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ABSTRACT OF DISSERTATION

Estimating and Testing Treatment Effects with Misclassified Multivariate Data

Clinical trials are often used to assess drug efficacy and safety. Participants are some-
times pre-stratified into different groups by diagnostic tools. However, these diagnostic
tools are fallible. The traditional method ignores this problem and assumes the diagnostic
devices are perfect. This assumption will lead to inefficient and biased estimators. In this
era of personalized medicine and measurement-based care, the issues of bias and efficiency
are of paramount importance. Despite the prominence, only a few researchers evaluated
the treatment effect in the presence of misclassifications in some special cases and most
others focus on assessing the accuracy of the diagnostic devices. In this dissertation, we
aim to fill in this methodological gap in the estimation of treatment effects in the multivari-
ate and nonparametric contexts. We focus on a pre-post design and address the problem of
misclassifications in three distinct situations.

In clinical trials with continuous multiple endpoints, we model the outcome variables as
a mixture of multivariate normal distributions to account for the effect of misclassification
errors. We propose two methods for estimating and testing treatment effects. When the
misclassification errors are known from previous studies, we develop moment-based tests
and confidence interval procedures that are accurate in finite samples. When the misclas-
sification errors are unknown, we propose likelihood-based procedures for estimation and
testing via the EM algorithm. In addition, methods for sample size and power calculations
are developed. The moment-based methods can also be used when the misclassification
rates are unknown if validation samples are available. In this case, consistent estimators of
the misclassification error rates are derived using a novel distance-based criterion.

When the data are measured on a nonmetric scale or when the distribution of the data
is heavy-tailed or skewed, the normality assumption is not valid. In this case, we develop a
fully nonparametric method to assess the treatment effect. We model the distribution of the
outcomes as a nonparametric mixture of unknown distributions. To overcome identifiabil-
ity problems, we assume the availability of training data from the component distributions.
In the nonparametric setting, functionals of these distribution functions are used to charac-



terize treatment effects. We provide consistent estimators and asymptotic distributions of
the estimators of the misclassification error rates as well as the treatment effect. We do not
require any assumptions regarding the existence of moments of any order.

Typically, clinical trials involve the collection of baseline covariates which are associ-
ated with the misclassification of a patient and treatment outcomes. In this situation, we
propose a nonparametric finite mixture of regression models to approximate the distribu-
tion of outcomes. We establish identifiability conditions and derive an estimation procedure
using the kernel methods and the EM algorithm.

Simulation results show significant advantages of the proposed methods in terms of bias
reduction, coverage probability, and power. The applications of the methods are illustrated
with datasets from sleep deprivation and electroencephalogram (EEG) studies.

KEYWORDS: Nonparametric analysis, EM algorithm, Multivariate Data, Asymptotic dis-
tribution
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Chapter 1 Introduction

1.1 Background

In drug (therapy) development, clinical trials are commonly used to assess the efficacy and

safety of a treatment. In some cases, diagnostic devices or biomarkers are used, especially

in the recruitment stage, to separate the sample population into subgroups that may respond

differently to the treatment. By comparing the responses from subgroups, we can analyze

if the treatment has different effects on these subgroups.

In this dissertation, we focus on a pre-stratified pre-post design. The participants are

first stratified into different subgroups by the results of a diagnostic tool. Then, all the

participants will receive the treatment, and response variables are measured before and after

receiving the treatment. We can quantify the effect on each subgroup by comparing the

response variables before and after the treatment. This design is commonly used in clinical

trials. For example, Eling et al. (2006) examine the reduction in the demented patient by

separating participants into demented and healthy groups based on an examination result.

Similar examples abound in the biomedical literature (Castro et al., 2012; Gentili et al.,

2008; O’Donnell et al., 1999).

However, the diagnostic tools do not usually have perfect accuracy. The traditional

method ignores this problem and assumes the diagnostic devices are perfect. This assump-

tion will lead to inefficient and biased estimators. In this era of personalized medicine and

measurement-based care, the issues of bias and efficiency are of paramount importance.

Despite the prominence, only a few researchers evaluated treatment effects in the presence

of misclassifications in some particular cases. Most others focus on assessing the accu-

racy of the diagnostic devices. This dissertation aims to fill in this methodological gap and

address the estimation of treatment effects in the multivariate and nonparametric contexts.

1



1.2 Multivariate Parametric Method

In clinical trials with continuous multiple endpoints, we can use multivariate normal distri-

butions to model the outcomes. Traditionally, we assume misclassification errors do not ex-

ist and use the Hotelling T 2 statistic (Anderson, 2003) to make inferences about treatment

effect. More precisely, let Yij = (Y
(1)>
ij ,Y

(2)>
ij )> be the pre- and post-outcome measures

on a p-dimensional vector for the jth individual in the ith group, where j = 1, . . . , ni, and

i = 1, 2. Here, {Y11, · · · ,Y1n1} is assumed to be a random sample from N2p(η1,Σ), and

{Y21, · · · ,Y2n2} is a random sample from N2p(η2,Σ). The two samples are assumed to

be mutually independent. Here η1 = (µ1,µ1 + τ1) and η2 = (µ2,µ2 + τ2), where µ1

and µ2 are pre-treatment response means in groups 1 and 2, respectively, and τ1 and τ2 are

treatment effects in groups 1 and 2, respectively. The parameter of interest is

∆ = τ1 − τ2,

where ∆ = (d1, . . . , dp)
> is the vector of differences in the treatment effect between group

1 and 2. Define

C = (−Ip, Ip)p×2p, Y1 = n−1
1

n1∑
j=1

Y1j, Y2 = n−1
2

n2∑
j=1

Y2j,

SP = (n1 + n2 − 2)−1((n1 − 1)S1 + (n2 − 1)S2),

S1 = (n1 − 1)−1

n1∑
j=1

(Y1j − Y1)(Y1j − Y1)> and

S2 = (n2 − 1)−1

n2∑
j=1

(Y2j − Y2)(Y2j − Y2)>,

where Ip is identity matrix of order p. Then we can estimate ∆ by

∆̂ = C(Y 1 − Y 2).

To test the hypothesis H0 : ∆ = ∆0, we can use the Hotelling T 2 statistic with exact

distribution given by Anderson (2003) as follows

T 2 =
n1n2

n
(C(Y1 − Y2)−∆0)>(CSPC

>)−1(C(Y1 − Y2)−∆0) (1.1)

H0∼ (n− 2)p

n− p− 1
Fp,n−p−1,

2



Furthermore, a (1− α) confidence region for ∆ is obtained by inverting the Hotellings T 2

test as {
∆ :

n1n2

n1 + n2

(C(Y1 − Y2)−∆)>(CSPC
>)−1(C(Y1 − Y2)−∆)

≤ (n1 + n2 − 2)p

n1 + n2 − p− 1
Fp,n1+n2−p−1;1−α

}
,

where Fp,n1+n2−p−1;1−α is the lower 1 − α quantile of the F distribution with degrees of

freedoms (p, n1 + n2 − p− 1).

In the context of study design, suppose we are interested in testing the null hypothesis

H0 : τD − τH = ∆0. The distribution of the test statistic in (2.1) at the alternative

H1 : τD − τH = ∆1 for some fixed ∆1 6= ∆0 is

T 2 =
n1n2

n1 + n2

(CY−∆0)>(CSPC
>)−1(CY−∆0)

∼ (n1 + n2 − 2)p

n1 + n2 − p− 1
Fp,n1+n2−p−1

(
n1n2

n1 + n2

(∆1 −∆0)>(CΣC>)−1(∆1 −∆0)

)
,

where Fp,n1+n2−p−1 (ξ) is the F distribution with degrees of freedom (p, n1 + n2 − p− 1)

and noncentrality parameter ξ. To guarantee a nominal test size α and power 1 − β, the

required total sample size n = nD + nH , where nD/nH = π and 0 < π < ∞, is the

solution of

P

(
T 2 >

(n− 2)p

n− p− 1
Fp,n−p−1;1−α

∣∣∣∣H1

)
= P (Y > Fp,n−p−1;1−α) = 1− β,

where

Y ∼ Fp,n−p−1

(
nπ

(1 + π)2
(∆1 −∆0)>(CΣC>)−1(∆1 −∆0)

)
.

This equation has to be solved numerically.

However, when misclassification errors exist, the actually observed outcome measures

are affected by the error rates. Assume the misclassification error rates are δg in groups g,

g = 1, 2. The distribution of the outcomes become mixtures of multivariate distributions.

More specifically,

fg(ygi) = (1− δg)φ(ygi|ηg,Σ) + δgφ(ygi|ηg′ ,Σ), for g 6= g′, g, g′ = 1, 2.

3



Then the traditional estimator ∆̂ for ∆ has expectation

E(∆̂) = E(C(Y 1 − Y 2)) = (1− δ1 − δ2)(τ1 − τ2) = (1− δ1 − δ2)∆.

This shows when the misclassification errors exist, the traditional estimator is biased and

the bias is affected by misclassification errors. Moreover, the outcome variables are not

distributed as multivariate normal distributions, then the test statistic in (1.1) is not dis-

tributed as Fp,n−p−1 under H0. The power and sample size calculation based on this test

statistic become overly optimistic and misleading.

1.3 Estimation of Misclassification Error

Accurate estimations of the misclassification error rates of the classifiers are required to

evaluate the effect of a treatment. This problem can be framed as estimating mixing pro-

portions in mixture models. Let X1, . . . , Xn be i.i.d random variables from a finite mixture

of m > 1 arbitrary distributions. Suppose the cumulative distribution function of Xi is

F =
m∑
j=1

λjFj,

where Fj and λj are the cumulative distribution function and mixture proportion of jth

component, j = 1, . . . ,m. Hall (1981) proposed nonparametric estimators for the mix-

ture proportions when training samples are available from each component distributions,

F1, . . . , Fm. The estimators are derived by combining the contaminated (original) and val-

idation (training) data. The mixing proportions λj can by estimated by minimizing

∆(λ) =

∣∣∣∣∣
∫ ∞
−∞

δ

(
F̂ (x)−

m∑
j=1

λjF̂j(x)

)
w(x)dx

∣∣∣∣∣ , (1.2)

where F̂ and F̂j are empirical versions of F and Fj , respectively. The primary focus of

Hall (1981) is when δ(x) = x2 and w(x) ≡ 1. They also assume∫ ∞
−∞
|x|1+εdF (x) <∞, (1.3)

for some ε > 0. This requirement imposes a restriction on the tails of the component

distributions. Especially, it requires that the first moment of the component distributions to

exist.
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In clinical trial settings, more expensive and accurate diagnostic devices can sometimes

be used to know the actual group membership for some participants. In this case, we can

obtain validation data to enhance the accuracy of the treatment effect estimation. Then

the misclassification error rates can be estimated as the mixture proportions in the mixture

models.

Inspired by Hall (1981)’s method, we propose two estimators for the misclassification

error rates in the multivariate and nonparametric contexts. In the multivariate setting, we

obtain estimators of δg by minimizing the distance between the mean of the original data

and the mixture of means of the two groups in the validation data. We also relaxed the

requirement of (1.3) in the nonparametric model by setting the weight function in (1.2) as

the weighted average of the empirical marginal distribution functions of observations in the

two groups.

1.4 Nonparametric Method

In some applications, data are measured on a nonmetric scale, or the distribution of the

data is heavy-tailed or skewed, and the normality assumption would not be valid. In these

cases, nonparametric methods can be utilized to assess the treatment effect.

Suppose we have subjects from two groups g = 1, 2 that are observed at two (pre and

post treatment) time points t = 1, 2 and the paired observations are denoted as Xgk =

(Xg1k, Xg2k), k = 1, . . . , ng. Let Xgt1, . . . , Xgtng be identically and independently dis-

tributed according to Fgt. When the misclassification errors are assumed to be zero, the

normalized distribution functions Fgt for Xgti can be estimated by

F̂gt(x) =
1

ngt

ng∑
k=1

c(x−Xgtk), where c(x) =


0, x < 0,

1
2
, x = 0,

1, x > 0.

To quantify the difference between two distribution functions, Brunner and Munzel (2000)

proposed to formulate hypotheses in terms of the nonparametric relative effects. These

effects are defined by comparing each marginal distribution function with the average dis-

tribution function. Let G be the average of the distribution functions in the two groups and
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at the two time points, i.e.

G =
1

4
(F11 + F12 + F21 + F22).

Using the average distribution function G, define

pgt =

∫
GdFgt = 1−

∫
FgtdG,

for g, t = 1, 2 as the nonparametric effect at time point t in group g relative to the average

of the marginal distributions, G. Using the nonparametric relative effects, the treatment

effect of interest in the two group pre-post design is

pI = (p12 − p11)− (p22 − p21).

According to the calculations in Harrar et al. (2020), the treatment effect can be expressed

as

pI =
1

2

∫
(F11 + F22)d(F12 + F21)− 1.

We can use plug-in method and estimate the treatment effect as

p̂I =
1

2

∫
(F̂11 + F̂22)d(F̂12 + F̂21)− 1.

By results in Brunner et al. (2018), we have

√
N(p̂I − pI) +

√
N

n1

n1∑
k=1

W1(X1k) +

√
N

n2

n2∑
k=1

W2(X2k)− 2pI ,

where + means asymptotic equivalent,N = 2(n1 + n2), and

W1(X1k) =
1

2
(F11(X12k) + F22(X12k)− F12(X11k)− F21(X11k)) , and

W2(X2k) =
1

2
(F11(X21k) + F22(X21k)− F12(X22k)− F21(X22k)) .

Note that W1(X1k) and W2(X2k) are independent and identically distributed random vari-

ables. By Central Limit Theorem,
√
N(p̂I − pI) is asymptotically normally distributed.

Based on this result, if we want to test

H0 : pI = 0 vs Ha : pI 6= 0,
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we can use the test statistic

T 2 =

√
N(p̂I − pI)√

S2

D−→ Z
H0∼ N(0, 1),

where

S2 =
N

n1(n1 − 1)

n1∑
k=1

(Ŵ1(X1k)− Ŵ 1(X1k))
2 +

N

n2(n2 − 1)

n2∑
k=1

(Ŵ2(X2k)− Ŵ 2(X2k))
2,

and Ŵg(Xgk) is the empirical version of Wg(Xgk), i.e. Fgt is replaced by F̂gt. An asymp-

totic (1− α)100% confidence interval for pI can be derived from

P

(
p̂I −

zα/2
√
S2

√
N

≤ pI ≤ p̂I +
zα/2
√
S2

√
N

)
→ 1− α,

where zα/2 denotes the (1− α/2)th-quantile of the standard normal distribution.

However, when the classifier is fallible, the observations we obtain from one group are

contaminated by observations from the other group. Suppose the misclassification error

rates for the classifier is δg in group g, g = 1, 2. Then the distribution function of the

observations is a mixture of two distribution functions, i.e.,

F ∗gt = (1− δg)Fgt + δgFg′t,

where F ∗gt is the distribution function of observations from participants classified in group

g, g 6= g′, g, g′ = 1, 2. When δgs are known, we can use the empirical distributions to

estimate F ∗gt. Notice that

pI =
1

2(1− δ1 − δ2)

∫
(F ∗11 + F ∗22)d(F ∗12 + F ∗21)

+
δ1 − δ2

2(1− δ1 − δ2)2

∫
(F ∗11 − F ∗21)d(F ∗12 − F ∗22)− 1

1− δ1 − δ2

.

The estimation for the treatment effect can be seriously biased if we ignore the misclas-

sification errors. Chapter 4 investigates this problem and develops a fully nonparametric

method for estimating and testing the treatment effect.

1.5 Covariate Adjustment

Typically, clinical trials involve baseline covariates associated with the misclassification of

a patient and treatment outcomes. Linear regressions are commonly used to analyze the
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effects of covariates on the response variables. When misclassification errors exist, the

distribution of response variables can be modeled as a mixture of linear regression models.

More specifically, assume that {Xgi,Ygi}, g = 1, 2, are covariates and outcome variables

for patient i diagnosed in group g. Assume the misclassification error rates for the classifier

is δg in group g, then the conditional distribution of Yg givenXg = x can be written as

Yg|Xg = x ∼ (1− δg)N(B>g x,Σg) + δgN(B>g′x,Σg′) for g 6= g′, g, g′ = 1, 2, (1.4)

where Bg is the regression coefficient matrix for group g. EM algorithm can be applied to

estimate the parameters θ = {δ1, δ2, B1, B2,Σ1,Σ2} in (1.4).

The linear assumptions in 1.4 are restrictive for some applications. Moreover, the mis-

classification error rates may be affected by the covariates and do no remain constant. To

relax these restrictions, we propose a mixture of nonparametric regression models.

1.6 Organization of This Dissertation

This dissertation is organized as follows. For outcomes with continuous multiple end-

points, Chapter 2 uses a mixture of multivariate normal distributions to account for the

effect of misclassification errors. We propose two methods for estimating and testing treat-

ment effects. In addition, methods for sample size and power calculations are developed. In

Chapter 3, we refine the methods in Chapter 2 by validation (training) data when available.

We derive consistent estimators of the misclassification error rates using a novel distance-

based criterion. When the normality assumptions are not appropriate but validation data

is available, we develop a fully nonparametric method in Chapter 4. We model the distri-

bution of the outcomes by a nonparametric mixture of unknown distributions. Functionals

of these distributions are used to characterize the treatment effects. We provide consistent

estimators and asymptotic distributions of estimators of the misclassification error rates as

well as the treatment effect. In Chapter 5, we propose a nonparametric finite mixture of

regression models to incorporate covariates information. We establish identifiability condi-

tions and derive an estimation procedure using the kernel methods and EM algorithm. We

conclude the dissertation with discussions and conclusions in Chapter 6.
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Chapter 2 Multivariate Treatment Effects in Contaminated Clinical Trials

2.1 Introduction

In the development of drugs (therapy), clinical trials are commonly used to assess the effi-

cacy and safety of a treatment. In some cases, diagnostic devices or biomarkers are used,

especially in the recruitment stage, to separate the sample population into subgroups that

may respond differently to the treatment. However, such diagnostic tools usually do not

have perfect accuracy. In general, the misclassification error rates (false positive and false

negative rates) of these devices are unknown or assumed to be zero. They will cause con-

tamination in separating the sample populations, resulting in biased estimation of treatment

effects and overly optimistic sample size and power calculations. If we do not have a suf-

ficient sample size in clinical studies, we may fail to detect a significant effect when it is

present.

In the era of personalized medicine and measurement-based care, this issue of mis-

classifications in pre-stratified clinical trials has become prominent. US Food and Drug

Administration published a concept paper (Hinman et al., 2006) that recommends the clin-

ical validity (i.e., the ability of a test to classify subjects correctly) and clinical utility (i.e.,

the ability of a test to result in a classification that will improve the benefit/reduce the risk

of a drug) of a test be established in a pre-clinical pilot feasibility study. This goal can

be achieved through a pre-stratified (by diagnostic devices) randomized placebo-controlled

design or a pre-stratified pre-post or matched paired design. This chapter focuses on the

second type of design, but the method presented can be adapted easily to the first type of

design.

Despite the prominence of the issue, only a few works evaluated clinical validity in the

presence of diagnostic or screening misclassification. Most works focus on evaluating the

diagnostic devices themselves. Flahault et al. (2005) provide tables for sample size deter-

mination in diagnostic tests studies. Remotely related work is that of Lin et al. (2011) which

proposes sample-size adjustment in the situations where the group membership cannot be

9



ascertained until after the collection of sample. They proposed adjusting the sample size

according to a quantity called expected power in an ad hoc manner. Liu et al. (2009) inves-

tigated the estimation of continuous outcomes in the framework of enriched randomized

placebo-controlled trials where randomized treatment is only conducted on the subjects di-

agnosed as positive and the accuracy of diagnostic devices is not perfect. Under the same

design, Liu and Lin (2008) and Chen et al. (2013) studied binary and censored outcomes,

respectively. Li et al. (2015) analyzed the impact of companion diagnostic device perfor-

mance on the clinical validity of personalized medicine under the assumption that the true

values of the model parameters are known. However, in practice, the parameter values

are rarely known and need to be estimated from the observed data. Recently, Harrar et al.

(2016) tackled the estimation, sample size, and power calculation for a treatment effect in

the pre-post or matched-pair design accounting for possible diagnostic inaccuracy. How-

ever, their paper only considered the univariate case. In many trials, multiple outcomes

(endpoints) are assessed. The estimation and testing procedure in the context of diagnostic

misclassification is a lot more involved. Furthermore, the multivariate situation requires

larger sample sizes, and suitable finite-sample approximation is crucial.

This chapter aims to provide a complete set of methods for estimating and testing treat-

ment effects with multiple (multivariate) end-points in a pre-post design, where a diagnostic

device used for the screening (treatment assignment) is prone to misclassification errors.

The error rates may be available for some diagnostic devices from prior studies or evalua-

tions of the devices. We develop a moment-based test and confidence set procedures that

are accurate in finite (small and moderate) samples for this situation. The moment-based

method is generally easier to apply, accurate, and computationally inexpensive. However,

in some applications, the misclassification error rates for the diagnostic devices may not

be known in advance. For this situation, we propose a likelihood-based procedure for es-

timation and testing via an EM algorithm. We further develop a hybrid method that aims

to benefit from the advantages of both the moment- and likelihood-based approaches. In

the hybrid method, the misclassification error rates are obtained from the likelihood-based

procedure followed by estimation of the treatment effects by the moment-based approach.

Furthermore, the chapter provides sample-size determination and power calculation for-
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mulas for designing a study for a given specification by utilizing a novel finite-sample

approximation for the distribution of the moment-based statistic. The formulas produce

reasonable and reliable estimates of sample sizes and powers by accounting for misclassi-

fication error rates.

To achieve the above aims, we organize the chapter into seven sections, including the

present one. Section 2 presents the statistical model. In Section 3, we describe the theo-

retical motivation and derive moment-based and likelihood-based solutions. In Section 4,

we derive formulas for sample size and power calculations. We illustrate the utility of the

methods developed in Sections 3 and 4 with a simulation study and real-data analysis in

Sections 5 and 6, respectively. We conclude the chapter with discussions and remarks in

Section 7. All proofs and technical details are placed in the Appendix.

2.2 Statistical Model

Model and Parameter of Interest

Suppose a diagnostic test is applied to recruit n = nD + nH subjects, of which nD and

nH were diagnosed as positive and negative, respectively. Two probabilities of interest in

diagnostic test evaluation are positive predictive value (PPV) and negative predictive value

(NPV). Note that PPV is the probability that a person with a positive result will have the

clinical condition, say disease, of interest. In contrast, NPV is the probability that a person

with a negative result will be free from the clinical condition of interest. Here, we denote

the PPV and NPV of the tool in use for clinical diagnosis as (1−ε) and (1−δ), respectively.

Let Yij = (Y(1)>
ij ,Y(2)>

ij )> be the pre and post outcome measures on a p-dimensional

vector for the jth individual in the ith group, where j = 1, · · · , ni and i = D,H . Further,

let Zij be the true disease status and Xij be the predicted disease status of the jth subject

in the ith group. Here, Zij is not an observable random variable. The set of possible values

for Zij and Xij are {D,H}, where D and H stand for diseased and healthy, respectively.

In this notation, XDj = D and XHj = H . Denote the conditional distributions of Yij by
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f(yij|·) and of Zij given Xij by P (Zij|Xij = x). Using the Total Probability Law, we have

f(yij|Xij = x) =f(yij|Zij = D,Xij = x)P (Zij = D|Xij = x)

+ f(yij|Zij = H,Xij = x)P (Zij = H|Xij = x),

for x ∈ {D,H}.

We assume that the pre and post outcome measures are continuous and can be mod-

eled by a multivariate normal distribution given the predicted disease condition. That is,

f(yij|Xij) is the pdf of a mixture of multivariate normal distributions that have equal co-

variance matrices and the mixing probabilities are PPV (1 − ε) and NPV (1 − δ) in the

diseased and healthy groups, respectively. More specifically,

f(yij|Xij = x,θ) ={(1− ε)φ(yij|ηD,Σ) + εφ(yij|ηH ,Σ)}I{D}(x)

+ {δφ(yij|ηD,Σ) + (1− δ)φ(yij|ηH ,Σ)}I{H}(x),

where θ = (ε, δ,ηD,ηH ,Σ), IA(x) is indicator function of the set A, and φ(Y|η,Σ) is

the pdf of a multivariate normal distribution with mean η and positive definite covariate

matrix Σ. Here, Yij is assumed to be conditionally independent of Xij given Zij , and Xij

is a fixed design variable. We know that finite mixture of the multivariate Gaussian family

are identifiable up to label switching (Yakowitz and Spragins, 1968). To avoid the label-

switching problem here, we assume 0 ≤ ε < 0.5, 0 ≤ δ < 0.5 and µD 6= µH . For practical

applications, we need information outside the collected data to ensure these assumptions

hold.

We write ηD = (µD,µD + τD)> and ηH = (µH ,µH + τH)>, where µD and µH are

pre-intervention response means in the diseased and healthy groups, respectively, and τD

and τH are the effects of the treatment in the diseased and healthy groups, respectively.

The parameter of interest is

∆ = τD − τH ,

where ∆ = (d1, . . . , dp)
> is the vector of differences in the treatment effect in the diseased

and healthy populations.
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Traditional Method

Traditionally, practitioners assume ε = δ = 0 and use the Hotelling T 2 statistic (Anderson,

2003) to make inference about ∆. More precisely, YD1, · · · ,YDnD
is assumed to be a

random sample from N2p(ηD,Σ), YH1, · · · ,YHnH
is assumed to be a random sample from

N2p(ηH ,Σ) and the two samples are assumed to be mutually independent. Define

C = (−Ip, Ip)p×2p, YD = n−1
D

nD∑
j=1

YDj, YH = n−1
H

nH∑
j=1

YHj,

SP = (nD + nH − 2)−1((nD − 1)SD + (nH − 1)SH),

SD = (nD − 1)−1

nD∑
j=1

(YDj − YD)(YDj − YD)> and

SH = (nH − 1)−1

nH∑
j=1

(YHj − YH)(YHj − YH)>,

where Ip is identity matrix of order p.

The Hotelling T 2 statistic and its exact distribution given by Anderson(Anderson, 2003)

T 2 =
nDnH
n

(C(YD − YH)−∆0)>(CSPC
>)−1(C(YD − YH)−∆0)

∼ (n− 2)p

n− p− 1
Fp,n−p−1, (2.1)

is used to test the hypothesis H0 : ∆ = ∆0. Furthermore, a (1− α) confidence region for

∆ is obtained by inverting the Hotellings T 2 test as{
∆ :

nDnH
n

(C(YD − YH)−∆)>(CSPC
>)−1(C(YD − YH)−∆) (2.2)

≤ (n− 2)p

n− p− 1
Fp,n−p−1;1−α

}
,

where Fp,n−p−1;1−α is the lower 1 − α quantile of the F distribution with degrees of free-

doms (p, n− p− 1).

In the context of study design, suppose we interest in testing the null hypothesis H0 :

τD − τH = ∆0. The distribution of the test statistic in (2.1) at the alternative H1 : τD −
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τH = ∆1 for some fixed ∆1 6= ∆0 is

T 2 =
nD

1 + π
(CY−∆0)>(CSPC

>)−1(CY−∆0)

∼ (n− 2)p

n− p− 1
Fp,n−p−1

(
nD

1 + π
(∆1 −∆0)>(CΣC>)−1(∆1 −∆0)

)
,

where Fp,n−p−1 (ξ) is the F distribution with degrees of freedom (p, n − p − 1) and non-

centrality parameter ξ. To guarantee a nominal test size α and power 1 − β, the required

total sample size n = nD + nH , where nD/nH = π and 0 < π <∞, is the solution of

P

(
T 2 >

(n− 2)p

n− p− 1
Fp,n−p−1;1−α

∣∣∣∣H1

)
= P (Y > Fp,n−p−1;1−α) = 1− β, (2.3)

where

Y ∼ Fp,n−p−1

(
nπ

(1 + π)2
(∆1 −∆0)>(CΣC>)−1(∆1 −∆0)

)
.

This equation has to be solved numerically.

The traditional estimation, test, and sample size calculation procedures above ignore the

diagnostic device’s inaccuracies. Therefore, as demonstrated in Section 2.5, they perform

poorly in terms of bias, coverage probability, type-I error rate, and power. The sample size

calculations and power analysis will be overly optimistic and misleading (see Section 2.5).

2.3 Estimation and Test

The Moment-Based Approach

Let us first assume that ε and δ are known, but at least one of them is nonzero. In this case,

the statistic T will not have the Hotelling’s T 2 distribution because the distributions of YDi

and YHi are still a mixture of multivariate normal distributions and the two distributions

are not the same even under the null hypothesis unless 1− ε = δ. Now, since

CE(YD − YH) = (−Ip, Ip)((1− ε)ηD + εηH − δηD − (1− δ)ηH)

= (1− ε− δ)(τD − τH), (2.4)

the usual mean difference has a downward bias unless an adjustment by a factor of (1 −

ε− δ)−1 is made. Thus, an unbiased estimator of ∆ = τD − τH is

∆̃ =
1

1− ε− δ
C(YD − YH).
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Since

Var(YD) =
1

nD
Σ +

1

nD
ε(1− ε)(ηD − ηH)(ηD − ηH)> and

Var(YH) =
1

nH
Σ +

1

nH
δ(1− δ)(ηD − ηH)(ηD − ηH)>,

(see calculations in Appendix 2.8), the variance of ∆̃ is given by

Var(∆̃) =
1

(1− ε− δ)2

[
CΣC>

{
1

nD
+

1

nH

}
(2.5)

+

{
ε(1− ε)
nD

+
δ(1− δ)
nH

}
∆∆>

]
.

This shows that the variance of estimator ∆̃ is affected by the covariance matrix of the

data, misclassification rates and the treatment effect ∆. When misclassification errors

exist, larger values of ||∆||2 will reduce the precision of ∆̃.

An unbiased estimator of Var(∆̃) is

S∆̃ = (1− ε− δ)−2CSC>, (2.6)

where S = n−1
D SD + n−1

H SH . For testing the null hypothesis H0 : ∆ = ∆0, we propose to

use the test statistic

T̃ 2 = (∆̃−∆0)>(S∆̃)−1(∆̃−∆0)

= (C(YD − YH)− ψ∆0)>(CSC>)−1(C(YD − YH)− ψ∆0),

where ψ = 1 − ε − δ. The statistic T̃ 2 is asymptotically distributed as χ2 distribution

with p degree of freedom and non-centrality parameter nDψ2(∆ − ∆0)>Φ−1(∆ − ∆0)

as nD → ∞, nH → ∞ and 0 < π = nD/nH < ∞, where Φ = ΣD + πΣH , ΣD =

CΣC> + ε(1 − ε)∆∆> and ΣH = CΣC> + δ(1 − δ)∆∆>. Under the null hypothesis,

the non-centrality parameter is 0 and the decision rule is to reject the null hypothesis at

significance level α if T̃ 2 > χ2
p;1−α, where χ2

p;1−α is the 1−α quantile for the χ2 distribution

with degree of freedom p. By inverting the test T̃ 2, a (1−α) asymptotic confidence region

for ∆ is given by{
∆ :(C(YD − YH)− ψ∆)>(CSC>)−1(C(YD − YH)− ψ∆) ≤ χ2

p;1−α
}
.
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The approximation by the limiting distribution tends to be inaccurate when the sample

sizes are not large. For small or moderate sample sizes, we propose approximating the

distribution of T̃ 2 by an F distribution. The rationale for this approximation is as follows.

By CLT, it is easy see that C(YD − YH) is asymptotically distributed as a multivariate

normal distribution. We propose approximating the distribution of CSC> by the Wishart

distribution Wp(f,Ψ), where f and Ψ are determined by matching the first moment and

trace of the second moment. It would then be reasonable to approximate the distribution of

T̃ 2 by an F distribution with degree of freedom p and f . From the calculations in Appendix

2.8, we have

T̃ 2 ' pF ∼ pFp,f (nDψ
2(∆−∆0)>Φ−1(∆−∆0)), (2.7)

where the notation ”'” means ”approximately distributed as” and f = f1/f2, where

f1 =tr2(ΣD + πΣH) + tr((ΣD + πΣH)2), and

f2 =
1

nD − 1
(tr2(ΣD) + tr(Σ2

D)) +
π3

nD − π
(tr2(ΣH) + tr(Σ2

H))

+
1

nD

(
1− 6ε+ 6ε2) + π3(1− 6δ + 6δ2)

)
tr2(∆∆>).

To check the accuracy of the approximation, we ran a small-scale simulation and plotted

the empirical distribution of T̃ superposed with the probability density curves of χ2 and F

approximations above (see Figure 2.10 in Appendix 2.8). We refer the reader to Section

2.5 for details on the settings and notations of the simulations for these figures. It is evident

from the figures that the F approximation is more accurate than the χ2 approximation,

especially when the sample sizes are not large.

Under H0, the non-centrality parameter in (2.7) is 0. The estimate of the degree of

freedom, f̂0, is obtained by replacing ΣD, ΣH and ∆ with their estimates SD, SH , and ∆0,

respectively, in (2.16). Then the decision rule is to reject the null hypothesis at significance

level α if T̃ 2 > pFp,f̂0(1− α). Inverting this test, a (1− α) confidence region for ∆ is{
∆ :(C(YD − YH)− ψ∆)>(CSC>)−1(C(YD − YH)− ψ∆) ≤ pFp,f̂ ;1−α

}
,

where f̂ is obtained by replacing ΣD, ΣH and ∆ with their estimates SD, SH , and ∆̂,

respectively, in (2.16). One may also use the approximation in (2.7) to construct T 2 simul-

taneous intervals(Johnson et al., 2007, pp. 275-276) for the components of ∆.

16



The Likelihood-Based Approach

When the true values of ε and δ are unknown, and there does not exist training data to es-

timate them, the methods of moments developed in Section 2.3 are not directly applicable.

To overcome this limitation, we propose a likelihood-based method for making inferences

about ∆. Let Zij be the true disease status of the jth subject in the ith group. Define the

matrix of observed values as:

Y = (YD1, · · · ,YDnD
, YH1, · · · ,YHnH

)>.

Let the vector of true and predicted disease status be denoted by

Z = (ZD1, · · · , ZDnD
, ZH1, · · · , ZHnH

)> and

X = (XD1, · · · , XDnD
, XH1, · · · , XHnH

)>,

respectively. Further, let the corresponding realizations be

y = (yD1, · · · , yDnD
, yH1, · · · , yHnH

)>,

z = (zD1, · · · , zDnD
, zH1, · · · , zHnH

)>, and

x = (xD1, · · · , xDnD
, xH1, · · · , xHnH

)>.

The random vector Z can never be observed. Therefore, we regard it as missing infor-

mation and compute the maximum likelihood estimator of θ using expectation-maximization

(EM) algorithm (Dempster et al., 1977). The log-likelihood function for the complete data

(observed and missing) is

lC(θ) =

nD∑
j=1

[
I{D}(zDj){log(1− ε) + log φ(yDj|ηD,Σ)}

+ I{H}(zDj){log ε+ log φ(yDj|ηH ,Σ)}
]

+

nH∑
j=1

[
I{D}(zHj){log δ + log φ(yHj|ηD,Σ)}

+ I{H}(zHj){log(1− δ) + log φ(yHj|ηH ,Σ)})
]
.

