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ABSTRACT OF DISSERTATION

Novel Nonparametric Testing Approaches for Multivariate Growth Curve Data:

Finite-Sample, Resampling and Rank-Based Methods

Multivariate growth curve data naturally arise in various fields, for example, biomed-
ical science, public health, agriculture, social science and so on. For data of this type,
the classical approach is to conduct multivariate analysis of variance (MANOVA)
based on Wilks’ Lambda and other multivariate statistics, which require the assump-
tions of multivariate normality and homogeneity of within-cell covariance matrices.
However, data being analyzed nowadays show marked departure from multivariate
normal distribution and homoscedasticity. In this dissertation, we investigate non-
parametric testing approaches for multivariate growth curve data from three aspects,
i.e., finite-sample, resampling and rank-based methods.

The first project proposes an approximate finite-sample test using modified sums
of squares matrices to make them insensitive to the heterogeneity in MANOVA.
The modification corrects the associated quadratic forms of the two sums of squares
for the effect of heterogeneity. The distribution of the proposed test statistic is
invariant to the original data distribution. The proposed approximation method can
be used in various experimental designs, for example, factorial design and crossover
design. Under various simulation settings, the proposed method outperforms the
classical Doubly Multivariate Model and Multivariate Mixed Model, especially for
unbalanced sample sizes. The applications of the proposed method are illustrated
with ophthalmology data in a factorial design and in a 2× 2 crossover design.

In the semiparametric situation, parametric and nonparametric bootstraps are
known to have satisfactory finite-sample performance in general factorial designs.
In this regard, the second project provides resampling-based tests for multivariate
growth curve data. Such tests are useful in situations where data are not necessar-
ily exchangeable under the null hypothesis of interest and with small sample sizes.
Simulation studies are conducted to evaluate the finite-sample performance of the



proposed test procedures under various practical scenarios. Data from an optometry
study are used to illustrate the benefits of the nonparametric methods proposed.

For multivariate growth curve data which are measured in ordered categorical
scales, the usual mean- and covariance-based inferences are not appropriate anymore.
The third project deals with general nonparametric methods for multivariate growth
curve data in factorial designs. Treatment effects are characterized in terms of func-
tionals of distribution functions with the sole assumption of nondegenerate marginal
distributions. This model accommodates binary, discrete, ordered categorical, and
continuous data in a unified manner. Hypotheses are formulated in terms of mean-
ingful nonparametric measures of treatment effects. In this project, the Wald-type
statistic is proposed and its asymptotic properties are investigated. In addition, the
ANOVA-type statistic and the modified Wilks’ Lambda statistic under the nonpara-
metric framework are also presented. The theory can be used to construct confidence
intervals for the nonparametric treatment effects. Simulation studies are conducted
to show the finite-sample performance of the proposed methods in comparison with
other parametric and nonparametric methods. Data from a study of infantile nys-
tagmus syndrome (INS) are analyzed to illustrate the application of the proposed
methods.

KEYWORDS: Heteroscedasticity, Nonnormality, GMANOVA, Nonparametric Anal-

ysis, Wilks’ Lambda, Relative Effects
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Chapter 1 Introduction

1.1 Background

Multivariate growth curve data appear in a variety of fields, for example, biomedical

science, public health, agriculture, social science and so on. For this type of data,

several related variables are observed at different occasions or under different condi-

tions for each experimental or observational unit. Often, the units belong to different

treatment groups. Typically, interest lies in mean-based inferences where dependen-

cies among the variables and repeated measurements are taken into account. In the

context of general factorial design, research questions are whether there is any group

effect, time (condition) effect or group-time interaction effect.

The classical parametric and semiparametric procedures proposed are, for exam-

ple, Bock (1975); Boik (1988); Naik and Rao (2001) and Rencher (2001). However,

more assumptions naturally arise when the parametric and semiparametric proce-

dures are applied, for example, normality and homoscedasticity of the data, which

are, in fact, difficult to attain in practice (see Xu and Cui, 2008; Suo et al., 2013).

A commonly used method of jointly modeling repeated measures data on multiple

dependent variables is known as the Doubly Multivariate Model (DMM) as intro-

duced in Bock (1975) and Boik (1988). In this approach, the multivariate repeated

measurements from the same experimental unit are stacked to form a vector of mea-

surements of that experimental unit. The hypothesis of interest is then formulated as

a general linear hypothesis and the standard multivariate tests are applied. An alter-

native approach for modeling multivariate repeated measures data is the Multivariate

Mixed Model (MMM), where the covariance matrix for the estimated contrast of in-

terest is required to satisfy multivariate sphericity condition as noted in Boik (1988)

and Pavur (1987). Such parametric MANOVA inferential procedures are generally

robust against mild violation of normality. It is also well known that MANOVA

tests are robust to heteroscedasticity in balanced designs. However, in unbalanced
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heteroscedastic designs, the type-I error rate of MANOVA tests may be significantly

impaired (Rencher, 2001).

Without assuming multivariate normality or homogeneity of the covariance ma-

trices, the multivariate Wald-type test statistic (WTS) is asymptotically exact. How-

ever, WTS is known to suffer from slow convergence and, hence, may not be satisfac-

tory in finite-sample. Large sample sizes are then required in order to maintain the

preassigned type-I error rate. Several improvements were done to tackle the small-

sample issue under MANOVA settings (Pesarin, 2001; Pesarin and Salmaso, 2010;

Good, 2005, for example), where permutation tests are utilized when the null distri-

bution of the test statistic is invariant under the corresponding randomization group.

The permutation idea was further modified for use in situations where the exchange-

ability under the null hypothesis does not hold by Neuhaus (1993); Janssen and Pauls

(2003); Janssen (2005); Omelka and Pauly (2012); Chung and Romano (2013); Pauly

et al. (2015); Friedrich et al. (2017). In addition, Konietschke et al. (2015) applied

a bootstrap technique to improve the small sample behavior of the WTS for general

heteroscedastic factorial design. However, to the best of our knowledge, there does

not exist any work done for analyzing multivariate repeated measures data without

assuming multivariate normality and homogeneity conditions.

Furthermore, parametric procedures are limited to evaluating continuous data.

When count data, discrete data and ordinal data or ordered categorical data are

collected, parametric procedures will no longer be appropriate. Thus, a more conve-

nient, robust and reliable method that can handle both metric and nonmetric data

is in substantial demand. Nonparametric rank-based methods have been developed

for the last few decades to meet this need. In factorial designs, a rank-based test

for repeated measures data was proposed by Brunner and Neumann (1982), which

is asymptotically distribution-free. This work was later further generalized for mul-

tivariate designs (see Thompson, 1990, 1991; Brunner and Denker, 1994). However,

they all rely on the assumption of absolutely continuous distribution functions, which

is a quite unrealistic assumption for practical applications. Also, hypotheses were

originally formulated in terms of marginal distributions in nonparametric tests, for
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example, Akritas and Arnold (1994); Akritas and Brunner (1997); Brunner et al.

(1999); Fan and Zhang (2014, 2017), but it is difficult to interpret the corresponding

alternatives. Additionally, with such hypotheses, test procedures cannot be used to

construct confidence intervals for the effect size measures.

1.2 Overview of the Dissertation

This dissertation aims to resolve three distinct but closely related problems for growth

curve data. The first one is regarding to a robust test without assuming multivari-

ate normality and homoscedasticity, which is ideal when sample size is moderately

large. The second problem investigated pertains to resampling-based tests for finite-

sample not requiring data exchangeability, multivariate normality and homoscedas-

ticity. Both problems pertain to metric data. The last problem studied deals with

nonparametric rank-based inference for both metric and nonmetric data.

The dissertation consists of five chapters. In Chapter 2, without the assump-

tions of multivariate normality and homoscedasticity, a modified Wilks’ Lambda test

statistic is proposed to mitigate the effects of potential heteroscedasticity. The null

distribution of the proposed test statistic is invariant to the original data distribution.

To show the broad scope of application, the detailed calculations are also illustrated

for two commonly arising designs.

Chapter 3 introduces Wald-type resampling-based test statistics with finite-sample,

where permutation, bootstrap and hybrid permutation-bootstrap procedures are in-

vestigated. Due to studentization, the permutation procedure is asymptotically exact

despite the time dependencies. The bootstrap procedures also result in asymptoti-

cally valid tests in the nonparametric setting. As in Chapter 2, multivariate normality

and homoscedasticity are not assumed.

In Chapter 4, general nonparametric rank-based tests are proposed. Treatment

effects are characterized as functionals of distribution functions with the sole assump-

tion of nondegenerate marginal distributions. Such nonparametric treatment effects

can be used to quantify the magnitude of effects of interest. Hence, hypotheses are for-

mulated in terms of meaningful nonparametric measures of treatment effects. Three
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test statistics are considered, the Wald-type statistic, the ANOVA-type statistic and

the modified Wilks’ Lambda F -approximation under the nonparametric framework.

In addition, the asymptotic properties of the nonparametric treatment effects are

investigated and are used to construct confidence intervals.

Proofs and mathematical details are included in appendices at the end of each

of Chapters 2 to 4. Simulation studies for both type-I error rate and power are

also presented in each of these chapters to numerically evaluate the performance

of the methods. To illustrate the applications of the proposed methods, analyses

of ophthalmology data from a study of infantile nystagmus syndrome (INS) and/or

from a study of intraocular pressure are included. Discussion, remarks and possible

directions for future research are summarized in Chapter 5.

Copyright© Ting Zeng, 2021.
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Chapter 2 Robust Tests for Trials with Multiple Endpoints

2.1 Introduction

Multivariate growth curve data appear in a variety of fields, for example, biomedical

science, public health, agriculture, social science, etc. For this type of data, several

related variables are observed at different occasions or under different conditions for

each experimental or observational unit. Often, the units belong to different treat-

ment groups. Typically, interest lies in mean-based inferences where dependencies

among the variables and repeated measurements are taken into account. In the con-

text of general factorial design, research questions are whether there is any group

effect, time (condition) effect or group-time interaction effect. For example, for the

mandible data in Timm (1980, Table 7.2), the researchers investigated the relative

effectiveness of two orthopedic adjustments (treatments) of the mandible with nine

subjects in each treatment group. Three dependent variables together reflecting the

position and angle of mandibles were measured at three different time points. The

objective of the study was to test whether the mean responses of the three mandible

variables change over time (time effect), whether the changes in mandible over time

are the same across two treatment groups (group effect), and whether the change

evolved over time similarly in two treatment groups (group-time interaction effect).

A commonly used way of jointly modeling repeated measures data on multiple de-

pendent variables is known as the Doubly Multivariate Model (DMM) as introduced

in Bock (1975) and Boik (1988). In this approach, the multivariate repeated measure-

ments from the same experimental unit are stacked to form a vector of measurements

of that experimental unit. The hypothesis of interest is then formulated as a general

linear hypothesis and the standard multivariate tests are applied. An alternative ap-

proach for modeling multivariate repeated measures data is the Multivariate Mixed

Model (MMM), where the covariance matrix for the estimated contrast of interest

is required to satisfy multivariate sphericity condition as noted in Boik (1988) and
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Pavur (1987). MMM contains fixed treatment, time and interaction effects as well

as random block effect for time. The random time effects are used to model the

covariance over time in a way similar to the univariate mixed model. Similarly, the

hypothesis of interest can be expressed as a general linear hypothesis.

Although DMM and MMM seem very promising approaches in analyzing multi-

variate repeated measures data, they both assume multivariate normality and con-

stant error covariance matrix across the treatment groups. For example, Naik and

Rao (2001) proposed various tests for the three hypotheses in multivariate repeated

measures design assuming independence across experimental units and multivariate

normality for the matrix of observations from each experimental unit. However, in

practical applications, such as in genomics, the assumption of normality is difficult to

justify under multivariate settings, as mentioned in Xu and Cui (2008) and Suo et al.

(2013). As with general multivariate data, another challenge in analyzing multivari-

ate repeated measures data is the heteroscedasticity issue, which could arise due to

the intrinsic difference among the treatment groups (populations) in the dependence

structure between the variables and also between the time points.

The parametric MANOVA inferential procedures including DMM and MMM are

generally robust against mild violation of normality. It is also well known that

MANOVA tests are robust to heteroscedasticity in balanced designs. However, in

unbalanced designs, the type-I error rate of MANOVA tests may be significantly im-

paired. Generally, the effect of cell covariance and sample size difference depend on

how the covariances and sample sizes are associated. When larger covariances are

associated with larger sample sizes, the test is conservative, and when the covari-

ances and sample sizes matching are inversely related, the test is liberal as noted by

Rencher (2001).

It is known that the Wald-type test is asymptotically valid without assuming

multivariate normality or homogeneity of covariance matrices. However, large sample

sizes are required in order to maintain the preassigned type-I error rate. For example,

both Konietschke et al. (2015) and Pauly et al. (2015) utilized Wald-type statistic.

Several resampling-based improvements were proposed to tackle the small-sample
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issue of the Wald-type test under MANOVA settings, for example, Pesarin (2001);

Pesarin and Salmaso (2010); Good (2005); Omelka and Pauly (2012); Chung and

Romano (2013); Konietschke et al. (2015); Pauly et al. (2015) and Friedrich et al.

(2017).

The present chapter aims to develop a robust test for multivariate repeated mea-

sures (growth curve) data. To the best of our knowledge, there is no prior work for

analyzing multivariate repeated measures data without assuming multivariate nor-

mality and homoscedasticity. We modify the Wilks’ Lambda test statistic to mitigate

the effects of heteroscedasticity and develop an approximation for the null distribu-

tion of the modified statistic. To show the broad scope of application, we illustrate

the detailed calculations for two commonly arising designs.

This chapter is organized as follows. In Section 2.2, statistical model and hypothe-

ses are presented together with two concrete examples. The robust test is described

in detail in Section 2.3. The finite-sample behavior of the proposed robust test along

with the classical DMM and MMM are investigated in extensive simulations in Section

2.4. The type-I error rate (size) simulations and power curves are also examined in

Section 2.4. The applications of the robust test are illustrated in Section 2.5 with mul-

tivariate repeated measures of idiopathic infantile nystagmus syndrome (INS) data

and intraocular pressure data. We conclude the chapter with some discussions and

remarks in Section 2.6. All relevant technical details are given in Appendix (Section

2.7).

2.2 Models and Hypotheses

Suppose a p-dimensional random vector is observed from each of the study (observa-

tional or experimental) subjects (units) at each of the t occasions. Here, the occasions

may represent time points or other within-subject factor levels as it happens, for ex-

ample, in split-plot or crossover designs. We assume that ni replications are available

from the ith group, where i = 1, . . . , a. The groups may represent between-subject

treatment groups or other forms of natural groups such as gender or region. Let Xijk

be observations from kth study unit in the ith group and at jth occasion. There-
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fore, a p × t matrix of dependent observation is made from each subject, where the

structure of the matrix is important for the analysis. Note in the context of general

factorial design, we consider the multivariate model

Xijk = µij + εijk, (2.1)

where i = 1, . . . , a, j = 1, . . . , t, and k = 1, . . . , ni. The index i is for group (treat-

ment), j is for time (repeated measure) and k is for experimental unit (subject).

For fixed i and j, the random errors εij1, . . . , εijni are independent and identically

distributed p-dimensional random vectors satisfying

E(εijk) = 0 and Cov(εijk) = Σi,jj > 0,

for i = 1, . . . , a and j = 1, . . . , t. Furthermore, Cov(εijk, εij′k) = Σi,jj′ for j 6= j′.

Stacking the group mean vectors into one vector, let µ = (µ>1 , . . . ,µ
>
a )>, where

µi = (µ>i1, . . . ,µ
>
it)
> and µij = (µ

(1)
ij , . . . , µ

(p)
ij )>. Throughout the paper we will

use the following notations. The d-dimensional identity matrix is denoted by Id

and a d × d matrix with all 1s as its components is denoted by Jd = 1d1
>
d , where

1d = (1, . . . , 1)>d×1. We further denote the centering matrix by Pd = Id − 1
d
Jd. The

operators
⊕

and
⊗

represent the Kronecker sum and product, respectively (Schott,

2016, Chap. 8).

Based on the type of effect we are testing, denoted by φ, we define the contrast

matrices Dφ and Cφ which target within-subject and between-subject factor effects,

respectively. To conduct a hypothesis test, let Hφ = C>φ ⊗Dφ⊗Ip be an appropriate

contrast matrix. Generally, it is more convenient to use the unique projection matrix

Tφ = H>φ (HφH
>
φ )−Hφ, where (HφH

>
φ )− is some generalized inverse of HφH

>
φ , to

formulate our hypotheses. It is easy to show that Tφµ = 0 if and only if Hφµ = 0.

Therefore, the unique, symmetric and idempotent contrast matrix Tφ is equivalent

to Hφ for testing Hφµ = 0. To illustrate these notations we give two examples.

Example 1. Assume a design in which there are one within-subject factor (repeated

measures) with t levels and one between-subject factor with a levels. The three common

hypotheses for this design are presence of group, occasion (time), and group-occasion
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(group-time) interaction effects. In the notations above, the contrast matrices (Dφ

and Cφ) corresponding to these three hypotheses are DG = 1>t /t, CG = Pa/(a − 1),

DT = (It−1,−1t−1), CT = Ja/a, and DGT = (It−1,−1t−1), CGT = Pa/(a − 1),

respectively.

To be more concrete, for the mandible data (Timm, 1980, Table 7.2), there are

p = 3 dependent variables and t = 3 occasions are involved with two treatment groups

a = 2 and equal sample sizes n1 = n2 = 9 per group. The goal of the study was to

test whether the treatments induced differential changes over time on the mandibles.

Hence, it is of interest to check if there was any treatment (group) effect (G), time

effect (T), and treatment (group) by time interaction effect (GT). The contrast ma-

trices are HG = P2 ⊗ 1
3
1>3 ⊗ I3, HT = 1

2
1>2 ⊗ P3 ⊗ I3 and HGT = P2 ⊗ P3 ⊗ I3,

respectively, and the corresponding unique projection matrices are TG = P2⊗ 1
3
J3⊗I3,

TT = 1
2
J2 ⊗ P3 ⊗ I3 and TGT = P2 ⊗ P3 ⊗ I3, respectively.

The setup as described before may give the impression that the paper is dealing

with one between-subject and one within-subject factor with levels a and b, respec-

tively. However, the indices i = 1, . . . , a and j = 1, . . . , b are to be viewed as lexi-

cographic order of the between-subject factor level combinations and within-subject

factor level combinations, respectively. Therefore, the setup covers repeated measures

in factorial designs with crossed and nested factors.

Example 2. For an illustration of a more elaborate design, we consider the crossover

trial investigated in Li et al. (2020). The trial aims at comparison of two active treat-

ments A and B in a four-period (b = 4) crossover design where the active treatments

are separate by two 4-week of placebo treatment (P ) periods to eliminate carryover

effect. Four sequences of the treatments (APBP, PAPB, BPAP, PBPA) are applied

to four different groups of participants (a = 4) where n1 = 37, n2 = 34, n3 = 36 and

n4 = 33, respectively. The response variables are diastolic and systolic blood pressures

(p = 2). At each period, seven measurements (t = 7) of the responses were observed

5 minutes apart. The seven occasions are nested within each of the four periods.

Stacking the vector of cell means into a single column vector, let µ = (µ>1 , . . . ,µ
>
4 )>,
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µi = (µ>i1, . . . ,µ
>
i4)
>, µij = (µ>ij1, . . . ,µ

>
ij7)
> and µijk is a 2-dimensional vector of

means for the diastolic and systolic blood pressures. Hypotheses of interest may now

be formulated by suitably choosing Cφ and Dφ matrices. For example, in this spe-

cial design, the hypothesis of no treatment-by-period interaction can be formulated as

the intersection of two hypotheses. The first one tackles if the effect of treatment A

changes over period, Cφ = I2 ⊗ (1,−1)> and Dφ = (I2 ⊗ (1,−1)) ⊗ 1>7 . The other

hypothesis addresses the same question but for treatment B, Cφ = (J2 − I2,−I2)>

and Dφ = (0, 1, 1, 0) ⊗ 1>7 . The matrices targeting the hypothesis of no time effect

within each period and for each sequence are Cφ = I4 and Dφ = I4 ⊗ (I6,−16). In

the construction of Dφ and Cφ, the order of the matrices in the Kronecker products

reflect the arrangement of the mean vectors in µ. It should be noted that the occasions

nested within each period need not be balanced across periods.

2.3 Wilks’ Lambda Test

Test Statistic

The classical approach for inference in the multivariate growth curve data is based on

Wilks’ Lambda and other multivariate statistics (see Timm, 2002, p. 294; Rencher,

2001, p. 215; Johnson et al., 2002, p. 398). The classical approaches assume normality

and homogeneity of within-cell (group) covariance matrices (Bray and Maxwell, 1985).

They perform well if these assumptions are satisfied. Often, data being analyzed

nowadays show marked departure from multivariate normal distribution or assessing

multivariate normality for them is difficult. Additionally, the equality of covariance

matrices does not always hold.

It is well known that the parametric MANOVA inferential procedures are gener-

ally robust against mild nonnormality, e.g. O’Brien et al. (1982) and Timm (2002,

p. 303). When sample sizes are balanced, those tests are also robust to unequal

cell covariances, but when sample sizes are unbalanced the type-I error rate of the

MANOVA tests may be substantially affected. If the larger variances and covariances

are associated with the larger samples, the type-I error rate tends to be small leading
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to conservative test results. On the other hand, if the larger variances and covari-

ances are associated with the smaller samples, the type-I error rate is inflated and the

test results become liberal (Rencher, 2001). An alternative test which is fairly robust

to both nonnormality and heterogeneity assumptions is the Wald-type test statistic

(WTS). However, WTS is known to suffer from slow convergence and, hence, may not

be satisfactory in finite-samples. The effect of heterogeneity of covariance matrices

in MANOVA can be mitigated by modifying the sums of squares and cross product

matrices (Harrar and Bathke, 2012b; Zhang and Liu, 2013).

In this section, we propose an approximate finite-sample test for the multivari-

ate growth curve (repeated measures) designs based on the modified Wilks’ Lamda

statistic. The modification corrects the associated quadratic forms of the hypothesis

and error sums of squares and cross product matrices to make them insensitive to

inequality of covariances and yet they have equal expectation under the null hypoth-

esis.

Analogous to Harrar and Bathke (2012b), the distributions of the adjusted hy-

pothesis and adjusted error matrices can be approximated by Wishart distributions

with their corresponding degrees of freedom obtained by matching the expected val-

ues and total variances. Here, normality is less of an issue, because the asymptotic

distributions of the test statistics do not depend on the distribution of the data and

this property is expected to hold in moderate samples, especially after adjustments

for finiteness and heterogeneity of covariance matrices.

