ppb/mm 

3 ). 

2.12. Pseudo Continuous Arterial Spin Labelling (PCASL) processing 

PCASL scans were processed in FSL ( Jenkinson et al., 2012 ; 

Smith et al., 2004 ) using the following procedure: first, all 

tagged/untagged pairs were motion corrected to the M 0 image us- 

ing FSL MCFLIRT. A perfusion image was subsequently created using 

asl_file ( https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/asl_file/Tutorial ) by cal- 

culating the mean difference between the tagged and untagged pairs. 

Oxford_asl ( https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/oxford_asl ) was then 

used with a per-voxel calibration method, (using the M 0 image) to cre- 

ate a calibrated map of resting state tissue perfusion in absolute units 

(ml/100 g/min). 

2.13. GM Masks for PCASL 

The same Freesurfer-derived GM masks used to extract volumetric 

data and QSM data were used to extract PCASL data. Each participant’s 

high-resolution MEMPR was aligned to their PCASL M 0 image using 

the AFNI align_epi_anat.py function and a local Pearson correlation cost 

function. The resulting transformation matrices were then applied to 

each participants’ Freesurfer masks using the AFNI function 3dAllineate 

with a nearest neighbor interpolation method. Lastly, each mask was 

eroded by one voxel to prevent partial volume effects and resampled to 

the PCASL voxel resolution (i.e. from 1 mm isotropic to 3.4 mm isotropic 

voxels). 

Average CBF values from the calibrated perfusion maps were then ex- 

tracted using each of the M 0 aligned, resampled and eroded GM masks 

for each participant. A total cortical CBF mask, comprised by the indi- 

vidual lobar cortical masks, was also used to extract total cortical CBF 

values. Similarly a CBF mask comprised by the caudate and putamen 

masks was used to extract total CBF values from these striatal regions. 

Total cortical, striatal, or specific lobar cortical CBF, values were used as 

covariates in all QSM analyses as appropriate to account for differences 

across participants in cerebral blood volume. 

2.14. QSM within the tFC Seed ROIs 

To evaluate the concentration of iron within the tFC ROIs 

the following steps were performed: first, each participants’ 

QSM magnitude-image-aligned MEMPR was warped to MNI 

space, using the MNI ICBM152, 1mm, 6 th generation atlas 

( Grabner et al., 2006 ) and a non-linear transformation (3dQwarp; 

https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dQwarp.html ). 

The inverse transformation matrix was then applied to 

each tFC seed ROI from MNI space back to each partici- 

pant’s native space using the AFNI function 3dNwarpApply 

( https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dNwarpApply. 

html ) and a nearest neighbor cost function and then resampled to the 

QSM voxel resolution. Values from QSM maps were extracted from each 

of these resampled tFC ROIs for each participant, using only positive 

QSM values (referred to as pQSM in the results section) in order to 

avoid contamination from myelin signal (as discussed in the QSM lobar 

ROI section). 

Normalized QSM tFC seed ROI values were then created by dividing 

the sum of positive QSM values in each participant’s tFC ROI by the 

total number of voxels in their corresponding tFC ROI mask, resulting 

in a final unit measure of iron concentration in parts per billion by mm 

3 

(ppb/mm 

3 ). QSM values from these seed ROIs were used in subsequent 

analyses to evaluate differences in iron concentration between the tFC 

seeds. 

2.15. Statistical Analyses 

Statistical analyses were performed using SPSS 24 (IBM, Chicago, 

IL, USA). The main analyses involved independent sample t-tests (2- 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/asl_file/Tutorial
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/oxford_asl
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dQwarp.html
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dNwarpApply.html
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Table 2 

Regions Showing Positive Activation for the Functional Contrast of 1-Back/2 + 2-Back/2 > 

Compare. 

Hemisphere Region Cluster Size X Y Z 

L Inferior Parietal Lobule (IPL) 80 -37 -69 46 

R Inferior Parietal Lobule 143 47 -55 45 

L Dorsolateral Prefrontal Cortex (DLPFC) 75 -44 23 37 

R Dorsolateral Prefrontal Cortex 120 36 27 39 

L Ventrolateral Prefrontal Cortex (VLPFC) 137 -31 52 11 

R Ventrolateral Prefrontal Cortex 30 32 -55 45 

L Anterior Cingulate Cortex (ACC) 31 -6 29 43 

R Anterior Cingulate Cortex 110 6 23 46 

Cluster size is measured by number of voxels. 