The (t + 1)th expectation (the expectation of the log-likelihood) and the maximization

steps of the EM iteration set

Q(θ|θ(t)) = Eθ(t) [l(θ|Y,Z,X)] and
∂

∂θ
Q(θ|θ(t)) = 0,
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and solve the later for θ. The detailed derivations and initial values are given in Appendix

2.8. As is well known, EM algorithm can be very slow and may not converge to an appro-

priate root. (Lindsay and Basak Lindsay and Basak, 1993) noted in their simulation that

the MOM estimates gave higher initial likelihood value than the true values themselves.

Let the maximum likelihood estimator of θ be denoted by θ̂ =
(
ε̂, δ̂, η̂D, η̂H , Σ̂

)
.

The maximum likelihood estimator of the parameter of interest ∆ = τD − τH is ∆̂ =

Cη̂D − Cη̂H . For estimating covariance matrix of ∆̂, one may consider the supplemented

EM algorithm (SEM)(Meng and Rubin, 1991). However, the sample size requirement is

too large for practical application. An alternative approach is (Louis Louis, 1982) who

proposed a method for estimating the expected information matrix using results from the

EM algorithm. Our numerical calculations show that the resulting coverage probabilities

from this covariance estimation are mostly conservative, especially for higher error rates.

We propose to use the bootstrap estimator of the covariance matrix and denote it by SB. For

testing the null hypothesis H0 : ∆ = 0, we propose comparing the statistic T̂ = ∆̂>S−1
B ∆̂

against the appropriate percentile of the χ2-distribution with p degree of freedom.

MOM and EM Hybrid Approach

In the absence of the true error rates or training data, we can combine EM and moment-

based methods to get a hybrid procedure. More precisely, by using the EM estimates of ε

and δ, one can derive the moment-based estimators of ∆ and Var(∆̃) to get an alternative

test and interval estimators for ∆. Specifically, a hybrid estimator of ∆ is

∆̃ = (1− ε̂− δ̂)−1C
(
YD − YH

)
,

where ε̂ and δ̂ are MLE from the EM algorithm. The variance of ∆̃ can be estimated by

plugging the estimators ε̂ and δ̂ into (2.6), i.e.

V̂ar(∆̃) =
(

1− ε̂− δ̂
)−2

CSC>.

2.4 Sample Size and Power

Sample size determination is an essential aspect of study and trial designs. Ideally, the

sample size is derived based on the test statistic planned for the subsequent hypothesis
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testing. However, the required sample size cannot be calculated analytically in a close

form based on the bootstrap standard error recommended in the previous sections. To work

around this shortcoming, we develop sample size calculation formulas based on equation

(2.4).

Suppose we are interested in testing the null hypothesis H0 : τD − τH = ∆0 against

alternative H1 : τD − τH = ∆1 for ∆1 6= ∆0. For the nominal test size α and power

1 − β, a formula for the required sample size of n = nD + nH , where nD/nH = π and

0 < π <∞ can be derived based on the test statistic

T̃ 2 = [C(YD − YH)− ψ∆0]>
(
CSC>

)−1
[C(YD − YH)− ψ∆0], (2.8)

where S = 1
nD

(SD + πSH) and SD and SH are the sample covariances of YDi
and YHi,

respectively, and ψ = 1− ε− δ.

When ε and δ are not equal to 0, the statistic T̃ 2 in (2.8) will not have the usual Hotelling

T 2 distribution and, thus, (2.3) will give an incorrect sample size. Since T̃ 2 is asymptoti-

cally distributed as χ2-distribution with p degree of freedom when the sample size is large,

we can determine nD using the approximation

P (T̃ 2 > χ2
p;1−α|H1) = 1− β.

Under H1, T̃ 2 is asymptotically distributed as χ2 distribution with p degree of freedom and

non-centrality parameter nDψ2(∆1 −∆0)>Φ−1(∆1 −∆0), where Φ = (1 + π)CΣC> +

(ε(1− ε) + πδ(1− δ))∆1∆
>
1 . When the required sample size are expected not to be very

large, we propose to use the F approximation in (2.7). Accordingly, under H1, we have the

approximation

T̃ 2 ' pF ∼ pFp,f1(nDψ
2(∆1 −∆0)>Φ−1(∆1 −∆0)),

where f1 is the degree of freedom f in (2.16) but ∆ = ∆1.

Therefore, to find nD we solve the equation

P (T̃ 2 > pFp,f0;1−α|H1) ≈ P (F > Fp,f0;1−α = 1− β), (2.9)

where f0 is the degree of freedom f in (2.16) but ∆ = ∆0. Note that when ∆0 = 0 and

π = 1, f0 reduces to f0 = nD + nH − 2 as one would expect. Again, we do not have an

explicit solution for (2.9) and one has to use numerical methods to solve it.
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2.5 Numerical Study

In this section, we evaluate the performance of the proposed estimation and sample size

determination methods in terms of bias, type I error rate, power, and coverage probability.

We generate data from a mixture of multivariate normal distributions with common covari-

ance matrix as described in Section 2. For the purpose of numerical evaluation, we set the

covariance matrices of each component distribution of the mixture equal across pre- and

post-assessment, i.e.

Cov(Y) =

 Σ11 Σ12

Σ>12 Σ11

 .

Furthermore, we set the covariance structure to

Σ11 = σ2[(1− ρ1)Ip + ρ1Jp] and Σ12 = ρ2Σ11,

and investigate the effects of large and small values σ2 while fixing ρ1 and ρ2 at 0.1 and

0.25, respectively. Throughout the simulation section, we set level of significance to 0.05

and confidence level to 95%.

Estimation

Simulation Design

In Section 2.3, we introduced two estimators of the difference ∆ = τD − τH . These

estimators are

(1) the maximum likelihood estimator via EM algorithm (EMP),

(2) the hybrid estimator when we combine the estimations ε and δ from EM algorithm

with the moments-based estimates (Hyb).

We evaluate the performances of the estimators and compare them with each other and the

traditional estimator that does not account for the misclassification errors.

The parameter settings are planned as follows. Sample sizes, nD and nH , are always

100. We consider the effects of large and small values by setting σ2 = 10 and σ2 = 30. The
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value of ∆ varies between 20% and 60% of σ2, i.e. when σ2 = 10, we consider ∆ = 21p,

41p and 61p whereas when σ2 = 30 we consider ∆ = 61p, 121p and 181p. For the mean of

multivariate normal distributions, we fix µD = 201p, µH = 101p, and τH = 41p but allow

τD to vary according to ∆. To check the effects of dimension, we consider p = 2, 3, 4.

We also investigate the values 0.1, 0.2, 0.3 for both ε and δ to observe the effects of minor

to moderate misclassification rates. The number of simulations for each parameter value

combination is 1000, and the number of bootstrap samples for estimating the covariance

matrix in the EM algorithm is also 1000.

Suppose we interest in estimating ∆ by ∆̂. We use three criteria for assessing the

performances of the estimators.

1. Relative bias (RB%):

RB% = ||E(∆̂)−∆||/||∆|| × 100%,

where || · || is the Euclidean distance.

2. Standardized bias (SB%):

SB% =

√
(E(∆̂)−∆)SD(∆̂)−1(E(∆̂)−∆)× 100%.

3. Coverage probability (CP): the proportion of intervals that cover the true value of ∆.

Overall Comparison of All Estimators

To facilitate the comparisons between the competing estimators, we pull all the results

from different settings into a boxplot except for the simulation factors depicted in the axes

or panel labels. The boxplots are presented in Figures 2.1-2.6. Figure 2.1 summarizes all

the results for the estimators in boxplots. It is evident from Figure 2.1 that the traditional

estimator is the worst among the three estimators. Its coverage probabilities are much lower

than 95%, and its SB% and RB% are much higher than the other estimators. These provide

evidence that when misclassification errors exist, the results from the traditional estimator

are generally misleading.
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Figure 2.1: Boxplots of CP, RB%, and SB% for all estimators.Trad is for the traditional
estimator; Hyb is for the hybrid estimator; EMP is for the MLE via EM algorithm.
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Figure 2.2: Boxplots of CP, RB%, and SB% for all methods except the traditional method.
Hyb is for the hybrid estimator; EMP is for the MLE via EM algorithm.

To make the comparisons between EMP and Hyb more precise, we exclude the tra-

ditional estimator in Figures 2.2–2.6. Figure 2.2 shows that both estimators have good

performances. Overall, the average SB%s are around 5%, and most RB%s are less than

1% for both estimators. The ranges and values of the RB% of EMP estimator are lower

than Hyb estimator. These show EMP estimator is more accurate than Hyb estimator. The

coverage probabilities of Hyb estimator are slightly higher than 95%, while the coverage

probabilities of EMP estimator are slightly lower than 95%. These imply that Hyb is more

conservative than EMP.
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Figure 2.3: Boxplots of CP of different methods for different p, ∆ and σ2. Hyb is for the
hybrid estimator; EMP is for the MLE via EM algorithm.

Effects of p, ∆, and σ2

Results for different values of p and ∆ are presented in Figures 2.3-2.5. Figure 2.3 shows

that as the number of outcome variables increases, the coverage probabilities of Hyb be-

come lower but get closer to the nominal level, 95%. In contrast, those of EMP remain

relatively stable. The value of ∆ affects the coverage probabilities of Hyb estimator, since

the coverage probabilities increases as ∆ increases. On the other hand, the coverage prob-

abilities of EMP estimator remain stable under the changes of ∆. In Figure 2.4, we do not

see much difference in RB% among the different methods when p increase from 2 to 4,

but we do observe a clear pattern when ∆ increases. We see that the values and ranges of

RB% decrease as ∆ increases for all the methods. These may be due to division by a large

number for RB% when ∆ increases. Figure 2.5 tells us that the SB% remain stable when

∆ increases, but as p increase, SB%s of both estimators tend to increase.

Effects of ε and δ

We investigate the effects of misclassification error rates ε and δ in Figure 2.6. From this

figure, we can see that EMP’s performance is stable over different levels of misclassifica-

tion error rates. However, the performance of Hyb is affected by ε and δ. The CPs and RBs

of Hyb increase as ε and δ get larger. When the misclassification error rates are high, Hyb

becomes conservative.

23



p=2 p=3 p=4

2 4 6 2 4 6 2 4 6

0

1

2

3

∆

R
el

at
iv

e 
B

ia
s 

(R
B

%
)

Method

EMP

Hyb

(a) RB% for σ2=10

p=2 p=3 p=4

6 12 18 6 12 18 6 12 18

0.0

0.5

1.0

1.5

∆

R
el

at
iv

e 
B

ia
s 

(R
B

%
)

Method

EMP

Hyb

(b) RB% for σ2=30

Figure 2.4: Boxplots of RB% of different methods for different p, ∆ and σ2. Hyb is for
the hybrid estimator; EMP is for the MLE via EM algorithm.
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Figure 2.5: Boxplots of SB% of different methods for different p, ∆ and σ2. Hyb is for the
hybrid estimator; EMP is for the MLE via EM algorithm.
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Figure 2.6: Boxplots of CP, RB%, SB% of different methods on different ε and δ. Hyb is
for the hybrid estimator; EMP is for the MLE via EM algorithm.
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Effects of Sample Size and Correlation

We also ran a simulation to check the effects of sample size, n, and correlations, ρ1 and ρ2,

on the performance of estimators. The results are included in Table 2.4 and 2.5 of Appendix

2.8. We note from Table 2.4 that the traditional method’s performance worsens as the

sample size increases from 20 to 200, while both Hyb and EMP have good performances.

From Table 2.5, we do not observe clear effect of correlation on the performances of either

of the methods.

Caution about EM-Based Estimators

From the comparison in Sections 2.5-2.5, we note that EMP estimator has stable perfor-

mances which are not affected much by the change in the number of variables and the

increase in the misclassification rates. However, by the nature of the EM algorithm, when

the separation of the two-component distributions in the mixture model is poor, the es-

timators tend to be inaccurate and the convergence rates are low. In our case, when the

distance between the mean vectors of two distributions is very small, the separation is

poor. In Table 2.1, we show the relative bias (RB%), standardized bias (SB%), cov-

erage probability (CP) and convergence rates (Cvg) of the EMP method. To illustrate

the key ideas, we limit our investigation to p = 1 and the other parameters are set as

σ2 = 10, ρ = 0.25, µD = 10, µH = 12, τH = 4 and nD = nH = 100. Also, we set

ηH = (12, 16)> and vary ηD as ηD = (10, 16)>, ηD = (10, 18)>, and ηD = (10, 20)>,

yielding different values of ∆. The separation between the two distributions is poor when

∆ = 2, i.e. when the euclidean distance between ηH and ηD is only 2.

From Table 2.1, we note that the results are rather unsatisfactory. The RB%s and SB%s

are very large, especially when ∆ = 2 and the CPs are much lower than 95%. The conver-

gence rates are about 81%. Therefore, the computational time is much longer than that of

the other parameter settings. However, as the distance between ηH and ηD becomes larger,

the EMP method’s performance gets better. When ∆ = 6, the RB%s and SB%s are around

3% and 20%, respectively, and the CPs are around 90%. The convergence rates are about

0.9. These show that when differences between the distribution of the two groups are larger,
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we can get more accurate estimators from EMP. Also, notice that low convergence rates al-

ways accompany inaccurate estimation. In practical applications, a slow convergence rate

could be indicative of poor separation of the component distributions.

Table 2.1: RB(%), SB(%), CP and Cvg (converagence rate) for EMP method when p =
1, σ2 = 10, ρ = 0.25, µD = 10, µH = 12, τH = 4, nD = nH = 100.

ε
0.1 0.3

∆ δ RB(%) SB(%) CP Cvg RB(%) SB(%) CP Cvg

2
0.1 82.747 130.793 0.668 0.813 84.967 100.368 0.711 0.811
0.3 81.947 97.763 0.718 0.816 60.303 45.216 0.814 0.822

4
0.1 23.280 99.629 0.709 0.841 25.443 97.683 0.734 0.830
0.3 27.384 105.276 0.704 0.835 27.962 80.292 0.853 0.839

6
0.1 2.345 17.679 0.913 0.917 3.288 21.138 0.892 0.907
0.3 3.435 22.349 0.902 0.909 2.561 13.395 0.931 0.892

Conclusion

The conclusions from the above simulations can be summarized as follows.

(i) When misclassification errors exist, the traditional estimator for the treatment effects

is severely biased.

(ii) The EM-based estimator has stable performances over a wide range of misclassi-

fication rates and the outcome’s dimension. However, the accuracy of EM-based

estimator is affected by the separation between the two component distributions. In

practice, we need to check the EM algorithm’s convergence rate to see if the separa-

tion of the two component distributions is of concern.

(iii) The moment-based estimator has small to moderate biases, but the test based on it

is more conservative than the EM-based test. Our numerical investigations (not re-

ported here to save space) revealed that the bias tends to grow with ||∆||2. Looking

at the variance of ∆̃ in (2.5), overestimation of the variance of ∆̃ is likely to hap-

pen from estimation errors in ε̂ and δ̂, and the magnitude of ∆. Therefore, when
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||∆||2 gets large, so does the bias, and the tests are likely to become conservative.

Nevertheless, the moment-based method is easier to use and faster to compute.

Power and Sample Size

In this section, we evaluate the adequacy of the sample sizes determined by (2.9) in terms

of the power achieved by moment-based test in Section 2.3 and EM-based test in Section

2.3. Also, for a benchmark comparison, we compute the sample size and power of the

traditional test that ignores misclassification errors. In total, we compare three methods:

1. traditional test (Tra) that ignores group classification errors with sample size from

(2.3),

2. moment-based test (MMF) that uses the same test statistic as the moment-based

method (MM) but the sample size is obtained through (2.9),

3. EM-based test (EMF) uses the same test statistic as EM but the sample size is ob-

tained through (2.9).

Criteria and Parameter Settings

We investigate three values for p = 2, 4, 6. Also, we consider three settings of values for

the parameters governing each component of the mixture distribution:

1. (σ2, ρ1, ρ2, µD, µD + τD, µH , µH + τH)> = (2, 0.25, 0.1, 41p, 61p, 121p, 15.81p)>,

2. (σ2, ρ1, ρ2, µD, µD + τD, µH , µH + τH)> = (70, 0.3, 0.2, 401p, 501p, 601p, 781p)>

and

3. (σ2, ρ1, ρ2, µD, µD + τD, µH , µH + τH)> = (90, 0.5, 0.1, 301p, 501p, 701p, 1001p)>.

The values of ε and δ are varied between 0.1 and 0.3 to reflect low and moderate mis-

classification rates. For each scenario, we generate 1000 simulated data sets. The sample

sizes for each data are determined through expression (2.3) and (2.9) for a pre-specified test

size α of 5% and target power of β = 80%. The scientific interest is to test the statistical
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Table 2.2: Sample size required through traditional method (2.3) and new method (2.9) for
test size α = 5% and power 1− β = 80% when p = 2. Tra is the traditional method.

ε 0.1 0.2 0.3
Setting δ 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

1
Tra 17 17 17 17 17 17 17 17 17

New 26 34 47 34 48 70 47 70 111

2
Tra 26 26 26 26 26 26 26 26 26

New 39 52 71 52 71 104 71 104 164

3
Tra 27 27 27 27 27 27 27 27 27

New 41 55 75 55 76 110 75 110 174

significance of null hypothesis H0 : ∆ = 0 vs. H1 : ∆ 6= 0. The empirical test size and

power for each parametric combination are calculated as a proportion of data sets for which

H0 is rejected under the null and alternative hypothesis, respectively.

Overall Comparisons

From Table 2.2 we see that the sample sizes needed by the traditional method are much

smaller than the other method that accounted for misclassification errors. The sample sizes

needed are much higher when the misclassification errors are moderate than when they are

small. Figure 2.7 provides comparisons of power and type I error rates. The power of

the traditional method is too low to be reliable when classification errors exist. We also

see that Type I errors of all the other methods are not far away from 5%. The moment-

based methods have powers close to the nominal level, 80%, and the powers of EM-based

methods are close to 1. These show EM-based methods are more powerful than moment-

based methods.

Effect of p

To make the discrepancies in performance between the two new methods (MMF and EMF)

clearer, we exclude the results of the traditional method in the following comparisons.

Figure 2.8 shows results for the number of variables p and the three different parameter

settings. As the number of variables p increases, the powers of all the methods increase.
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Figure 2.7: Boxplots of power and Type I error for all methods. Tra, traditional test that
ignores group classification errors; MMF, moment-based test; EMF, the maximum likeli-
hood estimator and parametric bootstrapping-based test. The sample sizes for MMF and
EMF are calculated using equation (2.9).

This is because we need a larger sample size when p gets larger. The plot in the right panel

of Figure 2.8 shows that when p increases, the type I errors of EMF increase, but MMF is

less affected.
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Figure 2.8: Boxplots of power and Type I error for different parameter sets as p increase
from 2 to 6. MMF, moment-based test; EMF, the maximum likelihood estimator and para-
metric bootstrapping-based test. The sample sizes for MMF and EMF are calculated using
equation (2.9).

Effects of ε and δ

To examine the roles the misclassification error rates, ε and δ, play in the performances

of the methods, we report the type I error and power results in Figure 2.9. MMF powers
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remain close to 80% as δ and ε change, and the type I error rates decrease as the misclas-

sification error rates increase. In this figure, it may seem that the power of EMF increases

as ε and δ increase. Notice that the sample size needed is larger when the misclassification

error rates are higher. The gain in accuracy from the increase in sample size appears to out

weight the effect of the increase in misclassification error rates.
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Figure 2.9: Boxplots of power and Type I error for different ε and δ. MMF, moment-based
test; EMF, the maximum likelihood estimator and parametric bootstrapping-based test. The
sample sizes for MMF and EMF are calculated using equation (2.9).

Conclusions

From the comparisons above, we can make the following conclusions. (i) Sample size

calculation using the Hotelling T 2 tests that ignore group classification errors can severely

limit the ability to detect the true treatment effect. (ii) Sample size based on F-approximation

that accounts for misclassification errors achieves the desired power. Type I error of the

moment-based method using the sample size based on F is close to the nominal level. (iii)

The test based on the maximum likelihood estimator with the parametric bootstrap covari-

ance matrix is more powerful than the moment-based method, but it has higher Type I error

rates. The advantage of the moment-based method is that it is easier to use and requires

less computation time. Also, the method of moments allows the calculation of sample size

for a given power and type I error rate.
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2.6 Illustrative examples

This section analyzes a publicly available data obtained from the University of California-

Irvine Machine Learning Repository 1. The data was collected to examine Electroen-

cephalograph (EEG) correlates of genetic predisposition to an alcohol use disorder. There

are two groups of subjects, one with and the other without alcohol use disorder. There

were 122 subjects. Based on the self-reported questionnaire, 77 participants were grouped

as having alcohol use disorder (denoted as D in this chapter), and 45 were grouped as not

having alcohol use disorder (denoted as H in this chapter). Their baseline brain activities

were recorded using Electroencephalograph (EEG). After the baseline assessment, visual

stimuli were presented, and the brain activities were measured again.

The outcome measurements are Event-Related Potentials (ERP), indicating the electri-

cal activity level (in volts) in the region of the brain of each of the electrodes. Measurements

from 64 electrodes placed on the subject’s scalps were recorded for one second. Each chan-

nel (electrode) has a name identifying its location on the scalp. The names are composed

of a letter and a number. The letter identifies the anatomical location of the electrode’s

placement (F-frontal lobe, T-temporal lobe, P-parietal lobe, and O-occipital lobe). The

number identifies the brain’s hemisphere (odd number - the left hemisphere, even number

- the right hemisphere, and letter z (zero) - the midline). For this example, we focus on the

activity recorded on EEG electrodes placed at the O1, Oz, O2, PO7, PO1, POz, PO2, and

PO8. These channels correspond to the occipital lobe and parietal lobe of the brain, lobes

responsible for visual processing and spatial relationships. It is hypothesized that a re-

sponse to the visual stimulus would significantly differ between subjects with and without

alcohol use disorder.

The classification of alcohol use disorder is based on a self-reported questionnaire.

Thus, it is clear that this assessment is subject to diagnostic error, i.e., the misclassification

error rates may not be 0. Therefore, we illustrate the estimation of difference in pre and

post stimuli caused brain activity (∆) between the two groups of subjects as measured by

ERP.
1Web address: https://archive.ics.uci.edu/ml/index.php accessed on May 6, 2020.
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Table 2.3: Estimates of differences in pre and post brain activity (∆) between alcoholic
and control groups and p-values for testing significance.

EEG electrodes
Method O1 O2 Oz PO1 PO2 PO7 PO8 POz p-value

Trad 1.209 0.865 0.205 0.692 0.849 0.797 0.968 0.442 0.660
Hyb 1.514 1.084 0.256 0.867 1.063 0.998 1.212 0.553 0.750
EMP 2.143 1.840 0.637 1.451 1.549 1.368 1.778 0.926 <0.001

Table 2.3 summarizes the estimates of change in activity at each of the channels and

the corresponding p-values by the three methods. EM algorithm may converge at a local

maximum, and we may arrive at the different maximal points from different initial values.

In our case, by setting different initial values for ε and δ, we got more than one maximal

point for the likelihood function. However, there is only one maximum point that satisfy

the constraints 0 ≤ ε ≤ 1/2 and 0 ≤ δ ≤ 1/2. The estimated value of ε is 0.201, and

that of δ is close to 0. From these results, we observe that the estimate of pre-post mean

differences for the traditional method are smaller than the estimates from both hybrid and

EM estimators. The hybrid estimates are also smaller than the EM estimates. These results

confirm our observations in the simulation. The hybrid estimator gives results closer to

the EM estimator than the traditional method and demonstrates lower power with inflated

coverage probability. According to the EM method, there are significant differences in

pre and post stimuli brain activity (∆) between the groups with and without alcohol use

disorder. Therefore, alcohol use may affect brain activities related to the visual procession

and spatial relationship.

For a future study where parameters are expected to be similar to the ones observed in

the present study, the sample size needed according to (2.9) to detect a pre-post difference

as the hybrid method estimate with 80% power at 5% level of significance would be 158

patients with alcohol use disorder and 93 patients without alcohol use disorder. On the

other hand, if we need to detect a pre-post difference as estimated by the EM method

estimate, according to equation (2.9), we require 96 patients with alcohol use disorder and

57 patients without alcohol use disorder. Note that the sample size calculated here is not for

the EM and parametric bootstrap-based combined inference. At present, we do not have a
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mechanism for sample size determination for such an approach.

2.7 Discussion and Conclusion

Two approaches, moment-based and likelihood-based, are proposed to estimate treatment

effects in pre-post design when diagnostic devices used to classify subjects are fallible.

We also derived formulas for sample size calculation based on a novel F finite-sample

approximation for the distribution of the moment-based test statistic. Numerical results

showed that traditional methods that ignore misclassification errors lead to unacceptably-

large bias and overly optimistic sample size. We should avoid the traditional methods

unless there is a strong reason to believe the diagnostic device is perfect. All the methods

proposed in this chapter have satisfactory performances in terms of bias, type I error rate,

power, and coverage probability. The EM-based methods provide more accurate estimators

and more powerful tests than the moment-based methods. However, we cannot use the

EM-based test statistics to determine the required sample size because there is no closed-

form expression for the covariance matrix of the estimator. Furthermore, we need to check

the EM algorithm’s convergence to see if the separation between the group distributions

is poor. The estimators from moment-based methods are accurate, but the corresponding

tests are a bit conservative. The advantage of the moment-based method is that its form

is more familiar to the average practitioner and, hence, they are easier to use and faster to

compute than the EM-based method.

In our model, we assumed that the covariance matrices of the two groups are the same.

This assumption is not generally restrictive because it is reasonable to postulate that treat-

ment changes only the mean of the distribution. However, in the more general setting, this

assumption can be relaxed. The covariance matrices of the two groups depend on mis-

classification rates and yield different values when they are different. To allow different

covariance matrices, we need to recalculate the covariance matrix of the moment-based

estimator and the corresponding sample size determination formulas. We also need to re-

formulate the likelihood-based approach and recalculate the corresponding E and M steps.

We will leave a detailed analysis of this problem for future research.

The problem considered in this chapter involves a continuous multivariate model in
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which we assume the pre and post outcome measures are a mixture of multivariate normal

distributions. It might be possible to relax this assumption and consider a fully nonpara-

metric framework. Other outcome types such as categorical, ordinal, survival times, and

functional outcomes also need further investigation. It is also essential to investigate other

study designs such as clustered randomized design and cross-over design. We defer these

topics for future researches.

2.8 Appendix

Technical Details

In this subsection, we provide detailed calculations and technical details for the results

presented in Section 2.3.

Derivation of Var(YD) and Var(YH)

We show the calculations only for Var(YD), and those for Var(YH) are the same with the

obvious changes of notations. Notice that,

Var(YD1) = E(YD1Y
>
D1)− E(YD1)E(YD1)>

= (1− ε)E(XD1X
>
D1) + εE(XH1X

>
H1)− E(YD1)E(YD1)>,

where XD1 ∼ N(ηD,Σ) and XH1 ∼ N(ηH ,Σ). Since,

E(XD1X
>
D1) = Σ + ηDη

>
D, E(XH1X

>
H1) = Σ + ηHη

>
H , E(YD1) = (1− ε)ηD + εηH ,

we have

Var(YD1) =(1− ε)(Σ + ηDη
>
D) + ε(Σ + ηHη

>
H)

− ((1− ε)ηD + εηH)((1− ε)ηD + εηH)>

=Σ + ε(1− ε)(ηD − ηH)(ηD − ηH)>.

Therefore,

Var(YD) =
1

nD
Var(YD1) =

1

nD
Σ +

1

nD
ε(1− ε)(ηD − ηH)(ηD − ηH)>.
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Derivation of EM algorithm

The log-likelihood function for the complete data (observed and missing) is

lC(θ) =

nD∑
j=1

[
I{D}(zDj){log(1− ε) + log φ(yDj|ηD,Σ)}

+ I{H}(zDj){log ε+ log φ(yDj|ηH ,Σ)}
]

+

nH∑
j=1

[
I{D}(zHj){log δ + log φ(yHj|ηD,Σ)}

+ I{H}(zHj){log(1− δ) + log φ(yHj|ηH ,Σ)})
]
.

E step: For the (t+ 1)th expectation step of the EM algorithm,

Q(θ|θ(t)) =Eθ(t) [l(θ|Y,Z,X)]

=

nD∑
j=1

K
(t)
1j log(1− ε) +

nD∑
j=1

K
(t)
1j log φ(yDj|ηD,Σ)

+

nD∑
j=1

(
1−K(t)

1j

)
log ε+

nD∑
j=1

(
1−K(t)

1j

)
log φ(yDj|ηH ,Σ)

+

nH∑
j=1

K
(t)
2j log δ +

nH∑
j=1

K
(t)
2j log φ(yHj|ηD,Σ)

+

nH∑
j=1

(
1−K(t)

2j

)
log(1− δ) +

nH∑
j=1

(
1−K(t)

2j

)
log φ(yHj|ηH ,Σ),

where

K
(t)
1j =

(1− ε(t))φ(yDj|η
(t)
D ,Σ

(t))

(1− ε(t))φ(yDj|η
(t)
D ,Σ

(t)) + ε(t)φ(yDj|η
(t)
H ,Σ

(t))
and (2.10)

K
(t)
2j =

δ(t)φ(yHj|η
(t)
D ,Σ

(t))

δ(t)φ(yHj|η
(t)
D ,Σ

(t)) + (1− ε(t))φ(yHj|η
(t)
H ,Σ

(t))
. (2.11)

Noting that

log φ(yDj|ηD,Σ) = −1

2
log |Σ| − 1

2
(yDj − ηD)>Σ−1(yDj − ηD) + C,

log φ(yDj|ηH ,Σ) = −1

2
log |Σ| − 1

2
(yDj − ηH)>Σ−1(yDj − ηH) + C,

log φ(yHj|ηD,Σ) = −1

2
log |Σ| − 1

2
(yHj − ηD)>Σ−1(yHj − ηD) + C and

log φ(yHj|ηH ,Σ) = −1

2
log |Σ| − 1

2
(yHj − ηH)>Σ−1(yHj − ηH) + C,
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we have

Q(θ|θ(t)) =Eθ(t) [l(θ|Y,Z,X)]

=

nD∑
j=1

K
(t)
1j log(1− ε) +

nD∑
j=1

(
1−K(t)

1j

)
log ε

+

nH∑
j=1

K
(t)
2j log δ +

nH∑
j=1

(
1−K(t)

2j

)
log(1− δ)

+

nD∑
j=1

K
(t)
1j [−1

2
log |Σ| − 1

2
(yDj − ηD)>Σ−1(yDj − ηD) + C]

+

nD∑
j=1

(
1−K(t)

1j

)
[−1

2
log |Σ| − 1

2
(yDj − ηH)>Σ−1(yDj − ηH) + C]

+

nH∑
j=1

K
(t)
2j [−1

2
log |Σ| − 1

2
(yHj − ηD)>Σ−1(yHj − ηD) + C]

+

nH∑
j=1

(
1−K(t)

2j

)
[−1

2
log |Σ| − 1

2
(yHj − ηH)>Σ−1(yHj − ηH) + C].

M step: For the maximization step of the EM algorithm, setting ∂
∂θ
Q(θ|θ(t)) = 0,

∂Q(θ|θ(t))

∂ε
=−

nD∑
j=1

K
(t)
1j

1− ε
+

nD∑
j=1

1−K(t)
1j

ε
= 0,

∂Q(θ|θ(t))

∂δ
=

nH∑
j=1

K
(t)
2j

δ
+

nH∑
j=1

1−K(t)
2j

1− δ
= 0,

∂Q(θ|θ(t))

∂ηD
=

nD∑
j=1

K1jΣ
−1(yDj − ηD) +

nH∑
j=1

K2jΣ
−1(yHj − ηD) = 0,

∂Q(θ|θ(t))

∂ηH
=

nD∑
j=1

(1−K1j)Σ
−1(yDj − ηH) +

nH∑
j=1

(1−K2j)Σ
−1(yHj − ηH) = 0, and
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∂Q(θ|θ(t))

∂Σ
=− 1

2

nD∑
j=1

K1j(Σ
−1 − Σ−1(yDj − ηD)(yDj − ηD)>Σ−1)

− 1

2

nD∑
j=1

(1−K1j)(Σ
−1 − Σ−1(yDj − ηH)(yDj − ηH)>Σ−1)

− 1

2

nH∑
j=1

K2j(Σ
−1 − Σ−1(yHj − ηD)(yHj − ηD)>Σ−1)

− 1

2

nH∑
j=1

(1−K2j)(Σ
−1 − Σ−1(yHj − ηH)(yHj − ηH)>Σ−1) = 0.

Solving for θ,

ε(t+1) = 1−
nD∑
j=1

K
(t)
1j

nD
, η

(t+1)
D =

∑nD

j=1 K
(t)
1j yDj +

∑nH

j=1K
(t)
2j yHj∑nD

j=1 K
(t)
1j +

∑nH

j=1 K
(t)
2j

,

δ(t+1) =

nH∑
j=1

K
(t)
2j

nH
, η

(t+1)
H =

∑nD

j=1

(
1−K(t)

1j

)
yDj +

∑nH

j=1

(
1−K(t)

2j

)
yHj

nD + nH −
(∑nD

j=1K
(t)
1j +

∑nH

j=1K
(t)
2j

) and

Σ(t+1) =

∑nD

j=1K
(t)
1j

(
yDj − η

(t)
D

)(
yDj − η

(t)
D

)>
nD + nH

+

∑nD

j=1

(
1−K(t)

1j

)(
yDj − η

(t)
H

)(
yDj − η

(t)
H

)>
nD + nH

+

∑nD

j=1K
(t)
2j

(
yHj − η

(t)
D

)(
yHj − η

(t)
D

)>
nD + nH

+

∑nD

j=1

(
1−K(t)

2j

)(
yHj − η

(t)
H

)(
yHj − η

(t)
H

)>
nD + nH

.

For initial values, estimates of PPV and NPV from previous trials of effectiveness for the

diagnostic tool, if available, can be used. For the other parameters, the method of moments

(MOM) estimates η̃D, η̃H , and Σ̃ will be used. Here,

η̃D =
(1− δ)yD − εyH

1− δ − ε
, η̃H =

(1− ε)yH − δyD
1− δ − ε

and (2.12)

Σ̃ = S̃P −
( nD
nD + nH

ε(1− ε)
(1− δ − ε)2

+
nH

nD + nH

δ(1− δ)
(1− δ − ε)2

)
(yD − yH)(yD − yH)>,

(2.13)
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where

S̃P = (nD + nH)−1(nDS̃D + nH S̃H),

S̃D = n−1
D

nD∑
j=1

(YDj − YD)(YDj − YD)> and (2.14)

S̃H = n−1
H

nH∑
j=1

(YHj − YH)(YHj − YH)>.