The most popular MANOVA test statistics are Wilks’ Lambda, Lawley-Hotelling

Trace, Pillai’s Trace, and Roy’s Largest Root (Anderson, 2003). Among the four,

Wilks’ Lambda plays the dominant role because it corresponds to the likelihood ratio

statistic and has the well-known χ2 and F approximations (Rencher, 2001).

Let Xik = (X>i1k, . . . ,X
>
itk)
>, and define

Z
(φ)
ik = (Dφ ⊗ Ip)Xik,

and r = rank(Dφ), i.e. Dφ is full row rank with dimension r × t. In Example 1, r is
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either 1 or (t− 1) depending on the effect we are testing. Let Vi = Cov (Xik),

Σ
(φ)
i = Cov

(
Z

(φ)
ik

)
= (Dφ ⊗ Ip)Vi

(
D>φ ⊗ Ip

)
and Σφ =

a∑
i=1

Cφ,ii ·
Σ

(φ)
i

ni
.

We further define the adjusted hypothesis matrix H(φ) and error matrix G(φ) as

H(φ) = Z
(φ)
CφZ

(φ)>

and (2.2)

G(φ) =
a∑
i=1

Cφ,ii

ni(ni − 1)

ni∑
k=1

(
Z

(φ)
ik −Z

(φ)

i

)(
Z

(φ)
ik −Z

(φ)

i

)>
, (2.3)

whereZ
(φ)

=
(
Z

(φ)

1 , . . . ,Z
(φ)

a

)
andZ

(φ)

i = 1
ni

∑ni
k=1Z

(φ)
ik . Following the idea in Harrar

and Bathke (2012b), we approximate the distributions of the adjusted hypothesis and

error matrices using Wishart distributions,

fH(φ) ·H(φ) approx∼
H

(φ)
0

Wrp (fH(φ) ,Σφ) and (2.4)

fG(φ) ·G(φ) approx∼ Wrp (fG(φ) ,Σφ) . (2.5)

By matching the expected values and total variances of the adjusted hypothesis and

error matrices with that of their approximate Wishart distributions, we solve for the

degrees of freedom fH(φ) and fG(φ) . The final results of the degrees of freedom are

fH(φ) =
tr
(
Σ2
φ

)
+ [tr (Σφ)]2∑a

i=1

∑a
i′=1 (Cφ,ii′)

2 1
nini′

[
tr
(
Σ

(φ)
i Σ

(φ)
i′

)
+ tr

(
Σ

(φ)
i

)
tr
(
Σ

(φ)
i′

)] and (2.6)

fG(φ) =
tr
(
Σ2
φ

)
+ [tr(Σφ)]2∑a

i=1
Cφ,ii

n2
i (ni−1)

{
tr
(
Σ

(φ)2
i

)
+
[
tr
(
Σ

(φ)
i

)]2} . (2.7)

The mathematical details are presented in the Appendix (Section 2.7).

We propose the modified Wilks’ Lambda test statistic as

U = Urp,f
H(φ) ,fG(φ)

=
|fG(φ)G(φ)|

|fG(φ)G(φ) + fH(φ)H(φ)|
.

Using (2.4) and (2.5), the corresponding Rao’s F -approximation (Rencher, 2001) for

the null distribution would be

F =
1− U1/s

U1/s
· df2

df1
, (2.8)

12



where

s =


√

(rp)2f 2
H(φ) − 4

(rp)2 + f 2
H(φ) − 5

; if (rp)2 + f 2
H(φ) − 5 > 0

1; if (rp)2 + f 2
H(φ) − 5 ≤ 0

,

df1 = rp · fH(φ) , df2 = ωs− 1
2
(rp · fH(φ) − 2) and ω = fG(φ) − 1

2
(rp− fH(φ) + 1). The

test will reject the null hypothesis if the F statistic is greater than F1−α,df1,df2 , where

α is the significance level.

When the sample size is large relative to the dimension, which is the total number

of variables, i.e. p× t variables in the multivariate growth curve data model context

with p variables measured at t different occasions, the distribution of the test statistic

F in (2.8) can be approximated by a χ2 distribution. In general, this approximation

is less accurate than the Rao’s F -approximation.

Affine Invariance

An important property in multivariate analysis is the inferential procedure to be in-

variant to translation, scaling and rotation of the coordinate system. More generally,

the transformation Yik = (B ⊗ A)Xik + b for any A, B and b, where A and B

are p × p and t × t, respectively, nonsingular matrices and b is an tp-dimensional

vector, should not alter the inference. This property is known as affine invariance.

For transformation that makes sense with multivariate growth curve data, we let A

be any nonsingular p× p matrix, B = It and b = 1t⊗ c, where c is an p-dimensional

vector. Obviously, the degrees of freedom in (2.6) and (2.7) and, therefore, the test

statistic U are not affine invariant.

To alleviate this problem, note that the approximations in (2.4) and (2.5) imply

f ∗H(φ) ·H(φ)
∗

approx∼
H

(φ)
0

Wrp

(
f ∗H(φ) , Irp

)
and f ∗G(φ) ·G(φ)

∗
approx∼ Wrp

(
f ∗G(φ) , Irp

)
, (2.9)

where H
(φ)
∗ = Σ

−1/2
φ H(φ)Σ

−1/2
φ and G

(φ)
∗ = Σ

−1/2
φ G(φ)Σ

−1/2
φ . These redefinitions of

the hypothesis and error sums of squares and cross products matrices change the

degrees of freedom in (2.6) and (2.7) to

f ∗H(φ) =
rp(1 + rp)∑a

i=1

∑a
i′=1 (Cφ,ii′)

2 1
nini′

[tr (AiAi′) + tr (Ai) tr (Ai′)]
(2.10)
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and

f ∗G(φ) =
rp(1 + rp)∑a

i=1 (Cφ,ii)
2 1
n2
i (ni−1)

{
tr (A2

i ) + [tr (Ai)]
2} , (2.11)

respectively, where Ai = Σ
−1/2
φ Σ

(φ)
i Σ

−1/2
φ . These degrees of freedom are affine in-

variant. For a = 1, f ∗
H(φ) = 1, f ∗

G(φ) = n1 − 1, and Σφ = 1
n1

Σ
(φ)
1 . Therefore, the

modified version of the approximation reduces to the usual DMM analysis given in

Boik (1988). In fact, when a = 1, the modified version of the Wilks’ Lambda approx-

imation is exactly the same as both DMM and MMM in Boik (1988). When a = 2,

MMM results in the same test statistic as DMM due to the unique projection matrix

Cφ and generalized inverse being used in MMM method. Our numerical investiga-

tions and other researches, for example, Krishnamoorthy and Yu (2004) and Gamage

and Mathew (2008) have shown that the results of the affine invariant versions are

more stable and consistently better than the unmodified versions. We will use the

revised versions in the simulation studies in the next section.

2.4 Simulation Studies

Simulation Design

In this section, we numerically evaluate the proposed test along with the two classical

methods for multivariate repeated measures data, namely DMM and MMM, under

different simulation settings and with different experimental designs. To investigate

the finite-sample performance of the proposed test, we examine its empirical type-I

error rates and compare them with the type-I error rates produced by DMM and

MMM. For a comprehensive evaluation of the performances, we conduct our simu-

lations under various settings of data distribution, sample size, covariance structure,

and factor effects. The proposed test will hereinafter be referred to as WLF. The

specific objectives of our simulations are to:

(i) investigate the effect of sample size, including balanced and unbalanced cases,

(ii) analyze the effect of data distribution,
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(iii) examine the effect of covariance structure, and

(iv) study the effect of the hypothesis of interest,

on the performance of the tests. All simulations are conducted in R version 3.6.0

with 5, 000 simulation runs. The nominal type-I error rate is α = 0.05. We consider

multivariate growth curve model in the context of factorial designs as well as crossover

designs. Specifically, for factorial designs we set the number of groups to be a = 2

with sample sizes in the two groups denoted by n = (n1, n2). Both balanced and

unbalanced cases (increasing sizes and decreasing sizes) are explored. For balanced

designs we take n ∈ {(20, 20) , (30, 30)} and for unbalanced designs we set n ∈

{(20, 35) , (30, 45)}.

In addition, we set the dimension (number of response variables) to be p = 2

and the number of time points (occasions) to be t = 2. In such factorial designs,

we are interested in whether there is any Time effect, Group effect and Group ×

Time interaction effect. The corresponding contrast matrices for these hypotheses

are introduced in Example 1.

For crossover designs, four-period crossover designs (e.g. Li et al., 2020) are in-

vestigated in our simulations. There are four periods (t = 4). Two different ac-

tive treatments and two identical placebos are applied in each period separately.

The two active treatments are designed to be one period apart and within that

one period placebo is applied to avoid carryover effects. There are four different

sequences of applications for treatments and placebo (a = 4). The number of

replications per sequence is denoted by n = (n1, n2, n3, n4). For balanced designs

we use n ∈ {(25, 25, 25, 25) , (35, 35, 35, 35)} and for unbalanced designs we take

n ∈ {(10, 20, 30, 40) , (20, 30, 40, 50)}. The number of the response variables is set

to be p = 3.

In the four-period crossover designs, Period effect, Sequence effect, Treatment

effect, Sequence × Period effect, and Treatment × Period effect are usually of spe-

cial interest to medical researchers. To test those effects, the corresponding contrast

matrices (Dφ and Cφ) are DP = (It−1,−1t−1) and CP = Ja/a for Period effect,
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DS = 1>t /t and CS = Pa/(a − 1) for Sequence effect, DTr = (1,−1,−1, 1) and

CTr = H>Tr
(
HTrH

>
Tr

)−
HTr = (2I2 − J2) ⊗ (2I2 − J2) /4, where HTr = (1,−1,−1, 1),

for Treatment effect,DSP = (It−1,−1t−1) andCSP = Pa/(a−1) for Sequence×Period

effect, DTrP1 = I2⊗1>2 , DTrP2 = (I2,J2 − I2), CTrP1 = H>TrP1
(
HTrP1H

>
TrP1

)−
HTrP1 =

I2⊗(2I2 − J2) /2, whereHTrP1 = I2⊗(1,−1), andCTrP2 = H>TrP2
(
HTrP2H

>
TrP2

)−
HTrP2 =

0 0 0 0

0 1/2 −1/2 0

0 −1/2 1/2 0

0 0 0 0

 ,where HTrP2 = (0, 1,−1, 0), for Treatment× Period effect.

For covariance structure, homoscedastic and heteroscedastic covariances with com-

pound symmetric and autoregressive structures are considered. Partitioning the co-

variance for the ith group (sequence) as Σi = (Σi,jk), the two covariance structures

considered are below.

(i) Compound symmetry:

Σi,jk =

Σi,kk = (1− ρi)Ip + ρiJp k = j = 1, . . . , t

Σi,jk = ρiJp k 6= j and k, j = 1, . . . , t

,

where for the factorial designs we take ρ = (0.2, 0.2) as the equal covariances set-

ting and ρ = (0.2, 0.7) as the unequal covariances setting, and for the crossover

designs we consider ρ = (0.3, 0.3, 0.3, 0.3) as the equal covariances setting and

ρ = (0.3, 0.4, 0.5, 0.6) as the unequal covariances setting.

(ii) Autoregressive structure AR(1):

Σi,jk =

Σi,kk = (1− ρi)Ip + ρiJp k = j = 1, . . . , t

Σi,jk = ρ
|k−j|
i Jp k 6= j and k = 1, . . . , t

,

where for the factorial designs we let ρ = (0.2, 0.2) be the equal covariances

setting and ρ = (0.2, 0.7) be the unequal covariances setting, and for the

crossover designs we make ρ = (0.3, 0.3, 0.3, 0.3) the equal covariances setting

and ρ = (0.3, 0.4, 0.5, 0.6) the unequal covariances setting.
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The compound symmetric and the first-order autoregressive covariance structures

will hereinafter be referred to as CS and AR, respectively. The equal covariances set-

tings have the same correlation value in different groups or sequences, representing

homoscedasticity. However, the unequal covariances settings have different correla-

tion values in different groups or sequences, serving as heteroscedastic cases. In the

heteroscedastic cases, we investigate the performance of the tests by considering the

settings where the unequal group (sequence) covariances are associated with either

increasing or decreasing sample sizes.

Simulation Results

Factorial Design

Tables 2.1–2.2 show empirical type-I error rates of factorial designs for testing Time,

Group and Group×Time effects with equal covariances. Table 2.1 shows the cases in

balanced designs, but Table 2.2 shows the cases in unbalanced designs. Note that for

settings in our factorial designs, i.e. a = 2, DMM and MMM are identical. Therefore,

we only present comparisons with DMM. When covariances are equal in two groups,

the type-I error rates are maintained well for both WLF and DMM with normal, t(5)

and χ2(5) distributions and the results are comparable. When data are highly skewed

from lognormal distribution, the type-I error rates produced by three methods are

still comparable but a little more conservative than that of the normal, t(5) and χ2(5)

cases.

Tables 2.3–2.5 present simulation results of factorial designs testing Time, Group

and Group×Time effects with unequal covariances. When sample sizes are equal as

shown in Table 2.3, the results of all three methods are roughly the same. When the

data are from normal, t(5) and χ2(5) distributions, the type-I error rates are almost

exact. When data are from highly skewed lognormal distribution, all three methods

are still comparable but a little more conservative. However, Tables 2.4 and 2.5 show

that the proposed test WLF performs very well with almost exact type-I error rates in

unbalanced heteroscedastic designs, for both positive and negative pairing situations,
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especially for normal, t(5) and χ2(5) distributions and for testing all effects (Time,

Group and Group×Time). The classical method DMM and MMM, on the other hand,

lead to very liberal type-I error rates for positive pairing cases (Table 2.4) and very

conservative type-I error rates for negative pairing cases (Table 2.5), especially for

testing Time and Group× Time effects. Generally, when data come from lognormal

distribution, WLF is still the best one among all three tests producing type-I error

rates that are fairly close to 5% compared with the other methods.

Four-Period Crossover Design

Tables 2.6–2.7 present the test results when covariances in the four sequences are

equal. Table 2.6 shows the cases in balanced designs. Table 2.7, on the other hand,

shows the cases in unbalanced designs. Generally, when data come from normal, t(5)

and χ2(5) distributions with equal covariances, the type-I error rates of WLF and

DMM are almost exact. However, the classical MMM test performs well only when

testing the main effects of Period and Treatment. When testing Treatment× Period

effect, the test results of MMM tend to be more liberal. When data are lognormal

with equal covariances, all of the three methods are still comparable for testing Period

and Treatment effects.

Simulation results in the crossover designs with unequal covariances are shown in

Tables 2.8–2.10. Like in the factorial designs, WLF has a clear advantage over DMM

and MMM, especially when sample sizes are unequal. Table 2.8 shows type-I error

rates in balanced designs with unequal covariances. All of the three methods perform

comparably well in most cases, especially with normal, t(5) and χ2(5) distributions.

When sample sizes are unequal in Tables 2.9 and 2.10, WLF maintains the preassigned

type-I error rates well to the 0.05 level for normal, t(5) and χ2(5) data and for testing

all effects (Period, Treatment and Treatment × Period). However, under the same

settings, DMM and MMM tend to have very liberal type-I error rates when sample

sizes increase (positive pairing) as shown in Table 2.9, but tend to be very conservative

when sample sizes decrease (negative pairing) as shown in Table 2.10. It can further

be seen in Tables 2.9 and 2.10 that for lognormal data and for testing Period and
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Treatment effects, WLF is still the best among the three methods and it keeps type-

I error rates closer to the nominal level. Note that when testing Treatment effect,

DMM and MMM lead to the same numerical results. The reason is that when testing

Treatment effect, the test statistics in the two methods reduce to the same quantity.

Table 2.1: Type-I error rate (×100) of WLF, DMM and MMM for equal covariances
with equal sample sizes in factorial designs, a = 2, p = 2, t = 2, CS: ρ = (0.2, 0.2),
AR: ρ = (0.2, 0.2).

Dist Cov n
Time Group Group×Time

WLF DMM MMM WLF DMM MMM WLF DMM MMM

N
or

m
al CS

(20,20) 5.0 5.1 5.1 5.2 5.2 5.2 4.9 5.0 5.0
(30,30) 5.0 5.0 5.0 5.2 5.2 5.2 5.0 5.0 5.0

AR
(20,20) 4.5 4.6 4.6 4.7 4.8 4.8 5.0 5.0 5.0
(30,30) 4.5 4.6 4.6 5.5 5.6 5.6 5.3 5.3 5.3

t(
5)

CS
(20,20) 4.2 4.2 4.2 4.7 4.8 4.8 4.7 4.8 4.8
(30,30) 4.8 4.8 4.8 4.9 4.9 4.9 5.0 5.0 5.0

AR
(20,20) 4.8 4.9 4.9 4.7 4.8 4.8 4.4 4.4 4.4
(30,30) 4.7 4.7 4.7 4.7 4.7 4.7 4.9 4.9 4.9

χ
2

(5
) CS

(20,20) 5.0 5.2 5.2 4.9 5.1 5.1 4.8 4.9 4.9
(30,30) 5.1 5.2 5.2 4.3 4.4 4.4 4.7 4.9 4.9

AR
(20,20) 5.0 5.1 5.1 4.6 4.7 4.7 4.7 4.8 4.8
(30,30) 4.9 5.0 5.0 5.2 5.2 5.2 4.6 4.6 4.6

L
og

n
or

m
al

CS
(20,20) 3.6 3.7 3.7 3.4 3.7 3.7 3.6 3.7 3.7
(30,30) 4.0 4.1 4.1 4.1 4.3 4.3 4.2 4.3 4.3

AR
(20,20) 3.7 3.9 3.9 3.5 3.8 3.8 3.8 4.0 4.0
(30,30) 4.0 4.2 4.2 4.4 4.6 4.6 3.9 4.1 4.1

Power Studies

Power and Effect Size

We will investigate the empirical power of the three methods to detect a fixed alter-

native in factorial designs. For power simulations of the crossover designs, the results

are similar to that of the factorial designs and, hence, we only show the cases in

factorial designs for illustration purpose. It is widely known that with a fixed sample

size and a fixed effect size, a test procedure tends to have a larger (smaller) power

when the type-I error rate is larger (smaller) (Cohen, 2013). In order to show the
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Table 2.2: Type-I error rate (×100) of WLF, DMM and MMM for equal covariances
with unequal sample sizes in factorial designs, a = 2, p = 2, t = 2, CS: ρ = (0.2, 0.2),
AR: ρ = (0.2, 0.2).

Dist Cov n
Time Group Group×Time

WLF DMM MMM WLF DMM MMM WLF DMM MMM

N
or

m
a
l CS

(35,20) 4.8 4.9 4.9 5.1 5.4 5.4 4.2 4.2 4.2
(45,30) 4.8 4.8 4.8 5.1 5.2 5.2 5.3 5.3 5.3

AR
(35,20) 4.8 4.6 4.6 5.0 4.9 4.9 4.9 5.0 5.0
(45,30) 4.6 4.7 4.7 4.6 4.6 4.6 5.5 5.6 5.6

t(
5
)

CS
(35,20) 4.5 4.6 4.6 4.7 4.8 4.8 4.6 4.5 4.5
(45,30) 4.9 5.0 5.0 4.3 4.4 4.4 4.7 4.7 4.7

AR
(35,20) 4.4 4.6 4.6 5.1 5.2 5.2 5.0 5.4 5.4
(45,30) 4.9 5.1 5.1 4.9 4.9 4.9 4.4 4.5 4.5

χ
2

(5
) CS

(35,20) 5.0 5.1 5.1 4.9 4.8 4.8 4.8 4.9 4.9
(45,30) 5.0 5.1 5.1 4.9 4.7 4.7 4.6 4.6 4.6

AR
(35,20) 5.5 5.5 5.5 4.8 4.8 4.8 4.4 4.5 4.5
(45,30) 4.8 4.7 4.7 4.9 4.9 4.9 4.8 4.9 4.9

L
og

n
or

m
a
l

CS
(35,20) 3.8 4.5 4.5 4.5 4.2 4.2 3.8 4.4 4.4
(45,30) 4.3 4.7 4.7 4.4 4.5 4.5 4.2 4.3 4.3

AR
(35,20) 4.1 4.1 4.1 4.5 4.2 4.2 3.9 4.1 4.1
(45,30) 3.9 4.1 4.1 4.1 4.2 4.2 4.5 4.6 4.6

power advantage of the proposed WLF test, we present the worst-case scenarios of the

WLF power simulations, i.e., in positive pairing unbalanced heteroscedastic designs.

Figure 2.1 shows the power curves for testing Group effect of all the three tests in

factorial design with different data distributions. The number of variables is p = 2

and the number of time points (occasions) is t = 3. There are two groups (a = 2)

with sample sizes n = (20, 35). The covariance structure used is compound symme-

try with correlation values ρ = (0.2, 0.7). The bottom row of Figure 2.1 presents the

power curves of all the three tests along different effect sizes of the Group factor when

the effect of the Time factor is 0. With such settings, we have seen from the previous

section that, in general, the type-I error rates of WLF are nearly exact for all data

distributions (normal, t(5), χ2 (5) and lognormal). However, DMM and MMM are

much more liberal under the same conditions. The power advantage of WLF can

be readily seen when we increase the effect size of the Group factor just by a little,

where the power of WLF catches up with that of DMM and MMM. Moreover, WLF
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Table 2.3: Type-I error rate (×100) of WLF, DMM and MMM for unequal covariances
with equal sample sizes in factorial designs, a = 2, p = 2, t = 2, CS: ρ = (0.2, 0.7),
AR: ρ = (0.2, 0.7).

Dist Cov n
Time Group Group×Time

WLF DMM MMM WLF DMM MMM WLF DMM MMM

N
or

m
a
l CS

(20,20) 5.7 6.0 6.0 4.6 4.7 4.7 5.4 5.7 5.7
(30,30) 5.0 5.1 5.1 4.7 4.7 4.7 5.4 5.7 5.7

AR
(20,20) 4.6 5.0 5.0 4.4 4.5 4.5 4.8 5.1 5.1
(30,30) 5.1 5.3 5.3 5.3 5.4 5.4 4.8 4.9 4.9

t(
5
)

CS
(20,20) 4.7 5.0 5.0 4.6 4.7 4.7 4.8 5.0 5.0
(30,30) 4.9 5.3 5.3 5.0 5.1 5.1 4.9 5.0 5.0

AR
(20,20) 4.9 5.3 5.3 4.8 5.0 5.0 5.0 5.4 5.4
(30,30) 4.3 4.4 4.4 5.0 5.1 5.1 4.8 4.9 4.9

χ
2

(5
) CS

(20,20) 5.1 5.3 5.3 4.7 4.9 4.9 5.1 5.5 5.5
(30,30) 5.4 5.5 5.5 4.5 4.7 4.7 5.0 5.3 5.3

AR
(20,20) 4.8 5.3 5.3 4.8 5.0 5.0 4.9 5.2 5.2
(30,30) 4.8 5.1 5.1 5.0 5.1 5.1 4.4 4.7 4.7

L
og

n
or

m
a
l

CS
(20,20) 3.9 4.1 4.1 3.9 4.2 4.2 4.0 4.2 4.2
(30,30) 4.1 4.3 4.3 4.7 4.9 4.9 3.6 3.8 3.8

AR
(20,20) 3.7 4.1 4.1 3.9 4.2 4.2 3.9 4.2 4.2
(30,30) 4.1 4.4 4.4 3.8 3.9 3.9 4.0 4.2 4.2

keeps its leading position until all the three tests reach the plateau at 1. The top row

exhibits that along different effect sizes of the Group factor, the mean power at all

values of effect of the Time factor. It is obvious that the power curves on the bottom

row and the mean power curves on the top row are almost identical. Likewise, WLF

has the overall advantage in terms of power.

