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ABSTRACT OF DISSERTATION

Essays on Impacts of Natural Disasters

This dissertation consists of three chapters that study how natural disasters affect
households and individuals. The first chapter examines how Kentucky’s housing mar-
ket responds to changes in flood risk information. The second chapter looks at dispro-
portionate drinking water non-compliance post-disaster. The third chapter studies
the effect of flooding events and the national school meals program in Kentucky on
education outcomes.

The first chapter examines Kentucky’s housing market response to changes in the
Federal Emergency Management Agency’s (FEMA) flood maps and how the responses
differ depending on whether an area has been flooded recently. I use Zillow’s ZTRAX
property transaction data and current and historical floodplain maps to estimate a
hedonic property value model and to recover the price impact of residential properties
that have experienced a change in their flood zone status. Importantly, I also allow
for the price effect of a flood map change to depend on whether a property was
recently affected by a flood event. I find that when properties are switched into flood
zones in recently flooded areas, sale prices decrease by 5.2% on average. In contrast,
prices increase by 4.7%, on average, when houses are mapped out of a flood zone.
Understanding how housing markets respond to flooding events and flood risk can help
regulators evaluate the effectiveness of programs aimed to adapt to increasing flood
risk, such as disaster assistance programs and the National Flood Insurance Program,
and can provide guidance on ways to improve these programs. This research provides
evidence for policymakers to provide detailed and personalized information on flood
risk to better serve the housing and insurance markets.

The second chapter analyzes drinking water quality at the intersection of race
and socioeconomic status and whether the clean-up time is longer in more disad-
vantaged communities after a flooding event. We match Safe Drinking Water Act
(SDWA) violations with county-level demographic and economic information from
the U.S. Census. We find that larger minority groups and higher poverty rates are
associated with extended non-compliance periods, and post-flooding clean-up times
are longer for communities with higher poverty rates. The environmental justice lit-
erature has focused on the inequalities of racial and socioeconomic status concerning
the application of environmental regulations and the inequitable recovery processes



for vulnerable communities. These may help target under-performing systems that
might benefit from assistance in achieving consistent compliance. Our results also
suggest that attention to the distributional impact of regulatory actions should be
incorporated into post-disaster recovery prioritization decisions.

The third chapter studies the effect of flooding events and the national school
meals program in Kentucky on education outcomes. Literature has provided evi-
dence of the importance of food security in the disaster recovery phase for children’s
academic performance, and natural disasters pose significant challenges to the ed-
ucation system in affected regions. With the Kentucky Department of Education’s
(KDE) school-level academic achievement scores and attendance records, I identify
the student cohorts affected by flooding events. I find that affected students with
free/reduced-price meals experienced smaller decreased test scores. Understanding
what mechanisms the food assistance programs can affect education outcomes can
shed light on potential pathways for implementing and improving programs that mit-
igate the adverse effects of natural disasters on education.

KEYWORDS: natural disaster, flooding, housing market, water quality, academic
performance

Fang-Yu Yeh

August 7, 2024



Essays on Impacts of Natural Disasters

By
Fang-Yu Yeh

Dr. William Hoyt and Dr. Lala Ma

Directors of Dissertation

Dr. Carlos Lamarche
Director of Graduate Studies

August 7, 2024

Date



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1 Map Updates and Flood Events on Kentucky’s Housing Market . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Institutional Background . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Empirical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.1 Main Specification Results . . . . . . . . . . . . . . . . . . . . 13
1.6.2 Heterogeneous Impacts of Floodings on Properties . . . . . . . 14
1.6.3 Potential Threats to Identification . . . . . . . . . . . . . . . . 16

1.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 18
1.8 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.9 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 2 H 2 Oh No! Drinking Water Noncompliance and Environmental
Justice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Empirical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Descriptive Results . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.2 Impact of Flooding on Non-Compliance Period . . . . . . . . . 40
2.4.3 Public Assistance Program . . . . . . . . . . . . . . . . . . . . 41
2.4.4 Data Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 3 Impact of Flooding and Free School Meals on Student Performance 56
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 National School Meals Program . . . . . . . . . . . . . . . . . . . . . 59
3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Empirical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Main Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.2 Heterogeneous Impacts of Flooding on students . . . . . . . . 64

3.6 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iii



3.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 68
3.8 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.9 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

iv



LIST OF TABLES

1.1 Summary Statistics by flood zone status: SFHA and non-SFHA . . . . . 20
1.2 Summary Statistics by flood zone status: switching and non-switching . . 21
1.3 Effect of being in the floodzone on housing price . . . . . . . . . . . . . . 22
1.4 Effect of map updates and flood events within 1 year or 2 years on housing

price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Effect of map updates and flood events within 1 year or 2 years on housing

price: Repeated sales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 Hetergeneous effect by neighborhood characteristics . . . . . . . . . . . . 25
1.7 Robustness: Exclude properties outside 300m of flood zone boundary . . 26
1.8 Robustness: Exclude counties that had flood maps updated within 6

months after a flooding event . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 Summary statistics by water system sizes 2010-2020 . . . . . . . . . . . . 47
2.2 Correlations between Non-Compliance Period and key independent variables 47
2.3 Summary statistics by flooding incident 2010-2020 . . . . . . . . . . . . . 48
2.4 Descriptive Results for Non-Compliance Period . . . . . . . . . . . . . . 49
2.5 Descriptive Results for Non-Compliance Period by Violation Type and

County Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6 Impact of Flooding on Non-Compliance Period . . . . . . . . . . . . . . 51
2.7 Robustness: Public Assistance program on County Characteristics . . . . 52
2.8 Impact of Flooding on Non-Compliance Period with PA controls . . . . . 53

3.1 Summary statistics by school level . . . . . . . . . . . . . . . . . . . . . 71
3.2 Summary statistics by flooded schools . . . . . . . . . . . . . . . . . . . 71
3.3 Effect of Flood events on students performance . . . . . . . . . . . . . . 72
3.4 Robust: Effect of Flood events on students performance . . . . . . . . . 72

v



LIST OF FIGURES

1.1 Ratio of total property damage by floods to from 2000 to 2021 to median
home value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Most recent flood maps by year and by county . . . . . . . . . . . . . . . 27
1.3 Studied counties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4 Flood zone effects by distance to the flood zone boundary . . . . . . . . 28
1.5 Heterogeneous effects by property value . . . . . . . . . . . . . . . . . . . 29
1.6 Event study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.7 Change in volumes sold by floodzone status . . . . . . . . . . . . . . . . 30

2.1 Average Non-compliance Period and % Non-white Population by county 54
2.2 Average Non-compliance Period and Violation Report Counts after PDD

by county . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Heterogeneous effects by school level . . . . . . . . . . . . . . . . . . . . 73
3.2 Heterogeneous effects by subjects . . . . . . . . . . . . . . . . . . . . . . 74
3.3 Heterogeneous effects by Urban/Rural Counties . . . . . . . . . . . . . . 74

vi



Chapter 1 Map Updates and Flood Events on Kentucky’s Housing

Market

1.1 Introduction

Flood events are the most common and costly natural disasters in the U.S., affect-

ing millions of individuals each year. According to the National Centers for Environ-

mental Information, the U.S. has witnessed over $67.8 billion in flood damages since

2010 (Smith, 2020). In Kentucky, flooding is the state’s most frequent and costly

natural disaster1. Kentucky’s varying degrees of topography play a role in the state’s

vulnerability to flooding. Figure 1.1 shows the ratio of total property damage by

floods to median home value in the last 2 decades. At the end of July 2022, several

counties in Eastern Kentucky were hit by severe flash floods resulting from a week-

long heavy rain. The ”1-in-1000 year”2 flood event claimed more than 30 lives and

destroyed hundreds of homes, bridges, and roads in the area. Unfortunately, most

residents in this area do not have flood insurance because they are not in a floodplain

and 6 of those counties do not have an updated flood maps since 2009. The residents

are not updated with the information and therefore underestimate their flood risk.

While climate events and their impact on real estate assets are not unprecedented,

the increasing prominence of extreme weather in the past few decades has become

more apparent. Climate change, population growth, and changes in land use have

exposed more people to flood hazards. Flood damages are expected to increase an-

nually, where the financial consequences are being borne by homeowners and the

1Estimates are based on the Storm Events Database from NOAA/National Centers for
Environmental Information (NCEI). Digital data are available at http://www.ncdc.noaa.gov/

stormevents/ftp.jsp
2According to the United States Geological Survey (USGS), the term “1,000-year flood” means

that a flood of that magnitude (or greater) has a 1 in 1,000 chance of occurring in any given year.
In terms of probability, the 1,000-year flood has a 0.1% chance of happening in any given year.
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government. This creates difficulties for the Federal Emergency Management Agency

(FEMA) to accurately quantify a property’s risk as flood risks change over time, and

thus presents a challenge to all those engaged in the housing market, whether as

potential homeowners making housing decisions, as insurers setting actuarially fair

insurance rates, or as policymakers choosing appropriate land-use regulations and

flood preparation plans.

Economists have been examining the impact of negative shocks from natural dis-

asters on risk attitudes and perceptions. The Bayesian learning model states that

individuals update their prior risk beliefs in response to new information. In the case

of flooding, there is publicly available information on the likelihood of the event (flood

risk maps) and historical flood records for people to adjust their risk beliefs. For ex-

ample, individuals who recently experienced a flood event will likely increase their

perception of risk and they tend to exhibit higher levels of risk aversion afterward

(Tversky and Kahneman, 1973). I focus on the housing market’s responses to flood

risk as a means to adapt to climate change. The housing literature relevant to flood

risk suggests that the correction of flood risk will affect home values because home

buyers will account for changes in insurance (if changes in flood risks are reflected in

insurance payments) and expected damages.

This paper uses flood map updates and flood events in Kentucky to investigate

how the housing market responds to flood risks associated with different information:

observed flooding and the flood hazard maps put forth by FEMA. This study asks

two questions: How does the housing market respond to a change in floodplain sta-

tus? Second, does the housing market response differ depending on how the update

in flood risk information occurs (e.g., due to flood-related events as opposed to an up-

date in flood maps)? Using Zillow’s ZTRAX property transaction data and FEMA’s

floodplain maps, I find that the properties that are switched into the floodplain in

an area that has experienced a large flood within a year saw a decrease in price and
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the property price increases when it is removed from a floodplain in an area without

flooding within a year. I also find that the housing markets’ responses to flood risk

vary by neighborhood characteristics.

The study contributes to the hedonic literature discussing the impacts of flooding

events on properties inside and outside the floodplain. Previous studies show that

located within a flood zone lowers the property value more after a major flood event

(Bin and Polasky, 2004; Kousky, 2010; Bin and Landry, 2013). However, the im-

mediate post-flood discount for properties inside the floodplain diminishes with time

(Atreya et al., 2013; Beltrán et al., 2019). Literature also shows that the negative risk

salience effect for high-risk properties that were not actually inundated (Bakkensen

et al., 2019; Hennighausen and Suter, 2020; Yi and Choi, 2020). To my knowledge,

this paper provides the first evidence of the effects of the impact of multiple large

regional floods on housing market within one inland state over time.

Additionally, the paper contributes to the recent literature that uses changes in

flood risk mapping. Empirical work has shown that the sale prices of previously flood-

free properties being assigned into flood zones decrease (Hino and Burke, 2020) but

properties previously located in flood zones that become flood-free see no significant

impact on sale prices (Shr and Zipp, 2019). Gibson and Mullins (2020) show that

after Hurricane Sandy, properties in New York City included in the new floodplain

experienced a large price discount compared to those who were not in the new flood-

plain. Furthermore, home buyers are more responsive to the actual occurrence of a

flood event than to the release of flood maps to the public (Rajapaksa et al., 2016).

My paper will extend on the context by studying the effects of both changes in the

flood maps and flood events on the housing market, comparing how changes in flood

risk increase and decrease housing prices between recently flooded areas and areas

that have not experienced flooding lately.

The paper proceeds as follows. The first section introduces the institutional back-
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ground. The second section provides the theory for the research. The third section

shows details on the data and variables of interest. The fourth section presents the

research design and identification strategies. The fifth section presents the results and

assesses robustness. Finally, the sixth section concludes and discusses the limitations

of the study.

1.2 Institutional Background

In 1968, Congress passed the National Flood Insurance Act, tasking the Fed-

eral Emergency Management Administration (FEMA) with creating and facilitating

the NFIP. The NFIP’s stated purpose is twofold: 1) to provide access to federally

subsidized flood insurance and distribute the cost of flooding and 2) to reduce the

nation’s flood risk through the implementation of floodplain management standards.

To accomplish these goals, the NFIP requires communities to work collaboratively

to employ flood risk mitigation strategies and develop Flood Insurance Risk Maps

(FIRM). FIRMs delineate Special Flood Hazard Areas (SFHA), which are areas that

have a 1% or greater risk of flooding every year. In communities that participate

in the NFIP, homeowners of properties in the SFHA are required to purchase flood

insurance as a condition of receiving federally backed mortgages or federally regulated

mortgages. Moderate to low-risk areas are marked as 500-year floodplains, where the

properties have 0.2% flooding risk every year but are not required to purchase flood

insurance. The old flood insurance premium rating, which had not fundamentally

changed since the 1970s, evaluated the structures’ flood risk by the floodzone status,

the elevation of the structure relative to the Base Flood Elevation (BFE) in each risk

zone, and the occupancy type. Taking effect on all NFIP policyholders in April, 2022,

a new premium rating system, Risk Rating 2.0, calculates flood insurance premiums

by incorporating a broader range of measures such as the distance to water, the type

and size of nearest bodies of water, flood frequency and the elevation of the property
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relative to the flooding source. According to FEMA, Risk Rating 2.0 will reflect

more types of flood risk in the premium rates and provide rates that are easier for

policyholders to understand.

Given that the severity of flooding is expected to increase over time, the National

Flood Insurance Program Reform Act of 1994 mandated FEMA to review the FIRMs

every five years. However, there is no consistent timetable for when a particular

community will have its maps revised and updated. Generally, flood maps may

require updating when there have been significant new building developments in or

near the flood zone, changes to flood protection systems, or environmental changes

in the community. Because of the variability in how and when a FIRM is updated,

one community may have had its map last updated in 2018 while a neighboring

community had its last revised in 2005. Figure 1.2 shows the years in which each

county had its last map updates. Of 120 counties in Kentucky, 63 counties have not

updated their flood maps since 2011.

1.3 Theory

I apply a Bayesian learning model (Viscusi, 1991) to formulate an individual’s

subjective perceptions of flood risk as a Bayesian learning process (Gayer et al.,

2000). Individuals are assumed to update their prior probability assessment of flood

risk based on both new information provided by FEMA and flood events. The up-

dated subjective probability of flooding (π) is a function of the risk from the new

information, which includes flood map updates (m) and flooding events (e), and the

individual’s prior risk belief (k) that is based on the previously assigned flood zone

and past experience with flood events:

π(k,m, e) =
ϕ0k + κ0m+ ψ0e

ϕ0 + κ0 + ψ0

(1.1)
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where ϕ0, κ0 and ψ0 are the information parameters which measure information con-

tent associated with, respectively, the prior risk assessment, flood map updates, and

flooding events. Denote the weight of each information source on an individual’s risk

belief as ϕ = ϕ0
ϕ0+κ0+ψ0

, κ = κ0
ϕ0+κ0+ψ0

and ψ = ψ0

ϕ0+κ0+ψ0
. The risk-perception function

can be re-written as

π(k,m, e) = ϕk + κm+ ψe (1.2)

The new information may serve as good news or as bad news, therefore, m and e

may be less or greater than k. If a house is moved outside of the floodplain, m < k,

then the individual would lower their risk beliefs. If a house is re-zoned to be in a

floodplain, m > k, then the individual would increase their risk belief. If new flood

maps do not provide any new information to the individuals, the risk belief would

remain the same. If a flooding event caused damages to the house or the surrounding

areas, we would expect that e > k and the individual would increase their risk belief.