It is possible that Σ̃ may not be positive definite. In that case, we ignore the second term in

(2.13).

Derivation of degree freedom for F approximation

Notice that

T̃ 2 = (C(YD − YH)− ψ∆0)>(CSC>)−1(C(YD − YH)− ψ∆0).

First, we propose the approximations√
nD
f

(
C(YD − YH)− ψ∆0

)
' N

(√
nD
f

(∆−∆0)ψ,
Φ

f

)
and

nDCSC
> 'Wp

(
f,

Φ

f

)
,

where the notation ”'” means ”approximately distributed as.” The first of these approxi-

mations come from the limiting distribution, and the second one is motivated by the exact

distribution of S if there were no misclassification errors. It would therefore be reasonable

to make the approximation

T̃ 2 ' pF ∼ pFp,f (nDψ
2(∆−∆0)>Φ−1(∆−∆0)).

To account for the misclassification errors in approximating the distribution of nDCSC>,

we use the method of moments to approximate the degrees of freedom f and scale matrix

for the Wishart distribution Ψ by matching the first and trace of the second moments. For

W ∼ Wp(f,Ψ), we know (Magnus and Neudecker, 1979) that

E(W ) = fΨ, and Var(W ) = f(Ip2 +Kp,p)(Ψ⊗Ψ),
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where ⊗ is the Kronecker product. On the other hand, E[nDCSC
>] = Φ. Matching the

first moment, we have Ψ = Φ
f

. Furthermore, to determine f we match the trace of the

second moment as

tr(f(Ip2 +Kp,p)(Ψ⊗Ψ)) = tr(Var(nDCSC
>))

=
1

n2
D

tr(Var(CSDC
>)) +

1

n2
H

tr(Var(CSHC
>)).

Solving for f , we get

f =
tr((Ip2 +Kp,p)(fΨ⊗ fΨ))

tr(Var(nDCSC>))
=
tr((Ip2 +Kp,p)(Φ⊗ Φ)

tr(Var(nDCSC>))
=

tr(Φ)2 + tr(Φ2)

n2
Dtr(Var(CSC

>))
.

The remaining task is to calculate tr(Var(CSC>)). Notice that S = 1
nD
SD + 1

nH
SH .

Since SD and SH are independent,

Var(CSC>) = Var

(
C

(
1

nD
SD +

1

nH
SH

)
C>
)

=
1

n2
D

Var(CSDC
>) +

1

n2
H

Var(CSHC
>).

The covariances Var(CSDC
>) and Var(CSHC

>) can now be calculated separately. Since

the caculations are identical, we show the details for Var(CSDC
>) and those for Var(CSDC

>)

are identical except the obvious changes of notations. To that end, observe that

CSDC
> =

1

nD − 1

nD∑
j=1

C(YDj − YD)(YDj − YD)>C>

=
1

nD − 1
CYD

(
InD
− 1

nD
JnD

)
Y >D C

>.

Setting ZD = YD − E(YD), A = (aij) =
(
InD
− 1

nD
JnD

)
, and B = (bij) =(

InH
− 1

nH
JnH

)
, we have

CSDC
> =

1

nD − 1

nD∑
j=1

C(ZDj − ZD)(ZDj − ZD)>C> =
1

nD − 1
CZDAZ

>
DC

>.

Similarly,

Z̃D = CZD = C

 Z
(1)
D

Z
(2)
D

 = (Z(2)
D1 − Z(1)

D1, . . . ,Z
(2)
DnD
− Z(1)

DnD
).
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Therefore, Z̃D is p×nD matrix whose columns are independently distributed with mean

0 and covariance ΣD, where

ΣD = CΣC> + ε(1− ε)∆∆>.

Applying Lemma 1 in Harrar and Bathke (2012), we have

Var
(
Z̃DAZ̃

>
D

)
=

nD∑
i=1

nD∑
j=1

a2
ij(Ip2 +Kp,p)(ΣD ⊗ ΣD) +

nD∑
i=1

a2
iiK4(Z̃Di

),

where

K4(Z̃Di
) =K4(Z̃D1)

=E(vec(Z̃D1Z̃
>
D1

)vec(Z̃D1Z̃
>
D1

)>)

− (Ip2 +Kp,p)(ΣD ⊗ ΣD)− vec(ΣD)vec(ΣD)>.

Now it remains to calculateE(vec(Z̃D1Z̃
>
D1

)vec(Z̃D1Z̃
>
D1

)>). Let Z̃D1 = (Z̃D11, . . . , Z̃D1p)
>.

Then

E(vec(Z̃D1Z̃
>
D1

)vec(Z̃D1Z̃
>
D1

)>)

=E(Z̃D1Z̃
>
D1
⊗ Z̃D1Z̃

>
D1

)

=E




Z̃D11Z̃D11 · · · Z̃D11Z̃D1p

... . . . ...

Z̃D1pZ̃D11 · · · Z̃D1pZ̃D1p

⊗


Z̃D11Z̃D11 · · · Z̃D11Z̃D1p

... . . . ...

Z̃D1pZ̃D11 · · · Z̃D1pZ̃D1p




=E


Z̃D11Z̃D11Z̃D11Z̃D11 · · · Z̃D11Z̃D1pZ̃D11Z̃D1p

... . . . ...

Z̃D1pZ̃D11Z̃D1pZ̃D11 · · · Z̃D1pZ̃D1pZ̃D1pZ̃D1p

 .

We need to find E(Z̃D1iZ̃D1jZ̃D1kZ̃D1h). Notice that

E(Z̃D1iZ̃D1jZ̃D1kZ̃D1h) =
∂4

∂ti∂tj∂tk∂th
ψZ̃1

(t),
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where ψZ̃1
(t) is the characteristic function of Z̃1. Since Z̃1 = CZ1 = C(Y1 − E(Y1)) =

C(Y1 − [(1− ε)ηD + εηH ]), we have

ψZ1(t) = exp(−it>[(1− ε)ηD + εηH ])ψY1(t)

= exp(−it>[(1− ε)ηD + εηH ])
[
(1− ε) exp

(
it>ηD −

1

2
t>Σt

)
+ ε exp

(
it>ηH −

1

2
t>Σt

)]
=(1− ε) exp

(
εit>(ηD − ηH)− 1

2
t>Σt

)
+ ε exp

(
(1− ε)it>(ηH − ηD)− 1

2
t>Σt

)
and

ψZ̃1
(t) =ψZ1(C

>t)

=(1− ε) exp

(
εit>C>(ηD − ηH)− 1

2
t>CΣC>t

)
+ ε exp

(
(1− ε)it>C>(ηH − ηD)− 1

2
t>CΣC>t

)
=(1− ε) exp

(
εit>∆− 1

2
t>CΣC>t

)
+ ε exp

(
−(1− ε)it>∆− 1

2
t>CΣC>t

)
.

Set (ωij) = CΣC> and note that ∆ = (d1, . . . , dp), we have

E(Z̃D1iZ̃D1jZ̃D1kZ̃D1h)

=ωijωkh + ωikωjh + ωjkωih + ε(1− ε)(ε3 + (1− ε3))didjdkdh (2.15)

+ ε(1− ε)[ωijdkdh + ωikdjdh + ωjkdidh + ωihdjdk + ωjhdidk + ωkhdidj].

Then by Lemma 1 in Harrar and Bathke (Harrar and Bathke, 2012) and properties of

41



trace operation, we have

tr
(

Var
(
Z̃DADZ̃

>
D

))
=

nD∑
i=1

nD∑
j=1

a2
ij(tr(ΣD)2 + tr(Σ2

D))

+

nD∑
i=1

a2
ii

(
tr(E(vec(Z̃D1Z̃

>
D1

)vec(Z̃D1Z̃
>
D1

)>))
)

−
nD∑
i=1

a2
ii

(
(tr(ΣD)2 + tr(Σ2

D))− tr(vec(ΣD)vec(ΣD)>
)

=
nD − 1

nD
tr(ΣD)2 − (nD − 2)(nD − 1)

nD
tr(Σ2

D)

+
(nD − 1)2

nD

p∑
i=1

p∑
j=1

E(Z̃2
D1iZ̃

2
D1j).

From equation (2.15) and definition of ΣD, we have

p∑
i=1

p∑
j=1

E(Z̃2
D1iZ̃

2
D1j) =

p∑
i=1

p∑
j=1

(ωiiωjj + ε(1− ε)ωiid2
j + ε(1− ε)ωjjd2

i + ε2(1− ε)2d2
i d

2
j)

+ 2

p∑
i=1

p∑
j=1

(ω2
ij + 2ε(1− ε)ωijdidj + ε2(1− ε)2d2

i d
2
j)

+

p∑
i=1

p∑
j=1

ε(1− ε)(1− 6ε+ 6ε2)d2
i d

2
j ,

tr(ΣD)2 =

p∑
i=1

p∑
j=1

(ωii + ε(1− ε)d2
i )(ωjj + ε(1− ε)d2

j)

=

p∑
i=1

p∑
j=1

(ωiiωjj + ε(1− ε)ωiid2
j + ε(1− ε)ωjjd2

i

+ ε2(1− ε)2d2
i d

2
j) and

tr(Σ2
D) =

p∑
i=1

p∑
j=1

(ωij + ε(1− ε)didj)2

=

p∑
i=1

p∑
j=1

(ω2
ij + 2ε(1− ε)ωijdidj + ε2(1− ε)2d2

i d
2
j).

Thus,

p∑
i=1

p∑
j=1

E(Z̃2
D1iZ̃

2
D1j) = tr2(ΣD) + 2tr(Σ2

D) + (1− 6ε+ 6ε2)tr2(∆∆>).
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Therefore, we have

tr
(

Var
(
Z̃DAZ̃

>
D

))
=(nD − 1)(tr2(ΣD) + tr(Σ2

D))

+
(nD − 1)2

nD
(1− 6ε+ 6ε2)tr2(∆∆>).

Similarly, for ZH = YH − E(YH) and

Z̃H = CZH = C

 Z
(1)
H

Z
(2)
H

 = (Z(2)
H1 − Z(1)

H1, . . . ,Z
(2)
HnH
− Z(1)

HnH
),

we have

tr
(

Var
(
Z̃HBZ̃

>
H

))
=(nH − 1)(tr2(ΣH) + tr(Σ2

H))

+
(nH − 1)2

nH
(1− 6δ + 6δ2)tr2(∆∆>).

Finally,

tr(Var(CSC>))

=tr

(
1

n2
D

Var(CSDC
>)

)
+ tr

(
1

n2
H

Var(CSHC
>)

)
=

1

n2
D

tr

(
Var

(
1

nD − 1
Z̃DAZ̃

>
D

))
+

1

n2
H

tr

(
Var

(
1

nH − 1
Z̃HBZ̃

>
H

))
=

1

n2
D(nD − 1)2

tr
(

Var
(
Z̃DAZ̃

>
D

))
+

1

n2
H(nH − 1)2

tr
(

Var
(
Z̃HBZ̃

>
H

))
=

1

n2
D(nD − 1)

(tr2(ΣD) + tr(Σ2
D)) +

1

n2
H(nH − 1)

(tr2(ΣH) + tr(Σ2
H))

+

(
1

n3
D

(1− 6ε+ 6ε2) +
1

n3
H

(1− 6δ + 6δ2)

)
tr2(∆∆>).

Recalling Φ = ΣD + πΣH and nD

nH
= π,

f =
tr2(Φ) + tr(Φ2)

tr(Var(CSC>))
, (2.16)

where

tr2(Φ) + tr(Φ2) = tr2(ΣD + πΣH) + tr((ΣD + πΣH)2) and

tr(Var(CSC>)) =
1

nD − 1
(tr2(ΣD) + tr(Σ2

D)) +
π3

nD − π
(tr2(ΣH) + tr(Σ2

H))

+
1

nD

(
1− 6ε+ 6ε2) + π3(1− 6δ + 6δ2)

)
tr2(∆∆>).
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Supplemental Simulation Results

This subsection contains additional simulation results that are discussed in Section 2.3 and

Section 2.5

Simulation Results for F and χ2 Approximations
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Figure 2.10: Histogram of T̃ from 10000 simulations. Superposed are the density curves
of χ2 (dashed line) and F (solid line) approximations when ε = δ = 0.1, ηD = (20, 30)>,
ηH = (10, 14)>, σ2 = 10, ρ1 = 0.1, and ρ2 = 0.25.
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Effects of Sample Size and Correlation on Treatment Effect Estimation

Table 2.4: RB(%), SB(%) and CP(%) results when p = 2, σ2 = 10.

Trad Hyb EMP
δ ε n RB SB CP RB SB CP RB SB CP

0.1

0.1
20 18.121 38.617 93.8 2.309 3.918 94.3 0.678 1.446 93.0
50 20.088 67.849 92.2 0.633 1.904 95.6 0.760 2.678 93.9
100 19.450 93.000 86.6 1.067 4.404 93.5 0.722 3.785 93.4
200 19.837 132.051 78.2 0.475 2.925 94.9 0.487 3.729 95.0

0.3
20 41.555 88.950 88.8 3.059 3.903 94.3 2.231 4.284 92.5
50 40.017 136.360 78.9 2.128 4.716 95.3 2.066 7.138 94.4
100 40.163 188.878 61.6 1.777 5.610 95.3 1.082 5.695 95.3
200 40.715 272.356 32.2 1.612 6.838 95.5 0.828 5.828 95.0

0.3

0.1
20 39.692 84.644 90.5 4.301 6.102 94.5 3.187 7.105 93.7
50 39.257 132.102 81.1 1.434 3.086 94.1 0.517 1.853 95.4
100 40.181 195.060 64.2 0.536 1.649 95.2 1.283 6.803 95.8
200 40.934 274.266 30.4 1.496 6.284 95.6 0.160 1.110 93.9

0.3
20 61.354 126.612 82.9 10.185 7.836 93.4 10.547 14.920 90.7
50 58.265 196.963 63.8 4.410 5.663 94.2 0.398 1.237 94.9
100 60.407 274.947 30.9 1.704 3.205 95.0 0.964 4.901 94.1
200 60.073 406.278 4.6 0.901 2.701 95.4 0.452 3.241 94.6

Table 2.5: RB(%), SB(%) and CP(%) results when p = 2, σ2 = 10, ∆ = 21p.

Trad Hyb EMP
(δ, ε) (ρ1, ρ2) RB SB CP RB SB CP RB SB CP

(0.1,0.1)
(0.1, 0.25) 19.450 93.000 86.6 1.067 4.404 93.5 0.722 3.785 93.4
(0.1, 0.7) 20.044 147.863 76.7 0.208 1.336 96.1 0.121 0.996 95.7
(0.5, 0.7) 20.775 133.209 81.0 1.251 7.082 95.7 1.168 9.943 93.5

(0.1,0.3)
(0.1, 0.25) 40.163 188.878 61.6 1.777 5.610 95.3 1.082 5.695 95.3
(0.1, 0.7) 40.385 291.578 26.2 1.072 5.064 95.0 0.714 5.433 94.7
(0.5, 0.7) 39.242 247.570 42.2 0.633 2.595 96.1 0.246 2.629 95.1

(0.3,0.1)
(0.1, 0.25) 40.181 195.060 64.2 0.536 1.649 95.2 1.283 6.803 95.8
(0.1, 0.7) 40.577 285.623 26.5 1.327 6.084 94.2 0.801 5.906 93.0
(0.5, 0.7) 39.887 244.200 40.7 0.433 2.983 95.7 0.781 4.933 94.0

(0.3,0.3)
(0.1, 0.25) 60.407 274.947 30.9 1.704 3.205 95.0 0.964 4.901 94.1
(0.1, 0.7) 60.325 423.851 3.3 0.741 2.392 95.8 0.729 6.153 95.1
(0.5, 0.7) 60.205 361.249 10.1 1.792 5.793 95.7 0.533 5.251 94.2
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Chapter 3 Estimation of Misclassification Error Rates

3.1 Introduction

Pre-stratified pre-post designs are commonly used in clinical trials to assess treatment ef-

fects. Diagnostic tools are used to stratify the participants into different groups, and these

tools usually are imperfect. Traditional methods ignore the misclassification errors which

leads to biased estimators and inaccurate tests. Only few works evaluated treatment effect

when this misclassification error exist in some special situations and most works concen-

trate on estimating the accuracy of the diagnostic tools.

To fill in this methodological gap, Chapter 2 introduced two methods, the moment-

based and the likelihood-based, for estimating and testing treatment effects when imper-

fect diagnostic devices are used. When available, more expensive and accurate diagnostic

devices may sometimes be used to identify the actual group membership for some of the

participants. In this case, we can obtain validation data to enhance the accuracy of the

treatment effect estimation. Among the earliest works, Tenenbein (1970) proposed a dou-

ble sampling scheme for estimating the proportion when there is misclassification on class

membership. More recently, some researchers applied this strategy to assess disease preva-

lence. For example, Nedelman (1988) and Lie et al. (1994) used this scheme to investigate

malaria prevalence in Nigeria and congenital malformations in Norway, respectively. Qiu

et al. (2019) proposed test procedures for comparing disease prevalence rates in two groups

when both classifiers in the double sampling scheme are fallible. However, these papers

considered only count variables and focused on estimating the misclassification error rates.

This chapter extends the two methods developed in Chapter 2 to the situation where

validation data is available. Section 2 presents the statistical model. We describe the the-

oretical motivation in Sections 3 and 4 and derive the moment-based and likelihood-based

solutions. Simulation study will be conducted in Section 5 to illustrate the utility of the

results derived. Section 6 concludes the chapter with discussion and remarks. All proofs

and technical details are placed in Appendix.
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3.2 Statistical Model and Parameter of Interest

Suppose we can verify the correct group membership for some of the study participants

by employing a more expensive but accurate diagnostic tool. Let VDj = (V(1)>
Dj ,V

(2)>
Dj )>

for j = 1, . . . ,mD be the pre and post outcomes vectors for the jth individual whose

positive disease status is validated. Further, let VHj = (V(1)>
Hj ,V

(2)>
Hj )> for j = 1, . . . ,mH

be outcomes measured from the jth individuals that is validated by the accurate classifier

as healthy. Assume VDj
and VHj

have multivariate normal distributions, Φ(ηD,Σ) and

Φ(ηH ,Σ), respectively,with means ηD, ηH , respectively and common covariance Σ are

defined the same as in Section 2.2.

Let YDj
=
(
Y

(1)>
Dj

,Y
(2)>
Dj

)>
and YHj

=
(
Y

(1)>
Hj

,Y
(2)>
Hj

)>
be the pre and post out-

comes vector for the jth individual classified by the fallible diagnostic tools as diseased

and healthy, respectively. Denote by (1 − ε) and (1 − δ) the positvie predictive value

(PPV) and negative predictive value (NPV), respectively, of the fallible diagnostic tool.

We also assume that VDi
, VHj

, YDk
, and YHl

are mutually independent, for i = 1, . . . ,mD,

j = 1, . . . ,mH , k = 1, . . . , nD, and l = 1, . . . , nH . Then through the derivation in Sec-

tion 2.2, the distribution YDj
and YHj

can be modeled as a mixture of multivariate normal

distribution. That is

fYDj
(y|θ) = (1− ε)φ(y|ηD,Σ) + εφ(y|ηH ,Σ) and

fYHj
(y|θ) = δφ(y|ηD,Σ) + (1− δ)φ(y|ηH ,Σ).

To avoid nonidentifiability issue and switching label problems that are common in mix-

ture models, we assume 0 ≤ ε < 0.5, 0 ≤ δ < 0.5 and µD 6= µH . For practical appli-

cations, we need information outside the collected data to ensure these assumptions hold.

The parameter of interest is

∆ = τD − τH ,

where ∆ = (d1, . . . , dp)
> is the vector of differences in the treatment effect in the diseased

and healthy populations.
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3.3 The Moment-Based Approaches

In Section 2.3, we derived an unbiased estimator for ∆ using the moment-based method,

i.e.,

∆̃ =
1

1− ε− δ
C(YD − YH). (3.1)

with variance

Var(∆̃) =
1

(1− ε− δ)2

[
CΣC>

{
1

nD
+

1

nH

}
(3.2)

+

{
ε(1− ε)
nD

+
δ(1− δ)
nH

}
∆∆>

]
.

Therefore, if we can estimate the misclassification errors ε and δ, we can utilize (3.1) and

(3.2) to estimate the treatment effect (∆) and conduct hypotheses tests. We propose to

derive consistent estimators of the misclassification error rates using novel distance-based

criteria.

Estimation and Test on the Misclassification Error Rates (ε and δ)

Hall (1981) proposed nonparametric estimators for the mixture proportions combining the

contaminated (original) and validation data. The main idea is to estimate the mixing pro-

portions by minimizing the distance between the empirical version of the mixture pop-

ulation and the linear combination of empirical versions of the component distributions.

Inspired by this idea, we obtain estimates of ε and δ by minimizing the scaled distance

between the mean of original data and the mixture of means of the two groups from the

validation data. For our purpose, we choose the distance function,

DΩ(ε, δ) =||Ω−1/2
[
YD − ((1− ε)VD + εVH)

]
||2

+ ||Ω−1/2
[
YH − (δVD + (1− δ)VH)

]
||2,

where || · || is the Euclidean norm and Ω is a 2p × 2p symmetric positive definite matrix.

The distance function will be minimized if ε and δ satisfy,

(VD − VH)>Ω−1(VD − VH)ε = (VD − VH)>Ω−1(VD − YD) and

(VD − VH)>Ω−1(VD − VH)δ = (VH − VD)>Ω−1(VH − YH).
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Thus, we have the estimators,

ε̂ =
(VD − VH)>Ω−1(VD − YD)

(VD − VH)>Ω−1(VD − VH)
and δ̂ =

(VH − VD)>Ω−1(VH − YH)

(VD − VH)>Ω−1(VD − VH)
. (3.3)

To establish the consistency of the estimators and simplify the expression for their

asymptotic variance, we need a standard proportional divergence requirements on the group

sample sizes as follows.

Assumption 3.3.1. There exists positive constant CL and CU , such that

CL ≤ min{ N
nD

,
N

nH
,
N

mD

,
N

mH

} ≤ max{ N
nD

,
N

nH
,
N

mD

,
N

mH

} ≤ CU ,

where N = nD + nH +mD +mH . Moreover,

N

nD
→ κnD

> 0,
N

nH
→ κnH

> 0,
N

mD

→ κmD
> 0,

N

mH

→ κmH
> 0, as N →∞

.

Proposition 3.3.1 establishes the consistency of the estimators ε̂ and δ̂ under Assump-

tion 3.3.1.

Proposition 3.3.1. Let ε̂ and δ̂ be as defined in (3.3). Under Assumption 3.3.1 , we have

ε̂
P−→ ε and δ̂ P−→ δ, as N →∞.

By using the Delta method, we can derive the asymptotic distribution of ε̂ and δ̂. The

results are summarized in Theorem 3.3.1. Detailed calculations are included in Appendix

3.7

Theorem 3.3.1. Let ε̂ and δ̂ be defined as in 3.3. Under Assumption 3.3.1,

√
N(ε̂− ε) D−→ Zε ∼ N(0, σ2

ε ), (3.4)

and

√
N(δ̂ − δ) D−→ Zδ ∼ N(0, σ2

δ ), (3.5)

where

σ2
ε = κnD

ε(1− ε) + (κnD
+ κmD

(1− ε)2 + κmH
ε2)

(ηD − ηH)>Ω−1ΣΩ−1(ηD − ηH)

((ηD − ηH)>Ω−1(ηD − ηH))2
,
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and

σ2
δ = κnH

δ(1− δ) + (κnH
+ κmH

(1− δ)2 + κmD
δ2)

(ηD − ηH)>Ω−1ΣΩ−1(ηD − ηH)

((ηD − ηH)>Ω−1(ηD − ηH))2
.

We can estimate σ2
ε and σ2

δ in (3.4) and (3.5) by

Sε =
N

nD
ε̂(1− ε̂) +

(
N

nD
+

N

mD

(1− ε̂)2 +
N

mH

ε̂2
)
S, (3.6)

and

Sδ =
N

nH
δ̂(1− δ̂) +

(
N

nD
+

N

mH

(1− δ̂)2 +
N

mD

δ̂2

)
S, (3.7)

respectively, where

S =
(VD − VH)>Ω−1SpΩ

−1(VD − VH)

((VD − VH)>Ω−1(VD − V)2
,

and Sp is the pooled variance calculated from the validated samples VD’s and VH’s. Based

on these estimates, we can develop methods for confidence intervals and hypothesis test

for ε and δ. Suppose we are interested in testing the Hypothesis H0 : ε = ε0, we may use

the test statistic

T =

√
N(ε̂− ε)√

Sε

D−→ Z ∼ N(0, 1).

Further, a (1− α)100% asymptotic confidence interval for ε can be constructed by

P

(
ε̂−

zα/2
√
Sε√

N
≤ ε ≤ ε̂+

zα/2
√
Sε√

N

)
→ 1− α,

where zα/2 is the (1 − α/2)th-quantile of the standard normal distribution. Test statistic

and confidence interval for δ can be constructed similarly.

Estimation and Test for ∆

Using (3.1), we can estimate ∆ by

∆̃ =
1

1− ε̂− δ̂
C(YD − YH). (3.8)
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Since ε̂ and δ̂ are consistent for ε and δ, respectively, by continuous mapping theorem, ∆̃

is a consistent estimator of ∆. We may want to estimate the covariance matrix of ∆̃ by

plugging ε̂ and δ̂ in (3.2) as

S∆̃ = (1− ε̂− δ̂)−2CSC>,

where S = n−1
D SD + n−1

H SH and SD and SH are the sample covariance matrix calculated

from the contaminated samples YD’s and YH’s, respectively. However, this estimator is

inefficient, because ∆̃ involves estimators of ε and δ, and (3.2) assumes that ε and δ are

known and it does not take into account estimation errors in ε̂ and δ̂. To obtain more

accurate estimator of the covariance matrix, we use Delta method and derive the asymptotic

distribution of ∆̃ in Theorem 3.3.2.

Theorem 3.3.2. Let ∆̃ be as defined in (3.8). Under Assumption 3.3.1,

√
N(∆̃−∆)

D−→ Z ∼ N(0,Σ∆), (3.9)

where

Σ∆ =
κnD

+ κnH

(1− ε− δ)2
CΣC> − κnD

+ κnH

1− ε− δ
· CΣΩ−1(ηD − ηH)(ηD − ηH)>C>

(ηD − ηH)>Ω−1(ηD − ηH)

− κnD
+ κnH

1− ε− δ
· C(ηD − ηH)(ηD − ηH)>Ω−1ΣC>

(ηD − ηH)>Ω−1(ηD − ηH)
(3.10)

+
(κnD

ε(1− ε) + κnH
δ(1− δ))(ε+ δ)2

(1− ε− δ)2
C(ηD − ηH)(ηD − ηH)>C>

+

[
κnD

+ κnH
+ (κmD

+ κmH
)

(
2− 1

1− ε− δ

)2
]

Σ∗,

and

Σ∗ =
C(ηD − ηH)(ηD − ηH)>Ω−1ΣΩ−1(ηD − ηH)(ηD − ηH)>C>

((ηD − ηH)>Ω−1(ηD − ηH))2
.

Similar to (3.6) and (3.7), by replacing (κnD
, κnH

, κmD
, κmH

, ε, δ,ηD,ηH ,Σ) with their

corresponding estimators ( N
nD
, N
nH
, N
mD

, N
mH

, ε̂, δ̂,V D,V H , Sp) in (3.10), we can obtain an

estimator of Σ∆, which we will denote it as Σ̂∆.

To test the null hypothesis H0 : ∆ = ∆0, based on the result of Theorem 3.3.2, we can

use the test statistic

T̃ = N(∆̃−∆0)>(Σ̂∆)−1(∆̃−∆0).
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The statistic T̃ is asymptotically distributed as χ2 distribution with p degree of freedom

and non-centrality parameter N(∆ − ∆0)>Σ−1
∆ (∆ − ∆0) as N → ∞. Under the null

hypothesis, the non-centrality parameter is zero and the decision rule is to reject the null

hypothesis at significance level α if T̃ > χ2
p(1 − α). We can also use T̃ to construct a

(1− α) asymptotic confidence region for ∆ as

{
∆ : N(∆̃−∆)>(Σ̂∆)−1(∆̃−∆) ≤ χ2

p(1− α)
}
. (3.11)

3.4 The Likelihood-Based Approaches

When validation data is available, we can update the EM algorithm in Section 2.3 and

incorporate the information contained in the validation data to get more accurate estimators

of the parameters. Let VDj = (V(1)>
Dj ,V

(2)>
Dj )> be validated pre and post outcomes vector

for the jth individual in the diseased group for j = 1, . . . ,mD, and VHj = (V(1)>
Hj ,V

(2)>
Hj )>

be validated pre and post outcomes vector for jth individual in healthy group, where j =

1, . . . ,mH . Using the same notation as in Section 2.3, the log-likelihood for the complete

data is

lC(θ) =

nD∑
j=1

[
ID(zDj){log(1− ε) + log φ(yDj|ηD,Σ)}

+ (IH(zDj)){log ε+ log φ(yDj|ηH ,Σ)}
]

+

nH∑
j=1

[
ID(zHj){log δ + log φ(yHj|ηD,Σ)}

+ IH(zHj){log(1− δ) + log φ(yHj|ηH ,Σ)})
]

+

mD∑
j=1

log φ(vDj
|ηD,Σ) +

mH∑
j=1

log φ(vHj
|ηH ,Σ).

The detailed derivations of the EM iterations are given in Appendix 3.7. For initial

values, we propose using the estimates of ε and δ from (3.3), and weighted averages of

the method of moments estimators of the original and the validated data for ηD, ηH , and

Σ. The details are given in Appendix 3.7. Similar to Section 2.3, we do not have explicit

form of the covariance matrix of ∆̂. After obtaining the maximum likelihood estimator

θ̂ = (ε̂, δ̂, η̂D, η̂H , Σ̂), we again propose using the bootstrap estimator of the covariance
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matrix, denoted by SB. For testing the null hypothesis H0 : ∆ = 0, we propose comparing

the statistic T̂ = ∆̂>S−1
B ∆̂ against the appropriate percentile of the χ2-distribution with p

degree of freedom.

3.5 Numerical Study

This section evaluates the performance of the proposed estimation methods in sections 3

and 4. We check the accuracy in estimating misclassfication error rates ε and δ and also

evaluate the two estimators for the treatment effect ∆ = τD − τH . In the simulations, we

set Ω = I2p. The rest parameter settings and the performance criteria for estimators are the

same as Section 2.5.

Accuracy in the Estimation of ε and δ

Generally, we expect the estimates of ε and δ with validated data to be more accurate. To

demonstrate the accuracy, and check the effect of ratio of the contaminated and validation

datasets sample sizes, mD/nD, we conducted a small-scale simulation study setting p = 2,

σ2 = 10, ∆ = 41p, and sample size ratios mD/nD ∈ {0.1, 0.3, 0.5}. The estimates of ε

and δ for moment-based method are obtained from (3.3). Table 3.1 contains the bias and

root means square error (RMSE) in estimating ε and δ from the moment-based method

and EM algorithm. To make the differences more discernible, we showed both the biases

and RMSEs results multiplied by 100. From this table, we notice that both the biases and

RMSEs are very small for the two methods, even when the sample size ratio is as small as

0.1. The RMSEs for the MMV tends to get smaller when the ratio increase, while that of

EMV seems to be less affected. In general, EMV is a bit more accurate than MMV.

Estimators for the Treatment Effect

In Sections 3 and 4, we introduced two estimators of the difference ∆ = τD−τH , namely,

(1) the method of moment estimator (MMV) and

(2) the updated maximum likelihood estimator via EM algorithm (EMV).
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Table 3.1: Bias×100 and root mean square error (RMSE)×100 for ε̂ and δ̂ for p = 2, σ2 =
10 and ∆ = 4. MMV is for the moment-based method and EMV is for the MLE via EM
algorithm.

MMV EMV
ε̂ δ̂ ε̂ δ̂

δ ε ratio Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0.1

0.1
0.1 -0.05 4.961 0.429 5.041 -0.026 4.024 0.082 3.939
0.3 0.034 4.122 0.126 3.97 -0.014 2.996 0.029 3.169
0.5 0.108 3.863 0.22 3.743 0.049 3.023 0.133 3.051

0.3
0.1 0.015 6.105 0.137 5.088 0.025 4.721 0.096 3.013
0.3 -0.196 5.331 0.291 4.086 0.009 4.699 0.04 3.056
0.5 0.074 4.879 0.143 3.718 0.072 4.549 0.139 3.001

0.3

0.1
0.1 0.249 5.045 0.189 5.723 -0.079 3.001 0.23 4.443
0.3 -0.226 4.007 0.11 5.13 -0.125 3.04 -0.073 4.612
0.5 -0.034 3.814 0.022 5.082 -0.072 3.009 0.108 4.647

0.3
0.1 -0.02 5.473 -0.034 5.819 -0.154 4.329 -0.107 4.665
0.3 0.021 4.953 -0.056 5.183 -0.021 4.492 0.004 4.7
0.5 -0.237 5.217 -0.311 4.822 -0.281 4.775 -0.285 4.397

In the simulation, we evaluate these estimators and compare them with the traditional

estimator that does not account for the classification errors. To facilitate the comparisons

between the competing methods, we pull all the results from different settings into a box-

plot except for the simulation factors depicted in the axes or panels labels. The boxplots

are presented in Figure 3.1 and Figures 3.2-3.6 in the appendix. Figure 3.1 summarizes all

the results for the three estimators. It shows that the traditional method provides mislead-

ing results when misclassification errors exist. To make the comparison between MMV and

EMV more precise, we excluded the traditional method in Figure 3.2-3.6. Similar to the re-

sults in the Section 2.5, both estimators have generally good performances. EMV is more

accurate and MMV test is conservative. Nevertheless, MMV does not require bootstrap

method to estimate variance and, hence, is faster to compute.

3.6 Discussion and Conclusion

In Chapter 2, two approaches, viz, moment-based and likelihood-based, were proposed

to estimate treatment effects in pre-post design when diagnostic devices used to classify

subjects are fallible. In this chapter we consider the situation when validation data from an

accurate diagnostic device is available. We combine the validation data with the original
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Figure 3.1: Boxplots of CP, RB%, and SB% for all methods. Trad is for the traditional
method; MMV is for the moment-based method and EMV is for the MLE via EM algo-
rithm.

data to provide updated versions of the moment- and EM-based estimators. The simulation

study shows both methods have accurate estimators for the misclassification error rates, ε

and δ and the treatment effect ∆. The EM-based estimators are relatively more accurate,

but the moment-based methods are straight forward and computationally inexpensive. The

simulation also shows that the traditional methods have unacceptably-large bias. Unless we

are certain that the diagnostic tool is perfect, we should avoid using the traditional method.

The covariance matrices of the two groups are assumed to be the same in our model.

Though it is reasonable to assume the treatment only changes the mean of the distribution,

this assumption could be relax. To achieve that, we need to recalcuate the EM-algorithm

for the likelihood-based approach. We also need to define a proper treatment effect to

account for the diffierent covariance matrices in two groups. We plan to investigate these

problem in future research.