Power and Sample Size

In this section, we examine the empirical power of all three methods to detect a fixed

alternative in factorial designs at different sample size levels. For the same reason

mentioned above, we investigate the power performance of all the three methods

against sample size in positive pairing unbalanced heteroscedastic designs. Again,

the number of variables is p = 2. There are three time points, t = 3. Two groups

(a = 2) of data are simulated with sample sizes n(1) = (8, 14), n(2) = (12, 21),

n(3) = (16, 28), n(4) = (20, 35), n(5) = (24, 42) and n(6) = (28, 49). The covariance
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Table 2.4: Type-I error rate (×100) of WLF, DMM and MMM for unequal covariances
with increasing sample sizes in factorial designs, a = 2, p = 2, t = 2, CS: ρ =
(0.2, 0.7), AR: ρ = (0.2, 0.7).

Dist Cov n
Time Group Group×Time

WLF DMM MMM WLF DMM MMM WLF DMM MMM

N
or

m
a
l CS

(20,35) 5.2 10.3 10.3 4.7 6.2 6.2 5.5 10.7 10.7
(30,45) 5.1 8.5 8.5 4.8 5.7 5.7 4.8 8.2 8.2

AR
(20,35) 5.4 10.3 10.3 4.6 5.9 5.9 4.5 9.3 9.3
(30,45) 4.8 8.0 8.0 5.1 5.8 5.8 4.8 8.1 8.1

t(
5
)

CS
(20,35) 4.9 9.9 9.9 5.6 7.1 7.1 5.4 10.0 10.0
(30,45) 5.4 8.7 8.7 5.3 6.0 6.0 5.0 8.2 8.2

AR
(20,35) 4.5 9.2 9.2 4.6 5.3 5.3 5.1 10.1 10.1
(30,45) 4.8 8.0 8.0 4.7 5.6 5.6 4.9 8.1 8.1

χ
2

(5
) CS

(20,35) 4.6 9.1 9.1 5.3 6.2 6.2 4.6 9.4 9.4
(30,45) 4.6 7.9 7.9 5.2 6.0 6.0 4.8 8.5 8.5

AR
(20,35) 4.7 9.6 9.6 4.7 5.9 5.9 4.6 9.5 9.5
(30,45) 5.5 8.4 8.4 4.7 5.8 5.8 5.3 8.4 8.4

L
og

n
or

m
a
l

CS
(20,35) 3.3 7.5 7.5 4.9 5.2 5.2 3.6 7.8 7.8
(30,45) 3.7 6.7 6.7 4.1 4.8 4.8 4.2 6.6 6.6

AR
(20,35) 4.2 8.5 8.5 4.4 5.8 5.8 3.9 8.3 8.3
(30,45) 3.6 6.8 6.8 4.7 5.1 5.1 4.3 6.8 6.8

structures for the two groups are compound symmetric with ρ = (0.2, 0.7). Four data

distributions are investigated (normal, t(5), χ2 (5) and lognormal). The effect of the

Time factor is set to be 0 throughout our simulations investigating the relationship

between power and sample size.

Figure 2.2 shows the power curves along the sample sizes (increasing sample size

pairs) for testing Group effect at three different effect sizes of Group factor δGroup =

0, 0.2 and 0.3. For all data distributions, the type-I error rates of WLF are almost

exact as shown in the bottom row (δGroup = 0), but DMM and MMM are much more

liberal. In the second row with δGroup = 0.2, the power of WLF appears to catch

up with that of both DMM and MMM as sample sizes increase for all four data

distributions. In the top row (δGroup = 0.3), the power of WLF exceeds that of DMM

and MMM and it keeps the leading position until it plateaus at 1. It is generally true

that a smaller (larger) type-I error rate results in a smaller (larger) power (Cohen,

2013). However, the transition from the bottom row to the top row indicates that the
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Table 2.5: Type-I error rate (×100) of WLF, DMM and MMM for unequal covariances
with decreasing sample sizes in factorial designs, a = 2, p = 2, t = 2, CS: ρ =
(0.2, 0.7), AR: ρ = (0.2, 0.7).

Dist Cov n
Time Group Group×Time

WLF DMM MMM WLF DMM MMM WLF DMM MMM

N
or

m
a
l CS

(35,20) 5.1 2.4 2.4 5.3 5.4 5.4 4.6 2.1 2.1
(45,30) 4.9 3.1 3.1 4.6 4.5 4.5 4.5 2.5 2.5

AR
(35,20) 4.7 2.1 2.1 4.7 4.4 4.4 5.4 2.5 2.5
(45,30) 4.8 2.7 2.7 5.0 5.0 5.0 4.9 2.8 2.8

t(
5
)

CS
(35,20) 4.5 1.9 1.9 4.6 4.7 4.7 4.9 2.2 2.2
(45,30) 4.8 2.7 2.7 4.8 5.0 5.0 4.8 2.9 2.9

AR
(35,20) 4.7 2.4 2.4 4.7 4.4 4.4 4.7 2.5 2.5
(45,30) 5.4 3.2 3.2 4.4 4.5 4.5 5.2 2.9 2.9

χ
2

(5
) CS

(35,20) 5.0 2.3 2.3 5.0 4.9 4.9 5.3 2.6 2.6
(45,30) 5.3 3.2 3.2 5.1 5.1 5.1 4.9 2.8 2.8

AR
(35,20) 4.9 2.1 2.1 4.8 5.0 5.0 4.6 2.2 2.2
(45,30) 4.5 2.3 2.3 4.6 4.3 4.3 5.2 3.2 3.2

L
og

n
or

m
a
l

CS
(35,20) 4.2 2.4 2.4 5.2 5.1 5.1 4.1 2.3 2.3
(45,30) 4.0 2.4 2.4 4.9 4.4 4.4 3.6 2.2 2.2

AR
(35,20) 4.0 2.0 2.0 4.9 4.5 4.5 4.0 2.3 2.3
(45,30) 4.4 2.4 2.4 4.6 4.3 4.3 4.2 2.7 2.7

proposed WLF method not only achieves the best type-I error rate but also quickly

catches up in power and further outperforms the other two competing methods. In

other words, the best performance of WLF in terms of type-I error rate does not

come at the expense of reduced power.

2.5 Application

To stimulate readers’ interest and to illustrate how our methodology can be applied in

real life situations, we demonstrate the method using one example for factorial design

(Idiopathic Infantile Nystagmus Syndrome data) and another example for crossover

design (Intraocular Pressure data). In both examples, the data are nonnormal mul-

tivariate repeated measures with small sample.
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Table 2.6: Type-I error rate (×100) of WLF, DMM and MMM for equal covari-
ances with equal sample sizes in crossover designs, a = 4, p = 3, t = 4, CS:
ρ = (0.3, 0.3, 0.3, 0.3), AR: ρ = (0.3, 0.3, 0.3, 0.3), n(1) = (25, 25, 25, 25), n(2) =
(35, 35, 35, 35), n(3) = (10, 20, 30, 40), n(4) = (20, 30, 40, 50), n(5) = (40, 30, 20, 10),
n(6) = (50, 40, 30, 20).

Dist Cov n
Period Treatment Treatment×Period

WLF DMM MMM WLF DMM MMM WLF DMM MMM

N
o
rm

a
l CS

n(1) 5.2 5.3 5.4 4.6 4.7 4.7 4.6 4.6 6.3
n(2) 4.7 4.8 4.6 5.5 5.5 5.5 4.4 4.7 5.9

AR
n(1) 4.9 5.0 5.5 4.9 4.9 4.9 4.4 4.7 5.5
n(2) 5.1 5.1 6.0 4.7 4.7 4.7 4.9 4.9 5.9

t(
5)

CS
n(1) 4.3 4.5 4.9 5.2 5.2 5.2 4.0 4.3 5.8
n(2) 4.8 4.9 4.8 5.6 5.6 5.6 4.6 5.0 6.6

AR
n(1) 4.0 4.2 5.7 4.6 4.7 4.7 4.5 4.7 5.4
n(2) 4.7 4.9 5.7 4.7 4.7 4.7 5.1 5.2 5.1

χ
2

(5
) CS

n(1) 5.3 5.3 4.9 5.2 5.3 5.3 4.0 4.3 6.3
n(2) 5.1 5.3 4.8 4.7 4.7 4.7 5.0 5.1 6.8

AR
n(1) 5.1 5.2 5.9 5.0 5.0 5.0 4.2 4.5 5.1
n(2) 4.6 4.7 5.6 5.1 5.3 5.3 4.7 5.1 5.9

L
og

n
or

m
al

CS
n(1) 5.6 6.2 4.0 4.3 4.5 4.5 3.5 4.1 6.1
n(2) 5.8 6.1 4.0 4.1 4.1 4.1 3.5 3.8 5.8

AR
n(1) 6.3 6.7 5.6 3.9 4.1 4.1 2.7 3.7 4.7
n(2) 6.4 6.7 5.6 4.2 4.3 4.3 3.3 3.9 4.9

Idiopathic Infantile Nystagmus Syndrome

In this section, we introduce an example where multivariate growth curve data on

idiopathic infantile nystagmus syndrome (INS) need to be analyzed in the context

of general factorial design. In this study (Fadardi et al., 2017), 15 voluntary par-

ticipants with idiopathic INS were recruited from a referring ophthalmologist. Par-

ticipants were asked to carry out acuity tasks identifying the direction of horizontal

Tumbling-E targets under different mental load settings. For the low mental load

setting, participants were given unlimited time to respond. After responding, they

were required to view a fixation cross for 100 milliseconds prior to the presence of

the next acuity target. For the high mental load setting, participants were given only

0.5 second to view the target and then 300 milliseconds to view a visual noise mask.

Participants were required to respond while they were viewing a fixation cross for 1
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Table 2.7: Type-I error rate (×100) of WLF, DMM and MMM for equal covari-
ances with unequal sample sizes in crossover designs, a = 4, p = 3, t = 4, CS:
ρ = (0.3, 0.3, 0.3, 0.3), AR: ρ = (0.3, 0.3, 0.3, 0.3), n(1) = (25, 25, 25, 25), n(2) =
(35, 35, 35, 35), n(3) = (10, 20, 30, 40), n(4) = (20, 30, 40, 50), n(5) = (40, 30, 20, 10),
n(6) = (50, 40, 30, 20).

Dist Cov n
Period Treatment Treatment×Period

WLF DMM MMM WLF DMM MMM WLF DMM MMM

N
o
rm

a
l CS

n(5) 5.4 4.9 5.1 4.8 5.1 5.1 5.1 4.4 6.4
n(6) 4.8 5.0 4.9 4.8 4.6 4.6 5.2 4.9 6.5

AR
n(5) 5.3 4.9 6.0 5.3 5.0 5.0 5.6 4.7 5.9
n(6) 5.1 5.0 5.6 4.9 5.1 5.1 4.7 4.4 5.2

t(
5)

CS
n(5) 4.6 4.6 5.0 5.2 4.9 4.9 4.4 4.6 6.4
n(6) 4.6 4.9 4.6 4.8 5.1 5.1 4.1 4.2 5.8

AR
n(5) 4.9 4.6 5.5 4.9 5.2 5.2 5.1 4.9 5.1
n(6) 5.3 5.1 6.0 4.7 4.8 4.8 4.9 4.8 5.7

χ
2

(5
) CS

n(5) 5.3 5.0 5.0 4.8 4.8 4.8 5.0 5.1 6.4
n(6) 5.3 5.4 4.6 5.1 5.2 5.2 5.1 4.7 6.0

AR
n(5) 5.2 5.0 5.4 4.8 5.3 5.3 5.3 5.3 5.6
n(6) 5.5 4.9 5.8 5.4 5.0 5.0 5.2 5.0 5.9

L
og

n
or

m
al

CS
n(5) 5.8 6.7 6.2 4.7 5.6 5.6 3.8 4.7 7.5
n(6) 6.1 6.4 4.9 4.5 4.8 4.8 3.5 4.6 6.5

AR
n(5) 5.8 6.6 6.7 4.4 5.0 5.0 3.5 4.8 6.2
n(6) 6.3 6.2 5.4 4.5 4.9 4.9 3.3 4.5 5.1

second. In addition, participants were also asked to conduct mental arithmetic (con-

tinuously subtracting 7 from a number randomly selected between 100 and 120 and

given by the examiner during the task) simultaneously with the acuity task. Both

the low and the high mental load effects were evaluated at two gaze positions (null

position and away position). Eventually, the size and contrast of the target at which

participants’ task performance plateaued were recorded. The main objective of the

study is to investigate whether there is any main effect of mental load (M), main

effect of gaze position (P), and interaction effect between the mental load and gaze

position (MP).

Among all 15 participants with idiopathic infantile nystagmus syndrome, 11 of

them finished the task with no missing data. To test the interaction effect men-

tioned above in the context of our method, we need the key parameters. Since all
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Table 2.8: Type-I error rate (×100) of WLF, DMM and MMM for unequal co-
variances with equal sample sizes in crossover designs, a = 4, p = 3, t = 4, CS:
ρ = (0.3, 0.4, 0.5, 0.6), AR: ρ = (0.3, 0.4, 0.5, 0.6), n(1) = (25, 25, 25, 25), n(2) =
(35, 35, 35, 35), n(3) = (10, 20, 30, 40), n(4) = (20, 30, 40, 50), n(5) = (40, 30, 20, 10),
n(6) = (50, 40, 30, 20).

Dist Cov n
Period Treatment Treatment×Period

WLF DMM MMM WLF DMM MMM WLF DMM MMM

N
o
rm

a
l CS

n(1) 4.8 4.9 5.2 4.5 4.5 4.5 5.1 5.1 7.0
n(2) 4.8 4.9 4.9 4.6 4.7 4.7 4.9 5.1 6.3

AR
n(1) 5.1 5.4 6.2 5.1 5.2 5.2 4.9 5.3 6.6
n(2) 5.2 5.5 6.4 5.2 5.2 5.2 5.3 5.5 6.0

t(
5)

CS
n(1) 4.7 4.8 5.2 5.6 5.7 5.7 4.6 5.3 6.7
n(2) 4.6 4.8 4.4 5.2 5.4 5.4 4.9 5.1 6.7

AR
n(1) 4.5 4.6 6.1 4.7 4.8 4.8 4.6 4.9 6.5
n(2) 5.0 5.2 6.3 5.0 5.0 5.0 4.3 4.6 5.8

χ
2

(5
) CS

n(1) 4.8 5.2 4.8 4.6 4.6 4.6 4.8 5.1 6.9
n(2) 5.3 5.5 5.0 5.1 5.2 5.2 4.8 4.9 6.7

AR
n(1) 4.3 4.6 5.6 4.8 4.9 4.9 4.2 4.5 5.3
n(2) 4.9 5.1 5.8 5.0 5.1 5.1 4.6 4.8 5.1

L
og

n
or

m
al

CS
n(1) 5.9 6.5 4.4 4.3 4.5 4.5 3.2 4.5 6.8
n(2) 5.7 5.9 4.6 4.2 4.3 4.3 3.9 4.8 7.0

AR
n(1) 6.3 6.8 5.4 4.5 4.6 4.6 3.1 4.0 5.3
n(2) 6.1 6.4 5.7 4.5 4.6 4.6 3.5 4.2 5.2

participants have the disease, there is only one group, i.e., a = 1. There are two

response variables measured each time, target size and contrast (p = 2). There are

four repeated measures (t = 4) representing four different occasions, low mental load

at null position, low mental load at away position, high mental load at null posi-

tion, and high mental load at away position. Since a = 1, Cφ is always 1, where

φ = {M,P,MP}. The corresponding contrast matrix for testing the interaction effect

between the mental load and gaze position is DMP = (1,−1,−1, 1). The contrast ma-

trices for testing main effects of mental load and gaze position areDM = (1, 1,−1,−1)

and DP = (1,−1, 1,−1), respectively.

Of the 11 participants, 3 are female and 8 are male. It might also be interesting to

investigate whether there are other interaction effects, for example, gender×mental

(GM), gender× position (GP), and gender×mental× position (GMP). In this case,
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Table 2.9: Type-I error rate (×100) of WLF, DMM and MMM for unequal covariances
with increasing sample sizes in crossover designs (positive pairing), a = 4, p = 3, t =
4, CS: ρ = (0.3, 0.4, 0.5, 0.6), AR: ρ = (0.3, 0.4, 0.5, 0.6), n(1) = (25, 25, 25, 25), n(2) =
(35, 35, 35, 35), n(3) = (10, 20, 30, 40), n(4) = (20, 30, 40, 50), n(5) = (40, 30, 20, 10),
n(6) = (50, 40, 30, 20).

Dist Cov n
Period Treatment Treatment×Period

WLF DMM MMM WLF DMM MMM WLF DMM MMM

N
o
rm

a
l CS

n(3) 5.8 12.7 13.2 4.3 9.0 9.0 5.2 7.2 7.8
n(4) 4.7 9.4 9.8 5.5 8.1 8.1 4.8 7.1 8.2

AR
n(3) 5.7 13.1 10.9 5.0 9.2 9.2 5.2 7.7 8.4
n(4) 5.3 10.6 9.7 5.2 7.8 7.8 5.4 6.5 7.0

t(
5)

CS
n(3) 5.4 11.9 12.2 4.8 9.4 9.4 5.1 8.0 8.7
n(4) 4.5 9.4 9.4 4.5 7.2 7.2 4.6 7.0 7.9

AR
n(3) 5.8 14.0 12.5 5.4 9.4 9.4 4.7 7.6 7.9
n(4) 4.9 11.1 10.1 4.6 7.4 7.4 4.9 6.4 7.2

χ
2

(5
) CS

n(3) 5.8 12.3 12.0 4.7 9.1 9.1 4.9 7.8 8.8
n(4) 4.6 8.7 8.8 4.8 7.5 7.5 4.5 7.0 8.1

AR
n(3) 6.3 14.4 12.0 4.9 9.3 9.3 4.9 7.7 8.2
n(4) 5.3 10.4 9.0 5.1 7.6 7.6 5.3 7.0 7.3

L
og

n
or

m
al

CS
n(3) 6.0 13.0 12.2 4.0 9.5 9.5 3.2 6.3 8.2
n(4) 6.0 10.6 9.1 4.5 7.4 7.4 3.8 6.4 7.5

AR
n(3) 6.8 14.6 11.7 4.4 9.5 9.5 3.6 6.4 7.7
n(4) 6.6 11.7 9.7 4.3 6.9 6.9 4.0 5.9 6.9

we have a = 2 for two groups, i.e., female group and male group, p = 2 for two

response variables and t = 4 for the four occasions. Accordingly, the contrast matrix

Cφ is always P2, where φ = {GM,GP,GMP} for testing all three interaction effects.

However, Dφ varies with effect being tested and they are DGM = (1,−1) ⊗ 1
2
1>2 ,

DGP = 1
2
1>2 ⊗ (1,−1), and DGMP = (1,−1)⊗ (1,−1).

Before conducting hypotheses tests, we perform a preliminary check on the data.

The marginal distributions of the variables, size and contrast, are both highly right-

skewed and clearly they are nonnormal. Further, the covariance matrices of the

female and male groups are not equal. As we have seen in Section 2.4, the proposed

WLF method performs the best when data are nonnormal with unequal sample sizes

and unequal covariances. Hence, the WLF method is the most reliable method for

analyzing the optometry data.
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Table 2.10: Type-I error rate (×100) of WLF, DMM and MMM for unequal covari-
ances with decreasing sample sizes in crossover designs (negative pairing), a = 4,
p = 3, t = 4, CS: ρ = (0.3, 0.4, 0.5, 0.6), AR: ρ = (0.3, 0.4, 0.5, 0.6), n(1) =
(25, 25, 25, 25), n(2) = (35, 35, 35, 35), n(3) = (10, 20, 30, 40), n(4) = (20, 30, 40, 50),
n(5) = (40, 30, 20, 10), n(6) = (50, 40, 30, 20).

Dist Cov n
Period Treatment Treatment×Period

WLF DMM MMM WLF DMM MMM WLF DMM MMM

N
o
rm

a
l CS

n(5) 4.7 1.2 1.3 5.1 2.3 2.3 5.3 3.7 6.7
n(6) 5.1 2.6 2.5 4.6 3.0 3.0 5.2 3.9 7.0

AR
n(5) 4.7 1.3 2.7 5.1 2.5 2.5 5.8 4.0 5.7
n(6) 5.4 2.5 4.2 5.2 3.2 3.2 4.9 4.1 5.2

t(
5)

CS
n(5) 4.5 1.3 1.3 4.6 2.2 2.2 4.2 3.4 6.6
n(6) 5.2 2.6 2.4 4.7 2.7 2.7 4.6 3.6 6.5

AR
n(5) 4.4 1.4 3.0 4.8 2.6 2.6 5.0 3.9 5.5
n(6) 4.8 2.2 4.2 4.8 2.7 2.7 4.5 3.8 5.7

χ
2

(5
) CS

n(5) 5.2 1.8 1.4 5.0 2.5 2.5 4.8 3.5 6.5
n(6) 5.6 2.9 2.9 4.9 3.3 3.3 4.7 3.7 6.2

AR
n(5) 5.2 1.9 3.0 4.7 2.2 2.2 4.9 3.7 6.0
n(6) 5.5 2.9 4.3 5.4 3.4 3.4 4.5 4.0 5.7

L
og

n
or

m
al

CS
n(5) 5.9 2.9 1.9 3.9 2.1 2.1 3.2 2.9 6.3
n(6) 6.4 3.5 2.3 5.0 3.2 3.2 3.8 3.5 6.2

AR
n(5) 6.3 3.0 3.9 4.2 2.6 2.6 3.8 3.7 6.3
n(6) 6.5 3.5 4.1 4.3 2.6 2.6 3.8 3.4 5.6

As shown in Table 2.11, the p-values of the main effect of gaze position and all

interaction effects are greater than 0.05, leading to insignificant test results. It is

worth mentioning that the p-values are considerably large for testing the interaction

effects containing the gender effect, which might due to the small sample sizes in both

female and male groups. Also, the number of levels in gender is only two, which is too

small to satisfy the asymptotic framework mentioned in Harrar and Bathke (2012b).