I extend the models of MacDonald et al. (1987); Hallstrom and Smith (2005); Bin

and Landry (2013); Kousky (2010); Shr and Zipp (2019) by accounting for the infor-

mation of flood map updates and recent flood events. The decision is modeled using

a state-dependent expected utility framework, where there are two states: flooding

(F) and no flooding (NF). Let UF denote the utility in the flooding state and UNF as

the utility when there is no flood. Three assumptions are necessary to establish the

household decision making problem: (1) For any given level of income, households

prefer being safe, i.e. UNF > UF (2) Within each state of the world, households are

risk-neutral or risk-averse (utility function is quasi-concave); (3) Marginal utility of

income is higher when there is no risk. Household utility in each state of the world

is defined as:

U = U(X,Z) (1.3)

where X is a numeraire good and the price is set equal to 1; Z is the set of neigh-

borhood and structural characteristics of the home. The function P () maps housing
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characteristics, neighborhood attributes, and individuals’ risk perceptions to a price:

P = P (Z, π(k,m, e)) (1.4)

Given total income Y , individuals choose the level of X and Z to maximize their

utility subject to their budget constraint:

Max EU = π(k,m, e)U(XF , Z) + [1− π(k,m, e)]U(XNF , Z)

s.t. Y = X + P (Z, π(k,m, e))

(1.5)

The numeraire X can be expressed as XNF = Y − P (Z, π(k,m, e)) − I(k,m) when

no flood occurs and as XF = Y − P (Z, π(k,m, e))− I(k,m)−L+C in the case of a

flood. I is the flood insurance premium payment3; L is the loss during a flood event;

and C is the insurance coverage for a flood event.

The expected utility can be rewritten as

EU = π(k,m, e)U(Y − P (Z, π(k,m, e))− I(k,m)− L+ C,Z)

+ [1− π(k,m, e)]U(Y − P (Z, π(k,m, e))− I(k,m), Z) (1.6)

Under the assumptions that the housing market is a perfectly competitive and the

consumers are rational, have identical preferences, perfect information, and perfect

mobility,4 we can solve for the partial derivative of the hedonic function with respect

to the risk belief, which gives the marginal implicit price of the risk, or the risk

discount.

∂P

∂π
=

UF − UNF

π ∂UF

∂X
+ (1− π)∂UNF

∂X

< 0 (1.7)

Using the chain rule, we can solve for the partial derivatives of the hedonic function

with respect to each information source. The marginal implicit prices of the risk

3The NFIP rating methods during the sample period used basic characteristics to classify prop-
erties based on flood risks, which are evaluated by the flood zone, occupancy type and the elevation
of the structure.

4Property prices are higher in an area with better amenities because households would want
to move into the areas and drive up the prices. Perfect mobility of households between different
locations ensures that the property prices reflect the benefits of amenities.
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prior to a new event, the risk associated with the new flood zone information, the

risk associated with a new flooding event are, respectively,

∂P

∂k
=
∂π

∂k

∂P

∂π
− ∂I

∂k
,

∂P

∂m
=
∂π

∂m

∂P

∂π
− ∂I

∂m
,

∂P

∂e
=
∂π

∂e

∂P

∂π
(1.8)

The Bayesian model suggests that people will increase or decrease their willingness

to pay for risk reduction after the release of the new map by FEMA or a flooding

event. The impact of the new information enters the hedonic price analysis by a

comparison of the marginal price of the risk before (∂P
∂k
) and after (∂P

∂π
) such events.

I discuss the impact of new information on the implicit marginal price of flood risks

in three cases.

Case 1: Properties mapped into floodplain

Mapping a property into a floodplain increases the individual’s risk belief and

requires the individual to purchase flood insurance ( ∂I
∂m

> 0). The effect of the new

information would have a negative impact on housing prices and we would expect an

increase in willingness to pay for risk reduction (∂P
∂π

> ∂P
∂k
).

Case 2: Properties mapped out of floodplain

For properties mapped outside of a floodplain, the change indicates that flood risk

is lower than previously perceived. The individual’s risk belief will decrease and they

would no longer be required to purchase flood insurance ( ∂I
∂m

< 0). The effect of the

new floodplain status would have a positive impact on housing prices and we would

expect a decrease in willingness to pay for risk reduction (∂P
∂π

< ∂P
∂k
).

Case 3: Properties that experience a flooding event

Previous studies have confirmed that following a flood event, there is a significant

negative effect on the value of properties at risk (∂P
∂e

< 0). Individuals will increase

their risk belief and the new information would cause an increase in willingness to pay

for risk reduction (∂P
∂π

> ∂P
∂k
). Unlike Cases 1 and 2, the price of flood insurance is not

experience-rated. The flood insurance rates set by FEMA are at nearly identical rates

before and after each flooding event. Therefore, the change in the implicit marginal
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price is purely associated with the change in the individuals’ subjective assessment

of flood risk.

1.4 Data

Floodplain maps Using geographic information system (GIS), I match all prop-

erties to their flood zone. Current floodplain maps (officially “Digital Flood Insurance

Rate Maps”) are downloaded as state-level National Flood Hazard Layer (NFHL)

from FEMA’s Flood Map Service Center. For historical floodplain maps, I obtained

Q3 Flood Data from FEMA5, the first digitization of floodplain maps. They were

initially produced in 1996 and updated through 1998. For the counties that have

had two updates since 1998 (one update between Q3 and the current flood maps), I

acquired the second flood maps from the county offices in Kentucky or from FEMA

historical raster files. Each property was overlaid on both the current and histori-

cal flood maps and assigned one of two conditions for each time period: in a Special

Flood Hazard Area (SFHA, equivalent to the 1% floodplain) or outside the floodplain.

Figure 1.3 shows the 70 studied counties in this paper.

Real estate data Property sales and characteristics data are sourced from Zil-

low’s ZTRAX database. I matched each recorded sales event in the transaction table

to property attribute information in the assessor table. I include the records in Ken-

tucky from January 2005 to October 2021. The dataset contains the transaction

date, sale price, the properties’ location, structural characteristics, and residential

type (i.e., Single family, condominium, mobile home). Housing prices are converted

to 2010 Q1 dollars using the All-Transactions House Price Index for Kentucky (KYS-

THPI) from the U.S. Federal Housing Finance Agency. I remove outliers with prices

below $10,000 or with prices above 100 million dollars. I constructed geographic vari-

ables for each property: the distance to the nearest waterbody using the National

5Additional information on Q3 Flood Data is available here: https://hazards.fema.gov/

femaportal/usercare/guidesAndDocs/Documents/flood_map_svc.htm
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Hydrography Dataset (NHD) from the United States Geological Survey (USGS)6 and

the distances to the boundaries of current and historical floodplains.

Table 1.1 provides summary statistics for property and neighborhood character-

istics. The average sale price is $40,000 lower for the houses inside a floodplain

compared to properties located outside the floodplain. Properties inside the flood-

plain have larger lot sizes but smaller square footage. Using the tract-level American

Community Survey (ACS) 2015-2019 5-year estimates, the houses inside floodplains

are more likely to be in neighborhoods that have lower median income and median

home value. Among these transactions, 6,539 (1.6%) are always in the floodplain,

1,974 (0.5%) switched into an SFHA, 3,870 (1%) were mapped out of an SFHA and

400,018 (96.9%) are always outside the floodplain. Table 1.2 reports summary statis-

tics for switchers and non-switchers inside and outside the floodplain.

Flood event data For large regional floods, I use Presidential Disaster Decla-

ration (PDD) Floods events and NFIP redacted claims as data sources. The PDD

system is a formalized process to request and receive federal assistance following

large natural disasters. PDD Summaries from FEMA provides information on all

approved federal disaster declaration requests, including data on the disaster type,

disaster event start and end dates, and affected counties.7 NFIP redacted claims

data8 provides claim transactions on property type, date of loss, flood zone, and the

amount paid on claims. I match the date of loss and the location of each property

to the incident period of PDD floods to determine if the flood damage is caused by

a large regional flood. Since PDD floods are determined at the county level, not

all communities within a county are affected by the flood. I construct a variable to

identify which communities in PDD counties are ”hit” by each flood. I consider a

6Additional information on the NHD is available here: https://www.usgs.gov/

national-hydrography/national-hydrography-dataset
7Additional information on the PDD data is available here: https://www.fema.gov/

openfema-data-page/disaster-declarations-summaries-v2
8Additional information on the NFIP redacted claims data are available here: https://www.

fema.gov/openfema-data-page/fima-nfip-redacted-claims-v1
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community to be hit if there are at least $100,000 in building claims linked to the

PDD floods within the county subdivision.

1.5 Empirical Framework

If home buyers update their risk accordingly with new flood maps or flood events,

then the price discount should fully capture the risk information. To test the hy-

pothesis, I employ a difference-in-differences (DID) specification with 4 different

approaches. Model 1 estimates the effect of floodplain status and flood events on

properties that are initially outside the floodplain:

ln(Pict) = β1SwitchInit+β2SwitchInit ∗Eventct+β3Eventct+αZi+κct+ ϵict (1.9)

Model 2 estimates the effect of floodplain status and flood events on properties that

are initially inside the floodplain:

ln(Pict) = β4SwitchOutit + β5SwitchOutit ∗ Eventct + β6Eventct + αZi + κct + ϵict

(1.10)

ln(Pi,c,t) is log sale price of property i in county c at year t. SwitchIni is a dummy

variable equal to one if property i is sold and was mapped in SFHA after the flood

map updates but outside SFHA before the update. Similarly, SwitchOuti is a dummy

variable equal to one if property i is sold and was mapped out SFHA after the update

but was inside SFHA before the update. Eventt is a dummy variable equal to one if a

sale occurred after the area has experienced a flood within one or two calendar years

and zero if not. Zi denotes property specific characteristics. κct is a fixed effect for

each county-quarter, which controls for local market trends. β1 represents the effect

of switching from non-SFHA to SFHA, compared to the properties that are never

in the SFHA, and β4 represents the effect of switching from SFHA to non-SFHA,

compared to the properties that are always in the SFHA. β3 represents the effect of

flood events on non-SFHA properties and β6 represents the effect of flood events on
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SFHA properties. β2 isolates the unique effect of the flood event on the properties

that are mapped into the floodplain after the map updates and β5 is the effect of a

flood event on the properties that are mapped outside the floodplain after the map

updates.

The hypothesis is that being switched into the floodplain will have a larger risk

discount for the properties in areas that have experienced a large regional flood within

one year of sale compared to areas that have relatively lower flood risk. Individuals

may increase their flood risk belief more as they witness both updates and events:

β2 < β1 < 0. On the other hand, being switched outside the floodplain will have a

larger positive impact for the properties that are in relatively lower flood risk areas.

Individuals lower their flood risk belief when they are not required to purchase flood

insurance and the area did not experience a PDD flood recently: β4 > β5.

Model 3 combines (9) and (10) and estimates the effect of changes in floodplain

status and flood events on all properties, comparing to the properties that do not

have have change in floodplain status:

ln(pict) = δ1SwitchInit+δ2SwitchOutit+δ3SwitchInit∗Eventct+δ4SwitchOutit∗Eventct

+ δ5Eventct + αZi + κct + ϵict (1.11)

For the properties in areas that did not experience a large regional flood within 1 or

2 years of sale, δ1 is the effect of switching into floodplain, δ2 is the effect of switching

outside the floodplain, comparing to the houses that did not have a change in flood

zone status. Similarly, for the properties in communities that had experienced a PDD

flood within 1 or 2 years, δ3 is the effect of switching into a floodplain, δ4 is the effect

of switching outside the floodplain. This model allows us to look at the effect of

updating flood maps in areas that have/have not experienced flooding recently.
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1.6 Empirical Results

Before showing the price effects of both flood map updates and events, I first

present the effects of being inside a floodplain. Table 1.3 presents these results. All

specifications include county-by-quarter fixed effects and block fixed effects. Column

1 shows that house prices inside the flood zone are 4.77% lower than those outside.

Column 2 shows that the flood risk discount increases to 7.34% if the area has ex-

perienced a PDD flood within 1 year. The increase in discount reflects updated

expectations of future flooding and costs related to inundation, such as damage. The

estimated flood discount is consistent with previous studies that find marginal im-

pacts of flood risk ranging from 1.1% to 28.7%.

Figure 1.4 plots the flood zone effects by distance to the flood zone boundary.

For properties located in communities with no flooding within 1 year of sale, prices

decrease 4% just inside the flood zone comparing to the ones just outside the flood

zone boundary. For properties located in communities with no flooding within 1 year

of sale, prices decrease 8% just inside the flood zone compared to the ones just outside

the flood zone boundary. The hypothesis is that for the houses that gets switched

in/out around the flood zone boundary, we would see a larger price difference for the

areas that had been flooded recently.

1.6.1 Main Specification Results

Table 1.4 presents the main estimates corresponding to equations (9), (10), and

(11). Model 1 shows the effect of mapping into a SFHA is statistically insignificant

for communities that did not experience a PDD flood within 1 or 2 years. For the

houses that switched into a flood zone in areas that have experienced a PDD flood

within 1 year, the housing prices are 6.53% lower than those of houses that stayed

outside the floodplain in the communities where there was no PDD flood within 1

year. This is equivalent to an average decrease of $11,152.02 ($170,781.4*0.0653) in
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adjusted sale prices. Model 2 shows that the estimated effects of switching out from

the floodplain are statistically significant and range from 3.96% for communities that

experienced a large flood within 1 year to 4.09% for communities that experienced

a large flood within 2 years. This is equivalent to an average increase of $5,379.51

($135,846.1*0.0396) to $5,556.11 ($135,846.1*0.0409). Model 3 shows that compared

to the houses that did not have a change in flood zone status, houses that are removed

from the floodplain experience price increases of 5.17% but the effect of being mapped

in is not significant. All models show insignificant effects of switching into a flood

zone in areas without a major flood and switching out from a floodplain in areas that

experienced one within 1 year. These findings suggest that home buyers in those

areas do not internalize the potential increase/decrease in flood risk solely with the

information provided by FEMA’s updated maps. The responses to the changes in

flood risks based on the area’s flooding history and the updated flood zones.

Table 1.5 re-estimates the main specifications from equations (9), (10), and (11)

with property fixed effects. By comparing the same property over time, it is possible

to control for unobserved, time-invariant characteristics that are correlated with flood

risk and contribute to price. The drawback of the repeat sales model is that it assumes

that there are no structural changes such as physical improvements in the property

between sales. The results from Model 3 show that, comparing to the estimates with

block fixed effects, the estimates are larger for the effect of switching out and the

effect of switching in in recently flooded areas. The comparison indicates that the

repeat sales model controls for, at least partly, the omitted variable biases stemming

from using coarser fixed effects.

1.6.2 Heterogeneous Impacts of Floodings on Properties

Due to the absence of individual home buyer information, I use neighborhood

characteristics such as median income and median home value by census tract level
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to examine if the effects of map updates and flooding events vary by socio-economic

status. Table 1.6 reports the estimates for different neighborhood categories. The

effect of switching into flood zones in a flood-prone area is largely driven by the

properties in higher income tracts, while properties in lower income communities

see significant price increases when mapped out of floodplains in a non flood-prone

area. This suggests that communities with lower socio-economic status may have

lower salience of flood risk in regards to whether the property is located in a higher

risk area. From the summary statistics, houses inside floodplain are likely to be in

lower income/home value neighborhoods, home buyers in low socio-economic status

communities are more likely to be attracted to properties that are removed from a

floodplain in a flood-free area. For higher income/home value neighborhoods, the

houses that are now at higher flood risk in areas that have been recently flooded

are less desirable and the home buyers may take future flood damage and cost into

consideration.

Following Gibson and Mullins (2020), I examine whether the changes in flood

risk belief by property values are partially responsible for the observed price changes.

They hypothesize that the properties with structural values that are below the flood

insurance coverage cap ($250,000) would have smaller effects of switching flood zone

status because there is little to no uninsured value and premiums increase slowly in

structural value. For the houses above the cap, one would expect larger effects of

switching as the prices increase. Figure 1.5 plots the effects in $75,000 property value

bins. The effects of switching out are significant for properties below the cap, which

suggests that higher home value buyers do not recognize the reduction in flood risk.

