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Mono Lake (CA) is a hydrologically closed lacustrine basin well-known for its 
paleo-shorelines, which record fluctuations in water level for the last deglacial and late 
Holocene. Mono Lake is a sentinel of California’s water supply, situated in the rain 
shadow of the Sierra Nevada, a mountain range whose snowpack is a vital source of 
freshwater for urban and agricultural districts to the west and south.  Recent droughts, 
floods, and wildfires show that California is threatened by climate change, but how these 
changes impact and get recorded by Mono Lake sediments remains poorly known. Here, 
we use a new radiocarbon-dated deepwater sediment core from Mono Lake to test the 
hypothesis that organic facies development is controlled by climate and limnological 
change.  An integrated stratigraphic analysis of the core reveals seven lithostratigraphic 
units that track environmental changes from ~16-4 ka.  When compared to available 
paleo-shoreline and shallow water core data, our results show that high amplitude lake-
level fluctuations of the late Pleistocene produce different patterns of sedimentation and 
organic enrichment than lower-amplitude water level changes of the early and middle 
Holocene. The results have implications for understanding patterns of paleo-production 
and hydroclimate change at Mono Lake.  
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CHAPTER ONE: INTRODUCTION 

The Sierra Nevada region supplies California (western USA) with more than 60% 

of its developed water supply, which is utilized by ~25 million people and irrigates ~3 

million acres of valuable agricultural land (Vicuna and Dracup, 2007; Sierra Nevada 

Conservancy, 2015). The modern hydrology of the Sierra Nevada is controlled by winter 

storms originating in the Pacific Ocean, which in many years form a heavy snowpack on 

the mountain peaks along the northeastern margin of California. As the snowpack melts 

in the spring and summer, it feeds streams which are diverted to fill reservoirs. However, 

from 2012-2016, California experienced its worst drought in more than 1200 years (Cook 

et al., 2009; Griffin and Anchukaitis, 2014). For the world’s sixth largest economy, the 

lack of precipitation had a severe impact on the production of fruits, nuts and vegetables, 

as well as on people from the Central Valley to Southern California (Respaut, 2016).  

Paleoclimate proxy records (i.e., from tree rings and speleothems) have shown 

that droughts are not uncommon in the Sierra Nevada, and in fact, there is evidence of 

longer and more severe “megadroughts”, which usually last on the order of 20-40 years 

(Herweijer et al., 2007; Griffin and Anchukaitis, 2014), exist in the late Holocene record. 

Tree-ring chronologies from the 2014 growing season revealed that while the 

precipitation during the 2012-2014 drought was anomalously low, it was not outside the 

range of natural variability. Griffin and Anchukaitis (2014) suggested that the severity of 

the drought was exacerbated by the record high temperatures associated with 

anthropogenic emissions of greenhouse gases and enhanced evaporative demand. High 

temperatures likewise affect the North Atlantic Ocean, which some authors (i.e., Denton 

et al., 2006; Chiang et al., 2014; Cvijanovic et al., 2017) believe to be an important region 
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for global climate with teleconnections to precipitation and water availability in 

California. Recent sea-ice modelling (Cvijanovic et al., 2017) revealed that changes in 

North Atlantic and Antarctic sea-ice (loss or gain) shift the location and strength of 

tropical convection, which leads to changing storm tracks over California. If Arctic sea 

ice continues to decrease, as is expected during the next several decades due to 

greenhouse gas emissions and higher temperatures, these conditions will result in 

substantial wintertime warming and favor drying over California (Wang and Overland, 

2009; Olsen et al., 2011; Pederson et al., 2016; Cvijanovic et al., 2017).  

Although tree rings and speleothems are valuable archives of paleo-precipitation, 

they preserve limited paleoenvironmental information, making the nature and timing of 

the response of inland aquatic ecosystems (e.g., lakes, wetlands, and rivers) to 

hydroclimate change difficult to fully ascertain. Therefore, well-dated sedimentary 

records from lakes in the eastern Sierra Nevada may be vital archives for learning more 

about the impacts of changing hydroclimate on this region of critical importance to 

California’s water supply. In particular, hydrologically closed lakes are renowned for 

their sensitivity to changes in water balance, and as such form keystone archives of 

paleoenvironmental information for a number of arid and semi-arid regions around the 

world (e.g., Laird et al., 1996; Davis and Moutoux, 1998; Lowenstein et al., 1999; 

Plazcek et al., 2006; Colman et al., 2007; Morrissey and Scholz, 2014).  Therefore, 

hydrologically closed lakes hold great promise for improving our knowledge of climate 

and ecological transitions in the Sierras.  

Mono Lake is a hydrologically closed basin located in the rainshadow of the 

eastern Sierra Nevada in northeastern California (Figure 1). A number of Great Basin 
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lakes, including Mono Lake, have proven to be highly sensitive recorders of climate 

variations, as they respond rapidly to changes in precipitation and runoff (Benson et al., 

1990; Stine, 1990; Newton, 1994; Davis, 1999; Benson et al., 2003; MacDonald et al., 

2008; Zimmerman et al., 2011; Noble et al., 2016; Ali, 2018; Zimmerman et al., in rev.). 

Through the recent research of Ali (2018), Mono Lake has an extremely well-dated 

paleo-shoreline record from ~25.0-12.0 ka that demonstrates a number of high-amplitude 

water-level fluctuations during the Last Glacial Maximum and the deglacial (Figure 2). In 

addition, the geomorphological and stratigraphic studies of Lajoie (1968) and Stine 

(1990), resulted in a detailed paleo-shoreline elevation history for Mono Lake for the past 

~4000 yrs (Figure 3), which is also marked by high-frequency changes. Together, these 

datasets form arguably the most comprehensively dated late Quaternary paleo-shoreline 

history for any lake on Earth.  

However, because ancient shoreline records are unavailable from ~12.0-2.0 ka, 

the water-level history from this interval must be ascertained from sediment cores 

collected from beneath the extant lake. Furthermore, very little is known about the 

paleolimnology of Mono Lake over the deglacial and Holocene; unlike the beautifully 

exposed Wilson Creek Formation (Zimmerman et al., 2011), outcrops of lake beds from 

the last ~12 kyr are rare in the basin. The existing paleo-shoreline records provide critical 

lake-level elevation context for interpreting changes in limnology, sedimentary processes, 

and paleo-productivity within Mono Lake using sediment cores. This convergence of data 

is highly unusual in Quaternary paleolimnology. For many long-lived lake basins, paleo-

shorelines, which provide quantitative insights on water-level elevation and lake volume, 
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assuming that tectonic changes have not deformed or uplifted the basin margins, are 

poorly preserved (Cohen, 2003).  

Sediment cores collected from deepwater depocenters are usually better preserved 

and may contain more continuous stratal records than shorelines. Core records can also 

be challenging to collect and reliably date, and individually they provide limited spatial 

perspective on paleoenvironment. In the few instances where both dated paloeshorelines 

and long sediment core are available (e.g., Bolivia’s Salar de Uyuni, and the western 

USA’s Great Salt Lake), the records show considerable complexity, most particularly in 

the timing and down-dip expression of highstands and lowstands (Baker et al., 2001; Get 

al., 2004; Placzek et al., 2006; Placzek et al., 2013; Baker and Fritz, 2015). Although 

marrying these types of data is often not feasible, the insights on lake level provided by 

paleo-shorelines can lead to better constraints on paleolimnological interpretation than 

using sediment cores alone. 

The focus of this study is on a new ~11 m long, deepwater sediment core 

collected from the western embayment of Mono Lake (Figure 4). Previous attempts to 

extract long cores from Mono Lake have not been successful, due in part to an abundance 

of tephras found at relatively shallow depths in the basin’s subsurface that are difficult to 

penetrate. In this study, that sampling challenge was overcome by using an UWITEC 

percussion piston-corer (Figure 5), which was able to collect both coarse tephra beds and 

fine-grained lacustrine deposits without altering or disturbing the stratigraphy. Prior 

successful attempts at coring Mono Lake have mostly focused on shallow-water regions 

of the western embayment due to the Paoha Island uplift (~250 yrs BP) (Figure 4), a mid-

lake volcanic eruption, disrupted large swaths of the lake floor away from the shoreline 
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(Christensen et al., 1969; Stine, 1990; Newton, 1994; Benson et al., 2003; Colman et al., 

2014; Zimmerman et al., in rev.).  

In addition, shallow-water cores have the advantage of recovering sediments that 

potentially contain terrestrial plant macrofossils, particularly in areas near riverine inputs 

(Davis, 1999). The Paoha Island eruption uplifted and overturned previously deposited 

lake beds, generating a mudflow which spread out over vast areas of the lake floor. In 

order to obtain a well-preserved sediment core suitable for comparison with the available 

paleo-shoreline record, the coring campaign undertaken in this study leveraged the 

seismic survey of Colman et al. (2014), which used high frequency CHIRP technology to 

image the shallow seismic stratigraphy of Mono Lake and the extent of disruption from 

the Paoha Island uplift. The Paoha Island uplift generated an acoustically distinct 

mudflow deposit, which pinches out in the western embayment at a scarp feature in ~24 

m water depth (Figure 4). Therefore, we collected our core in 18 m of water to avoid 

heavily disrupted strata. Another issue associated with shallow-water cores is stratal 

completeness; due to dynamic lake levels, the littoral zone has at times been subaerially 

exposed and reworked by waves over latest Pleistocene and Holocene time (e.g., 

Zimmerman et al., in rev.). A deepwater sediment core provides the best potential for a 

continuous sedimentary record that preserves fine-scale details of aquatic processes and 

basin environmental history.   

The hypothesis underpinning this study is that organic-facies development over 

millennial time scales in Mono Lake is controlled by environmental and limnologic 

changes. This hypothesis was tested using the aforementioned deepwater sediment core, 

which provides a record that encompasses the late deglacial (~17-13 ka), the Pleistocene-
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Holocene transition (13-10 ka), and the Holocene through ~4.2 ka. The main objectives 

of this study were to: (1) analyze the core stratigraphy, (2) generate a radiocarbon-based 

age model for the core, (3) perform a multi-indicator organic-facies analysis that included 

physical properties (magnetic susceptibility), elemental geochemistry (total organic 

carbon, total carbonate, total nitrogen, biogenic silica), and stable-isotope geochemistry 

(δ13CORG, δ15NORG), and (4) integrate and compare the results with paleo-shoreline 

records and existing shallow-water cores. The multi-indicator approach was used to 

deduce changes in primary productivity, as well as to reveal other processes (e.g., 

preservation dynamics, dilution; Bohacs et al., 2000) that affect organic enrichment of the 

lake sediments.  

Although some insights on paleo-productivity at Mono Lake are available through 

studies of the modern lake and recent sediments (e.g., Newton, 1994; Jellison et al., 

1996), this study is the first to consider these changes for the Pleistocene and Holocene, 

and to relate these patterns to lake level and regional paleoclimate. Our results show that 

organic facies development at Mono Lake is sensitive to water-level changes, but the 

influence of water-level changes varies with time. The results have implications for 

understanding the influence of climate change on aquatic ecosystems in the Sierra 

Nevada, which may aid in predicting future environmental changes, tipping points, and 

ultimately, implementing better water-management practices. 
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Figure 1: Left: Simplified geologic map of Mono Lake (modified from the California 
Geological Survey, 2010); Bottom Right: DEM (courtesy of S. Zimmerman) of Mono 
Lake showing the wide range of topography and locations of important features in the 
region. 
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Figure 2: Mono Lake water level curve generated by Ali (2018). Curve was 
constructed by mapping and dating paleo-shorelines. Blue data points are U/Th and 
14C dates generated by Ali (2018). The blue shading on the graph coincides with 
periods of North Atlantic cooling; Heinrich Stadial 2 (24.5-23.5 ka), Heinrich Stadial 
1 (18.6-14.7 ka), and Younger Dryas (12.9-11.7 ka). Note the magnitude of lake 
level fluctuations during this time were ≥ 75 m in elevation. 
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Figure 3: The late Holocene Mono Lake water level curve from Stine (1990). In the 
original publication the x-axis is mislabeled (should be years cal BP x 100). Note the 
high frequency changes in water level in the Holocene spanned ~25 m in elevation.   
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Figure 1: Left: Simplified geologic map of Mono Lake (modified from the California 
Geological Survey); Bottom Right: DEM of Mono Lake showing the wide range of 
topography and locations of important features in the area. 

Figure 4: Top: Bathymetric Map of Mono Lake; red star is the location of the 
deepwater UWI15 core, red dot is the location of the shallow water BINGO 10/4A 
core, and black line is the seismic transect collected by Colman et al., 2014. Bottom: 
Modified seismic transect in the western embayment of Mono Lake; Orange unit is 
the S3 (Paoha Island Uplift) unit described by Colman et al., 2014; note how the S3 
unit pinches out at a scarp like feature in the western embayment. 
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Figure 5: Photo of the UK-UWITEC percussion piston coring barge deployed on 
Mono Lake. Using this system, we were able to core through tephras and preserve 
delicate sedimentary structures.  
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CHAPTER TWO: BACKGROUND 

2.1 Geologic Setting 

The Mono Basin (~2070 km2) is a broad, shallow structure located on the western 

edge of the Great Basin. The Mono Basin formed approximately 3-4 Mya as a result of 

regional warping and faulting (Christensen et al., 1969; Reheis et al., 2002). The basin is 

characterized by a wide range of topographic relief, from 1950 m.a.s.l. in the east to 3980 

m.a.s.l. in the west (Davis, 1999) (Figure 1). The western edge of the basin is defined by 

the Sierra Nevada Batholith, which consists of Mesozoic granitic plutons with Paleozoic 

metasediments as roof pendants (Bateman, 1961). In the east, the majority of the Mono 

Basin consists of Pleistocene lake sediments, Holocene volcanic deposits, alluvium, and 

glacial outwash and till (Christensen et al., 1969; Davis, 1999). The north and south 

edges of the basin are formed by Tertiary volcanic hills and the rim of the Long Valley 

Caldera (Bailey et al., 1976; Hildreth, 2004) (Figure 1). The Pleistocene Wilson Creek 

Formation (Figure 6) is a prominent series of lacustrine silts composed of glacial flour 

that was eroded from the Sierra Nevada by valley glaciers, as well as 19 distinct tephra 

beds, which were erupted from the Mono Craters and deposited in Pleistocene Lake 

Russell (Benson et al., 1997; Zimmerman et al., 2006; Zimmerman et al., 2011; Vazquez 

and Lidzbarski, 2012).  