The only significant effect is the main effect of mental load.

Table 2.11: Analysis of the idiopathic infantile nystagmus syndrome (INS) data using
WLF.

Effect WLF Effect WLF

Mental Load 0.0239 Gender×Mental 0.3553
Gaze Position 0.1131 Gender× Position 0.8713

Mental× Position 0.0858 Gender×Mental× Position 0.6422
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Figure 2.1: Power curves of detecting fixed alternative of Group effect in factorial
designs with α = 0.05, a = 2, p = 2, t = 3, n = (20, 35), CS: ρ = (0.2, 0.7). The
columns are for different distributions. The bottom row presents the power curves
along different effect sizes of the Group factor when effect size of the Time factor is
0. The top row shows, along effect sizes of the Group factor, the mean power at all
values of effect size of the Time factor.
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Intraocular Pressure

In this section, we analyze intraocular pressure data. This data set contains multivari-

ate repeated measures data in a 2× 2 crossover design (Grender and Johnson, 1994).

The data were recorded from an experiment to evaluate presence of collagen bits in

a 1:8 concentration of Optipranolol suspended in Murocel. The bivariate response,

intraocular pressure, both in the right eye and left eye was measured at baseline

(pre-treatment measurement) and at 1, 8 and 24 hours following the topical applica-

tion of treatment. There are two sequences, BITS/NO BITS and NO BITS/BITS.
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Figure 2.2: Power curves of detecting fixed alternative of Group effect in factorial
designs with α = 0.05, a = 2, p = 2, t = 3, CS: ρ = (0.2, 0.7). In the panel plot,
columns are for different distributions and rows are for different effect sizes of the
Group factor, denoted by δGroup. In fact, the bottom row shows type-I error rates
for testing Group effect. The effect of the Time factor is set to be 0 throughout the
simulations investigating the relationship between power and sample size. The sample
sizes are n(1) = (8, 14), n(2) = (12, 21), n(3) = (16, 28), n(4) = (20, 35), n(5) = (24, 42)
and n(6) = (28, 49).
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Seven subjects were given the treatments in the order of BITS/NO BITS (n1 = 7)

and six subjects were given the treatments in the reverse order of NO BITS/BITS

(n2 = 6), both with a seven-day washout period between drug treatments. The goal

of the study was to analyze difference in intraocular pressure between baseline and

the three post-treatment measurements.

The data set contains two sequences (a = 2). There are two periods and within

each period there are there time points, which makes the total number of time points

2 × 3 = 6. At each time point, two intraocular pressure variables (in the right eye

and left eye) were measured (p = 2). Five different null hypotheses of interest about

main and interaction effects can be tested by choosing appropriate contrast matrices.

For illustration purpose, we test effects including Time effect within each Period

for each Sequence, Time effect, Period effect, Treatment effect and Treatment ×

Period interaction effect. Assuming there is no treatment carryover effect, we test

the hypothesis H
(φ)
0 : Hφµ = 0, where Hφ = C>φ ⊗Dφ ⊗ Ip. The corresponding

contrast matrices are DT(P) = I2 ⊗ (I2,−12) and CT(P) = I2 for testing Time effect

within each Period, DT = 1>2 ⊗ (I2,−12) and CT = J2/2 for testing Time effect,

DP = I2 ⊗ 1>3 and CP = J2/2 for testing Period effect, DTr = (1,−1) ⊗ 1>3 and

CTr = P2 for testing Treatment effect, and DTrP = 1>6 /6 and CTrP = P2 for testing

Treatment× Period effect.

Again, we perform a preliminary check on the Intraocular Pressure data. The

marginal distributions of the two response variables, right eye pressure and left eye

pressure are both right-skewed. Moreover, the covariance matrices of the two se-

quences are unequal and the sample sizes are unbalanced. The simulation results in

Section 2.4 indicate that WLF method is the best for use when data are nonnormal

in unbalanced heteroscedastic designs.

Table 2.12 shows the p-values for testing the aforementioned effects using WLF

method. At the significance level of 0.05, there is no Time effect within each Period

for each Sequence and there is no significant difference between the two treatments

(BITS and NO BITS) in lowering eye pressure. Both Time and Period have significant

influences on the reduction of intraocular pressure. However, the interaction effect of
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Treatment× Period is not significant.

Table 2.12: Analysis of the difference in intraocular pressure (both right eye and left
eye) across three time points (1, 8, 24 hours) following treatment using WLF.

Effect WLF Effect WLF

Time (Period) 0.466 Period <0.001
Treatment 0.147 Time 0.008

Treatment× Period 0.269

2.6 Discussion and Conclusion

Multivariate growth curve data or data with repeated measures on multiple outcome

variables have become more and more common in a variety of fields. There are some

effective methods developed for analyzing repeated measures, but with the assump-

tions of multivariate normality and homoscedasticity. However, these assumptions are

difficult to justify and attain in reality. In this chapter, we have considered inference

methods for generalized MANOVA designs without assuming multivariate normality

and homogeneous covariance matrices.

Compared with the classical methods, the proposed method has the advantage

that it is applicable for a wide range of designs in a unified way, by specifying appro-

priate contrast matrices. For illustration of the methodology, general factorial design

and crossover design have been considered. The proposed approximate finite-sample

test uses adjusted sums of square matrices to mitigate the influence of potential

heterogeneity in data. The proposed methodology is applicable to data with any

distribution and with finite second moment.

Our simulation studies showed that when covariance matrices are equal across

groups, the proposed method performs roughly the same as the classical methods.

However, when heteroscedasticity presents, the proposed method outperforms both

competing tests, especially when sample sizes are unequal across groups for both

positive and negative pairings. We further investigated test performance in terms

of power. Compared with the classical methods, the proposed method achieved the
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most accurate type-I error rate. Moreover, such superiority in type-I error rate does

not come at the expense of reduced power.

In general, with multivariate growth curve data, the proposed method has an edge

over classical methods for growth curve (also known as generalized MANOVA) mod-

els with heterogeneity of covariance matrices. Such advantage is more pronounced

in unbalanced heteroscedastic designs. On the contrary, the classical methods ex-

hibit unstable behavior in such designs. Due to the robustness to nonnormality and

heteroscedasticity, we recommend using the proposed test in real applications. The

proposed method may not be appropriate when count data, discrete data and ordered

categorical data are collected. We plan to investigate the idea for applications with

nonmetric data in future research.

2.7 Appendix

Wishart Approximation

Suppose Yi ∼ Np(0,Σi) are independent for i = 1, . . . , n,Σi > 0. Define, Q =

Y CY >, where C = (cij) is an n × n symmetric nonnegative definite matrix and

Y = (Y1,Y2, . . . ,Yn) is a p× n matrix. The idea is to approximate the distribution

of Q by a p-dimensional central Wishart distribution with degrees of freedom f and

mean fΨ, which is denoted by Wp(f,Ψ), with Ψ > 0. The quantities f and Ψ

are to be approximated by matching the means and the total variances of Q and

Wp(f,Ψ). Note that the total variance is the trace of the variance-covariance matrix.

Given a random matrix W ∼ Wp(f,Ψ), we have E(W ) = fΨ and Var(W ) =

f(Ip2 +Kp,p)(Ψ⊗Ψ).

By Lemma 1 in Harrar and Bathke (2012b), the mean and variance of Q can be

calculated.

Lemma 2.7.1. Let A = (aij) and B = (bij) be n× n matrices. Then, E(Y AY >) =∑n
i=1 aiiΣi and Cov

(
Vec(Y AY >),Vec(Y BY >)

)
=
∑n

i=1

∑n
j=1 aijbij(Ip2+Kp,p)(Σi⊗

Σj)+
∑n

i=1 aiibiiK4(Yi), where K4(Yi) = E(Vec(YiY
>
i )Vec(YiY

>
i )>)−(Ip2+Kp,p)(Σi⊗
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Σi)−Vec(Σi)Vec(Σi)
>. Note that under normality, K4(Yi) = 0. (Harrar and Bathke,

2012b)

Calculations for H(φ)

Equation (2.2), H(φ) = Z
(φ)
CφZ

(φ)>

, is a quadratic form. Z
(φ)

=
(
Z

(φ)

1 , . . . ,Z
(φ)

a

)
,

where Z
(φ)

i = 1
ni

∑ni
k=1Z

(φ)
ik , is a (rp)× a matrix, where r = rank(Dφ) and it depends

on the effect being tested.

By multivariate central limit theorem,
√
ni

(
Z

(φ)

i − µ̃
(φ)
i

)
D→ N(0,Σ

(φ)
i ). We use

µ̃
(φ)
i to denote the theoretical mean vectors of Z

(φ)
i1 , i = 1, 2, . . . , a. Without loss of

generality, we assume µ̃
(φ)
i = 0, i = 1, 2, . . . , a. Under this assumption, E(Z

(φ)

i ) = 0

and Cov(Z
(φ)

i ) = Σ
(φ)
i /ni. By Lemma 2.7.1 above,

E(H(φ)) = E
(
Z

(φ)
CφZ

(φ)>
)

=
a∑
i=1

Cφ,ii ·
Σ

(φ)
i

ni
= Σφ. (2.12)

Again, by Lemma 2.7.1, we calculate the covariance matrix of H(φ). Note that under

normality K4(Z
(φ)

i ) = 0. Further,

Cov
(
Vec

(
H(φ)

))
= Cov

(
Vec

(
Z

(φ)
CφZ

(φ)>
)
,Vec

(
Z

(φ)
CφZ

(φ)>
))

=
a∑
i=1

a∑
j=1

(Cφ,ij)
2 (I(rp)2 +Krp,rp

)( 1

ni
Σ

(φ)
i ⊗

1

nj
Σ

(φ)
j

)
.

(2.13)

To approximate the hypothesis matrix H(φ), we use a Wishart distribution. Let

WH(φ) ∼ Wrp(fH(φ) ,ΨH(φ)), where r = rank(Dφ) and ΨH(φ) > 0. It is well known

that (see Magnus and Neudecker, 1979)

E(WH(φ)) = fH(φ)ΨH(φ) and (2.14)

Var(WH(φ)) = fH(φ)(I(rp)2 +Krp,rp)(ΨH(φ) ⊗ΨH(φ)). (2.15)

Setting (2.12) = (2.14) and tr {(2.13)} = tr {(2.15)} we get

a∑
i=1

Cφ,ii ·
Σ

(φ)
i

ni
= fH(φ)ΨH(φ) , and

tr
{
fH(φ)(I(rp)2 +Krp,rp)(ΨH(φ) ⊗ΨH(φ))

}
=

tr

{
a∑
i=1

a∑
j=1

(Cφ,ij)
2 (I(rp)2 +Krp,rp)(

1

ni
Σ

(φ)
i ⊗

1

nj
Σ

(φ)
j )

}
.

(2.16)
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Hence, fH(φ) and ΨH(φ) can be solved. By Harrar and Bathke (2012b,a) , we get the

solutions to equations in (2.16),

fH(φ) =

tr

{(∑a
i=1Cφ,ii · Σ

(φ)
i

ni

)2
}

+

{
tr

(∑a
i=1Cφ,ii · Σ

(φ)
i

ni

)}2

∑a
i=1

∑a
j=1 (Cφ,ij)

2

{
tr

(
Σ

(φ)
i

ni

Σ
(φ)
j

nj

)
+ tr

(
Σ

(φ)
i

ni

)
tr

(
Σ

(φ)
j

nj

)}
=

tr
{
Σ2
φ

}
+ {tr (Σφ)}2∑a

i=1

∑a
j=1 (Cφ,ij)

2 1
ninj

{
tr
(
Σ

(φ)
i Σ

(φ)
j

)
+ tr

(
Σ

(φ)
i

)
tr
(
Σ

(φ)
j

)} .
and

ΨH(φ) =
1

fH(φ)

Σφ =

∑a
i=1

∑a
j=1 (Cφ,ij)

2 1
ninj

{
tr
(
Σ

(φ)
i Σ

(φ)
j

)
+ tr

(
Σ

(φ)
i

)
tr
(
Σ

(φ)
j

)}
tr
{
Σ2
φ

}
+ {tr (Σφ)}2

·Σφ.

Calculations for G(φ)

By equation (2.3), G(φ) =
∑a

i=1
Cφ,ii

ni(ni−1)
∑ni

k=1

(
Z

(φ)
ik −Z

(φ)

i

)(
Z

(φ)
ik −Z

(φ)

i

)>
. For

fixed group i and let Fi =
(
Z

(φ)
i1 ,Z

(φ)
i2 , . . . ,Z

(φ)
ini

)
. Then G(φ) can be written as

G(φ) =
a∑
i=1

Cφ,ii

ni (ni − 1)

[
Fi

(
Ini −

1

ni
Jni

)
F>i

]
.

By the definition of Z
(φ)
ij , Z

(φ)
i1 ,Z

(φ)
i2 , . . . ,Z

(φ)
ini

are i.i.d. with theoretical mean µ̃
(φ)
i and

covariance matrix Σ
(φ)
i . Also, we assume normality of the vectors Z

(φ)
i1 ,Z

(φ)
i2 , . . . ,Z

(φ)
ini

in Fi since the asymptotic distribution of the test statistic does not depend on the

distribution of the data.

By Lemma 2.7.1,

E
(
G(φ)

)
=

a∑
i=1

Cφ,ii

ni (ni − 1)
E

[
Fi

(
Ini −

1

ni
Jni

)
F>i

]
=

a∑
i=1

Cφ,ii

ni (ni − 1)

ni∑
k=1

(
1− 1

ni

)
Σ

(φ)
i

=
a∑
i=1

Cφ,ii ·
Σ

(φ)
i

ni
= Σφ.

Next, we calculate the covariance matrix of G(φ). For convenience, we use matrix

M = (muv), where u, v = 1, . . . , ni, to denote
(
Ini − 1

ni
Jni

)
. Note that under
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normality, K4

(
Z

(φ)
iu

)
= 0 by Lemma 2.7.1.

Cov
(
Vec

(
Gφ)

))
=

a∑
i=1

(Cφ,ii)
2

n2
i (ni − 1)2

Cov

[
Vec

(
Fi

(
Ini −

1

ni
Jni

)
F>i

)]

=
a∑
i=1

(Cφ,ii)
2

n2
i (ni − 1)2

{
ni∑
u=1

ni∑
v=1

m2
uv

(
I(rp)2 +Krp,rp

) (
Σ

(φ)
i ⊗Σ

(φ)
i

)}
.

To approximate the adjusted error matrix G(φ), we use a Wishart distribution

WG(φ) ∼ Wrp(fG(φ) ,ΨG(φ)), where r = rank(Dφ) and ΨG(φ) > 0. Matching the

means and total variances of G(φ) and WG(φ) , the equations are

a∑
i=1

Cφ,ii ·
Σ

(φ)
i

ni
= fG(φ)ΨG(φ) and (2.17)

tr
{
fG(φ)(I(rp)2 +Krp,rp)(ΨG(φ) ⊗ΨG(φ))

}
=

tr

{
a∑
i=1

(Cφ,ii)
2

n2
i (ni − 1)2

[
ni∑
u=1

ni∑
v=1

m2
uv

(
I(rp)2 +Krp,rp

) (
Σ

(φ)
i ⊗Σ

(φ)
i

)]}
.

(2.18)

Rewriting equation (2.17), we get ΨG(φ) = 1
f
G(φ)

Σφ. Using this, we solve for fG(φ) in

equation (2.18). For the left-hand side of equation (2.18), we have

tr

{
fG(φ)(I(rp)2 +Krp,rp)(

1

fG(φ)

Σφ ⊗
1

fG(φ)

Σφ)

}
=

1

fG(φ)

tr
{

(I(rp)2 +Krp,rp)(Σφ ⊗Σφ)
}

=
1

fG(φ)

tr {Σφ ⊗Σφ +Krp,rp(Σφ ⊗Σφ)}

=
1

fG(φ)

[tr (Σφ ⊗Σφ) + tr (ΣφΣφ)] (2.19)

=
1

fG(φ)

{
[tr(Σφ)]2 + tr

(
Σ2
φ

)}
,

where the third equality is by the property of commutation matrix (Magnus and

Neudecker, 1979), along the same line as in (2.19). For the right-hand side of equation
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(2.18),

a∑
i=1

(Cφ,ii)
2

n2
i (ni − 1)2

tr

{
ni∑
u=1

ni∑
v=1

m2
uv

(
I(rp)2 +Krp,rp

) (
Σ

(φ)
i ⊗Σ

(φ)
i

)}

=
a∑
i=1

(Cφ,ii)
2

n2
i (ni − 1)2

ni∑
u=1

ni∑
v=1

m2
uv

{[
tr
(
Σ

(φ)
i

)]2
+ tr

(
Σ

(φ)2
i

)}
=

a∑
i=1

(Cφ,ii)
2

n2
i (ni − 1)2

{[
tr
(
Σ

(φ)
i

)]2
+ tr

(
Σ

(φ)2
i

)} ni∑
u=1

ni∑
v=1

m2
uv

=
a∑
i=1

(Cφ,ii)
2

n2
i (ni − 1)2

{[
tr
(
Σ

(φ)
i

)]2
+ tr

(
Σ

(φ)2
i

)}
·

{
ni

(
1− 1

ni

)2

+
(
n2
i − ni

)(
− 1

ni

)2
}

=
a∑
i=1

(Cφ,ii)
2

n2
i (ni − 1)

{[
tr
(
Σ

(φ)
i

)]2
+ tr

(
Σ

(φ)2
i

)}
.

Equation (2.18) can be written as

1

fG(φ)

{
[tr(Σφ)]2 + tr

(
Σ2
φ

)}
=

a∑
i=1

(Cφ,ii)
2

n2
i (ni − 1)

{[
tr
(
Σ

(φ)
i

)]2
+ tr

(
Σ

(φ)2
i

)}
.

Solving for fG(φ) , we get

fG(φ) =
tr
{
Σ2
φ

}
+ {tr(Σφ)}2∑a

i=1 (Cφ,ii)
2 1
n2
i (ni−1)

{
tr
(
Σ

(φ)2
i

)
+
[
tr
(
Σ

(φ)
i

)]2}
and

ΨG(φ) =
1

fG(φ)

Σφ =

∑a
i=1 (Cφ,ii)

2 1
n2
i (ni−1)

{
tr
(
Σ

(φ)2
i

)
+
[
tr
(
Σ

(φ)
i

)]2}
tr
{
Σ2
φ

}
+ {tr(Σφ)}2

·Σφ.

Affine Invariance

With the original data Xik, where i = 1, . . . , a, k = 1, . . . , ni, we define X i =

1
ni

∑ni
k=1Xik and X =

(
X1, . . . ,Xa

)
. Now, with the transformed data Yik = (It ⊗

A)Xik + 1t ⊗ c, where A is any nonsingular p × p matrix and c is a p-dimensional

vector, we want to show the degrees of freedom in (2.10) and (2.11) and the U statistic

are affine invariant.
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Analogously, for the transformed data, we have Σ
(φ)
i,Y = (Dφ ⊗A)Vi (Dφ ⊗A)>

and Σφ,Y =
∑a

i=1Cφ,iiΣ
(φ)
i,Y /ni = (Dφ ⊗A)

(∑a
i=1

Cφ,ii
ni
Vi

)
(Dφ ⊗A)>. The ad-

justed hypothesis and error matrices are

H
(φ)
Y = (Dφ ⊗A)XCφX

>
(Dφ ⊗A)> and

G
(φ)
Y =

a∑
i=1

Cφ,ii

ni (ni − 1)

ni∑
k=1

(Dφ ⊗A)
(
Xik −X i

) (
Xik −X i

)>
(Dφ ⊗A)> ,

respectively. Note that for testing Time and Group×Time effects, Dφ1t = 0 and for

testing Group and Group×Time effects, 1>a ⊗ [(Dφ1t)⊗ c]Cφ = 0.

The approximation in (2.9) implies

f ∗H(φ),Y ·H
(φ)
∗,Y

approx∼
H

(φ)
0

Wrp

(
f ∗H(φ),Y , Irp

)
and f ∗G(φ),Y ·G

(φ)
∗,Y

approx∼ Wrp

(
f ∗G(φ),Y , Irp

)
,

where H
(φ)
∗,Y = Σ

−1/2
φ,Y H

(φ)
Y Σ

−1/2
φ,Y and G

(φ)
∗,Y = Σ

−1/2
φ,Y G

(φ)
Y Σ

−1/2
φ,Y . From (2.9), (2.10) and

(2.11), it is easy to see the degrees of freedom for the transformed data are

f ∗H(φ),Y =
rp (1 + rp)∑a

i=1

∑a
i′=1 (Cφ,ii′)

2 1
nini′
{tr (Ai,YAi′,Y ) + tr (Ai,Y ) tr (Ai′,Y )}

and

f ∗G(φ),Y =
rp (1 + rp)∑a

i=1 (Cφ,ii)
2 1
n2
i (ni−1)

{
tr
(
A2
i,Y

)
+ [tr (Ai,Y )]2

} ,
whereAi,Y = Σ

−1/2
φ,Y Σ

(φ)
i,Y Σ

−1/2
φ,Y . Note thatDφ⊗A = (Ir⊗A)(Dφ⊗Ip) and, therefore,

tr (Ai,Y ) = tr
(
Σ−1φ,Y Σ

(φ)
i,Y

)
= tr


[

(Dφ ⊗A)

(
a∑
i=1

Cφ,ii

ni
Vi

)
(Dφ ⊗A)>

]−1
(Dφ ⊗A)Vi (Dφ ⊗A)>


= tr


[

(Dφ ⊗ Ip)

(
a∑
i=1

Cφ,ii

ni
Vi

)
(Dφ ⊗ Ip)>

]−1
(Dφ ⊗ Ip)Vi (Dφ ⊗ Ip)>


= tr (Ai) .

Similarly, tr (Ai,YAi′,Y ) = tr (AiAi′). Therefore, f ∗
H(φ),Y

= f ∗
H(φ) and f ∗

G(φ),Y
=

f ∗
G(φ) and the degrees of freedom in (2.10) and (2.11) are affine invariant. Because
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Dφ ⊗A = (Ir ⊗A)(Dφ ⊗ Ip), it is easy to see that |f ∗
G(φ)G

(φ)
∗ | = |f ∗G(φ),Y

G
(φ)
∗,Y | and

|f ∗
G(φ)G

(φ)
∗ +f ∗

H(φ)H
(φ)
∗ | = |f ∗G(φ),Y

G
(φ)
∗,Y +f ∗

H(φ),Y
H

(φ)
∗,Y |. Therefore, the Wilks’ Lambda

statistic U is affine invariant as well.