3.7 Appendix

Proofs

In this subsection, we give detailed proofs and technical details for the theoretical results

presented in Section 3.3.
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Proof of Proposition 3.3.1. Observe that

E(VDi
)− E(YDi

) = ηD − ((1− ε)ηD + εηH) = ε(ηD − ηH)

= ε(E(VDi
)− E(VHi

)),

and

E(VHi
)− E(YHi

) = ηH − (δηD + (1− δ)ηH) = δ(ηH − ηD)

= ε(E(VHi
)− E(VDi

)).

Thus, we have

ε =
(E(VDi

)− E(VHi
))>(E(VDi

)− E(YDi
))

(E(VDi
)− E(VHi

))>(E(VDi
)− E(VHi

))
and

δ =
(E(VHi

)− E(VDi
))>(E(VHi

)− E(YHi
))

(E(VDi
)− E(VHi

))>(E(VDi
)− E(VHi

))
.

Under Assumption 3.3.1, when N → ∞, nD, nH ,mD,mH → ∞ as well. By the Weak

Law of Large Numbers and the Continuous Mapping Theorem, we can easily see that ε̂ and

δ̂ converge in probability to ε and δ, respectively. �

Proof of Theorem 3.3.1. Under the independence assumption and Assumption 3.3.1, by

Central Limit Theorem, we have

√
N




YD

YH

VD

VH

−


(1− ε)ηD + εηH

(1− δ)ηH + δηD

ηD

ηH




D−→ N

0,


V1 0 0 0

0 V 2 0 0

0 0 V 3 0

0 0 0 V 4



 ,

where

V 1 = κnD
(Σ + ε(1− ε)(ηD − ηH)(ηD − ηH)>),

V 2 = κnH
(Σ + δ(1− δ)(ηD − ηH)(ηD − ηH)>), and

V 3 = κmD
Σ, V 4 = κmH

Σ.

For θ = (θ>1 ,θ
>
2 ,θ

>
3 ,θ

>
4 )>, where θ>i is a 2p ∗ 1 vector, i = 1, . . . , 4, define

g(θ) =
(θ1 − θ2)>Ω−1(θ1 − θ3)

(θ1 − θ2)>Ω−1(θ1 − θ2)
.
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Then we have ε̂ = g(VD,VH ,YD) and δ̂ = g(VH ,VD,YH). To apply the multivariate

Delta method, we need to calculate the Jacobain of g, denoted by Jg(θ), given by

Jg(θ) =

(
∂g(θ)

∂θ1

,
∂g(θ)

∂θ2

,
∂g(θ)

∂θ3

)
,

where

∂g(θ)

∂θ1

=
(2θ1 − θ1 − θ3)>Ω−1

(θ1 − θ2)>Ω−1(θ1 − θ2)
− (θ1 − θ2)>Ω−1(θ1 − θ3)

((θ1 − θ2)>Ω−1(θ1 − θ2)2
· 2(θ1 − θ2)>Ω−1,

∂g(θ)

∂θ2

= − (θ1 − θ3)>Ω−1

(θ1 − θ2)>Ω−1(θ1 − θ2)
+

(θ1 − θ2)>Ω−1(θ1 − θ3)

((θ1 − θ2)>Ω−1(θ1 − θ2)2
· 2(θ1 − θ2)>Ω−1,

and

∂g(θ)

∂θ3

= − (θ1 − θ1)>Ω−1

(θ1 − θ2)>Ω−1(θ1 − θ2)
.

For θ0 = (E(VD), E(VH), E(YD)) = (ηD,ηH , (1− ε)ηD + εηH), we have

Jg(θ0) =

(
∂g(θ)

∂θ1

∣∣∣
θ=θ0

,
∂g(θ)

∂θ2

∣∣∣
θ=θ0

,
∂g(θ)

∂θ3

∣∣∣
θ=θ0

)
,

where

∂g(θ)

∂θ1

∣∣∣
θ=θ0

=
(1− ε)(ηD − ηH)>Ω−1

(ηD − ηH)>Ω−1(ηD − ηH),

∂g(θ)

∂θ2

∣∣∣
θ=θ0

= − ε(ηD − ηH)>Ω−1

(ηD − ηH)>Ω−1(ηD − ηH)
, and

∂g(θ)

∂θ3

∣∣∣
θ=θ0

= − (ηD − ηH)>Ω−1

(ηD − ηH)>Ω−1(ηD − ηH)
.

Applying the multivariate Delta method, we have

√
N(ε̂− ε) =

√
N
(
g(VD,VH ,YD)− g(θ0)

) D−→ N(0, σ2
ε ),

where

σ2
ε =Jg(θ0)


V 3 0 0

0 V 4 0

0 0 V 1

 Jg(θ0)>

=
∂g(θ)

∂θ1

∣∣∣
θ=θ0

V 3
∂g(θ)

∂θ1

∣∣∣>
θ=θ0

+
∂g(θ)

∂θ2

∣∣∣
θ=θ0

V 4
∂g(θ)

∂θ2

∣∣∣>
θ=θ0

+
∂g(θ)

∂θ3

∣∣∣
θ=θ0

V 1
∂g(θ)

∂θ3

∣∣∣>
θ=θ0

=κnD
ε(1− ε) + (κnD

+ κmD
(1− ε)2 + κmH

ε2)
(ηD − ηH)>Ω−1ΣΩ−1(ηD − ηH)

((ηD − ηH)>Ω−1(ηD − ηH))2
.

The asymptotic distribution of δ̂ can be derived similarly.
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Proof of Theorem 3.3.2. Similar to the proof of Theorem 3.3.1, we first define a function

g(θ) for the estimator of interest ∆̃. Let

g(θ) = g(θ1,θ2,θ3,θ4) =
(θ3 − θ4)>Ω−1((θ3 − θ4))

(θ3 − θ4)>Ω−1(θ1 − θ2)
· C(θ1 − θ2).

Then we have ∆̃ = g(YD,YH ,VD,VH). Notice that

∂g(θ)

∂θ1

= −∂g(θ)

∂θ2

=
(θ3 − θ4)>Ω−1(θ3 − θ4)

(θ3 − θ4)>Ω−1(θ1 − θ2)
· C

− (θ3 − θ4)>Ω−1(θ3 − θ4)

((θ3 − θ4)>Ω−1(θ1 − θ2))2
· C(θ1 − θ2)(θ3 − θ4)>Ω−1,

and

∂g(θ)

∂θ3

= −∂g(θ)

∂θ4

=
1

(θ3 − θ4)>Ω−1(θ1 − θ2)
· 2C(θ1 − θ2)(θ3 − θ4)>Ω−1

− (θ3 − θ4)>Ω−1(θ3 − θ4)

((θ3 − θ4)>Ω−1(θ1 − θ2))2
C(θ1 − θ2)(θ3 − θ4)>Ω−1.

Then for θ0 = (E(YD), E(YH), E(VD), E(VH)) = ((1 − ε)ηD + εηH , (1 − δ)ηH +

δη)D,ηD,ηH), we have

Jg(θ0) =

(
∂g(θ)

∂θ1

∣∣∣
θ=θ0

,
∂g(θ)

∂θ2

∣∣∣
θ=θ0

,
∂g(θ)

∂θ3

∣∣∣
θ=θ0

,
∂g(θ)

∂θ4

∣∣∣
θ=θ0

)
,

where

∂g(θ)

∂θ1

∣∣∣
θ=θ0

= −∂g(θ)

∂θ2

∣∣∣
θ=θ0

=
C

1− ε− δ
+
C(ηD − ηH)(ηD − ηH)>Ω−1

(ηD − ηH)>Ω−1(ηD − ηH)
and

∂g(θ)

∂θ3

∣∣∣
θ=θ0

= −∂g(θ)

∂θ4

∣∣∣
θ=θ0

=

(
2− 1

(1− ε− δ)2

)
C(ηD − ηH)(ηD − ηH)>Ω−1

(ηD − ηH)Ω−1(ηD − ηH)
.

Applying the multivariate Delta method, we have

√
N(∆̃−∆) =

√
N(g(YD,YH ,VD,VD)− g(θ0)

D−→ N(0,Σ∆)),
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where

Σ∆ =
∂g(θ)

∂θ1

∣∣∣
θ=θ0

V 1
∂g(θ)

∂θ1

∣∣∣>
θ=θ0

+
∂g(θ)

∂θ2

∣∣∣
θ=θ0

V 2
∂g(θ)

∂θ2

∣∣∣>
θ=θ0

+
∂g(θ)

∂θ3

∣∣∣
θ=θ0

V 3
∂g(θ)

∂θ3

∣∣∣>
θ=θ0

+
∂g(θ)

∂θ4

∣∣∣
θ=θ0

V 4
∂g(θ)

∂θ4

∣∣∣>
θ=θ0

=
κnD

+ κnH

(1− ε− δ)2
CΣC> − κnD

+ κnH

1− ε− δ
· CΣΩ−1(ηD − ηH)(ηD − ηH)>C>

(ηD − ηH)>Ω−1(ηD − ηH)

− κnD
+ κnH

1− ε− δ
· C(ηD − ηH)(ηD − ηH)>Ω−1ΣC>

(ηD − ηH)>Ω−1(ηD − ηH)

+
(κnD

ε(1− ε) + κnH
δ(1− δ))(ε+ δ)2

(1− ε− δ)2
C(ηD − ηH)(ηD − ηH)>C>

+

[
κnD

+ κnH
+ (κmD

+ κmH
)

(
2− 1

1− ε− δ

)2
]

Σ∗,

and

Σ∗ =
C(ηD − ηH)(ηD − ηH)>Ω−1ΣΩ−1(ηD − ηH)(ηD − ηH)>C>

((ηD − ηH)>Ω−1(ηD − ηH))2
.

Technical Details for the EM algorithm

Below we give some technical details and intermediate steps for the EM algorithm de-

scribed in Section 3.4.

The log-likelihood function for the complete data is

lC(θ) =

nD∑
j=1

[
ID(zDj){log(1− ε) + log φ(yDj|ηD,Σ)}

+ (IH(zDj)){log ε+ log φ(yDj|ηH ,Σ)}
]

+

nH∑
j=1

[
ID(zHj){log δ + log φ(yHj|ηD,Σ)}

+ IH(zHj){log(1− δ) + log φ(yHj|ηH ,Σ)})
]

+

mD∑
j=1

log φ(vDj
|ηD,Σ) +

mH∑
j=1

log φ(vHj
|ηH ,Σ).

E step:
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For the (t+ 1)th expectation step of the EM algorithm,

Q(θ|θ(t)) =Eθ(t) [l(θ|Y,Z,X)]

=

nD∑
j=1

K
(t)
1j log(1− ε) +

nD∑
j=1

K
(t)
1j log φ(yDj|ηD,Σ)

+

nD∑
j=1

(
1−K(t)

1j

)
log ε+

nD∑
j=1

(
1−K(t)

1j

)
log φ(yDj|ηH ,Σ)

+

nH∑
j=1

K
(t)
2j log δ +

nH∑
j=1

K
(t)
2j log φ(yHj|ηD,Σ)

+

nH∑
j=1

(
1−K(t)

2j

)
log(1− δ) +

nH∑
j=1

(
1−K(t)

2j

)
log φ(yHj|ηH ,Σ)

+

mD∑
j=1

log φ(vDj
|ηD,Σ) +

mH∑
j=1

log φ(vHj
|ηH ,Σ),

where

K
(t)
1j =

(1− ε(t))φ(yDj|η
(t)
D ,Σ

(t))

(1− ε(t))φ(yDj|η
(t)
D ,Σ

(t)) + ε(t)φ(yDj|η
(t)
H ,Σ

(t))
and (3.12)

K
(t)
2j =

δ(t)φ(yHj|η
(t)
D ,Σ

(t))

δ(t)φ(yHj|η
(t)
D ,Σ

(t)) + (1− ε(t))φ(yHj|η
(t)
H ,Σ

(t))
. (3.13)

M step: For the maximization step of the EM algorithm, setting ∂
∂θ
Q(θ|θ(t)) = 0 we have

∂Q(θ|θ(t))

∂ε
=−

nD∑
j=1

K
(t)
1j

1− ε
+

nD∑
j=1

1−K(t)
1j

ε
= 0,

∂Q(θ|θ(t))

∂δ
=

nH∑
j=1

K
(t)
2j

δ
+

nH∑
j=1

1−K(t)
2j

1− δ
= 0,

∂Q(θ|θ(t))

∂ηD
=

nD∑
j=1

K1jΣ
−1(yDj − ηD) +

nH∑
j=1

K2jΣ
−1(yHj − ηD)

+

mD∑
j=1

Σ−1(vDj
− ηD) = 0,

∂Q(θ|θ(t))

∂ηH
=

nD∑
j=1

(1−K1j)Σ
−1(yDj − ηH) +

nH∑
j=1

(1−K2j)Σ
−1(yHj − ηH)

+

mH∑
j=1

Σ−1(vHj
− ηH) = 0,
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and

∂Q(θ|θ(t))

∂Σ
=− 1

2

nD∑
j=1

K1j(Σ
−1 − Σ−1(yDj − ηD)(yDj − ηD)>Σ−1)

− 1

2

nD∑
j=1

(1−K1j)(Σ
−1 − Σ−1(yDj − ηH)(yDj − ηH)>Σ−1)

− 1

2

nH∑
j=1

K2j(Σ
−1 − Σ−1(yHj − ηD)(yHj − ηD)>Σ−1)

− 1

2

nH∑
j=1

(1−K2j)(Σ
−1 − Σ−1(yHj − ηH)(yHj − ηH)>Σ−1)

− 1

2

mD∑
j=1

(Σ−1 − Σ−1(vDj − ηD)(vDj − ηD)>Σ−1)

− 1

2

mH∑
j=1

(Σ−1 − Σ−1(vHj − ηH)(vHj − ηH)>Σ−1) = 0.

Then, for the maximization step of the EM algorithm, we set ∂
∂θ
Q(θ|θ(t)) = 0 and

solve for θ to obtain

ε(t+1) =1−
nD∑
j=1

K
(t)
1j

nD
, δ(t+1) =

nH∑
j=1

K
(t)
2j

nH
,

η
(t+1)
D =

∑nD

j=1K
(t)
1j yDj +

∑nH

j=1K
(t)
2j yHj +

∑mD

j=1 vDj∑nD

j=1 K
(t)
1j +

∑nH

j=1 K
(t)
2j +mD

,

η
(t+1)
H =

∑nD

j=1

(
1−K(t)

1j

)
yDj +

∑nH

j=1

(
1−K(t)

2j

)
yHj +

∑mH

j=1 vHj

nD + nH +mH −
(∑nD

j=1K
(t)
1j +

∑nH

j=1K
(t)
2j

) and
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Σ(t+1) =

∑nD

j=1K
(t)
1j

(
yDj − η

(t)
D

)(
yDj − η

(t)
D

)>
nD + nH +mD +mH

+

∑nD

j=1

(
1−K(t)

1j

)(
yDj − η

(t)
H

)(
yDj − η

(t)
H

)>
nD + nH +mD +mH

+

∑nD

j=1K
(t)
2j

(
yHj − η

(t)
D

)(
yHj − η

(t)
D

)>
nD + nH +mD +mH

+

∑nD

j=1

(
1−K(t)

2j

)(
yHj − η

(t)
H

)(
yHj − η

(t)
H

)>
nD + nH +mD +mH

+

∑mD

j=1

(
vDj
− η(t)

D

)(
vDj
− η(t)

D

)>
nD + nH +mD +mH

+

∑mH

j=1

(
vHj
− η(t)

H

)(
vHj
− η(t)

H

)>
nD + nH +mD +mH

.

We propose the initial values

˜̃ηD =
nDη̃D +mDVD

nD +mD

, ˜̃ηH =
nH η̃H +mHVH

nH +mH

, and

˜̃
Σ =

˜̃
SP −

( nD
nD + nH

ε(1− ε)
(1− δ − ε)2

+
nH

nD + nH

δ(1− δ)
(1− δ − ε)2

)
(yD − yH)(yD − yH)>,

where,

η̃D =
(1− δ̂)yD − ε̂yH

1− δ̂ − ε̂
, η̃H =

(1− ε)yH − δyD
1− δ − ε

,

ε̂ and δ̂ are as defined in (3.3),˜̃
SP = (nD + nH +mD +mH)−1(nDS̃D + nH S̃H +mD

˜̃
SD +mH

˜̃
SH),

S̃D = n−1
D

nD∑
j=1

(YDj − YD)(YDj − YD)>,

S̃H = n−1
H

nH∑
j=1

(YHj − YH)(YHj − YH)>,

˜̃
SD = m−1

D

mD∑
j=1

(VDj − VD)(VDj − VD)>, and

˜̃
SH = m−1

H

mH∑
j=1

(VHj − VH)(VHj − VH)>.
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Supplemental Simulations Results

This subsection contains additional simulation results that are discussed in Section 3.5.
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Figure 3.2: Boxplots of CP, RB%, and SB% for all methods except the traditional method.
MMV is for the moment-based method and EMV is for the MLE via EM algorithm.
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Figure 3.3: Boxplots of CP of different methods for different p, ∆ and σ2. MMV is for the
moment-based method and EMV is for the MLE via EM algorithm.
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Figure 3.4: Boxplots of RB% of different methods for different p, ∆ and σ2. MMV is for
the moment-based method and EMV is for the MLE via EM algorithm.
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Figure 3.5: Boxplots of SB% of different methods for different p, ∆ and σ2. MMV is for
the moment-based method and EMV is for the MLE via EM algorithm.
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Figure 3.6: Boxplots of CP, RB%, SB% of different methods on different ε and δ. MMV is
for the moment-based method and EMV is for the MLE via EM algorithm.
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Chapter 4 Nonparametric Finite Mixture: Applications in Contaminated Trials

4.1 Introduction

Randomized clinical trials are commonly used to assess the efficacy and safety of a treat-

ment. Sometimes, subjects with different conditions may respond differently to the treat-

ment. Biomarkers, classifiers, diagnostic devices or instruments may be used at the recruit-

ment stage to separate the sample population into different groups. Such screening tools

usually do not have perfect accuracy, and their misclassification rates (false positive and

false negative rates) are unknown or assumed to be zero. This leads to contamination in

separating the sample populations and results in biased estimation of the treatment effect.

The issue of misclassfication in pre-stratified clinical trials has become prominent in

this new era of personalized medicine and measurement-based care. US Food and Drug

Administration (FDA) published a concept paper (Hinman et al., 2006) that recommends

the co-development of drug and diagnostic tools. It suggests that clinical test validation

(i.e. the ability of a test to classify subjects correctly) and clinical utility (i.e., the ability of

a test to result in classification that will improve the benefit/reduce the risk of a drug) be

established in a pre-clinical pilot feasibility study. One way to achieve this is by using a pre-

stratified randomized placebo-controlled design, or in a pre-stratified pre-post or matched

paired design. This chapter will focus on the second design and the methods can also be

adapted for the first type of design.

Under the assumption of normality, the problem above can be solved by regarding the

true status of the subjects as missing information and EM algorithm can be used to find the

maximum likelihood estimators of parameters (Harrar et al., 2016). In the absence of nor-

mality, especially when the data are not measured in metric scale, or when data have heavy

tails or are skewed, nonparametric methods are preferred. This chapter develops a fully

nonparametric method for estimation and testing of treatment effect when the classifiers

used for stratifying participants are fallible.
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Nonparametric Finite Mixture

Accurate estimations of the misclassification rates of the classifiers are required to evaluate

the effect of a treatment. This problem can be regarded as estimating mixing proportions in

the nonparametric mixture models. The most general model for nonparametric multivariate

mixtures is as follows: let X1, . . . ,Xn be i.i.d random variables from a finite mixture of

m > 1 arbitrary distributions. Suppose the cumulative distribution function ofXi is

F =
m∑
j=1

λjFj, (4.1)

where Fj and λj are the cumulative distribution function and mixture proportion (mix-

ing probability) of jth component, respectively. Obviously, model (4.1) is not identifiable

and some restrictions need to be placed. Hall and Zhou (2003) introduced the conditional

independence assumption. That is, the k variables inXi are independent, and each compo-

nent distribution Fj has a Lebesgue density fj . Therefore, model (4.1) can be equivalently

expressed as

f(xi) =
m∑
j=1

λj

k∏
l=1

fjl(xil). (4.2)

The authors established that when m = 2 and k ≥ 3, the model (4.2) is identifiable. Later

on, Allman et al. (2009) establishied the identifiability of model (4.2) when k ≥ 3, regard-

less of m. Many estimation methods have been developed under this condition. Benaglia

et al. (2009) proposed estimators based on a EM-like algorithm and Levine et al. (2011)

discussed some strategies of selecting the bandwidth for this algorithm. Zheng and Wu

(2020) proposed an estimation method by constructing a suitable set of basis fuctions and

recovering the coordinates of the component denisty functions with respect to the basis

functions. Chauveau and Hoang (2016) developed an EM-like algorithms by modifying

the independence assumption (4.2) to blockwise independence, but the number of blocks

is still assumed to be greater than 3. In the pre-post design, measurements are taken twice

for each subject, i.e. k2. In this case, model (4.2) is not identifiable, and more restric-

tions are required. In the univariate case, Bordes et al. (2006) and Hunter et al. (2007)

both proposed estimators when the component distribution belongs to location family and

symmetric about zero. These assumptions are too restrictive for modeling outcomes.
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Another way to overcome identifiability issue is to obtain training samples from each

component distribution (Hall, 1981). More specifically, suppose we have training samples

from each of the component distributions F1, . . . , Fm. Then the mixing proportions λj can

by estimated by minimizing the distance between empirical distribution functions, i.e.

∆(λ) =

∣∣∣∣∣
∫ ∞
−∞

δ

(
F̂ (x)−

m∑
j=1

λjF̂j(x)

)
w(x)dx

∣∣∣∣∣ , (4.3)

where F̂ and F̂j are empirical versions of F and Fj , respectively. The primary focus of

Hall (1981) is when δ(x) = x2 and w(x) ≡ 1. They also assume∫ ∞
−∞
|x|1+εdF (x) <∞, (4.4)

for some ε > 0.

This requirement imposes a restriction on the tail of the distribution. Especially, it re-

quires that the first moment of the component distributions to exist. There are also other

works that developed methods using density funtions and different distance function δ(x)

to estimate mixing proportions. Titterington (1983) considered minimum distance estima-

tors using density estimators. Qin (1999) established an empirical likelihood ratio based

confidence intervals assuming the log-likelihood ratio of two component densities is linear

in observations. Karunamuni and Wu (2009) proposed an estimator of mixture proportion

by minimize Hellinger distance. These methods are not applicable when the distributions

are not absolutely continuous (i.e. when they do not have Lebesgue density).

In the present chapter, we will assume there exists more expensive but infallible clas-

sifiers such that we can obtain a training data to estimate the mixing proportions. To

make the results applicable to different types of data (discrete, continuous, binary and

ordered categorical), we will use normalized cumulative functions and obtain estimators

via (4.3). The normalized distribution function F of a random variable X is defined by

F (x) = {P (X ≤ x) + P (X < x)}/2 = {F+(x) + F−(x)}/2 where F+ and F− are the

right and left continuous, respectively, versions of the distribution functions of X .
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Nonparametric Relative Effects

In the absence of misclassification errors, the design we are interested in generates re-

peated measures (dependent) data in two groups. Nonparametric methods for dependent

data have been developed in a body of literature spanning over four decades. One of the

earlier approaches is the rank-based methods by Brunner and Neumann (1982), which was

later generalized by Thompson (1990, 1991) for continuous data. Most of the older non-

parametric methods were motivated by replacing original observations by ranks, known as

rank transformation, in parametric methods to gain robustness.

In a series of papers (Akritas, 1990, 1991, 1992) the application of rank transforma-

tion is inadequate for testing some of the hypotheses in factorial desgins. This limitation

motivated the development of fully nonparametric methods (Akritas and Arnold, 1994;

Brunner et al., 1997; Akritas and Brunner, 1997; Brunner et al., 1999), where hypothe-

ses are formulated in terms of marginal distributions. The (mid-)rank based procedures

arise naturally as a consequence of estimating the distributions with their empirical ver-

sions. The nonparametric hypotheses have the limitation that the alternative hypotheses

are generally difficult to interpret. To overcome this problem, Brunner and Munzel (2000);

Konietschke et al. (2012) and Brunner et al. (2017) proposed to formulate hypotheses in

terms of the so-called nonparametric relative effects. These purely nonparametric effect

measures allow construction of confidence intervals. They also address the nonparamet-

ric Behrens-Fisher problem (Brunner and Munzel, 2000) in the sense that the joint and

marginal distributions of the data in the various groups could still be different under the

null hypothesis. In the simplest case of two independent groups, the nonparametric effects

reduce to the Wilcoxon-Mann-Whitney effect (Wilcoxon, 1945; Mann and Whitney, 1947).

The asymptotic theory for the estimators and tests are generally tractable with the use of

asymptotic equivalence and central limit theorem, except that the derivation of the asymp-

totic variance is cumbersome.

In the situation where the diagnostic tool used to stratify participants is subject to clas-

sification error, the correct nonparametric marginal model and the associated relative effect

of interest require the use of nonparametric finite mixtures. The marginal distributions
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of the pre and post measurements are two-component mixture distribution in both groups

where the mixing probabilities are the missclassification error rates. In this design, the

identifiability problem is overcome by acquisition of data from correctly classified partici-

pants, which hereinafter will be referred to as validation or training data.

Unlike existing nonparametric methods for estimation and testing of relative treatment

effects, the theory for contaminated samples situation involves estimation of the mixing

probabilities in addition to the relative effects, where the later depends on the former. In

our approach, the mixing probabilities are estimated by minimizing the disagreement (4.3)

between the estimate of the mixture distribution with the original (contaminated) data and

that obtained by estimating the components of the mixture separately using the validation

or training data. The requirement (4.4), which excludes heavy tailed distributions such as

Cauchy, is rather restrictive for our application. To remove this assumption, we choose

the weight function w(x) to be the weighted average of the marginal empirical distribution

functions.

The remainder of the chapter is organized as follows. In Section 2, we describe the

statistical model and treatment effect measure. Estimation, asymptotic theory and test pro-

cedures for mixing probabilities are the subjects of Section 3. Section 4 provides estima-

tion, asymptotic theory and testing procedures for the treatment effect. Simulation results

designed to show the finite sample performance of the inferential procedures for mixing

probabilities and treatment effect under various practical scenarios are presented in Section

5. In Section 6, we illustrate the application of the results using data from a sleep depriva-

tion study. Discussions and conclusions are provided in Section 7. The Appendix contains

all proofs and additional simulation results.

4.2 Model and Effect Size Measure

Suppose we have subjects from two groups g = 1, 2 that are observed at two (pre- and

post-treatment) time points t = 1, 2. Among the subjects in each group, some of them

are classified into the group by a fallible classifier, and the remaining are classified by an

infallible classifier. Suppose the misclassification error rates for the fallible classifier is δg

in group g. Denote the paired observations from subjects classified by the fallible classifier
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as X1gk = (X1g1k, X1g2k) for g = 1, 2 and k = 1, 2, . . . , n1g, and those by the infallible

classifier as X2gk = (X2g1k, X2g2k) for g = 1, 2 and k = 1, 2, . . . , n2g. We refer to

these two sources of data as contaminated and training (validation) data, respectively. Let

Xhgt1, . . . Xhgtnhg
be identically and independently distributed according to Fhgt, assumed

to be nondegenerate for h = 1, 2, g = 1, 2 and t = 1, 2. To accommodate binary, ordered

categorical, discrete and continuous data in a unified manner, Fhgt are taken to be the

normalized distribution functions defined by

Fhgt(x) :=
1

2
{F+

hgt(x) + F−hgt(x)},

where F−hgt(x) = P (Xhgt1 < x) and F+
hgt(x) = P (Xhgt1 ≤ x) are the left and right

continuous, respectively, versions of the distribution function.

The distributions F2gts are for observations from subjects classified by infallible clas-

sifiers. Therefore, F1gt is a mixture of F21t and F22t, mixed in proportions determined δg,

i.e.,

F1gt = (1− δg)F2gt + δgF2g′t, (4.5)

for g′ 6= g, g′, g, t = 1, 2. For the sake of convenience, we express F2gt in terms of F11t and

F12t as,

F2gt = F1gt +
δg

1− δ1 − δ2

(F1gt − F1g′t) . (4.6)

Equation (4.6) suggests that validation (training data) would not be needed if δg are known

for g = 1, 2 as the treatment effect can be meaningfully assessed from estimation of F1gt

and using this equation.

Nonparametric relative effects are defined by comparing each marginal distribution

function with the average distribution function. Let G denote the average of the distri-

bution functions in the two groups and at the two time points defined by

G : =
1

4
(F211 + F212 + F221 + F222)

=
1

4

(
F111 + F112 + F121 + F122 +

δ1 − δ2

1− δ1 − δ2

(F111 + F112 − F121 − F122)

)
.
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Using the average distribution function G, define

pgt =

∫
GdF2gt = 1−

∫
F2gtdG.

for g, t = 1, 2 which is known as the nonparametric effect at time point t and in group g

relative to the average of the marginal distributions, G. The magnitude of pgt has interpre-

tation in terms of the corresponding marginal distribution having a tendency to generate

larger or smaller values compared to the overall sample.

Using the nonparametric relative effects, the treatment effect in the two group pre-post

design is defined by

pI := (p12 − p11)− (p22 − p21). (4.7)

To provide an intuitive meaning of pI, let F2gt be the distribution function of N(µgt, σ
2). In

this case, pI = 0 if and only if (µ12 − µ11)− (µ22 − µ21) = 0, which is equivalent to lack

of interaction in the two group and two time point repeated measures design. Inferential

methods for this design were investigated in the purely nonparametric and second-order

semi-parametric contexts in Harrar et al. (2020) and Xu and Harrar (2012), respectively,

but for the situation where group membership of participants can be determined without

errors, i.e. δg = 0 for g = 1, 2 and training data is not necessary.

Our main objective is to investigate the estimation of the nonparametric treatment effect

size pI and study its asymptotic properties that includes the asymptotic distributions. Along

the way, we derive asymptotic properties for the estimators of the mixing proportions that

are not only needed for the asymptotic properties of the effect size estimators but also are

of interest in their own right. The asymptotic distributions of the effect size estimators will

be used to develop confidence intervals and significance tests.

4.3 Inference on Mixing Proportions

Estimation

To relax the requirement in (4.4), we set ω(x)dx = dĤ(x), where Ĥ(x) is weighted aver-

age of the empirical marginal distribution functions of observations in the two groups, at
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the two time points and for the two classifiers, i.e.,

Ĥ =
2∑

h=1

2∑
g=1

2∑
t=1

nhg
N
F̂hgt, (4.8)

where N = 2
∑2

h=1

∑2
g=1 nhg and F̂hgt(x) is the normalized empirical counterpart of Fhgt

defined by

F̂hgt(x) =
1

nhg

nhg∑
k=1

c(x−Xhgtk), where c(x) =


0, x < 0

1
2
, x = 0

1, x > 0

. (4.9)

While this choice of the weight function is natural, it is also used to establish the consis-

tency of the estimators of δ1 and δ2 stated in Proposition 4.3.1.

We propose to estimate δ1 and δ2 by minimizing the distance between the empirical

version of left and right hand sides of (4.5). Setting θ = (δ1, δ2), we use the distance

function

∆(θ) =
2∑
g=1

2∑
t=1

∫ ∞
−∞

(
F̂1gt − [(1− δg)F̂2gt + δgF̂2g′t]

)2

dĤ,

for g′ 6= g and g′ = 1, 2.

Taking partial derivatives of ∆(θ) with respect to δ1 and δ2 and setting them equal to 0,

we have

δg

2∑
t=1

∫
(F̂2gt − F̂2g′t)

2dĤ =
2∑
t=1

∫
(F̂1gt − F̂2gt)(F̂2g′t − F̂2gt)dĤ.

In order to estimate the mixing proportions, we need to assume the component distri-

butions are not very close to each other.

Assumption 4.3.1. There exist a constant C > 0 such that∫ {
(F221 − F211)2 + (F222 − F212)2

}
dH > C,

where H = N−1
∑

h=1 2
∑2

g=1

∑2
t=1 nhgFhgt.

Under Assumption 4.3.2, the probability that the normalized empirical distribution in

the two groups differ will approach 1 as the sample sizes get large. That is,

P

(
2∑
t=1

∫
(F̂21t − F̂22t)

2dĤ 6= 0

)
→ 1, as N →∞.
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Therefore, under Assumption 4.3.2, ∆(θ) is a convex function of δg, g = 1, 2, and its

minimum is attained at

δ̂g = max

{∑2
t=1

∫
(F̂1gt − F̂2gt)(F̂2g′t − F̂2gt)dĤ∑2
t=1

∫
(F̂21t − F̂22t)2dĤ

, 0

}
, (4.10)

for g = 1, 2.

To establish the consistency of δ̂g, we need a standard proportional divergence require-

ments on the group sample sizes.

Assumption 4.3.2. There exist nonnegative numbers M0 and N0 such that 0 < M0 ≤

min{ N
nhg
, h = 1, 2, g = 1, 2} ≤ max{ N

nhg
, h = 1, 2, g = 1, 2} ≤ N0 <∞.

We also need to assume that δg is bounded away from 0 and 1
2
.

Assumption 4.3.3. There exists a constant 0 < c0 < c1 < 1/2, such that

0 < c0 ≤ δ1 ≤ c1 <
1

2
and 0 < c0 ≤ δ2 ≤ c1 <

1

2
.

Under Assumptions 4.3.2 and 4.3.3, δ̂g is consistent estimators for δg for g = 1, 2. This

is proved next in Proposition 4.3.1.

Proposition 4.3.1. Let Xhgtk ∼ Fhgt, g = 1, 2, t = 1, 2, k = 1, . . . , nhg. Further, let

F̂hgt(x) denote the standard empirical distribution functions of Fhgt(x). Let δ̂g be defined

as in (4.10) for g = 1, 2. Then, under Assumptions 4.3.1, 4.3.2, and 4.3.3, we have

δ̂g
P−→ δg,

for g = 1, 2.

Although δ̂g is consistent estimator of δg, g = 1, 2, it is a biased estimator in finite

samples. Proposition 4.3.2 establishes that the bias is of order N−1.

Proposition 4.3.2. Let δ̂g be as defined in (4.10). Under Assumptions 4.3.1, 4.3.2, and

4.3.3,

E(δ̂g)− δg = O(N−1),

for g = 1, 2.
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Asymptotic Distribution

To simplify the expression for the asymptotic variance, we assume that the ratios of the

total sample size (N ) to individual sample sizes (nhg) are fixed as N →∞.

Assumption 4.3.4. N
nhg
→ κhg > 0. as N →∞, for any h, g = 1, 2.

We can approximate the distribution of δ̂` by sums of independent random variables

and derive the asymptotic distribution as follows.

