Supplemental Information

Latexin Inactivation Enhances Survival and Long-Term Engraftment of Hematopoietic Stem Cells and Expands the Entire Hematopoietic System in Mice

Yi Liu, Cuiping Zhang, Zhenyu Li, Chi Wang, Jianhang Jia, Tianyan Gao, Gerhard Hildebrandt, Daohong Zhou, Subbarao Bondada, Peng Ji, Daret St. Clair, Jinze Liu, Changguo Zhan, Hartmut Geiger, Shuxia Wang, and Ying Liang
Supplementary Figure 1

A

WT

Lxn-/-

<table>
<thead>
<tr>
<th>G0</th>
<th>S/G2/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.7</td>
<td>5.57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G1</th>
<th>S/G2/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.54</td>
<td>4.56</td>
</tr>
</tbody>
</table>

B

WT

Lxn-/-

% BrdU+ S phase LT-HSCs

Days post BrdU

% BrdU+ S phase LT-HSCs

Supplementary Figure 1
Supplementary Figure 1. Lxn deletion does not alter HSC proliferation.
(A) Representative FACS plots showing the G0 (Ki67- and 7AAD-), G1 (Ki67+ and 7AAD-), and S/G2/M (Ki67+ and 7AAD+) cell cycle phases in Lxn-/- and WT LT-HSCs (Lin-Sca1+c-Kit+CD34-Flt2- cells (left panel). The right panel shows the frequencies of each phase presented as the average ± SD of 6 measurements from 2 independent experiments.
(B) Representative FACS plots showing proliferating S phase cells that are positive for BrdU incorporation. Right panel shows the accumulation of cycling Lxn-/- and WT LT-HSCs (BrdU+) over 3 days. Presented data are the average ± SD of 2 independent experiments, each performed with 3 mice (n=6).
A Top functional categories significantly enriched in Lxn−/− HSCs

<table>
<thead>
<tr>
<th>Functional Categories</th>
<th>FDR q-val</th>
<th># of Genes in Leading Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroactive Ligand Receptor Interaction</td>
<td>0.002</td>
<td>147</td>
</tr>
<tr>
<td>Cell Communication</td>
<td>0.003</td>
<td>88</td>
</tr>
<tr>
<td>Proteasome</td>
<td>0.004</td>
<td>14</td>
</tr>
<tr>
<td>Arachidonic Acid Metabolism</td>
<td>0.120</td>
<td>42</td>
</tr>
<tr>
<td>Systemic Lupus Erythematosus</td>
<td>0.143</td>
<td>66</td>
</tr>
<tr>
<td>ECM Receptor Interaction</td>
<td>0.188</td>
<td>44</td>
</tr>
</tbody>
</table>

B Top 10 genes significantly downregulated or upregulated in Lxn−/− HSCs

<table>
<thead>
<tr>
<th>Downregulated</th>
<th>Upregulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xist</td>
<td>Kdm5d</td>
</tr>
<tr>
<td>Thbs1</td>
<td>Hspa1a/Hspa1B</td>
</tr>
<tr>
<td>Pgr</td>
<td>Rnase3</td>
</tr>
<tr>
<td>Trpc6</td>
<td>Tsen15</td>
</tr>
<tr>
<td>Slc18a2</td>
<td>Gas5</td>
</tr>
<tr>
<td>Gfi1b</td>
<td>Hsp1</td>
</tr>
<tr>
<td>Kir3dl2</td>
<td>Mrpl18</td>
</tr>
<tr>
<td>Slc35d3</td>
<td>Trem1</td>
</tr>
<tr>
<td>Prkaa2</td>
<td>Ccr2</td>
</tr>
<tr>
<td>Homx1</td>
<td>Cspp1</td>
</tr>
</tbody>
</table>

Supplementary Figure 2
Supplementary Figure 2. Genes and functional categories altered in Lxn-/- HSCs.
(A) Functional categories of genes dysregulated in Lxn-/- LT-HSCs and MPPs identified by GSEA based on microarray data with false discovery rate (FDR)<0.2. The FDR q value and the number of genes in the leading edge subset for each category are also presented.
(B) Top ten genes that are significantly up-regulated or down-regulated in Lxn-/- HSCs.
A. WT and Lxn-/- LSK cells infection → GFP+ cell sorting → Measuring Lxn and Thbs1 mRNA level

B. Relative Lxn mRNA expression (Normalized to WT Vector)

C. Relative Thbs1 mRNA expression (Normalized to WT Vector)

Supplementary Figure 3
Supplementary Figure 3. Increased expression of *Thbs1* in *Lxn*-overexpressing LSK cells.