Copyright© Ting Zeng, 2021.

39



Chapter 3 Resampling-based Tests for Multivariate Growth Curve Data

3.1 Introduction

Robust tests were proposed in Zeng and Harrar (2021b); Harrar and Bathke (2012b);

Zhang and Liu (2013) without assuming multivariate normality or homogeneity of

covariance matrices. Such tests applied modified MANOVA, where Wishart distribu-

tions are used to approximate the hypothesis and the error matrices by matching their

corresponding expected values and total variances. These robust tests are ideal only

when sample sizes are moderately large. When sample sizes are small, test results

tend to be liberal. Moreover, the robust tests are only asymptotic approximations

and they do not lead to asymptotically exact tests.

Without assuming multivariate normality and homogeneity of the covariance ma-

trices the multivariate Wald-type test statistic (WTS) is asymptotically exact. How-

ever, WTS is known to suffer from slow convergence and, hence, may not be satisfac-

tory in finite-sample. Large sample sizes are then required in order to maintain the

preassigned type-I error rate. Several improvements were done to tackle the small-

sample issue under MANOVA settings (Pesarin, 2001; Pesarin and Salmaso, 2010;

Good, 2005, for example), where permutation tests are utilized when the null distri-

bution of the test statistic is invariant under the corresponding randomization group.

The permutation idea was further modified for use in situations where the exchange-

ability under the null hypothesis does not hold by researchers (see Neuhaus, 1993;

Janssen and Pauls, 2003; Janssen, 2005; Omelka and Pauly, 2012; Chung and Ro-

mano, 2013; Pauly et al., 2015; Friedrich et al., 2017). In addition, Konietschke et al.

(2015) proposed another technique, bootstrap, to improve the small sample behavior

of the WTS for general heteroscedastic factorial designs. However, so far, to the best

of our knowledge, there is no existing work done for analyzing multivariate repeated

measures data without assuming multivariate normality and homoscedasticity.

The present chapter aims to develop resampling-based test statistics, where per-
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mutation, bootstrap and hybrid permutation-bootstrap procedures are investigated.

Under such resampling schemes, no assumption of multivariate normality or ho-

moscedasticity is required. The permutation scheme extends the ideas in Pauly et al.

(2015) and Friedrich et al. (2017) of permuting all longitudinal data with only one

response variable in general split-plot designs. The bootstrap scheme extends the idea

in Konietschke et al. (2015) of using a parametric bootstrap to analyze multivariate

repeated measures data in nonparametric settings. The small sample properties are

investigated via simulation studies, which show that our resampling approaches are

much more accurate than the classical WTS and some other comparable tests in most

cases.

This chapter is organized as follows. In Section 3.2, statistical models and hy-

potheses are introduced. The Wald-type test statistics, resampling procedures and

relevant mathematical results are presented in Section 3.3. The finite-sample behav-

ior of the proposed resampling-based WTS tests, classical Wald’s asymptotic test,

Doubly Multivariate Model (DMM) and Multivariate Mixed Model (MMM) are in-

vestigated in extensive simulation studies in Section 3.4. Along with the type-I error

rate (size) simulations, we also investigate power performance of the tests in Section

3.4. The application of the proposed resampling-based WTS tests is illustrated in

Section 3.5 with an optometry data set. We conclude the chapter with some discus-

sions and remarks in Section 3.6. All relevant proofs and technical details are given

in the Appendix (Section 3.7).

3.2 Models and Hypotheses

Throughout this chapter we will use the following notations. The d-dimensional

identity matrix is denoted by Id and a d× d matrix with all 1s as its components is

denoted by Jd = 1d1
>
d , where 1d = (1, . . . , 1)>d×1. We further denote the centering

matrix by Pd = Id− 1
d
Jd. The operators

⊕
and

⊗
represent the Kronecker sum and

product, respectively (Schott, 2016, Chap. 8).
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In the context of general factorial design, consider the multivariate model

Xijk = µij + εijk, (3.1)

where i = 1, . . . , a, j = 1, . . . , t, and k = 1, . . . , ni. The index i is for group (treat-

ment), j is for time (occasion), and k is for experimental unit (subject). For each

experimental unit and at each time point, a p-variate observation is made. For fixed

i and j, the random errors εij1, . . . , εijni are independent and identically distributed

p-dimensional random vectors satisfying

E(εijk) = 0 and Cov(εijk) = Σi,jj > 0. (3.2)

Stacking the group mean vectors into one vector, define µ = (µ>1 , . . . ,µ
>
a )>, where

µi = (µ>i1, . . . ,µ
>
it)
> and µij = (µ

(1)
ij , . . . , µ

(p)
ij )>. Note that we allow different covari-

ance matrices Σi and different sample sizes ni in different groups . The distribution of

the error terms can also be different across groups. The total sample size is denoted

by N =
∑a

i=1 ni and Ñ = tN is the total number of p-variate observations. The

following proportional divergence of the sample sizes is assumed in order to derive

asymptotic results.

A1 :
ni
N
→ κi > 0 as N →∞, i = 1, . . . , a. (3.3)

A2 : sup
i,j

E(||εij1||4) <∞, i = 1, . . . , a; j = 1, . . . , t. (3.4)

LetX = (X>1 , . . . ,X
>
a )>, whereXi = (X>i1, . . . ,X

>
ini

)>, Xik = (X>i1k, . . . ,X
>
itk)
>

and Xijk = (X
(1)
ijk , . . . , X

(p)
ijk)>. We denote the overall sample mean vector by X =

(X
>
1·, . . . ,X

>
a·)
>, where X i· =

1
ni

∑ni
k=1Xik, and the covariance of

√
NX by

Σ = Cov(
√
NX) = diag(

N

ni
Σi : 1 ≤ i ≤ a),

a block diagonal matrix, where diagonal blocks are the covariances of
√
NX i·. Simi-

larly, we denote the empirical covariance by

Σ̂ = diag(
N

ni
Σ̂i : 1 ≤ i ≤ a), (3.5)
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where

Σ̂i =
1

ni − 1

ni∑
k=1

(Xik −X i·)(Xik −X i·)
>.

Note that the estimator Σ̂ is strongly consistent under the asymptotic setting A1 in

(3.3) because Σ̂Σ−1 converges almost surely to the identity matrix I.

To conduct a hypothesis test, letH be an appropriate contrast matrix. Generally,

it is more convenient to use the unique projection matrix T = H>(HH>)−H , where

(HH>)− is some generalized inverse of HH>, to formulate our hypotheses. It is

easy to show that Tµ = 0 if and only if Hµ = 0. Therefore, the unique, symmetric

and idempotent contrast matrix T is equivalent to H for testing Hµ = 0. For

the mandible data in Timm (1980, Table 7.2), there are three dependent variables

(p = 3), three time points (t = 3) and two treatment groups (a = 2) with equal

sample sizes n1 = n2 = 9 in two groups. The goal of the study was to test whether

the treatments induced differential changes over time on the mandibles. Hence, it is

of interest to check if there was any treatment (group) effect (G), time effect (T),

and treatment (group) by time interaction effect (GT). The contrast matrices are

HG = P2⊗ 1
3
1>3 ⊗I3, HT = 1

2
1>2 ⊗P3⊗I3 and HGT = P2⊗P3⊗I3, respectively. The

corresponding unique projection matrices are TG = P2⊗ 1
3
J3⊗I3, TT = 1

2
J2⊗P3⊗I3,

and TGT = P2 ⊗ P3 ⊗ I3, respectively.

3.3 Test Statistics and Distributions

Wald’s Asymptotic Test

One classical approach to conducting a multivariate hypothesis test is to use the

Wald-type statistic (WTS). For testing H0 : Tµ = 0, the WTS is defined by

QN(T ) = NX
>
T (T Σ̂T )+TX, (3.6)

where (T Σ̂T )+ denotes the pseudo inverse or Moore-Penrose inverse of T Σ̂T . Under

the null hypothesis, the statistic QN(T ) has an asymptotic chi-square distribution,

which is formally stated in the following theorem.
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Theorem 3.3.1. Assume the model (3.1) and (3.2). Under the null hypothesis H0 :

Tµ = 0, and under the conditions A1 and A2, QN in (3.6) has, asymptotically as

N →∞, a central χ2
fT

distribution with degrees of freedom fT = rank(T ).

The corresponding test is given by ϕWTS = I{QN(T ) > χ2
fT ,1−α

}, where χ2
fT ,1−α

denotes the (1− α)-quantile of the χ2
fT

distribution. The test is an asymptotic level

α test and is consistent for general fixed alternatives Tµ 6= 0. The proof of Theorem

3.3.1 is given in the Appendix (Section 3.7).

It is well known that the Wald-type statistic has slow convergence due to the fat-

tailed limiting distribution, chi-square distribution. Therefore, in order to achieve a

satisfactory approximation from the chi-square asymptotic distribution, large sample

sizes are needed. In the next section, we will develop simple resampling approxima-

tions to the null distribution to overcome the large sample size requirement. We will

then prove that the procedures are actually asymptotically valid in general factorial

designs where no assumptions of equal covariances, sample sizes and error distribu-

tions are required.

Two-stage Resampling Method

In this section, we delve into the resampling procedures with permutation, bootstrap

and hybrid permutation-bootstrap to propose test procedures for the multivariate

repeated measures data. We also demonstrate the validity of the test procedures by

deriving resampling Central Limit Theorem.

Permutation over Time

Let Xπ denote a fixed but arbitrary permutation of all Ñ p-variate observations of

X for the total of N experimental or observational units,

Xπ = π(X>111, . . . ,X
>
anat)

> = (Xπ
111
> , . . . ,Xπ

anat
>)>.

The notation Xπ
ijk denotes the p-variate vector of the kth subject in the ith group at

the jth time point from the permuted vector Xπ. In other words, the permutation
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process permutes the individual Xijk vectors from X and results in a new vector Xπ,

which is composed of the same individual Xijk vectors but reordered. Analogously,

we use X
π

to denote the overall sample mean vector of the permuted vector Xπ,

and Σ̂π =
⊕a

i=1
N
ni

Σ̂π
i to denote the empirical covariance matrix of

√
NX

π
,where

Σ̂π
i = 1

ni−1
∑ni

k=1(X
π
ik −X

π

i·)(X
π
ik −X

π

i·)
>.

As Good (2005) noted, with classical permutation tests, one has to ensure ex-

changeablitity to provide meaningful results. For example, if a set of observations

Xijk, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , ni are i.i.d., then they are exchangeable,

which means that their joint distribution will still be the same for any relabeling.

In our context, if the p-variate observations are exchangeable under the null hy-

pothesis H0 : Tµ = 0, X and Xπ would have the same distribution. However, with

general factorial design, it is not the case. For example, in Huang et al. (2006) the

general two- or higher-way layouts observations are not exchangeable. The studen-

tization methodology (see Chung and Romano, 2013; Janssen, 1997; Neuhaus, 1993;

Janssen and Pauls, 2003; Janssen, 2005; Omelka and Pauly, 2012; Pauly et al., 2015;

Neubert and Brunner, 2007) can be applied to the permuted overall sample mean

vector
√
NX

π
to overcome the heteroscedasticity problem. Projecting the permuted

overall sample mean vector onto the hypothesis space, we obtain the Wald-type statis-

tic for the permuted vector in an analogous manner as in (3.6),

Qπ
N(T ) = N X

π >
T (T Σ̂πT )+TX

π
, (3.7)

where X
π

= (X
π

1·
>
, . . . ,X

π

a·
>

)> and X
π

i· =
1
ni

∑ni
k=1X

π
ik for 1 ≤ i ≤ a.

The validity of the permutation procedure is demonstrated in the following theo-

rem where the conditional distribution of the permutation version of the Wald-type

statistic Qπ
N(T ) is ensured to always approximate the distribution of QN(T ) under

the null hypothesis. In particular, the weak convergence of Qπ
N conditioned on the

data X is estimated. This is a desirable property, which justifies that the resampling

method works and is often hard to come by.

Theorem 3.3.2. Assume the model described in (3.1) and (3.2). Under the null

hypothesis H0 : Tµ = 0, and the conditions A1 and A2, conditional on the observed
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data X, the studentized permutation distribution of Qπ
N in (3.7) weakly converges to

the central χ2
fT

distribution in probability, where fT = rank(T ).

The corresponding permutation test is given by ϕWTPS = I{QN(T ) > c1−α},

where c1−α is the conditional (1− α)-quantile of the permutation distribution of Qπ
N

given the data. The proof of Theorem 3.3.2 essentially involves showing the Pro-

horov distance between the conditional distribution of Qπ
N(T ) given X and the null

distribution of QN(T ) converges to zero in probability as N →∞. This conditional

Central Limit Theorem holds under both the null and the alternative hypotheses.

More precisely, for any underlying parameter µ ∈ Ratp and the null value µ0 satisfy-

ing Tµ0 = 0,

sup
x∈R
|Pµ (Qπ

N(T ) ≤ x|X)− Pµ0 (QN(T ) ≤ x)| → 0

in probability, where Pµ (Qπ
N(T ) ≤ x|X) denotes the conditional distribution function

of Qπ
N(T ) under the assumption that µ is the true parameter and Pµ0 (QN(T ) ≤ x)

denotes the unconditional distribution function of QN(T ) under the assumption that

µ0 is the true parameter. This convergence guarantees that the level α critical value

obtained from the resampling distribution always converges to the χ2
fT ,1−α, which is

the (1− α)-quantile of the asymptotic distribution of the Wald-type statistic.

In addition, the permutation test, asymptotically, keeps the preassigned level

α under the null hypothesis. Moreover, it is consistent for any fixed alternative

point µ for which Tµ 6= 0. Thus, asymptotically, the permutation test has power 1

for any fixed alternative. The numerical studies in Section 3.4 conclusively confirm

this theoretical result in finite-samples. Furthermore, when the observed data X is

exchangeable under the null hypothesis, the joint distribution is invariant under all

rearrangements of the observations. That is, X and Xπ have the same distribution

resulting in the distribution of the test statistic Qπ
N in (3.7) asymptotically follows

central χ2
fT

distribution. In other words, the permutation test is asymptotically exact.

The proof of Theorem 3.3.2 is given in the Appendix (Section 3.7).
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Bootstrap Sampling the Subjects

So far, we described a permutation resampling technique to deal with the repeated

measures data despite the time dependencies. Notice that we have p variables mea-

sured each time for every experimental unit. To deal with the multivariate aspect of

growth curve data , we use bootstrap resampling technique. To better capture the

covariance structure of the original data and to get a more accurate finite sample

approximation, we employ parametric bootstrap. As we reviewed in Section 3.1, for

existing mean-based inference methods on multivariate data, there are few that do

not assume either multivariate normality or homoscedasticity. For example, Xu and

Cui (2008) does not assume multivariate normality, but it is median-based MANOVA

and requires equal covariances across groups. When covariance matrices are heteroge-

neous, Vallejo et al. (2001) compares a couple of multivariate test procedures assum-

ing multivariate normality. Without the assumptions of multivariate normality and

homogeneity of covariance matrices, parametric bootstrap has long been a prevalent

resampling technique and has been applied in the context of one-way and two-way

factorial designs (see Zhang and Liu, 2013; Xu, 2015; Zhang, 2012; Krishnamoorthy

and Lu, 2010; Xu et al., 2013).

In general, parametric bootstrap is utilized for parametric models. However, we

show below a parametric bootstrap which results in an asymptotically valid procedure

in our nonparametric settings. This parametric bootstrap arises from the use of

multivariate normality with the rationale that it can better mimic the covariance

structure of the original observations and further lead to a more accurate finite-

sample approximation. Given the p-variate observations at t time points, we generate

ni samples from N(0, Σ̂i), for i = 1, . . . , a,

X∗i1, . . . ,X
∗
ini

i.i.d∼ N(0, Σ̂i).

With tp-variate observations X∗11, . . . ,X
∗
ana , the bootstrap version of the Wald-type

statistic can be calculated in the way analogous to QN in (3.6),

Q∗N(T ) = N X
∗ >
T (T Σ̂∗T )+TX

∗
, (3.8)
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where X
∗

= (X
∗
1·
>
, . . . ,X

∗
a·
>

)>, X
∗
i· = 1

ni

∑ni
k=1X

∗
ik and Σ̂∗ =

⊕a
i=1

N
ni

Σ̂∗i and

Σ̂∗i = 1
ni−1

∑ni
k=1(X

∗
ik − X

∗
i·)(X

∗
ik − X

∗
i·)
>. The following theorem confirms that

the parametric bootstrap version of the Wald-type statistic Q∗N(T ) has the same

asymptotic properties as the permutation version of the Wald-type statistic Qπ
N(T ).

Specifically, under the null hypothesis, conditioned on the observed data X, the

bootstrap distribution of Q∗N(T ) always approximates the distribution of the original

Wald-type statistic QN(T ).

Theorem 3.3.3. Assume the model described in (3.1) and (3.2). Under the null

hypothesis H0 : Tµ = 0, and the conditions A1 and A2, conditional on the observed

data X, the bootstrap distribution of Q∗N in (3.8) weakly converges to the central χ2
fT

distribution in probability, where fT = rank(T ).

The corresponding bootstrap test is given by ϕWTBS = I{QN(T ) > c∗1−α}, where

c∗1−α is the conditional (1−α)-quantile of the bootstrap distribution of Q∗N given the

data. As in the permutation test, the conditional Central Limit Theorem remains

true under both the null and alternative hypothesis. More precisely, ∀µ ∈ Ratp and

the null value µ0 satisfying Tµ0 = 0,

sup
x∈R
|Pµ (Q∗N(T ) ≤ x|X)− Pµ0 (QN(T ) ≤ x)| → 0

in probability, where Pµ (Q∗N(T ) ≤ x|X) denotes the conditional distribution function

of Q∗N(T ) under the assumption that µ is the true parameter and Pµ0 (QN(T ) ≤ x)

denotes the unconditional distribution function of QN(T ) under the assumption that

µ0 is the true parameter. Accordingly, the conditional distribution of the parametric

bootstrap version of the Wald-type statistic Q∗N(T ) approximates the distribution of

QN(T ) under the null hypothesis. Further, the level α critical value obtained from

the bootstrap distribution of Q∗N(T ) converges to the χ2
fT ,1−α, which is the (1 − α)-

quantile of the asymptotic distribution of the Wald-type statistic. In other words,

the parametric bootstrap test and the permutation test share the same asymptotic

properties. The proof of Theorem 3.3.3 is given in the Appendix (Section 3.7).

Another well known bootstrap is called wild bootstrap, which was originally de-

veloped by Wu (1986). It was designed to analyze data with heteroscedasticity. The
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idea of wild bootstrap is similar to that of the residual bootstrap, where the response

variables are resampled based on the residuals. Specifically, the residuals are ran-

domly multiplied by a random variable. For this random variable, Davidson and

Flachaire (2008) proposed the Rademacher distribution, which is a discrete probabil-

ity distribution. A Rademacher random variable has 50% probability of taking −1

and 50% probability of taking 1. The tp-variate wild bootstrap samples are

X†ik = X i· + s†ik
(
Xik −X i·

)
,

where i = 1, . . . , a, k = 1, . . . , ni and s†ik follows Rademacher distribution, i.e.,

s†ik =

−1 with probability 1
2

1 with probability 1
2

.

Analogously, the wild bootstrap version of the Wald-type statistic can be calculated

and is denoted by Q†N ,

Q†N(T ) = N X
† >
T (T Σ̂†T )+TX

†
, (3.9)

where X
†

= (X
†
1·
>
, . . . ,X

†
a·
>

)>, X
†
i· = 1

ni

∑ni
k=1X

†
ik and Σ̂† =

⊕a
i=1

N
ni

Σ̂†i and

Σ̂†i = 1
ni−1

∑ni
k=1(X

†
ik − X

†
i·)(X

†
ik − X

†
i·)
>. The asymptotic properties of Q†N are

formally stated in the following theorem.

Theorem 3.3.4. Assume the model described in (3.1) and (3.2). Under the null

hypothesis H0 : Tµ = 0, and the conditions A1 and A2, conditional on the observed

data X, the wild bootstrap distribution of Q†N in (3.9) weakly converges to the central

χ2
fT

distribution in probability, where fT = rank(T ).

The corresponding wild bootstrap test is ϕWTWBS = I{QN(T ) > c†1−α}, where

c†1−α is the conditional (1−α)-quantile of the wild bootstrap distribution of Q†N given

the data. Moreover, the following result holds for wild bootstrap procedure as well.

∀µ ∈ Ratp and the null value µ0 satisfying Tµ0 = 0,

sup
x∈R
|Pµ(Q†N(T ) ≤ x|X)− Pµ0 (QN(T ) ≤ x)| → 0
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in probability, where Pµ(Q†N(T ) ≤ x|X) denotes the conditional distribution function

of Q†N(T ) under the assumption that µ is the true parameter and Pµ0 (QN(T ) ≤ x)

denotes the unconditional distribution function of QN(T ) under the assumption that

µ0 is the true parameter. The proof of Theorem 3.3.4 is analogous to that of Theorem

3.3.3 and it is briefly given in the Appendix (Section 3.7).

Hybrid Permutation–Bootstrap Resampling

With the validity of separate permutation test and parametric bootstrap test estab-

lished, we propose a Wald-type hybrid permutation-bootstrap procedure. With the

original stacked data X, keeping each p-variate observation Xijk intact, we permute

or relabel the observations. Next, we conduct parametric bootstrap for each group

using sample mean and sample covariance of the permuted vector Xπ
i , specifically,

generating multivariate normal data for each group. We denote the permuted and

then bootstrapped data by X?. Analogously, the permutation-bootstrap version of

the Wald-type statistic can be calculate,

Q?
N(T ) = N X

?>
T (T Σ̂?T )+TX

?
, (3.10)

where X
?

= (X
?

1·
>
, . . . ,X

?

a·
>

)>, X
?

i· = 1
ni

∑ni
k=1X

?
ik and Σ̂? =

⊕a
i=1

N
ni

Σ̂?
i and

Σ̂?
i = 1

ni−1
∑ni

k=1(X
?
ik −X

?

i·)(X
?
ik −X

?

i·)
>. We repeat such bootstrap process for so

many times, say 100, to get a distribution of Q?
N .

Further, we repeat the entire permutation-bootstrap process for 100 times, which

creates 100 of the distributions of Q?
N . Combining 100 × 100 = 10, 000 of the Q?

N

values, we obtain a final distribution of Q?
N . The corresponding hybrid permutation-

bootstrap test is given by ϕWTHS = I{QN(T ) > c?1−α}, where c?1−α is the conditional

(1−α)-quantile of the permutation-bootstrap combined distribution of Q?
N given the

data. Moreover, we calculate the p-value by comparing the original WTS QN with

10, 000 of the Q?
N values. The step by step numerical algorithm is given below:

Step1: Given X, calculate the original Wald-type statistic QN(T ) for appropriate

choice of the projection matrix.
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Step 2: Randomly permuteX with each p×1 vector intact. In other words, permute

the p-variate observations as a whole.