Theorem 4.3.1. Let δ̂`, ` = 1, 2, be as defined in (4.10). Under Assumptions 4.3.1, 4.3.2,

4.3.3, and 4.3.4,

√
N(δ̂` − δ`)

D−→ U ∼ N
(
0, κ11σ

2
`11 + κ12σ

2
`12 + κ21σ

2
`21 + κ22σ

2
`22

)
, (4.11)

where

σ2
`hg = V ar(V`hg(Xhg1)),

and V`hg(Xhg1) is defined in (4.38) for `, g, h = 1, 2.

The quantity σ2
`hg can be regarded as variance of functions of observations in contami-

nated (h = 1) or validation (h = 2) data of group g for δ̂`. From (4.11), the variance of δ̂`

is a weighted average of variances from both contaminated and validation data in the two

groups. As one would expect and (4.10) reveals, estimation error of δ̂` involves observa-

tions in in contaminated data of group `′, where `′ 6= `. This is guarateed by the weight

function Ĥ , which is defined as the weighted average of empirical distributions from the

two data sets.

From the Weak Law of Large Numbers,

σ̂2
`hg − σ2

`hg
P−→ 0,

for `, g, h = 1, 2, where

σ̂2
`hg =

1

nhg − 1

nhg∑
i=1

(
V`hg(Xhgi)− V `hg(Xhg·)

)2
and V `hg(Xhg·)

=
1

nhg

nhg∑
i=1

V`hg(Xhgi).
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The quantity σ̂`hg cannot be directly used to estimate σ`hg in real applications because

V`hg(·) is not an observable function. However, it can be shown that a consistent estimator

can be obtained by replacing these functions with their analogs defined in terms of the

empirical distribution functions. To that end, let V̂`hg(·) be defined analogous to V`hg(·), by

replacing Fhgt with F̂hgt, for all h, g, t = 1, 2. Further, define

S2
`hg =

1

nhg − 1

nhg∑
i=1

(
V̂`hg(Xhgi)− V̂ `hg(Xhg·)

)2

and

V̂ `hg(Xhg·) =
1

nhg

nhg∑
i=1

V̂`hg(Xhgi).

Obviously, the proof of S2
`hg being a consistent estimator for σ`hg will be complete if we

can prove that S2
`hg − σ̂2

`hg
P−→ 0.

Theorem 4.3.2. Assume that σ2
`hg > 0, `, g, h = 1, 2. Under Assumptions 4.3.1, 4.3.2, and

4.3.3, S2
`hg is a consistent estimator of σ2

`hg for `, g, h = 1, 2.

Test Procedure and Confidence Interval

The asymptotic theory in Section 4.3 can be used to develop methods for confidence in-

tervals and significance test based on the estimator δ̂`. The hypothesis of interest is if the

misclassification rates is greater than a known value δ`,0, i.e.,

H0 : δ` = δ`,0 vs Ha : δ` > δ`,0.

Under Assumption 4.3.1 and assuming that σ2
`hg > 0, `, h, g = 1, 2, we have

TM =
√
N
δ̂` − δ`√

S2
`

D−→ Z ∼ N(0, 1),

where S2
` = N

n11
S2
`11 + N

n12
S2
`12 + N

n21
S2
`21 + N

n22
S2
`22. Taking δ` = δ`,0, we can use TM as

a viable test statistic. Further, (1 − α)100% asymptotic confidence interval for δ` can be

obtained from

P

(
δ̂` −

zα/2
√
S2
`√

N
≤ δ` ≤ δ̂` +

zα/2
√
S2
`√

N

)
→ 1− α, (4.12)

where zα/2 denotes the (1− α/2)th-quantile of the standard normal distribution.
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4.4 Estimation and Test on Effect Size

Estimation

According to the calculations in Harrar et al. (2020),

pI =
1

2

∫
(F211 + F222)d(F212 + F221)− 1. (4.13)

Applying (4.6), the treatment effect pI can be expressed in terms of F1gt, g, t = 1, 2, as

pI =
1

2(1− δ1 − δ2)

∫
(F111 + F122)d(F112 + F121) (4.14)

+
δ1 − δ2

2(1− δ1 − δ2)2

∫
(F111 − F121)d(F112 − F122)− 1

1− δ1 − δ2

.

The details are shown in the Appendix. To see the effects of misclassification errors, we

express (4.14) as

pI =
1

1− δ1 − δ2

p∗I +
δ1 − δ2

2(1− δ1 − δ2)2

∫
(F111 − F121)d(F112 − F122), (4.15)

where p∗I = 1
2

∫
(F111 +F122)d(F112 +F121)−1 is the treatment effect by traditional method

ignoring the misclassification errors. Clearly, one will end up introducing bias by ignoring

the errors. The estimates will still be biased even if the misclassifications are balanced in

the two groups, i.e. even if δ1 = δ2.

Two separate estimators of the treatment effect pI can be constructed from the two

sources of data. Using the contaminated data, we can plug-in the empirical versions of

F1gt, g, t = 1, 2 in (4.14) to estimate the treatment effect by

p̂I1 =
1

2(1− δ̂1 − δ̂2)

∫
(F̂111 + F̂122)d(F̂112 + F̂121) (4.16)

+
δ̂1 − δ̂2

2(1− δ̂1 − δ̂2)2

∫
(F̂111 − F̂121)d(F̂112 − F̂122)− 1

1− δ̂1 − δ̂2

.

On the other hand, we can also estimate pI by using the training (validation) data to get

empirical version of F2gt, g, t = 1, 2, and plugging the later in (4.13) as

p̂I2 =

∫
1

2
(F̂211 + F̂222)d(F̂212 + F̂221)− 1. (4.17)
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Combining (4.16) and (4.17), we propose to estimate pI by a weighted average of p̂I1 and

p̂I2 as

p̂I =
2(n11 + n12)

N
p̂I1 +

2(n21 + n22)

N
p̂I2. (4.18)

The consistency of the estimator p̂I is proved in Proposition 4.4.1.

Proposition 4.4.1. Under Assumption 4.3.1, 4.3.2, and 4.3.3, we have

p̂I
P−→ pI .

The estimator p̂I is biased for pI . However, the bias vanishes at the rate of N−1 under

Assumptions 4.3.1, 4.3.2 and 4.3.3.

Proposition 4.4.2. Let pI and p̂I be defined as in (4.7) and (4.18). Under Assumptions

4.3.1, 4.3.2 and 4.3.3, we have

E(p̂I)− pI = O(N−1).

Asymptotic Distribution

The asymptotic theory in purely nonparametric methods generally involves the so-called

Asymptotic Equivalence Theorem (Brunner and Munzel, 2000; Brunner et al., 2017; Harrar

et al., 2020), where the difference between estimated and true effect size is decomposed

in to a term amenable to Lindeberg’s CLT and an asymptotically negligible term. Such

decomposition is not possible in the nonparametric finite mixture situation. The asymptotic

distribution of p̂I in the later case is given in Theorem 4.4.1.

Theorem 4.4.1. Let p̂I be defined in (4.18). Under Assumptions 4.3.1, 4.3.2, 4.3.3, and

4.3.4,

√
N(p̂I − pI)

D−→ U ∼ N
(
0, κ11σ

2
11 + κ12σ

2
12 + κ21σ

2
21 + κ22σ

2
22

)
,

where

σ2
11 = V ar(A1 (V1(X11k) + U11(X11k))), σ2

12 = V ar (A1 (V2(X12k) + U12(X12k))) ,

σ2
21 = V ar(A2W1(X21k) + A1U21(X21k)), σ2

22 = V ar(A2W2(X22k) + A1U22(X22k)),
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A1 = 2N−1(n11 + n12) and A2 = 2N−1(n21 + n22). The functions Vg, Wg and Uhg are

defined in (4.46), (4.44) and (4.47), respectively, for g, h = 1, 2.

Similar to Theorem 4.3.1, the variance of p̂I is a weighted average of the variances σ2
hg,

where σ2
hg can be regarded as variances of functions of observations from contaminated

(h = 1) or validation (h = 2) data of group g. It is interesting to note that p̂I, defined

in (4.18), is a weighted average of p̂I1 and p̂I2, terms that are not independent in finite

samples. However, its variance turns out to be a linear combination of the variances of the

two terms.

Since Uhg(·), Vg(·) and Wg(·) are not observable functions, we use their empirical ver-

sion Ûhg(·), V̂g(·) and Ŵg(·), respectively, to estimate them. The components of the asymp-

totic variance can be estimated by

S2
11 =

1

n11 − 1

n11∑
k=1

A2
1

(
V̂1(X11k) + Û11(X11k)− V̂ 1(X11.)− Û11(X11·)

)2

,

S2
12 =

1

n12 − 1

n12∑
k=1

A2
1

(
V̂2(X12k) + Û12(X12k)− V̂ 2(X12.)− Û12(X12·)

)2

,

S2
21 =

1

n21 − 1

n21∑
k=1

(
A2Ŵ1(X21k) + A1Û21(X21k)− A2Ŵ 1(X21·)− A1Û21(X21·)

)2

,

and (4.19)

S2
22 =

1

n22 − 1

n22∑
k=1

(
A2Ŵ2(X22k) + A1Û22(X22k)− A2Ŵ 2(X22k)− A1Û22(X22·)

)2

,

where V̂ (X1.) = 1
n1

∑n1

k=1 V̂ (X1k) and Ŵ (X2.) = 1
n2

∑n2

k=1 Ŵ (X2k). The consistency of

the estimators in (4.19) is established in Theorem 4.4.2.

Theorem 4.4.2. Under Assumptions 4.3.1, 4.3.2, and 4.3.3 and assume that σ2
hg > 0,

h, g = 1, 2 then S2
hg are consistent estimators of σ2

hg, respectively.

Note that when the mixing proportions δ`, ` = 1, 2, are known, one can estimate the

treatment effect pI using (4.14) by estimating the distribution functions from the contam-

inated data alone. In this case, validation data is not necessary and the estimator would
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be

p̃I1 =
1

2(1− δ1 − δ2)

∫
(F̂111 + F̂122)d(F̂112 + F̂121) (4.20)

+
δ1 − δ2

2(1− δ1 − δ2)2

∫
(F̂111 − F̂121)d(F̂112 − F̂122)− 1

1− δ1 − δ2

.

In proof of Theorem 4.4.1, it is established that

√
N(p̃I1 − pI)

D−→ U ∼ N
(
0, κ11σ

2
1 + κ12σ

2
2

)
, (4.21)

where σ2
i = V ar(Vi(X1i1)) and Vi(X1i1) is defined in (4.46) for i = 1, 2.

Test Procedure and Confidence Interval

We can develop confidence interval and significance test procedures for the treatment effect

pI based on the estimator p̂I and its asymptotic distribution. The null hypothesis of interest

is that of no treatment effect, i.e.

H0 : pI = 0 vs Ha : pI 6= 0. (4.22)

Under Assumption 4.3.1 and assuming that σ2
1 > 0 and σ2

2 > 0, we have

TM =

√
N(p̂I − pI)√

S2
I

D−→ Z ∼ N(0, 1).

where S2
I = N

n11
S2

11 + N
n12
S2

12 + N
n21
S2

21 + N
n22
S2

22. The quantity TM can serve as a test statistic

for the hypotheses in (4.22) by taking pI = 0. An asymptotic (1 − α)100% confidence

interval for pI can be derived from

P

(
p̂I −

zα/2
√
S2
I√

N
≤ pI ≤ p̂I +

zα/2
√
S2
I√

N

)
→ 1− α,

where zα/2 denotes the (1− α/2)th-quantile of the standard normal distribution.

4.5 Simulation Study

In this section, we use simulations to investigate the finite-sample accuracy of estimators

and the asymptotic results for mixing proportions and treatment effect. We investigate

the performance of the proposed methods under various settings for the distribution of the
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data, sample size allocations, sample size ratio between validation and contaminated data,

within-pair dependence, and the mixing proportions δ1 and δ2. In all the simulations, the

run size is 10, 000.

We consider both continuous and discrete distributions to generate data. For continu-

ous distribution, data will be generated from normal, Cauchy, and lognormal distributions

which represent light-tailed, heavy-tailed and skewed distributions, respectively. The val-

idation datasets will be generated from bivariate Normal, Cauchy or Lognormal distribu-

tions, respectively, with group mean vectors µ1 = (µ11, µ12)> and µ2 = (µ21, µ22)>, and

constant covariance matrix Σ = σ2

1 ρ

ρ 1

 . The contaminated datasets are generated

from mixture of these distributions such that (4.5) is satisfied. For the mean and covari-

ance parameters, we set σ2 = 1, µ11 = 1, µ12 = 2, µ21 = 3, µ22 = 4 and ρ ∈ {0, 0.5}.

We will also study performance by discretizing data from the normal distributions. To in-

vestigate performance of the methods for count data, we generate bivariate Poisson data

as follows. Note that, if Z1, Z2 and Z3 are independent Poisson random variables with

parameters λ1, λ2 and λ3, respectively then X1 = Z1 + Z3 and X2 = Z2 + Z3 are

marginally distributed as Poisson with λ = λ1 + λ3 and λ2 + λ3 and correlation ρ =

λ3√
(λ1+λ3)(λ2+λ3)

. Utilizing this property, we generate bivariate Poisson data with marginal

distributions Poisson(λht), h, t = 1, 2, where (λ11, λ12, λ21, λ22) = (1, 2, 3, 4) and corre-

lation ρ ∈ {0, 0.5}. The effect of sample size is evaluated by considering the allocations

(n11, n21) ∈ {(50, 50), (50, 100), (100, 100)} and the validation-contaminated sample ra-

tios, hereinafter referred to as sample size ratio, varied in {10%, 30%, 50%}. To check the

effects of low to moderate misclassifications, we consider δ1, δ2 ∈ {0.01, 0.1, 0.25}.

Suppose we are interested in estimating θ by θ̂. We will use three criteria to assess the

performances of estimators.

1. Bias of the estimator: Bias= E(θ̂)− θ.

2. Root mean of square error: RMSE=

√
E(θ̂ − θ)2.

3. Coverage probability (CP): the proportion of 95% confidence intervals that cover the

true value of θ.

80



Mixing Proportions

For mixing proportions, we compare our proposed estimators with Hall (1981) estimators

in terms of Bias and RMSE. We also check the asymptotic results in (4.11) by computing

coverage probabilities. Thefore, the method compared are

1. the new estimator (New): the estimator defined in (4.10) with asymptotic distribution

in (4.11) and

2. Hall’s estimator (Hall): the estimator proposed in Hall (1981)’s where w(x) ≡ 1.

Accuracy of Estimation

Table 4.1 presents the simulation results for δ̂1 and δ̂2 when F2gt, g,t=1,2, are Normal

distributions. From these results, we see that the bias and RMSE of δ̂1 and δ̂2 for both

methods are small. The RMSE for the two methods are close but the bias from Hall is a bit

higher than the New method. Because the weight function for Hall’s method is equal to 1,

the estimation of δ1 is not affected by the change of δ2, and vice versa. The new methods’

weight is determined by the average of all distributions. Thus, a change in δ2 expectedly

affects the estimation of δ1 but the variation is not very large.

Table 4.1: Bias(×100) and RMSE(×100) of δ̂1 and δ̂2 when σ2 = 1, ρ = 0, n11 =
100, n12 = 100, ratio= 0.5

Estimation δ̂1 δ̂2

Method New Hall New Hall
δ1 δ2 Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0.01
0.01 0.570 5.628 0.715 5.641 0.601 5.578 0.739 5.605
0.10 0.582 5.693 0.715 5.641 0.560 5.928 0.687 5.994
0.25 0.601 5.807 0.715 5.641 0.422 6.382 0.533 6.461

0.10
0.01 0.497 5.947 0.630 6.003 0.615 5.647 0.739 5.605
0.10 0.509 5.996 0.630 6.003 0.574 5.978 0.687 5.994
0.25 0.529 6.082 0.630 6.003 0.437 6.407 0.533 6.461

0.25
0.01 0.313 6.361 0.422 6.435 0.636 5.769 0.739 5.605
0.10 0.326 6.387 0.422 6.435 0.597 6.07 0.687 5.994
0.25 0.346 6.434 0.422 6.435 0.461 6.457 0.533 6.461
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To make the comparisons clearer, we summarize the results by boxplots to illustrate

the effects of various factors of the simulation design. From Figure 4.1 we see that the

estimates from the new method are accurate in most scenarios, since most of the Bias and

RMSE of estimators fall in the ranges (0, 0.08) and (0.05, 0.20), respectively. The biases of

Hall’s estimators are higher than the new method’s in most scenarios. The RMSEs of the

two methods are close for normal, Poisson and discretized normal distributions. But for

Cauchy distribution, the bias and RMSE are the highest and the new method performs much

better than Hall’s estimators. This is not surprising since Hall’s method requires (4.4) and

Cauchy distribution does not satisfy this condition. However, for lognormal distribution,

the performance of Hall’s estimators of δ1 and δ2 are quite different. The bias and RMSE

of δ̂1 are smaller than the New method’s while the bias and RMSE of δ̂2 are much larger.

The tails of lognormal distributions for group 2 are heavier than that of group 1, and the

estimators seem to be affected greatly by the large values in the tail. These imply Hall’s

method may not be suitable for heavy tailed distribution, even if (4.4) is satisfied.
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Figure 4.1: Boxplots of bias and RMSE for δ̂1 and δ̂2 by distributions. Disnorm is dis-
cretized normal distribution.

To check the effect of the other factors, we draw boxplots of Bias and RMSE by sample

size allocation, mixture proportion and within-pair dependence. Since the results for δ̂2 are

similar to δ̂1, we only present boxplots for δ̂1 here and the boxplots for δ̂2 are presented

in the Appendix 4.8. The results for Bias of δ̂1 is presented in Figure 4.2 and Figure 4.3

contains the RMSE.
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Figure 4.2: Boxplots of bias for δ̂1 by sample size, sample size ratio, δ1 and ρ.
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Figure 4.3: Boxplots of RMSE for δ̂1 by sample size, ratio, δ1 and ρ.

Overall, the comparison of the two methods are similar to what was observed in Figure

4.1. The estimators become more accurate when the sample size n11 increase from 50 to

100. The sample size ratio between validation and contaminated data has great effects on

the performance. When the ratio increase from 0.1 to 0.5, the bias and RMSE decrease

rapidly. This shows that we can get accurate results if the ratio is not too low. The biases

of δ̂1 decrease as the true value (δ1) gets large, but RMSEs are less affected. The biases of

δ̂1 get smaller and the RMSEs get larger when ρ increase from 0 to 0.5. Furthermore, the

performance of the new estimator is more stable than the Hall’s estimator.
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Asymptotic Distribution

To check the asymptotic distribution in (4.11), we ran simulations and recorded the cov-

erage probability for the 95% confidence interval in (4.12). Table 4.2 contains the results

for δ̂1 and δ̂2 when F2gt, g,t=1,2, are normal distributions. From these results, we can see

that the coverage probability is close to the nominal level 95% when the sample size ratio

between validation and contaminated datasets is not too small.

Table 4.2: Coverage Probability(%) of δ̂1 and δ̂2 when σ2 = 1, n11 = 100 and n12 = 100.

δ̂1 δ̂2

ρ 0 0.5 0 0.5
ratio 0.5 0.3 0.1 0.5 0.3 0.1 0.5 0.3 0.1 0.5 0.3 0.1

δ1 δ2

0.01
0.01 94.0 93.9 87.8 94.2 94.2 88.8 94.2 93.7 88.1 94.4 93.8 88.9
0.10 94.0 93.9 87.8 94.2 94.2 88.8 94.7 94.2 90.4 94.7 94.2 91.2
0.25 93.9 93.8 87.7 94.2 94.1 88.8 95.0 95.2 93.8 95.0 95.4 94.1

0.10
0.01 94.5 94.4 90.4 94.8 94.8 90.7 94.0 93.7 88.0 94.5 93.8 89.0
0.10 94.6 94.3 90.3 94.8 94.8 90.6 94.6 94.2 90.2 94.7 94.2 91.1
0.25 94.4 94.2 90.1 94.8 94.7 90.5 95 95.2 93.6 95.0 95.3 94.0

0.25
0.01 95.0 95.2 94.1 95.0 95.3 94.1 94.1 93.6 88.1 94.5 93.7 89.1
0.10 94.9 95.2 93.9 95.0 95.3 94.0 94.6 94.2 89.9 94.7 94.1 90.9
0.25 94.9 95.1 93.4 94.9 95.2 93.7 95.0 95.2 93.3 94.9 95.2 93.9

The effects of various simulation factors on the coverage probability are presented in

Figure 4.4. The new method has reasonable performance for all the distributions consid-

ered. That is, the coverage probability is close to 95% in most scenarios. Sample size ratio

between validation and contaminated data has great effects on the performance. When the

ratio increase from 0.1 to 0.5, the coverage probability becomes very close the nominal

level. This shows that the asymptotic distributions are good approximations if the ratio is

not too low. Also, the coverage probability gets closer to the nominal level as δ1 increase.

Treatment Effect

In the simulation study for treatment effect, we compare our proposed methods with the

traditional ones. Here also, we use bias, RMSE and coverage probability to evaluate the
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Figure 4.4: Boxplots of coverage probability for δ̂1 by distributions, sample size, ratio, δ1

and ρ. Disnorm is discretized normal distribution.

estimation accuracy and the asymptotic results. In addition, we also compare powers of the

tests. The methods compared are

1. Tra1: the traditional method that ignores the misclassification rates for the fallible

classifiers. That is, δ1 = δ2 = 0 is assumed,

2. Tra2: the traditional methods that only use the observations from the infallible clas-

sifiers. That is, the contaminated data is discarded.

3. Mix: the new methods that estimates the misclassification rates and treatment effects

using both source of data and

In Table 4.3, we present the results for the three methods for the parameter settings as

in Table 1. Since Tra2 uses only the validation datasets, its results remain unchanged as the

mixing proportions change. The biases and RMSEs for Tra2 and Mix methods are small

and CPs are close to the nominal level 95%. The bias of Tra1 is greatly affected by the

difference between δ1 and δ2. When the difference is large, the bias of Tra1 is large and the

CP falls below 95%. To facilitate further comparison, we use boxplots in Figure 4.5-4.8 to

visualize the effects of the various simulation factors.
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Table 4.3: Bias(×100), RMSE(×100) and CP of Interaction Effect when σ2 = 1, ρ =
0, n11 = 100, n12 = 100, ratio= 0.5, pI = 0.

Method
Tra1 Tra2 Mix

δ1 δ2 Bias RMSE CP Bias RMSE CP Bias RMSE CP

0.01
0.01 0.024 2.797 0.953 -0.009 4.897 0.948 0.019 2.986 0.953
0.10 0.859 2.980 0.940 -0.009 4.897 0.948 0.035 3.240 0.951
0.25 2.002 3.544 0.891 -0.009 4.897 0.948 0.067 3.795 0.944

0.10
0.01 -0.808 2.950 0.942 -0.009 4.897 0.948 0.008 3.215 0.954
0.10 0.027 2.880 0.951 -0.009 4.897 0.948 0.022 3.526 0.953
0.25 1.170 3.157 0.932 -0.009 4.897 0.948 0.056 4.238 0.957

0.25
0.01 -1.943 3.505 0.897 -0.009 4.897 0.948 -0.005 3.768 0.956
0.10 -1.108 3.137 0.936 -0.009 4.897 0.948 0.009 4.234 0.956
0.25 0.036 2.961 0.951 -0.009 4.897 0.948 0.054 5.442 0.962

Effect of Distributions

In Figure 4.5, we see that the bias of Tra1 is much larger than the other methods, and when

the coverage probability of Tra1 is lower than 95%, especially for Poisson distribution and

the true value of pI is different from 0. Tra2 has small bias and its coverage probability

is close to 95%, but the RMSE is larger than the other method. This is because Tra2 only

uses the validation data and, therefore, the sample size for it is much smaller than that of

the other methods. In most scenarios, the Mix method has reasonable performance for all

distributions, but in some cases this method produces large biases and RMSEs. To make

the comparisons clear, we omitted outliers in the boxplots for biases (16 out of 810) and

RMSEs (57 out of 810).

Effect of Sample Size

The effects of sample size on these methods are presented in Figure 4.6. Tra1 is less af-

fected by the sample size compared to the other methods and its coverage probabilities

become lower than 95% when sample sizes increase. This shows that the performance of

Tra1 will not improve as sample size increase. Tra2 and Mix have more accurate results as

sample size and ratio get larger. When the sample size ratio is low, the coverage probabil-

ities of Tra2 become lower than 95% and that of Mix tend to be more conservative. One
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Figure 4.5: Boxplots of bias, RMSE and coverage probability for Tra1, Tra2, Mix methods’
estimates of pI by distributions.
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Figure 4.6: Boxplots of bias, RMSE and coverage probability for Tra1, Tra2, Mix methods’
estimates of pI by sample size allocations.

thing to note is about the outliers in Mix methods. When the sample size ratio is 0.1, Mix

has many extreme value in the boxplots for biases and RMSEs. This is because when the

ratio is low, the sample size of the validation data is too small that the estimates of δ1 and

δ2 have large variances, and we are likely to get estimates such that δ̂1 + δ̂2 is close to 1. In

this case, the estimator p̂I defined in (4.18) will be very large. In our simulation, the range

of bias from Mix is (−4.798, 13.132). But when the sample size ratio between validation

and contaminated data increase to 0.3, the range of bias for Mix is (−0.11to0.008). This

shows that to use Mix method the sample size ratio should not be too low.
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Effect of Mixing Proportions

As a result of ignoring the misclassification error, Tra1’s accuracy is greatly affected by

mixing proportions (see Figure 4.7). In panel (a), we can see that the bias from Tra1 is

small when δ1 = δ2, but the bias become larger when δ2 − δ1 increase. From (4.15) we see

that when δ1 = δ2, the treatment effects obtained from Tra1 will be unbiased when pI = 0.

When δ1 6= δ2 and pI 6= 0, the results from Tra1 will be misleading. Since Tra2 only

uses validated dataset, its results do not change with mixing proportions. From Figure 4.7,

we see that Mix has reasonable performances as mixing proportions change. The RMSE

increases as sum of mixture proportion increase, and the CPs become a little bit higher than

95%.
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Figure 4.7: Boxplots of bias, RMSE and coverage probability for Tra1, Tra2, Mix methods’
estimates of pI by mixture components.

Effect of Within-Pair Dependence

The within-pair dependence does not show a clear effects on the performance of the meth-

ods (see Figure 4.8), except that the RMSEs get smaller when ρ increases.

Effect of Size of pI

In most of the simulation scenarios above, the treatment effect was set equal to 0, except

when the distribution is Poisson. To show examples performances when pI is not equal

to 0, we set the sample size n11 = n12 = 50 and the sample size ratios to 0.5. The
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Figure 4.8: Boxplots of bias, RMSE and coverage probability for Tra1, Tra2, Mix methods’
estimates of pI by within-pair dependence ρ.
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Figure 4.9: Graphs of Bias, RMSE, and CP for Tra1, Tra2, and Mix methods when δ1 = 0.1
and δ2 = 0.25.

distributions F2gt are set to N(µgt, 1), where (µ11, µ12, µ21) = (1, 2, 3), µ22 increases from

4 to 8, and ρ = 0. Figure 4.9 presents graphs of Bias, RMSE and coverage probabilities

(CP) of the three methods when (δ1, δ2) = (0.1, 0.25). Tra2 and Mix have reasonable

performances as µ22 increases. The bias of Tra1 become larger as µ22 increases and CPs

drop quickly. This shows that the traditional method (ignoring misclassification errors)

may produce misleading results. Interestingly, RMSE curves of Tra2 and Mix intersect

and the point of intersection and its reasons need further investigation.
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Power Simulation

To show the power performances of the three methods, we fix sample size and sample size

ratio same as in Section 4.5, and δ1 = δ2 = 0.1. The size of the test is set at α = 0.05. We

assume independence of the pre and post measurements. For the alternative hypothesis, we

keep F211, F212, F221 the same but add location, shape or both to F222. We choose F222 in

such a way that when the location or shape parameter or both are zero, the treatment effect

is 0. The marginal distributions we consider are skew-normal (SN)(Azzalini, 1985) and

skew-cauchy (SC)(Azzalini and Capitanio, 2003). The power curves for these distributions

are shown in Figures 4.10 and 4.11.

The figures shows that powers of the Tra1 and Mix are close. Tra1 and Mix methods

have clear advantage over the Tra2 when the data come from the heavy tailed distribution,

skew-cauchy.
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Figure 4.10: Power curves for Tra1, Tra2, and Mix methods. F211, F212, F221 are distributed
as N(1,1), N(2,1), and N(3,1), respectively. F222 varies with respect to location and/or
shape.

4.6 Real Data Example

To illustrate the application of the new method, we use a real dataset from the Total Sleep

Deprivation (TSD) study (Satterfield et al., 2015). The study examined the effect of geno-

types at position 308 in the TNFα gene on psychomotor vigilance performance impairment

during total sleep deprivation. Eighty eight subjects participated in one of the five labora-
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Figure 4.11: Power curves for Tra1, Tra2, and Mix methods. F211, F212, F221 are distributed
as Cauchy(1,1), Cauchy(2,1), and Cauchy(3,1), respectively. F222 varies with respect to
location and/or shape.

tory TSD studies. Cognitive performances of the participants were measured across 36–62

hours of sustained wakefulness. All five studies included at least 24 hours of wake exten-

sion into the night and the following day. A 10-min psychomotor vigilance test (PVT) was

used as the primary performance criteria and it was administered every 2–3 hours over the

course of the scheduled wakefulness. Subjects’ vulnerabilities to sleep loss were quantified

based on their PVT performances over the 24 hour period of sleep deprivation common to

all the five studies.

To assess the effect of genotypes in the TNFα, subjects’ genetypes were determined

from blood samples collected during pre-study screening sessions. The subjects were clas-

sified into three genotypes: G/G, A/G or A/A. According to Juszczynski et al. (2002), the

classification method is not perfect and its positive predictive values for G/G, A/G, and A/A

genotypes are 97.9%, 92.5% and 100%, respectively. Since there was only one subject with

A/A genotype, we will focus on comparing subjects with G/G or A/G genotypes.

There were 64 subjects with G/G genotype and 23 subjects with A/G genotypes. We

regard the 24 hour period of sleep deprivation as a treatment. We use the latest PVT (20:00

or 21:00) before the 24 hour period of sleep deprivation (22:00-22:00) as pre-treatment

measurements, denoted as X111 and X121, and the latest PVT (18:00, 20:00 or 21:00 ) in

the 24 hour period as post-treatment measurement, denoted as X112 and X122, where X11t

and X12t, are measurements for subjects with G/G and A/G genotypes, respectively, for
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pre and post treatment times t = 1, 2. Data from two subjects, one from each group, were

discarded because they had missing values.

In this study, the mixing proportions are known to be δ1 = 2.1% and δ2 = 7.5%. We

use the estimator in (4.20) and its distribution (4.21) to estimate the treatment effect and

conduct hypothesis test. The estimated treatment effect is p̂I = 0.0475. The effect is not

statistically significant (TM = .764 and p–value = 0.445). Therefore, we do not have

evidence of difference in PVT performances by the genotypes in the TNFα as a result of

sleep deprivation.

4.7 Discussion

We developed a fully nonparametric method to assess treatment effects when the classi-

fiers used for stratifying participants are fallible. We modeled outcome distributions as

mixtures of unknown distributions and developed estimators for mixing proportions when

a validation (training) data exists. Consistency and the order of bias of the estimators are

proved. Also, the asymptotic distributions for the estimators are derived. The estimators of

the mixing proportions are used to construct inferential procedures (estimation and testing)

for a purely nonparametric measure of treatment effect.

Our estimation for mixing proportions provide more accurate results compared to an

existing method without requiring any distributional assumptions. Therefore, our method

works for heavy tailed distributions as well as non metric data. The coverage probabilities

of the proposed confidence interval for mixing proportions are close to the nominal level

when the sample size ratio between contaminated and validation data is not too small.

When misclassification exists, the traditional method which ignores the errors leads to a

serious bias in estimation of the treatment effect. Our method have much smaller biases

and stable coverage probabilities. Also, the test based on our estimator and its asymptotic

theory has higher power compared to the method that only uses the validation data set.

The results derived in this chapter cover the situation where measurement is taken only

once as a special case by introducing minor changes in notations. Specifically, dropping

the index for time, let F2g, g = 1, 2, be the distributions for observations from subjects clas-

sified by infallible classifiers and F1g be the distributions for observations from the fallible
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classifier. Therefore, F1g is a mixture of F21 and F22, mixed in proportions determined by

δg. That is,

F1g = (1− δg)F2g + δgF2g′ ,

for g′ 6= g, g′, g = 1, 2. Following the same steps as in Section 4.3, the mixing proportions

are estimated by

δ̂g = max

{∫
(F̂1g − F̂2g)(F̂2g′ − F̂2g)dĤ∫

(F̂21 − F̂22)2dĤ
, 0

}
,

for g = 1, 2, where Ĥ =
∑2

h=1

∑2
g=1

nhg

N
F̂hg. The treatment effect is measured by the

nonparametric effect measure p =
∫
F21dF22. In the presence of misclassification errors,

p =

∫
F21dF22 =

∫
F11dF12 +

∫
δ2F11 + δ1F12

1− δ1 − δ2

d(F12 − F11).

Estimation and testing procedures for p can be derived in a manner analogous to Section

4.4.

The accuracy of estimation of the mixing proportions will be affected by the separation

of the distributions of two groups. From the simulation results, we note that when the

mixing proportions δ1and δ2 are close to 0.5 or the sample size ratio between validation

and contaminated data is small, we may get estimates of δ̂1 and δ̂2 such that δ̂1 + δ̂2 is very

close to 1 due to sampling variation. In such cases, the estimation of p̂I1 will be very large

and it leads to large bias and RMSE for p̂I , because p̂I is a weighted average of p̂I1 and

p̂I2. To solve this problem, one idea is to choose the weight of p̂I1 and p̂I2 that minimizes

the variance of p̂I . More specifically, one can consider the estimator

p̂I = γ p̂I1 + (1− γ) p̂I2,

where γ is chosen to minimize the variance of p̂I . By doing so, when p̂I1 become very

large due to estimations of δ̂1 and δ̂2, γ will be close to 0 and, as a result, it leads to smaller

bias and variation for p̂I . The theory for this estimator needs futher investigation.

To avoid nonidentifiability in the finite mixtures, we assumed that the mixing propor-

tions are known or validation (training) data exists. In some application, it may not be
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possible to get either of these information. However, it may be possible to derive inferen-

tial procedures by making stronger assumption on the nature of dependence between the

pre and post variables, or by using a semi-parametric dependence models. Another ap-

proach could be to use auxiliary variables or covariates that contains information about the

accuracy of the classifies and use them to estimate the mixing probabilities and treatment

effects simultaneously. We plan to investigate these problems in future research.

4.8 Appendix

Lemmas

In this subsection, we state and prove some useful technical Lemmas before we present the

proofs of the main results,

Lemma 4.8.1. Let Xhgtk, Fhgt, F̂hgt and N be defined as in Proposition 4.3.1. Then under

Assumption 4.3.1, we have

E

(∫
F̂hgtdF̂slk

)
=

∫
FhgtdFslk +O(N−1), (4.23)

E

(∫
F̂hgtF̂slrdF̂uvw

)
=

∫
FhgtFslrdFuvw +O(N−1), (4.24)

for g, t, l, r, h, s, u, v, w = 1, 2.