The late Quaternary Mono and Inyo craters surround Mono Lake. The Mono and 

Inyo craters form a ~28 km volcanic chain that extends from Mono Lake to the Long 

Valley caldera (Figure 1). This chain is characterized by ~30 rhyolitic, dacitic, and 

rhyodacitic domes and one basaltic tephra cone (Black Point) near the north shore of 

Mono Lake (Kelleher and Cameron, 1990). The Mono Craters form an arcuate chain ~17 
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km long and are composed of chemically homogeneous rhyolite. The arcuate nature of 

the Mono Crater chain is believed to be related to a mylonitized ring-fracture system ~18 

km in diameter (Figure 1). By comparison, the Inyo Craters form a straight but 

discontinuous ~11 km long chain of domes that are compositionally heterogeneous 

rhyolites and rhyodacites (Wood, 1977). This heterogeneity is believed to represent a 

mixing zone located along a north-south fissure system between the rhyolitic magma 

chamber beneath the Mono Craters and the rhyodacitic magma chamber beneath Long 

Valley (Bailey et al., 1976).  

Volcanism from these craters produced tephras that provide the opportunity for 

detailed stratigraphic and age control in the region. The most well-known tephras in the 

region are the North Mono Tephra (~600-625 cal yr BP: Stine, 1987; Millar et al., 2006; 

Colman et al., 2014), the South Mono Tephra (~1.3 cal yr BP: Wood, 1977; Stine, 1987), 

Ash #1 ~12.9 ka (Benson et al, 1997) and Black Point (so-called “Ash #2”), but some 

debate still surrounds the dating of older tephras. For example, the Black Point ash has 

been dated at ~13,300 yr BP by Lajoie (1968), ~16,000 yr BP by Benson et al. (1998), 

and ~17,200 yr BP by Ali (2018).  

2.2 Limnology 

Mono Lake is the modern-day remnant of Pleistocene Lake Russell, which was 

the northernmost in a chain of pluvial lakes that flowed into the Owens River system 

(Newton, 1994). Today, Mono Lake is a hydrologically closed, saline (87‰), alkaline 

(pH = 10.0) lake located on the western boundary of the Basin and Range Province, 

within the rain shadow of the eastern Sierra Nevada (Stine, 1989; Newton, 1994). Mono 
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Lake covers ~160 km2, averages ~17 m deep, and has a shoreline elevation of 1945 m 

above sea level (m.a.s.l.) (Jellison and Melack, 1993b).  

Within Mono Lake, internal recycling of nutrients dominates the lake processes, 

and because Mono Lake is hydrologically closed, the recycling of nutrients is directly 

affected by environmental changes (Jellison et al., 1993). Mono Lake is typically a warm 

monomictic lake. The lake does not freeze over in the winter, and it becomes stratified in 

the spring and summer via the establishment of a thermocline, which breaks down in the 

fall and winter. This breakdown allows the dense bottom waters to mix with the surface 

waters, returning nutrients to the epilimnion. However, the water-column stratification is 

not static, and it can be affected by climatic variations such as the El Nino Southern 

Oscillation (ENSO). For example, in 1982 and 1983, heavy snowfall coupled with 

rainfall caused the Los Angeles Division of Water and Power (LADWP) to increase the 

amount of freshwater delivered to Mono Lake; this led to the establishment of meromixis, 

which lasted until 1988 (Jellison and Melack, 1993; Jellison et al., 1993; Zimmerman et 

al., 2011). During this time, Mono Lake did not experience turn-over, due to the presence 

of a strong chemocline, which marked the boundary between fresh surface waters and 

saline deepwater.   

Mono Lake has no rivers that exit the basin, making it an endorheic lake (Wetzel, 

2001). This condition of hydrological closure appears to have been the case for at least 

the last 50,000 yrs (Benson et al., 1990; Stine, 1990; Zimmerman et al., 2011; Vazquez 

and Lidzbarski, 2012). A number of small streams flow into the lake from the west, 

including Rush, Mill, and Lee Vining creeks (Figure 1). Delivery of snow-derived 

meltwater to Mono Lake from these and other small creeks is an important component of 
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the water cycle. Paleo-shoreline studies have shown that Mono Lake reliably reflects the 

amount of precipitation received by San Francisco, which demonstrates its viability as an 

archive of climate change (Stine, 1987).  

2.3 Hydrology and Climate  

Precipitation in the Mono Basin varies significantly with elevation. The lake 

receives an average of ~13 cm of precipitation per year, whereas Sierran crests can 

receive more than 127 cm (Stine, 1990; Newton, 1994; Davis, 1999). Precipitation for the 

region is winter-dominant and typically falls as snow; a 10-year average of station data 

from Lee Vining (2006-2015) shows that January received ~50 cm of precipitation, 

whereas July received 0.0 cm. Moreover, temperatures fluctuate widely, in January the 

average temperature is -1°C, while in July it is 21°C (Figure 7). However, in 2015 the 

Sierras received ~90 cm of precipitation, with the majority (~38 cm) falling in May, and 

average monthly temperatures ranged from 2°C in November to 20°C in August (Figure 

7). This short-term variability highlights the importance of understanding the effects of 

climatic events such as atmospheric rivers and ENSO on the hydrology of the lake and 

more importantly, future hydrologic changes for the region. 

Mono Lake is fed by three primary meltwater inflows from the eastern Sierra 

Nevada: Rush Creek, Mill Creek, and Lee Vining Creek (Figure 1). Under natural, 

unaltered conditions, these streams contribute ~80% of the estimated surface and ground 

water inflow to the lake (Stine, 1990). However, beginning in the 1940’s, the majority of 

the runoff that fed these creeks was diverted into the Los Angeles Aqueduct, which 

caused the Mono Lake shoreline elevation to drop > 14 m (Stine, 1990; Stine, 1991; 

Newton, 1994; Benson et al., 2003). This drastic reduction in lake-water volume has 
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caused the salinity and alkalinity of the lake to nearly double due to evaporative 

concentration. Today, the ion chemistry of Mono Lake is dominated by Na+, HCO3
-, 

CO3
2-, Cl-, and SO4

2- (Newton, 1994). 

2.4 Aquatic Ecology 

This diversion of meltwater sparked the “Mono Lake Controversy,” one of the 

most highly publicized and protracted land-use conflicts in the western United States 

(Stine, 1991). Due to its unique water chemistry, the lake has a relatively simple food 

web comprised of coccoid chlorophytes, coccoid cyanobacteria, and several 

bacillarophytes (diatoms), which include Nannochloris sp., Oscillatoria sp., and 

Nitzschia sp. (Reed, 1977; Kociolek and Herbst, 1992; Wiens et al., 1993; Jellison et al., 

1993; Newton, 1994; Herbst and Blinn, 1998; MacIntyre et al., 1999). These 

phytoplankton are consumed by zooplankton such as brine shrimp (Artemia monica) and 

brine flies (Ephydra hians), which form the resource base for more than 106 birds that 

occupy the lake during summer and early autumn (Weins et al., 1993).  

The environment and vegetation of the Mono Basin includes high sagebrush 

desert, riparian woodland, pinon-juniper woodland, alkaline and freshwater marshes, and 

at higher elevations, montane forests, meadows, and freshwater lakes, which are 

frequented by many of the migratory and nesting bird species at Mono Lake (Wrege et 

al., 2006). However, the diversion of water to Los Angeles has altered the availability of 

aquatic habitats, configuration of the shoreline, and islands within the lake (Weins et al., 

1993). The regression of the 1940’s transformed the detached islands into peninsulas, 

which allowed predators such as coyotes to invade and disrupt prominent gull rookeries 

(Page et al., 1983; Stine, 1991). However, in 1994, the state board passed legislation to 
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restrict LADWP water diversions and maintain lake-level elevation at ~1948 m.a.s.l. 

(Koehler, 1995). Since then, lake-level has been a balance between diversions and 

climatic variations.   
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Figure 6: Type section of the Wilson Creek Formation. The Wilson Creek Formation 
contains 18 rhyolitic ashes and one basaltic ash which were grouped into five Marker 
Sequences (A-E) by Lajoie (1986). These marker sequences are useful for intrabasin 
correlation.  Modified from Zimmerman, 2011.  
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Figure 7: 10 year average of precipitation (blue bars) and temperature (red dots). Note 
that precipitation is winter dominant. Data was collected from the Lee Vining weather 
station and available online via NOAA.  
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CHAPTER THREE: METHODS 

3.1 Core Collection 

Sediment cores were collected from the western embayment of Mono Lake 

(Figure 4). The coring location was chosen based on an analysis of CHIRP seismic data 

from the study conducted Colman et al. (2014). That study identified four seismic 

stratigraphic units within the Mono Lake subsurface. The most important of the four units 

was named S3, which was interpreted to be a massive mudflow deposit caused by the 

uplift of Paoha Island. Unit S3 has a maximum thickness of ~18 m and thins radially 

away from Paoha. In the western embayment, S3 appears to pinch out at a scarp-like 

feature at 24 m water depth (Colman et al., 2014) (Figure 4). Therefore, the coring site 

was located at 37.99350˚N, -119.12540˚W in ~18 m water depth, to minimize the 

likelihood of encountering the mudflow deposit or disturbed strata caused by the uplift of 

Paoha Island.  

This study utilizes three sediment cores collected using an UWITEC coring 

platform (Figure 5). The UWITEC can deploy both gravity cores and weighted 

percussion piston cores. We used an UWITEC gravity corer (a weighted PVC core liner) 

that was gently lowered to the sediment-water interface and allowed to settle into the lake 

floor under its own weight in order to collect the uppermost water-logged sediments at 

the site. Examination of the sediments revealed excellent (~100%) recovery without 

significant disturbance of delicate sedimentary structures.  

Comparatively, the percussion piston corer uses a two-meter steel core barrel with 

PVC liners and a hydraulic piston. Using this device, the core barrel is hammered into the 

sediment past the piston with ~50 kg weight from the platform. The piston creates a 
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vacuum within the core barrel, which prevents sediment deformation and preserves 

delicate sedimentary structures (Guyard et al., 2011). To prevent sediment loss when the 

corer was extracted from the lake floor, a stainless steel orange-peel-style core catcher 

was affixed at the base of the corer. Using this technique, a sequential set of two-meter 

drives (UWI-Mono15-1C core) was collected to a total depth of ~18 m. However, 

because the piston takes up ~10 cm in the core barrel, and the core catcher may retain 

some sediment from the base of each drive, short gaps are associated with each drive. 

Therefore, it was necessary to collect an overlapping set of staggered drives (UWI-

Mono15-1D core) in an adjacent borehole situated ~1 m from the initial borehole. Drives 

in this second borehole (1D) were arranged such that sediments from all gaps in the 

original borehole (1C) could be retrieved. 

3.2 Core Correlation 

In order to create a composite core from the overlapping drives in the adjacent 

boreholes, we used stratigraphic details and physical properties derived from initial core 

descriptions (ICDs) and multi-sensor core logger (MSCL) scans. The MSCL takes both 

density and magnetic susceptibility (MS) readings at 0.5 cm intervals. Each core was then 

split longitudinally, photographed at high resolution, and described using standard 

techniques at LacCore, the National Lacustrine Core Facility in Minneapolis (MN) 

(Schnurrenberger et al., 2003).   

High resolution core photos were imported into Adobe Photoshop, processed, and 

correlated using distinct marker beds, sedimentary structures, and patterns in magnetic 

susceptibility and density derived from the MSCL. This process yielded a composite core 

that was ~1081 cm in length. Once the cross-correlation was complete, a 



   

 
 

22

lithostratigraphic analysis was completed on the composite section in order to identify 

major units. Discrete 1 cm thick sediment samples (~5-10 cc) were collected 

approximately every 4 cm along the length of the core for total organic carbon (TOC), 

total inorganic carbon (TIC), total nitrogen (TN), δ13CORG, δ15NORG, and biogenic silica 

(BiSi) analyses. Exceptions to the sampling scheme occurred only in a few instances and 

are primarily related to the presence of coarse tephra beds. 

3.3 Magnetic Susceptibility 

High-resolution (0.5 cm) magnetic susceptibility (MS) readings were collected on 

the split cores at LacCore using a GeoTek MSCL-XYZ core workstation (Lascu, 2009). 

The section depths were converted to composite core depth in order to generate a 

comprehensive MS curve for the core. MS is often used as a proxy for detrital influx, 

with high MS values indicating greater delivery of terrestrial grains to the core site 

(Benson et al., 1998).  

3.4 Radiocarbon  

The materials selected for radiocarbon dating were plant macrofossils, charcoal, 

and pollen extracts. Bulk sediment samples were sent to the Center for accelerator mass 

spectrometry (CAMS) at Lawrence-Livermore National Laboratory (LLNL) to be 

processed for pollen using the procedure outlined in Tunno and Mensing (2017). Pollen 

was separated from each sample using flow-cytometry to remove any non-pollen organic 

material. Purified pollen samples, where concentrations were high, were combusted at 

high temperature, and the CO2 generated was dated via AMS. Plant macrophytes and 

charcoal fragments were also collected for radiocarbon dating. These samples were 

typically found while sub-sampling the cores for other analyses. The samples were rinsed 
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with DI water, stored in glass vials, and shipped to CAMS, where they were pre-treated 

with standard acid-base-acid methods and dated by AMS. Another factor incorporated 

into the age model is the Black Point ash at the base of the core. The age of the Black 

Point ash is approximately 16.0 to 17.2 ka (Ali, 2018), thus a maximum age constraint is 

applied to the core for the age model generation using BACON; a Bayesian-based 

program that creates age-depth models for deposits (Blaauw and Christen, 2011).  

3.5 Sediment Sample Preparation 

Sediment sub-samples (n=225) were frozen in a -81̊ C deep freezer and then 

placed in a Labconco FreeZone12 lyophilizer for a minimum of 12 hours in order to 

remove pore water. Freeze-dried samples were crushed with an agate mortar and pestle, 

homogenized, and split for elemental and isotopic analyses. 

3.6 Total Carbon (Organic Carbon and Inorganic Carbon)  

Total organic carbon (TOC) values were obtained through LECO (total carbon) 

and carbonate coulometry (total inorganic carbon) as described by Meyers and Teranes 

(2001). TOC concentrations are used as a proxy for describing the abundance of organic 

matter in the sediments and TIC concentrations are used as a proxy for the abundance of 

carbonate (Cohen, 2003; Meyers, 2003). For total carbon (TC), freeze-dried and 

homogenized bulk samples were weighed in ceramic boats and then combusted in a 

LECO SC-144DR. The standards used were two synthetic carbon standards (502-030 and 

502-630) and a carbonaceous shale (SARM-41). Precision for carbon analysis using the 

SC-144DR is ≤1% RSD or ±25 ppm, whichever was greater (LECO, 2008). To ensure 

complete combustion of the standards and samples, a catalyst Com-Cat (502-321) was 

added to each standard and sample that was analyzed. After the TC values were obtained, 
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the bulk samples were then analyzed for total inorganic carbon on a UIC CM5130 

coulometer, which uses 0.1 M phosphoric acid to digest the inorganic carbon in the 

sample. Precision for the UIC CM5130 is ±0.2% if the carbonate standard (CM301-002) 

is within range. The TOC values were then calculated using the following equation:  

𝑇𝐶 െ 𝑇𝐼𝐶 ൌ 𝑇𝑂𝐶. 