However, the interaction effect for switching in and flood events is significant but in

the opposite direction. Due to data limitations, I cannot observe the elevation of the

building and whether there are structural improvements for reducing flood risk on

the property. Home buyers may decrease their risk belief for higher value houses in
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flood-prone areas as they are more likely to be elevated above the base flood elevation

or have flood mitigation on the property.

1.6.3 Potential Threats to Identification

A key identifying assumption in a Difference-and-differences model is that treat-

ment and control groups have common counterfactual trends, which means that in the

absence of the treatment, the treatment and the control groups would have changed

in the same way during the post-treatment period. I test this assumption using event

study models. Results are shown in Figure 1.6. I use 3 months as a time unit, where

period 0 represents the 3 months before the flood map updates. The pre-updates

period exhibits no significant differential trends. Switching into the flood zone in

areas without flooding recently and switching out in areas with flooding have small

and insignificant effects on properties before and after flood map updates. Beginning

in the 3 quarters after the map updates, the price of the properties that are switched

into the flood zone in flood-prone fall by 1%. After 1 year of the updates, properties

that are switched out from floodplain in non flood-prone areas increase by 1% in

price.

A potential threat to identification is the perfect information assumption of buy-

ers. If buyers are not aware of the flood zone status of properties, the flood risk dis-

count could be only a lower bound. Passed in July 2000, Kentucky Revised Statutes

§324.360 requires sellers of single-family residential properties to make certain disclo-

sures to potential buyers. This law included a Seller’s disclosure of conditions form

and questions regarding the property’s flooding history and the flood zone classifi-

cation. Therefore, I consider the impact of information asymmetry between sellers

and buyers to be minimal in the cases of properties in Kentucky and that buyers are

well-informed about the flood risk.

A second potential threat is that houses in different flood zones are systematically
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different and that these differences are time-varying and unobserved by the researcher.

If so, using properties from all over the state to construct a counterfactual price path

could introduce bias. Therefore, I restrict the sample to the properties within 300

meters of the floodplain boundary and report the estimates in Table 1.7. The results

are similar to the main results in Table 1.4 with slightly larger effects.

A third potential threat is the collinearity between flood map updates and flood-

ing events. If new flood maps were released soon after a flooding event in response to

the concern of outdated flood risk information (i.e., the dummy variables of switch in

and switch out are correlated with the event dummy variable.), then the estimated

standard errors would be larger therefore reducing the statistical significance. Ta-

ble 1.8 shows the results of restricting the sample to the counties that had new flood

map updates after 6 months of a flooding event. The results are similar to the main

results in Table 1.4 so I consider the collinearity issue to be limited.

One worry with the main estimation might be that there is a change in which

kinds of houses end up being sold within a year or two of a flood. If we see significant

increase or decrease in the number of houses inside the flood zone comparing to the

houses outside floodplain being sold, the negative selection could affect the housing

market and the housing price. Figure 1.7 shows the number of housing sold by flood

zone status before and after a flooding event. The volume sold for all types of flood

zone status follow the same trend and I do not see a significant increase or decrease

of houses being sold within one year of flood.

Due to data availability, a limitation of the study is that it may under/overes-

timate the risk belief since I do not observe the structural characteristics such as

elevation level and flood mitigation. Homeowners and communities can submit Let-

ter of Map Change (LOMC) and Letter of Map Amendment (LOMA) to remove

properties from the floodplain if they believe that the property was incorrectly iden-

tified. Identifying the precise flood zone status for properties is of interest for future
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work. Another future avenue of investigation would involve distinguishing inundated

structures and ”near misses”, defined as structures not directly flooded but located

inside the floodplain. Previous literature (Bakkensen et al., 2019) has shown that

home buyers perceive inundated properties as being riskier and near misses as rela-

tively less risky. Given these considerations, recovering flooding history and monetary

damages may help to better explain the full range of behavioral responses to flood

events.

1.7 Discussion and Conclusion

This study uses a hedonic pricing framework to investigate how the housing market

in Kentucky reacts to information from flood map updates provided by FEMA and

from flooding events. The paper contributes to the literature by comparing the

changes in flood risk belief associated with both flooding history and changes in flood

zone status. The results show that housing values decrease by 6% when a property

is assigned to a flood zone where the area has experienced a large flood within a year

and that housing values increase by 4% when a property is removed from a flood zone

where the area has not experienced a large flood recently.

However, the effects are not symmetric. Housing prices do not rebound when

removed from a recently flooded area and do not drop when assigned into a flood zone

in an area with no flooding within 1 or 2 years. This indicates that the mapping of

properties into floodplains is generally not internalized by residents in areas that have

not experienced flood events recently, even when facing mandatory flood insurance

costs. Similarly, the removal of properties from floodplains in the areas that witnessed

flooding recently does not reduce home buyers’ flood risk beliefs. These results also

provide evidence of heterogeneous responses to flood risk information within different

communities and different property values.

The findings imply that individuals’ responses to changes in flood risk are based on
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both recent flooding and flood maps provided by FEMA. The findings suggest some

potential improvements to the National Flood Insurance Program. First, FEMA’s

floodplain maps should provide more detailed and personalized information on flood

risk to better serve the housing and insurance markets. FEMA’s new flood insurance

premium rating system, Risk Rating 2.0, incorporates a wider measurement to cal-

culate each property’s individual risk. The additional information should take other

relevant factors such as previous flooding events into account. Secondly, FEMA and

local governments can increase education and outreach efforts about flood risk and

the importance of flood insurance in order to reduce the asymmetric responses by

home buyers from different socio-economic statuses. The awareness of differences in

the responses/behaviors of home buyers on flood risk is also important for banks and

other financial institutes in order to implement appropriate mortgage plans.
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1.8 Tables

Table 1.1: Summary Statistics by flood zone status: SFHA and non-SFHA

Inside Floodplain Outside Floodplain
Mean S.D. Mean S.D.

Housing Attributes
Price 126,531 183,193 170,699 400,699
House age when sold 45.91 24.72 39.06 30.69
Bedrooms 1.484 1.570 2.039 1.559
Bathrooms 1.563 0.836 1.886 0.924
Lot size (sqft) 142,152 1.007e+06 114,134 825,556
Square footage 1,482 713.5 1,713 1,548
Dummy for single family 0.941 0.236 0.936 0.246
Dummy for condo 0.0275 0.164 0.0348 0.183
Dummy for mobile home 0.0235 0.151 0.0123 0.110
Dummy for townhouse 0.00840 0.0913 0.0174 0.131
Distance to nearest waterbody (meters) 84.40 100.9 252.9 343.0
Neighborhood Characteristics
Median income 58,270 29,531 67,849 28,289
Median home value 157,554 99,932 188,179 92,431
Fraction of white 81.20 16.27 81.04 16.99
Fraction in poverty 15.39 9.007 12.36 10.41
Population 4,691 1,749 5,105 2,073
Observations 8,567 408,589

Notes. Table provides the mean attributes of houses and the neighborhoods inside the floodplain to ones
outside the floodplain. Tract-level neighborhood attributes are from American Community Survey (ACS)
2015-2019 5-year estimate.
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Table 1.2: Summary Statistics by flood zone status: switching and non-switching

Switch In Switch Out Always In Never In
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Housing Attributes
Price 125,837 216,553 151,290 164,609 126,733 172,309 170,887 402,304
House age when sold 38.53 27.87 34.35 22.36 48.05 23.29 39.10 30.76
Bedrooms 2.055 1.574 1.805 1.620 1.317 1.529 2.041 1.558
Bathrooms 1.553 0.860 1.819 0.839 1.566 0.830 1.886 0.925
Lot size (sqft) 257,955 1.556e+06 184,593 973,907 108,500 775,438 113,452 823,961
Square footage 1,536 652.3 1,591 841.4 1,466 729.6 1,715 1,553
Dummy for single family 0.884 0.320 0.894 0.308 0.957 0.203 0.936 0.245
Dummy for condo 0.0575 0.233 0.0722 0.259 0.0188 0.136 0.0344 0.182
Dummy for mobile home 0.0560 0.230 0.0135 0.116 0.0140 0.118 0.0123 0.110
Dummy for townhouse 0.00259 0.0509 0.0204 0.141 0.0101 0.1000 0.0174 0.131
Distance to nearest waterbody (meters) 71.31 78.89 90.66 92.02 88.20 106.2 254.5 344.1
Neighborhood Characteristics
Median income 54,806 23,647 60,194 23,212 59,277 30,962 67,923 28,324
Median home value 143,903 73,850 169,987 76,235 161,522 105,994 188,356 92,556
Fraction of white 87.03 11.64 80.11 12.81 79.51 17.02 81.05 17.02
Fraction in poverty 16.55 9.709 13.78 9.536 15.05 8.765 12.34 10.42
Population 4,761 1,807 5,192 1,867 4,671 1,732 5,104 2,075
Observations 1,929 6,638 6,591 401,901

Notes. Table provides the mean attributes of houses and the neighborhoods inside the floodplain to ones
outside the floodplain. Tract-level neighborhood attributes are from American Community Survey (ACS)
2015-2019 5-year estimate.

21



Table 1.3: Effect of being in the floodzone on housing price

(1) (2) (3)
Within 1year Within 2years

SFHA -0.0477*** -0.0442*** -0.0419***
(0.00879) (0.00980) (0.0106)

Event -0.00998 -0.00999
(0.00932) (0.00978)

SFHA*Event -0.0734*** -0.0694***
(0.0144) (0.0126)

ln(Lot size) 0.0434*** 0.0433*** 0.0434***
(0.00975) (0.00975) (0.00975)

ln(Squared Footage) 0.498*** 0.499*** 0.499***
(0.0184) (0.0184) (0.0184)

squared House age when sold -1.09e-06 -1.09e-06 -1.09e-06
(1.02e-06) (1.02e-06) (1.02e-06)

Bedrooms 0.00914*** 0.00913*** 0.00914***
(0.00314) (0.00314) (0.00314)

Bathrooms 0.0897*** 0.0897*** 0.0897***
(0.00716) (0.00716) (0.00716)

Dummy for single family 0.0898*** 0.0898*** 0.0897***
(0.0261) (0.0261) (0.0261)

Dummy for condo -0.0820** -0.0820** -0.0820**
(0.0339) (0.0339) (0.0339)

Dummy for mobile home -0.364*** -0.364*** -0.364***
(0.0369) (0.0369) (0.0369)

ln(Distance to nearest waterbody) -0.000562 -0.000563 -0.000557
(0.00233) (0.00233) (0.00233)

Constant 7.405*** 7.407*** 7.408***
(0.148) (0.148) (0.148)

Observations 410,325 410,325 410,325
R-squared 0.692 0.692 0.692
County by quarter FE Yes Yes Yes
Block FE Yes Yes Yes

Notes. Dependent variable is log sale price. Standard errors are stated in parentheses and are clustered at
county subdivision level. Price, lot size, squared footage, and distance to nearest waterbody were transformed
with natural logs. House age was transformed by squaring the variable. *** p<0.01, ** p<0.05, * p<0.1
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Table 1.4: Effect of map updates and flood events within 1 year or 2 years on housing
price

Model 1 Model 2 Model 3
(1) (2) (3) (4) (5) (6)

Within 1year Within 2years Within 1 year Within 2 years Within 1 year Within 2 years
SwithIn -0.0136 -0.0169 -0.0142 -0.0158

(0.0220) (0.0231) (0.0207) (0.0221)
SwithIn*Event -0.0653** -0.0356 -0.0464 -0.0189

(0.0276) (0.0311) (0.0287) (0.0317)
SwitchOut 0.0396** 0.0409** 0.0517*** 0.0588***

(0.0157) (0.0194) (0.0139) (0.0131)
SwitchOut*Event -0.0103 -0.0155 0.00776 -0.0165

(0.0252) (0.0178) (0.0184) (0.0140)
Event -0.00947 -0.00881 -0.0402* -0.0486*** -0.0104 -0.0101

(0.00928) (0.00990) (0.0230) (0.0160) (0.00936) (0.00989)
ln(Lot size) 0.0426*** 0.0426*** 0.0349*** 0.0350*** 0.0434*** 0.0434***

(0.00983) (0.00983) (0.0105) (0.0104) (0.00975) (0.00975)
ln(Squared Footage) 0.500*** 0.500*** 0.440*** 0.440*** 0.499*** 0.499***

(0.0184) (0.0184) (0.0498) (0.0498) (0.0184) (0.0184)
squared House age when sold -1.05e-06 -1.05e-06 -2.48e-05*** -2.48e-05*** -1.09e-06 -1.09e-06

(9.87e-07) (9.87e-07) (7.18e-06) (7.21e-06) (1.02e-06) (1.02e-06)
Bedrooms 0.00910*** 0.00911*** 0.00990* 0.00994* 0.00914*** 0.00915***

(0.00323) (0.00323) (0.00561) (0.00568) (0.00314) (0.00314)
Bathrooms 0.0893*** 0.0893*** 0.0628*** 0.0629*** 0.0897*** 0.0897***

(0.00726) (0.00726) (0.0170) (0.0168) (0.00716) (0.00716)
Dummy for single family 0.0867*** 0.0867*** 0.221** 0.222** 0.0896*** 0.0896***

(0.0264) (0.0265) (0.0949) (0.0960) (0.0261) (0.0261)
Dummy for condo -0.0848** -0.0848** 0.141 0.143 -0.0822** -0.0822**

(0.0338) (0.0338) (0.148) (0.148) (0.0339) (0.0339)
Dummy for mobile home -0.367*** -0.367*** -0.0559 -0.0484 -0.364*** -0.364***

(0.0373) (0.0374) (0.188) (0.188) (0.0369) (0.0369)
ln(Distance to nearest waterbody) -0.000593 -0.000589 0.00701 0.00729 -0.000616 -0.000609

(0.00235) (0.00235) (0.0143) (0.0143) (0.00234) (0.00233)
Constant 7.410*** 7.411*** 7.713*** 7.719*** 7.406*** 7.407***

(0.147) (0.147) (0.368) (0.368) (0.148) (0.148)

Observations 400,042 400,042 9,284 9,284 410,325 410,325
R-squared 0.691 0.691 0.763 0.763 0.692 0.692
County by quarter FE Yes Yes Yes Yes Yes Yes
Block FE Yes Yes Yes Yes Yes Yes

Notes. Dependent variable is log sale price. Standard errors are stated in parentheses and are clustered at
county subdivision level. Price, lot size, squared footage, and distance to nearest waterbody were transformed
with natural logs. House age was transformed by squaring the variable. *** p<0.01, ** p<0.05, * p<0.1
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Table 1.5: Effect of map updates and flood events within 1 year or 2 years on housing
price: Repeated sales

Model 1 Model 2 Model 3
(1) (2) (3) (4) (5) (6)

Within 1year Within 2years Within 1 year Within 2 years Within 1 year Within 2 years
SwithIn 0.155 0.149 0.0318 0.0382

(0.127) (0.125) (0.0454) (0.0451)
SwithIn*Event 0.0427 0.0722 -0.0947** -0.0577

(0.126) (0.129) (0.0374) (0.0426)
SwitchOut 0.180* 0.180* 0.123* 0.127*

(0.107) (0.107) (0.0646) (0.0649)
SwitchOut*Event 0.105 0.114 -0.0134 -0.0258

(0.100) (0.105) (0.0255) (0.0241)
Event -0.0120 -0.0137 -0.0541 -0.0671** -0.0131 -0.0153

(0.0103) (0.0110) (0.0343) (0.0299) (0.0105) (0.0110)
squared House age when sold 6.76e-05** 6.66e-05** 9.72e-05* 8.97e-05* 6.73e-05** 6.62e-05**

(3.05e-05) (3.06e-05) (4.91e-05) (4.97e-05) (3.04e-05) (3.05e-05)
Constant 11.59*** 11.60*** 11.23*** 11.26*** 11.59*** 11.59***

(0.0695) (0.0701) (0.115) (0.114) (0.0691) (0.0698)

Observations 279,928 279,928 5,695 5,695 286,618 286,618
R-squared 0.811 0.811 0.866 0.866 0.813 0.813
County by quarter FE Yes Yes Yes Yes Yes Yes
Property FE Yes Yes Yes Yes Yes Yes