Coordinates are for the MNI center of mass. 

tailed), repeated measures ANOVAs, bootstrapped (10,000 samples) uni- 

variate and multivariate ANOVAs and linear regression models with 

bias-corrected accelerated (BCa) 95% confidence intervals (CI). In all 

analyses, gender and age were added as covariates. GCOR (described 

in the functional connectivity pre-processing section) was used as an 

additional covariate in all regression models in which tFC measures 

were used. Cortical/striatal GM CBF values, or specific lobar GM CBF 

(e.g. parietal CBF) values were used as covariates in QSM analyses as 

appropriate. eICV (described in volumetric analysis section) was used 

as a covariate in all volumetric analyses and was also used to cre- 

ate adjusted measures of cortical (total and/or individual lobe) GM 

volumes, using the residualization approach ( Sanfilipo et al., 2004 ). 

These are expressed as in ( Buckner et al., 2004 ; Raz et al., 2004 ): 

Vol adj = Vol − b(eICV − m 

eICV) . Vol adj is the eICV adjusted volume, Vol 

is the original uncorrected volume, b is the slope from the linear regres- 

sion between Vol and eICV, eICV is the freesurfer derived intracranial 

volume for a participant and m 

eICV is the mean eICV across all partici- 

pants. All multiple comparisons are reported using the Sidak correction. 

3. Results 

3.1. Behavioral Results from the N-Back Task 

A multivariate ANOVA with N-Back task condition as the indepen- 

dent variable and D-prime and Reaction Time (RT) as dependent vari- 

ables was conducted, controlling for age and gender. N-Back task con- 

dition was a significant main effect for both D-prime (F(2,151) = 64.7, 

SE = 0.25, p < 0.0001; partial 𝜂2 = 0.46) and RT (F(2,151) = 46.9, 

SE = 24.3, p < 0.0001; partial 𝜂2 = 0.38. Pair-wise comparisons (Sidak 

corrected) indicated that all task conditions were significantly differ- 

ent from each other on D-prime. Participants’ had the highest D-prime 

score on the Compare condition (average D-prime = 6.12), followed by 

the 1-Back (average D-prime = 4.34; p < 0.0001) and then the 2-Back 

conditions (average D-prime = 2.19, p < 0.0001). D-prime was also sig- 

nificantly higher for the 1-Back than the 2-Back condition (p < 0.0001). 

For RT, pair-wise comparisons (Sidak corrected) between the N-Back 

task conditions indicated that all three levels (Compare, 1-Back and 2- 

Back) significantly differed from each other. RTs were shortest during 

the Compare condition (771.35 ms) followed by the 1-Back (900.33 ms; 

p < 0.0001) and then the 2-Back conditions (1104.4 ms; p < 0.0001). 

Additionally, RTs were shorter during the 1-Back than the 2-Back con- 

dition (p < 0.0001). 

3.2. fMRI N-Back Activation Results 

Whole-brain activations associated with the 1-Back and 2-Back con- 

ditions were contrasted with activations during the Compare condition 

(1-Back/2 + 2-Back/2 > Compare) in order to localize the overall net- 

work of brain regions supporting visual working memory. Activation 

maps were thresholded at qFDR < 0.01 and all positively active regions 

(activity stronger for the N-Back than the Compare condition) from this 

Fig. 3. N-Back task activation map. The activation map reflects the voxelwise 

functional contrast of 2-Back/2 + 1-Back/2 > Compare. Positive activations 

(yellow-orange) indicate regions showing higher average N-Back activity than 

the control task. The 3D cortical meshes shown were created from the MNI 

ICBM152, 1 mm, 6 th generation atlas using Freesurfer 6 and were partially 

inflated to aid identification of activations within sulci. Notes: ACC: Anterior 

cingulate cortex; DLPFC: Dorsolateral prefrontal cortex; VLPFC: ventrolateral 

prefrontal cortex; IPL: Inferior parietal lobule. The central sulci are demarcated 