3.7 Stable Isotope Analysis 

Samples for δ13CORG analysis were digested overnight in centrifuge tubes with 

~30 mL of 1 N HCl and ~20 mL of DI water. Following digestion, the samples were 

rinsed four times with DI water and centrifuged between each rinse. After the samples 

were rinsed, the acid-insoluble fraction was freeze dried and homogenized. The δ15NORG 

analyses were performed on the bulk freeze-dried and homogenized sample which was 

not acid digested. All samples were analyzed for carbon and nitrogen isotopes using 

continuous-flow isotope-ratio mass spectrometry (EA-IRMS) at the University of Utah 

(UU).  

At UU, the samples were analyzed using an elemental analyzer coupled to an 

isotope-ratio mass spectrometer through an open-split interface. During this process, the 

samples were dropped into a 1020°C Cr2O3 combustion reactor and pushed along by a 

helium carrier stream that was enriched with O2. Under these conditions, the tin sample 

container ignites, raising the sample temperature to 1800°C, and forming H2O, CO2, and 

N2. Any gas formed which contains halogens or sulfur is chemically removed and the 

remaining combustion products are sent into a 650°C Cu+ reducing reactor, where 

incomplete combustion products (NOx, CO, etc.) are reduced and excess O2 is removed. 

Water is then chemically scrubbed from the helium. The final product gases (N2, CO2) 
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are separated on a 3-m Porapak-Q packed gas chromatography column (80 mL min-1, 

40°C) before entering the IRMS via an open-split interface. Pure reference gases (ultra 

high purity grade N2 and CO2) enter the mass spectrometer at specified times to ensure 

proper mass calibration. C:N values were obtained using the % TOC from the 

aforementioned total carbon analysis and % Nitrogen values obtained from the isotopic 

analysis for δ15NORG. The values were then multiplied by 1.167 (Meyers and Teranes, 

2001) to get the C:N atomic values, which are commonly used as a proxy to determine 

the source of organic matter.  𝑇𝑂𝐶% ൊ 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 % ൌ 𝐶: 𝑁 ൈ 1.167 ൌ 𝐶: 𝑁𝑎𝑡𝑜𝑚𝑖𝑐 

3.8 Biogenic Silica 

Biogenic silica (BiSi) is used as a proxy for diatom productivity (Qiu et al., 1993). 

A total of 225 samples were analyzed for BiSi at Northern Arizona University. BiSi 

concentration was determined using the molybdate-blue spectrophotometry method 

described by Mortlock and Froelich (1989). Precision for this method is ±1.0 wt. %. 
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CHAPTER FOUR: RESULTS 

4.1 Lithostratigraphy and Geochemistry 

Seven different lithostratigraphic units were identified in the composite UWI15 

core on the basis of physical properties and geochemical trends (Figure 8). Throughout 

the core, the sediments range from massive pumice tephra to finely laminated silts and 

muds (Figure 9). Depths for each unit are reported in centimeters below lake floor 

(cmblf).  

4.2 Unit I (1081-1010 cmblf) 

Located at the base of the core, Unit I is characterized by Black Point ash 

interbedded lacustrine silts, which are most likely responsible for producing the high-

amplitude variability in MS that distinguishes the unit (Figure 8). The ash is medium-

brown (10YR 4/3) with a velvety texture, and the beds are massive with irregular 

contacts, giving a heavily disrupted appearance. The interbedded silts are massive and 

light brownish-grey (10YR 6/2) in color (Figure 9). This unit has the lowest TOC (0.09-

0.14 wt. %) and TIC (<0.25 wt. %) values in the core, whereas the BiSi concentrations 

(17.0-23.0 wt. %) are among the highest of any unit in this study. The δ13CORG values 

range from -26.8‰ to -23.9‰, and exhibit a trend towards more positive values moving 

from the base towards the top of the unit. The δ15NORG values range from -3.0‰ to 7.0‰; 

however, due to extremely low total nitrogen values (<0.1 wt. %), only three C:NATM 

values were obtained and range from 9 to 13 (Figure 8). 

4.3 Unit IIa (1010-802 cmblf) 

Unit II is characterized by very dark bluish-grey (5PB 3/1) to black (N 2.5/1), 

finely laminated to thinly bedded muds, silts, and sands (Figure 9). The silts and sands 
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are responsible for producing high-frequency MS variability near the base of the unit that 

gradually declines moving up section (Figure 8). The sands are bright white granitic 

grains that occur either as thin beds or cm-scale lenses, which contrast with the medium-

grey to black mm-scale laminated muds and silts. Unit IIa exhibits low-moderate TOC 

(mean = 0.9 wt. %) and TIC (mean = 0.5 wt. %) concentrations. The C:NATM values in 

Unit IIa vary from 8-30, with an average value of ~13. The BiSi content (mean = 7.5 wt. 

%) is relatively low and invariant for this unit. The δ13CORG values vary by ~8.0‰ in Unit 

II, and become increasingly negative towards the top of the unit, reaching values 

approaching -30‰. The δ15NORG values range between 2‰ to 10‰ and generally decline 

moving up section (Figure 8).  

4.4 Unit IIb (802-658 cmblf) 

Unit IIb is characterized by very dark bluish-grey (5PB 3/1) to black (N 2.5/1) 

finely laminated to thinly bedded muds, silts, and sands (Figure 9). The MS values are 

lower than Unit IIa. Unit IIb contains a thick (~30 cm), massive black sand bed in the 

middle of the unit. The TIC concentrations are similar to Unit IIa and TOC values (mean 

= 1.0 wt. %) are only slightly higher on average. The C:NATM values vary from 6-15, with 

an average value of ~12. The BiSi (mean = 10 wt. %) concentrations average ~2.0 wt. % 

higher than in Unit IIa. The δ13CORG and δ15NORG values remain relatively invariant 

throughout the unit with values that average -28‰ and 5‰, respectively (Figure 9).  

4.5 Unit III (658-482 cmblf) 

Unit III is characterized by finely laminated to thinly bedded muds and silts, 

which have a relatively low MS response (Figure 8). The muds are relatively fine-grained 

and dark reddish-grey (2.5YR 4/1) to olive-grey (5Y 5/2) near the top of the unit, 



   

 
 

28

whereas at the base of the unit the muds are coarser, and blue-grey (10B 5/1) colors are 

more common (Figure 9). Unit III sediments have highly variable TOC values (0.5-9.0 

wt. %) that generally increase upward towards the Unit IV contact. By contrast, TIC 

values (0.5-3.0 wt. %) are highly variable throughout the section, and show no 

discernible vertical trends. The BiSi values are likewise highly variable (3.0-19.0 wt. %), 

showing high amplitude changes without a clear vertical pattern. The C:NATM values vary 

between 12-22 and increase toward the Unit IV boundary. The δ13C values range between 

-28‰ to -23‰ and become increasingly positive up section. The δ15N values become 

heavier up section and vary between 4‰ and 15‰ (Figure 8).  

4.6 Unit IV (482-354 cmblf) 

Unit IV is characterized by finely laminated silts and clays and thin beds of 

graded sands, which overall produce a low MS signal (Figure 8). The silts and clays are 

olive (5Y 5/4) and the sands are bluish-grey (5PB 5/1) (Figure 9). The unit has relatively 

invariant TOC and TIC concentrations, both of which average ~1.5-2.0 wt. %. The BiSi 

values vary widely (~5.0-15.0 wt. %) but generally decline moving towards the top of the 

unit. Similarly, the C:NATM values decrease up section and vary between 12-17.  The 

δ13CORG values range from -25‰ to -23‰ and become more positive up section. The 

δ15NORG values range from 3‰ to 6‰ and likewise increase up section (Figure 8).  

4.7 Unit Va (354-286 cmblf) 

Unit Va is characterized by dark blue-grey (5PB 4/1) to olive-brown (2.5Y 4/3) 

(Figure 9), finely laminated muds and silts with a low MS response. The TOC 

concentrations (mean = 2.0 wt. %) display a slight increase towards the top of the unit. 

The TIC values are highly variable and range from 0.4-5.0 wt. %. The BiSi values range 
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from 3.0-11.0 wt. % and show a slight decrease up section. The C:NATM values show 

wide variability between 3-11, but no discernible vertical trend can be identified for the 

section. Muds from Unit V exhibit only minor variability in the δ13CORG (-24‰ to -20‰) 

and δ15NORG (4‰ to 8‰), with both isotopes becoming enriched towards the top of the 

unit (Figure 8).  

4.8 Unit Vb (286-206 cmblf) 

Unit Vb is characterized by olive-brown (2.5Y 4/3) (Figure 9) finely laminated 

muds and silts with a low MS response. TOC concentrations (mean = 3.0 wt. %) are ~1.0 

wt. % higher than Unit Va, and values increase towards the Unit VI boundary. TIC 

concentrations are relatively invariant and range from 1.0-1.6 wt. %. C:NATM values are 

likewise invariant and range from 13 to 16. The olive muds from Unit Vb exhibit slightly 

less variability in δ13CORG  (-24‰ to -21‰) and the δ15NORG variability remains the same 

(4‰ to 8‰) as Unit Va (Figure 8).  

4.9 Unit VI (206-62 cmblf) 

Unit VI is characterized by dark olive-brown (2.5Y 3/3) to olive-grey (5Y 5/2), 

massive, sandy mud with massive light-grey (N 7/1) pumice tephra rubble (Figure 9), 

which produce a moderate to high MS response (Figure 8). Unit VI sandy muds exhibit 

TOC and TIC values from 0.2-4.0 wt. % and BiSi values from 3.0-11.0 wt. %. Below the 

tephra, the TOC and BiSi curves decline to low relative values, whereas an opposite trend 

characterizes the TIC curve. Above the tephra, TOC, BiSi, and TIC all increase, in some 

instances considerably (Figure 8). Comparatively, the δ13CORG, δ15NORG, and C:NATM 

values become more positive both above and below the tephra. Of those three analyses, 

the C:NATM values display the most variability, with values from 3-18, whereas the 
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δ13CORG values (-24‰ to -20‰) are the least variable, and the δ15NORG values display 

moderate variability from 6‰ to 16‰.  

4.10 Unit VII (62-0 cmblf) 

Unit VII is characterized by dark, finely laminated muds with a low MS response. 

The muds range from very dark greyish-brown (2.5Y 3/2) to greyish-green (5G 4/2), with 

green laminae most common near the base of the unit (Figure 9). The TOC values 

increase towards the top of the unit and range from 3.0-8.0 wt. %. The TIC values show a 

slight increase up section and range from 2.0-3.0 wt. %. Muds from Unit VII have widely 

varying BiSi concentrations (6.0-27.0 wt. %) but strongly decrease towards the top of the 

section. Unit VII muds have δ13CORG values that range from -27‰ to -18‰ and δ15NORG 

values that vary from 10‰ to 19‰; both isotope curves decline to more negative values 

towards the top of the unit. The C:NATM values vary from 8-13 and shows a steady 

decline toward the top of the unit (Figure 8).  

4.11 Age Model 

The ages for dated material from UWI15 range from 3775-11110 14C years (Table 

1). Pollen samples were collected every 50 cm and available ages range from 8140-12740 

14C years from 3.5-9.5 m. Dates mentioned from this point forward have been calibrated 

(ka or cal yr BP) unless noted otherwise (14C yrs). The identification and inclusion of the 

Black Point tephra constrains the age of the base of the core in the age model. Although 

not included in the age model, a candidate Ash 1 has been identified in Unit II. Work is 

currently underway to geochemically finger print the titanomagnetites to add more 

control points to the lower ~2 m of core.  Sedimentation rates for the lower ~880 cm of 

core (Unit V to Unit I) are ~7 mm/yr. However, from the BACON age model (Figure 10), 
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it becomes apparent that sedimentation rates were markedly faster (~10 mm/yr) in the 

lower ~600 cm of core.  

4.12 Modern Calibration Geochemistry 

Modern calibration was performed on three sediment samples and 12 plant 

samples collected from a transect of Rush Creek from 1948 to 2019 masl (Figure 1). The 

modern sediments have an average δ13CORG value of -26.3‰ and an average δ15NORG of 

3.9‰ (Table 2). The TOC values average 0.37 wt. %, whereas TIC values are below the 

detection level of the coulometer. The δ13CORG values for plant samples range from          

-31.7‰ to -15.5‰ and δ15NORG values range between -5.7‰ to 4.6‰. The C:NATM 

values range from 11 to 64. 
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Lab # Sample Name Depth 
(cm) 

Material Age 
(14C yrs) 

Error 
(±) 

Age 
(cal yr BP) 

2-σ Range 

175217 1D-1 Transition 96.6 Insect 1155 35 1070 982-1175 
175215 1D-1 Transition 96.6 Plant 1180 60 1110 967-1260 
177423 1C-2-1_54_55 205 Plant 3775 40 4150 3988-4286 
 Triplet 1* 224 Tephra   4700  
 Triplet 2* 228 Tephra   5100  
 Triplet 3* 234 Tephra   5400  
176259 1C-2-2_45.7 296.3 Plant 5740 30 6540 6453-6634 
173692 1D-2-1_67 307.4 Plant 6300 70 7225 7016-7416 
173693 1D-2-2_3.5 314 Plant 6350 45 7285 7173-7416 
173695 1D-2-2DUP_3.5 314 Plant 6150 40 7060 6943-7164 
177425 1D-2-2_5.4_6.4 316.4 Plant 6620 110 7510 7427-7675 
176260 1D-2-2_26_27 337 Charcoal 8850 100 9930 9610-10199 
173694 1D-2-2_33.5 344 Plant 7070 70 7890 7739-8013 
178075 1D-2-2_42.4 353 Pollen 8220 240 9150 8522-9680 
118472 1D-2-2_43 354 Pollen 8140 240 9060 8458-9538 
176261 1D-2-2_57.3 367.7 Plant 8610 180 9660 9155-10188 
177392 1C-3-2_26.6 421.5 Plant 10070 570 11640 10187-13060 
177393 1C-3-2_27.3 422.2 Plant 9910 410 11460 10298-12601 
177394 1C-3-2_29.4 424.3 Plant 10010 570 11570 9957-13031 
177395 1C-3-2_64.9 459.8 Plant 9400 70 10630 10411-11065 
177396 1C-3-2_102.4 497.3 Plant 11110 600 12940 11217-14524 
178076 1D-3-2_31 503 Pollen 10090 130 11670 11242-12115 
178074 1C-4-2_39.5 653 Pollen 12650 390 14920 13758-16082 
179010 1D-5-2_93.5_94.5 952 Pollen 12740 220 15110 14212-15802 
 Black Point* 1082 Tephra  1900 17200  

Table 1: Radiocarbon dates used in the age model generation for the UWI15 core.      
* indicates dates not generated from this study but were provided by collaborators.  
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Sample δ13CORG 
(‰ VPDB) 