Notes. Sample limits to properties sold more than once during the studied period. Dependent variable is
log sale price. Standard errors are stated in parentheses and are clustered at county subdivision level. Price,
lot size, squared footage, and distance to nearest waterbody were transformed with natural logs. House age
was transformed by squaring the variable. *** p<0.01, ** p<0.05, * p<0.1

24



Table 1.6: Hetergeneous effect by neighborhood characteristics

Lower income tracts Higher income tracts
(1) (2) (3) (4) (5) (6)

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
SwithIn -0.0535 -0.0344 0.00667 0.00799

(0.0394) (0.0277) (0.0268) (0.0252)
SwithIn*Event -0.0535 -0.000208 -0.0725** -0.116*

(0.0557) (0.0326) (0.0317) (0.0663)
SwitchOut 0.0818*** 0.0648*** 0.0251 0.0396

(0.0212) (0.0128) (0.0223) (0.0245)
SwitchOut*Event -0.0110 -0.0260 -0.00702 0.0556*

(0.0677) (0.0188) (0.0303) (0.0302)
Event 0.0202 -0.0364 0.00248 -0.0137** -0.0372 -0.0105*

(0.0142) (0.0350) (0.00992) (0.00630) (0.0279) (0.00564)

Observations 94,924 3,092 160,576 304,932 6,099 249,653
R-squared 0.620 0.727 0.628 0.630 0.772 0.608
County by quarter FE Yes Yes Yes Yes Yes Yes
Block FE Yes Yes Yes Yes Yes Yes

Lower home value tracts Higher home value tracts
(7) (8) (9) (10) (11) (12)

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
SwithIn -0.0162 -0.0339 -0.0108 0.00375

(0.0414) (0.0319) (0.0235) (0.0262)
SwithIn*Event 0.00839 -0.0376 -0.0855*** -0.0659*

(0.0586) (0.0640) (0.0278) (0.0339)
SwitchOut 0.0472*** 0.0645*** 0.0488** 0.0377*

(0.0158) (0.0147) (0.0228) (0.0208)
SwitchOut*Event -0.0221 -0.0125 0.00963 0.0264

(0.0249) (0.0220) (0.0312) (0.0277)
Event 0.0227 -0.0406*** 0.00714 -0.0126 -0.0445 -0.0105*

(0.0181) (0.0146) (0.0107) (0.00759) (0.0337) (0.00608)

Observations 85,341 3,849 132,301 314,600 5,280 277,962
R-squared 0.559 0.582 0.559 0.618 0.775 0.607
County by quarter FE Yes Yes Yes Yes Yes Yes
Block FE Yes Yes Yes Yes Yes Yes

Notes. Samples are divided by tract-level median income and median home value in Kentucky from American
Community Survey (ACS) 2015-2019 5-year estimate. Dependent variable is log sale price. Standard errors
are stated in parentheses and are clustered at county subdivision level. Control variables include lot size,
squared footage, house age, number of bedrooms, number of bathrooms, residential type, and distance to
nearest waterbody. Price, lot size, squared footage, and distance to nearest waterbody were transformed
with natural logs. House age was transformed by squaring the variable. *** p<0.01, ** p<0.05, * p<0.1
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Table 1.7: Robustness: Exclude properties outside 300m of flood zone boundary

Model 1 Model 2 Model 3
(1) (2) (3) (4) (5) (6)

Within 1year Within 2years Within 1 year Within 2 years Within 1 year Within 2 years
SwithIn -0.0249 -0.0265 -0.0235 -0.0240

(0.0214) (0.0232) (0.0202) (0.0222)
SwithIn*Event -0.0726** -0.0482* -0.0445 -0.0227

(0.0279) (0.0283) (0.0270) (0.0288)
SwitchOut 0.0451*** 0.0473** 0.0625*** 0.0693***

(0.0166) (0.0204) (0.0142) (0.0137)
SwitchOut*Event -0.00569 -0.00751 -0.000866 -0.0200*

(0.0252) (0.0173) (0.0176) (0.0117)
Event -0.00509 -0.00452 -0.0313 -0.00751 -0.00791 -0.00774

(0.0121) (0.0101) (0.0205) (0.0173) (0.0120) (0.0102)

Observations 127,616 127,616 8,874 8,874 137,454 137,454
R-squared 0.694 0.694 0.763 0.763 0.696 0.696
County by quarter FE Yes Yes Yes Yes Yes Yes
Block FE Yes Yes Yes Yes Yes Yes

Notes. Sample limits to properties inside 300m of flood zone boundary. Dependent variable is log sale price.
Standard errors are stated in parentheses and are clustered at county subdivision level. Control variables
include lot size, squared footage, house age, number of bedrooms, number of bathrooms, residential type,
and distance to nearest waterbody. Price, lot size, squared footage, and distance to nearest waterbody were
transformed with natural logs. House age was transformed by squaring the variable. *** p<0.01, ** p<0.05,
* p<0.1

Table 1.8: Robustness: Exclude counties that had flood maps updated within 6
months after a flooding event

Model 1 Model 2 Model 3
(1) (2) (3) (4) (5) (6)

Within 1year Within 2year Within 1year Within 2year Within 1year Within 2year
SwithIn -0.0179 -0.0216 -0.0164 -0.0186

(0.0242) (0.0252) (0.0228) (0.0242)
SwithIn*Event -0.0685** -0.0327 -0.0455 -0.0153

(0.0295) (0.0345) (0.0310) (0.0344)
SwitchOut 0.0444*** 0.0474** 0.0497*** 0.0588***

(0.0157) (0.0199) (0.0146) (0.0138)
SwitchOut*Event -0.0169 -0.0171 0.00416 -0.0256

(0.0272) (0.0197) (0.0187) (0.0160)
Event -0.00738 -0.00296 -0.0418* -0.0480*** -0.00839 -0.00454

(0.0106) (0.0107) (0.0239) (0.0166) (0.0107) (0.0108)

Observations 351,225 351,225 8,527 8,527 360,711 360,711
R-squared 0.681 0.681 0.753 0.753 0.681 0.681
County by quarter FE Yes Yes Yes Yes Yes Yes
Block FE Yes Yes Yes Yes Yes Yes

Notes. Dependent variable is log sale price. Standard errors are stated in parentheses and are clustered at
county subdivision level. Control variables include lot size, squared footage, house age, number of bedrooms,
number of bathrooms, residential type, and distance to nearest waterbody. Price, lot size, squared footage,
and distance to nearest waterbody were transformed with natural logs. House age was transformed by
squaring the variable. *** p<0.01, ** p<0.05, * p<0.1
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1.9 Figures

Figure 1.1: Ratio of total property damage by floods to from 2000 to 2021 to median
home value

Notes. Property damage data from Storm Data developed by National Weather Service. Estimated median
home value from American Community Survey (ACS) 2015-2019 5-year estimate.

Figure 1.2: Most recent flood maps by year and by county

Notes. The figure shows county-level current flood maps’ effective dates by year. Flood maps’ effective dates
are from FEMA flood map service center: https://msc.fema.gov/portal/home

27



Figure 1.3: Studied counties

Notes. The figure shows the counties included in the studied sample. Current floodplain maps are from
FEMA’s Flood Map Service Center. Historical floodplain maps are from the county offices or the historical
raster files from FEMA.

Figure 1.4: Flood zone effects by distance to the flood zone boundary

Notes. Log sale prices are regressed on a set of control variables and the coefficients are the average of log
prices that belong to different bins by distance to the boundary. All averages are normalized to the bin
inside floodplain closest to the boundary.
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Figure 1.5: Heterogeneous effects by property value

Notes. Observations are divided into bins based on the sale prices.

Figure 1.6: Event study

Notes. Each period is 3 months. Period 0 represents 3 months before the flood map updates. Control
groups: 1) properties stayed outside and without a flood within 1 year, 2) properties stayed outside and
with a flooding recently, 3) properties stayed inside and without a flooding, and 4) properties stayed inside
and with a flooding.
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Figure 1.7: Change in volumes sold by floodzone status

Notes. Each period is 3 months. Period 0 represents 3 months before a flooding event.

Copyright© Fang-Yu Yeh, 2024.

30



Chapter 2 H 2 Oh No! Drinking Water Noncompliance and

Environmental Justice

2.1 Introduction

Access to clean drinking water is essential for human health. If drinking water con-

tains unsafe levels of microbes or chemical contaminants, it can cause gastrointestinal

illnesses, nervous system damage, reproductive effects, and increased risk of cancer

(Smith et al., 2000; Chen et al., 2017; Ward et al., 2018). In 1974, Congress passed

the Safe Drinking Water Act (SDWA) to regulate the public drinking water supply.

Authorized by the SDWA, the Environmental Protection Agency (EPA) set national

health-based standards to protect against naturally occurring and man-made con-

taminants that may be found in drinking water. These standards include maximum

contaminant levels (MCLs) for various substances, treatment techniques, and moni-

toring requirements to safeguard public health. Despite the intent of the SDWA to

provide clean drinking water for everyone, some communities throughout the country

have disproportionately experienced compromised water systems. High-impact agri-

culture can lead to runoff containing fertilizers and pesticides, contaminating water

sources with nitrates and other harmful chemicals. Industrial pollution from factories

and manufacturing plants can introduce a range of toxic substances into the water

supply, including heavy metals and volatile organic compounds. Additionally, failing

infrastructure, such as aging pipes and water treatment facilities, exacerbates the

problem by allowing contaminants to enter the drinking water system.

Recent incidents such as the water crises in Flint, Michigan, and Jackson, Missis-

sippi, have brought to light significant disparities in water quality and safety. These

events raise the question of whether they are outliers or part of a predictable pattern

of environmental injustice. Research into environmental justice, such as the Drinking
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Water Disparities Framework developed by (Balazs and Ray, 2014), suggests that

these cases may indeed be predictable. The framework explains that disadvantaged

communities often lack the funding and expertise to comply with water quality reg-

ulations, leading to disparities in exposure to contaminants. In Flint and Jackson,

predominantly low-income and minority communities suffered from systemic failures

and prolonged exposure to harmful contaminants, reflecting broader trends identified

in studies linking socioeconomic and racial factors to poor water quality.

The impact of these disparities is profound and multifaceted. In Flint, for exam-

ple, residents were exposed to lead-contaminated water for over a year before decisive

action was taken. This exposure has had lasting effects on the health of the commu-

nity, particularly among children, who are more vulnerable to the neurotoxic effects

of lead. Similarly, in Jackson, the predominantly Black community faced prolonged

periods without access to safe drinking water, leading to increased health risks. These

crises highlight how environmental injustices compound the challenges faced by al-

ready marginalized communities, exacerbating health disparities and undermining

trust in public institutions. Other studies have shown that communities with higher

proportions of hispanic, and communities with lower rates of home ownership are

associated with higher nitrate and arsenic level (Balazs et al., 2011, 2012; Schaider

et al., 2019). And predominantly Black communities are more likely to be exposed

to total coliform bacteria, which could lead to acute gastrointestinal illness (Stillo

and MacDonald Gibson, 2017). Other studies have found that community water sys-

tems that serve higher minority populations committed more health-based violations

and are more prone to repeated violations (McDonald and Jones, 2018; Switzer and

Teodoro, 2018; Allaire et al., 2018).

Understanding the intersection of environmental justice research on water quality

with the increased frequency of flooding is crucial, as natural disasters often dispro-

portionately impact marginalized communities (Cutter, 2012; Johnson, 2008; Ryder,
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2017) and evidence indicates that flooding and extreme rainfalls impact water qual-

ity, increasing microbial and chemical loads in surface water (Mishra et al., 2021;

Ten Veldhuis et al., 2010; Andrade et al., 2018; Yard et al., 2014), which could ex-

acerbate existing inequalities in access to clean and safe water. Those marginalized

communities often reside in areas with poorer infrastructure, which is less capable of

withstanding natural disasters, resulting in more significant damage and longer recov-

ery times. Post-disaster recovery time and effort are coincided with social, political,

and economic characteristic of the population (Finch et al., 2010; Cutter et al., 2012;

Blaikie et al., 2014). Limited access to financial resources, emergency services, and

healthcare makes it harder to prepare for, respond to, and recover from disasters.

This paper uses SDWAwater system violations and county-level socio-demographic

data to investigate whether socioeconomic disparities exist in the duration of exposure

to contaminants in drinking water. Additionally, we examine associations between

post-flooding non=compliance period and county-level socio-demographic factors. To

our knowledge, this is the first paper that looks at non-compliance period of violation

on the national scale and provides new insights into the literature on environmen-

tal justice associated with drinking water. We find that larger minority groups and

higher poverty rates are associated with extended noncompliance periods. This study

also expands on the literature on inequitable recovery processes for vulnerable com-

munities, and we show that post-flooding clean-up times are longer for communities

with higher poverty rates. These may help target under-performing systems that

might benefit from assistance in achieving consistent compliance. Our results also

suggest that attention to the distributional impact of regulatory actions should be

incorporated into post-disaster recovery prioritization decisions.

The paper proceeds as follows. The first section shows details on the data and

variables of interest. The second section presents the research design and identi-

fication strategies. The third section presents the results, assesses robustness and
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discusses the limitation of the study. Finally, the forth section concludes this paper.

2.2 Data

Drinking water data We obtained drinking water system violation reports from

EPA’s Safe Drinking Water Information System (SDWIS). The dataset contains each

public water system (PWS) ID, system type (community, non-community), number

of people served, source water type (groundwater or surface water), region served

by the system (city, county), violation type, the date of the beginning and the end

of a monitoring period in which a PWS was in violation of a primary drinking wa-

ter regulation, containment name, whether it’s health based1, whether it’s a major

violation2,

compliance period begin and end date. EPA classifies water systems according

to the number of people they serve: very small (≤500 people), small (501–3,300),

medium (3,301–10,000), large (10,001–100,000), and very large (>100,000).

Demographic data County-level demographic data are collected from Ameri-

can Community Survey (ACS) 5-year estimate from 2010 to 2020. Key independent

variables are the percentage of white, Black, and Hispanic, the percentage of the pop-

ulation below the poverty level, education level, the percentage of home ownership,

median income, median home value, and percentage of the population in urban areas.

Table 3.1 provides a description of the water quality data. Each observation is

a water quality violation sometime between 2010 and 2020. Non-compliance period

1These violations fall into three categories: 1) exceedances of the maximum contaminant lev-
els (MCLs) which specify the highest allowable contaminant concentrations in drinking water,
2) exceedances of the maximum residual disinfectant levels (MRDLs), which specify the highest
concentrations of disinfectants allowed in drinking water, and 3) treatment technique require-
ments, which specify certain processes intended to reduce the level of a contaminant. https:

//echo.epa.gov/help/sdwa-faqs
2There are two types of monitoring violations: 1) A major violation oc-

curs when no tests were taken and/or no test results were submitted to the
Department, 2) A minor violation occurs when some, but not all, of the re-
quired samples are collected and/or submitted. https://www.epa.gov/compliance/

stateterritorynavajo-nation-annual-public-water-systems-compliance-report

34



measures the beginning to the end of a monitoring period in which a public water

system was in violation of a primary drinking water regulation. The average non-

compliance period is higher for larger water systems. For the smallest systems (<500

people served), the average non-compliance period is 290 days. For the largest system

(>100,000 served), the average non-compliance period is 498 days. A large minority

of small water systems are surface water systems, while the majority of larger systems

are surface water systems. Across all sizes, most violations are major violations, but

fewer than half of violations are health-based violations. Larger water systems serve

more non-white counties. In the smallest water systems, 77% of the served county

population is white, while in the larger systems, only 60% of the population is white.

Poverty and education vary slightly across water system sizes. 13 to 16% of the

population is below the poverty line, and 85 to 87% of the population has at least

a high school diploma. Home-ownership is more common for individuals in smaller

systems than for populations served by larger systems. Populations served by large

water systems have higher median income, near $60,000, while populations served by

smaller water systems have lower income, around $50,000 to $55,000. Median home

value is substantially larger for larger water systems. Smaller systems are more likely

to be located in rural counties, and almost all Very Large systems are in counties

with more than 50 percent of the population living in urban areas. Figure 2.1 shows

the average non-compliance period and percentage of non-white by county.