A Experimental scheme for lentivirus-mediated *Lxn* overexpression strategy in WT and *Lxn*-/- LSK cells. WT or *Lxn*-/- LSK cells were sorted and transduced with empty control or *Lxn*-containing lentiviral particles. Successfully transduced cells were sorted by GFP expression, and *Lxn* and *Thbs1* mRNA levels were measured by Real-time quantitative PCR. **B** Confirmation of increased *Lxn* mRNA level in WT and *Lxn*-/- LSK cells overexpressing *Lxn*. **C** *Thbs1* expression was significantly increased in WT and *Lxn*-/- LSK cells overexpressing *Lxn*. Data shown are Mean ± SD of 3 replicates. **** indicates p value <0.0001, *** indicates p value <0.001, and ** indicate p value < 0.01.
Supplementary Figure 4

A

Megakaryocytes

FSC

CD41

Neg

WT

Lxn-/-

BM CD41+ cell (%)

WT

Lxn-/-

B

LIN-

LIN-, SCA-1-, C-KIT+

CD41+, CD150+

BM MkP (%)

WT

Lxn-/-

C

Endothelial Cell

CD31

CD41+/CD45-TER119-

CD31+CD45-TER119+ endothelial cells (%)

WT

Lxn-/-

D

Thrombin 0.025 U/ml

Collagen 1.5 ug/ml

Aggregation

Time (min: sec)

WT

Lxn-/-

Supplementary Figure 4
Supplementary Figure 4. Lxn deletion does not alter BM niche components and platelet function.

(A) Representative FACS plot showing the identification of CD41+ FSC$^{\text{high}}$ megakaryocytes (MKs) (left panel). No difference in the CD41 expression in the histogram of MK cells (middle panel), or in the percentage of MK cells (right panel) between BM MKs from Lxn-/- and WT was observed. Neg represents unstained negative control. (B) Representative FACS plot showing megakaryocyte progenitor cells (MkPs) that are identified as LIN-, SCA-1-, C-KIT+, CD41+, CD150+ cells (left panel). No difference was shown in the percentage of MkP cells between Lxn-/- and WT BMs (right panel). (C) Representative FACS plot showing the identification of CD31+CD45-Ter119- endothelial cells in the BM (left panel). No difference was observed in the percentage of BM endothelial cells between Lxn-/- and WT mice. (D) Measurement of platelet aggregation and secretion in response to agonists, thrombin (left) and collagen (right). Whole blood was collected from the inferior vena cava using one-seventh volume of ACD (85mM trisodium citrate, 83mM dextrose, and 21mM citric acid) as anticoagulant. Platelets were washed twice with CGS (0.12M NaCl, 0.0129M trisodium citrate, and 0.03M D-glucose, pH 6.5), resuspended in modified Tyrode’s buffer at 3x108/ml, and incubated for 2h at 22°C before use. Luciferin/luciferase reagent (12ml) was added to 238ml of washed platelet suspension within 1min before stimulation. Platelet aggregation and secretion were elicited by adding platelet agonists and recorded in real time in a Chrono-log lumiaggregometer at 37°C with stirring (1000 rpm). No difference in platelet aggregation between Lxn$^{-/-}$ and WT platelets was observed. Data shown are the Mean ± SD of 3 independent replicates.
Supplementary Figure 5

A

<table>
<thead>
<tr>
<th>GFP+ WT</th>
<th>Con</th>
<th>Thbs1</th>
</tr>
</thead>
<tbody>
<tr>
<td>THBS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

CAFC day 35 / 105 GFP+BM cells

Con | Thbs1

0 | 50 | 100 | 150
Supplementary Figure 5. Overexpression *Thbs1* did not affect WT HSC number

(A) *Thbs1* was overexpressed in WT LSK cells using same strategy shown in Figure 7A. Western blot analysis of THBS1 protein in *Thbs1*-overexpressing (*Thbs1*) WT LSK cells. Actin (ACT) was the internal normalization control. Blots are representative of 2 independent experiments. (B) Absolute number of HSC clones, defined by cobblestone area forming cell (CAFC) assay, at d35 of culture in *Thbs1*-overexpressing (*Thbs1*) WT LSK cells.