(dashed white lines) to aid visual localization. 

contrast are shown in Fig. 3 and listed on Table 2 . The center of mass 

coordinates from all the positively active regions ( Table 2 ) were used 

as inputs to the Neurosynth database ( Yarkoni et al., 2011 ) and these 

overlapped substantially with the core working memory network iden- 

tified in previous studies from a meta-analysis sample of 1,091 working 

memory related articles included in the database. These positive, task- 

relevant activations included bilateral portions of the dorsolateral pre- 

frontal cortex (DLPFC; Neurosynth meta-analytic coactivation r = 0.44), 

ventrolateral prefrontal cortex (VLPFC; Neurosynth meta-analytic coac- 

tivation r = 0.4), anterior cingulate cortex (ACC; Neurosynth meta- 

analytic coactivation r = 0.52) and inferior parietal lobule (IPL; Neu- 

rosynth meta-analytic coactivation r = 0.44). 

Table 2 . Brain Regions showing positive activation for the functional 

contrast of 1-Back/2 + 2-Back/2 > Compare. The table lists all positively 
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Fig. 4. The relationship between N-Back performance and functional connectiv- 

ity. The scatter plot depicts average task-based functional connectivity against 

performance (log D-prime, averaged across the 1-Back and 2-Back conditions 

of the N-Back task). Values are standardized residuals after controlling for age, 

gender and GCOR. The dashed line represents the linear best fit. 

active brain regions from the functional contrast of 1-Back/2 + 2-Back/2 

> Compare, corresponding hemisphere, area (in number of voxels) and 

MNI center of mass coordinates. 

3.3. Relationship between tFC and D-Prime 

Results from the bootstrapped linear regression model indicated a 

significant positive association between average tFC (averaged across all 

seed ROIs, per participant) and log D-prime (bootstrapped Beta = 0.83, 

p = 0.033; SE = 0.38; 95% BCa CI = 0.164 to 1.5; Fig. 4 ), after controlling 

for age, gender and GCOR. 

3.4. Relationship between Cortical QSM and D-prime 

A bootstrapped linear regression model was used to evaluate the rela- 

tionship between cortical GM QSM values in each lobe and log D-prime. 

The results indicated that parietal QSM was a significant predictor of 

log D-prime (bootstrapped Beta = -0.136, p = 0.009; SE = 0.049; 95% 

BCa CI = -0.24 to -0.05; VIF = 1.25; Fig. 5 ) after controlling for corti- 

cal GM CBF, adjusted total cortical GM volume, age and gender. That 

is, greater iron concentration in the parietal lobe was associated with 

poorer working memory performance. QSM in the other lobes did not 

predict working memory performance (p s > 0.3; max VIF = 1.53). Ad- 

justed total cortical GM volume was not a significant predictor of log 

D-prime (bootstrapped Beta = 1.46 × 10 − 7 , p = 0.67; SE = 3.2 × 10 − 7 ; 

95% BCa CI = -4.56 × 10 − 7 to 9.7 × 10 − 7 ; VIF = 1.69). 

3.5. Relationships between Cortical GM QSM and Cortical GM Volumes 

Cortical GM QSM values from each lobe were not significant pre- 

dictors of their corresponding cortical GM volumes or total cortical GM 

volume when controlling for corresponding cortical GM CBF, eICV, age 

and gender ( Table 3 ). The results did not change when the Sidak multi- 

ple comparisons correction was removed, with none of the lobar-based 

predictors approaching uncorrected significance. 

Table 3 . Relationship between cortical QSM and corresponding cor- 

tical GM volume. The table illustrates the results of the bootstrapped 

linear regression analyses between total cortical, frontal, parietal, occip- 

ital and temporal lobe QSM values against corresponding cortical GM 

volume. 

Fig. 5. The relationship between parietal lobe QSM and performance. The 

scatter plot shows QSM parietal lobe values (iron concentration in ppb/mm 

3 ) 

against N-Back task performance (log D-prime, averaged across the 1-Back and 

2-Back conditions). Values are standardized residuals after controlling for age, 

gender, cortical GM CBF and adjusted cortical GM volume. The dashed line rep- 

resents the linear best fit. 