Table 2.2 reports correlations between non-compliance period and a number of

key independent variables. Column (1) presents correlations for the full sample,

columns (2) and (3) restrict the sample to major violations and health violations, and

columns 4-8 restrict the sample to various population sizes. Non-compliance period

is uncorrelated with the percentage of the white population. non-compliance period

is negatively correlated with the black portion of the population, indicating that a

county with a higher black population will have a shorter non-compliance period.
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This relationship holds for most cuts of the data. The Hispanic portion of the county

is positively correlated with non-compliance period. The portion of the population

below the poverty line and the portion with a high school diploma are generally

uncorrelated with non-compliance period, but the correlations are sometimes positive

and sometimes negative, depending on the sample. Home-ownership is negatively

correlated with non-compliance period. Median income and median house value are

positively correlated in the full sample, but in the restricted samples, the correlation

with non-compliance period is sometimes positive.

Flood event data For large regional floods, we use Presidential Disaster Dec-

laration (PDD) events as data sources. The PDD system is a formalized process

to request and receive federal assistance following large natural disasters. Public

Assistance (PA) is FEMA’s largest grant program, which provides funds to assist

communities in responding to and recovering from major declared disasters or emer-

gencies. PDD Public Assistance Funded Project Summaries3 provides information on

all approved federal disaster declaration requests, including data on the disaster type,

disaster event start and end dates, affected counties, PA grant funding, and number

of funded projects. We include disaster categories such as severe storms, flooding, and

hurricanes, and we match the compliance period beginning date and PWS location

to the disaster period and the location of PDD events to determine if the violation

reports can be linked to the disasters. Figure 2.2 shows the average non-compliance

period post-flooding and the number of violation reports within 1 month of flooding.

Table 2.3 summarizes the violation reports linked to a PDD event and those that

are not. We exclude the counties that did not experience any PDD event during the

studied period. 2% of the violation reports in this sample occur within 1 month of a

PDD event, and non-compliance period is shorter for the PWS that experienced PDD

events recently. Public assistance’s emergency work includes setting up temporary

3Additional information on the PDD data is available here: https://www.fema.gov/

openfema-data-page/disaster-declarations-summaries-v2
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water treatment facilities and implementing measures to protect water sources from

contamination, which explains the shorter contamination time and fewer violation

reports categorized as Major.

2.3 Empirical Framework

We are interested in the relationship between demographics of population served

by PWS and the non-compliance period, which can be specified in the following

equation:

NoncompliancePeriodict = β0 + β1SESct + β2Xict + αt + δc + ϵict (2.1)

where NoncompliancePeriodict is the non-compliance period of each violation report

i in county c at year t. Independent variables include social-economic statuses of

county c at year t, and number of controls Xict: primary water source, violation

type, whether it is health based, contaminant names and system sizes. αt is year

fixed effects, δc is county fixed effects which capture the effects of unobserved time-

invariant local factors that affect each PWS, and ϵict is the idiosyncratic error term

that changes across time for each county. The coefficient we are interested in is β1,

which captures the differential clean-up time by the county’s socio-economic status.

To understand the effect of large regional flooding on the differed contamina-

tion time intersects with the SES indicators, we modified the above equation into a

difference-in-differences (DID) specification:

NoncompliancePeriodict = γ0+γ1PDDct+γ2PDDct∗SESct+γ3SESct+θXict+αt+δc+ϵict

(2.2)

where the outcome variable NoncompliancePeriodict and the independent variable

are same as before and PDDct = 1 if violation report begin within 30 days of a PDD

in county c at year t. γ1 represents the effect of large regional flooding on all PWS
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and γ2 is the effect of the flooding on clean-up time associated with different levels

of socio-economic status.

2.4 Empirical Results

2.4.1 Descriptive Results

Table 3.3 presents the result from equation 2.1. Our preferred model (6) includes

both year and county-fixed effects. All estimates are statistically significant. A one-

unit increase in the percentage of Black residents was associated with an 8.94-day

increase in the non-compliance period. Both the percentage of Hispanic residents and

poverty are associated with more extended non-compliance periods. By contrast, a

one-unit increase in the percent of homeowner residents was associated with a 1.27-

day decrease in the non-compliance period. However, education level and median

home value are inversely associated with longer non-compliance periods. For the

control variables, we see that surface water-sourced PWS have shorter non-compliance

periods than groundwater-sourced PWS. The omitted group for system size is Very

Small water systems. Compared to the smallest systems that serve less than 500

people, Small and Medium systems (serving 501 to 10,000 people) have shorter non-

compliance periods (25.94 and 12.45 days). In contrast, Large and Very Large systems

(serving a population of more than 10,001) are associated with 60.02 and 241 days

longer in the non-compliance period. Although the coefficients for Large and Very

Large seem big, those water systems are only 4.5% of all water systems, while Very

Small accounts for 71% of all water systems. Previous EPA reports ((EPA), 2013)

have noted the problem of varying non-compliance of different system sizes: larger

systems have a greater capacity to maintain compliance than small systems and can

return to compliance more quickly than small systems. Our results show the same

story; if there are violations, small PWSs may need more technical capabilities to

correct the underlying problems.
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Table 2.5 looks at the non-compliance period by different types of violation re-

ports. SDWIS violations generally fall into two categories: monitoring and reporting

violations and health-based violations. Column (1) shows that the water systems in

communities with higher rates of Black, Hispanic, and more population in poverty

have longer non-compliance periods where they failed to follow established monitoring

and reporting schedules. For communities with a one-unit increase in the percentage

of home-ownership, the non-compliance period decreased by 3.67 days. Since most

violation reports are categorized as Major Violation, the results from Table 3.3 are

mainly driven by failing to monitor and report. Although these violations are not

directly related to health, these violations can conceal underlying severe problems

such as contamination. Without proper monitoring and reporting, it is impossible to

determine whether the health-based standards have been met.

Column (2) looks at health-based violation reports that the water system either

failed to comply with mandated treatment techniques or violated any Maximum

Contaminant Levels (MCLs). The results show that a one-unit increase in the percent

of Black residents is associated with a 1.54-day decrease in the non-compliance period,

and one percentage increase in the median house value decreases the non-compliance

period by 10.48 days. Other variables show statistically insignificant coefficients.

Column (3) focuses on the violation reports with water contaminated with ar-

senic, coliform, lead and copper, and nitrate. Those contaminants are a few of the

most frequently found in violation of health-based standards in U.S. drinking wa-

ter. Numerous studies indicate that exposure to chemicals in drinking water poses

significant health risks to the population, particularly children, the elderly, and the

immunocompromised (Council et al., 1999; Hopenhayn, 2006; Gruber et al., 2014;

Ward et al., 2018; Brown and Margolis, 2012). We find that the percentage of the

Black and Hispanic population in poverty is positively associated with more extended

contamination time, and communities with higher median house value and median
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income are associated with shorter contamination time. The results expand the ex-

isting research on disparities in drinking water contaminants, particularly in relation

to the length of exposure.

Columns (4) and (5) divide the sample into urban and rural counties. Many liter-

ature shows that the disparities in access to drinking water between rural and urban

areas are noticeable (Strosnider, 2017; Nogueira et al., 2003). Smaller, rural water

systems tend to have more violations than PWSs in larger and urban areas. Viola-

tions usually are related to poor-quality water sources and a lack of resources required

to meet new regulations or maintain infrastructure (Patel et al., 2020). Delpla et al.

(2015) suggests that small rural water systems serving areas with lower income, lower

education levels, and higher unemployment rates are more likely to have lead levels in

drinking water and less likely to have advanced water treatment to the systems. Our

results show that in urban counties, a higher percentage of Hispanic residents and the

population living below poverty are associated with a longer non-compliance period,

whereas in rural counties, only the percentage of home-ownership is significant and

negatively related to the non-compliance period.

2.4.2 Impact of Flooding on Non-Compliance Period

Table 2.6 presents the result from equation 2.2. The sample excludes the counties

that did not experience any PDD event during the studied period. Column (1) shows

that, for the violation reports that were reported within 1 month of a PDD event,

the non-compliance period of the violation reports is negatively associated with the

percentage of Black, Hispanic population and median home value; a higher percentage

of the population below poverty is associated with longer non-Compliance Period

after a PDD event. However, median income is related to a longer non-compliance

period immediately after a PDD event. Column (2) limits the sample to the violation

reports categorized as Major. The post-disaster non-compliance period is longer for
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populations with higher poverty rates and median income and is shorter for higher

median house value areas. Column (3) only includes the violation report with arsenic,

coliform, lead and copper contaminants, and nitrate. The coefficients are statistically

insignificant except for the percentage of the Hispanic population. Columns (4) and

(5) compare the post-disaster non-compliance period of urban and rural areas. In

urban areas that have experienced a PDD event within 1 month, contamination

time is shorter in areas with a lower percentage of Blacks and Hispanics but longer

for a higher percentage of the population below poverty and counties with higher

median income. For rural areas, the coefficients on race are statistically insignificant,

but we find that higher median home value is associated with shorter post-disaster

contamination time. This suggests that after a PDD event that affects the water

quality, a higher poverty level results in longer non-compliance periods in both urban

and rural counties, but race factors in only urban areas, while median house value

has more effect in rural areas.

2.4.3 Public Assistance Program

In the aftermath of natural disasters, immediate recovery efforts focus on assisting

individual victims. Communities often need to repair critical infrastructure systems

that support essential services for the affected population. Among the most important

of these are water infrastructure systems: drinking water treatment facilities and

distribution systems that ensure the supply of safe and healthy potable water. To

help address such emergencies, Congress has authorized programs over the years that

can provide emergency assistance to repair and restore drinking water, wastewater,

and related water infrastructure systems and facilities. Public Assistance (PA) is

FEMA’s largest grant program, providing funds to assist communities in responding

to and recovering from major disasters or emergencies declared by the President. The

program funds emergency assistance to save lives and protect property and permanent
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work to restore community infrastructure affected by a federally declared incident.

Work that is eligible for PA funding is classified as either a) Emergency Work, which

includes debris removal and emergency protective measures performed to eliminate

or reduce immediate threats to public health and safety, including restoration of

drinking water, or b) Permanent Work Category F (Public Utilities), which includes

work to restore an eligible damaged facility to its pre-disaster design, repairing water

treatment facilities and distribution systems.

Previous studies on FEMA’s post-disaster relief have shown that the response

to natural disasters is inequitable, and those disparities often lead to exacerbated

wealth inequality (Howell and Elliott, 2018, 2019; Billings et al., 2022). Some suggest

that socially vulnerable communities and communities with more Black, Hispanic,

or Native American residents (Domingue and Emrich, 2019; Drakes et al., 2021) are

likely to receive lower levels of assistance. This disparity could leave those more vul-

nerable communities worse off than before the disaster and unable to repair critical

infrastructure, such as the water treatment and distribution facilities. If the amount

of assistance funding and recovery projects are correlated with the social-economics

status, the differences in post-disaster non-compliance period could be driven by the

different level of disaster assistance funds. Table 2.7 shows that in all the studied

counties that had experienced a PDD event, the amount of PA funding a county

received is largely influenced by the median income and population size, with 1 per-

centage increase in median income associating with 1.5% increase in funding and 1%

increase in population associating with 0.7% increase in funding. Column (2) shows

that the number of projects in those counties are positively related to the percentage

of population below poverty, median age, median income and population size, but

negatively related to the percentage of home-ownership, median home value and if

the county is classified as rural. We see that the amount of funding and projects are

correlated with the demographics of the affected areas, the public assistance program
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efforts related to restore the safe drinking water post disaster could bias our main

estimation.

Table 2.8 presents the estimation from equation 2.2 with two additional controls:

the PA grant funding and number of funded projects. We see that the coefficients are

similar to the main results in Table 2.6 with the effects of race, poverty slightly smaller

on post-disaster non-compliance period and higher median home value results in a

faster clean-up time. The amount of grant funding have mostly insignificant effect

except for in rural areas, whereas the number of grant projects is negatively related

the the non-compliance period.

2.4.4 Data Limitation

Our analyses of associations between the non-compliance period and socio-demographic

factors are limited by the spatial resolution of available data at the county level. Pub-

lic Water Systems (PWS) often serve communities at smaller geographic scales than

the county, such as towns or neighborhoods, but there is no nationwide data available

at the PWS level. If some PWS serve communities with socio-economic statuses that

differ significantly from the aggregated county-level demographic characteristics, the

results could be biased. This limitation can obscure disparities that might exist at

more localized levels, where socio-economic conditions vary widely within a single

county. Additionally, county-level analysis excludes drinking water systems that do

not have information about the counties they serve, such as those catering to some

Indigenous communities. It also overlooks populations that obtain their water from

private wells or non-community water systems, further limiting the comprehensive-

ness of the study. Future research on the non-compliance period of drinking water

could greatly benefit from more granular demographic data, which would allow for

a more precise understanding of the relationship between water quality and socio-

demographic factors. Despite these limitations, our analysis represents a valuable
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step toward assessing national drinking water disparities and emphasizes the need for

improved data collection practices to better inform public health interventions and

policy decisions.

2.5 Discussion and Conclusion

This paper provides compelling evidence of disparities in drinking water non-

compliance periods at the national level, highlighting significant environmental jus-

tice concerns. Our results indicate that communities with a higher percentage of

minority populations and higher percentages of populations living below the poverty

line experience longer non-compliance periods, ranging from 3.9 to 8.9 days. Con-

versely, communities with higher median incomes and home-ownership rates tend to

have shorter non-compliance periods. When examining violations related to failure

to monitor and report, we find that both race and poverty are strongly associated

with extended non-compliance periods. For violations involving hazardous chemicals

such as arsenic, coliform, lead, copper, and nitrate exceeding the Maximum Con-

taminant Level (MCL), communities with higher median home values and median

incomes have significantly shorter periods of contamination. Additionally, in rural

areas, the rate of home-ownership appears to be a more significant factor than race

and poverty indicators in determining non-compliance periods. These findings high-

light the critical need to address current disparities to improve water quality and

mitigate the future impact of contaminant violations, which disproportionately affect

disadvantaged communities. Proactively addressing these issues through targeted

policies and interventions can ensure more equitable access to safe drinking water for

all communities.

This paper also assesses the environmental justice implications of disasters on wa-

ter quality disparities, emphasizing the importance of understanding the relationship

between post-disaster drinking water contamination and social inequality. This un-
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derstanding is crucial for guiding policy decisions that prioritize assistance to commu-

nities disproportionately impacted by both the disaster and poor water quality. Our

estimations reveal that in counties recently affected by a PDD event, higher poverty

rates are associated with longer non-compliance periods. However, our analysis did

not find a statistically significant relationship between socio-economic status and the

duration of contamination by key pollutants post-disaster. Despite this, understand-

ing the duration of exposure to contaminants and non-compliance in monitoring and

reporting, especially among vulnerable populations, is essential for developing effec-

tive post-disaster recovery strategies. These strategies must focus on swiftly restoring

safe drinking water in the most affected communities. By addressing these dispari-

ties, we can ensure that recovery efforts are equitable and that the health and safety

of all community members are protected in the aftermath of disasters. This research

underlines the need for targeted interventions and resources to support vulnerable

populations, ensuring they receive the necessary aid to recover from both immediate

and long-term impacts on water quality.

Overall, the results suggest critical concerns exist over disadvantaged commu-

nities bearing a disproportionate burden of water quality impairment and longer

non-compliance periods. An in-depth understanding of the most affected population

groups is critical to water resource management and planning decisions. While fed-

eral and state post-disaster assistance might be available to struggling communities,

targeting assistance can be challenging because of the limited information on popula-

tions disproportionately burdened by water quality disparities. Our findings address

the knowledge gap for the optimal distribution of state water resources to support

water quality improvement, especially within under-performing communities. The

findings discussed in this paper can advance the understanding of vulnerable commu-

nities and the call for environmental justice associated with drinking water quality.