Step 3: Using group sample means and group sample covariance matrices of the

permuted data from step 2, conduct B parametric bootstraps.

Step 4: Repeat steps 2-3 a large number of, say P, times.

Step 5: Calculate Wald-type statistic Q?
N(T ) for each of the P × B data sets from

step 4, denoted by Q?
N(1), . . . , Q

?
N(L), where L = P× B

Step 6: Compute the p-value by

p-value =
1

P× B

P×B∑
l=1

I{QN(T ) ≤ Q?
N (l)(T )}.

3.4 Simulation Studies

Simulation Design

In this section we numerically evaluate the testing schemes developed in Section 3.3

using several specific designs. To study the finite-sample behavior of the resampling-

based tests, i.e., the Wald-type permutation test (PT), parametric bootstrap test

(BT), wild bootstrap (WBT) and the hybrid permutation-bootstrap test (PBT), we

investigate the empirical type-I error rate and power for detecting fixed alternatives

via simulations. To make the investigation more comprehensive, we also include the

classical multivariate tests, DMM, MMM and the Wald’s asymptotic tests (AT) as

competing procedures. We compare the performance of the aforementioned seven

test procedures in terms of their ability to control the preassigned type-I error rate

and to detect fixed alternatives under different settings. These tests will hereinafter

be referred to as their corresponding abbreviations. We conduct our simulations

under various designs, including multiple settings for sample size, data distribution,

covariance structure and effect tested. Specifically, we have the following objectives

for our simulation studies.

1. Investigate the effect of covariance structure on the performance of the tests.
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2. Analyze the effect of distribution on the performance of the tests.

3. Examine the effect of hypothesis type on the performance of the tests.

4. Study the effect of sample size on the performance of the tests.

All simulations are conducted in R version 3.6.2 with 5000 of simulations for one

set of test results and the nominal type-I error rate is α = 0.05. Within each simu-

lation, 100 permutations and 100 bootstraps are carried out for PBT. The number

of repetitions is set to be 1000 for PT, BT and WBT. Generally, the larger num-

ber of repetitions and simulation runs is used, the better simulation results will be.

However, it also means that more computational resources are required. We choose

these numbers because not only they are large enough to confirm the validity of our

methodology, but also they are considerably efficient in terms of computing time.

In our simulations, we simulate multivariate growth curve data in the context of

general factorial design. To be concrete, we set the number of groups to be a = 2 with

group sample sizes denoted by n = (n1, n2). We adequately evaluate both balanced

and unbalanced cases. For balanced settings, we consider n = {(20, 20), (30, 30)}.

For unbalanced cases, we investigate n = {(20, 30), (30, 40)}.

In addition, the computational complexity of multivariate data analysis can grow

exponentially as the dimension increases even just by one. Therefore, to illustrate the

performance of our methods in a more succinct and efficient way, we set the dimension

of the observations to be p = 4, and the number of repeated measures to be t = 2. We

are interested in whether there is any Group (G), Time (T) and Group×Time (GT)

effects. The corresponding unique projection matrices for testing these hypotheses

are TG = Pa ⊗ 1
t
Jt ⊗ Ip, TT = 1

a
Ja ⊗ Pt ⊗ Ip and TGT = Pa ⊗ Pt ⊗ Ip, respectively.

For covariance structure, we consider both homoscedastic and heteroscedastic de-

signs. The covariance structures investigated are compound symmetry and the first

order autoregressive structure. With the partitioned matrix Σi = (Σi,jk) representa-

tion, two covariance structures to be considered are below.
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(i) Compound symmetry

Σi =

Σi,kk = (1− ρi)Ip + ρiJp k = 1, . . . , t

Σi,kj = ρiJp k 6= j and k, j = 1, . . . , t

,

where we take ρ = (0.2, 0.2) as the homoscedastic setting and ρ = (0.2, 0.7) as

the heteroscedastic setting.

(ii) Autoregressive structure AR(1)

Σi =

Σi,kk = (1− ρi)Ip + ρiJp k = 1, . . . , t

Σi,kj = ρ
|k−j|
i Jp j 6= k and k = 1, . . . , t

,

where we consider ρ = (0.2, 0.2) as the equal covariances setting and ρ =

(0.2, 0.7) as the unequal covariances setting.

The compound symmetric and the autoregressive covariance structures will here-

inafter be referred to as CS and AR, respectively. The equal covariances settings have

the same correlation value in different groups, representing homoscedasticity. How-

ever, the unequal covariances settings have different correlation values in different

groups, serving as heteroscedastic cases. Heteroscedastic designs with ρ = (0.2, 0.7)

are considered as positive pairings if n2 is larger than n1, but are considered as neg-

ative pairings if n2 is smaller than n1.

Data are generated according to the model

Xik = µi + Σ
1/2
i εik, i = 1, . . . , a; k = 1, . . . ni, (3.11)

where Σ
1/2
i is the square root of Σi. To generate independent and identically dis-

tributed random vectors εik = (ε>i1k, . . . , ε
>
itk)
>, where εijk = (ε

(1)
ijk, . . . , ε

(p)
ijk)
>, we

generate each component from the same standardized distribution by

ε
(s)
ijk =

X
(s)
ijk − E(X

(s)
ijk)√

Var(X
(s)
ijk)

, s = 1, . . . , p,

where X
(s)
ijk can be normal, t(5), χ2(5) and lognormal random variables.
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Simulation Results

The simulation results for testing Time and Group×Time effects are presented here

for illustration purpose. The simulation results for testing Group effect are shown in

the Appendix (Section 3.7).

Table 3.1–3.2 present simulation results for homoscedastic settings with balanced

and unbalanced sample sizes, respectively. It can be seen from these two tables that

for all four data distributions (normal, t(5), χ2(5) and lognormal) and for testing all

three effects (Time, Group, and Group×Time effects), AT tends to highly over-reject

the null hypothesis in all scenarios, especially when sample sizes are smaller, i.e., n =

(20, 20) in Table 3.1 and n = (20, 30) in Table 3.2. However, under homoscedastic

settings, PBT, BT, DMM and MMM produce type-I error rates that are almost exact

for normal, t(5) and χ2(5) distributions and for testing all three effects. When the

data are lognormal, these four tests are conservative. Remarkably, under the same

settings, WBT and PT perform very well in terms of controlling the nominal type-I

error rate in all scenarios.

Next, we investigate the test performance under heteroscedastic settings in Tables

3.3, 3.4 and 3.5. Likewise, test results of AT are extremely liberal in all scenarios

of heteroscedastic settings. In some cases the type-I error rates are larger than 10%.

Under balanced heteroscedastic settings in Table 3.3, PBT, BT, DMM and MMM

perform well for normal, t(5) and χ2(5) distributions, but they lead to conservative

test results for lognormal data. However, WBT and PT maintain the type-I error

rates to the nominal level in all cases.

Table 3.4 shows test results of positive pairing cases where the larger (smaller)

covariance is associated with the larger (smaller) sample size. Under such settings,

test results of AT, DMM and MMM are very liberal in general. Although test results

of PBT and PT are slightly liberal for the smaller sample size set n = (20, 30), they

perform well for the larger sample size set n = (30, 40). Additionally, BT keeps the

test results to the nominal level, especially for normal, t(5) and χ2(5) distributions.

WBT performs well in all positive pairing cases, for all four distributions and for all

54



three effects.

Under negative pairing settings, as shown in Table 3.5, DMM and MMM are

extremely conservative. However, PBT, PT, BT and WBT perform very well in

general. PBT and BT are slightly conservative for testing Time and Group×Time

effects with highly skewed lognormal data. It’s worth noting that test results of WBT

and PT are almost exact in all scenarios.

Power Studies

Power versus Effect Size

We also investigate empirical power of the aforementioned test procedures to detect a

fixed alternative. To assure that all competing methods control the type-I error rate

under the null hypothesis, we restrict our power simulations to balanced homoscedas-

tic designs. Specifically, we set the number of groups to be a = 2 with sample sizes

n = (30, 30). There are four response variables (p = 4) and three time points (t = 3).

The covariance structure is compound symmetric with ρ = (0.2, 0.2).

Let δ vary from 0 to 0.6 with 0.1 increment. For testing Time effect, we set

µ1 = µ2 = δ(1, 2, . . . , t)> ⊗ 1p. For testing Group effect, we let µ1 = 0tp×1 and µ2 =

δ1t⊗1p. For testing Group×Time, we have µ1 = 0tp×1 and µ2 = δ(1, 2, . . . , t)>⊗1p.

Figure 3.1 shows the empirical power curves for detecting Time, Group and

Group×Time effects of all seven test procedures along increasing δ value, with data

from normal, t(5), χ2(5) and lognormal distributions. It can be seen that, in general,

AT has the most liberal test results at δ = 0, which leads to the largest power among

all methods, especially for testing Time and Group×Time effects. However, due to

its extreme liberality, the AT test is not recommended for use in practice. We include

the AT method for illustration purpose only. For comparison of the test performance

in terms of power, we only compare the remaining six methods, i.e., DMM, MMM,

WBT, PBT, PT and BT.

For testing Group effect in the bottom row of Figure 3.1, all six methods achieve

almost identical power along different δ values for normal, t(5) and χ2(5) distributions.
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Table 3.1: Type-I error rate (×100) of DMM, MMM, AT, WBT, PBT, PT and BT for
balanced homoscedastic factorial designs for testing Time and Group×Time effects,
a = 2, p = 4, t = 2, CS: ρ = (0.2, 0.2), AR: ρ = (0.2, 0.2).

Dist Cov n
Time

DMM MMM AT WBT PBT PT BT

N
or

m
al CS

(20,20) 4.4 4.4 8.9 4.5 4.4 4.6 4.4
(30,30) 4.6 4.6 7.2 4.9 4.6 4.9 4.7

AR
(20,20) 4.7 4.7 9.0 4.9 4.6 4.9 4.9
(30,30) 4.7 4.7 7.7 4.7 4.5 4.7 4.7

t(
5)

CS
(20,20) 4.9 4.9 8.8 5.1 4.7 4.9 4.8
(30,30) 4.9 4.9 7.7 5.3 4.8 5.0 4.8

AR
(20,20) 4.6 4.6 8.3 4.7 4.5 4.7 4.5
(30,30) 4.9 4.9 7.3 5.0 4.7 5.1 4.9

χ
2

(5
) CS

(20,20) 4.8 4.8 9.5 5.1 4.5 5.0 4.8
(30,30) 4.8 4.8 7.1 4.7 4.7 5.1 4.8

AR
(20,20) 5.0 5.0 9.4 5.2 4.9 5.3 4.9
(30,30) 4.7 4.7 7.1 4.9 4.6 4.9 4.5

L
og

n
or

m
a
l

CS
(20,20) 3.7 3.7 7.5 4.8 3.5 4.8 3.5
(30,30) 3.9 3.9 6.6 5.0 3.8 5.0 3.9

AR
(20,20) 3.5 3.5 7.3 4.5 3.3 4.6 3.4
(30,30) 3.2 3.2 6.1 4.2 3.2 4.4 3.3

Dist Cov n
Group×Time

DMM MMM AT WBT PBT PT BT

N
or

m
a
l CS

(20,20) 5.6 5.6 9.9 5.7 5.6 5.6 5.5
(30,30) 4.7 4.7 7.6 4.9 4.7 4.8 4.9

AR
(20,20) 4.8 4.8 8.8 4.9 4.8 4.8 4.7
(30,30) 4.9 4.9 7.4 5.1 4.8 5.0 5.0

t(
5)

CS
(20,20) 4.9 4.9 8.7 5.2 4.8 5.3 4.9
(30,30) 5.1 5.1 7.5 5.1 4.9 5.3 5.1

AR
(20,20) 4.8 4.8 8.7 5.2 4.8 5.1 4.9
(30,30) 5.0 5.0 7.4 5.3 4.9 5.3 5.0

χ
2

(5
) CS

(20,20) 4.4 4.4 8.8 4.7 4.3 4.8 4.4
(30,30) 4.9 4.9 7.5 5.1 4.9 5.3 5.1

AR
(20,20) 4.6 4.6 8.4 4.9 4.4 4.8 4.7
(30,30) 4.8 4.8 7.2 4.9 4.8 4.9 4.9

L
og

n
or

m
al

CS
(20,20) 3.5 3.5 7.7 5.0 3.4 4.9 3.6
(30,30) 3.9 3.9 6.1 4.6 3.8 5.0 4.0

AR
(20,20) 4.0 4.0 7.8 5.0 3.7 5.0 3.7
(30,30) 3.7 3.7 6.1 4.8 3.5 4.7 3.7
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Table 3.2: Type-I error rate (×100) of DMM, MMM, AT, WBT, PBT, PT and BT
for unbalanced homoscedastic factorial designs for testing Time and Group×Time
effects, a = 2, p = 4, t = 2, CS: ρ = (0.2, 0.2), AR: ρ = (0.2, 0.2).

Dist Cov n
Time

DMM MMM AT WBT PBT PT BT

N
or

m
al CS

(20,30) 4.7 4.7 8.4 4.7 4.4 4.6 4.7
(30,40) 4.8 4.8 7.5 5.1 4.9 4.9 4.8

AR
(20,30) 5.0 5.0 9.0 5.3 5.2 5.2 5.2
(30,40) 5.4 5.4 7.8 5.4 5.3 5.5 5.5

t(
5)

CS
(20,30) 4.4 4.4 8.5 4.5 4.2 4.7 4.5
(30,40) 4.6 4.6 7.1 4.9 4.6 4.8 4.6

AR
(20,30) 4.8 4.8 8.6 4.6 4.6 5.0 4.7
(30,40) 4.9 4.9 7.1 5.1 4.9 5.0 4.9

χ
2

(5
) CS

(20,30) 5.0 5.0 8.3 5.0 4.8 4.9 4.9
(30,40) 5.0 5.0 7.8 5.4 5.0 5.3 5.0

AR
(20,30) 4.8 4.8 8.8 5.2 4.9 5.2 5.1
(30,40) 4.7 4.7 7.0 5.0 4.7 5.0 4.8

L
og

n
or

m
a
l

CS
(20,30) 3.5 3.5 6.8 4.7 3.5 4.6 3.6
(30,40) 4.2 4.2 6.1 5.1 3.9 4.9 4.2

AR
(20,30) 3.7 3.7 7.3 4.9 3.5 5.1 3.7
(30,40) 4.1 4.1 6.5 5.1 4.0 4.9 4.1

Dist Cov n
Group×Time

DMM MMM AT WBT PBT PT BT

N
or

m
a
l CS

(20,30) 4.8 4.8 9.0 4.8 5.0 5.0 5.1
(30,40) 4.6 4.6 7.2 4.8 4.7 4.7 5.0

AR
(20,30) 4.8 4.8 8.3 5.0 4.8 4.9 4.9
(30,40) 5.0 5.0 7.2 5.0 4.8 5.2 5.1

t(
5)

CS
(20,30) 4.9 4.9 8.4 5.2 5.1 5.3 5.0
(30,40) 4.8 4.8 7.1 5.1 4.7 4.9 4.8

AR
(20,30) 5.1 5.1 8.6 5.2 4.9 5.2 4.8
(30,40) 4.8 4.8 7.2 4.9 4.7 5.0 4.9

χ
2

(5
) CS

(20,30) 4.8 4.8 8.5 5.5 5.0 5.3 5.2
(30,40) 4.8 4.8 7.2 5.1 4.8 5.0 4.8

AR
(20,30) 5.1 5.1 8.5 5.2 4.9 5.1 5.1
(30,40) 5.0 5.0 7.5 5.1 4.9 4.8 5.2

L
og

n
or

m
al

CS
(20,30) 3.9 3.9 6.9 4.9 3.5 4.9 3.8
(30,40) 3.6 3.6 5.4 4.5 3.7 4.4 3.6

AR
(20,30) 3.9 3.9 7.0 4.9 3.6 5.0 3.6
(30,40) 3.5 3.5 5.3 4.1 3.4 4.5 3.5
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Table 3.3: Type-I error rate (×100) of DMM, MMM, AT, WBT, PBT, PT and BT for
balanced heteroscedastic factorial designs for testing Time and Group×Time effects,
a = 2, p = 4, t = 2, CS: ρ = (0.2, 0.7), AR: ρ = (0.2, 0.7).

Dist Cov n
Time

DMM MMM AT WBT PBT PT BT

N
or

m
al CS

(20,20) 5.3 5.3 9.5 4.9 5.2 5.6 4.8
(30,30) 5.2 5.2 7.7 4.9 5.1 5.3 4.9

AR
(20,20) 5.5 5.5 9.9 4.8 5.2 5.6 4.9
(30,30) 5.5 5.5 8.1 5.1 5.3 5.6 4.9

t(
5
)

CS
(20,20) 5.7 5.7 9.6 5.4 5.5 6.0 5.2
(30,30) 5.6 5.6 8.2 5.4 5.4 5.8 5.1

AR
(20,20) 5.0 5.0 9.8 4.8 5.0 5.5 4.6
(30,30) 5.5 5.5 8.2 5.3 5.4 5.7 5.1

χ
2

(5
) CS

(20,20) 4.8 4.8 8.8 4.5 4.6 5.1 4.4
(30,30) 5.5 5.5 8.0 5.3 5.4 5.7 5.2

AR
(20,20) 5.4 5.4 9.9 5.1 5.2 5.7 5.0
(30,30) 5.3 5.3 7.6 5.2 5.2 5.6 5.0

L
og

n
or

m
a
l

CS
(20,20) 4.1 4.1 8.2 4.8 3.7 5.5 3.6
(30,30) 4.2 4.2 6.5 4.7 4.1 5.3 4.0

AR
(20,20) 4.3 4.3 8.2 5.2 4.2 5.6 3.9
(30,30) 3.9 3.9 6.5 4.6 3.8 5.0 3.6

Dist Cov n
Group×Time

DMM MMM AT WBT PBT PT BT

N
or

m
a
l CS

(20,20) 5.6 5.6 9.6 5.0 5.5 5.7 5.2
(30,30) 5.8 5.8 8.4 5.4 5.8 5.9 5.5

AR
(20,20) 5.9 5.9 10.6 5.3 5.8 6.0 5.3
(30,30) 5.3 5.3 7.7 4.9 5.2 5.3 5.0

t(
5)

CS
(20,20) 5.2 5.2 9.5 4.7 5.0 5.4 4.8
(30,30) 5.4 5.4 7.4 5.4 5.3 5.6 5.1

AR
(20,20) 5.1 5.1 8.8 4.9 4.9 5.5 4.7
(30,30) 5.7 5.7 8.4 5.4 5.6 6.1 5.2

χ
2

(5
) CS

(20,20) 4.9 4.9 9.5 4.5 4.8 5.3 4.3
(30,30) 4.6 4.6 7.0 4.2 4.5 4.8 4.1

AR
(20,20) 6.2 6.2 10.4 5.7 6.1 6.5 5.4
(30,30) 5.1 5.1 7.8 4.9 5.1 5.4 4.9

L
og

n
or

m
al

CS
(20,20) 4.0 4.0 7.5 4.6 3.7 4.8 3.6
(30,30) 4.3 4.3 6.6 4.8 4.1 5.1 4.1

AR
(20,20) 4.1 4.1 8.1 5.0 3.9 5.5 3.7
(30,30) 4.3 4.3 6.8 5.0 4.2 5.4 4.0
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Table 3.4: Type-I error rate (×100) of DMM, MMM, AT, WBT, PBT, PT and BT
for unbalanced (increasing sizes) heteroscedastic factorial designs for testing Time
and Group×Time effects, a = 2, p = 4, t = 2, CS: ρ = (0.2, 0.7), AR: ρ = (0.2, 0.7).

Dist Cov n
Time

DMM MMM AT WBT PBT PT BT

N
or

m
al CS

(20,30) 10.2 10.2 10.6 5.4 6.5 6.5 5.6
(30,40) 8.1 8.1 7.9 4.8 5.4 5.7 4.8

AR
(20,30) 10.0 10.0 10.4 5.6 6.9 7.0 5.8
(30,40) 9.2 9.2 9.0 5.4 6.1 6.4 5.4

t(
5
)

CS
(20,30) 9.3 9.3 10.0 5.0 5.7 6.3 4.9
(30,40) 7.4 7.4 7.5 4.8 5.3 5.4 4.7

AR
(20,30) 9.4 9.4 10.0 4.9 5.9 6.2 4.7
(30,40) 8.4 8.4 8.4 5.3 5.6 6.1 5.0

χ
2

(5
) CS

(20,30) 9.4 9.4 9.8 5.3 6.2 6.4 5.2
(30,40) 7.7 7.7 7.7 4.7 5.3 5.4 4.6

AR
(20,30) 9.8 9.8 10.3 5.1 6.1 6.7 5.2
(30,40) 8.2 8.2 8.1 5.3 5.7 6.1 5.3

L
og

n
or

m
a
l

CS
(20,30) 7.9 7.9 8.4 5.1 4.4 6.1 3.7
(30,40) 6.7 6.7 6.8 5.1 4.3 5.5 4.1

AR
(20,30) 7.8 7.8 8.3 5.1 4.5 6.1 3.9
(30,40) 7.6 7.6 7.6 5.8 5.0 6.4 4.6

Dist Cov n
Group×Time

DMM MMM AT WBT PBT PT BT

N
or

m
a
l CS

(20,30) 9.7 9.7 10.5 5.0 6.4 6.6 5.2
(30,40) 8.7 8.7 8.6 5.5 6.2 6.2 5.5

AR
(20,30) 9.3 9.3 9.8 5.3 6.4 6.6 5.6
(30,40) 8.0 8.0 8.1 5.1 5.6 5.9 5.1

t(
5)

CS
(20,30) 9.9 9.9 10.3 5.4 6.0 6.6 5.1
(30,40) 8.0 8.0 8.2 5.5 5.8 6.0 5.2

AR
(20,30) 8.9 8.9 9.2 4.7 5.4 5.8 4.5
(30,40) 8.4 8.4 8.4 5.2 5.7 6.1 5.1

χ
2

(5
) CS

(20,30) 9.7 9.7 10.1 4.9 5.6 6.0 4.8
(30,40) 8.1 8.1 8.0 5.0 5.3 5.6 4.8

AR
(20,30) 9.4 9.4 9.7 5.1 5.8 6.1 4.9
(30,40) 8.4 8.4 8.3 5.0 5.6 6.2 5.2

L
og

n
or

m
al

CS
(20,30) 7.6 7.6 8.6 4.9 4.4 6.0 3.9
(30,40) 7.1 7.1 7.2 5.4 4.8 5.9 4.3

AR
(20,30) 7.1 7.1 8.0 4.6 4.2 5.8 3.5
(30,40) 6.7 6.7 6.8 5.0 4.1 5.4 3.8
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Table 3.5: Type-I error rate (×100) of DMM, MMM, AT, WBT, PBT, PT and BT
for unbalanced (decreasing sizes) heteroscedastic factorial designs for testing Time
and Group×Time effects, a = 2, p = 4, t = 2, CS: ρ = (0.2, 0.7), AR: ρ = (0.2, 0.7).