Table 3 

Relations between cortical GM QSM and corresponding cortical GM volume 

Lobe Bstrapped Beta/r 2 p Std. Error 95% BCa CI 

Total cortical 139.7/0.0009 0.83 611.3 -1252.1 to 1406.1 

Frontal -656.8/0.01 0.54 1055.2 -3030.8 to 1484.6 

Parietal -33.5/0.00003 0.97 975.6 -1909.6 to 1973.6 

Occipital -89.3/0.004 0.60 193.7 -498.5 to 437.2 

Temporal 90.6/0.001 0.82 387.6 -659.7 to 720.8 

3.6. Relationship between cortical GM QSM and cortical GM CBF 

The correlation between average cortical GM QSM and average cor- 

tical GM CBF was not significant, controlling for age, gender and eICV 

(bootstrapped Beta = -0.026, p = 0.12; SE = 0.017; 95% BCa CI = -0.054 

to 0.014; r 2 = 0.05). 

3.7. Relationship between Cortical GM QSM and tFC 

This relationship was explored in a bootstrapped linear regression 

model with QSM values from each lobe as factors and average tFC 

(averaged across all seed ROIs) as the dependent variable. Results from 

the linear regression model indicated that lobar QSM was negatively 

associated with average tFC in the parietal mask (parietal QSM: 

3.5 ppb/mm 

3 ; bootstrapped Beta = -0.045, p = 0.005; SE = 0.015; 

95% BCa CI = -0.073 to -0.025; VIF = 1.25; Fig. 6 ) after controlling 

for cortical GM CBF, adjusted cortical GM volume, age, gender and 

GCOR. QSM values from the other lobar masks were not significant 

predictors of average tFC (p s > 0.38; max VIF = 1.55). Additionally, 

neither adjusted total cortical GM volume nor total cortical GM CBF 

predicted average tFC in this model (cortical GM volume: bootstrapped 

Beta = 0.007, p = 0.40; SE = 0.009 95% BCa CI = -0.01 to 0.03; 

VIF = 1.69; cortical GM CBF: bootstrapped Beta = 0.0001, p = 0.88; 

SE = 0.002 95% BCa CI = -0.004 to 0.005; VIF = 1.37). 

To decompose the negative association between parietal lobe QSM 

and average tFC, we conducted a bootstrapped multivariate linear re- 

gression between tFC from each seed ROI as multiple dependent vari- 

ables and parietal QSM values as the main factor. Homologous tFC ROIs 

were merged across hemispheres to avoid issues of multicollinearity and 

to also reduce the number of dependent variables in the model. Parietal 

lobe GM CBF and adjusted parietal lobe GM volume were added as co- 

variates, together with age, gender and GCOR. 
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Fig. 6. The relationship between average tFC and parietal lobe QSM. The plot 

shows average tFC (averaged across all seed ROIs) against QSM from the parietal 

lobe (iron concentration in ppb/mm 

3 ). Values are standardized residuals after 

controlling for age, gender, GCOR, cortical GM CBF and adjusted cortical GM 

volume. The dashed line represents the linear best fit. 

Parietal lobe QSM was negatively associated with tFC in the VLPFC 

ROI (bootstrapped Beta = -0.044, p = 0.008; SE = 0.016; 95% BCa CI = - 

0.076 to -0.011) and the IPL ROI (bootstrapped Beta = -0.09, p < 0.0001; 

SE = 0.022; 95% BCa CI = -0.134 to -0.045; Fig. 7 ). Parietal lobe QSM 

did not predict tFC of the DLPFC ROI (bootstrapped Beta = -0.009, 

p = 0.52; SE = 0.015; 95% BCa CI = -0.04 to 0.019) or the ACC ROI 

(bootstrapped Beta = 0.004, p = 0.78; SE = 0.016; 95% BCa CI = -0.03 

to 0.03) seed ROIs. Importantly, parietal lobe GM volume and parietal 

lobe GM CBF did not predict tFC in any of the seed ROIs (Parietal lobe 

GM volume p s = 0.23; parietal lobe CBF ps = 0.16). 