δ15NORG 

(‰ Air) 
C:N 

(Atomic) 
TOC 

(wt. %) 
TN 

(wt. %) 
T9-1-1B -26.85 2.85 18 0.63 0.04 
T9-7-3B -26.81 3.17 15 0.38 0.03 
T9-8-1B -25.26 5.68 12 0.11 0.01 
Artemisia arbuscula -26.81 3.00 38 N/A 1.38 
Purshia tridentata -26.03 -2.29 35 N/A 1.58 
Salix spp. -28.51 -5.74 38 N/A 1.40 
Eriogonum umbellatum -26.41 1.18 31 N/A 1.61 
Pinus jeffreyi -24.26 0.98 64 N/A 0.86 
Lupinus spp. -28.81 2.41 11 N/A 4.27 
Poaceae spp. -15.47 1.38 30 N/A 1.60 
Populus spp. -27.52 -2.51 26 N/A 1.95 
Chrysothamnus spp. -26.70 -1.07 43 N/A 1.29 
Rosa spp. -28.62 -1.83 30 N/A 1.64 
Salix spp. -31.73 4.65 45 N/A 1.14 
Typha spp. -27.29 2.73 38 N/A 1.24 

Table 2: Modern geochemical calibration from sediment (T9) and 
plant samples collected on a transect up Rush Creek.  
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Figure 8: Lithostratigraphy, physical properties, and geochemistry for the composite UWI15 core. Units were chosen based on key transitions in physical and geochemical 
properties. From L-R: depth (m), age (ka), stratigraphic column (showing relative grain size), lithostratigraphic units and subunits, MS, BiSi, TIC, TOC, C:N, δ13CORG, and δ15NORG.  
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Figure 9: Type sections from each unit; top of the core is to the left and the scale is in centimeters. 
For Units II and V the sub-units (a and b) are not differentiated. 
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Figure 10: Age-depth model for the UWI15 core. The majority of 14C dates are between 2.5 – 6.5 meters. The change in slope is 
due to an increase in sedimentation rates through the Pleistocene and into the Holocene. Blue-green bars are tephra dates that have 
been correlated to the UWI15 core; blue bars are dates generated in this study on plant macrophytes, pollen, and charcoal.  
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CHAPTER FIVE: DISCUSSION 

5.1 Unit I (~16.9-16.2 ka) 

At present, the chronology for Unit I is poorly constrained. The age model for 

Unit I is unconstrained by 14C dated horizons and is defined by a pollen 14C date at 952 

cm in the overlying Unit II and an inferred date for Ash 2 deposits. Obtaining 14C ages 

for Unit I has proven difficult, due to a lack of plant macrofossils and charcoal in this 

section of the UWI15 core. Research is underway to separate pollen using flow cytometry 

in order to add 14C control points in the lower-most 2 m of core, as well as to fingerprint 

the Ash 1 candidate using the geochemistry of titanomagnetites (Marcaida et al., 2014; 

Zimmerman and Myrbo, 2015).  

Unit I consists of ~71 cm of Black Point ash admixed with lacustrine silts and 

clays. The basaltic Black Point ash (Ash 2 of Lajoie, 1968) is one of the most easily 

identifiable eruptive deposits in the Mono Basin, and in our core, it expresses itself as a 

massive brown tephra with a velvet-like texture. Black Point ash disrupts the bedding of 

lacustrine silts and clays in Unit I. The Black Point ash is interpreted to be ~17.2 ± 1.9 ka 

(Ali, personal communication, 2018), which sets a maximum age for the lake sediments 

in this unit.  

Due to the amount of ash in Unit I, the sampling interval for bulk geochemistry 

was coarse (n=5 over 71 cm) and limited to the lake sediments. Unit I is characterized by 

relatively high MS, δ13CORG, and BiSi values, whereas TOC, TIC, δ15NORG, and C:NATM 

are low (Figure 8). Unit I exhibits the lowest TOC concentrations (mean = 0.11 wt. %) 

and the lowest δ15NORG values (mean = 2.0‰) found in the core. Typically, negative or 

zero values of δ15NORG are attributed to a strong component of nitrogen-fixing 
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cyanobacteria in the organic-matter pool (e.g., Talbot, 2002; Brenner et al., 1999), though 

blue-green algae were not observed on smear slides from this interval.   

The paleo-shoreline mapping and geochronological study of Ali (2018) suggests 

that a major deglacial transgression and highstand occurred in Mono Lake from ~18.5-

16.0 ka, following a lowstand during the last glacial maximum (Figure 2). Thus, lake 

levels may have been high during the deposition of Unit I sediments. Although disrupted 

by the eruption of Black Point, we interpret that Mono Lake was a moderately productive 

aquatic ecosystem at this time, based on the limited geochemical evidence available, in 

spite of the low TOC concentrations, which suggests the possibility of an oligotrophic 

lake with limited nutrient supply. Smear slides from Unit I contained minor amounts of 

diatoms and amorphous organic matter, which is consistent with a lacustrine 

paleoenvironment with diverse algal composition.  

BiSi concentrations are very high (mean = 20 wt. %) in Unit I, which notionally 

reflects elevated diatom productivity (Meyers and Lallier-Verges, 1999; Cohen, 2003; 

McFadden et al., 2004; McGlue et al., 2012). We anticipated a larger presence of diatoms 

on smear slides as a result of the BiSi concentrations; this disparity may be the result of 

partial dissolution of volcanic glass during the alkaline dissolution phase of the analysis. 

Nonetheless, the presence of diatom microfossils on smear slides confirms that Mono 

Lake was a suitable habitat for a diatom flora during Unit I time. Evidence in support of 

this interpretation comes from low C:NATM values (mean = 11), and enriched δ13CORG 

(mean = -25.0‰). According to Meyers (2003), C:NATM values for lake algae are 

commonly between 4-10, whereas vascular land plants have C:N values ≥ 20. A mean 

C:NATM value of 11 for Unit I suggests that algae were the dominant source of organic 
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matter during this time. The carbon isotopes are consistent with high relative rates of 

photosynthesis, which would serve to deplete 12C from the water column and lead to 

isotopically heavy organic matter (Cohen, 2003; Meyers, 2003). 

Magnetic susceptibility peaks are prominent in Unit I, and the Black Point ashes 

are characterized by some of the highest MS values in the UWI15 core (Figure 8). High 

MS values also characterize the lacustrine deposits in Unit I, which suggests that the low 

TOC concentrations may be explained by dilution or elevated sedimentation rates (e.g., 

Benson et al., 1998b; Noble et al., 2016). Unit I contains several very thin (<0.5 cm) 

graded silt beds, which we interpret to be the product of dilute turbidity currents that 

passed over the core site. However, it remains unclear if the turbidity currents occurred as 

a result of the sub-aqueous Black Point eruption (Benson et al., 1990), seismic activity 

that may have preceded the eruption, or pore pressure instabilities in the western 

embayment generated by lake-level changes.  

We interpret that Mono Lake water chemistry was relatively dilute (~16.9-16.2 

ka), based on the very low TIC concentrations in the lake deposits and the virtual absence 

of carbonate on smear slides. Carbonate precipitation in lakes is dominantly controlled by 

the availability of CO2 in the water column (Cohen, 2003). The mechanisms that remove 

CO2 and facilitate carbonate precipitation include, but are not limited to: (a) 

photosynthesis by lake margin macrophytes and algae, (b) CO2 degassing, such as the 

discharge of supersaturated spring waters into the lake, (c) temperature changes that favor 

higher rates of evaporation, and (d) increasing salinity (Cohen, 2003). In a number of 

Great Basin paleo-lake studies, TIC concentrations were low during transgressions and 

lake-level highstands (Benson et al., 2003). Since the hydrologic inflows to Mono Lake 
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originate in the Sierra Nevada range, and weathering via hydrolysis reactions attack 

feldspars, the stream waters entering the lake contain a high ratio of HCO3
- to dissolved 

Ca2+ (Garrels and Mackenzie, 1967).  

Normally, in an evaporative, hydrologically closed lake, HCO3
- and Ca2+ are 

removed in proportion by the precipitation of CaCO3. However, Mono Lake is Ca2+ 

limited and an influx of freshwater carrying Ca2+ would cause the lake to precipitate 

CaCO3 (Jones and Deocampo, 2003). Thus, if Mono Lake were transgressing or at 

highstand, the TIC concentrations in offshore strata might be predicted to be high, due to 

the abundance of Ca2+ in the water column, but due to the limited number of samples in 

Unit I and the dominance of the Black Point ash, it is most likely that samples from this 

interval have been diluted by siliciclastics. Moreover, an ostracode analysis completed by 

Forester (1987) showed that the Wilson Creek Fm., encompassing the Black Point ash 

(Marker Sequence A) (Figure 6) and associated lake deposits, contains a faunal 

assemblage consistent with dilute-water chemistry and high TIC concentrations, which 

supports the interpretation of high water levels at Mono Lake during Unit I time.  

5.2 Unit II (IIa ~16.2-14.2 ka; IIb ~14.2-12.9 ka) 

The geochronology for Unit II is constrained by a 14C date at 952 cm and another 

14C control point just above the upper Unit II contact at ~653 cm (Table 1). The candidate 

Ash 1 horizon is present in Unit IIa and was selected on the basis of its thickness and 

stratigraphy (Zimmerman, personal communication, 2017). Lajoie (1968) describes Ash 

1 as a white to light-grey rhyolitic ash and lapilli, overlain and underlain by light-grey 

laminated silts consisting of rhyolitic glass shards and ostracodes. In the UWI15 core, 

Ash 1 is similarly bounded by lacustrine silts, is light-grey in color and ~5 cm thick. 
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Through the geochemical finger printing of titanomagnetites, Marcaida et al. (2014) 

found that Ash 1, unlike some other rhyolitic ashes in Mono Basin, contains substantial 

amounts of iron. In the UWI15 core, preliminary x-ray fluorescence scans exhibit a 

significant iron peak at the stratigraphic level of the Ash 1 candidate, which suggests the 

potential for a positive geochemical correlation. The paleo-shoreline and stratigraphic 

analysis of Ali (2018) constrains the minimum age of Ash 1 to ~15.1 ka. 

Unit II consists of finely laminated to thinly bedded black muds and silts with 

interbedded white-grey granitic sands. This unit is characterized by high amplitude 

variability in MS, BiSi, δ13CORG, δ15NORG, and C:NATM (Figure 8). By comparison, the 

concentrations of TOC and TIC in Unit II are relatively low and invariant. The C:NATM 

values are notably high in this unit, achieving values > 20 in several horizons. We 

interpret these high C:NATM values to reflect important contributions of terrestrial 

vegetation to the organic-matter pool of Mono Lake at the time of deposition (Meyers 

and Lallier-Verges, 1999) (Figure 11). The delivery of terrestrial organic material was 

most likely facilitated by rivers, given the position of the UWI15 core in the western 

embayment (Figure 1). However, the C:NATM does not reveal if the terrestrial organic 

matter was transported to the core site at lake-level lowstand by subaqueous hyperpycnal 

flows or at highstand via gravitational settling. 

Hyperpycnal flows associated with river plumes laden with sediment can 

transform into turbidity currents, which move detritus and terrestrial organic matter along 

the lake floor to deepwater (Stine, 1990). By contrast, gravitational settling of terrestrial 

organic matter takes advantage of hydrodynamic sorting, which keeps low-density 

terrestrial organic matter in suspension for long time periods, allowing for wind-driven 
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currents to spread the material over a wide area, including offshore. This process has 

been implicated for explaining elevated deepwater C:N data in other large lakes (Meyers, 

2002; Ellis et al., 2015). We favor the influence of low-density turbidity currents as the 

dominant process delivering terrestrial materials to the UWI15 core site in Unit II. 

Evidence in support of this interpretation comes from the MS data. The high amplitude 

MS response of Unit IIa suggests a considerable influx of magnetic grains offshore 

during this time, and cm-scale graded silt and sand beds in this interval are consistent 

with deposition via turbidity currents (Stine, 1990; Benson et al., 1998; Osleger et al., 

2008; Noble et al., 2016) (Figure 12).  

Notably, the paleo-shoreline analysis conducted by Ali (2018) makes clear that an 

important regression began in the Mono Basin after ~16 ka, following the large deglacial 

highstand. As a result, we interpret that the influence of turbidity currents was the direct 

result of falling lake levels, riverine incision, and the collapse of delta fronts. This 

interpretation is supported by the carbon-isotope data. Unit II is characterized by some of 

the most negative δ13CORG values of the late Pleistocene-Holocene sedimentary package, 

and modern analog data suggest that this can be explained by the influence of deltaic 

processes (Table 3).  

Modern sediments and live plants collected from Mono Lake’s western 

embayment deltas exhibit mean δ13CORG values of ~ -26.4‰, whereas the δ13CORG 

chemostratigraphy of Unit II has a similar mean of ~ -26.9‰.  As discussed by Cohen 

(2003), δ13CORG in lakes is primarily controlled by the carbon-isotope composition of 

dissolved inorganic carbon (DIC) within the water column, as well as by contributions to 

the organic-matter pool from allochthonous sources in the watershed. Notably, a modern 
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riverine signal is not obvious in the geochemistry of recent muds from Mono Lake, and 

the three deltas which build into Mono Lake’s western embayment today are ~7.8km, 

~2.6km, and ~2.3km from the UWI15 core site (Figure 4). The research of Stine (1990) 

clearly shows that regressions on the order of decimeters in Mono Lake trigger rapid 

down-cutting of the eastward-flowing Sierran streams, and we interpret that similar 

incision and deltaic progradation most likely accompanied the regression identified by 

Ali (2018) for the deglacial. Lowstand deltas are a common phenomenon in large tectonic 

lake basins that influence deepwater stratal architecture, sedimentology, and organic 

matter composition (McGlue et al., 2006; Shanahan et al., 2006).  

The enriched δ15NORG values for Unit IIa suggests either a shift in the 

phytoplankton assemblage and subsequent drawdown of a limited DIN pool, or the 

volatilization of ammonia at relatively high pH, which causes a strong enrichment in 15N. 

Talbot and Johannessen (1992) identified this process in the deglacial sedimentary record 

of tropical Lake Bosumtwi, and suggested that it was driven by a decline in lake level 

associated with higher aridity. Given the low TIC values for Unit IIa and high lake levels 

indicated by Lajoie (1968) and Ali (2018), it seems unlikely that Mono Lake was 

hypersaline, which favors a shifting algal composition to explain the nitrogen isotope 

data. 

Bohacs et al. (2000) noted that organic richness in lake deposits reflects the 

balance among primary production, microbial decomposition, and processes of dilution. 

Low and invariant TOC concentrations throughout Unit IIa suggest that rates of primary 

productivity were potentially low during the regression and lake-level lowstand. 

However, the high-amplitude MS variability, along with elevated C:NATM and δ13CORG 
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values, are consistent with an important role for processes of dilution influencing 

organic-facies development in Unit IIa time. Paleo-shoreline mapping and the 

stratigraphy and geochemistry of the Wilson Creek Formation strongly suggest that 

Mono Lake has been hydrologically closed for at least the last million years (Lajoie, 

1968), and a lowstand during the deglacial is likely to have concentrated the remnant lake 

water and increased salinity.  