Reducing water quality violations period can lead to improved health outcomes and
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less disparity in water service. Post-disaster scenarios often reveal and exacerbate ex-

isting inequalities and regulatory measures that do not consider these disparities can

unintentionally leave the most vulnerable populations without essential resources. By

assessing how different communities are affected by regulations on water quality, in-

frastructure repair, and resource allocation, policymakers should identify areas where

marginalized groups might be disproportionately impacted. Prioritizing the needs of

these vulnerable groups in disaster recovery plans ensures that safe drinking water

remains accessible to everyone, especially those historically underserved or at higher

risk. This approach not only promotes health equity but also reduces long-term so-

cial and economic disparities, enhancing overall community resilience. By ensuring

that all individuals, regardless of socio-economic status, have reliable access to clean

water, policymakers can foster more inclusive and sustainable communities that are

better prepared to withstand future environmental challenges.
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2.6 Tables

Table 2.1: Summary statistics by water system sizes 2010-2020

Very Small
(≤500)

Small
(501–3,300)

Medium
(3,301–10,000)

Large
(10,001–100,000)

Very Large
(>100,000)

Mean SD Mean SD Mean SD Mean SD Mean SD
Violation Report
Non-Compliance Period 290.429 435.721 271.35 419.768 295.402 417.231 369.283 461.431 497.529 472.564
Surface water =1 0.045 0.207 0.145 0.352 0.241 0.428 0.272 0.445 0.732 0.443
Major vioaltion =1 0.64 0.48 0.704 0.457 0.689 0.463 0.684 0.465 0.784 0.411
Health based =1 0.109 0.311 0.146 0.353 0.155 0.362 0.134 0.341 0.073 0.26
Obeservations 1,989,747 511,876 168,423 142,371 16,989
County-level demographic
% White 76.71 18.77 72.74 20.84 72.98 18.58 69.30 18.84 60.29 17.92
% Black 5.59 8.56 12.64 18.30 11.96 15.39 8.31 10.95 9.73 9.50
% Hispanic 12.33 15.11 9.68 13.98 10.09 13.69 15.58 16.85 22.83 17.88
% Below Poverty 13.47 4.80 16.08 6.72 15.75 5.95 13.43 5.47 13.05 3.88
% with HS diploma 87.23 5.86 84.44 7.26 84.52 6.78 87.26 5.97 87.33 4.92
% Homeowner 71.23 7.36 72.14 7.37 71.45 6.96 69.32 7.24 64.23 7.06
% Male 49.80 1.55 49.66 1.77 49.53 1.84 49.36 1.20 49.16 0.89
Median age 40.41 5.24 39.69 5.00 39.15 4.53 38.22 4.96 37.02 3.67
Median income 54,116.60 14,193.87 48,306.03 14,913.92 49,290.34 14,982.90 57,798.05 16,507.31 59,569.77 13,981.14
Median home value 180,241.44 86,955.51 146,582.89 84,604.90 153,737.22 93,025.38 208,008.89 103,705.92 227,650.02 100,048.39
Population 291,854.86 695,269.65 206,663.23 626,501.09 249,164.49 621,631.45 508,343.79 896,741.71 1,608,512.20 1,728,878.86
Urban = 1 0.571 0.495 0.429 0.495 0.525 0.499 0.835 0.372 0.997 0.054
Obeservations 628,013 161,466 53,579 37,305 2,821

Notes. Table provides the mean attributes of PWS by system sizes and the population characteristics it
serves. County-level demographic data are from American Community Survey (ACS) 5-year estimate from
2010 to 2020. Counties with more than 50 percent of the population living in urban areas are classified
urban.

Table 2.2: Correlations between Non-Compliance Period and key independent vari-
ables

All Major Violations Health Violations Very Small Small Medium Large Very Large
% White -0.001 0.0017 -0.0996 -0.0139 0.0635 0.0662 -0.0876 0.0374
% Black -0.0482 -0.0813 0.0015 0.0088 -0.1117 -0.1808 -0.1345 -0.2273
% Hispanic 0.0376 0.0655 0.105 0.0168 0.0381 0.1052 0.1614 0.0781
% Below Poverty -0.0314 -0.0375 0.1014 0.0093 -0.1141 -0.1642 0.0572 -0.08
% with HS Diploma 0.0298 0.011 -0.1156 -0.0088 0.1145 0.1188 0.0167 0.0219
% Homeowner -0.0273 -0.0465 -0.052 -0.0137 -0.0314 -0.0906 -0.0465 -0.025
Median Income 0.0246 0.0088 -0.0685 -0.0071 0.1117 0.1273 -0.0827 -0.0187
Median House Value 0.024 0.0284 -0.0936 -0.0156 0.1092 0.1919 -0.0363 0.1018

Observations 883,184 618,872 117,578 628,013 161,466 52,579 37,305 2,821

Notes. Table provides the correlations between non-compliance period and the demographic characteristics
the PWS serves.
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Table 2.3: Summary statistics by flooding incident 2010-2020

No flooding within 1 month
of violation period

Flooding within 1 month
of violation period

Mean SD Mean SD
Violation Report
Non-Compliance Period 233.1 369.7 89.04 92.52
Surface water =1 0.0675 0.251 0.0656 0.248
Major vioaltion =1 0.565 0.496 0.428 0.495
Health based =1 0.125 0.330 0.179 0.383
PWS population served 2,459 22,099 2,045 15,125
County-level demographic
% White 75.39 19.38 79.77 17.40
% Black 6.711 10.44 5.821 8.495
% Hispanic 12.23 14.92 9.000 11.96
% Below Poverty 13.83 5.262 12.93 4.826
% with HS diploma 86.86 5.770 87.50 5.071
% Homeowner 70.92 7.269 71.78 7.062
% Male 49.65 1.420 49.63 1.449
Median age 40.32 5.168 41.00 4.480
Median income 54,040 14,908 55,035 15,270
Median home value 180,730 89,916 192,045 97,700
Population 319,390 743,374 275,082 621,884
Urban = 1 0.570 0.495 0.527 0.499
Obeservations 614,623 13,160

Notes. The table provides the mean attributes of violation reports and the population characteristics the
PWS serves. Sample excludes the counties that did not experienced any PDD event during the studied
period. County-level demographic data are from the American Community Survey (ACS) 5-year estimate
from 2010 to 2020. PDD flooding includes categories such as flood, hurricane, and severe storm.
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Table 2.4: Descriptive Results for Non-Compliance Period

(1) (2) (3) (4) (5) (6)
% Black -1.507*** -1.601*** 0.908*** 1.358 0.809*** 8.938***

(0.0436) (0.0429) (0.0589) (1.051) (0.0568) (1.029)
% Hispanic 0.626*** 0.857*** 0.00376 -2.704*** 0.363*** 6.346***

(0.0395) (0.0382) (0.0543) (0.582) (0.0525) (0.619)
% Below Poverty -2.225*** 1.732*** -6.327*** 1.083*** -0.449** 3.906***

(0.175) (0.182) (0.180) (0.402) (0.188) (0.421)
% Homeowner -0.927*** -0.779*** -0.853*** 1.515*** -0.502*** -1.268***

(0.0687) (0.0661) (0.0745) (0.284) (0.0719) (0.293)
% with HS Diploma 2.254*** 3.459*** -1.091*** -2.331*** 1.035*** 4.853***

(0.111) (0.110) (0.131) (0.397) (0.129) (0.428)
Median House Value 18.95*** -13.26*** 15.62*** -7.906 -14.87*** 28.99***

(1.526) (1.529) (2.034) (6.238) (2.031) (6.305)
Median Income -90.92*** 33.62*** -123.7*** -364.9*** 37.64*** -81.26***

(3.792) (4.083) (4.356) (10.03) (4.706) (13.87)
Surface water -76.83*** -62.97*** -87.68*** -64.03*** -73.73*** -60.19***

(1.655) (1.595) (1.641) (1.773) (1.581) (1.718)
System Size: Small -37.02*** -49.72*** -12.68*** -13.57*** -24.89*** -25.94***

(1.142) (1.101) (1.132) (1.165) (1.092) (1.131)
System Size: Medium -32.92*** -47.04*** -1.627 0.147 -16.40*** -12.45***

(1.783) (1.716) (1.771) (1.834) (1.706) (1.778)
System Size: Large 59.07*** 39.33*** 78.33*** 74.81*** 57.03*** 60.02***

(2.092) (2.015) (2.102) (2.215) (2.027) (2.147)
System Size: Very Large 239.2*** 217.7*** 253.2*** 249.3*** 226.4*** 241.0***

(7.147) (6.872) (6.951) (7.026) (6.693) (6.807)
Constant 911.1*** -223.6*** 1,631*** 4,389*** -45.43 249.7*

(37.69) (40.49) (39.61) (86.18) (43.28) (150.7)

Observations 882,924 882,924 882,924 882,888 882,924 882,888
R-squared 0.048 0.120 0.109 0.200 0.174 0.249
Year FE Yes Yes Yes
County FE Yes Yes
State FE Yes Yes

Notes. Dependent variable is noncompliance period (days). Standard errors are stated in parentheses and
are clustered at PWS level. Median house value and median income are transformed with natural logs. ***
p<0.01, ** p<0.05, * p<0.1
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Table 2.5: Descriptive Results for Non-Compliance Period by Violation Type and
County Characteristic

(1) (2) (3) (4) (5)
Major Health-based Chemicals Urban Rural

% Black 23.43*** -1.543** 2.590*** 11.90 6.885
(8.703) (0.742) (0.874) (11.29) (4.824)

% Hispanic 5.628 0.197 3.832*** 10.62*** 1.880
(4.466) (0.391) (0.524) (3.840) (3.350)

% Below Poverty 8.297*** 0.0933 1.004*** 8.616** 1.140
(2.769) (0.348) (0.318) (3.544) (2.012)

% Homeowner -3.672* 0.0985 -0.636** 3.064 -3.688***
(2.079) (0.183) (0.264) (2.995) (1.408)

% with HS Diploma 10.22*** -0.650* 0.522 9.383** 1.800
(2.858) (0.339) (0.354) (3.913) (1.907)

Median House Value 1.292 -10.48*** -22.90*** -12.38 78.10*
(50.18) (3.765) (5.308) (45.50) (44.29)

Median Income 2.831 -1.702 -31.43*** -146.9 -39.21
(93.53) (8.058) (11.13) (125.3) (65.10)

Observations 618,599 117,387 301,905 491,176 391,712
R-squared 0.316 0.260 0.107 0.237 0.275

Notes. Dependent variable is noncompliance period (days). All the regressions include county fixed effect,
year fixed effect, PWS system size controls, water source controls and PWS type controls. Standard errors
are stated in parentheses and are clustered at PWS level. Median house value and median income are
transformed with natural logs. Chemicals refers to the contaminants of arsenic, coliform, lead and copper,
and nitrate. *** p<0.01, ** p<0.05, * p<0.1
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Table 2.6: Impact of Flooding on Non-Compliance Period

(1) (2) (3) (4) (5)
All Major Violation Chemicals Urban Rural

PDD -2,809*** -4,171*** -296.5 -3,644*** -1,288**
(288.0) (426.7) (230.4) (849.3) (547.7)

PDD*% Black -1.205*** -0.534 -0.424 -3.543*** 0.656
(0.407) (0.626) (0.333) (1.124) (0.774)

PDD*% Hispanic -1.554*** -1.140* -0.907*** -1.779** -0.298
(0.385) (0.664) (0.271) (0.813) (0.787)

PDD*% Below Poverty 14.41*** 22.16*** 1.809 17.94*** 7.436***
(1.456) (2.218) (1.137) (4.114) (2.317)

PDD*% Homeowner -0.166 -0.343 0.228 -0.891 -0.824
(0.558) (0.917) (0.411) (1.688) (1.299)

PDD*% with HS Diploma 3.011*** 9.270*** 0.297 2.775 4.571**
(1.009) (1.747) (0.723) (2.321) (1.827)

PDD*Median House Value -38.87*** -116.7*** 5.418 -23.38 -45.86**
(10.87) (17.63) (8.461) (34.28) (21.54)

PDD*Median Income 249.9*** 397.1*** 12.23 311.8*** 118.0**
(27.91) (40.11) (22.69) (86.90) (57.88)

% Black 4.296*** 18.60*** 9.307*** 16.93 -4.552
(1.251) (1.712) (1.180) (13.67) (5.578)

% Hispanic 6.034*** 8.232*** -12.43*** 15.86*** -3.502
(0.799) (1.116) (0.747) (4.539) (5.391)

% Below Poverty 2.741*** 4.922*** -0.339 7.772* -0.286
(0.541) (0.749) (0.500) (4.698) (2.502)

% Homeowner 1.672*** 1.363*** -0.302 7.634** -2.360
(0.373) (0.512) (0.352) (3.637) (1.740)

% with HS Diploma 6.645*** 11.83*** -2.123*** 6.634 4.003
(0.528) (0.720) (0.499) (4.799) (2.471)

Median House Value -16.76** -50.21*** -95.79*** 18.83 -83.10
(7.446) (10.35) (6.719) (47.43) (53.48)

Median Income -91.79*** 2.539 -19.77 -189.2 -29.30
(17.49) (24.11) (16.10) (151.1) (83.30)

Observations 627,780 429,913 176,338 360,546 267,234
R-squared 0.231 0.303 0.170 0.228 0.242

Notes. Dependent variable is noncompliance period (days). Sample excludes the counties that did not
experienced any PDD event during the studied period. All the regressions include the county fixed effect,
year fixed effect, PWS system size controls, water source controls and PWS type controls. Standard errors
are stated in parentheses and are clustered at PWS level. Median house value and median income are
transformed with natural logs. Chemicals refers to the contaminants of arsenic, coliform, lead and copper,
and nitrate. *** p<0.01, ** p<0.05, * p<0.1
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Table 2.7: Robustness: Public Assistance program on County Characteristics

(1) (2)
Log(Funding) # of Projects

% Black -0.00854*** -0.0930
(0.00306) (0.134)

% Hispanic 0.0104*** 0.355**
(0.00333) (0.146)

% Below Poverty 0.0405*** 1.915***
(0.0142) (0.625)

% with HS Diploma 0.0342*** 0.372
(0.00900) (0.396)

% Homeowner -0.0247*** -0.839***
(0.00663) (0.291)

% Male 0.0382** 0.833
(0.0176) (0.774)

Median Age 0.0542*** 3.179***
(0.00948) (0.417)

Median House Value -0.726*** -30.39***
(0.125) (5.505)

Median Income 1.552*** 91.84***
(0.386) (16.97)

Population 0.697*** 22.82***
(0.0369) (1.622)

Urban=1 -0.0257 -9.616**
(0.0908) (3.992)

Constant -8.475** -1,009***
(3.826) (168.1)

Observations 2,598 2,598
R-squared 0.304 0.202

Notes. Dependent variables are log transformed PA grant funding in dollar amount and number of funded
projects. County-level demographic data are from the American Community Survey (ACS) 5-year estimate
from 2010 to 2020. Median house value and median income are transformed with natural logs. All the
regressions include year fixed effect. Standard errors are stated in parentheses. *** p<0.01, ** p<0.05, *
p<0.1
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Table 2.8: Impact of Flooding on Non-Compliance Period with PA controls

(1) (2) (3) (4) (5)
All Major Violation Chemicals Urban Rural

PDD -2,211*** -2,940*** -269.9** -2,835*** -1,080*
(503.6) (969.1) (137.7) (811.6) (556.4)

PDD*% Black -0.924 -0.194 -0.413** -2.369** 0.596
(0.647) (1.220) (0.201) (1.053) (0.764)

PDD*% Hispanic -1.436*** -0.816 -0.940*** -1.116 -0.446
(0.498) (1.157) (0.186) (0.805) (0.790)

PDD*% Below Poverty 10.51*** 15.18*** 1.454* 12.11*** 6.027**
(2.109) (4.351) (0.752) (4.011) (2.370)

PDD*% Homeowner -1.394 -2.415 -0.0407 -2.286 -1.375
(1.002) (2.166) (0.260) (1.593) (1.311)