3.8. QSM Differences Between tFC Seed ROIs 

The previous analyses indicated that parietal lobe QSM was neg- 

atively associated with tFC in the IPL and VLPFC ROIs but not the 

other ROIs. Subsequent analyses were thus conducted to determine if 

IPL and VLPFC ROIs showed higher QSM values than the other tFC 

ROIs. Age, gender and cortical GM CBF were added as covariates in the 

ANOVA. The omnibus ANOVA results indicated significant QSM differ- 

ences between the tFC seed ROIs (F(5,211) = 17.1, p < 0.0001; par- 

tial 𝜂2 = 0.18; Fig. 8 ). Bootstrapped, post-hoc comparisons indicated 

that the IPL (2.92 ppb/mm 

3 ; 20% of ROI voxels consist of pQSM) seed 

ROIs had significantly higher iron concentration than all other ROIs: 

ACC (0.72 ppb/mm 

3 ; 5% of ROI voxels consist of pQSM; p < 0.0001; 

SE = 0.37; 95% BCa CI = 1.54 to 2.94), DLPFC (0.58 ppb/mm 

3 ; 4.4% of 

ROI voxels consist of pQSM; p < 0.0001, SE = 0.35; 95% BCa CI = 1.72 

to 3.04) and VLPFC (1.93 ppb/mm 

3 ; 13.7% of ROI voxels consist of 

pQSM; p = 0.05; SE = 0.5; 95% BCa CI = -0.053 to 1.98). Similarly, the 

VLPFC ROIs had significantly higher iron concentration than the ACC 

(p = 0.006; SE = 0.41; 95% BCa CI = 0.49 to 2.0) and DLPFC (p = 0.002; 

SE = 0.39; 95% BCa CI = 0.69 to 2.14) seed ROIs. Finally, the ACC 

and DLPFC ROIs did not differ significantly in QSM values (p = 0.41; 

SE = 0.17; 95% BCa CI = -0.16 to 0.49). 

3.9. SNR associated with QSM within the lobar GM masks 

An additional control analysis was conducted in order to evaluate the 

signal-to-noise ratio (SNR) in cortical and subcortical GM ROIs ( Fig. 9 ) 

that could influence the QSM measures in these regions. For each ROI, 

SNR was calculated separately for each of the eight echoes of a mag- 

nitude images, acquired using the 3D spoiled GRE sequence for QSM, 

and then averaged across echoes into a single average SNR measure for 

each ROI. SNR was calculated by dividing the mean image intensity 

value within a GM ROI (frontal, parietal, occipital, temporal, caudate 

and putamen ROIs), by the standard deviation of the intensity values 

outside the head (image background). 

A repeated measures ANOVA was conducted with anatomical struc- 

ture as an independent variable (with six levels, corresponding to each 

ROI) and SNR as the dependent variable. Age and gender were con- 

trolled in this analysis. The results indicated anatomical structure as a 

significant main effect F(5,51) = 9.05, p < 0.0001. Pairwise compar- 

isons, adjusted for multiple comparisons using Sidak, indicated the fol- 

lowing: SNR in the parietal lobe was significantly stronger compared 

to SNR in the caudate (p = 0.001) but comparable to that of the puta- 

men (p = 0.985). Additionally, SNR in the frontal lobe was significantly 

lower in comparison to all other ROIs (p s < 0.0001). Lastly, SNR in the 

occipital lobe was higher than in all other ROIs (p s < 0.0001). As such, 

with the exception of the frontal lobe, SNR of the GRE images used in 

the QSM pipeline is comparable between cortical and subcortical GM 

ROIs. 

4. Discussion 

Our results demonstrate that high cortical iron is associated with 

low functional connectivity in a network of brain regions supporting 

working memory performance in older adults. We first identified a task- 

relevant network in which strength of functional connectivity (tFC) 

was positively associated with working memory performance in healthy 

older adults. We then showed that high iron concentration within this 

task-relevant network negatively impacted tFC and working memory 

performance after controlling for both brain volume and cerebral blood 

flow. Our results suggest that non-heme-iron mediated disruption of 

functional brain systems may be an early marker of age-related declines 

in working memory. 