Jellison et al. (1996) suggested that higher salinity may abate microbial processes 

that destroy organic matter in Mono Lake. Those authors used geochemical data from 

sediments deposited over the last ~170yrs that showed a positive correlation between 

salinity and sedimentary TOC to make their interpretations. This relationship does not 

appear to be important during Unit IIa time however, as TOC concentrations generally 

remain under 1.0 wt. % throughout the unit. It seems therefore likely that Mono Lake’s 

western embayment was relatively fresh, even during low water levels due to the 

establishment of a chemocline. Moreover, the establishment of a freshwater cap in Mono 

Lake during this time could have facilitated the deposition of ungraded sand pods and 

lenses observed throughout Unit IIa and IIb via ice rafting (i.e., Zimmerman et al., 

2011b).  

Decomposition of organic matter at the sediment-water interface could have 

influenced the TOC concentrations in Unit II, but the presence of fine laminations and 

black (reduced) sediments argue against a permanently oxidized lake floor that was 

heavily reworked by microbes and bioturbating benthos. Therefore, low TOC 

concentrations are most likely influenced by the delivery of siliciclastic detritus to the 

core site from both lowstand deltas and ice rafted debris. Mean BiSi concentrations (8.0 
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wt. %) suggest diatom productivity was low during Unit IIa time, with a transition to 

slightly higher mean values (10.0 wt. %) in Unit IIb. In concert with MS data and core 

sedimentology, it is possible that algal productivity was limited by a turbid water column 

due to sediment laden runoff and reduced light penetration. Benson et al. (2003b) 

interpreted that similar processes affected productivity in Owens Lake, and Ali (2018) 

noted that turbidity may have constrained the depth of the photic zone at Mono Lake 

particularly when glaciers were actively eroding the eastern Sierra Nevada at this time.  

The stratigraphy and geochemistry of Unit IIb (~14.2-12.9 ka) differs from 

underlying deposits, with sharp MS spikes disappearing, δ15NORG values become more 

negative (mean = 5.0‰), and mean BiSi concentrations increasing by ~3.0 wt. % (Figure 

8). Unit IIb also contains an unusual package of black, thickly bedded, vitreous sand; the 

origin of this deposit remains unknown but x-ray diffraction reveals its composition is 

dominantly quartz. We interpret that these different chemostratigraphic patterns were 

driven by climate change that began after ~14.2 ka, which led to a lake level lowstand 

associated with the onset of the Bolling-Allerod (~14.5-12.9 ka), a climate interval that 

marks the end of the last glacial period (Weaver et al., 2003). The onset of the Bolling-

Allerod (B-A) was driven by a ~40 ppm increase in atmospheric CO2, strengthening of 

the Atlantic meridonial overturning circulation (AMOC), and the subsequent release of 

heat stored in the ocean (Liu et al., 2009; Obbink et al., 2010; Shakun et al., 2012).  

In the Eastern Sierras, the B-A has been characterized as a warm interglacial 

interval (Benson et al., 2003; MacDonald et al., 2008; Nowak et al., 2017). Paleo-

shoreline analyses for this time (Figure 2) suggest that Mono Lake levels were falling 

(Ali, 2018), which is similar to observations from geological archives from Owens Lake 
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and Lake Bonneville (Oviatt, 1997; Benson et al., 1997). Furthermore, a pollen record 

from an Owens Lake sediment core and a vegetation analysis performed on woodrat 

middens near Pyramid Lake show a significant change in flora during the B-A, with 

woodlands being replaced by shrubs (Mensing, 2001; Nowak et al., 2017). These regional 

datasets are consistent with the physical properties and geochemistry of Unit IIb (~14.2-

12.9 ka), which we suggest reflects Mono Lake at lowstand.  

5.3 Unit III (~12.9-10.9 ka)  

The age model for Unit III is constrained by two pollen 14C dates and one plant 

macrophyte 14C date. The two horizons dated by pollen are located at 653 and 503 cm in 

the composite UWI15 stratigraphy, whereas the horizon containing the dated macrophyte 

is located at 497 cm (Table 1). The pollen sample at 653cm was dated to 14.9 ka. The 

pollen sample at 503 cm was dated to 11.7 ka, while the plant macrophyte at 497 cm had 

a date of 12.9 ka. This reversal could be the result of reworking of older lake deposits via 

riverine incision during a lake level changes, a process which has been described from 

other large lakes (Meyers and Lallier-Verges, 1999; McFadden et al., 2004).  

The paleo-shoreline analysis conducted by Ali (2018) showed that Mono Lake 

achieved a highstand ~13.0-12.0 ka at the onset of the Younger-Dryas (Y-D) (~12.9-

11.7ka) (Figure 2). Ali (2018) explains that a potential control on Mono Lake hydrology 

is sea surface temperatures in the North Atlantic.  Following this interpretation, 

wintertime precipitation in the Sierras is enhanced by a strong subtropical jet, which is 

caused by the migration of the Intertropical Convergence Zone (ITCZ) to the south; ITCZ 

movement is in response to surface pressure anomalies in the North Atlantic that co-

occur with large extents of sea ice (Chiang et al., 2014; Cvijanovic et al., 2017). In 
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contrast to the interpretations of Ali (2018), some other researchers have described the Y-

D as a cool and dry interval in the Sierras (Benson et al., 1997; Mensing, 2001; 

MacDonald et al., 2008). According to MacDonald et al. (2008), chrionomid-based lake-

water temperature reconstructions indicate that Starkweather and Barrett Lakes were ~2-

4°C cooler during the Y-D; these basins are ~37 and 45 km from Mono Lake, 

respectively. If water temperatures at Mono Lake were similarly low, the decreased 

evaporation may have been a positive feedback that helped facilitate transgression, in 

addition to higher precipitation arising from a southerly displaced ITCZ. Our 

chemostratigraphic and physical properties data (Figure 8) provide evidence in support of 

higher Mono Lake levels during Unit III. 

Lower Unit III deposits encompass the Y-D highstand, whereas the upper portion 

of Unit III appears to reflect deposition during a regression. Basal Unit III muds (~655-

591 cm; ~12.9-12.2 ka), preserve fine laminations, which is consistent with an anoxic or 

strongly dysoxic lake floor that inhibits the activity of bioturbating benthos (Meyers, 

2003). Moving upsection, the muds are laminated and change to olive green and red 

colors with diffuse contacts; thin, normally graded grey sandy beds are also occasionally 

present (Figure 9). We interpret this sedimentological transition to mark the inception of 

regression and a deeper position of the redox front within the sediment column, allowing 

at least periodic oxidation and reworking of the muds on the lake floor by bioturbation 

(Potter et al., 2005). Similarly, Newton (1994) and Zimmerman et al. (in rev.) have 

suggested that the loss of fine laminations in Mono Lake sediments are indicative of lake 

mixing or lake level decline. The upward fining sand beds are interpreted as Bouma 

sequence-style Ta beds, deposited by decelerating turbidity currents (Middleton and 



   

 
 

48

Hampton, 1973). We suggest that as water levels fell near the conclusion of the Y-D 

(~11.7 ka), Mono Lake margins and delta fronts became unstable, leading to mass 

wasting and downslope transport of sediment.  At 498cm (~11.2 ka), Unit III sediments 

transition again to diffusely laminated light grey muds, which persist until the upper 

contact.  

Unit III is characterized by uniformly low MS, with the exception of sandy Ta 

beds, which produces high values (Figure 8). Low MS values for the muddy strata point 

to minimal transport of terrigenous magnetic grains to the core site early in Unit III time, 

which is consistent with high lakes levels, back-stepping deltas, and sparing potential for 

dilution influencing organic facies development during the Y-D. The TOC concentrations 

during the Y-D were 0.4-3.9 wt. % (mean = 2.1 wt. %), and as a result, we interpret that 

Mono Lake was most likely eutrophic during this time. Evidence in support of this 

interpretation comes from relatively enriched δ13CORG values and high BiSi (mean = 13.0 

wt. %) concentrations; Cohen (2003) notes that it is common for the algal composition of 

eutrophic lakes to be dominated by diatoms. Furthermore, we interpret that Mono Lake 

was not nutrient limited, as the δ15NORG values remain low (mean = 6.0‰), which may 

have resulted from seasonal water column mixing (e.g., Talbot and Johannessen, 1992; 

Cohen, 2003).  

Unit III has highly variable BiSi and TIC throughout the section; TIC increases 

abruptly above the Unit II-III contact and has a mean concentration of ~1.2 wt. % (Figure 

9). Benson et al. (2002) argued that for many Great Basin lakes, an inverse relationship 

exists between lake level and TIC concentrations. However, higher concentrations (mean 

= 1.4 wt. %) of TIC from ~12.9-12.2 ka, during the Y-D highstand, are more consistent 
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with the mechanism of enhanced Ca2+-rich runoff to Mono Lake as water levels rose, 

allowing authigenic carbonate to precipitate from the water column. Yet the carbonate 

content of Unit III is vertically variable. Moving upsetion, smear slide analysis of upper 

Unit III revealed the presence of ostracodes, which suggests that shallow water 

carbonates were being reworked and transported into deeper water, consistent with falling 

water levels following the Y-D highstand. The TOC and δ15NORG are relatively low from 

~12.9-11.7 ka, but these indicators change from ~11.7-10.9 ka and are marked by high 

amplitude variability. In contrast, gradual trends in C:NATM and δ13CORG toward higher 

values approaching the upper contact characterize Unit III (Figure 8). 

The chemostratigraphy of Unit III shows that the Mono Lake ecosystem 

responded to the Y-D highstand and the regression that followed.  For example, there is a 

prominent δ15NORG shift (over a range of ~4.0‰) towards higher values at ~11.7 ka.  At 

the base of Unit III, δ15NORG values are relatively low (mean = ~6.0‰) with minor 

variability, whereas at ~11.7 ka, δ15NORG increases and becomes highly variable, reaching 

values >10.0‰ (Figure 8). This enrichment in δ15NORG, coupled with gradually 

increasing C:NATM (mean = 15) towards the Unit III-IV boundary, suggests that Mono 

Lake was experiencing an increase in terrestrial organic-matter delivery (Figure 11), 

perhaps associated with margin collapse or from down-cutting streams and lowstand 

delta development as lake levels declined. In addition to enriched δ15NORG and high 

relative C:NATM, very high TOC values (≤ 9 wt. %) mark sediments ~11.7-10.9 ka. We 

interpret these data to reflect offshore focusing of organic matter as lake-level fell, which 

is a process that has been invoked to explain Mono Lake TOC concentrations in the 

historic period (Tenzer et al., 1997; Meyers and Lallier-Verges 1999).  
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Following this model, wave-enhanced resuspension of organic matter is moved 

offshore as water levels and wave base fall; the presence of ostracode valves in these 

deposits suggest this mechanism is viable, as wave reworking of the littoral zone could 

transport the low density bioclasts offshore. Alternatively, falling lake levels may have 

increased salinity, which could inhibit microbial respiration or increase the strength of 

water column stratification, leading to higher TOC through enhanced organic matter 

preservation (Meyers and Teranes, 2001). However, the diffuse red and olive green 

laminations of the regressive phase argue against stronger water column stratification and 

lake-floor anoxia at this time, and thus we favor offshore focusing of nearshore organic 

matter as the dominant mechanism of organic enrichment.  

5.4 Unit IV (~10.9-8.7 ka) 

The age model for Unit IV consists of five 14C dates on plant macrophytes. 

Moving from the base to the top of the unit, the dates are: 10.6 ka at 460cm, 11.6 ka at 

424cm, 11.5 ka at 422cm, 11.6 ka at 421cm, and 9.7 ka at 368cm (Table 1). There are 

two instances within Unit IV where 14C dates are out of stratigraphic order, but the error 

bars for the reversed ages overlap the adjacent dated horizon (Figure 10). The explanation 

for the reversed ages is presently unknown, but small sample sizes or organic material 

that was temporarily stored on the landscape and became reworked by physical processes 

could be responsible.  

Unit IV consists of finely laminated to thinly bedded muds and silts; the relative 

grain size of these deposits are the finest in the UWI15 core. Sands are rare in Unit IV 

and where they do exist, beds are thin and exhibit normal grading. Unit IV has relatively 

low MS, except for the thin sandy beds near the basal contact. The MS response of the 
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sandy beds is symmetrical, in contrast with the asymmetric MS response pattern of 

turbidites at lower stratal levels in the UWI15 core, as well as turbidites reported on from 

other lakes in the region (Osleger et al., 2008; Noble et al., 2016). This MS response has 

been documented for turbidites formed from remobilization of hemipelagic sediments on 

sub-lacustrine slopes (Moernaut et al., 2014). Such turbidites usually have a thin sandy 

base, a thicker homogenous silty/diatomaceous mid-layer, and a thin capping clay layer 

(Figure 12). Comparatively, lacustrine turbidites with asymmetric MS are usually 

comprised of siliciclastic detritus, and form from delta collapse, river floods, and onshore 

landslides that propagate into the basin (Moernaut et al., 2014; Van Daele et al., 2015) 

(Figure 12). The sedimentology and MS response of Unit IV turbidites are most 

consistent with an origin linked to remobilized subaqueous slope material. We interpret 

that minor changes in lake level during Unit IV time may have been responsible for 

initiating these sub-lacustrine gravity flows.  

Most of the geochemical indicators in Unit IV undergo gradual changes, 

suggestive of a slow but important environmental transition following the post Y-D 

regression at Mono Lake.  For example, BiSi concentrations and C:NATM values decrease 

gradually from ~15.0 to 5.0 wt % and ~17 to 13 towards the upper contact, respectively 

(Figure 8). Similarly, δ13CORG undergoes a gradual 2.0‰ shift towards more positive 

values moving upsection. TOC (mean = 2.0 wt. %) and δ15NORG (mean = 5.0‰) show 

small changes only from the basal to the upper contact (Figure 8). We interpret that the 

δ15NORG, C:NATM, and δ13CORG chemostratigraphy as evidence of a gradual change in 

organic matter provenance, from mixed terrestrial and aquatic material to one dominated 

by lacustrine algal sources.  



   

 
 

52

The high and largely invariant TOC concentrations and low MS values suggest 

that the lake was not experiencing terrigenous dilution of organic matter, and it is 

unlikely that turbidity constrained light penetration or the width of the photic zone, as 

may have been the case in the late Pleistocene. Rather, we interpret that Mono Lake 

experienced a relatively high rate of primary productivity and perhaps enhanced organic 

matter preservation ~10.9-8.7 ka.  The δ13CORG chemostratigraphy supports a eutrophic 

Mono Lake during Unit IV time. Enrichment of sedimentary δ13CORG occurs as 12C is 

depleted from the water column, which can be accomplished by high rates of algal 

productivity selectively taking up the light isotope during photosynthesis (Cohen, 2003). 