PDD*% with HS Diploma 2.326 7.384** 0.251 2.186 4.006**
(1.439) (3.509) (0.420) (2.300) (1.857)

PDD*Median House Value -39.39** -131.3*** 6.987 -42.01 -37.63*
(19.46) (42.99) (4.633) (32.41) (21.90)

PDD*Median Income 214.8*** 331.2*** 12.42 286.2*** 92.07
(52.67) (98.89) (13.96) (85.89) (58.75)

% Black 4.172 18.39* 9.303*** 16.75 -4.600
(6.437) (10.42) (1.743) (13.67) (5.577)

% Hispanic 5.927* 8.090 -12.43*** 15.44*** -3.423
(3.324) (5.252) (1.172) (4.535) (5.395)

% Below Poverty 2.790 4.963 -0.325 7.770* -0.259
(2.307) (3.488) (0.670) (4.698) (2.502)

% Homeowner 1.640 1.334 -0.307 7.570** -2.353
(1.659) (2.563) (0.526) (3.637) (1.740)

% with HS Diploma 6.656*** 11.87*** -2.114*** 6.639 4.022
(2.226) (3.460) (0.683) (4.801) (2.471)

Median House Value -17.03 -51.05 -96.06*** 19.23 -83.33
(35.08) (54.92) (9.404) (47.43) (53.50)

Median Income -91.26 2.621 -19.72 -190.5 -29.19
(74.63) (116.2) (22.27) (151.0) (83.29)

Log(Funding) 0.526 6.686 -1.078 -4.798 7.375**
(2.884) (5.241) (0.894) (4.295) (3.395)

# of Projects -0.293*** -0.409*** -0.0729*** -0.329*** -0.192***
(0.0340) (0.0697) (0.0123) (0.0447) (0.0472)

Observations 627,780 429,913 176,338 360,546 267,234
R-squared 0.231 0.303 0.170 0.229 0.242

Notes. Dependent variable is noncompliance period (days). All the regressions include the county fixed
effect, year fixed effect, PWS system size controls, water source controls and PWS type controls. Standard
errors are stated in parentheses and are clustered at PWS level. Median house value, median income and
PA fundings are transformed with natural logs. Chemicals refers to the contaminants of arsenic, coliform,
lead and copper, and nitrate. *** p<0.01, ** p<0.05, * p<0.1
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2.7 Figures

Figure 2.1: Average Non-compliance Period and % Non-white Population by county

Notes. Top graph provides the mean non-compliance period of each violation reports in each county. Bot-
tom graph shows the county-level demographic data of percentage non-white population is from American
Community Survey (ACS) 5-year estimate from 2010 to 2020.
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Figure 2.2: Average Non-compliance Period and Violation Report Counts after PDD
by county

Notes. Top graph provides the mean non-compliance period of each violation reports in flooded counties.
Bottom graph shows the number of violation reports in flooded counties.

Copyright© Fang-Yu Yeh, 2024.
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Chapter 3 Impact of Flooding and Free School Meals on Student

Performance

3.1 Introduction

Flood events are the most common and costly natural disasters in the U.S., affect-

ing millions of individuals each year. According to the National Centers for Environ-

mental Information, the U.S. has witnessed over $67.8 billion in flood damages since

2010 (Smith, 2020). In Kentucky, flooding is the state’s most frequent and costly nat-

ural disaster1. At the end of July 2022, several counties in Eastern Kentucky were hit

by severe flash floods resulting from a week-long heavy rain. The ”1-in-1000 year”2

flood event claimed more than 30 lives and destroyed hundreds of homes, schools,

and roads in the area. Multiple counties are forced to delay the school start dates

and many students will have to switch school districts.

For families in regions affected by natural disasters, the impacts extend beyond

mere disruption of daily routines; they encompass a cascade of challenges that pro-

foundly affect children’s lives. Disasters often lead to missed school days and hindered

academic progress, depriving children of crucial learning opportunities and social in-

teractions. Moreover, they heighten exposure to various stressors like illness, family

turmoil, domestic violence, and substance abuse, all of which can severely impact

children’s physical health and emotional well-being in both the short and long terms.

Many researchers have studied the effect of different types of natural disasters on aca-

demic performance. These negative effects of disaster may have severe consequences

1Estimates are based on the Storm Events Database from NOAA/National Centers for
Environmental Information (NCEI). Digital data are available at http://www.ncdc.noaa.gov/

stormevents/ftp.jsp
2According to the United States Geological Survey (USGS), the term “1,000-year flood” means

that a flood of that magnitude (or greater) has a 1 in 1,000 chance of occurring in any given year.
In terms of probability, the 1,000-year flood has a 0.1% chance of happening in any given year.
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for children’s physical health and emotional and intellectual well-being in both the

short and long terms (Mudavanhu, 2014; Gibbs et al., 2019; Thamtanajit, 2020).

Thus, low school enrollment, low class attendance and high student drop-outs are

recurring problems in child education among poor households especially in areas of

high food insecurity.

Food and nutrition assistance programs play a pivotal role in safeguarding house-

holds’ investments in education by alleviating financial burdens associated with school-

ing. These programs not only provide essential nutrition but also encourage parents

to enroll their children in school and ensure regular attendance throughout their aca-

demic years. Literature has shown that food insecurity have a negative impact on

students’ academic performance and mental wellness (Alaimo et al., 2001; Ashiabi,

2005). Studies focused on food assistance program such as National School Lunch

Program (NSLP) and School Breakfast Program (SBP), found positive effects on edu-

cation and achievement (Kleinman et al., 2002; Imberman and Kugler, 2014; Schwartz

and Rothbart, 2020; Gordanier et al., 2020; Cohen et al., 2021), also improves health

outcomes (Peterson, 2014; Rothbart et al., 2023). In the aftermath of natural dis-

asters, school districts become crucial focal points for providing nutrition support

to students through the programs. These initiatives are pivotal in mitigating the

immediate effects of food insecurity among children, ensuring they receive balanced

meals despite the upheaval caused by disasters. The school meal programs not only

enhance nutritional intake but also reduce food insecurity, thereby promoting better

health outcomes and supporting educational achievement among vulnerable student

populations.

This study aims to contribute to the existing literature on the impact of natural

disasters on students’ education by examining the effects of severe flooding on student

achievement. Specifically focused on the Kentucky public school system, the research

investigates how large regional flood events influence academic performance among
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students. In addition to assessing the direct impact of flooding, the study also eval-

uates the role of food security programs, such as the NSLP and SBP, in supporting

students’ academic resilience post-disaster. The findings indicate that the programs

plays a crucial role in mitigating some of the adverse effects of large regional floods on

students who participate in the free or reduced-price meal programs. This suggests

that food security programs can help disadvantaged students maintain their academic

performance despite the challenges posed by flooding events.

Furthermore, this research highlights the potential of school nutrition programs

as a critical component of emergency preparedness and response strategies. While

these programs have historically responded to emergencies, more research is still

needed to examine their emergency preparedness. Understanding how food assistance

programs impact education outcomes in times of crisis can provide valuable insights

into developing and enhancing programs that effectively mitigate the disruptive effects

of natural disasters on education. By exemplifying these mechanisms, the study aims

to inform future educators, policymakers, and emergency responders on best practices

for supporting student resilience and academic continuity in the aftermath of flood

events. This knowledge can guide the development of proactive measures and policies

to ensure that vulnerable student populations receive the necessary support to thrive

academically amidst disaster recovery efforts.

The paper proceeds as follows. The first section introduces the background and

related literature. The second section shows details on the data and variables of inter-

est. The third section presents the research design and identification strategies. The

fourth section presents the results. Finally, the fifth section concludes and discusses

the limitations of the study.
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3.2 National School Meals Program

The national school meals programs, National School Lunch Program (NSLP) and

the School Breakfast Program (SBP), are federally-assisted meal programs in public

and nonprofit private schools. Originating from the National School Lunch Act of

1946, signed by President Harry Truman, to “safeguard the health and well-being

of the Nation’s children and to encourage the domestic consumption of nutritious

agricultural commodities and other foods.” The program aims to provide low-cost or

free lunches to eligible students. The NSLP is the second largest food and nutrition

assistance program in the United States, following only SNAP (Supplemental Nutri-

tion Assistance Program), and it has been vital in supporting the nutritional needs of

its school-age population. About 35.9 million children received a school lunch in 2021

3and 43% of US public school students attend schools where a majority of students

are eligible for free/reduced-price lunch 4. Although schools are not required to offer

NSLP and SBP meals, 94 percent of schools, both public and private. Of this group,

the percentage of students who attended high-poverty schools was highest among

Hispanic students (38%), Black students (37%), and American Indian/Alaska Native

students (30%), and the percentage of students receiving free or reduced-price lunch

often used to measure how many students live in poverty.

Eligibility for the NSLP and SBP is primarily determined based on household

income. Students from households with incomes at or below 130% of the federal

poverty income threshold qualify for free lunch under the program. Additionally,

students who are enrolled in other federal assistance programs such as Temporary

Aid to Needy Families (TANF), the Supplemental Nutrition Assistance Program

3Survey of Income and Program Participation (SIPP) provides national data about the re-
ceipt of free/reduced-price school meals. https://www.census.gov/data/tables/2021/demo/

public-assistance/sipp-receipts.html
4U.S. Department of Education, National Center for Education Statistics, Common Core of

Data (CCD), “Public Elementary/Secondary School Universe Survey,” 2021–22 https://nces.ed.

gov/ccd/pubschuniv.asp

59



(SNAP, formerly known as the Food Stamp Program), and the Food Distribution

Program on Indian Reservations (FDPIR) are automatically certified for free lunch

through administrative records. For students from households earning between 130%

and 185% of the poverty threshold, they qualify for reduced-price lunch, where the

meal cost is subsidized but still requires a minimal contribution from the family. At

the beginning of each school year, schools distribute school meal applications to par-

ents or guardians. These applications are submitted to the school food authority

(SFA), where families self-report their household’s total income for the most recent

full month, the household size, and whether any household members participate in

federal food and nutrition assistance programs. Based on this information, the SFA

determines the eligibility of each student for free or reduced-price meals. This pro-

cess ensures that eligible students receive access to nutritious meals that support

their health and well-being throughout the school year, regardless of their financial

circumstances. The national school meals programs not only aims to alleviate hunger

but also plays a crucial role in promoting academic achievement and overall student

success by ensuring that children have access to balanced meals during the school

day.

3.3 Data

Education data Education assessment data collected from 2013 to 2018 by the

Kentucky Department of Education (KDE) provides a comprehensive overview of

student performance across various subjects and grade levels in Kentucky schools. 5

Since 2012, Kentucky has administered the Kentucky Performance Rating for Edu-

cational Progress (K-PREP) tests annually. These tests cover reading, mathematics,

science, social studies, and writing, spanning elementary through high school grades.

Held in May each year, the tests are scheduled by counties, and student performance

5School Report Card data downloaded from https://openhouse.education.ky.gov/Home/

SRCData
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is categorized into four achievement levels: novice, apprentice, proficient, and dis-

tinguished. At the lowest performance level, novice, students demonstrate minimal

understanding of the content standards for their grade level. This level of performance

indicates significant academic challenges and may signal a need for additional support

and intervention to improve understanding. The second performance level, appren-

tice, demonstrates partial proficiency and may require further instruction and practice

to achieve proficiency. Students at the third level, proficient, demonstrate a solid un-

derstanding of the content standards and can apply their knowledge effectively. They

meet grade-level expectations and demonstrate competency in the subject area being

tested. The distinguished level represents the highest level of achievement. Students

at this level not only meet but exceed grade-level expectations. They demonstrate

advanced understanding, critical thinking skills, and the ability to apply knowledge

in complex ways. The school-level assessment data includes detailed information such

as school names, school districts, grades tested, subjects assessed, and percentages

of students falling into each achievement category. Data is further disaggregated

by factors including gender, race, and eligibility for free/reduced-price meals. The

dataset includes enrollment numbers and test participation rates for each school. I

also included the number of full-time equivalent teachers at each school. This allows

for the calculation of student-to-teacher ratios, an important indicator of classroom

resource allocation and educational support.

Table 3.1 provides a description of the education assessment data. Each obser-

vation is a school-level test performance by grades and by subjects. 17.58% of all

students in elementary schools are at novice level, 31.01% are at apprentice level,

and 51.41% are at proficient or distinguished level. When focusing on students re-

ceiving free or reduced-price meals, a subset often used as an indicator of economic

disadvantage, 21.21% are at novice level, 34.42% are at apprentice level, and 44.36%

are at proficient or distinguished level. These patterns persist into middle and high
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school levels, where a higher percentage of students eligible for free/reduced-price

meals perform at the novice and apprentice levels compared to their peers. This

disparity shows the impact of economic disadvantage on educational outcomes, as

students from economically disadvantaged backgrounds often face additional barriers

that can affect their academic performance.

Flood event data For large regional floods, I use Presidential Disaster Decla-

ration (PDD) Floods events and NFIP redacted claims as data sources. The PDD

system is a formalized process to request and receive federal assistance following

large natural disasters. PDD Summaries from FEMA provides information on all

approved federal disaster declaration requests, including data on the disaster type,

disaster event start and end dates, and affected counties.6 NFIP redacted claims

data 7 provides claim transactions on property type, date of loss, flood zone, and

the amount paid on claims. I match the date of loss and the census tract of each

claim to the incident period of PDD floods to determine if the flood damage is caused

by a large regional flood. Since PDD floods are determined at the county level, not

all communities within a county are affected by the flood. I construct a variable to

identify which school districts in PDD counties are ”hit” by each flood. I consider

a school district to be hit if there are at least $100,000 in building claims linked to

the PDD floods within the school district. With the flood events and testing period

dates, I match if the school year/semester is affected by any large regional floods.

Table 3.2 provides the education assessment data by flooded and non-flooded

schools. The levels of academic performance of flooded schools and that of control

schools are similar for both all students and students on free/reduced price meal.

6Additional information on the PDD data is available here: https://www.fema.gov/

openfema-data-page/disaster-declarations-summaries-v2
7Additional information on the NFIP redacted claims data are available here: https://www.

fema.gov/openfema-data-page/fima-nfip-redacted-claims-v1
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3.4 Empirical Framework

I am interested in the impact of large regional flooding on students test perfor-

mance, which can be specified in the following equation:

Leveligst = β0 + β1PDDct + αt + δigs + ϵigst (3.1)

where Levelict is the percentage of students at 4 different achievement categories:

novice, apprentice, proficient, and distinguished in school i at grade g at year t.

PDDit is a dummy variable equals to 1 if a PDD hit the school district within the

school year (August to May) or within the school semester (January to May). αt

is year fixed effects, δigs is school-grade fixed effects which capture the effects of

unobserved time-invariant cohort factors, and ϵict is the idiosyncratic error term that

changes across time for each cohort. The estimated β1 captures the effect of a large

regional flood event on the education outcome of the students. If a severe flood

adversely affects the examination scores, the percentage of students scoring at novice

and apprentice in schools that were affected by the flood should be higher than those

of the schools that were not affected by the flood.

3.5 Empirical Results

3.5.1 Main Estimates

Table 3.3 shows the results from equation 3.1. For all students, the schools that ex-

perienced a large flooding event within the school year has the percentage of students

scoring at novice level increases by 0.34 percentage point, which is 0.03 standard de-

viation increase in the percentage of students scoring at novice level. In contrast, the

results for students with free/reduced price meal in those schools show insignificant

change in test performance at all four levels. This suggest that, although students

with free/reduced price meals are considered more disadvantaged, the program mit-

igates some of the adverse effects from the large regional floods on those students.
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Free/reduced price meal can help disadvantaged students maintain their academic

performance in the face of natural disasters like flooding, while other students, lacking

this level of structured support, might experience a decline in their test performance.

Bottom panel shows that the negative effects on all students from the PDD events

hit the school within a semester of the test are larger, but the effects on free/reduced

price meal students remain statistically insignificant.