A body of previous work has linked excess brain iron concentration 

in basal ganglia structures with reduced working memory performance 

in older adults (cross-sectional: Bartzokis et al., 2011 ; Darki et al., 2016 ; 

longitudinal: Daugherty et al., 2015 ) and subsequent atrophy in basal 

ganglia structures 2 years later ( Daugherty et al., 2015 ) and up to 7 years 

later ( Daugherty and Raz, 2016 ). More recently, cross-sectional studies 

have reported negative associations between striatal iron concentration 

and BOLD magnitude in frontostriatal regions ( Kalpouzos et al., 2017 ; 

Rodrigue et al., 2020 ) and striatal resting state functional connectivity 

with the rest of the brain ( Salami et al., 2018 ). 

However, the impact of cortical iron concentration on cortical func- 

tional connectivity networks directly supporting task performance has 

not been demonstrated. To address this question, we first identified 

task-relevant working memory brain regions in our sample. According 

to the Neurosynth database ( Yarkoni et al., 2011 ), these frontoparietal 

brain regions overlapped substantially with the working memory net- 

work identified in a meta-analysis of 1,091 studies (e.g. Pessoa et al., 

2002 ; Mitchell, 2007 ; Chein et al., 2010 ; Rottschy et al., 2012 ). Of cen- 

tral relevance to the goals of our study, mean strength of tFC within this 

frontoparietal network was positively associated with in-scanner work- 

ing memory accuracy, after controlling for potential response biases by 

using D-Prime. 

We then explored the impact of QSM derived brain iron concen- 

tration on this task-relevant frontoparietal network supporting work- 

ing memory performance. Results indicated that high QSM-based iron 

concentration in the parietal lobe was associated with poorer working 

memory task performance and lower mean tFC strength in the IPL with 

the rest of the frontoparietal network. Collectively, our findings suggest 

that iron concentration may interfere with the exchange of information 

within the task-relevant working memory network in older adults. In 

contrast, we found no significant relationships between cortical GM vol- 

ume, working memory performance and/or tFC. Additionally, we found 

no relationship between QSM-derived cortical GM iron concentrations 

and cortical GM volumes, even at uncorrected significance levels. This 
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Fig. 7. The relationship between QSM in the parietal lobe and average tFC from the VLPFC and IPL seed ROIs. The figure depicts parietal lobe QSM (iron concentration 

in ppb/mm 

3 ) against average tFC from A. bilateral VLPFC and B. bilateral IPL seed ROIs (tFC between these seeds and every other seed ROI in the network). Values 

are standardized residuals after controlling age, gender, GCOR, parietal lobe GM CBF and adjusted parietal lobe GM volume. The dashed line represents the linear 

best fit. 

Fig. 8. Iron concentration for each tFC seed ROI merged across hemispheres. 

The bar chart depicts QSM (iron concentration in ppb/mm 

3 ) for the VLPFC, 

IPL, ACC and DLPFC seed ROIs. The error bars denote + /-1 standard error of 

the mean. 

pattern is consistent with a view that high cortical iron concentration 

may negatively affect brain functional networks independently of its po- 

tential neurodegenerative effects. 

Our results are pertinent to the recent Free Radical Induced Energetic 

and Neural Decline in Senescence model (FRIENDS; Raz and Daugh- 

erty, 2018 ). The FRIENDS model holds that age-related alterations in 

iron sequestration and transport reduce mitochondrial bioenergetic pro- 

cesses, lowering energy available for metabolically expensive processes 

such as neurotransmission. The model suggests that non-heme, iron- 

mediated generation of reactive oxygen species may disrupt metabolic 

and functional brain systems prior to inducing neurodegenerative pro- 

cesses associated with shrinkage of brain structures. Our finding that ex- 

cessive iron is associated with reduced functional network connectivity, 

but not regional brain volumes, is broadly consistent with predictions 

of the FRIENDS model. 

Our results indicated that iron concentration in the parietal lobe pre- 

dicted lower tFC and working memory performance. Results from our 

follow-up analyses revealed a plausible explanation for this finding: iron 

concentration was significantly higher in the IPL ROIs of the parietal 

lobe compared to prefrontal cortex ROIs (DLPFC, VLPFC and ACC) of 

the functional working memory network in our participant cohort. This 

finding is consistent with a view that increasing regional iron concentra- 

tion is associated with increasing regional functional connectivity dis- 

ruption with the rest of the task network. 