The sharp laminations of Unit IV are consistent with an absence of bioturbation at 

the core site, which may have been enhanced by lake bottom anoxia.  Likewise, the fine 

particle sizes of these deposits may have limited oxidants in pore spaces, which may have 

further enhanced organic matter preservation (Meyers, 2003; McGlue et al., 2012).  This 

interpretation is supported by insights from Newton (1994), who suggested that starting 

around ~10 ka, Mono Lake was likely meromictic with a salinity close to that of 

seawater.  Meromictic lakes have actively mixing epilimnions, whereas the deeper 

hypolimnion is sequestered below a pycnocline defined by O2 levels, temperature, or 

salinity. It is not unusual for meromictic lakes to preserve considerable organic matter, 

due to low oxygen levels at the sediment water interface that limit bioturbation and 

microbial respiration (Talbot and Livingstone, 1989; Newton, 1994; Meyers, 2003).   

However, meromictic lakes may be nutrient limited, as internal cycling of 

nitrogen and phosphorus is limited by a lack of water-column turnover. The TOC 

concentrations, C:NATM, and δ13CORG data all point towards high algal productivity at 
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Mono Lake during Unit IV time; if the lake was meromictic, it was not severely nutrient 

limited. However, BiSi concentrations vary over 8.0 wt. % in the unit, and are 

considerably lower than Unit III for both highstand and lowstand conditions.  Smear 

slides from Unit IV muds show diatoms as a common component, but amorphous organic 

matter is prominent, which we interpret as evidence for Mono Lake being conducive 

habitat for diverse algae types.  These observations suggest that diatoms may have been 

out competed for resources by other phytoplankton relative to the Y-D highstand. This 

may have resulted from increased water column stability associated with meromixis, 

which favors nitrogen-fixers as recirculation of DIN is limited by the presence of a 

chemocline, as evident by the mean δ15NORG ~5.0‰ (e.g., Talbot and Johannessen, 1992). 

Unit IV was deposited during a period that has been described as cool and wet for 

the Great Basin, and some of our data are consistent with this paleoenvironmental 

interpretation (Noble et al., 2016; Zimmerman et al., in rev.). From a process perspective, 

our C:NATM data are consistent with the findings of Noble et al. (2016), who suggested 

that during cool intervals, transport of terrestrial organic matter to lakes is limited by 

snow cover in the watershed, which restricts the type and distribution of land plants, and 

shorter periods of snow melt, which reduces runoff in the spring and summer seasons.  

However, the recent paleo-shoreline reconstruction provided by Ali (2018) shows that 

water levels at Mono Lake were fluctuating in the early Holocene, with lake surface 

elevations considerably lower than the two prominent lake level highstands centered on 

~16 ka and ~13-12 ka.  

Moderate carbonate concentrations (mean TIC =1.0 wt. %) in Unit IV suggest that 

Mono Lake was more dilute in the early Holocene than it is in the present day, though 
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mechanisms of carbonate formation may not be analogous given the alkalinity of the 

modern system and potential for microbial mediation of carbonate sedimentation (e.g., 

Brasier et al., 2018) (Figure 8). This pattern of low early Holocene carbonate 

concentrations is also true for a long sediment core (BINGO10/4A) collected from 

shallow water in Mono Lake, which was interpreted to have resulted from a relatively 

wet paleoclimate (Zimmerman et al., in rev.). Moderate TIC concentrations in the UWI15 

core ~10.9-8.7 ka is consistent with a relatively deep lake, assuming hydroclimate alone 

is responsible for CaCO3 precipitation at the core site. The available paleo-shoreline data 

from ~10.9-8.7 ka suggests that lake level oscillated between ~1975 and ~1955 m.a.s.l., 

however the full extent of these changes are still not completely known (Ali, personal 

communication, 2018).  

Since our core was collected from a relatively deep location in Mono Lake (18 m 

water depth), minor changes in lake level are not likely to impart large changes in 

deepwater sedimentology or geochemistry. For example, turbidites, which appear to be 

generated around regression events in the Mono Basin, are found in the base and middle 

of Unit IV, but their sedimentology suggests an origin linked to the remobilized 

hemipelagic sediment, rather than prolonged episodes of incision associated with high 

amplitude lowstands (Figure 12). Further, Unit IV contains some of the finest and most 

distinct laminae in the entire core. Preservation of fine laminations is most consistent 

with a relatively deep lake with anoxic bottom waters. Therefore, our data suggest that 

lake level oscillations between ~1975-1955 m.a.s.l. during Unit IV time did not have a 

strong impact on sedimentology or organic facies development in deepwater Mono Lake, 
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though the same may not have been true in littoral and supralittoral environments 

examined by Ali (2018). 

5.5 Unit V (Va ~8.7-6.3 ka; Vb ~6.3-4.2 ka) 

The geochronology for Unit V is constrained by 10 14C dates within the depth 

range of ~354-296 cm. The dates consist of plant macrofossils (n=6), purified pollen 

(n=2), and charcoal (n=1) (Table 1). At the base of the unit, there are two pollen dates at 

354 and 353 cm, with ages of 9.1 ka and 9.2 ka. The oldest date in the unit is a charcoal 

sample located at 337 cm, which yielded a date of 9.9 ka, suggesting that the charcoal 

may have been reworked for several centuries on the landscape prior to deposition. The 

uppermost part of Unit V (~220-235 cm) contains three tephras, which have been 

correlated (using MS and Ca/Ti peaks; Zimmerman, personal communication, 2018) to 

three tephras identified and dated using 14C in the shallow-water BINGO 10/4A core 

(Zimmerman et al., in rev.). The ages for the three tephra beds are ~4700, 5100, and 5400 

cal yr BP. These tephras and their associated 14C ages suggests that our 14C dated horizon 

at 296 cm (6.5 ka) is a reliable upper constraint on the unit’s chronology (Table 1).  

Unit V consists of laminated medium brown muds and occasional silts (Figure 9). 

The laminae contacts vary from diffuse to sharp. Notably, the MS response for Unit V is 

low, except for the three tephra-associated peaks near the upper unit contact (Zimmerman 

et al., in rev.) (Figure 8). The δ13CORG and δ15NORG values remain relatively enriched and 

only shift ~4.0‰ for the entire unit. C:NATM values remain consistent and only vary by 

~4.0 aside from an outlier at the base of the unit, which we interpret to be anomalously 

low due its proximity to a tephra. Concentrations of TIC are marked by high amplitude 

variability (~5.0 wt. %) near the base of Unit V, but variability and maximum values 
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decline upsection (~2.0 wt. %). BiSi concentrations remain relatively low for the entire 

unit (mean = 8.0 wt. %), with values decreasing towards the Unit VI boundary. 

Comparatively, TOC concentrations show a gradual ~2.0 wt. % increase towards the Unit 

VI boundary.  The muds in Unit V are dominantly composed of hemipelagic material, as 

evident by the low MS values, which suggests detrital influx was not an important factor 

in the development of organic facies during Unit V time.  

Much of Unit V time (~8.7-4.2 ka) overlaps with the Holocene Hypsithermal 

(~9.4-5.3 ka), an interval which many studies from the eastern Sierra Nevada interpret as 

relatively dry (Davis, 1999; Osleger et al., 2008; Zimmerman et al., in rev.). Importantly, 

paleo-shoreline data from Mono Lake are unavailable for this period. During the 

Holocene Hypsithermal, numerous Great Basin lakes were at lowstand, including Owens 

and Pyramid Lakes (Benson et al., 1997; Mensing et al., 2004). Furthermore, 

palynological studies from the region identified evidence for early Holocene aridity. For 

example, the Mono Lake pollen study by Davis (1999) noted a ~5% increase in 

halophytic Chenopodiaceae-Amaranthus and Sarcobatus pollen between 9000-5000 14C 

yr B.P., which suggested drought and salinity tolerant flora around Mono Lake. A drying 

trend in Mono Lake was recorded in the BINGO10/4A shallow water core from ~7.9-4.8 

ka, based on the presence of shallow water, high energy carbonate facies, indicative of 

close proximity of the coring site to the shoreline (Zimmerman et al., in rev.). 

We interpret the elemental and isotopic data to reflect a relative lake level 

lowstand during Unit Va (~8.7-6.3 ka). Conditions of low water level elevation are most 

clearly expressed in the spiky TIC chemostratigraphy (Figure 8). Prominent peaks in the 

TIC curve are generated in Unit Va due to ostracodes and sand-sized grains of tufa, 
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which form bleb-shaped yellow-white laminae observed on thin sections. These 

sedimentological features share a number of similarities to the shallow water aragonite 

“flake mud” described by Newton (1994). In Mono Lake, algal tufa forms in the photic 

zone at depths ≤ 5m (Ali, 2018). The presence of tufa-derived carbonate in Unit Va 

laminations suggests that: (a) the UWI15 core site was within the photic zone or at the 

shoreline, or (b) shallow water carbonates were reworked by waves and transported 

offshore, ultimately accumulating in deepwater. The fine laminations of Unit Va muds 

argues against deposition in the littoral or supralittoral zones, and therefore we favor 

reworking of exposed littoral shelves during a regression as the best explanation for the 

TIC chemostratigraphy.  

Notably, much of Unit Va occurs during a peak in late summer Northern 

Hemisphere insolation, and the initiation of the North American monsoon is believed to 

have occurred around 8.0 ka (Barron et al., 2012). It is plausible that periodic summer 

rainstorms may have influenced wave action and reworking of Mono Lake’s littoral zone 

during Unit Va, leading to offshore transport of both inorganic and organic carbon. By 

analogy, Godsey et al. (2011) interpreted that storms were important agents for reworking 

nearshore carbonates into offshore environments during a regressive phase of Lake 

Bonneville. Today, the North Pacific High shifts to the north during the summer, which 

restricts rainstorms to higher latitudes, while a northerly ITCZ induces summer monsoon 

conditions (Zimmerman et al., in rev.).  

The geochemistry of Unit Va consists of low BiSi concentrations (mean = 8.0 wt. 

%), moderate TOC concentrations (mean = 2.0 wt. %), and relatively enriched δ15NORG 

and δ13CORG (means of ~6.0‰ and -22.0‰, respectively). We interpret that offshore 
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focusing of macrophyte-rich organic matter by waves likely accompanied the transport of 

nearshore carbonates to the UWI15 site.  This is also in clear evidence from the number 

of plant macrophyte fragments available for 14C dating. The C:NATM values remain 

relatively stable throughout Unit V and average ~14, suggesting a mixture of lacustrine 

and terrestrial flora to the organic matter pool. We interpret that the TOC concentrations, 

as well δ15NORG and δ13CORG, reflect contributions of macrophyte and terrestrial organic 

matter to Unit Va. A cross-plot of δ13CORG with C:NATM (Figure 11) suggests the 

presence of C4 plant matter in Unit Va (~8.7-6.3 ka) (Meyers, 2003).  Because C4 plants 

are adapted to arid or water stressed environments, these data are in accord with a low 

lake level interpretation for Mono Lake at this time, as well as the palynological 

observations of Davis (1999). Moreover, warmer water cannot dissolve as much CO2 as 

cooler water. Talbot and Johannessen (1992) suggested that in endorheic lakes, warming 

of lake surface waters may increase the volatilization of ammonia, which drives the 

isotopic enrichment of 13C and 15N in organic matter.   

 The sediments of Unit Vb are a dark yellow-brown with intermittent diffuse and 

sharp laminae contacts (Figure 9). The geochemistry of Unit Vb suggests only minor 

changes in paleolimnology and organic facies development from ~6.3-4.2 ka. During this 

time, wet intervals have been identified in numerous lakes in the region from ~6.3-3.0 ka, 

based on turbidites, pollen, algae, and charcoal proxies (Mensing et al., 2004; Osleger et 

al., 2008; Noble et al., 2016).  In our data, the clearest evidence of an environmental 

change comes from the relatively invariant TIC values, suggesting that wave reworking 

of nearshore carbonate declined in this interval. The absence of reworked nearshore 
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carbonates suggests that convective rainstorms were probably not an important control on 

wave action and offshore sediment focusing at this time.  

Beginning ~6 ka, a decrease in Northern Hemisphere summer insolation caused 

summer temperatures to decline (COHMAP, 1988). If we assume a decline in summer 

temperatures at Mono Lake, an increase in dissolved CO2 due to a cooler surface waters 

may be a viable explanation for the trend toward more negative δ13CORG values observed 

in Unit Vb (Talbot and Johannessen, 1992; Cohen, 2003; Noble et al., 2016). A crossplot 

of δ13CORG with C:NATM shows a slight change in organic matter provenance, favoring C3 

vegetation for this unit (Figure 11). Unit Vb data overlap organic geochemical values 

from Unit IV, a known interval when the Sierra Nevada were cooler and wetter (Noble et 

al., 2016; Zimmerman et al., in rev.). C:NATM values for Unit Vb remain stable relative to 

the underlying deposits, however δ15NORG  declines towards the Unit VI boundary, 

suggesting a slight increase in productivity compared to Unit Va.  

This decreasing trend in δ15NORG, coupled with a decreasing trend in BiSi, 

possibly indicate an increase in water column stability and limited recirculation of DIN 

suggesting diatoms may have been in competition with other phytoplankton for nutrient 

resources (e.g., Cohen, 2003; Talbot and Johannessen 1992). TOC concentrations for 

Unit Vb is ~1.0 wt. % higher than the TOC concentrations for Unit Va, suggesting 

preservation was slightly higher and that Mono Lake was likely meromictic.  

5.6 Unit VI (4.2-0.3 ka; gap from 4.2-1.1 ka) 

The geochronology for Unit VI is constrained by one 14C date on a plant 

macrophyte below the coarse pumice tephra and two 14C dates above the pumice tephra 

on a plant macrophyte and an insect carapace (Table 1). The lowermost 14C date comes 



   

 
 

60

from material recovered at ~205 cm, which produced a date of 4.2 ka. The dates made on 

the macrophyte and insect parts were recovered from the same horizon at ~96 cm and 

yielded ages of 1.1 ka. The chronology of Unit VI is also informed by the presence of a 

0.5 cm thick white sandy layer containing volcanic glass at 66 cm, which we interpret to 

be a candidate for the North Mono tephra (NMT), a well-studied eruptive deposit in the 

Mono Basin that formed ~625 cal yr BP. Directly overlying the NMT, there is ~1.0 cm 

thick package of laminated mud, which is in turn overlain by a ~2.0 cm thick package of 

grey mud composed of diatoms and volcanic glass.  The grey layer shares some 

characteristics with sediments associated with the Paoha Island uplift, which occurred 

~250 cal yr BP (Stine, 1987; Newton, 1994; Benson, 2003; Colman et al., 2014).  

Unit VI is characterized by a massive grey pumice gravel tephra (~80 cm) 

bounded on top and bottom by massive sandy muds (Figure 9). The basal sediments are 

~30 cm of massive, distorted dark brown sandy mud that coarsens upward into gravel and 

pebble-sized tephra fragments; these sediments produce high MS peaks. The top of the 

unit is characterized by ~30 cm of massive grey-brown sandy mud with relatively intact 

bedding. Our geochemical sampling focused on the muddy sands that sandwich the 

massive tephra.  