Even though in equation 3.1 I included school-grade-subject fixed effects to control

for unobserved time-invariant characteristics of the cohorts, the challenge relevant to

my estimation is to account for omitted variables that are time-varying. To account

for potential bias, I estimate additional specifications that include student-to-teacher

ratio as the additional time-varying school-specific control in the robustness check in

Table 3.4. In all cases, the results are similar to my baseline results and robust to

the inclusion of the student-teacher ratio as an additional explanatory variable.

3.5.2 Heterogeneous Impacts of Flooding on students

Thamtanajit (2020) has shown that disasters often have a disproportional effect on

students in elementary and middle school comparing to high school . Figure 3.1 rep-

resents the effect of flooding events student achievement across different school levels.

In elementary schools affected by a flooding event, there is statistically significant in-

crease in the percentage of students eligible for free/reduced-price meals who achieve

at the distinguished level, signaling an unexpected positive outcome amidst adversity.

Concurrently, there is a significant decrease in the percentage of these students scor-

ing at the apprentice level, suggesting a shift towards higher academic achievement

among economically disadvantaged students following the disaster. Conversely, mid-

dle school students exhibit a different pattern of impact. Following a flooding event,

there is a significant increase in the percentage of middle school students scoring at

the novice level. Additionally, there is a decrease in the percentage of middle school
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students achieving at the distinguished level, highlighting a decline in academic ex-

cellence among all students and students on free/reduced price meals post-disaster.

For high school students, there are increases in students in novice level for both all

students and free/reduced price meal ones. For those eligible for free/reduced-price

meals, there is a smaller decrease in the percentage of students achieving at the

proficient level compared to their peers.

Previous research indicates that both natural disasters and food assistance pro-

grams can have differential effects on students’ math and reading test scores. Fig-

ure 3.2 reports the effect of flooding events on student achievement by subjects:

mathematics and readings. Mathematics and reading are subjects systematically

tested across multiple grade levels, providing a robust dataset for analysis. Unlike

science, social studies, and writing, which are tested less frequently, math and read-

ing assessments span from third to eighth grade, offering a comprehensive view of

academic performance trends. The results highlight distinct patterns in how flooding

events affect student achievement in these subjects. Specifically, students attending

schools affected by flooding experience a notable decrease in the percentage scoring at

proficient levels in mathematics. This decline suggests that disruptions caused by nat-

ural disasters can impair students’ ability to grasp and apply mathematical concepts

effectively, potentially due to interruptions in learning continuity or environmental

stressors. Moreover, the impact appears less pronounced for students receiving free

or reduced-price meals, indicating a mitigating effect of food assistance programs on

math achievement post-disaster. In contrast, the results shows no significant effect

of flooding events on reading scores for both student groups. This finding suggests

that reading comprehension, which may rely more on continuous practice and less on

cumulative learning, is less immediately disrupted by environmental factors such as

school closures or displacement caused by natural disasters.

Figure 3.3 illustrates the impact of flooding events on student achievement across

65



urban and rural counties. I matched school district data with county-level demo-

graphic data collected from the American Community Survey (ACS) 5-year estimates

from 2013 to 2018. A county is classified as urban if at least 50% of its population lives

in urban areas. Rural areas frequently experience higher rates of food insecurity com-

pared to urban areas, meaning that students in these areas could benefit more from

food assistance programs. Research by Gordanier et al. (2020) demonstrates that

the universal free-lunch program, Community Eligibility Provision (CEP), improves

math and reading scores, with the effects being more pronounced in rural schools com-

pared to urban ones. The graph indicates that urban students in schools experiencing

a PDD event within one school year show a significant increase in the percentage scor-

ing at the novice level for all students and those on free/reduced-price meals. In rural

areas, there is a substantial increase in the percentage of students scoring at the

distinguished level, with a more significant effect for students on free/reduced-price

meals. Additionally, there is a notable decrease in the percentage scoring at the

novice level for students receiving free/reduced-price meals. These improvements can

be attributed to several factors. First, flooding events often lead to emergency re-

sponses that include increased access to food assistance programs, providing crucial

nutritional support that helps students focus better in school. Furthermore, post-

disaster periods typically see heightened levels of community and government inter-

vention, bringing in additional resources such as educational support and assistance

for individual households. Lastly, recovery efforts often prioritize the most vulnera-

ble populations, including those on free/reduced-price meals, directly impacting their

academic performance by addressing both immediate and long-term needs.

3.6 Limitation

The analyses of associations between student academic performance and the im-

pact of flooding events are limited by the spatial resolution of available data at the
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school level. Specifically, the data only allow for observations of overall enrollment,

and the percentage of students scoring at each achievement level by grade and sub-

ject. This aggregated data lack the granularity needed to track individual student

outcomes, such as whether a student dropped out or was placed in another school

after a PDD event. Consequently, if a significant number of students failed to take

the test due to family displacement, transportation issues, or being forced to work

to support their households, the analysis results could be biased and underestimates

the true impact of flooding events on academic performance. Despite these limita-

tions, the analysis represents a valuable step toward understanding the educational

outcomes linked to environmental factors and food assistance programs, highlight-

ing the need for more detailed data collection and targeted interventions to support

vulnerable student populations in the wake of natural disasters.

When using school-level data to compare the entire student population with stu-

dents who receive free or reduced-price meals, the results should be interpreted care-

fully due to the inherent differences between these groups. Students eligible for

free/reduced-price meals typically come from lower-income households, which can

be associated with various socio-economic disadvantages, including limited access to

resources, less educational support at home, and higher levels of stress. These factors

can significantly influence academic performance and overall well-being, making it es-

sential to consider these disparities when analyzing the data. The main results show

the comparisons of the changes in test performance between the general student popu-

lation and under-performing students. Recognizing these differences allows for more

nuanced interpretations and understanding any observed disparities in educational

outcomes within the context of underlying socio-economic factors. Furthermore, these

comparisons highlight the importance of tailored interventions. Educators and pol-

icymakers can design more effective support systems by understanding the unique

needs and obstacles of students from low-income households. This approach not only
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helps improve academic outcomes but also addresses broader issues of equity and

access within the education system.

3.7 Discussion and Conclusion

This paper examines the impact of national school meals programs on the test

scores of Kentucky students post-disaster. The study fills a critical gap in the existing

literature, which has separately shown evidence of the impact of disasters and food

assistance programs on student achievements. Specifically, this study investigates

how national school meals programs aid economically disadvantaged students after

disasters, providing a unique perspective on the intersection of these two factors.

The results indicate that schools experiencing a significant flooding event within the

school year see the percentage of students scoring at the novice level increase by 0.34

percentage points. However, students receiving free or reduced-price meals in these

schools show an insignificant change in test performance. This suggests that the

national school meals program plays a critical role in mitigating some of the adverse

effects of large regional floods on these students. This stabilization effect highlights

the importance of food security in maintaining academic performance during crises.

Further analysis reveals heterogeneous effects based on school level and urban/rural

distinctions. Elementary school students benefit more from the programs following

a disaster compared to their middle and high school counterparts. Additionally, the

gains from the school meals programs are larger in rural schools than in urban ones.

The findings advocate for the continued and potentially expanded implementation

of these programs, especially in vulnerable rural communities and among younger

students, to foster resilience and academic success in the face of natural disasters.

A new strand of literature has focused on food security programs during the

COVID-19 pandemic. As lockdown and school closure policies were implemented

in response to the coronavirus, the government introduced several emergency feed-
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ing programs to address food security and support food assistance programs. These

measures included initiatives such as the Pandemic Electronic Benefit Transfer (P-

EBT), which provided funds to families to replace the value of missed school meals,

and the expansion of free meal distribution sites to ensure that children continued

to have access to nutritious food despite school closures. While no existing litera-

ture examines explicitly the impact of these programs on student achievement yet,

studies on emergency feeding programs for students during the pandemic reveal sig-

nificant parallels to this study. For instance, research indicates that these emergency

programs played a crucial role in preventing increased food insecurity among low-

income families and maintaining children’s access to essential nutrients (Jablonski

et al., 2021; McLoughlin et al., 2020). Both scenarios underline the critical role of

school-based meal programs in ensuring continuous access to nutritious food for vul-

nerable students amid crises. The findings from the pandemic context highlight how

government interventions on food security for children can mitigate adverse effects

on student nutrition and well-being, providing a blueprint for effective responses to

various emergencies. These interventions help stabilize household food supplies, re-

duce the stress and anxiety associated with food insecurity, and ensure that children

remain healthy and ready to learn. The experience from the COVID-19 pandemic

demonstrates the importance of flexibility and rapid response in food assistance pro-

grams, which can be crucial for maintaining educational outcomes during times of

crisis. By drawing lessons from these emergency measures, policymakers can develop

robust strategies that ensure food security and support student achievement in future

emergencies, whether natural disasters, economic downturns, or public health crises.

Overall, the results suggest that food assistance programs such as the National

School Lunch Program (NSLP) and School Breakfast Program (SBP) can help eco-

nomically disadvantaged students mitigate some of the negative impacts of flooding

events and maintain their academic performance. Understanding the mechanisms
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through which food assistance programs influence educational outcomes is crucial

for devising effective strategies to mitigate the adverse effects of natural disasters on

education. Research shows that consistent access to nutritious meals not only sup-

ports physical health but also enhances cognitive function, concentration, and overall

academic performance. By analyzing how these programs provide stability, routine,

and stress alleviation for students and their families, policymakers and educators can

identify key pathways for implementation. This knowledge enables the development

of targeted interventions that ensure food security during and after natural disas-

ters, such as mobile meal delivery systems, expanded eligibility criteria, and robust

community partnerships. By leveraging these insights, programs can be tailored to

maintain educational continuity and support student well-being, ultimately fostering

resilience and academic success in the face of crises. Integrating these strategies into

disaster response plans can ensure that vulnerable students continue receiving the

nutritional support necessary for their academic and personal development, even in

challenging circumstances.
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3.8 Tables

Table 3.1: Summary statistics by school level

All Students Free/Reduced Price Meal
Elementary Middle High Elementary Middle High
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Novice (%) 17.58 11.65 15.88 9.36 13.01 7.91 21.21 12.15 20.48 10.50 16.80 9.04
Apprentice (%) 31.01 11.33 33.94 12.63 30.65 9.10 34.42 11.71 37.98 12.38 35.04 9.16
Proficient (%) 36.37 11.12 36.26 10.25 46.40 10.73 33.90 11.89 32.63 10.97 41.83 11.48
Distinguished (%) 15.02 11.08 13.89 9.59 9.91 6.93 10.46 8.57 8.89 6.84 6.32 5.15
Enrollment 72.45 34.93 157.50 107.68 195.98 119.59 45.61 23.73 93.49 66.21 101.98 58.39
Observation 33,238 14,453 1,293 28,689 12,951 1,226

Notes. Table provides the mean the percentage of students at 4 different achievement categories and enroll-
ment by school level.

Table 3.2: Summary statistics by flooded schools

Flooded Schools Non-Flooded Schools

All Student
Free/Reduced
Price Meal

All Student
Free/Reduced
Price Meal

Mean S.D. Mean S.D. Mean S.D. S.D. Mean
Novice (%) 19.35 12.90 23.60 12.62 16.80 10.82 20.69 11.54
Apprentice (%) 29.77 10.72 33.33 11.00 32.01 11.80 35.65 12.01
Proficient (%) 34.91 10.92 32.00 11.17 36.72 10.97 33.85 11.72
Distinguished (%) 15.96 11.59 11.04 8.67 14.46 10.54 9.79 8.02
Enrollment 117.49 90.74 72.04 58.25 99.29 78.45 60.26 46.63
Observation 3,066 2,518 45,918 40,348

Notes. Table provides the mean the percentage of students at 4 different achievement categories and enroll-
ment by flooded and non-flooded schools.
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Table 3.3: Effect of Flood events on students performance

All Students Free/Reduced Price Meal
Novice Apprentice Proficient Distinguished Novice Apprentice Proficient Distinguished

PDD within 1 school year 0.344* -0.117 -0.266 0.0394 0.312 -0.296 -0.211 0.193
(0.192) (0.263) (0.225) (0.207) (0.237) (0.293) (0.261) (0.180)

Constant 16.64*** 31.65*** 36.82*** 14.89*** 20.85*** 35.53*** 33.76*** 9.859***
(0.0380) (0.0520) (0.0444) (0.0408) (0.0467) (0.0578) (0.0515) (0.0355)

Observations 42,865 42,865 42,865 42,865 42,866 42,866 42,866 42,866
R-squared 0.487 0.201 0.311 0.402 0.386 0.112 0.263 0.263

All Students Free/Reduced Price Meal
Novice Apprentice Proficient Distinguished Novice Apprentice Proficient Distinguished

PDD within 1 school semester 0.395* -0.223 -0.463 -0.0579 0.328 -0.265 -0.786 0.113
(0.166) (0.204) (0.201) (0.175) (0.209) (0.237) (0.241) (0.162)

Constant 16.59*** 31.60*** 36.86*** 14.95*** 20.82*** 35.52*** 33.78*** 9.882***
(0.0314) (0.0386) (0.0381) (0.0332) (0.0397) (0.0449) (0.0456) (0.0307)

Observations 42,508 42,508 42,508 42,508 42,509 42,509 42,509 42,509
R-squared 0.709 0.639 0.583 0.677 0.634 0.562 0.527 0.548

Notes. Dependent variable is the percentage of students at 4 different achievement categories: novice,
apprentice, proficient, and distinguished. All the regressions include school-grade and year fixed effects.
Standard errors are stated in parentheses and are clustered at school level. *** p<0.01, ** p<0.05, * p<0.1

Table 3.4: Robust: Effect of Flood events on students performance

All Students Free/Reduced Price Meal
Novice Apprentice Proficient Distinguished Novice Apprentice Proficient Distinguished

PDD within 1 school year 0.314* -0.0515 -0.225 -0.0368 0.240 -0.242 -0.175 0.175
(0.162) (0.199) (0.197) (0.171) (0.204) (0.231) (0.235) (0.158)

Student-teacher ratio 0.386*** 0.160** -0.253*** -0.293*** 0.517*** 0.301*** -0.419*** -0.399***
(0.0654) (0.0805) (0.0795) (0.0691) (0.0827) (0.0936) (0.0950) (0.0640)

Observations 42,508 42,508 42,508 42,508 42,509 42,509 42,509 42,509
R-squared 0.709 0.639 0.583 0.678 0.635 0.562 0.527 0.549

All Students Free/Reduced Price Meal
Novice Apprentice Proficient Distinguished Novice Apprentice Proficient Distinguished

PDD within 1 school semester 0.352* -0.0674 -0.155 -0.0685 0.252 -0.274 -0.0652 0.126
(0.166) (0.204) (0.201) (0.175) (0.209) (0.237) (0.240) (0.162)

Student-teacher ratio 0.386*** 0.160** -0.253*** -0.293*** 0.517*** 0.301*** -0.420*** -0.398***
(0.0654) (0.0805) (0.0795) (0.0691) (0.0827) (0.0936) (0.0950) (0.0640)

Observations 42,508 42,508 42,508 42,508 42,509 42,509 42,509 42,509
R-squared 0.709 0.639 0.583 0.678 0.635 0.562 0.527 0.549

Notes. Dependent variable is the percentage of students at 4 different achievement categories: novice,
apprentice, proficient, and distinguished. All the regressions include school-grade and year fixed effects.
Standard errors are stated in parentheses and are clustered at school level.
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3.9 Figures

Figure 3.1: Heterogeneous effects by school level

Notes. Dependent variable is the percentage of students at 4 different achievement categories: novice,
apprentice, proficient, and distinguished. All the regressions include school-grade and year fixed effects.
Standard errors are clustered at school level.
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Figure 3.2: Heterogeneous effects by subjects

Notes. Dependent variable is the percentage of students at 4 different achievement categories: novice,
apprentice, proficient, and distinguished. All the regressions include school-grade and year fixed effects.
Standard errors are clustered at school level.

Figure 3.3: Heterogeneous effects by Urban/Rural Counties

Notes. Dependent variable is the percentage of students at 4 different achievement categories: novice,
apprentice, proficient, and distinguished. Counties with more than 50 percent of the population living in
urban areas are classified urban. All the regressions include school-grade and year fixed effects. Standard
errors are clustered at school level.
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