However, the specific finding of higher iron concentration observed 

in the IPL compared to prefrontal ROIs should be considered prelimi- 

nary: 1) SNR was significantly lower in the frontal lobe, compared to all 

other lobes, which could explain the lack of significant correlations be- 

tween QSM in this region, tFC and working memory performance; 2) the 

tFC seed ROIs are defined functionally at a much lower resolution com- 

Fig. 9. Average SNR for cortical and subcortical gray matter ROIs. 

SNR was calculated separately for each echo of a magnitude im- 

age, part of the 3D spoiled GRE sequence used for QSM. SNR from 

all echoes was then averaged together for each ROI, across partici- 

pants. The error bars denote + /-1 standard error of the mean. 
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pared to the QSM data (approximately 6 mm isotropic after smoothing, 

motion correction etc). As such extracting QSM values from gray matter 

only areas within these seed ROIs is not as reliable as those extracted 

from the high resolution, gray matter segmented MEMPR images. The 

lower resolution of the tFC seed ROIs is the main reason we evaluated 

lobar GM QSM instead of QSM extracted from these seed ROIs. Nonethe- 

less, there appears to be some evidence that iron concentration in the 

parietal lobe (and motor cortex) may be higher than in prefrontal re- 

gions (e.g. Hallgren & Sourander, 1958 ; Buijs et al., 2016 ; Betts et al., 

2016 ). A systematic investigation of regional differences in cortical iron 

accumulation in relation to different cognitive process, is a topic of con- 

siderable future interest. 

Strengths of our study include the direct linking of MRI functional 

connectivity patterns with in-scanner task performance, the demonstra- 

tion that this functional relationship is negatively affected by iron con- 

centration, the control for both cerebral blood volume and GM structural 

volume in our QSM-functional models, the use of statistically rigorous 

bootstrapping to reduce the risk of Type I errors and demonstration of 

comparable SNR related to QSM signal in cortical task-relevant regions 

as subcortical regions. Further, the use of the same Freesurfer-derived 

GM lobar masks for extracting QSM data, volumetric data and CBF data 

maximize the likelihood that our cross-modal MRI data were extracted 

from the same cortical regions. 

Limitations of our study include that QSM is not a direct measure of 

iron concentration and can be affected to a lesser extent by the presence 

of other metals, as well as calcification (ferrocalcinosis). In addition, 

QSM cannot differentiate between non-heme and heme iron bound to 

deoxygenated hemoglobin in blood (e.g, Wang and Liu, 2015 ). To this 

end, differences in cerebral blood volume (as measured by CBF), may 

contribute to the QSM signal (e.g. Bianciardi et al., 2014 ; Balla et al., 

2014 ). Importantly, however, it should be noted that lobar GM CBF mea- 

sures were not correlated with the functional connectivity patterns in 

our data nor with lobar GM QSM values. Thus, any potential contribu- 

tion of CBF to QSM signal is unlikely to contribute to the negative re- 

lationship we observed between QSM and functional connectivity. Fur- 

ther, inclusion of CBF as a covariate in our models did not affect our 

observed QSM-FC relationships. We also note that no causal inferences 

can be made between QSM-based iron concentration, tFC and/or work- 

ing memory performance. A longitudinal version of this study would 

be better suited for causal inference and one is planned with the same 

participants in two years. 

Further, it should be noted that non-heme iron concentration varies 

between cortical layers (e.g. Kwan et al., 2012 ; Bulk et al., 2018 ). How- 

ever, the relatively large voxel size of our scans prevents us from mak- 

ing inferences relating to QSM signal from specific cortical layers in 

gray matter and their relative contributions to the QSM effects we re- 

port. Lastly, the current study had a modest sample size which might 

have affected our ability to detect smaller effects between QSM, tFC 

and working memory performance. Future studies with a larger sample 

size should be used to identify possible subtler effects. 

In conclusion, our results indicate a potential functional anatomic 

basis for the negative effects of iron on working memory previously re- 

ported in the literature. Specifically, our findings suggest that excess cor- 

tical iron may interfere with coordinated information processing within 

the frontoparietal network supporting working memory performance in 

healthy older adults. 
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