We interpret the sandy mud and gravel pumice tephra to be a debris flow deposit.  

The presence of heavily disturbed bedding in the basal sandy mud and the weak inverse 

grading of the overlying tephra deposit suggest that a debris flow origin is possible 

(Middleton and Hampton, 1973).  The flow that transported this material eroded the lake 

floor, resulting in the time gap within the record.  
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The origin of the pumice is not entirely known and its spatial extent is unclear.  

The CHIRP seismic survey completed by Colman et al. (2014) did not produce clear 

evidence for a deposit of this kind. A similar pumice layer is not present at the shallow 

water BINGO10/4A core site, which is ~ 1.8 km from the UWI15 site (Zimmerman et al., 

in rev.). As a result, we tentatively interpret this deposit as a sub-lacustrine debris flow 

that eroded away ~4000 yrs of late Holocene section. One hypothesis on the source of 

this massive pumice relates to the sub-lacustrine Java Islet eruption ~1670 cal yr B.P., 

when the lake surface was believed to lie at ~1948 m.a.s.l.  

The Java Islet eruption is known for voluminous pumice ejecta, which floated to 

the surface of the lake and drifted on currents until they became waterlogged and sank 

(Stine, 1990). The majority of the Java Islet pumice has been found in the western half of 

Mono Lake (Stine, 1990), which is consistent with its emplacement in the western 

embayment. Following this hypothesis, pumice blocks sank to the lake floor near the 

western embayment shoreline once they became waterlogged, and they were dislodged 

by an earthquake or volcanic eruption and drove a downslope movement such as a slide 

or semi-cohesive debris flow. The inception of the gravity flow certainly followed the 

Java Islet eruption, given the time needed to transport the pumice and for it to become 

waterlogged.   

However, the mechanism responsible for remobilizing the large chunks of pumice 

and moving them downslope to the UWI15 core site remains uncertain. One plausible 

candidate is an earthquake or series of earthquakes associated with a volcanic eruption, 

such as the South Mono eruption (~1350 cal yr BP). Mono basin is seismically active, 

and previous research by Bursik et al. (2003) showed that volcanic events are frequently 
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accompanied by one or more large earthquakes (e.g., the North Mono eruption ~625 cal 

yr BP). Bursik et al. (2014) noted that the South Mono eruption was one of the largest in 

the southwest US during the Holocene, and it is plausible that large earthquakes preceded 

or followed the eruption that destabilized the lake margin and shunted Java Islet pumice 

blocks in a debris flow to the core site. Interestingly, the dated organic materials that 

overlie the debris flow deposit range from 970-1260 cal yr BP (inclusive of 2-sigma 

error) (Table 1), which postdates the South Mono eruption. The South Mono tephra is not 

clearly expressed in the overlying sandy mud, but most of the coarse grains in that 

deposit are indeed tephra.  

The top of the unit is characterized by light greyish brown sandy mud with 

relatively low BiSi (mean = 5.0 wt. %), low-moderate TIC (mean = 0.5 wt. %) and TOC 

(mean = 1.0 wt. %), and moderate C:NATM (mean = 13). These values tend to increase 

towards the Unit VII boundary which suggests that immediately following the 

emplacement of the pumice, the lake floor was unstable. As the core site slowly stabilized 

and hemipelagic sedimentation resumed, all of the indicators increased more or less 

synchronously, possibly indicating a return to background lacustrine sedimentation. The 

δ15NORG and δ13CORG values are variable and display ~3.0‰ shifts towards more depleted 

values approaching the upper contact, and higher BiSi concentrations indicate an increase 

in diatom productivity. This is coupled with low-moderate TIC concentrations, which 

indicate that rivers were supplying Ca2+ ions to the lake at this time. The C:NATM 

chemostratigraphy indicates that terrestrial sources contributed organic matter to the lake 

at this time.  
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5.7 Unit VII (~250yrs-present) 

The geochronology for Unit VII is unconstrained by 14C dates. However, this unit 

directly overlies the Paoha Island mudflow deposit as identified by Zimmerman (personal 

communication, 2016). Therefore, we have interpreted this unit is the last ~250 years of 

sedimentation in Mono Lake. With this constraint on the basal age of Unit VII, our 

sampling resolution (~4cm) provides multi-decadal resolution (~17 yrs between 

samples).  

Unit VII consists of ~60 cm of finely laminated muds, which range from dark 

brown at the top of the unit to greyish green at the base (Figure 9). This unit is 

characterized by high TIC (mean = 3.0 wt. %) and TOC (mean = 5.0 wt. %) 

concentrations with low MS, BiSi, and C:NATM values (Figure 8). The isotope data for 

this unit are the most enriched for the entire core, with δ13CORG and δ15NORG values 

averaging ~ -21.0‰ and 13.0‰, respectively. The low MS data coupled with high TOC 

concentrations suggest that the lake was productive (eutrophic) and terrigenous dilution 

did not play a major role affecting organic enrichment.  

Furthermore, when interpreted in concert with the enriched δ13CORG and δ15NORG, 

the chemostratigraphic data suggests Mono Lake experienced high rates of productivity 

as both the DIC and DIN pools were being drawn down during this time. The low 

C:NATM values (mean = 10), suggests the dominant organic matter source for the lake 

during this time is lacustrine algae, but the flora was not dominated by diatoms as BiSi 

concentrations show a marked decline towards the top of the unit. However, smear slide 

observations have confirmed the presence of green algae, which suggests that the diatoms 

were being out competed during this time. Not only was Mono Lake highly productive 



   

 
 

64

during the last ~250 yrs, it was also experiencing increased preservation and bottom 

water anoxia, as evident by the preservation of fine laminations and lack of sedimentary 

features consistent with bioturbation.  

During the deposition of Unit VII, the lake experienced some significant changes 

in the water chemistry due to water diversions to the Los Angeles Aqueduct beginning in 

the 1940s. These water diversions caused Mono Lake shoreline elevation to drop ~14 m 

and forced lake water salinity and alkalinity to double due to evaporative concentration 

(Stine, 1990; Newton, 1994; Jellison et al., 1996).  

Today, Mono Lake is a warm monomictic lake that is stratified via a thermocline. 

The lake mixes annually when surface cooling and wind shear break down the thermal 

stratification allowing for nutrient cycling in the winter that impacts the food web and 

productivity (Oremland et al., 1987; MacIntyre et al., 1999). However, through the work 

of Jellison and Melack (1993), it is clear that water-column stratification in Mono Lake is 

readily affected by climatic variations.  For example, an influx of freshwater led to the 

onset of meromixis, which occurred following heavy rainfall related to the 1982-1983 

ENSO event.  Establishing meromixis in Mono Lake may lead to denitrification and thus, 

more positive sedimentary δ15NORG values (Cohen, 2003). This is a common trend in 

lakes that transition from a seasonal-mixing regime to a permanent/strongly stratified 

lake as the volume of the lake’s hypolimnion changes (e.g., Hecky et al., 1996).  

Furthermore, as the lake-water pH increases (modern pH at Mono Lake ~10), so 

does the volatilization of ammonia, which causes a strong enrichment in δ15NORG values. 

This is most commonly seen in closed-basin lakes under highly evaporative conditions 

and can be used as an indirect indicator for increased aridity (Cohen, 2003). Thus, this 
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change in water chemistry and mixing regimes should be taken into account when 

interpreting the δ13CORG and δ15NORG values for Unit VII. 
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Depth 
(cm) 

δ13CORG 

(‰ VPDB) 
δ15NORG 

(‰ Air) 
C:N 
(atomic) 

TIC 
(wt. %) 

TOC 
(wt. %) 

BiSi 
(wt. %) 

TN 
(wt. %) 

0 -27.00 11.39 9 3.09 7.59 6 1.04 
4 -21.91 10.82 8 2.28 4.87 7 0.71 
8 -25.51 11.50 9 1.95 6.20 8 0.80 
12 -20.07 10.56 8 2.87 4.60 6 0.71 
16 -19.68 11.00 10 2.67 4.88 6 0.59 
20 -19.44 11.02 10 2.32 4.96 7 0.61 
24 -18.99 9.92 8 2.86 5.55 6 0.79 
28 -19.89 9.55 11 2.33 6.55 8 0.73 
32 -19.04 11.11 11 2.71 6.01 8 0.66 
36 -18.52 13.56 10 3.07 3.92 8 0.48 
40 -17.96 13.95 11 2.58 5.02 11 0.55 
44 -17.54 16.88 12 2.67 5.34 12 0.01 
48 -18.09 18.79 10 2.83 4.21 9 0.51 
52 -19.78 18.33 13 2.34 4.38 15 0.41 
56 -20.13 18.63 11 2.37 3.74 15 0.39 
60 -24.85 14.45 10 2.20 3.25 27 0.40 
64 -23.95 8.03 18 0.88 1.80 8 0.11 
68 -21.04 11.76 17 0.86 1.19 7 0.08 
70 -21.07 11.29 13 0.85 0.91 6 0.08 
72 -22.49 10.17 18 0.73 1.11 7 0.07 
76 -22.39 11.55 16 0.69 0.76 5 0.06 
80 -21.17 13.11 15 0.60 0.64 4 0.05 
82 -21.09 12.83 13 0.55 0.39 3 0.04 
84 -20.64 12.65 10 0.51 0.34 4 0.04 
88 -22.20 10.82 8 0.52 0.36 4 0.05 
92 -20.01 9.57 6 0.25 0.18 3 0.03 
94 -20.53 9.87 12 0.77 0.62 5 0.06 
187.55 -22.23 9.01 11 2.23 1.05 5 0.11 
192 -22.22 8.77 18 2.23 2.40 8 0.15 
196 -22.20 15.86 3 1.71 1.74 5 0.62 
199.55 -22.63 8.83 18 2.62 1.66 6 0.11 
204 -23.09 5.71 13 1.72 3.67 11 0.32 
208 -23.84 6.25 15 1.63 4.35 15 0.34 
211.55 -23.79 6.28 15 1.52 4.42 7 0.35 
216 -21.68 7.28 15 1.80 2.89 8 0.23 
220 -22.31 7.37 16 0.34 0.98 4 0.07 
223.55 -22.69 4.94 15 1.16 4.18 8 0.32 
228 -23.80 6.94 15 0.13 0.19 3 0.01 
232 -22.73 5.29 15 0.22 0.35 5 0.03 
235.55 -23.60 4.53 16 1.04 4.14 7 0.31 

Table 3:  Results of the chemostratigraphic analysis for each sample of UWI15. 
(TN = total nitrogen) 
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Depth 
(cm) 

δ13CORG 

(‰ VPDB) 
δ15NORG 

(‰ Air) 
C:N 
(atomic) 

TIC 
(wt. %) 

TOC 
(wt. %) 

BiSi 
(wt. %) 

TN 
(wt. %) 

240 -23.69 4.64 14 1.36 3.97 6 0.32 
244 -22.29 3.48 14 1.22 3.73 8 0.31 
247.55 -22.79 5.69 14 1.10 2.42 6 0.20 
252 -21.78 4.83 14 0.99 4.18 9 0.35 
256 -22.84 5.66 14 1.32 3.14 7 0.27 
259.5 -23.26 5.85 15 1.08 3.23 6 0.25 
264 -23.94 6.17 14 1.33 3.89 11 0.32 
268 -21.29 5.49 14 1.28 3.39 7 0.28 
271.5 -22.14 6.61 16 1.50 3.21 9 0.24 
276 -20.70 7.23 13 1.56 3.04 11 0.27 
280 -21.54 7.20 13 1.17 3.57 7 0.32 
283.5 -21.62 6.47 14 1.32 3.20 9 0.27 
288 -20.58 8.11 14 1.44 2.54 8 0.21 
292 -21.25 6.42 13 2.26 1.99 8 0.18 
295.5 -21.76 6.99 15 4.86 1.97 7 0.16 
300 -20.92 6.43 13 1.29 2.66 9 0.23 
304 -22.20 6.45 14 1.70 2.24 8 0.19 
307.5 -21.68 5.79 14 1.42 2.34 8 0.20 
312 -21.66 5.64 16 0.94 1.90 7 0.14 
316 -20.28 6.64 15 1.13 2.52 6 0.20 
319.5 -20.52 6.39 15 3.02 2.59 6 0.20 
324 -22.29 5.15 15 1.75 2.24 6 0.18 
328 -22.90 5.83 15 1.61 2.12 10 0.17 
331.9 -23.86 5.38 15 1.76 2.49 9 0.19 
336 -22.33 4.30 15 1.21 1.81 10 0.14 
340 -22.23 5.57 3 2.95 0.49 9 0.17 
343.9 -22.00 5.66 16 0.38 0.47 3 0.03 
348 -21.63 5.95 12 2.40 2.31 8 0.22 
352 -22.49 3.97 12 1.16 3.22 11 0.31 
355.9 -22.88 5.51 13 1.41 2.44 5 0.22 
364 -22.94 6.16 12 1.02 2.27 7 0.21 
367.4 -23.70 5.86 14 1.29 2.66 8 0.22 
372 -22.83 5.35 12 0.94 2.66 6 0.26 
376 -23.16 5.37 13 1.02 2.55 8 0.22 
380.3 -23.61 6.08 14 1.17 2.51 8 0.20 
384 -23.59 5.47 13 1.17 2.90 10 0.26 
388 -23.81 5.64 14 0.93 2.20 8 0.19 
392.8 -23.95 3.47 14 1.02 2.56 7 0.22 
396 -23.10 3.15 13 1.12 2.31 8 0.21 
400 -24.13 4.46 14 0.79 2.46 6 0.20 

 

 

Table 3: (Continued) 
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Depth 
(cm) 

δ13CORG 

(‰ VPDB) 
δ15NORG 

(‰ Air) 
C:N 
(atomic) 

TIC 
(wt. %) 

TOC 
(wt. %) 

BiSi 
(wt. %) 

TN 
(wt. %) 