Proof. (i) Proof of (4.23). By definition of F̂hgt, we have∫
F̂hgtdF̂slk =

1

nl

nl∑
i=1

F̂hgt(Xslki) =
1

nlng

nl∑
i=1

ng∑
j=1

c(Xslki −Xhgtj).

When Xslki and Xhgtj are independent, by Fubini’s theorem it follows that

E[c(Xslki −Xhgtj)] =

∫ ∫
c(y − x)dFhgt(x)dFslk(y) =

∫
FhgtdFslk.

Therefore, when (h, g) 6= (s, l), Xslki and Xhgtj are independent,

E

(∫
F̂hgtdF̂slk

)
= E

(
1

nlng

nl∑
i=1

ng∑
j=1

c(Xslki −Xhgtj)

)
=

∫
FhgtdFslk.
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On the other hand, if (h, g) = (s, l), Xhgki and Xhgtj are independent if i 6= j. Thus,

by Assumption 4.3.1,

E

(∫
F̂hgtdF̂hgk

)
=E

(
1

n2
l

nl∑
i=1

nl∑
j=1

c(Xhgki −Xhgtj)

)

=E

(
1

n2
l

nl∑
i 6=j

c(Xhgki −Xhgtj)

)

+ E

(
1

n2
l

nl∑
i=1

c(Xhgki −Xhgti)

)
=
nl − 1

nl

∫
FhgtdFhgk +

1

nl
E (c(Xhgk1 −Xhgt1))

=

∫
FhgtdFhgk +O(N−1).

(ii) Proof of (4.24). By definition, we have∫
F̂hgtF̂slrdF̂uvw =

1

nuv

nuv∑
i=1

F̂hgt(Xuvwi)F̂slr(Xuvwi)

=
1

nhgnslnuv

nuv∑
i=1

nhg∑
j=1

nsl∑
k=1

c(Xuvwi −Xhgtj)c(Xuvwi −Xslrk).

Notice that when Xuvwi, Xhgtj , and Xslrk are independent with each other,

E (c(Xuvwi −Xhgtj)c(Xuvwi −Xslrk)) =

∫
FhgtFslrdFuvw.

When i 6= j 6= k, Yuvwi, Yhgtj , and Yslrk are independent with each other. To make

the summation easier to present, suppose nuv ≤ nhg ≤ nsl. We can change the order
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of i, j, k in summation if this does not hold. Therefore,

E

(∫
F̂hgtF̂slrdF̂uvw

)
=

1

nuvnhgnsl

nuv∑
i=1

nhg∑
j 6=i

nsl∑
k 6=i,j

E (c(Xuvwi −Xhgtj)c(Xuvwi −Xslrk))

+
1

nuvnhgnsl

nuv∑
i=1

nhg∑
j 6=i

E (c(Xuvwi −Xhgtj)c(Xuvwi −Xslrj))

+
1

nuvnhgnsl

nuv∑
i=1

nhg∑
j 6=i

E (c(Xuvwi −Xhgtj)c(Xuvwi −Xslri))

+
1

nuvnhgnsl

nuv∑
i=1

nsl∑
k 6=i

E (c(Xuvwi −Xhgti)c(Xuvwi −Xslrk))

+
1

nuvnhgnsl

nuv∑
i=1

E (c(Xuvwi −Xhgti)c(Xuvwi −Xslri))

=
(nhg − 1)(nsl − 2)

nhgnsl

∫
FhgtFslrdFuvw

+
nhg − 1

nhgnsl
E (c(Xuvw1 −Xhgt2)c(Xuvw1 −Xslr2))

+
nhg − 1

nhgnsl
E (c(Xuvw1 −Xhgt2)c(Xuvw1 −Xslr1))

+
nsl − 1

nhgnsl
E (c(Xuvw1 −Xhgt1)c(Xuvw1 −Xslr2))

+
1

nhgnsl
E (c(Xuvw1 −Xhgt1)c(Xuvw1 −Xslr1))

=

∫
FhgtFslrdFuvw +O(N−1).

Lemma 4.8.2. Let Fhgt, F̂hgt and N be defined as in Proposition 4.3.1, and let Ĥ(x) be

defined as in (4.8). Then under Assumption 4.3.1, at any fixed point x we have

E[F̂hgt(x)− Fhgt(x)]2 ≤ 1

nhg
, E[F̂hgt(Xslr)− Fhgt(Xslr)]

2 ≤ 1

nhg
, (4.25)

E[Ĥ(x)−H(x)]2 ≤ N0

N
= O(N−1), (4.26)

E

(∫
F̂hgtF̂slrdF̂uvw −

∫
FhgtFslrdFuvw

)2

= O(N−1), (4.27)

E

(∫
F̂hgtF̂slrdĤ −

∫
FhgtFslrdH

)2

= O(N−1), (4.28)
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for h, g, t, s, l, r, u, v, w = 1, 2.

Proof. (i) Proof of (4.25) and (4.26). Similar to the proof of Lemma 7.4 in Brunner

et al. (2018), we can get these results.

(ii) Proof of (4.27). Apply the cr-inequality, we have(∫
F̂hgtF̂slrdF̂uvw −

∫
FhgtF̂slrdFuvw

)2

=
[ ∫

(F̂hgt − Fhgt)FslrdF̂uvw +

∫
Fhgt(F̂slr − Fslk)dF̂uvw

+

∫
FhgtFslkd

(
F̂uvw − Fuvw

) ]2

≤3

(∫
(F̂hgt − Fhgt)F̂slrdF̂uvw

)2

+ 3

(∫
Fhgt(F̂slr − Fslr)dF̂uvw

)2

+ 3

(∫
FhgtFslrd

(
F̂uvw − Fuvw

))2

.

By partial integration, we obtain that∫
FhgtFslrd

(
F̂uvw − Fuvw

)
=−

∫ (
F̂uvw − Fuvw

)
FhgtdFslr

−
∫ (

F̂uvw − Fuvw
)
FslrdFhgt.

Therefore,(∫
F̂hgtF̂slrdF̂uvw −

∫
FhgtFslrdFuvw

)2

≤3

(∫
(F̂hgt − Fhgt)F̂slrdF̂uvw

)2

+ 3

(∫
Fhgt(F̂slr − Fslr)dF̂uvw

)2

+ 3

(∫ (
F̂uvw − Fuvw

)
FhgtdFslr +

∫ (
F̂uvw − Fuvw

)
FslrdFhgt

)2

≤3

(∫ (
F̂hgt − Fhgt

)
dF̂uvw

)2

+ 3

(∫ (
F̂slr − Fslr

)
dF̂uvw

)2

+ 6

(∫ (
F̂uvw − Fuvw

)
dFslr

)2

+ 6

(∫ (
F̂uvw − Fuvw

)
dFhgt

)2

.
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Using the Jensen’s inequality, we have(∫
F̂hgtF̂slkdF̂uvw −

∫
FhgtFslkdFuvw

)2

≤ 3

nuv

nuv∑
i=1

[
F̂hgt(Xuvwi)− Fhgt(Xuvwi)

]2

+
3

nuv

nuv∑
i=1

[
F̂slr(Xuvwi)− Fslr(Xuvwi)

]2

+ 6

∫ (
F̂uvw − Fuvw

)2

dFslr + 6

∫ (
F̂uvw − Fuvw

)2

dFhgt.

Taking expectations on both sides and by (4.25), we have

E

(∫
F̂hgtF̂slkdF̂uvw −

∫
FhgtFslkdFuvw

)2

≤ 3

nhg
+

3

nsl
+

12

nuv
= O

(
N−1

)
.

(iii) Proof of (4.28). By the cr-inequality, we have

E

(∫
F̂hgtF̂slrdĤ −

∫
FhgtFslrdH

)2

=E

(
2∑

u,v,w=1,2

nuv
N

(∫
F̂hgtF̂slrdF̂uvw −

∫
FhgtFslrdFuvw

))2

≤
2∑

u,v,w=1,2

2n2
uv

N2
E

(∫
F̂hgtF̂slrdF̂uvw −

∫
FhgtFslrdFuvw

)2

≤ O(N−1).

Lemma 4.8.3. Let Xhgtk, Fhgt, F̂hgt and N be defined as in Proposition 4.3.1. Then under

Assumption 4.3.1, we have

B1 =
√
N

∫ (
F̂hgt − Fhgt

)
d
(
F̂slr − Fslr

)
P−→ 0, (4.29)

B2 =
√
N

∫ (
F̂hgtF̂slr − FhgtFslr

)
d
(
F̂uvw − Fuvw

)
P−→ 0, (4.30)

B3 =
√
N

∫ (
F̂hgt − Fhgt

)(
F̂slr − Fslr

)
dFuvw

P−→ 0, (4.31)

for h, g, t, s, l, r, u, v, w = 1, 2.

Proof. (i) Proof of (4.29). By definition, we have

B1 =

√
N

nsl

nsl∑
i=1

(
F̂hgt(Xslri)− Fhgt(Xslri)−

∫ (
F̂hgt(x)− Fhgt(x)

)
dFslr(x)

)

=

√
N

nsl

nsl∑
i=1

Ai.
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First note that

E(Ai) = E

(
F̂hgt(Xslri)− Fhgt(Xslri)−

∫ (
F̂hgt(x)− Fhgt(x)

)
dFslr(x)

)
= 0,

for i = 1, . . . , nsl. Then by Fubini’s theorem and independence of random variables,

we have

E(AiAj) = 0 for i 6= j, i, j = 1, . . . , nsl.

Through the Lemma 7.4 in Brunner et al. (2018), we have

E
[
F̂hgt(x)− Fhgt(x)

]2

≤ 1

nhg
and

E
[
F̂hgt(Xslri)− Fhgt(Xslri)

]2

≤ 1

nhg
, i = 1, . . . , nsl.

Then by cr-inequality and Fubini’s theorem, we have

E(A2
i ) ≤2E

(
F̂hgt(Xslri)− Fhgt(Xslri)

2
)

+ 2E

(∫ (
F̂hgt(x)− Fslri(x)

)
dFslri(x)

)2

≤ 4

nhg
.

Thus, we obtain that

E(B2
1) =

N

n2
sl

nsl∑
i=1

nsl∑
j=1

E(AiAj) =
N

n2
sl

nsl∑
i=1

E(A2
i ) ≤

4N

nslnhg
. (4.32)

Therefore, under Assumption 4.3.1, (4.29) holds.

(ii) Proof of (4.30). Notice that

B2 =
√
N

∫
F̂hgt

(
F̂slr − Fslr

)
d
(
F̂uvw − Fuvw

)
+
√
N

∫
Fslr

(
F̂hgt − Fhgt

)
d
(
F̂uvw − Fuvw

)
=B21 +B22.

By (4.32) we have

E(B2
2t) ≤ E

((√
N

∫ (
F̂slr − Fslr

)
d
(
F̂uvw − Fuvw

))2
)
≤ 4N

nslnuv
, for t = 1, 2.

Therefore, under Assumption 4.3.1, B21
P−→ 0 and B22

P−→ 0. By the linearity of

convergence in probability, (4.30) hold.
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(iii) Proof of (4.31). By definition, we have

B3 =

√
N

nhgnsl

nhg∑
i=1

nsl∑
j=1

∫
(c(x−Xhgti)− Fhgt(x)) (c(x−Xslrj)− Fslr(x)) dFuvw

=

√
N

nhgnsl

nhg∑
i=1

nsl∑
j=1

Aij.

If (h, g) 6= (s, l), Xhgti and Xslkj are independent, by Fubini’s theorem, we have

E(Aij) = 0, for i = 1, · · · , nhg and j = 1, · · · , nsl.

Also

E(AijAi′j′) = 0, if (i, j) 6= (i′j′), and 0 ≤ E(A2
ij) ≤ 1,

for i, i′ = 1, · · · , nhg and j, j′ = 1, · · · , nsl. Therefore,

E(B2
3) =

N

n2
hgn

2
sl

nhg∑
i,i′=1

nsl∑
j,j′=1

E(AijAi′j′) (4.33)

=
N

n2
hgn

2
sl

nhg∑
i=1

nsl∑
j=1

E(A2
ij) ≤

N

nhgnsl
.

On the other hand, if (h, g) = (s, l), we still have

E(Aij) = 0 and E(AiiAij) = 0 if i 6= j, and

− 1 ≤ E(Aii) ≤ 1, for i, j = 1, · · · , nhg.

E(AijAi′j′) = 0, if (i, j) 6= (i′j′), and

0 ≤ E(A2
ij) ≤ 1, for i, i′, j, j′ = 1, · · · , nhg.

Therefore,

E(B3) =
N

n4
hg

nhg∑
i,j,i′,j′=1

E(AijAi′j′) (4.34)

=
N

n4
hg

nhg∑
i,j=1

E(AiiAjj) +
N

n4
hg

nhg∑
i 6=j

E(A2
ij) ≤

2N

n2
hg

.

Combining (4.33) and (4.34), and under Assumption 4.3.1, (4.31) hold.
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Proofs

In this subsection we provide detailed proofs and calculations for theoretical results in

Sections 4.3 and 4.4.

Proof of Proposition 4.3.1. Under Assumption 4.3.3, it is suffice to consider the consis-

tency of the first part of δ̂g. By the linearity property of convergence in probability and the

results of Lemma 4.8.2, we can show that∫
(F̂1gt − F̂2gt)(F̂2g′t − F̂2gt)dĤ

P−→
∫

(F1gt − F2gt)(F2g′t − F2gt)dH,

∫
(F̂2gt − F̂2g′t)

2dĤ
P−→
∫

(F2gt − F2g′t)
2dH,

where g 6= g′ and g′, g, t = 1, 2. Then by continuous mapping theorem, we have

δ̂g
P−→ δg,

i.e, δg, g = 1, 2, are consistent estimator of δg.

Proof of Proposition 4.3.2. By definition of δ̂g in (4.10), we have

δ̂g − δg =

∑2
t=1

∫
(F̂1gt − F̂2gt)(F̂2g′t − F̂2gt)dĤ∑2
t=1

∫
(F̂21t − F̂22t)2dĤ

−
∑2

t=1

∫
(F1gt − F2gt)(F2g′t − F2gt)dH∑2
t=1

∫
(F21t − F22t)2dH

,

where H =
∑2

h=1

∑2
g=1

∑2
t=1 nhgFhgt

N
. Set

Âgt =

∫
(F̂1gt − F̂2gt)(F̂2g′t − F̂2gt)dĤ, Agt =

∫
(F1gt − F2gt)(F2g′t − F2gt)dH,

Ŝt =

∫
(F̂21t − F̂22t)

2dĤ, St =

∫
(F21t − F22t)

2dH.

where g, t = 1, 2. Then we have

E
(
δ̂g

)
− δg =E

(
Âg1 + Âg2

Ŝ1 + Ŝ2

)
− Ag1 + Ag2

S1 + S2

=E

((
Âg1 + Âg2

)( 1

Ŝ1 + Ŝ2

− 1

S1 + S2

))
+

1

S1 + S2

E
(
Âg1 + Âg2 − Ag1 − Ag2

)
.
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Since Âgt, Ŝt, g, t = 1, 2, can be expressed as finite summation of
∫
F̂hgtF̂slrdF̂uvw, from

Lemma 4.8.1, we have

E
(
Âgt

)
− Agt = O(N−1), E

(
Ŝt

)
− St = O(N−1).

Notice that −1 ≤ Âgt ≤ 1, we have

− 2E

(
1

Ŝ1 + Ŝ2

− 1

S1 + S2

)
≤E

((
Âg1 + Âg2

)( 1

Ŝ1 + Ŝ2

− 1

S1 + S2

))
≤2E

(
1

Ŝ1 + Ŝ2

− 1

S1 + S2

)
.

By Taylor expansion,

E

(
1

Ŝ1 + Ŝ2

− 1

S1 + S2

)
=E

(
1

S1 + S2 − (S1 + S2 − Ŝ1 − Ŝ2)
− 1

S1 + S2

)

=
1

S1 + S2

E

(
S1 − Ŝ1 + S2 − Ŝ2

S1 + S2

+ o

(
S1 − Ŝ1 + S2 − Ŝ2

S1 + S2

))
=

1

(S1 + S2)2
O(N−1).

By Assumption 4.3.2, we have S1 + S2 > C, therefore 1
S1+S2

< 1
C

, it follows that

E(δ̂g)− δg = O(N−1).
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Proof of Theorem 4.3.1. By Lemma 4.8.3, we have

√
N(

∫
F̂hgtF̂slkdF̂uvw −

∫
FhgtFslkdFuvw)

=
√
N

∫
FhgtFslkdF̂uvw +

√
N

∫
F̂hgtF̂slkdFuvw − 2

√
N

∫
FhgtFslkdFuvw + op(1)

=
√
N

∫
FhgtFslkdF̂uvw +

√
N

∫
FhgtF̂slkdFuvw +

√
N

∫
F̂hgtFslkdFuvw (4.35)

− 3
√
N

∫
FhgtFslkdFuvw + op(1)

=

√
N

nuv

nuv∑
i=1

Fhgt(Xuvwi)Fslk(Xuvwi) +

√
N

nsl

nsl∑
i=1

∫
c(x−Xslki)Fhgt(x)dFuvw(x)

+
1

nhg

nhg∑
i=1

∫
c(x−Xhgti)Fslk(x)dFuvw(x)− 3

√
N

∫
FhgtFslkdFuvw + op(1).

By definition of δ̂`,

√
N(δ̂` − δ`)

=
√
N

(
Â`1 + Â`2

Ŝ1 + Ŝ2

− A`1 + A`2
S1 + S2

)

=
√
N


(
Â`1 − A`1

)
+
(
Â`2 − A`1

)
Ŝ1 + Ŝ2

+ (A`1 + A`2)

(
1

Ŝ1 + Ŝ2

− 1

S1 + S2

)
=
√
N
[(
Â`1 − A`1

)
+
(
Â`2 − A`1

)]( 1

S1 + S2

+
(S1 − Ŝ1) + (S2 − Ŝ2)

(S1 + S2)2

+ o

(
(S1 − Ŝ1) + (S2 − Ŝ2)

(S1 + S2)2

))

+
√
N(A`1 + A`2)

(
(S1 − Ŝ1) + (S2 − Ŝ2)

(S1 + S2)2
+ o

(
(S1 − Ŝ1) + (S2 − Ŝ2)

(S1 + S2)2

))

=
√
N


(
Â`1 − A`1

)
+
(
Â`2 − A`1

)
S1 + S2

+
A`1 + A`2
(S1 + S2)2

(
(S1 − Ŝ1) + (S2 − Ŝ2)

)
+ op(1).
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By (4.35), we have

√
N(Â`t − A`t) =

√
N

∫
(F1`t − F2`t)(F2`′t − F2`t)dĤ

+
√
N

∫
(F̂1`t − F̂2`t)(F2`′t − F2`t)dH

+
√
N

∫
(F1`t − F2`t)(F̂2`′t − F̂2`t)dH (4.36)

− 3
√
N

∫
(F1`t − F2`t)(F2`′t − F2`t)dH + op(1),

where `′ 6= `, `′, ` = 1, 2.

√
N(Ŝt − St) =

√
N

∫
(F21t − F22t)

2dĤ + 2
√
N

∫
(F̂21t − F̂22t)(F21t − F22t)dH

− 3
√
N

∫
(F21t − F22t)

2dH + op(1). (4.37)

Set

Ã1
`t =

∫
(F1`t − F2`t)(F2`′t − F2`t)dĤ,

Ã2
`t =

∫
(F̂1`t − F̂2`t)(F2`′t − F2`t)dH,

Ã3
`t =

∫
(F1`t − F2`t)(F̂2`′t − F̂2`t)dH,

S̃1
t =

∫
(F21t − F22t)

2dĤ,

S̃2
t =

∫
(F̂21t − F̂22t)(F21t − F22t)dH.

Utilizing results (4.36) and (4.37), we have

√
N(δ̂` − δ`) =

1

S1 + S2

√
N
[
Ã1
`1 + Ã2

`1 + Ã3
`1 + Ã1

`2 + Ã2
`2 + Ã3

`3

]
− A`1 + A`2

(S1 + S2)2

√
N
[
S̃1

1 + 2S̃2
1 + S̃1

2 + 2S̃2
2

]
+ op(1).
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By definition, we have

Ã1
11 + Ã2

11 + Ã3
11 + Ã1

12 + Ã2
12 + Ã3

12

=

∫
(F111 − F211)(F221 − F211) + (F112 − F212)(F222 − F212)dĤ

+

∫
F̂111(F221 − F211)dH +

∫
F̂112(F222 − F212)dH +

∫
F̂221(F111 − F211)dH

+

∫
F̂222(F112 − F212)dH −

∫
F̂211(F221 + F111 − 2F211)dH

−
∫
F̂212(F222 + F112 − 2F212)dH.

Ã1
21 + Ã2

21 + Ã3
21 + Ã1

22 + Ã2
22 + Ã3

22

=

∫
(F121 − F221)(F211 − F221) + (F122 − F222)(F212 − F222)dĤ

+

∫
F̂121(F211 − F221)dH +

∫
F̂122(F212 − F222)dH +

∫
F̂211(F121 − F221)dH

+

∫
F̂212(F122 − F222dH)−

∫
F̂221(F211 + F121 − 2F221)dH

−
∫
F̂222(F212 + F122 − 2F222)dH.

S̃1
1 + 2S̃2

1 + S̃1
2 + 2S̃2

2

=

∫
(F211 − F221)2 + (F212 − F222)2dĤ + 2

∫
F̂211(F211 − F221)dH

+ 2

∫
F̂212(F212 − F222)dH − 2

∫
F̂221(F211 − F221)dH − 2

∫
F̂222(F212 − F222)dH.

Set

G1 = (F111 − F211)(F221 − F211) + (F112 − F212)(F222 − F212),

G2 = (F121 − F221)(F211 − F221) + (F122 − F222)(F212 − F222),

G3 = (F211 − F221)2 + (F212 − F222)2.

Then, we have

Ã1
11 + Ã2

11 + Ã3
11 + Ã1

12 + Ã2
12 + Ã3

12

=
1

n11

n11∑
k=1

U111(X11k) +
1

n12

n12∑
k=1

U112(X12k) +
1

n21

n21∑
k=1

U121(X21k) +
1

n22

n22∑
k=1

U122(X22k),
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where

U111(X11k) =
n11

N
G1(X111k) +

n11

N
G1(X112k)

+

∫
c(x−X111k)(F221(x)− F211(x))dH(x)

+

∫
c(x−X112k)(F222(x)− F212(x))dH(x),

U112(X12k) =
n12

N
G1(X121k) +

n12

N
G1(X122k),

U121(X21k) =
n21

N
G1(X211k) +

n21

N
G1(X212k)

−
∫
c(x−X211k)(F221(x) + F111(x)− 2F211(x))dH

−
∫
c(x−X212k)(F222(x) + F112(x)− 2F212(x))dH,

U122(X22k) =
n22

N
G1(X221k) +

n22

N
G1(X222k)

+

∫
c(x−X221k)(F111(x)− F211(x))dH(x)

+

∫
c(x−X222k)(F112(x)− F212(x))dH(x).

Similarly, we have

Ã1
21 + Ã2

21 + Ã3
21 + Ã1

22 + Ã2
22 + Ã3

22

=
1

n11

n11∑
k=1

U211(X11k) +
1

n12

n12∑
k=1

U212(X12k) +
1

n21

n21∑
k=1

U221(X21k) +
1

n22

n22∑
k=1

U222(X22k),
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where

U211(X11k) =
n11

N
G2(X111k) +

n11

N
G2(X112k),

U212(X12k) =
n12

N
G2(X121k) +

n12

N
G2(X122k)

+

∫
c(x−X121k)(F211(x)− F221(x))dH(x)

+

∫
c(x−X122k)(F212(x)− F222(x))dH(x),

U221(X21k) =
n21

N
G2(X211k) +

n21

N
G2(X212k)

+

∫
c(x−X211k)(F121(x)− F221(x))dH(x)

+

∫
c(x−X212k)(F122(x)− F222(x))dH(x),

U222(X22k) =
n22

N
G2(X221k) +

n22

N
G2(X222k)

−
∫
c(x−X221k)(F211(x) + F121(x)− 2F221(x))dH

−
∫
c(x−X222k)(F212(x) + F122(x)− 2F222(x))dH.

Also,

S̃1
1 + 2S̃2

1 + S̃1
2 + 2S̃2

2 =
1

n11

n11∑
k=1

U311(X11k) +
1

n12

n12∑
k=1

U312(X12k)

+
1

n21

n21∑
k=1

U321(X21k) +
1

n22

n22∑
k=1

U322(X22k),
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where

U311(X11k) =
n11

N
G3(X111k) +

n11

N
G3(X112k),

U312(X12k) =
n12

N
G3(X121k) +

n12

N
G3(X122k),

U321(X21k) =
n21

N
G3(X211k) +

n21

N
G3(X212k)

+ 2

∫
c(x−X211k)(F211(x)− F221(x))dH(x)

+ 2

∫
c(x−X212k)(F212(x)− F222(x))dH(x),

U322(X22k) =
n22

N
G3(X221k) +

n22

N
G3(X222k)

− 2

∫
c(x−X221k)(F211(x)− F222(x))dH

− 2

∫
c(x−X222k)(F212(x)− F222(x))dH.

Therefore, we have
√
N
(
δ̂` − δ`

)
=

√
N

n11

n11∑
k=1

V`11(X11k) +

√
N

n12

n12∑
k=1

V`12(X12k)

+

√
N

n21

n21∑
k=1

V`21(X21k) +

√
N

n22

n22∑
k=1

V`22(X22k) + op(1),

where

V`hg(Xhgk) =
1

S1 + S2

U`hg(Xhgk)−
A`1 + A`2
(S1 + S2)2

U3hg(Xhgk). (4.38)

Utilizing the Central Limit Theorem and independence between random variables, by

Assumption 4.3.4, we can obtain that
√
N(δ̂` − δ`)

D−→ U ∼ N
(
0, κ−1

11 σ
2
`11 + κ−1

12 σ
2
`12 + κ−1

21 σ
2
`21 + κ−1

22 σ
2
`22

)
,

where

σ2
`hg = V ar(V`hg(Xhg1)), `, h, g = 1, 2.

Proof of Theorem 4.3.2. Since σ̂`hg
P−→ σ`hg for g, h, t = 1, 2, we only need to show that

S2
`hg − σ̂`hg

P−→ 0. It suffices to show that

E[S2
`hg − σ̂`hg]2 → 0 as N →∞ for g, h, t = 1, 2.
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By definition of variance, we have

E[S2
`hg − σ̂`hg]2

=E

[
1

nhg − 1

nhg∑
i=1

(
V̂`hg(Xhgi)− V̂ `hg(Xhg·)

)2

− 1

nhg − 1

nhg∑
i=1

(
V`hg(Xhgi)− V `hg(Xhg·)

)2

]2

=
1

(nhg − 1)2
E

[
nhg∑
i=1

(
V̂`hg(Xhgi)− V̂ `hg(Xhg·) + V`hg(Xhgi)− V `hg(Xhg·)

)
×
(
V̂`hg(Xhgi)− V`hg(Xhgi)− V̂ `hg(Xhg·) + V `hg(Xhg·)

)]2

.

Suppose

Ŝ1 + Ŝ2 =

∫
(F̂211 − F̂221)2dĤ +

∫
(F̂212 − F̂222)2Ĥ > C ′, (4.39)

where 0 < C ′ < C and C is the constant in assumption 4.3.2. Then by Assumption 4.3.2

and range of distribution functions, V`hg(Xhgi) and V̂`hg(Xhgi) are bounded and we can

find a constant M > 0, such that(
V̂`hg(Xhgi)− V̂ `hg(Xhg·) + V`hg(Xhgi)− V `hg(Xhg·)

)2

≤M.

Therefore,

E[S2
`hg − σ̂`hg]2

≤ Mnhg
(nhg − 1)2

E

[
nhg∑
i=1

(
V̂`hg(Xhgi)− V`hg(Xhgi)− V̂ `hg(Xhg·) + V `hg(Xhg·)

)]2

=
Mnhg

(nhg − 1)2
E

[
nhg∑
i=1

(
V̂`hg(Xhgi)− V`hg(Xhgi)

)2
]

−
Mn2

hg

(nhg − 1)2
E

[(
V̂ `hg(Xhg·)− V `hg(Xhg·)

)2
]

≤ Mnhg
(nhg − 1)2

E

[
nhg∑
i=1

(
V̂`hg(Xhgi)− V`hg(Xhgi)

)2
]
. (4.40)
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Notice that

E
(
V̂`hg(Xhgi)− V`hg(Xhgi)

)2

=E

(
1

Ŝ1 + Ŝ2

Û`hg(Xhgi)−
Â`1 + Â`2

(Ŝ1 + Ŝ2)2
Û3ht(Xhgi)

− 1

S1 + S2

U`hg(Xhgi) +
A`1 + A`2
(S1 + S2)2

U3ht(Xhgi)

)2

≤2E

(
1

Ŝ1 + Ŝ2

Û`hg(Xhgi)−
1

S1 + S2

U`hg(Xhgi)

)2

+ 2E

(
Â`1 + Â`2

(Ŝ1 + Ŝ2)2
Û3ht(Xhgi)−

A`1 + A`2
(S1 + S2)2

U3ht(Xhgi)

)2

≤4E

(
1

Ŝ1 + Ŝ2

(
Û`hg(Xhgi)− U`hg(Xhgi)

))2

+ 4E

((
1

Ŝ1 + Ŝ2

− 1

S1 + S2

)
U`hg(Xhgi)

)2

+ 4E

(
Â`1 + Â`2

(Ŝ1 + Ŝ2)2

(
Û3ht(Xhgi)− U3ht(Xhgi)

))2

+ 4E

((
Â`1 + Â`2

(Ŝ1 + Ŝ2)2
− A`1 + A`2

(S1 + S2)2

)
U3ht(Xhgi)

)2

.

By Lemma 4.8.2 and the cr-inequality, we have

E
(
Ûlhg(Xhgi)− Ulhg(Xhgi)

)2

= O(N−1),

E
(
Â`t − A`t

)2

= O(N−1), E
(
Ŝt − St

)2

= O(N−1),

for l = 1, 2, 3, and `, g, h, t = 1, 2. Under the assumption in (4.39),

0 ≤ 1

Ŝ1 + Ŝ2

≤ 1

C ′
, − 2

C2
≤ Â`1 + Â`2

(Ŝ1 + Ŝ2)2
≤ 2

C ′2
.

E

(
1

Ŝ1 + Ŝ2

− 1

S1 + S2

)2

=
1

(S1 + S2)2
E

(
S1 − Ŝ1 + S2 − Ŝ2

S1 + S2

+ o

(
S1 − Ŝ1 + S2 − Ŝ2

S1 + S2

))2

= O(N−1).
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E

(
Â`1 + Â`2

(Ŝ1 + Ŝ2)2
− A`1 + A`2

(S1 + S2)2

)2

=E

((
Â`1 + Â`2

)( 1

Ŝ1 + Ŝ2

− 1

S1 + S2

)
+

1

S1 + S2

(
Â`1 + Â`2 − A`1 − A`2

))2

≤8E

(
1

Ŝ1 + Ŝ2

− 1

S1 + S2

)2

+
1

C2
E
(
Â`1 − A`1

)2

+
1

C2
E
(
Â`2 − A`2

)2

= O(N−1).

By the range of distribution function, we can find a constant M1, such that

−M1 ≤ U`hg(Xhgi) ≤M1, −M1 ≤ Û`hg(Xhgi) ≤M1, for g = 1, 2, 3, h, t = 1, 2.

Combining these results, we have

E
(
V̂`hg(Xhgi)− V`hg(Xhgi)

)
= O(N−1).

Thus,

E[S2
`hg − σ̂`hg]2 ≤

Mn2
hg

(nhg − 1)2
E

[(
V̂`hg(Xhg1)− V`hg(Xhg1)

)2
]

= O(N−1).

Then when (4.39) holds, we have Ŝ2
`hg − σ2

`hg
P−→ 0. Notice that Ŝ1

P−→ S1 and Ŝ2
P−→ S2,

then under Assumption 4.3.2, we have limN→∞ P
(
Ŝ1 + Ŝ2 ≤ C ′

)
= 0. Thus, ∀ε,

0 ≤ lim
N→∞

P
(
|Ŝ2
`hg − σ2

`hg| > ε
)

≤ lim
N→∞

P
(
Ŝ1 + Ŝ2 ≤ C ′

)
+ lim

N→∞
P
(∣∣Ŝ2

`hg − σ`hg
∣∣ > ε, Ŝ1 + Ŝ2 > C ′

)
= 0.

Hence, Ŝ2
`hg is a consistent estimator for σ2

`hg.

Proof of Equation (4.15). Using the equations (4.6), we have

F211 + F222 = F111 + F122 +
δ1

1− δ1 − δ2

(F111 − F121)− δ2

1− δ1 − δ2

(F112 − F122) and

(4.41)

F212 + F221 = F112 + F121 +
δ1

1− δ1 − δ2

(F112 − F122)− δ2

1− δ1 − δ2

(F111 − F121).
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Using (4.41), we have∫
(F211 + F222)d(F212 + F221)

=

∫
(F111 + F122)d(F112 + F121) +

δ1

1− δ1 − δ2

∫
(F111 − F121)d(F112 + F121)

− δ2

1− δ2 − δ1

∫
(F112 − F122)d(F112 + F121)

+
δ1

1− δ1 − δ2

∫
(F111 + F122)d(F112 − F122)

+

(
δ1

1− δ1 − δ2

)2 ∫
(F111 − F121)d(F112 − F122)

− δ1δ2

(1− δ2 − δ1)2

∫
(F112 − F122)d(F112 − F122)

− δ2

1− δ2 − δ1

∫
(F111 + F122)d(F111 − F121)

− δ1δ2

(1− δ2 − δ1)2

∫
(F111 − F121)d(F111 − F121)

+

(
δ2

1− δ1 − δ2

)2 ∫
(F112 − F122)d(F111 − F121).

By the rule of partial integration, we have∫
(F1gh + F1lk)d(F1g′h′ − F1l′k′) = −

∫
(F1g′h′ − F1l′k′)d(F1gh + F1lk),∫

(F1gh − F1lk)d(F1g′h′ − F1l′k′) = −
∫

(F1g′h′ − F1l′k′)d(F1gh − F1lk),∫
(F1gh + F1lk)d(F1g′h′ + F1l′k′) = 4−

∫
(F1g′h′ + F1l′k′)d(F1gh + F1lk),

where g, g′, h, h′, l, l′, k, k′ = 1, 2.
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Therefore, we have∫
(F211 + F222)d(F212 + F221)

=

∫
(F111 + F122)d(F112 + F121)

+
1

1− δ1 − δ2

∫
(δ1F111 + δ2F122 − δ2F112 − δ1F121)d(F112 + F121)

+
1

1− δ1 − δ2

∫
(δ2F111 + δ1F122 − δ1F112 − δ2F121)d(F111 + F122)

+
δ2

1 − δ2
2

(1− δ1 − δ2)2

∫
(F111 − F121)d(F112 − F122)

=
1

1− δ1 − δ2

∫
(F111 + F122)d(F112 + F121)− 2(δ1 + δ2)

1− δ1 − δ2

+

(
δ1 − δ2

1− δ1 − δ2

+
δ2

1 − δ2
2

(1− δ1 − δ2)2

)∫
(F111 − F121)d(F112 − F122)

+
δ2 − δ1

1− δ1 − δ2

∫
(F112 − F122)d(F112 − F122)

=
1

1− δ1 − δ2

∫
(F111 + F122)d(F112 + F121)− 2(δ1 + δ2)

1− δ1 − δ2

+
δ1 − δ2

(1− δ1 − δ2)2

∫
(F111 − F121)d(F112 − F122).