Dist Cov n
Time

DMM MMM AT WBT PBT PT BT

N
or

m
al CS

(30,20) 2.5 2.5 8.5 5.2 4.8 4.8 5.4
(40,30) 4.0 4.0 7.9 5.6 5.6 5.7 5.6

AR
(30,20) 3.1 3.1 8.3 5.4 5.0 5.1 5.3
(40,30) 3.2 3.2 7.5 5.2 4.8 4.9 5.2

t(
5)

CS
(30,20) 2.3 2.3 7.7 4.8 4.1 4.6 4.4
(40,30) 3.0 3.0 7.0 5.0 4.7 5.1 4.9

AR
(30,20) 2.4 2.4 7.4 4.7 4.0 4.3 4.2
(40,30) 3.1 3.1 6.9 5.2 4.6 4.9 4.9

χ
2

(5
) CS

(30,20) 2.6 2.6 8.1 4.9 4.2 4.4 4.6
(40,30) 2.8 2.8 6.8 4.8 4.5 4.7 4.8

AR
(30,20) 2.5 2.5 7.4 4.7 3.9 4.3 4.4
(40,30) 3.0 3.0 6.8 4.8 4.5 4.7 4.5

L
og

n
or

m
a
l

CS
(30,20) 2.0 2.0 6.5 4.7 3.3 4.4 3.5
(40,30) 2.5 2.5 6.3 5.1 3.9 5.1 3.9

AR
(30,20) 2.2 2.2 7.3 5.1 3.6 5.0 3.8
(40,30) 2.7 2.7 5.9 5.0 4.0 4.9 4.2

Dist Cov n
Group×Time

DMM MMM AT WBT PBT PT BT

N
or

m
a
l CS

(30,20) 2.9 2.9 8.1 5.1 4.8 4.9 5.1
(40,30) 3.6 3.6 7.9 5.6 5.4 5.6 5.6

AR
(30,20) 2.8 2.8 8.1 4.8 4.4 4.6 4.9
(40,30) 3.0 3.0 6.9 4.8 4.5 4.7 4.6

t(
5)

CS
(30,20) 2.5 2.5 8.2 5.1 4.4 4.8 4.8
(40,30) 2.9 2.9 7.0 4.9 4.6 4.9 4.8

AR
(30,20) 2.1 2.1 7.1 4.2 3.9 4.1 4.2
(40,30) 3.3 3.3 7.4 5.3 4.9 5.3 5.2

χ
2

(5
) CS

(30,20) 2.8 2.8 8.3 5.0 4.3 4.7 4.6
(40,30) 3.2 3.2 7.3 5.2 5.0 5.1 5.1

AR
(30,20) 2.6 2.6 8.2 5.0 4.3 4.5 4.6
(40,30) 3.3 3.3 7.6 5.5 5.3 5.5 5.5

L
og

n
or

m
al

CS
(30,20) 1.9 1.9 6.4 4.7 3.3 4.5 3.4
(40,30) 2.5 2.5 5.9 4.9 3.5 4.6 3.7

AR
(30,20) 1.9 1.9 6.3 4.4 3.1 4.3 3.5
(40,30) 2.4 2.4 6.0 4.8 3.8 4.8 3.8
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However, when data come from lognormal distribution, WBT and PT are almost

identical and have larger power than the other four tests, which makes those two

tests the best ones in terms of power among all six competing methods.

MMM has larger power than the other five tests, with data from normal, t(5)

and χ2(5) distributions, and for testing Time and Group×Time effects, as shown

in the middle and top rows of Figure 3.1, respectively. However, it is well known

that MMM performs well in practice only if multivariate normality and sphericity

are satisfied. Further, as the type-I error rate simulations indicate, MMM is highly

unstable. It produces extremely liberal test results with positive pairing cases and

extremely conservative test results with negative pairing cases. Hence, MMM is not

recommended even if it has larger power here in the balanced homoscedastic designs.

On the other hand, WBT and PT achieve slightly larger power than the rest three

tests (DMM, PBT and BT) with data from normal, t(5) and χ2(5) distributions, for

testing Time and Group×Time effects.

With lognormal data for testing Group and Group×Time effects, WBT and PT

are almost identical and have an clear advantage in power over the other four tests.

Nevertheless, with lognormal data for testing Time effect, WBT is the best in power

among the six competing methods.

Power versus Sample Size

Next, we investigate how power changes along increasing sample sizes. In order

to have a fair comparison of the competing tests, we restrict our simulations to

balanced homoscedastic designs for testing Group effect. As shown in Figure 3.1, all

six methods, DMM, MMM, WBT, PBT, PT and BT tend to have the same power

for different δ values and for testing Group effect. Therefore, it is reasonable to see

how power changes along increasing sample sizes under such settings. If there exists

any patterns of the power curves, it is most likely due to the increasing sample sizes.

The simulation settings are a = 2, p = 4, t = 3 and compound symmetric covariance

structure with ρ = (0.2, 0.2). The sample sizes are n(1) = (15, 15), n(2) = (20, 20),

n(3) = (25, 25), n(4) = (30, 30) and n(5) = (35, 35).
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Figure 3.2 shows the power curves of all seven methods along increasing sample

sizes. The bottom, middle and top rows are for power curves at δ being 0, 0.2 and 0.4,

respectively. In fact, the bottom row shows the empirical type-I error rates at δ = 0

of all seven methods with data from normal, t(5), χ2(5) and lognormal distributions.

It is obvious that AT is extremely liberal producing type-I error rate larger than 10%

for n(1) = (15, 15). As we mentioned above, AT is not recommended for use due

to its extreme liberality. In the following part, we only compare the remaining six

methods. When data are from normal, t(5) and χ2(5) distributions, all six methods,

DMM, MMM, WBT, PBT, PT and BT, are almost exact with type-I error rates along

the α = 0.05 horizontal line. When data are from lognormal distribution, WBT and

PT are still almost exact, whereas the other four test, DMM, MMM, PBT and BT

are very conservative.

In the middle row for δ = 0.2 and the top row for δ = 0.4, WBT and PT have

power slightly larger than that of the remaining four tests with data from normal,

t(5) and χ2(5) distributions. However, the power superiority of WBT and PT are

more obvious when data come from highly skewed lognormal distribution.

With both type-I error rate and power considered, the simulations above indi-

cate an absolute advantage of WBT and PT especially when data are from highly

skewed lognormal distribution. Further, PBT and BT perform well in terms of both

type-I error rate and power when data are from normal, t(5) and χ2(5) distributions.

All four tests, WBT, PT, PBT and BT, have very good performance under both

homoscedastic and heteroscedastic designs with both balanced and unbalanced sam-

ple sizes. However, DMM and MMM perform well only under homoscedastic and

balanced heteroscedastic designs.

3.5 Application

To illustrate how our methodology can be applied and to stimulate readers’ interest,

we introduce an example where multivariate growth curve data on idiopathic infantile

nystagmus syndrome (INS) need to be analyzed in the context of general factorial

design. In this study (Fadardi et al., 2017), 15 voluntary participants with idiopathic
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Figure 3.1: Power curves of detecting fixed alternative of Group, Time and
Group×Time effects in factorial designs on the bottom, middle and top rows, re-
spectively, with α = 0.05, a = 2, p = 4, t = 3, n = (30, 30), CS: ρ = (0.2, 0.2). The
columns are for different distributions.
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INS were recruited from a referring ophthalmologist. Participants were asked to carry

out acuity tasks identifying the direction of horizontal Tumbling-E targets under

different mental load settings. For the low mental load setting, participants were

given unlimited time to respond. After responding, they were required to view a

fixation cross for 100 milliseconds prior to the presence of the next acuity target. For

the high mental load setting, participants were given only 0.5 second to view the target

and then 300 milliseconds to view a visual noise mask. Participants were required to

respond while they were viewing a fixation cross for 1 second. In addition, participants

were also asked to conduct mental arithmetic (continuously subtracting 7 from a

number randomly selected between 100 and 120 and given by the examiner during
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Figure 3.2: Power curves of detecting fixed alternative of Group effect with α = 0.05,
a = 2, p = 4, t = 3, CS: ρ = (0.2, 0.2). The effect size δ is set to be 0, 0.2 and
0.4 on the bottom, middle and top rows, respectively. The columns are for different
distributions. The sample sizes are n(1) = (15, 15), n(2) = (20, 20), n(3) = (25, 25),
n(4) = (30, 30) and n(5) = (35, 35).
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the task) simultaneously with the acuity task. Both the low and the high mental

load effects were evaluated at two gaze positions (null position and away position).

Eventually, the size and contrast of the target at which participants’ task performance

plateaued were recorded. The main objective of the study is to investigate whether

there is any main effect of mental load (M), main effect of gaze position (P), and

interaction effect between the mental load and gaze position (MP).

Among all 15 participants with idiopathic infantile nystagmus syndrome, 11 of

them finished the task with no missing data. To test the interaction effect mentioned

above in the context of our method, we need the key parameters. Since all participants
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have the disease, there is only one group (a = 1). There are two response variables

measured each time, target size and contrast (p = 2). There are four repeated mea-

sures (t = 4) representing four different occasions, low mental load at null position,

low mental load at away position, high mental load at null position, and high mental

load at away position. The corresponding contrast matrix for testing the interaction

effect between the mental load and gaze position is HMP = (1,−1,−1, 1) ⊗ Ip. The

contrast matrices for testing the main effects of mental load and gaze position are

HM = (1, 1,−1,−1)⊗ Ip and HP = (1,−1, 1,−1)⊗ Ip, respectively.

As shown in Table 3.6, the p-values of AT are smaller than α = 0.05, leading

to significant results. However, due to the small sample size of 11, test results of

the asymptotic test are not trustworthy. The test results of DMM and MMM are

the same. This is because when a = 1, DMM and MMM are theoretically identical.

Except for AT, the p-values of the other six methods (DMM, MMM, WBT, PBT,

PT and BT) for testing the main effect of gaze position and the interaction effect of

mental×position are larger than α = 0.05, indicating that there are no such effects.

Moreover, these test results agree with the findings of Fadardi et al. (2017) who

conducted univariate analysis and adjusted for multiplicity in lieu of a multivariate

analysis.

It is worth mentioning that, except for AT, the remaining six methods lead to

different decisions for testing the main effect of mental load. The p-values of WBT,

PBT and BT show that we fail to reject the null hypothesis whereas the p-values of

DMM, MMM and PT reveal that the null hypothesis should be rejected. Methods

based on bootstrap, i.e., WBT, PBT and BT, rely on the assumption of positive

definite covariance matrix in data. Given the fact that the covariance matrix of the

optometry data is almost singular, these three tests are not trustworthy. Also, it is

well known that both DMM and MMM assume multivariate normality in order to

have valid test results. However, the marginal distributions of the optometry data

are highly skewed, which makes it less ideal to use those two methods. Further,

although the optometry data have almost singular covariance matrix, by permuting

the p-variate observations, the covariance of the permuted data is no longer singular.
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The permutation procedure corrects the covariance matrix and makes it more ideal

for the permutation version of the Wald-type statistic. Hence, the most reasonable

and reliable method is PT, which means that there is a significant main effect of

mental load.

To support the claims above, we further conduct sensitivity analysis. It can be

seen from Figure 3.3 that there is a clear difference between high (red) and low

(blue) mental load. Based on (3.11), we simulate data using the empirical mean and

covariance matrix of the optometry data with error terms from normal, t(5), χ2(5)

and lognormal distributions. The empirical power of PT is always the largest for

detecting the mental load effect, whereas WBT and BT have zero power and PBT

has very small power. It further confirms that PT can detect the difference between

low and high mental load even though the covariance matrix is almost singular. This

is also the reason why the p-values for the three bootstrap based methods (WBT,

PBT and BT) are generally larger than that of PT.

Of the 11 participants, 3 are female and 8 are male. It might also be interesting to

investigate whether there are other interaction effects, for example, gender×mental

(GM), gender× position (GP), and gender×mental× position (GMP). In this case,

we have two groups (a = 2), i.e., female group and male group. Accordingly, the

contrast matrices are HGM = Pa ⊗ P2 ⊗ 1
2
1>2 ⊗ Ip, HGP = Pa ⊗ 1

2
1>2 ⊗ P2 ⊗ Ip, and

HGMP = Pa ⊗ P2 ⊗ P2 ⊗ Ip.

Test results are shown in Table 3.7. The p-values of all methods for testing all three

interaction effects are greater than 0.05, leading to insignificant test results. It means

that there are no gender×mental, gender×position and gender×mental×position ef-

fects.

Table 3.6: Analysis of the idiopathic infantile nystagmus syndrome (INS) data using
resampling-based methods.

Effect DMM MMM AT WBT PBT PT BT

Mental Load 0.024 0.024 0.002 0.582 0.130 0.025 0.636
Gaze Position 0.113 0.113 0.044 0.622 0.352 0.105 0.616
Mental×Position 0.086 0.086 0.027 0.589 0.305 0.109 0.650
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Figure 3.3: Plot of optometry data of the 11 subjects with two variables, size and
contrast. Subjects were measured under both low and high mental loads with null
and away gaze positions.
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Table 3.7: Analysis of the idiopathic infantile nystagmus syndrome (INS) data for
two genders using resampling-based methods.

Effect DMM MMM AT WBT PBT PT BT

Gender×Mental 0.410 0.410 0.136 0.692 0.586 0.325 0.693
Gender×Position 0.738 0.738 0.794 0.800 0.930 0.854 0.903
Gender×Mental×Position 0.214 0.214 0.333 0.686 0.727 0.481 0.787

3.6 Discussion and Conclusion

Multivariate growth curve data, which are essentially repeated measures of multi-

variate data, have become more and more common in various areas. There are some

effective methods developed for analyzing such repeated measures data, but with the

assumptions of multivariate normality and homoscedasticity. However, these assump-

tions are difficult to justify and attain in reality.

In this chapter, we generalized the idea of permutation in Pauly et al. (2015);
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Friedrich et al. (2017) from independent univariate repeated measures factorial de-

signs to multivariate repeated measures factorial designs and we also, in another

sense, generalized the concept of bootstrap in Konietschke et al. (2015) from multi-

variate factorial designs to multivariate repeated measures factorial designs. Due to

the use of WTS, resampling tests, i.e., PT, BT and WBT are asymptotically exact

and valid without the assumptions of multivariate normality and homoscedasticity.

We rigorously proved in Theorem 3.3.2 that the studentized permutation distribu-

tion of the WTS always approximates the null distribution of WTS. Moreover, we

proved in Theorems 3.3.3 and 3.3.4 that the parametric bootstrap and wild bootstrap

distributions of WTS always approximate the null distribution of WTS as well.

In practical applications, WBT and PT are highly recommended due to their

favorable performance in terms of controlling type-I error rate and having power

advantage over the other competing tests. The data analyses in Section 3.5 further

demonstrate that PT is far more superior when multivariate data have almost singular

covariance matrix. Moreover, PBT and BT are mostly good tests when data are not

highly skewed. On the other hand, AT cannot be used in small samples and DMM

and MMM are not recommended for unbalanced heteroscedastic designs.

Resampling procedures, including permutation and bootstrap, are generally com-

putationally expensive. However, the proposed resampling-based tests have high

accuracy and reasonable efficiency. For example, on a MacBook Pro Intel Core i7

processor with 2.2 GHz speed and 16GB RAM, the processing time to run all seven

methods (DMM, MMM, AT, WBT, PBT, PT and BT) in a factorial design (with

χ2(5) data, a = 2, p = 4, t = 2, sample sizes n = (30, 30), compound symmetric

covariance structure with ρ = (0.2, 0.2) for testing Time effect) is only about 2.6

seconds.

The current chapter proposed Wald-type resampling-based methods without as-

suming multivariate normality or homoscedasticity. For the permutation test, stu-

dentization is used to correct the covariance of the permuted data leading to an

asymptotically exact test despite the time dependencies. Further, the parametric

and wild bootstrap tests are also shown to be asymptotically exact in the nonpara-
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metric settings. Although the resampling-based tests have satisfactory performance,

they are only appropriate for metric data. We plan to investigate nonparametric

methods that can accommodate both metric and nonmetric data.

3.7 Appendix

Proof of Theorem 3.3.1

Proof. Within each group, i.e., for fixed i, Xik, k = 1, . . . , ni are independent and

identically distributed random vectors. By Multivariate Central Limit Theorem,

√
ni(X i· − µi)

d→ N(0,Σi).

Under the asymptotic framework A1, we have the following convergence for X,

√
N(X − µ)

d→ N(0,Σ),

where Σ = diag(N
ni

Σi : 1 ≤ i ≤ a). Hence, under the null hypothesis H0 : Tµ = 0,

√
NTX

d→ N (0,TΣT ) .

By Theorem 9.2.2 in Rao and Mitra (1971, p. 173), the quadratic form Q̃N(T ) =

NX
>
T (TΣT )+ TX has, asymptotically, χ2

fT
, where fT = rank(T ). It is easy to

see that Σ̂
p→ Σ. By Continuous Mapping Theorem, T Σ̂T

p→ TΣT . Further,

by Theorem 4.2 in Rakočević (1997), the continuity of Moore-Penrose inverse holds.

Therefore, by the Continuous Mapping Theorem again, (T Σ̂T )+
p→ (TΣT )+. Re-

placing (TΣT )+ with (T Σ̂T )+, we have QN(T ) − Q̃N(T )
p→ 0. Finally, by the

Multivariate Slutsky’s Theorem QN(T ) has, asymptotically, χ2
fT

distribution with

fT = rank(T ).

Proof of Theorem 3.3.2

The result follows by applying Propositions 3.7.1–3.7.3 together with the Continuous

Mapping Theorem. For convenience, we define

Z =
(
Z>N,1,Z

>
N,2, . . . ,Z

>
N,Ñ

)>
=
(
X>111,X

>
112, . . . ,X

>
11n1

,X>121, . . . ,X
>
atna

)>
,
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where ZN,l is a p×1 vector with l = 1, . . . , Ñ = Nt, for the pooled sample. The aver-

age of the p×1 vectors is denoted byZN,· = 1/Ñ
∑Ñ

l=1ZN,l = 1/Ñ
∑a

i=1

∑t
j=1

∑ni
k=1Xijk =

X ....

Proposition 3.7.1. Under the assumptions of Theorem 3.3.2 and under the null

hypothesis H0 : Tµ = 0,
√
Ñ(X

π−1a⊗1t⊗X ...) given the observed data X weakly

converges to a multivariate normal distribution with mean vector 0 and covariance

matrix diag(κ−1i , . . . , κ−1a )⊗ It ⊗ Γ.

Proof. Let λ = (λ>1 , . . . ,λ
>
at)
> and λi be a p-dimesional vector. For any λ ∈ Rapt,

√
Ñλ>(X

π − 1a ⊗ 1t ⊗X ...) =
√
N

Ñ∑
s=1

cN,sλ
∗
s
>(Zs −ZN,·),

where

cN,s =
T∑
i=1

1{Mi−1 + 1 ≤ s ≤Mi}
1√
Ñ

and λ∗s =
T∑
i=1

1{Mi−1 + 1 ≤ s ≤Mi}
λi√
Ñ
.

For a vector analog of Theorem 4.1 in Pauly et al. (2011), we check

max
1≤s≤Ñ

|cN,s − c|
p→ 0, (3.12)

Ñ∑
s=1

(cN,s − c)2
p→ σ2 =

T∑
i=1

b−1i − T 2, (3.13)√
Ñ(cN,π(1) − c)

d→ W where E(W ) = 0 and Var(W ) = σ2, (3.14)

1√
Ñ

max
1≤s≤Ñ

|λ∗s
>(ZN,s −ZN,·)|

p→ 0 (3.15)

and

1

Ñ

Ñ∑
s=1

λ∗s
>(ZN,s −ZN,·)(ZN,s −ZN,·)

>λ∗s
p→ λ>Γλ, (3.16)

where bi = limmin(ni)→∞Ñ/ni for i = 1, . . . , a due to the assumption A1 in (3.3),

T = at, 1 < t <∞, 1 < p <∞ and

Γ =
a∑
i=1

1

bi

t∑
j=1

(
Σij + µijµ

>
ij

)
−

(
a∑
i=1

1

bi

t∑
j=1

µij

)(
a∑
i=1

1

bi

t∑
j=1

µij

)>
.
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The validity of (3.12)–(3.15) follows in steps similar to Friedrich et al. (2017) and

(3.16) follows by using Proposition 3.7.2. Therefore, given the data X,√
Ñλ>(X

π − 1a ⊗ 1t ⊗X ...)
d→ N(0,λ>(diag(κ−1i , . . . , κ−1a )⊗ It ⊗ Γ)λ).

Finally the desired result follows by subsequential arguments. For the technical details

see Pauly et al. (2011) and Friedrich et al. (2017).

Proposition 3.7.2. Assume the model (3.1) and (3.2). Under the assumptions A1

and A2 in (3.3) and (3.4), respectively,

1

Ñ

Ñ∑
l=1

(
ZN,l −ZN,·

) (
ZN,l −ZN,·

)> p−→ Γ.

Proof. Notice that

1

Ñ

Ñ∑
l=1

(
ZN,l −ZN,·

) (
ZN,l −ZN,·

)>
=

1

Ñ

Ñ∑
l=1

ZN,lZ
>
N,l −ZN,·Z

>
N,·

Now

E

 1

Ñ

Ñ∑
l=1

ZN,lZ
>
N,l

 =
1

Ñ

a∑
i=1

t∑
j=1

ni∑
k=1

E
(
XijkX

>
ijk

)
=

a∑
i=1

ni

Ñ

t∑
j=1

(
Σij + µijµ

>
ij

)
−→

a∑
i=1

1

bi

t∑
j=1

(
Σij + µijµ

>
ij

)
,
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and

E
(
ZN,·Z

>
N,·

)
= E

 1

Ñ

Ñ∑
l=1

ZN,l

 1

Ñ

Ñ∑
l=1

Z>N,l


= Cov

 1

Ñ

Ñ∑
l=1

ZN,l

+ E

 1

Ñ

Ñ∑
l=1

ZN,l

E

 1

Ñ

Ñ∑
l=1

Z>N,l


= Cov

 1

Ñ

Ñ∑
l=1

ZN,l

+ E

(
1

Ñ

a∑
i=1

t∑
j=1

ni∑
k=1

Xijk

)
E

(
1

Ñ

a∑
i=1

t∑
j=1

ni∑
k=1

X>ijk

)

= Cov

 1

Ñ

Ñ∑
l=1

ZN,l

+

(
a∑
i=1

ni

Ñ

t∑
j=1

µij

)(
a∑
i=1

ni

Ñ

t∑
j=1

µ>ij

)

−→

(
a∑
i=1

1

bi

t∑
j=1

µij

)(
a∑
i=1

1

bi

t∑
j=1

µ>ij

)
.