403.8 -23.84 5.04 15 0.93 2.15 8 0.17 
408 -24.20 4.97 14 0.93 2.58 10 0.21 
412 -23.90 4.22 14 0.76 2.25 8 0.19 
415.8 -24.30 5.04 15 0.87 1.99 8 0.15 
420 -23.52 5.08 14 0.63 1.88 8 0.16 
424 -23.84 4.09 14 0.77 2.10 9 0.18 
427.8 -23.95 4.24 15 0.94 2.53 9 0.20 
432 -23.59 5.35 15 1.14 1.36 7 0.10 
436 -25.13 3.77 15 0.94 2.46 10 0.19 
439.8 -25.20 4.55 17 0.84 1.28 7 0.09 
444 -23.20 4.22 15 1.13 2.50 13 0.20 
448 -23.70 4.18 16 0.96 2.19 11 0.16 
451.8 -23.95 3.27 16 1.29 3.06 12 0.23 
456 -24.71 4.42 15 0.76 2.46 15 0.19 
460 -25.01 3.49 16 0.96 1.66 11 0.12 
463.8 -23.70 4.42 17 1.23 0.64 5 0.04 
468 -24.58 4.54 16 0.89 2.03 11 0.15 
472 -23.63 4.76 16 1.14 1.69 12 0.13 
475.8 -23.93 3.70 16 1.83 2.42 13 0.18 
480 -24.65 5.52 17 1.45 1.12 8 0.08 
484 -23.45 7.02 17 1.32 1.06 10 0.07 
487.8 -24.06 4.55 17 1.64 1.43 16 0.10 
492 -26.70 7.91 22 0.12 0.57 3 0.03 
499.8 -25.56 6.12 18 2.98 3.63 11 0.24 
504 -24.38 15.32 17 0.91 9.11 16 0.64 
508 -24.04 7.12 13 0.62 1.66 6 0.15 
512.55 -24.81 9.19 16 1.30 3.04 11 0.23 
516 -24.75 11.27 15 0.88 4.89 19 0.37 
520 -24.28 8.21 17 2.60 2.76 11 0.19 
522.5 -24.23 10.41 15 1.30 3.71 10 0.29 
528 -24.61 8.69 14 1.09 2.33 10 0.20 
532 -25.68 5.89 13 1.28 2.20 14 0.20 
535.5 -25.01 6.73 13 0.00 0.54 4 0.05 
540 -25.47 6.70 13 0.76 1.13 7 0.10 
544 -24.00 7.74 14 0.11 0.41 3 0.03 
546.5 -25.38 8.23 16 0.59 4.30 16 0.32 
552 -24.29 7.77 16 1.27 2.84 13 0.21 
556 -23.83 6.85 14 0.77 3.88 19 0.31 
559.5 -24.09 10.23 15 1.12 3.32 12 0.26 
564 -24.13 8.38 18 0.57 1.87 8 0.12 

Table 3: (Continued) 
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Depth 
(cm) 

δ13CORG 

(‰ VPDB) 
δ15NORG 

(‰ Air) 
C:N 
(atomic) 

TIC 
(wt. %) 

TOC 
(wt. %) 

BiSi 
(wt. %) 

TN 
(wt. %) 

568 -24.08 8.06 14 0.57 2.71 17 0.22 
571.9 -24.55 9.01 15 0.87 2.88 14 0.23 
576 -24.56 8.82 14 0.63 2.58 16 0.21 
580 -25.41 6.54 14 1.29 2.30 13 0.19 
583.5 -25.56 5.59 15 1.27 2.24 12 0.18 
588 -24.41 7.97 15 0.47 2.58 21 0.27 
592 -24.59 3.46 13 1.98 2.11 16 0.19 
595.5 -25.30 4.14 14 1.30 2.02 14 0.17 
600 -25.55 5.65 16 2.15 1.35 8 0.10 
604 -23.02 6.41 16 0.56 0.82 6 0.06 
607.5 -25.38 4.50 14 1.05 1.13 9 0.09 
612 -25.81 5.97 12 1.51 1.02 11 0.10 
616 -25.92 3.94 14 1.89 1.77 10 0.14 
619.5 -25.53 4.56 14 0.64 1.23 10 0.10 
624 -26.31 3.94 13 1.40 1.46 12 0.13 
628 -26.28 5.71 12 1.11 1.66 17 0.15 
631.5 -26.73 4.62 15 1.14 1.39 10 0.10 
640 -26.76 6.17 12 1.28 1.84 17 0.17 
643.5 -27.62 5.02 13 2.43 1.96 14 0.18 
648 -26.45 6.64 12 2.49 2.66 19 0.25 
652 -25.65 5.93 12 1.18 2.71 18 0.26 
655.5 -26.15 4.53 13 0.44 1.37 10 0.13 
660 -27.24 5.99 12 0.54 1.57 13 0.15 
665.5 -27.44 4.71 14 0.40 1.11 11 0.09 
668 -27.28 7.02 9 0.22 0.24 6 0.03 
676 -27.42 4.69 13 0.85 1.00 13 0.09 
680 -25.97 8.46 6 0.09 0.11 6 0.02 
682.45 -28.29 3.78 13 0.56 1.40 16 0.13 
692.45 -29.19 2.12 9 0.20 0.18 6 0.02 
703.45 -25.53 3.89 14 0.49 0.41 4 0.03 
732 -28.71 3.89 12 0.48 0.71 6 0.07 
736 -28.34 5.03 13 0.40 0.53 6 0.05 
740.25 -28.31 3.51 14 0.51 1.34 11 0.11 
744 -29.92 4.98 13 0.67 1.49 13 0.13 
748 -25.11 5.61 13 0.44 0.91 7 0.08 
752.25 -26.50 4.22 12 0.57 1.27 17 0.13 
756 -27.01 4.17 11 0.52 1.10 12 0.11 
760 -29.15 4.97 15 0.68 1.63 12 0.13 
764.25 -29.12 3.62 15 0.62 1.61 12 0.13 
768 -27.15 4.45 13 0.53 1.03 10 0.09 

Table 3: (Continued) 
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Depth 
(cm) 

δ13CORG 

(‰ VPDB) 
δ15NORG 

(‰ Air) 
C:N 
(atomic) 

TIC 
(wt. %) 

TOC 
(wt. %) 

BiSi 
(wt. %) 

TN 
(wt. %) 

772 -27.16 4.58 11 0.61 1.02 12 0.11 
776.25 -28.07 3.87 13 0.62 1.10 12 0.10 
780 -27.72 4.82 13 0.49 1.60 12 0.14 
784 -26.38 3.77 12 0.53 1.34 14 0.14 
788.25 -27.98 4.07 13 0.49 1.08 10 0.10 
792 -28.87 5.55 11 0.43 1.23 11 0.13 
796 -26.84 4.82 10 0.43 0.73 7 0.08 
800.25 -26.60 4.50 13 0.43 1.15 10 0.10 
804 -28.30 4.18 16 0.55 1.12 8 0.08 
807 -29.47 3.36 18 0.49 1.13 9 0.07 
812 -28.32 3.80 13 0.52 0.94 9 0.09 
816 -26.85 3.20 11 0.58 1.05 14 0.11 
819 -25.90 3.24 12 0.58 1.27 15 0.12 
822 -25.98 7.23 11 0.56 0.98 9 0.11 
828 -28.29 5.58 11 0.54 1.12 12 0.12 
831 -29.26 2.98 15 0.56 1.22 8 0.10 
836 -27.29 4.90 12 0.48 0.85 7 0.09 
840 -25.67 5.27 16 0.45 1.07 9 0.08 
843 -29.74 3.97 15 0.52 1.03 8 0.08 
848 -25.97 6.62 8 0.48 0.35 5 0.05 
852 -26.42 7.95 10 0.40 0.57 6 0.07 
855 -25.82 4.97 38 0.38 2.53 7 0.08 
860 -26.81 6.13 16 0.47 0.94 9 0.07 
864 -26.59 6.12 10 0.52 0.35 4 0.04 
867 -26.83 3.48 12 0.48 1.13 8 0.11 
872 -27.30 5.18 12 0.51 0.80 9 0.08 
876 -27.97 6.71 18 0.47 1.39 6 0.09 
879 -26.87 5.46 10 0.48 0.75 8 0.08 
884 -26.31 4.96 12 0.43 0.56 8 0.05 
888 -22.25 6.56 11 0.42 0.50 7 0.06 
891 -25.74 4.00 11 0.49 0.80 9 0.08 
896 -26.23 9.79 11 0.41 0.37 3 0.04 
900 -25.87 7.44 12 0.57 1.07 9 0.10 
903 -25.10 9.13 12 1.24 1.07 8 0.10 
908 -25.44 5.59 12 0.56 1.19 10 0.12 
912 -27.32 5.56 12 0.53 1.14 11 0.11 
915 -29.67 2.84 13 0.58 1.10 9 0.10 
920 -27.17 5.61 12 0.55 1.16 9 0.12 
924 -25.73 6.99 11 0.42 0.75 8 0.08 
928 -24.30 7.39 9 0.32 0.16 2 0.02 

Table 3: (Continued) 
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Depth 
(cm) 

δ13CORG 

(‰ VPDB) 
δ15NORG 

(‰ Air) 
C:N 
(atomic) 

TIC 
(wt. %) 

TOC 
(wt. %) 

BiSi 
(wt. %) 

TN 
(wt. %) 

932 -28.86 7.65 9 0.39 0.55 5 0.07 
936 -27.08 5.14 10 0.40 0.56 6 0.06 
940 -26.31 5.54 11 0.41 0.70 6 0.07 
944 -24.09 5.30 10 0.42 0.64 6 0.07 
948 -25.58 5.99 11 0.47 0.83 7 0.08 
952 -27.23 5.61 10 0.53 0.74 6 0.09 
956 -25.87 6.73 9 0.41 0.53 7 0.07 
960 -25.50 7.73 13 0.51 0.63 7 0.06 
964 -27.14 9.99 10 0.18 0.40 4 0.05 
968 -22.09 9.84 12 0.28 1.92 13 0.18 
972 -24.51 4.90 11 0.51 0.59 4 0.06 
976 -26.46 6.36 10 0.55 0.48 5 0.05 
980 -27.80 3.56 14 0.70 0.83 5 0.07 
984 -27.55 5.48 13 0.70 0.77 5 0.07 
988.9 -23.36 2.52 12 0.55 0.59 6 0.06 
992 -26.90 3.59 14 0.63 0.95 8 0.08 
996 -25.20 4.98 13 0.63 0.60 5 0.05 
1000.9 -28.80 4.07 14 0.46 0.61 6 0.05 
1004 -24.96 4.14 18 0.65 0.77 7 0.05 
1008 -29.71 5.27 21 4.46 0.82 9 0.05 
1012.9 -25.13 5.96 12 0.17 0.10 20 0.01 
1024.9 -24.18 4.78 9 0.19 0.09 22 0.01 
1028.9 -23.88 5.89 13 0.25 0.10 23 0.01 
1055.9 -24.21 -2.93 N/A 0.00 0.13 17 0.00 
1060.9 -26.75 -3.02 N/A 0.00 0.14 19 0.00 

Table 3: (Continued) 
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Figure 11: C:NATM and δ13CORG cross plot showing the dominant organic matter source(s) for each unit (modified from Meyers 
and Teranes, 2001). Note the up-section trend in source from lacustrine algae to C3/C4 plants and return to lacustrine algae. 
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Figure 12: A: Lacustrine turbidite type 2 from the UWI15 core. Note the normal 
grading and predominance of siliciclastics. These turbidites are most common in the 
Pleistocene section due to deltaic progradation and riverine incision. B: Lacustrine 
turbidite type 1 from the UWI15 core, note the lack of a sandy base and siliciclastic 
component. These turbidites are dominantly composed of remobilized slope material. 



   

 
 

74

CHAPTER SIX: CONCLUSIONS 

 Data produced by this study support the hypothesis that organic-facies 

development over millennial time scales at Mono Lake is controlled by environmental 

changes. The study utilized a new ~11 m long piston core retrieved from deepwater (~18 

m) using a percussion-piston coring device. Intact strata from Mono Lake are notoriously 

difficult to sample, due to the presence of multiple coarse tephra layers and disrupted 

intervals. The core utilized in this study is the first of its kind, and facilitates comparison 

with Mono Lake’s well dated paleo-shoreline network for both the deglacial and late 

Holocene. 

 A radiocarbon age model was developed for the core that relied on plant 

macrofossils, charcoal, and pollen purified by flow cytometry. The base of the core is 

believed to be ~16 ka; visual identification of late Pleistocene ash beds (Ash 1 and 2) 

helped to constrain this estimate. Although research is ongoing to improve the age model 

with additional pollen dates, the depositional history is currently well-understood for the 

Holocene and Pleistocene-Holocene transition. A large deposit of coarse pumice, 

potentially a debris flow initiated by earthquakes associated with the eruption of the 

South Mono tephra, generated an erosional unconformity that removed part of the late 

Holocene section (~4.2 ka -250 yr).  

 The UWI15 core consists of a diverse sequence of laminated muds interbedded 

with tephras of varying thickness and texture. Seven units were identified in the core, 

based on variability in sedimentology, magnetic susceptibility (MS), elemental and stable 

isotope geochemistry. The sediments deposited during the Pleistocene deglacial are 

dominantly comprised of siliciclastic detritus (black clayey silts, cm-scale turbidites, and 
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occasional interbedded granitic sands and tephras) that produce high-amplitude, high-

frequency MS variations. Laminated Holocene muds are characterized by low MS values, 

except for occasional turbidites and tephras, and range in color from a dark reddish-grey 

to olive-grey to a medium-brown.   

 Paleo-shoreline data (Ali, 2018) suggest that two major highstands occurred at 

Mono Lake in the late Pleistocene: 18.5-16 ka and 12.9-11.7 ka (Younger Dryas). The 

older highstand is poorly represented in the UWI15 core, as those sediments were 

disrupted by the eruption of Black Point. In general, the chemostratigraphy of Pleistocene 

highstands is marked by low to moderate C:NATM, low to moderate TOC, moderate TIC, 

and moderate to high BiSi concentrations. The δ13CORG trends toward enriched values, 

and the δ15NORG trends toward depleted values. Comparatively, the Pleistocene lowstand 

~16-12.9 ka are characterized by highly variable C:NATM, low TOC and TIC values, 

moderate BiSi concentrations, and δ13CORG and δ15NORG values are highly variable. 

During both the lowstand and highstands, the most influential factor on organic-facies 

development was dilution via the transport of glacial flour and riverine incision and 

deltaic progradation during lake level regressions >100 m. It is likely that turbidity 

associated with the influx of terrigenous sediments and ice-rafted debris limited the depth 

of light penetration, which acted as a constraint on photosynthetic organisms. 

 Holocene highstands occurred at 10.9-8.7 ka and 6.3-4.2 ka and are characterized 

by moderate C:NATM values, moderate-high TOC, moderate and stable TIC, and low-

moderate BiSi concentrations. The δ13CORG and δ15NORG both trend towards depleted 

values during Holocene highstands. Lake-level lowstands occurred at 11.7-10.9 ka, 8.7-

6.3 ka, and 250 yrs-present. Lowstands are characterized by low-moderate C:NATM 
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values, and highly variable TIC, TOC, and BiSi concentrations. The δ13CORG and δ15NORG 

both trend towards enriched values during lowstands, driven by changes in water 

chemistry and mixing. During the Holocene, organic-facies development was dominantly 

influenced by changes in wave base during regressions, which focused nearshore material 

downslope, and led to higher TIC (including nearshore carbonates like tufa flakes and 

ostracodes) and TOC (remobilized organic matter). Moreover, changes in lake level 

during the Holocene are minor (10’s of meters) compared to Pleistocene lake-level 

changes (>100 m), as seen in the paleo-shoreline record generated by Ali (2018).  

 Future work on the UWI15 work includes improvements to the age-depth model, 

palynological and ostracod analyses, build-up of thin-section data for additional ground 

truth of geochemistry using electron microprobe and microscope analyses, and non-

destructive micron-scale scanning XRF analysis.  
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