Combining this result with (4.13) we have

pI =
1

2(1− δ1 − δ2)

∫
(F111 + F122)d(F112 + F121)

+
δ1 − δ2

2(1− δ1 − δ2)2

∫
(F111 − F121)d(F112 − F122)− 1

1− δ1 − δ2

.

Proof of Proposition 4.4.1. Applying Proposition 7.7 in Brunner et al. (2018), we have∫
F̂hgtdF̂lij

P−→
∫
FhgtdFlij.

Then by Proposition 4.3.1 and continuous mapping theorem, we obtain the result.

Proof of Proposition 4.4.2. By definition of pI and p̂I , we have

p̂I − pI =
2(n11 + n12)

N
(p̂I1 − pI) +

2(n21 + n22)

N
(p̂I2 − pI) .
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From Lemma 4.8.1, we have

E(p̂I2 − pI) = O(N−1). (4.42)

For p̂I1, by (4.15), we have

p̂I1 − pI

=
1

2(1− δ̂1 − δ̂2)

∫
(F̂111 + F̂122)d(F̂112 + F̂121)

− 1

2(1− δ1 − δ2)

∫
(F111 + F122)d(F112 + F121)

+
δ̂1 − δ̂2

2(1− δ̂1 − δ̂2)2

∫
(F̂111 − F̂121)d(F̂112 − F̂122)

− δ1 − δ2

2(1− δ1 − δ2)2

∫
(F111 − F121)d(F112 − F122)

−
(

1

1− δ̂1 − δ̂2

− 1

1− δ1 − δ2

)
=

∫
(F̂111 + F̂122)d(F̂112 + F̂121)

(
1

2(1− δ̂1 − δ̂2)
− 1

2(1− δ1 − δ2)

)

+
1

2(1− δ1 − δ2)

(∫
(F̂111 + F̂122)d(F̂112 + F̂121)−

∫
(F111 + F122)d(F112 + F121)

)
+

∫
(F̂111 − F̂121)d(F̂112 − F̂122)

(
δ̂1 − δ̂2

2(1− δ̂1 − δ̂2)2
− δ1 − δ2

2(1− δ1 − δ2)2

)

+
δ1 − δ2

2(1− δ1 − δ2)2

(∫
(F̂111 − F̂121)d(F̂112 − F̂122)−

∫
(F111 − F121)d(F112 − F122)

)
−
(

1

1− δ̂1 − δ̂2

− 1

1− δ1 − δ2

)
=Ê1

(
1

2(1− δ̂1 − δ̂2)
− 1

2(1− δ1 − δ2)

)
+

1

2(1− δ1 − δ2)
(Ê1 − E1)

+ Ê2

(
δ̂1 − δ̂2

2(1− δ̂1 − δ̂2)2
− δ1 − δ2

2(1− δ1 − δ2)2

)
+

δ1 − δ2

2(1− δ1 − δ2)2
(Ê2 − E2)

−
(

1

1− δ̂1 − δ̂2

− 1

1− δ1 − δ2

)
,

where

Ê1 =

∫
(F̂111 + F̂122)d(F̂112 + F̂121), E1 =

∫
(F111 + F122)d(F112 + F121),

Ê2 =

∫
(F̂111 − F̂121)d(F̂112 − F̂122), E2 =

∫
(F111 − F121)d(F112 − F122).
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By the range of empirical distribution function, we have 0 ≤ Ê1 ≤ 4 and −2 ≤ Ê2 ≤ 2.

From Lemma 4.8.1, we have

E(Ê1)− E1 = O(N−1), and E(Ê2)− E2 = O(N−1).

From Proposition 4.3.2, we have E(δ̂1) − δ1 = O(N−1) and E(δ̂2 − δ2) = O(N−1), and

from Assumption 4.3.3, we have 1 < 1
1−δ1−δ2 <

1
1−2c2

. Therefore,

E

(
1

1− δ̂1 − δ̂2

− 1

1− δ1 − δ2

)
=

1

1− δ1 − δ2

E

(
δ̂1 − δ1 + δ̂2 − δ2

1− δ1 − δ2

+ o

(
δ̂1 − δ1 + δ̂2 − δ2

1− δ1 − δ2

))
= O(N−1).

E

(
δ̂1 − δ̂2

(1− δ̂1 − δ̂2)2
− δ1 − δ2

(1− δ1 − δ2)2

)

=E

(
(δ̂1 − δ̂2)

(
1

(1− δ̂1 − δ̂2)2
− 1

(1− δ1 − δ2)2

))
+

1

(1− δ1 − δ2)2
E
(

(δ̂1 − δ1)− (δ̂2 − δ2)
)

=E

(
δ̂1 − δ̂2

(1− δ1 − δ2)2

((
2(δ̂1 − δ1 + δ̂2 − δ2)

1− δ1 − δ2

)
+ o

(
2(δ̂1 − δ1 + δ̂2 − δ2)

1− δ1 − δ2

)))
+

1

(1− δ1 − δ2)2
E
(

(δ̂1 − δ1)− (δ̂2 − δ2)
)

= O(N−1).

E(p̂I1 − pI) ≤2E

(
1

1− δ̂1 − δ̂2

− 1

1− δ1 − δ2

)
+

1

2(1− δ1 − δ2)
E(D̂1 −D1)

+ E

(
δ̂1 − δ̂2

(1− δ̂1 − δ̂2)2
− δ1 − δ2

(1− δ1 − δ2)2

)
+

δ1 − δ2

2(1− δ1 − δ2)2
E(D̂2 −D2)

− E
(

1

1− δ̂1 − δ̂2

− 1

1− δ1 − δ2

)
= O(N−1). (4.43)

Combining (4.42) and (4.43), we complete the proof.

Proof of Theorem 4.4.1. By definition of p̂I , we have

√
N(p̂I − pI) =

2(n11 + n12)

N

√
N(p̂I1 − pI) +

2(n21 + n22)

N

√
N(p̂I2 − pI).
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Asymptotic Equivalence for
√
N(p̂I2 − pI) By results in Brunner et al. (2018), we

have

√
N(p̂I2 − pI)

=
√
N

(∫
1

2
(F̂211 + F̂222)d(F̂212 + F̂221)− 1− pI

)
=

√
N

2

(∫ (
F̂211 + F̂222

)
d
(
F̂212 + F̂221

)
−
∫

(F11 + F22) d (F12 + F21)

)
+

√
N

2

(∫
(F211 + F222) d

(
F̂212 + F̂221

)
−
∫

(F212 + F221) d
(
F̂211 + F̂222

)
+ 2− 2

∫
(F11 + F22) d (F12 + F21)

)

=

√
N

2n21

n21∑
i=1

(F211(X212i) + F222(X212i)− F212(X211i)− F221(X211i))

+

√
N

2n22

n22∑
i=1

(F211(X221i) + F222(X221i)− F212(X222i)− F221(X222i))− 2pI

=

√
N

n21

n21∑
i=1

W1(X21i) +

√
N

n22

n22∑
i=1

W2(X22i)− 2pI ,

where

W1(X21i) =
1

2
(F211(X212i) + F222(X212i)− F212(X211i)− F221(X211i)) , (4.44)

W2(X22i) =
1

2
(F211(X221i) + F222(X221i)− F212(X222i)− F221(X222i)) .

Asymptotic Equivalence for
√
N(p̂I1 − pI) Then we return to

√
N(p̂I1 − pI), set

p̃I1 =
1

2(1− δ1 − δ2)

∫
(F̂111 + F̂122)d(F̂112 + F̂121)

+
δ1 − δ2

2(1− δ1 − δ2)2

∫
(F̂111 − F̂121)d(F̂112 − F̂122)− 1

(1− δ1 − δ2)
.

Then we have

√
N(p̂I1 − pI) =

√
N(p̂I1 − p̃I1) +

√
N(p̃I1 − pI).

1. Asymptotic equivalence for
√
N(p̃I1 − pI)
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By their definition, we have

√
N(p̃I1 − pI) (4.45)

=
1

2(1− δ1 − δ2)

√
N

∫
(F̂111 + F̂122)d(F̂112 + F̂121)

− 1

2(1− δ1 − δ2)

√
N

∫
(F111 + F122)d(F112 + F121)

+
δ1 − δ2

2(1− δ1 − δ2)2

√
N

∫
(F̂111 − F̂121)d(F̂112 − F̂122)

− δ1 − δ2

2(1− δ1 − δ2)2

√
N

∫
(F111 − F121)d(F112 − F122).

To simplify the notation, we set

C1 =
1

2(1− δ1 − δ2)
and C2 =

δ1 − δ2

2(1− δ1 − δ2)2
.

Applying results (4.29) to the right hand side of (4.45), we have

√
N(p̃I1 − pI)

+C1

√
N

[∫
(F̂111 + F̂122)d(F112 + F121) +

∫
(F111 + F122)d(F̂112 + F̂121)

]
+ C2

√
N

[∫
(F̂111 − F̂121)d(F112 − F122) +

∫
(F111 − F121)d(F̂112 − F̂122)

]
− 2C1

√
N

∫
(F111 + F122)d(F112 + F121)

− 2C2

√
N

∫
(F111 − F121)d(F112 − F122).

Notice that∫
(F̂111 − F̂121)d(F112 − F122) = −

∫
(F112 − F122)d(F̂111 − F̂121) and∫

(F̂111 + F̂122)d(F112 + F121) = 4−
∫

(F112 + F121)d(F̂111 + F̂122),
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we have

√
N(p̂I − pI)

+C1

√
N

[∫
(F111 + F122)d(F̂112 + F̂121)−

∫
(F112 + F121)d(F̂111 + F̂122)

]
+ C2

√
N

[∫
(F111 − F121)d(F̂112 − F̂122)−

∫
(F112 − F122)d(F̂111 − F̂121)

]
− 2pI

+UN .

Observe that

UN =

√
N

n11

n11∑
k=1

{
C1[−F112(X111k)− F121(X111k) + F111(X112k) + F122(X112k)]

+ C2[−F112(X111k) + F122(X111k) + F111(X112k)− F121(X112k)]
}

+

√
N

n12

n12∑
k=1

{
C1[F111(X121k) + F122(X121k)− F112(X122k)− F121(X122k)]

+ C2[−F122(X121k) + F112(X121k) + F121(X122k)− F111(X122k)]
}
− 2pI

√
N

=

√
N

n11

n11∑
k=1

V1(X11k) +

√
N

n12

n12∑
k=1

V2(X2k)− 2pI
√
N,

where

V1(X11k) =C1[−F112(X111k)− F121(X111k) + F111(X112k) + F122(X112k)]

+ C2[−F112(X111k) + F122(X111k) + F111(X112k)− F121(X112k)],

(4.46)

V2(X2k) =C1[F111(X121k) + F122(X121k)− F112(X122k)− F121(X122k)]

+ C2[−F122(X121k) + F112(X121k) + F121(X122k)− F111(X122k)].

Thus, UN can be expressed as sums of functions of independent and identically dis-

tributed random variables.

2. Asymptotic Equivalence for
√
N(p̂I1 − p̃I1)
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Notice that

√
N(p̂I1 − p̃I1)

=
√
N

(
1

2(1− δ̂1 − δ̂2)
− 1

2(1− δ1 − δ2)

)∫
(F̂111 + F̂122)d(F̂112 + F̂121)

+
√
N

(
δ̂1 − δ̂2

2(1− δ̂1 − δ̂2)2
− δ1 − δ2

2(1− δ1 − δ2)2

)∫
(F̂111 − F̂121)d(F̂112 − F̂122)

−
√
N

(
1

1− δ̂1 − δ̂2

− 1

(1− δ1 − δ2)

)
.

By Taylor expansion, we have

1

1− δ̂1 − δ̂2

− 1

1− δ1 − δ2

=
1

1− δ1 − δ2

 1

1− (δ̂1−δ1)+(δ̂2−δ2)
1−δ1−δ2

− 1


=

1

1− δ1 − δ2

(
(δ̂1 − δ1) + (δ̂2 − δ2)

1− δ1 − δ2

+

(
(δ̂1 − δ1) + (δ̂2 − δ2)

1− δ1 − δ2

)2

+ op

(
(δ̂1 − δ1) + (δ̂2 − δ2)

1− δ1 − δ2

)2)
.

1(
1− δ̂1 − δ̂2

)2 −
1

(1− δ1 − δ2)2

=
1

(1− δ1 − δ2)2

 1(
1− (δ̂1−δ1)+(δ̂2−δ2)

1−δ1−δ2

)2 − 1


=

1

(1− δ1 − δ2)2

(
2 · (δ̂1 − δ1) + (δ̂2 − δ2)

1− δ1 − δ2

+ 3 ·

(
(δ̂1 − δ1) + (δ̂2 − δ2)

1− δ1 − δ2

)2

+ op

((δ̂1 − δ1) + (δ̂2 − δ2)

1− δ1 − δ2

)2
).

Since
√
N(δ̂g − δg), g = 1, 2 is asymptotically distributed as normal distributions

and δ̂g is consistent estimator for δg, by Slutsky’s theorem, we have

√
N(δ̂1 − δ1)2 P−→ 0,

√
N(δ̂2 − δ2)2 P−→ 0,

√
N(δ̂2 − δ2)(δ̂1 − δ1)

P−→ 0.
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Hence,

1

1− δ̂1 − δ̂2

− 1

1− δ1 − δ2

=
1

(1− δ1 − δ2)2

(
(δ̂1 − δ1) + (δ̂2 − δ2)

)
+ op(1).

δ̂1 − δ̂2(
1− δ̂1 − δ̂2

)2 −
δ1 − δ2

(1− δ1 − δ2)2

=
(δ̂1 − δ1)− (δ̂2 − δ2)(

1− δ̂1 − δ̂2

)2 + (δ1 − δ2)

 1(
1− δ̂1 − δ̂2

)2 −
1

(1− δ1 − δ2)2


=

(δ̂1 − δ1)− (δ̂2 − δ2)

(1− δ1 − δ2)2
+

2(δ1 − δ2)

1− δ1 − δ2

(δ̂1 − δ1) + (δ̂2 − δ2)

(1− δ1 − δ2)2
+ op(1)

=
1

(1− δ1 − δ2)2

(
1 + δ1 − 3δ2

1− δ1 − δ2

(
δ̂1 − δ1

)
− 1 + δ2 − 3δ1

1− δ1 − δ2

(
δ̂2 − δ2

))
+ op(1).

Therefore,

√
N(p̂I1 − p̃I1)

=

√
N
(

(δ̂1 − δ1) + (δ̂2 − δ2)
)

2(1− δ1 − δ2)2

∫
(F̂111 + F̂122)d(F̂112 + F̂121)

+
1

2(1− δ1 − δ2)2

(
1 + δ1 − 3δ2

1− δ1 − δ2

√
N
(
δ̂1 − δ1

)
− 1 + δ2 − 3δ1

1− δ1 − δ2

√
N
(
δ̂2 − δ2

))

×
∫

(F̂111 − F̂121)d(F̂112 − F̂122)−

√
N
(

(δ̂1 − δ1) + (δ̂2 − δ2)
)

(1− δ1 − δ2)2
+ op(1)

=

√
N(δ̂1 − δ1)

2(1− δ1 − δ2)2

[∫
(F̂111 + F̂122)d(F̂112 + F̂121)

+
1 + δ1 − 3δ2

1− δ1 − δ2

∫
(F̂111 − F̂121)d(F̂112 − F̂122)− 2

]

+

√
N(δ̂2 − δ2)

2(1− δ1 − δ2)2

[∫
(F̂111 + F̂122)d(F̂112 + F̂121)

− 1 + δ2 − 3δ1

1− δ1 − δ2

∫
(F̂111 − F̂121)d(F̂112 − F̂122)− 2

]
+ op(1)

=D1

√
N(δ̂1 − δ1) +D2

√
N(δ̂2 − δ2) + op(1),
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where

D1 =
1

2(1− δ1 − δ2)2

[ ∫
(F111 + F122)d(F112 + F121)

+
1 + δ1 − 3δ2

1− δ1 − δ2

∫
(F111 − F121)d(F112 − F122)− 2

]
,

D2 =
1

2(1− δ1 − δ2)2

[ ∫
(F111 + F122)d(F112 + F121)

− 1 + δ2 − 3δ1

1− δ1 − δ2

∫
(F111 − F121)d(F112 − F122)− 2

]
.

Hence,

√
N (p̂I − p̃I)

=
1

S1 + S2

√
N
[
D1

(
Ã1

11 + Ã2
11 + Ã3

11 + Ã1
12 + Ã2

12 + Ã3
12

)
+D2(Ã1

21 + Ã2
21 + Ã3

21 + Ã1
22 + Ã2

22 + Ã3
22)
]

− D1(A11 + A12) +D2(A21 + A22)

(S1 + S2)2

√
N
[
S̃1

1 + 2S̃2
1 + S̃1

2 + 2S̃2
2

]
+ op(1)

=

√
N

n11

n11∑
k=1

U11(X11k) +

√
N

n12

n12∑
k=1

U12(X12k)

+

√
N

n21

n21∑
k=1

U21(X21k) +

√
N

n22

n22∑
k=1

U22(X22k),

where

U11(X11k) =
D1

S1 + S2

U111(X11k) +
D2

S1 + S2

U211(X11k)

− (D1(A11 + A12) +D2(A21 + A22))

(S1 + S2)2
U311(X11k),

U12(X12k) =
D1

S1 + S2

U112(X12k) +
D2

S1 + S2

U212(X12k)

− (D1(A11 + A12) +D2(A21 + A22))

(S1 + S2)2
U312(X12k), (4.47)

U21(X21k) =
D1

S1 + S2

U121(X21k) +
D2

S1 + S2

U221(X21k)

− (D1(A11 + A12) +D2(A21 + A22))

(S1 + S2)2
U321(X21k),

U22(X22k) =
D1

S1 + S2

U122(X22k) +
D2

S1 + S2

U222(X22k)

− (D1(A11 + A12) +D2(A21 + A22))

(S1 + S2)2
U322(X22k).
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Combining the equivalence results above, we have

√
N(p̂I − pI)

=
2(n11 + n12)

N

√
N(p̂I1 − pI) +

2(n21 + n22)

N

√
N(p̂I2 − pI)

=
2(n11 + n12)

N

(√
N(p̂I1 − p̃I1) +

√
N(p̃I1 − pI)

)
+

2(n21 + n22)

N

√
N(p̃I2 − pI)

+
2(n11 + n12)

N

(√
N

n11

n11∑
k=1

U11(X11k) +

√
N

n12

n12∑
k=1

U12(X12k)

)

+
2(n11 + n12

N

(√
N

n21

n21∑
k=1

U21(X21k) +

√
N

n22

n22∑
k=1

U22(X22k)

)

+
2(n11 + n12)

N

(√
N

n11

n11∑
k=1

V1(X11k) +

√
N

n12

n12∑
k=1

V2(X12k)

)

+
2(n21 + n22)

N

(√
N

n21

n21∑
i=1

W1(X21i) +

√
N

n22

n22∑
i=1

W2(X22i)

)

=

√
N

n11

n11∑
k=1

A1 (V1(X11k) + U11(X11k)) +

√
N

n12

n12∑
k=1

A1 (V2(X12k) + U12(X12k))

+

√
N

n21

n21∑
k=1

(A2W1(X21k) + A1U21(X21k))

+

√
N

n22

n22∑
k=1

(A2W2(X22k) + A1U22(X22k)) + op(1).

Utilizing the CLT and by Assumption 4.3.4, we can obtain that

√
N(p̂I − pI)

D−→ U ∼ N
(
0, κ−1

11 σ
2
11 + κ−1

12 σ
2
12 + κ−1

21 σ
2
21 + κ−1

22 σ
2
22

)
,

where

σ2
11 = V ar(A1 (V1(X11k) + U11(X11k))), σ2

12 = V ar (A1 (V2(X12k) + U12(X12k))) ,

σ2
21 = V ar(A2W1(X21k) + A1U21(X21k)), σ2

22 = V ar(A2W2(X22k) + A1U22(X22k)).
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Proof of Theorem 4.4.2. By the weak law of large number, we have

σ̂2
11 =

1

n11 − 1

n11∑
k=1

A2
1

(
V1(X11k) + U11(X11k)− V 1(X11.)− U11(X11·)

)2 P−→ σ2
11,

σ̂2
12 =

1

n12 − 1

n12∑
k=1

A2
1

(
V2(X12k) + U12(X12k)− V 2(X12.)− U12(X12·)

)2 P−→ σ2
12,

σ̂2
21 =

1

n21 − 1

n21∑
k=1

(
A2W1(X21k) + A1U21(X21k)− A2W 1(X21·)− A1U21(X21·)

)2 P−→ σ2
21,

σ̂2
22 =

1

n22 − 1

n22∑
k=1

(
A2W2(X22k) + A1U22(X22k)− A2W 2(X22k)− A1U22(X22·)

)2 P−→ σ2
22.

as n11, n12, n21, n22 →∞, where V g(X1g·) = 1
n1g

∑n1g

k=1 V (X1gk),W g(X2g·) = 1
n2g

∑n2g

k=1Wg(X2gk)

and Uhg(Xhg·) = 1
nhg

∑nhg

k=1 Uhg(Xhgk), h, g = 1, 2.

Since σ̂2
hg

P−→ σ2
hg , we are done with the proof if we can show Ŝ2

hg−σ̂2
hg

P−→ 0. It suffices

to show that

E[Ŝ2
hg − σ̂hg]2 → 0 as N →∞ for h, g = 1, 2.

Here we just show the proof for h = g = 1, others can be proved similarly. By definition,

we have

E[Ŝ2
11 − σ̂11]2 =E

[
A2

1

n11 − 1

n11∑
k=1

(
V̂1(X11k) + Û11(X11k)− V̂ 1(X11·)− Û11(X11·)

)2

− A2
1

n11 − 1

n11∑
k=1

(
V1(X11k) + U11(X11k)− V 1(X11·)− U11(X11·)

)2
]2

≤ A4
1

(n11 − 1)2
E

[ n11∑
k=1

(
V̂1(X11k) + Û11(X11k)− V̂ 1(X11·)− Û11(X11·)

+ V1(X11k) + U11(X11k)− V 1(X11·)− U11(X11·)
)2

×
n11∑
k=1

(
V̂1(X11k)− V1(X11k) + Û11(X11k)− U11(X11k)

− V̂ 1(X11·) + V 1(X11·)− Û11(X11·) + U11(X11·)
)2
]
.

Now suppose (4.39) holds and further assume

0 < min{δ1, δ2} ≤ max{δ̂1, δ̂2} < c′ <
1

2
, (4.48)
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where c < c′ < 1
2
, and c is the constant in Assumption 4.3.3. Then by Assumption 4.3.2,

4.3.3 and range of distribution functions, V̂1(X11k), V1(X11k), Û11(X11k), and U11(X11k)

are bounded and we can find a constant M > 0, such that

(
V̂1(X11k) + Û11(X11k)− V̂ 1(X11·)− Û11(X11·)

+ V1(X11k) + U11(X11k)− V 1(X11·)− U11(X11·)
)2 ≤M.

Therefore, similar to the procedures in (4.40), we have

E[Ŝ2
11 − σ̂11]2

≤ Mn11

(n11 − 1)2
E

[
n11∑
k=1

(
V̂1(X11k)− V1(X11k)

)2

+

n11∑
k=1

(
Û11(X11k)− U11(X11k)

)2
]

≤ Mn11

(n11 − 1)2

[
n11∑
k=1

E
(
V̂1(X11k)− V1(X11k)

)2

+

n11∑
k=1

E
(
Û11(X11k)− U11(X11k)

)2
]
.

By definitions, we have

E
[
V̂1(X11k)− V1(X11k)

]2

(4.49)

≤E
[
Ĉ1F̂112(X111k)− C1F112(X111k)

]2

+ E
[
Ĉ1F̂121(X111k)− C1F121(X111k)

]2

+ E
[
Ĉ1F̂111(X112k)− C1F111(X112k)

]
+ E

[
Ĉ1F̂122(X112k)− C1F122(X112k)

]2

+ E
[
Ĉ2F̂112(X111k)− C2F112(X111k)

]
+ E

[
Ĉ2F̂122(X111k)− C2F122(X111k)

]2

+ E
[
Ĉ2F̂111(X112k)− C2F111(X112k)

]
+ E

[
Ĉ2F̂121(X112k)− C2F121(X112k)

]2

,

where Ĉ1 = 1

2(1−δ̂1−δ̂2)
, Ĉ2 = δ̂1−δ̂2

2(1−δ̂1−δ̂2)2
. By Assumption 4.3.3 and Lemma 4.8.2, we have

E
[
Ĉ1F̂112(X111k)− C1F112(X111k)

]2

≤E
[(
Ĉ1 − C1

)2

F̂ 2
112(X111k)

]
+ E

[
C2

1

(
F̂112(X111k)− F112(X111k)

)2
]

≤E
[(
Ĉ1 − C1

)2
]

+
1

4n11(1− 2c)2
.

124



Since

E

[(
Ĉ1 − C1

)2
]

=E

( 1

2(1− δ̂1 − δ̂2)
− 1

2(1− δ1 − δ2)

)2


=E

 1

4(1− δ1 − δ2)2

(
δ̂1 − δ1 + δ̂2 − δ2

1− δ1 − δ2

+ o

(
δ̂1 − δ1 + δ̂2 − δ2

1− δ1 − δ2

))2


≤ 1

8(1− 2c)6

[
E
(
δ̂1 − δ1

)2

+ E
(
δ̂2 − δ2

)2

+ E
(
o
(
δ̂1 − δ1 + δ̂2 − δ2

))2
]
.

Notice that

E
(
δ̂g − δg

)2

=E

((
Âg1 + Âg2

)( 1

Ŝ1 + Ŝ2

− 1

S1 + S2

)
+

1

S1 + S2

(
Âg1 + Âg2 − Ag1 − Ag2

))2

=O(N−1),

because by Lemma 4.8.2, we have

E
(
Âgt − Agt

)
= O(N−1), E

(
Ŝt − St

)
= O(N−1).

Therefore,

E

[(
Ĉ1 − C1

)2
]

= O(N−1).

Similarly, we can show that

E

[(
Ĉ2 − C2

)2
]

= O(N−1).

Hence,

E
[
Ĉ1F̂112(X111k)− C1F112(X111k)

]2

≤ O(N−1).

The rest terms on the left hand side of (4.49) can be dealt similarly, therefore,

E
[
V̂1(X11k)− V1(X11k)

]2

≤ O(N−1). (4.50)
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Similarly, we can show that

E
[
Û11(X11k)− U11(X11k)

]2

≤ O(N−1). (4.51)

Combining (4.50) and (4.51), we have

E[Ŝ2
11 − σ̂11] ≤ O(N−1).

Thus, when (4.39) and (4.48) hold, we have Ŝ11 − σ2
11

P−→ 0. Notice that Ŝ1
P−→ S1,

Ŝ2
P−→ S2, δ̂1

δ−→1 and δ̂2
δ−→2, then under Assumption 4.3.1, 4.3.2 and 4.3.3, we have

limN→∞ P (Ŝ1 + Ŝ2 ≤ C ′) = 0, limN→∞ P (δ̂1 > c′ or δ̂1 < 0) = 0, limN→∞ P (δ̂2 >

c′ or δ̂1 < 0) = 0. Thus, ∀ε > 0,

0 ≤ lim
N→∞

P
(
|Ŝ11 − σ11| > ε

)
≤ lim

N→∞
P
(
Ŝ1 + Ŝ2 ≤ C ′

)
+ lim

N→∞
P (δ̂1 > c′ or δ̂1 < 0) + lim

N→∞
P (δ̂2 > c′ or δ̂1 < 0)

+ lim
N→∞

P
(
|Ŝ11 − σ11| > ε, Ŝ1 + Ŝ2 > C ′, 0 < min{δ1, δ2} ≤ max{δ̂1, δ̂2} < c′

)
= 0.

Hence, Ŝ11 is a constant estimator for σ2
11.
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Supplemental Simulation Results

In this subsection, we include additional simulation results that are discussed in Section

4.5.
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Figure 4.12: Boxplots of bias for δ̂2 by sample size, sample size ratio, δ2, and ρ.
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Figure 4.13: Boxplots of RMSE for δ̂2 by sample size, sample size ratio, δ2, and ρ.
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Chapter 5 Adjusting for Covariates in Contaminated Clinical Trials

5.1 Introduction

Clinical trials are often used to assess drug efficacy and safety. Sometimes, participants

are classified into different groups by diagnostic tools. However, these diagnostic tools

are not perfectly accurate. Their misclassification error rates are usually unknown and

assumed to be zero in the traditional method. These inaccuracies lead to contamination of

the group membership and, thereby, bias in estimation of treatment effect (Battistin and

Sianesi, 2011). Moreover, the misclassification errors yield overly optimistic results in

the sample size determinations and the power calculations. These errors may prevent the

detection of significant treatment effects.

This misclassification issue are prominent in the era of personalized medicine and

measurement-based care. The US Food and Drug Administration published a concept

paper (Hinman et al., 2006) to support the co-development of drugs and test devices. It

recommends establishing clinical validation (i.e., the accuracy of the test devices) and

clinical utility (i.e., the effects of classification on the drug performances) of a test in a

pre-clinical pilot feasibility study. These can be achieved using a pre-stratified randomized

placebo-controlled design or a pre-stratified pre-post or matched pair design. This chapter

will focus on the latter design, but the method can be easily extended to the first design.

Despite the importance of this problem, only few works evaluated treatment effect in

the presence of misclassifications. Most of them focus on estimating accuracy and sample

size to evaluate the devices themselves (Flahault et al., 2005). Harrar et al. (2016) recently

tackled this problem and provided methods for estimating and testing treatment effect.

They approximated the distribution of outcomes by a mixture of multivariate normal dis-

tribution and derived sample size determination formula. Nevertheless, their methods are

only applicable for continuous outcomes and do not allow covariates.

To estimate and test treatment effects, a proper model for the distribution of outcomes is

necessary. Due to misclassification errors, the distribution can be approximated by mixture
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models, which are widely used in different disciplines and have well-studied theories. The

finite mixture of linear regression models is a commonly used class of mixture models that

can accommodate the effect of the covariates. Though powerful, their linearity assumptions

are sometimes restrictive. Some efforts have been made to extend these models and relax

these assumptions. Huang and Yao (2012) studied a semiparametric mixture of regression

models. In their models, the regression functions are still linear functions of predictors, but

the mixing proportions are smoothing functions of a covariate instead of constant. Later,

Huang et al. (2013) proposed a nonparametric finite mixture of regression models. The new

model relaxes the linearity assumption on the regression model and allows each component

regression functions to be an unknown but smooth function of covariates. Due to the ”curse

of dimensionality”, only a single covariate is considered.

This chapter extends Huang et al. (2013)’s model by considering multiple covariates

and bivariate outcomes. We establish a more robust method for estimating and testing treat-

ment effects in a pre-post design when a diagnostic device used for screening (treatment

assignment) is prone to misclassification errors. In Section 2, we present a nonparametric

finite mixture of regression models and establish its identifiability. We derive an estimation

procedure using the kernel regression method and EM algorithm in Section 3. We conclude

this chapter with summary and discussion for future work in Section 4.

5.2 Model and Identifiability

Statistical Model

To compare treatment effects on patients with or without a specific disease in a pre-post

design, it is assumed that a diagnostic device that is prone to misclassification error is used

to separate the participants into two groups, diseased (group 1) and healthy (group 2). The

observation on performance of each patient are measured before and after treatment. These

measurements are response variables, denoted by Y . We propose a mixture of nonpara-

metric regression models to address the misclassification errors of the diagnostic device.

Let {Xg,Yg}, g = 1, 2, be pair of covariates and outcome variables for each patient

diagnosed in group g. Since the diagnostic device is not perfect, the actual group status

129



of each patient is unknown. We will regard it as a latent variable and denote it as C. Let

the probability that a patient truly is classified in group g be P (C = g|Xg = x) = πg(x).

Conditioning on C = g, and Xg = x, Yg is assumed to follow a multivariate normal

distribution with meanmg(x) and covariance matrix Σg(x). We further assume that πg(x),

mg(x), and Σg(x), g = 1, 2 are unknown but smooth functions. Hence, conditioning on

Xg = x, Yg follows a finite mixture of multivariate normal distributions given by

Yg|Xg=x ∼ πg(x)N{mg(x),Σg(x)}+ (1− πg(x))N{mg′(x),Σg′(x)}, (5.1)

where g 6= g′, g, g′ = 1, 2.

Identifiability

Huang et al. (2013) established identifiability for the nonparametric finite mixture of re-

gression models in the univariate case. We extend their result to the multivariate case here.

To establish identifiability, more restrictions for mixture models are required. The proof of

Theorem 5.2.1 is included in Appendix 5.5

Theorem 5.2.1. The model (5.1) is identifiable if

1. πg(x) > 0, g = 1, 2, are continuous functions,

2. mg(x) and Σg(x), g = 1, 2 are differentiable functions,

3. for any x ∈ Rp,

||m1(x)−m2(x)||2 +

∥∥∥∥vec

(
∂m1(x)

∂x

)
− vec

(
∂m2(x)

∂x

)∥∥∥∥2

+ ||vec(Σ1(x))− vec(Σ2(x))||2

+

∥∥∥∥vec

(
∂vec(Σ1(x))

∂x

)
− vec

(
∂vec(Σ2(x))

∂x

)∥∥∥∥2

6= 0,

where ‖ · ‖ is the Euclidean distance and vec is the operator that transforms a matrix

to a vector, and

4. the range ofX is an open set in Rp.
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The conditions 1,2 and 4 in Theorem 5.2.1 are general conditions for model (5.1) that

require the component functions πg(x),mg(x),Σg(x) are smooth functions on an open

set in Rp. The conditions 3 requires (m1(x),Σ1(x)) and (m2(x),Σ2(x)) have different

derivatives on all their intersection points. If the distribution of two groups are well sepa-

rated, i.e. (m1(x),Σ1(x)) 6= (m2(x),Σ2(x)) for all x, this condition is satisfied.

5.3 Estimation Procedure: Nonparametric Kernel Regression

To estimate these component functions in the model (5.1), πg(x),mg(x), and Σg(x), g =

1, 2, one can use the maximum likelihood method. Suppose we have n = n1+n2 subjects in

the clinical trial, of which n1 and n2 are diagnosed as in group 1 and group 2, respectively.

Let Ygi = (Y 1
gi, Y

2
gi)
′ be the pre and post outcomes vector and Xgi be the covariates for

the ith patient in the group g. Denote φ(y|µ,Σ) to be the density function of multivariate

normal distribution N(µ,Σ). Then the log-likelihood function for the data {Xgi,Ygi, i =

1, . . . , ng, g = 1, 2} is

L =
2∑
g=1

ng∑
i=1

log
[
πg(xgi)φ{ygi|mg(xgi),Σg(xgi)}

+ (1− πg(xgi))φ{ygi|mg′(xgi),Σg′(xgi)}
]
,

where g 6= g′, g, g′ = 1, 2. We employ the multivariate kernel regression method to esti-

mate component functions in model (5.1). Instead of estimating the component functions

directly, we use local constant πg,mg, and Σg to approximate πg(x),mg(x), and Σg(x), g =

1, 2. Let KH(x) = |H|−1/2K(H−1/2x) be a rescaled version of the kernel function K(·)

with symmetric and positive bandwidth matrixH , whereK(x) = (2π)−d/2 exp(−1/2x>x).

Then the corresponding local log-likelihood function is

ln(θ;x) =
2∑
g=1

ng∑
i=1

log [πgφ{ygi|mg,Σg}+ (1− πg)φ{ygi|mg′ ,Σg′}]KH(xgi − x),

(5.2)

where θ = (π1, π2,m1,m2,Σ1,Σ2). We estimate the component functions by the maxi-

mizer of the local log-likelihood function (5.2) and denote it as θ̃ = (π̃1, π̃2, m̃1, m̃2, Σ̃1, Σ̃2).
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EM Algorithm for Kernel Regression

To obtain the maximizer of the function in (5.2), we formulate the problem as an incomplete-

data problem and use the EM algorithm. We regard the actual group status of ith patient in

group g as the missing variable and denote it by Zgi, i.e.,

Zgi =

 1, if (Xi,Yi) classified in gth group is in the gth group,

0, otherwise.
(5.3)

The complete log-likelihood function becomes

2∑
g

ng∑
i=1

{
zgi[log πg(xgi) + log φ{ygi|mg(xgi),Σg(xgi)}]

+ (1− zgi)[log(1− πg(xgi)) + log φ{ygi|mg′(xgi),Σg′(xgi)}]
}
.

For x ∈ {u1, . . . ,uN}, the set of grid points at which the unknown functions are to be

evaluated, define a local complete log-likelihood as

2∑
g

ng∑
i=1

{
zgi[log πg + log φ{ygi|mg,Σg}] + (1− zig)[log(1− πg)

+ log φ{ygi|mg′ ,Σg′}]
}
KH(xgi − x).

The EM algorithm involves two steps iteratively: E-step and M-step. In the E-step,

we take expectations of the missing variables Zgi. Then in the M-step, we plug in these

expectations and maximize the resulting complete log-likelihood function to obtain the

estimators for the component functions. Then we return to the E-step and update the ex-

pectations of Zgi and carry out the M-step again. We iteratively update the estimators until

the algorithm converges.

For a fixed point x, one can easily maximize this function using the EM algorithm.

However, we are interested in evaluating the component functions at a set of grid points

over an open set of x. Naively implementing the EM algorithm for each point will lead

to a label switching problem, a common issue in mixture models. This may lead to inter-

changing estimation of component distributions and result in misleading treatment effect

estimation. To address this issue, we will propose a modified EM algorithm. In the E-step,
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we will calculate the expectation based on the complete log-likelihood function. In the

M-step, we will maximize the local log-likelihood function with the kernel function.

Suppose in the lth iteration, we have πlg(·), ml
g(·), and Σ

(l)
g (·), g = 1, 2, then in the

E-step of (l + 1)th iteration, the expectation of the latent variable Zgi is given by

r
(l+1)
gi =

πg(xgi)φ{ygi|mg(xgi),Σg(xgi)}
πg(xgi)φ{ygi|mg(xgi),Σg(xgi) + (1− πg(xgi))φ{ygi|mg′(xgi),Σg′(xgi)}

.

(5.4)

In the M-step of (l + 1)th iteration, we maximize
2∑
g

ng∑
i=1

{
r

(l+1)
gi [log πg + log φ{ygi|mg,Σg}] (5.5)

+ (1− r(l+1)
gi )[log(1− πg) + log φ{ygi|mg′ ,Σg′}]

}
KH(xgi − x),

for x = uj , j = 1, . . . , N . The maximization of Equation (5.5) is equivalent to maximizing
ng∑
i=1

[
r

(l+1)
gi log πg + (1− r(l+1)

ig ) log(1− πg)
]
KH(xgi − x) (5.6)

for g = 1, 2, and
2∑
g=1

ng∑
i=1

[
r

(l+1)
gi log φ{ygi|mg,Σg}+ (1− r(l+1)

ig ) log φ{ygi|mg′ ,Σg′}
]
KH(xgi − x),

(5.7)

separately. For x ∈ {uj, j = 1, . . . , N}, the solution for maximization of Equation (5.6) is

π(l+1)
g (x) =

∑ng

i=1 r
(l+1)
gi KH(xgi − x)∑ng

i=1KH(xgi − x)
, (5.8)

and the closed-from solution for Equation (5.7) is

m(l+1)
g (x) =

∑ng

i=1 r
(l+1)
gi KH(xgi − x)ygi +

∑ng′
i=1(1− r(l+1)

g′i )KH(xg′i − x)yg′i∑ng

i=1 r
(l+1)
gi KH(xgi − x) +

∑ng′
i=1(1− r(l+1)

g′i )KH(xg′i − x)
, (5.9)

and

Σ(l+1)
g (x) =

∑ng

i=1 r
(l+1)
gi KH(xgi − x)(ygi −m(l+1)

g (x))(ygi −m(l+1)
g (x))>∑ng

i=1 r
(l+1)
gi KH(xgi − x) +

∑ng′
i=1(1− r(l+1)

g′i )KH(xg′i − x)
(5.10)

+

∑ng′
i=1(1− r(l+1)

g′i )KH(xg′i − x)(yg′i −m(l+1)
g (x))(yg′i −m(l+1)

g (x))>∑ng

i=1 r
(l+1)
gi KH(xgi − x) +

∑ng′
i=1(1− r(l+1)

g′i )KH(xg′i − x)
.

Furthermore, we update π(l+1)
g (xgi), m(l+1)

g (xgi) and Σ
(l+1)
g (xgi), g = 1, 2, by linearly

interpolating π(l+1)
g (ui), m(l+1)

g (ui), and Σ
(l+1)
g (ui), i = 1, . . . , N .
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Initial Value for EM algorithm

To implement this algorithm, we need to select initial values for the parameters and the

bandwidth matrix H for the kernel function KH(·). Huang et al. (2013) suggested using a

mixture of polynomial regression to obtain the initial value first. Similar to their idea, we

use a mixture of multivariate polynomial regressions as initial value for the EM algorithm.

By including higher orders of the vector of the predictor variable into the covariate matrix

Xg, the calculations for the mixture of polynomial regression is similar to mixture of linear

regressions. The mixtools package in R (Benaglia et al., 2009) provides code for mixture

of linear regression when the response variable y is univariate. In our case, the response

y is bivariate and we have two groups to consider simultaneously. Therefore, we need to

revise the algorithm to upgrade it for mixture of multivariate linear regressions.

In a mixture of linear regressions,mg(x) = B>g x
∗, where x∗ is the vector of covariates

including the intercept and higher orders of the predictor variables. Here, Bg is the regres-

sion coefficient matrix, whereas Σg(x) and πg(x) are constant functions. The conditional

distribution of Yg givenX∗g = x∗ can be written as

Yg|X∗g=x ∼ πgN(B>g x
∗,Σg) + (1− πg)N(B>g′x

∗,Σg′),

where g′, g = 1, 2 and g 6= g′. Given the data {X∗Gi,YGi, i = 1, . . . , nG, G = 1, 2}, the

log-likelihood function is

L =
2∑
i=1

ng∑
i=1

log[πgφ{ygi|B>g x∗,Σg}+ (1− πg)φ{ygi|B>g′x∗, ,Σg′}].

It is hard to derive the MLE analytically and, thus, we still utilize the EM algorithm for

it. As before, we denote the true group membership by Zgi defined in (5.3) as missing

information. The complete log-likelihood function is

LC =
2∑
g

ng∑
i=1

{
zgi[log πg + log φ{ygi|B>g x∗gi,Σg}]

+ (1− zgi)[log(1− πg) + log φ{ygi|B>g′x∗gi,Σg′}]
}
.

Suppose in the lth iteration, we have π(l)
g , B(l)

g , and Σ
(l)
g , g = 1, 2. In the E-step of the
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(l + 1)th iteration, the expectation of the latent variable Zgi is given by

r
(l+1)
gi =

πgφ{ygi|B>g x∗gi,Σg}
πgφ{ygi|B>g x∗gi,Σg}+ (1− πg)φ{ygi|B>g′x∗gi,Σg′}

. (5.11)

In the M-step of the (l + 1)th iteration, we maximize the following function:

2∑
g

ng∑
i=1

{
r

(l+1)
gi [log πg + log φ{ygi|B>g x∗gi,Σg}] (5.12)

+ (1− r(l+1)
gi )[log(1− πg) + log φ{ygi|B>g′x∗gi,Σg′}]

}
, (5.13)

which is equivalent to maximizing

L1 =

ng∑
i=1

{r(l+1)
gi log πg + (1− r(l+1)

gi ) log(1− πg)} (5.14)

and

L2 =

ng∑
i=1

r
(l+1)
gi log φ(ygi|B>g x∗gi,Σg) +

ng′∑
i=1

(1− r(l+1)
g′i ) log φ(yg′i|B>g x∗g′i,Σg). (5.15)

The maximizor for (5.14) is:

π(l+1)
g =

∑ng

i=1 r
(l+1)
gi

n
, g = 1, 2. (5.16)

Taking derivatives of L2 with respective to Bg and Σg, we have

∂L2

∂Bg

=

[
ng∑
i=1

r
(l+1)
gi

(
−x∗giy>gi + x∗gix

∗>
gi Bg

)
+

ng′∑
i=1

(
1− r(l+1)

g′i

) (
−x∗g′iy>g′i + x∗g′ix

∗>
g′iBg

)]
Σ−1
g ,

and

∂L2

∂Σg

=− 1

2

ng∑
i=1

r
(l+1)
gi

(
Σ−1
g − Σ−1

g (ygi −B>g x∗gi)(ygi −B>g x∗gi)>Σ−1
g

)
− 1

2

n′g∑
i=1

(
1− r(l+1)

g′i

) (
Σ−1
g − Σ−1

g (yg′i −B>g x∗g′i)(yg′i −B>g x∗g′i)>Σ−1
g

)
.

Thus, the maximizor for L2 is

B(l+1)
g =

[
X∗>g R(l+1)

g X∗g +X∗>g′ (1−R(l+1)
g′ )X∗g′

]−1 [
X∗>g R(l+1)

g Yg +X∗>g′ (1−R(l+1)
g′ )Yg′

]
,

(5.17)
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and

Σ(l+1)
g =

∑ng

i=1 r
(l+1)
gi (ygi −B(l+1)>

g x∗gi)(ygi −B
(l+1)>
g x∗gi)

>∑ng

i=1 r
(l+1)
gi +

∑n′g
i=1

(
1− r(l+1)

g′i

) (5.18)

+

∑n′g
i=1

(
1− r(l+1)

g′i

)
(yg′i −B(l+1)>

g x∗g′i)(yg′i −B
(l+1)>
g x∗g′i)

>∑ng

i=1 r
(l+1)
gi +

∑n′g
i=1

(
1− r(l+1)

g′i

) ,

where

R(l+1)
g =


r

(l+1)
g1 . . . 0

... . . . ...

0 . . . r
(l+1)
gn

 , Xg =


X∗>g1

...

X∗>gn

 , and Yg =


Y >g1

...

Y >gn

 .

For the initial values of the mixture of multivariate polynomial regression, we propose

to use the previous information for mixing proportions πg, g = 1, 2 and polynomial regres-

sion estimations forBg and Σg disregarding the misclassification. The proposed estimation

procedure is summarized as the following:
EM Algorithm

Initial Value: Utilize EM-algorithm for mixture of polynomial regressions with constant

portions, regressionn coefficient matrix and variances in (5.11), (5.17) and (5.18), and ob-

tain the estimates of coefficient matrix B̃g, and π̃g, Σ̃g, g = 1, 2. Set the initial value as

m
(1)
g (x) = B>g x

∗, Σ
(1)
g (x) = Σ̃g, and π(1)

g (x) = π̃g.

E-step: Use Equation (5.4) to calculate r(l)
gi for i = 1, . . . , n, and g = 1, 2.

M-step: For g = 1, 2 and j = 1, . . . , N , evaluate π(l+1)
g (uj) in (5.8), m(l+1)

g (uj) in (5.9),

and Σ(l+1)(uj) in (5.10). Further obtain π(l+1)
g (Xgi), m(l+1)

g (Xgi), and Σ
(l+1)
g (Xgi) using

linear interpolation.

5.4 Summary and Conclusion

In this chapter, we proposed a mixture of nonparametric regression models for estimat-

ing treatment effect in the presence of misclassification errors and covariate information.

We provide conditions for the identifiability of the model and utilize the kernel regression

method to estimate the component functions, nonparametrically. A modified EM algo-

rithm is derived for the mixture of nonparametric regression. We propose a mixture of
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multivariate polynomial regressions for obtaining initial values of which EM algorithm is

also provided.

For the standard EM algorithm, it is well known that it possesses an ascent property,

i.e., the likelihood function l(θ(l)) increase for each subsequent iteration. The proposed

EM algorithm can be viewed as a generalization of the standard EM algorithm for the

nonparametric mixture of regression. Further investigation is needed to confirm if the

modified algorithm still preserves the desired ascent property.

To efficiently implement the modified EM algorithm, we need to select a proper band-

width matrix for the kernel regression. In the univariate case, Huang et al. (2013) propose a

multifold cross validation (CV) method to choose the bandwidth which may not be efficient

to use in the multivaraite setting. Duong (2007) introduced R package ks for bandwidth

matrix selection in multivariate kernel smoothing. The selection is based on the Mean

Integrated Squared Error (MISE) criterion,

MISE(H) = E

∫
Rd

[
f̂(x, H)− f(x)

]2

dx,

where f is the density function ofXi and f̂(x, H) = n−1
∑n

i=1KH(x−Xi). This criterion

may not be suitable in our case. We will use simulation studies to check the performance of

these bandwidth selectors and investigate proper bandwidth selection method for our case.

Through the iterations of the EM-algorithm, we obtain a local constant estimator θ̃ =

(π̃1, π̃2, m̃1, m̃2, Σ̃1, Σ̃2) as the maximizer of the local log-likelihood function (5.2). The

asymptotic bias, variance, and normality of this estimator is yet to be developed.These

estimators can be used to approximate the component functions. Then the treatment effects

can be estimated by comparing m̃1 and m̃2 adjusted for the differences in Σ̃1 and Σ̃2 over

the range of the covariatesX .

5.5 Appendix

In this subsection, we provide detailed proofs of for the theoretical results in Section 5.2.

Proof of Theorem 5.2.1. Let S = {x : (m1(x),Σ1(x)) = (m2(x),Σ2(x))} be the subset

of Rp where the mean and covariance functions intersect. Under the assumption 3, any
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point in S is an isolated point. Thus, S is countable and has no limit point. We can

represent S as a sequence {xk}.

Suppose that model (5.1) have another representation

Yg|Xg=x ∼ π∗g(x)N{m∗g(x),Σ∗g(x)}+ (1− π∗g(x))N{m∗g′(x),Σ∗g′(x)}, (5.19)

where g′, g = 1, 2 and g 6= g′. Yakowitz and Spragins (1968) established the identifiability

of finite mixture of the multivariate Gaussian family up to label switching. Hence, for

any given x /∈ S, model (5.1) is identifiable up to label switch. Therefore, there exists a

permutation ωx = {ωx(1), ωx(2)} of set {1, 2} depending on x, such that

(π∗ωx(g)(x),m∗ωx(g)(x),Σ∗ωx(g)(x)) = (πg(x),mg(x),Σg(x)), for g = 1, 2. (5.20)

Because all parameter functions are continuous and they only intersect on S, for all open

set O with O∩S = ∅, the label cannot be switched. Hence, the permutation ωx is constant

on O. On the other hand, for xk ∈ S, because there is no limit point in S, we can find a

neighborhood of xk, say Bxk
, such that {Bxk

\{xk}} ∩ S = ∅. Under assumption 3, the

mean and covariance functions have different derivatives at intersection point xk in both

groups. Thus the permutation ωx must be constant on Bxk
since (5.20) implies the identity

of parameter functions’ derivatives in the neighborhood of xk. Hence, the permutation ωx

is independent of x and

(π∗ω(g)(x),m∗ω(g)
(x),Σ∗ω(g)

(x)) = (πg(x),mg(x),Σg(x)),

for g = 1, 2.
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Chapter 6 Conclusion and Future Directions

6.1 Conclusion

This dissertation focused on a pre-stratified pre-post design and addressed the estimation

of treatment effects with misclassification problems in four distinct situations.

In Chapter 2, we addressed the problem of estimating and testing treatment effects with

continuous multivariate outcomes. We proposed two methods for estimating and testing

treatment effects. First, when the misclassification errors are known from previous studies,

we developed moment-based test and confidence interval procedures that are accurate in

finite samples. Based on this test, we also developed methods for sample size and power

calculations. Second, we proposed likelihood-based procedures for estimation and testing

via the EM algorithm when the misclassification errors are unknown. Chapter 3 further

investigated the situation when the misclassification rates are unknown, but the validation

(training) samples from infallible classifiers are available. We derived consistent estimators

of the misclassification error rates using a novel distance-based criterion. Essentially, we

extended the moment-based and likelihood-based procedures in Chapter 2 to the case when

validation data is available.

In Chapter 4, we developed a fully nonparametric method for estimating and testing

treatment effect when the normality assumption is not valid for the outcome variables, but

the validation (training) data is available. We modeled the distribution of the outcomes by a

nonparametric mixture of unknown distributions. We used functionals of these distribution

functions to characterize treatment effects. Consistent estimators for the misclassification

error rates as well as the treatment effect were provided. We also derived the asymptotic

distributions of these estimators and proposed testing and estimating procedures based on

these distributions.

In Chapter 5, we investigated a nonparametric finite mixture of regression models to

the distributions of outcomes when some covariates associated with the misclassification

error rates and treatment outcomes are collected. We established conditions for the identi-
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fiability of this model. We utilized kernel methods and proposed a modified EM algorithm

to estimate the component regression functions nonparametrically.

6.2 Future Directions

Mixture of Multivariate Normal Model

For the finite mixture of the multivariate normal model discussed in Chapter 2 and Chap-

ter 3, the covariance matrices of the two groups are assumed to be the same. Though it

is reasonable to assume that the treatment only affects the means of the distribution, this

assumption could be restrictive for some applications. The moment-based estimator does

not involve covariance matrices, but its variance estimation is affected by them. The corre-

sponding sample size determination formulas need to be recalculated when the covariance

matrices are not equal. We also need to reformulate the likelihood-based approach and re-

calculate the corresponding E and M steps. Moreover, the treatment effect needs to adjust

for the difference in covariance matrices in two groups.

Nonparametric Finite Mixture Model

In the nonparametric finite mixture model, we assumed that the mixing proportions are

known, or validation (training) data exists to avoid the nonidentifiability issue in the mix-

ture model. This assumption can be restrictive in applications. It may be possible to estab-

lish identifiability by making some assumptions on the nature of dependence between the

pre and post-measurements or using a semi-parametric dependence model. Corresponding

inferential procedures need to be derived.

When the pre-and post-treatment measurements are univariate, we provided a fully

nonparametric method of estimating and testing the misclassification error rates and the

treatment effect. The extension of these results to the situation when the outcome measure-

ments are multivariable variables would be useful. Proper functional of the distribution

functions should be defined to assess the treatment effect. Estimators for the misclassifica-

tion error rates and treatment effect need to be recalculated in the multivariate case. Their

asymptotic distributions also need investigation.
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Nonparametric Finite Mixture of Regressoin Model

The standard EM algorithm possesses an ascent property such that the likelihood function

increase after each iteration. We plan to study and show that the proposed modified EM

algorithm preserves this desirable property. The algorithm’s performances are also affected

by choice of the bandwidth matrix for the kernel regression. We plan to investigate the

performance of the existing bandwidth selection method through simulations. Furthermore,

we plan to develop the asymptotic results for the local log-likelihood estimators obtained

from the proposed EM algorithm iterations. Finally, we will define the treatment effect in

this model and establish estimating and testing procedures for this effect.

Copyright© Zi Ye, 2021.

141



Bibliography

Akritas, M. G. (1990). The rank transform method in some two-factor designs. Journal of

the American Statistical Association 85(409), 73–78.

Akritas, M. G. (1991). Limitations of the rank transform procedure: a study of repeated

measures designs, Part I. Journal of the American Statistical Association 86(414),

457–460.

Akritas, M. G. (1992). Rank transform statistics with censored data. Statistics & Proba-

bility Letters 13(3), 209–221.

Akritas, M. G. and S. F. Arnold (1994). Fully nonparametric hypotheses for factorial

designs I: multivariate repeated measures designs. Journal of the American Statistical

Association 89(425), 336–343.

Akritas, M. G. and E. Brunner (1997). A unified approach to rank tests for mixed models.

Journal of Statistical Planning and Inference 61(2), 249 – 277.

Allman, E. S., C. Matias, and J. A. Rhodes (2009). Identifiability of parameters in la-

tent structure models with many observed variables. The Annals of Statistics 37(6A),

3099–3132.

Anderson, T. W. (2003). An introduction to multivariate statistical analysis.

Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian

Journal of Statistics 12(2), 171–178.

Azzalini, A. and A. Capitanio (2003). Distributions generated by perturbation of symmetry

with emphasis on a multivariate skew t-distribution. Journal of the Royal Statistical

Society. Series B (Statistical Methodology) 65(2), 367–389.

Battistin, E. and B. Sianesi (2011). Misclassified treatment status and treatment effects: an

application to returns to education in the united kingdom. Review of Economics and

Statistics 93(2), 495–509.

Benaglia, T., D. Chauveau, D. Hunter, and D. Young (2009). mixtools: An r package for

analyzing finite mixture models. Journal of Statistical Software 32(6), 1–29.

142



Benaglia, T., D. Chauveau, and D. R. Hunter (2009). An EM-like algorithm for semi-

and nonparametric estimation in multivariate mixtures. Journal of Computational and

Graphical Statistics 18(2), 505–526.

Bordes, L., S. Mottelet, and P. Vandekerkhove (2006). Semiparametric estimation of a

two-component mixture model. The Annals of Statistics 34(3), 1204–1232.

Brunner, E., A. C. Bathke, and F. Konietschke (2018). Rank and Pseudo-Rank Procedures

for Independent Observations in Factorial Designs. Springer.

Brunner, E., H. Dette, and A. Munk (1997). Box-type approximations in nonparametric

factorial designs. Journal of the American Statistical Association 92(440), 1494–

1502.

Brunner, E., F. Konietschke, M. Pauly, and M. L. Puri (2017). Rank-based procedures in

factorial designs: hypotheses about non-parametric treatment effects. Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 79(5), 1463–1485.

Brunner, E. and U. Munzel (2000). The nonparametric Behrens-Fisher problem: asymp-

totic theory and a small-sample approximation. Biometrical Journal 42(1), 17–25.

Brunner, E., U. Munzel, and M. L. Puri (1999). Rank-score tests in factorial designs with

repeated measures. Journal of Multivariate Analysis 70(2), 286 – 317.

Brunner, E. and N. Neumann (1982). Rank tests for correlated random variables. Biomet-

rical Journal 24(4), 373–389.

Castro, H., D. Pillay, C. Sabin, and D. T. Dunn (2012). Effect of misclassification of

antiretroviral treatment status on the prevalence of transmitted hiv-1 drug resistance.

BMC medical research methodology 12(1), 1–5.

Chauveau, D. and V. T. L. Hoang (2016). Nonparametric mixture models with condition-

ally independent multivariate component densities. Computational Statistics & Data

Analysis 103, 1–16.

Chen, C.-F., J.-R. Lin, and J.-P. Liu (2013). Statistical inference on censored data for

targeted clinical trials under enrichment design. Pharmaceutical statistics 12(3), 165–

173.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incom-

143



plete data via the em algorithm. Journal of the Royal Statistical Society: Series B

(Methodological) 39(1), 1–22.

Duong, T. (2007). ks: Kernel density estimation and kernel discriminant analysis for mul-

tivariate data in r. Journal of Statistical Software 21(7), 1–16.

Eling, P., J. Maes, and M. Van Haaf (2006). Processing of emotionally toned pictures in

dementia. International Journal of Geriatric Psychiatry: A journal of the psychiatry

of late life and allied sciences 21(9), 831–837.

Flahault, A., M. Cadilhac, and G. Thomas (2005). Sample size calculation should be

performed for design accuracy in diagnostic test studies. Journal of clinical epidemi-

ology 58(8), 859–862.

Gentili, C., M. I. Gobbini, E. Ricciardi, N. Vanello, P. Pietrini, J. V. Haxby, and

M. Guazzelli (2008). Differential modulation of neural activity throughout the dis-

tributed neural system for face perception in patients with social phobia and healthy

subjects. Brain research bulletin 77(5), 286–292.

Hall, P. (1981). On the non-parametric estimation of mixture proportions. Journal of the

Royal Statistical Society: Series B (Statistical Methodological) 43(2), 147–156.

Hall, P. and X.-H. Zhou (2003). Nonparametric estimation of component distributions in a

multivariate mixture. The Annals of Statistics 31(1), 201–224.

Harrar, S. W., A. Amatya, and L. Kalachev (2016). Assessing treatment efficacy in the

presence of diagnostic errors. Statistics in Medicine 35(29), 5338–5355.

Harrar, S. W. and A. C. Bathke (2012). A modified two-factor multivariate analysis of

variance: asymptotics and small sample approximations. Annals of the Institute of

Statistical Mathematics 64(1), 135–165.

Harrar, S. W., M. B. Feyasa, and E. Wencheko (2020). Nonparametric procedures for

partially paired data in two groups. Computational Statistics & Data Analysis 144,

106903.

Hinman, L. M., S. M. Huang, J. Hackett, W. H. Koch, P. Y. Love, G. Pennello, A. Torres-

Cabassa, and C. Webster (2006). The drug diagnostic co-development concept paper.

The Pharmacogenomics Journal 6(6), 375–380.

144



Huang, M., R. Li, and S. Wang (2013). Nonparametric mixture of regression models.

Journal of the American Statistical Association 108(503), 929–941.

Huang, M. and W. Yao (2012). Mixture of regression models with varying mixing pro-

portions: a semiparametric approach. Journal of the American Statistical Associa-

tion 107(498), 711–724.

Hunter, D. R., S. Wang, and T. P. Hettmansperger (2007). Inference for mixtures of sym-

metric distributions. The Annals of Statistics 35(1), 224–251.

Johnson, R. A., D. W. Wichern, et al. (2007). Applied multivariate statistical analysis,

Volume 6. Prentice Hall Upper Saddle River, NJ.

Juszczynski, P., G. Woszczek, M. Borowiec, M. Kowalski, T. Robak, P. Bilinski, G. Salles,

and K. Warzocha (2002). Comparison study for genotyping of a single-nucleotide

polymorphism in the tumor necrosis factor promoter gene. Diagnostic Molecular

Pathology 11(4), 228–233.

Karunamuni, R. J. and J. Wu (2009). Minimum Hellinger distance estimation in a nonpara-

metric mixture model. Journal of Statistical Planning and Inference 139(3), 1118–

1133.

Konietschke, F., S. W. Harrar, K. Lange, and E. Brunner (2012). Ranking procedures for

matched pairs with missing data – asymptotic theory and a small sample approxima-

tion. Computational Statistics & Data Analysis 56(5), 1090 – 1102.

Levine, M., D. R. Hunter, and D. Chauveau (2011). Maximum smoothed likelihood for

multivariate mixtures. Biometrika 98(2), 403–416.

Li, M., T. Yu, and Y.-F. Hu (2015). The impact of companion diagnostic device mea-

surement performance on clinical validation of personalized medicine. Statistics in

medicine 34(14), 2222–2234.

Lie, R. T., I. Heuch, and L. M. Irgens (1994). Maximum likelihood estimation of the

proportion of congenital malformations using double registration systems. Biometrics,

433–444.

Lin, H., S. K. McClintock, and J. M. Williamson (2011). Correction for two-group sample

size calculation with uncertain group membership. Journal of Data Science 9(2),

145



155–170.

Lindsay, B. G. and P. Basak (1993). Multivariate normal mixtures: a fast consistent method

of moments. Journal of the American Statistical Association 88(422), 468–476.

Liu, J.-P. and J.-R. Lin (2008). Statistical methods for targeted clinical trials under enrich-

ment design. Journal of the Formosan Medical Association 107(12), S35–S42.

Liu, J.-P., J.-R. Lin, and S.-C. Chow (2009). Inference on treatment effects for targeted

clinical trials under enrichment design. Pharmaceutical Statistics: The Journal of

Applied Statistics in the Pharmaceutical Industry 8(4), 356–370.

Louis, T. A. (1982). Finding the observed information matrix when using the em algorithm.

Journal of the Royal Statistical Society: Series B (Methodological) 44(2), 226–233.

Magnus, J. R. and H. Neudecker (1979). The commutation matrix: some properties and

applications. The Annals of Statistics, 381–394.

Mann, H. B. and D. R. Whitney (1947). On a test of whether one of two random variables

is stochastically larger than the other. The annals of mathematical statistics 18(1),

50–60.

Meng, X.-L. and D. B. Rubin (1991). Using em to obtain asymptotic variance-covariance

matrices: The sem algorithm. Journal of the American Statistical Association 86(416),

899–909.

Nedelman, J. (1988). The prevalence of malaria in garki, nigeria: double sampling with a

fallible expert. Biometrics, 635–655.

O’Donnell, C. J., R. J. Glynn, T. S. Field, R. Averback, S. Satterfield, G. C. Friesenger II,

J. O. Taylor, and C. H. Hennekens (1999). Misclassification and under-reporting of

acute myocardial infarction by elderly persons: implications for community-based

observational studies and clinical trials. Journal of clinical epidemiology 52(8), 745–

751.

Qin, J. (1999). Empirical likelihood ratio based confidence intervals for mixture propor-

tions. The Annals of Statistics 27(4), 1368–1384.

Qiu, S.-F., J. He, J.-R. Tao, M.-L. Tang, and W.-Y. Poon (2019). Comparison of disease

prevalence in two populations under double-sampling scheme with two fallible clas-

146



sifiers. Journal of Applied Statistics, 1–27.

Satterfield, B. C., J. P. Wisor, S. A. Field, M. A. Schmidt, and H. P. A. Van Don-

gen (2015). TNFα G308A polymorphism is associated with resilience to sleep

deprivation-induced psychomotor vigilance performance impairment in healthy young

adults. Brain, Behavior, and Immunity 47, 66–74.

Tenenbein, A. (1970). A double sampling scheme for estimating from binomial data with

misclassifications. Journal of the American Statistical Association 65(331), 1350–

1361.

Thompson, G. L. (1990). Asymptotic distribution of rank statistics under dependencies

with multivariate application. Journal of Multivariate Analysis 33(2), 183 – 211.

Thompson, G. L. (1991). A unified approach to rank tests for multivariate and repeated

measures designs. Journal of the American Statistical Association 86(414), 410–419.

Titterington, D. M. (1983). Minimum distance non-parametric estimation of mixture pro-

portions. Journal of the Royal Statistical Society: Series B (Statistical Methodologi-

cal) 45(1), 37–46.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin 1(6),

80–83.

Xu, J. and S. W. Harrar (2012). Accurate mean comparisons for paired samples with

missing data: An application to a smoking-cessation trial. Biometrical Journal 54(2),

281–295.

Yakowitz, S. J. and J. D. Spragins (1968). On the identifiability of finite mixtures. The

Annals of Mathematical Statistics, 209–214.

Zheng, C. and Y. Wu (2020). Nonparametric estimation of multivariate mixtures. Journal

of the American Statistical Association 115(531), 1456–1471.

147



Vita

Zi Ye
EDUCATION

• University of Kentucky Lexington, Kentucky

– Ph.D. in Statistics August 2018 - August 2021

– M.S. in Statistics August 2016 - May 2018

• Wuhan University Wuhan, Hubei, China

– M.S. in Probability September 2012 - June 2015

– B.S. in Mathematics (Major) September 2008 - June 2012

– B.A. in Finance (Minor) September 2008 - June 2012

WORKING EXPERIENCE

• Primary Instructor, University of Kentucky August 2018 - May 2021

• Teaching Assistant, University of Kentucky August 2016 - May 2018

PUBLICATIONS

• Ye, Z. and Harrar, S. (2021), ”Multiple Treatment Effects in Contaminated Randomized
Trials”, Pharmaceutical Statistics, Major revision requested.

• Ye, Z. and Harrar, S. (2020), ”Nonparametric Mixture Model: Application in Clinical
Trials”, Journal of the American Statistical Association, submitted.

• Ye, Z. (2016), ”Cramer type moderate deviations for the number of renewals”, Statistics
& Probability Letters, 119: 194-199

148


	Estimating and Testing Treatment Effects with Misclassified Multivariate Data
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Background
	1.2 Multivariate Parametric Method
	1.3 Estimation of Misclassification Error
	1.4 Nonparametric Method
	1.5 Covariate Adjustment
	1.6 Organization of This Dissertation

	2 Multivariate Treatment Effects in Contaminated Clinical Trials
	2.1 Introduction
	2.2 Statistical Model
	2.3 Estimation and Test
	2.4 Sample Size and Power
	2.5 Numerical Study
	2.6 Illustrative examples
	2.7 Discussion and Conclusion
	2.8 Appendix

	3 Estimation of Misclassification Error Rates
	3.1 Introduction
	3.2 Statistical Model and Parameter of Interest
	3.3 The Moment-Based Approaches
	3.4 The Likelihood-Based Approaches
	3.5 Numerical Study
	3.6 Discussion and Conclusion
	3.7 Appendix

	4 Nonparametric Finite Mixture: Applications in Contaminated Trials
	4.1 Introduction
	4.2 Model and Effect Size Measure
	4.3 Inference on Mixing Proportions
	4.4 Estimation and Test on Effect Size
	4.5 Simulation Study
	4.6 Real Data Example
	4.7 Discussion
	4.8 Appendix

	5 Adjusting for Covariates in Contaminated Clinical Trials
	5.1 Introduction
	5.2 Model and Identifiability
	5.3 Estimation Procedure: Nonparametric Kernel Regression
	5.4 Summary and Conclusion
	5.5 Appendix

	6 Conclusion and Future Directions
	6.1 Conclusion
	6.2 Future Directions

	Bibliography
	Vita