Note that the elements of the covariance matrix Cov
(

1
Ñ

∑Ñ
l=1ZN,l

)
are O

(
1
N

)
due

to independence and the assumption A2 in (3.4).

Next, we investigate the covariance matrix. Note thatX ... = 1
Ñ

∑a
i=1

∑t
j=1

∑ni
k=1Xijk.

By independence and the assumption A2 in (3.4), we have

Cov

Vec

 1

Ñ

Ñ∑
l=1

ZN,lZ
>
N,l −ZN,·Z

>
N,·


=

1

Ñ2
Cov

[
Vec

(
a∑
i=1

t∑
j=1

ni∑
k=1

(
XijkX

>
ijk −X ...X

>
...

))]

=
1

Ñ2

a∑
i=1

ni∑
k=1

Cov

[
t∑

j=1

Vec
(
XijkX

>
ijk −X ...X

>
...

)]

−→ 0p2×p2 .

Note that the elements in the covariance matrix are O
(

1
N

)
and, hence, are zeros as

N →∞. Therefore, by Chebyshev’s inequality,

1

Ñ

Ñ∑
l=1

(
ZN,l −ZN,·

) (
ZN,l −ZN,·

)> p−→ Γ.
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Proposition 3.7.3. Assume the model (3.1) and (3.2). Under the assumptions A1

and A2 in (3.3) and (3.4), respectively,

Σ̂π =
a⊕
i=1

N

ni
Σ̂π
i

p−→ diag
(
κ−1i , . . . , κ−1a

)
⊗ It ⊗ Γ,

where Σ̂π
i

p−→ It ⊗ Γ.

Proof. Let r, s ∈ {1, . . . , t} be indices for time point and u, v ∈ {1, . . . , p} be indices

for variable. An element of Σ̂π
i is denoted as (Σ̂π

i )ru,sv. To complete the proof, it

suffices to show that

ni − 1

ni

(
Σ̂π
i

)
ru,sv

p−→


0 r 6= s∑a

i=1
1
bi

∑t
j=1

(
σ
(u,v)
ij + µ

(u)
ij µ

(v)
ij

)
−(∑a

i=1
1
bi

∑t
j=1 µ

(u)
ij

)(∑a
i=1

1
bi

∑t
j=1 µ

(v)
ij

)
r = s

.

Notice that
ni − 1

ni

(
Σ̂π
i

)
ru,sv

=
1

ni

ni∑
k=1

X
(u)π
irk X

(v)π
isk − X̄

(u)π
ir· X̄

(v)π
is· .

Then

1

ni

ni∑
k=1

X
(u)π
irk X

(v)π
isk

p−→


(∑a

i=1
1
bi

∑t
j=1 µ

(u)
ij

)(∑a
i=1

1
bi

∑t
j=1 µ

(v)
ij

)
r 6= s∑a

i=1
1
bi

∑t
j=1

(
σ
(u,v)
ij + µ

(u)
ij µ

(v)
ij

)
r = s

.

Further,

X̄
(u)π
ir· X̄

(v)π
is·

p−→

(
a∑
i=1

1

bi

t∑
j=1

µ
(u)
ij

)(
a∑
i=1

1

bi

t∑
j=1

µ
(v)
ij

)
.

The proofs of these claims are analogous to Friedrich et al. (2017).

Proof of Theorem 3.3.3

Proof. Following the same idea of Konietschke et al. (2015), it is easy to see that Σ̂i

converges almost surely to Σi for i = 1, . . . , a. Also, by Multivariate Lyapunov’s Cen-

tral Limit Theorem, WLLN for triangular array and Multivariate Slutsky Theorem,

the asymptotic multivariate normality can be shown. The remainder of the proof is

analogous to the proof of Theorem 3.3.1.
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Proof of Theorem 3.3.4

Proof. For fixed i and k, E(s†ik) = 0 and Var(s†ik) = 1. It is easy to see that E(X†ik) =

E(X i·) = µi and Cov(X†ik|X) =
(
Xik −X i·

) (
Xik −X i·

)>
. Further,

Cov

(
ni∑
k=1

X†ik|X

)
=

ni∑
k=1

(
Xik −X i·

) (
Xik −X i·

)>
= (ni − 1)Σ̂i.

The remainder of the proof is analogous to the proof of Theorem 3.3.3.

Tables for Testing Group Effect

Table 3.8: Type-I error rate (×100) of DMM, MMM, AT, WBT, PBT, PT and BT
for balanced homoscedastic factorial designs for testing Group effect, a = 2, p = 4,
t = 2, CS: ρ = (0.2, 0.2), AR: ρ = (0.2, 0.2).

Dist Cov n
Group

DMM MMM AT WBT PBT PT BT

N
or

m
al CS

(20,20) 4.5 4.5 9.0 4.6 4.4 4.7 4.6
(30,30) 4.3 4.3 6.7 4.4 4.2 4.4 4.4

AR
(20,20) 5.2 5.2 9.6 5.4 5.2 5.3 5.3
(30,30) 5.2 5.2 7.3 5.0 5.1 5.1 5.2

t(
5)

CS
(20,20) 4.6 4.6 8.3 4.8 4.5 4.7 4.4
(30,30) 4.8 4.8 7.7 5.1 4.6 5.1 4.9

AR
(20,20) 4.3 4.3 8.6 4.5 4.3 4.6 4.3
(30,30) 5.3 5.3 7.9 5.5 5.3 5.6 5.4

χ
2

(5
) CS

(20,20) 4.9 4.9 8.6 5.2 4.8 5.2 4.9
(30,30) 4.8 4.8 7.4 5.0 4.8 5.1 4.9

AR
(20,20) 4.9 4.9 9.5 5.0 4.7 5.1 4.7
(30,30) 4.9 4.9 7.6 5.1 4.9 5.2 5.0

L
og

n
or

m
al

CS
(20,20) 4.1 4.1 8.1 5.2 3.7 5.4 3.9
(30,30) 4.2 4.2 6.5 5.0 4.0 5.3 3.9

AR
(20,20) 3.4 3.4 7.6 4.2 3.2 4.8 3.2
(30,30) 4.3 4.3 6.8 5.2 4.1 5.4 4.1

Copyright© Ting Zeng, 2021.
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Table 3.9: Type-I error rate (×100) of DMM, MMM, AT, WBT, PBT, PT and BT
for unbalanced homoscedastic factorial designs for testing Group effect, a = 2, p = 4,
t = 2, CS: ρ = (0.2, 0.2), AR: ρ = (0.2, 0.2).

Dist Cov n
Group

DMM MMM AT WBT PBT PT BT

N
or

m
al CS

(20,30) 5.9 5.9 9.5 6.2 5.8 6.1 5.7
(30,40) 5.5 5.5 7.8 5.6 5.5 5.7 5.6

AR (20,30) 5.1 5.1 9.0 5.2 5.3 5.3 5.3
(30,40) 4.9 4.9 7.2 5.0 4.8 5.0 5.0

t(
5
)

CS
(20,30) 4.9 4.9 8.4 5.0 4.6 4.8 4.7
(30,40) 5.0 5.0 7.3 5.3 5.1 5.4 5.3

AR (20,30) 4.7 4.7 8.5 5.0 4.9 5.0 4.8
(30,40) 4.9 4.9 7.5 5.2 4.9 5.2 5.1

χ
2

(5
) CS

(20,30) 4.8 4.8 8.6 5.0 4.9 5.0 5.0
(30,40) 4.8 4.8 7.2 5.3 5.0 5.1 4.9

AR (20,30) 4.8 4.8 8.7 5.0 4.7 5.0 4.9
(30,40) 4.6 4.6 6.8 4.6 4.4 4.8 4.7

L
og

n
or

m
a
l

CS
(20,30) 4.5 4.5 8.3 5.7 4.5 5.4 4.6
(30,40) 3.7 3.7 6.0 4.5 3.8 4.7 3.9

AR (20,30) 4.2 4.2 8.4 6.0 4.5 5.7 4.7
(30,40) 4.2 4.2 6.3 5.0 4.0 5.0 4.2

Table 3.10: Type-I error rate (×100) of DMM, MMM, AT, WBT, PBT, PT and BT
for balanced heteroscedastic factorial designs for testing Group effect, a = 2, p = 4,
t = 2, CS: ρ = (0.2, 0.7), AR: ρ = (0.2, 0.7).

Dist Cov n
Group

DMM MMM AT WBT PBT PT BT

N
or

m
a
l CS

(20,20) 4.9 4.9 8.9 4.8 4.9 5.1 4.8
(30,30) 4.7 4.7 7.2 4.6 4.7 5.0 4.6

AR
(20,20) 4.9 4.9 9.3 4.6 4.9 5.0 4.6
(30,30) 4.6 4.6 7.6 4.5 4.6 4.7 4.5

t(
5)

CS
(20,20) 5.5 5.5 9.5 5.6 5.4 5.9 5.3
(30,30) 5.5 5.5 7.8 5.3 5.5 5.8 5.2

AR
(20,20) 5.1 5.1 9.7 5.2 5.0 5.3 4.8
(30,30) 4.8 4.8 7.7 5.0 4.8 5.3 4.7

χ
2

(5
) CS

(20,20) 5.8 5.8 9.9 5.7 5.8 6.0 5.4
(30,30) 5.1 5.1 7.4 5.2 5.0 5.1 5.0

AR
(20,20) 4.8 4.8 9.4 4.6 4.6 5.1 4.6
(30,30) 5.4 5.4 7.8 5.3 5.4 5.6 5.3

L
og

n
or

m
al

CS
(20,20) 4.1 4.1 7.8 4.9 3.8 5.3 3.8
(30,30) 4.7 4.7 7.1 5.5 4.5 5.6 4.5

AR
(20,20) 4.5 4.5 9.3 5.4 4.1 5.7 4.0
(30,30) 3.6 3.6 6.4 4.7 3.5 4.7 3.7
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Table 3.11: Type-I error rate (×100) of DMM, MMM, AT, WBT, PBT, PT and BT
for unbalanced (increasing sizes) heteroscedastic factorial designs for testing Group
effect, a = 2, p = 4, t = 2, CS: ρ = (0.2, 0.7), AR: ρ = (0.2, 0.7).

Dist Cov n
Group

DMM MMM AT WBT PBT PT BT

N
or

m
al CS

(20,30) 7.5 7.5 8.9 5.1 5.6 5.9 5.0
(30,40) 6.1 6.1 7.2 4.8 4.9 5.0 4.7

AR
(20,30) 7.2 7.2 9.2 5.2 5.6 5.7 5.2
(30,40) 7.1 7.1 8.3 5.3 5.6 5.5 5.3

t(
5
)

CS
(20,30) 7.6 7.6 9.4 5.2 5.4 5.7 5.1
(30,40) 6.0 6.0 7.3 4.7 4.6 4.9 4.5

AR
(20,30) 7.1 7.1 8.7 5.1 5.4 5.8 4.9
(30,40) 6.9 6.9 8.0 5.4 5.5 5.7 5.1

χ
2

(5
) CS

(20,30) 7.5 7.5 9.7 5.5 6.0 6.2 5.4
(30,40) 6.4 6.4 7.6 4.9 5.1 5.2 4.9

AR
(20,30) 7.7 7.7 10.1 5.1 5.6 5.7 5.3
(30,40) 7.1 7.1 8.1 5.5 5.8 5.8 5.4

L
og

n
or

m
a
l

CS
(20,30) 6.8 6.8 9.4 5.9 4.9 6.4 4.8
(30,40) 6.5 6.5 8.1 6.3 5.4 6.5 5.2

AR
(20,30) 6.0 6.0 8.3 5.5 4.5 5.5 4.4
(30,40) 6.0 6.0 7.3 5.8 5.1 6.1 5.0

Table 3.12: Type-I error rate (×100) of DMM, MMM, AT, WBT, PBT, PT and BT
for unbalanced (decreasing sizes) heteroscedastic factorial designs for testing Group
effect, a = 2, p = 4, t = 2, CS: ρ = (0.2, 0.7), AR: ρ = (0.2, 0.7).

Dist Cov n
Group

DMM MMM AT WBT PBT PT BT

N
or

m
a
l CS

(30,20) 4.2 4.2 8.8 5.7 5.3 5.3 5.6
(40,30) 4.3 4.3 7.6 5.2 5.3 5.2 5.3

AR
(30,20) 3.7 3.7 8.4 5.0 4.3 4.5 4.8
(40,30) 4.6 4.6 7.5 5.7 5.4 5.7 5.7

t(
5)

CS
(30,20) 4.4 4.4 8.9 5.6 5.2 5.5 5.4
(40,30) 4.4 4.4 7.7 5.6 5.2 5.5 5.4

AR
(30,20) 4.1 4.1 8.7 5.7 5.0 5.2 5.3
(40,30) 3.9 3.9 6.8 5.0 4.8 5.1 4.8

χ
2

(5
) CS

(30,20) 4.2 4.2 8.7 5.7 5.3 5.5 5.6
(40,30) 4.3 4.3 7.3 5.6 5.2 5.3 5.2

AR
(30,20) 3.8 3.8 8.4 5.0 4.4 4.7 4.7
(40,30) 4.3 4.3 7.5 5.2 4.9 5.1 5.0

L
og

n
or

m
al

CS
(30,20) 3.4 3.4 7.1 4.9 3.7 4.7 4.1
(40,30) 4.3 4.3 7.0 5.7 4.8 5.5 4.9

AR
(30,20) 3.7 3.7 8.0 5.9 4.5 5.5 4.6
(40,30) 4.1 4.1 7.1 5.8 4.7 5.8 4.6
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Chapter 4 Nonparametric Effect Measures in Multivariate Growth

Curve Data

4.1 Introduction

Multivariate growth data appear in a great variety of disciplines, for example, biomed-

ical science, public health, agriculture, social science, etc. For this type of data,

several related variables are observed at different time points or occasions for each

experimental unit or observational unit. Typically, mean- and covariance-based infer-

ences are of interest to most scholars and researchers due to their interpretability. The

classical parametric and semiparametric procedures developed are, for example, Bock

(1975), Boik (1988), Naik and Rao (2001) and Rencher (2001). However, with such

procedures, normality and homoscedasticity are required, which are difficult to attain

in practice (see Xu and Cui, 2008; Suo et al., 2013). Furthermore, these methods are

limited to analyzing continuous data. When binary, discrete and ordered categorical

data are collected, parametric procedures are no longer appropriate. Thus, a more

convenient, robust and reliable method that can accommodate both metric and non-

metric data is in substantial demand. Under such circumstances, methods based on

nonparametric relative treatment effects become promising solutions. Such nonpara-

metric treatment effects are functionals of distribution functions and can be used to

quantify the magnitude of effects of interest (see Brunner and Munzel, 2000; Brunner

et al., 2002). Empirical distribution functions are used to estimate these treatment

effects, which makes them rank-based methods in nature.

Nonparametric rank-based methods have been developed for the last few decades.

In factorial designs, a asymptotically distribution-free rank-based test for repeated

measures data was proposed by Brunner and Neumann (1982). It was later gener-

alized for multivariate designs as well (Thompson, 1990, 1991; Brunner and Denker,

1994). However, they rely on the assumption of absolutely continuous distribution

functions. Based on the idea of Munzel (1999), the normalized version of distribution
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function was used to derive asymptotic results for stratified two-sample designs in

mixed models (Brunner et al., 1995).

Assuming continuity, hypotheses were originally formulated in terms of marginal

distributions in nonparametric tests (Akritas and Arnold, 1994). Dropping the con-

tinuity assumption, Akritas and Brunner (1997) and Brunner et al. (1999) further

advanced the formulation of hypotheses. The advantage of formulating hypotheses

in terms of distribution functions is that it embraces models with both metric and

nonmetric data. However, with such hypotheses, it is difficult to interpret the cor-

responding alternatives and test procedures cannot be used to construct confidence

intervals for the effect size measure. Hence, test procedures with hypotheses formu-

lated in terms of the nonparametric treatment effect are more appropriate (Koni-

etschke et al., 2012a; Brunner et al., 2017).

It is our intention to propose nonparametric test procedures in multivariate re-

peated measures model for data types including discrete, ordered categorical and

continuous data in a unified manner. In the meanwhile, the unweighted treatment

effects measures along with the corresponding confidence intervals are derived to

quantify the magnitude of effects of interest. In order to do so, asymptotic normality

of the estimators and consistency of the covariance matrix estimator are established

through nonparametric rank-based theories.

This chapter is organized as follows. In Section 4.2, statistical models and hy-

potheses are introduced and the nonparametric treatment effects and the estimators

are defined. The asymptotic properties of the estimators are investigated in Section

4.3. In addition, the consistent estimators for the unknown covariance matrix in

multivariate repeated measures model are derived in Section 4.3. In Section 4.4, we

propose test statistics in the context of factorial designs and study their asymptotic

properties. We also conduct extensive simulations under various settings in Section

4.5. In Section 4.6, we illustrate the application of our proposed methods with an

optometry data set. We conclude the chapter with some discussions and remarks

in Section 4.7. All relevant proofs and technical details are given in the Appendix

(Section 4.8).
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4.2 Models and Hypotheses

Assume nonparametric model

X
(s)
ijk ∼ F

(s)
ij , i = 1, . . . , a; j = 1, . . . , b; s = 1, . . . , c; k = 1, . . . , ni,

where i is the treatment group index, j is the time (occasion) index, s is the variable

index and k is the subject index. With nonparametric model where normalized version

of distribution function is used, the assumption of continuous distributions can be

dropped (Kruskal et al., 1952; Ruymgaart, 1980). It provides a unified treatment

of ties for discrete, ordered categorical and continuous data. A formal definition of

the normalized distribution function is F (x) = 1
2

[F+(x) + F−(x)], where F−(x) =

P (X < x) is the left continuous distribution function and F+(x) = P (X 6 x) is the

right continuous distribution function (Brunner et al., 2002).

In this set-up, to specify the treatment effects, we use nonparametric relative

treatment effects between the distribution of group i at time point (occasion) j and

the distribution of group l at time point (occasion) m for the variable s,

w
(s)
lm,ij = P

(
X

(s)
lm1 < X

(s)
ij1

)
+

1

2
P
(
X

(s)
lm1 = X

(s)
ij1

)
=

∫
F

(s)
lm dF

(s)
ij ,

where i, l = 1, . . . , a; j,m = 1, . . . , b; s = 1, . . . , c. We further define the unweighted

mean distribution function by

Gs (x) =
1

ab

a∑
i=1

b∑
j=1

F
(s)
ij (x) . (4.1)

The relative treatment effect of distribution of group i at time point j for variable

s with respect to all distributions for variable s is denoted as follows by comparing

each marginal distribution function with the unweighted mean distribution function,

p
(s)
ij =

∫
GsdF

(s)
ij , (4.2)

which, by definition, takes value in [ 1
2ab
, 1 − 1

2ab
] and can also be expressed as p

(s)
ij =

P (Zs < X
(s)
ij1) + 1

2
P (Zs = X

(s)
ij1), where Zs ∼ Gs and Zs is independent of X

(s)
ij1. When

p
(s)
ij < 1

2
, it means that observations from the distribution F

(s)
ij tend to have smaller
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values than those from the unweighted mean distribution Gs. To be specific, for

example, p
(s)
ij = 0.43 can be interpreted as that the probability of a randomly chosen

observation from mean distribution of variable s resulting in a smaller value than a

randomly chosen observation from the distribution of group i at time point (occasion)

j of variable s is 43%. Further, if p
(s)
uv = 0.65, then p

(s)
ij < p

(s)
uv . It means that the

observations from group i at time point (occasion) j tend to result in smaller values

than those from group u at time point (occasion) v.

Unlike the weighted mean distribution H in Brunner et al. (2002), the use of

unweighted mean distribution removes the dependence of test results on sample size

allocation. To formulate the hypotheses on relative effects, we define the vectors of

nonparametric treatment effects,

p =
(
p>1 , . . . ,p

>
a

)>
, pi =

(
p>i1, . . . ,p

>
ib

)>
, and pij =

(
p
(1)
ij , . . . , p

(c)
ij

)>
, (4.3)

where i = 1, . . . , a, j = 1, . . . , b. Let H denote an appropriate contrast matrix and a

linear hypothesis can be expressed as

Hp
0 : Hp = 0,

which is sometimes referred to as generalized or nonparametric Behrens-Fisher situ-

ation. (see Fligner and Policello, 1981; Brunner et al., 1995; Brunner and Munzel,

2000).

To estimate the relative effects, we replace the distribution functions Gs(x) and

F
(s)
ij (x) with the corresponding empirical distribution functions. We define the em-

pirical distribution function of F
(s)
ij by F̂

(s)
ij (x) = 1

ni

∑ni
k=1 c(x − X

(s)
ijk) , where c(u)

is the normalized version of the counting function and it takes the value of 0, 1
2
, 1,

if u < 0, u = 0 or u > 1, respectively. By using the normalized version of the em-

pirical distribution function, we can accommodate discrete, ordered categorical and

continuous data in a unified form. The estimator of relative effect is denoted by

p̂
(s)
ij =

∫
ĜsdF̂

(s)
ij =

1

ab

a∑
l=1

b∑
m=1

∫
F̂

(s)
lm dF̂

(s)
ij =

1

ab

a∑
l=1

b∑
m=1

ŵ
(s)
lm,ij,

where

ŵ
(s)
lm,ij =

1

nl

(
R̄

(s)
ij· (lm, ij)−

ni + 1

2

)
, R̄

(s)
ij· (lm, ij) =

1

ni

ni∑
k=1

R
(s)
ijk(lm, ij),
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where R
(s)
ijk(lm, ij) denotes the mid-rank of X

(s)
ijk among all ni + nl observations

within the two samples X
(s)
lm1, . . . , X

(s)
lmnl

and X
(s)
ij1, . . . , X

(s)
ijni

. The proof of this fol-

lows the same idea in Brunner et al. (2017). Define p̂ in an analogous way as in

(4.3), p̂ = (p̂>1 , . . . , p̂
>
a )>, where p̂i = (p̂>i1, . . . , p̂

>
ib)
> and p̂ij = (p̂

(1)
ij , . . . , p̂

(c)
ij )>. It

is well known that ŵ
(s)
lm,ij is an unbiased and L2 consistent estimator of w

(s)
lm,ij for

i, l = 1, . . . , a; j,m = 1, . . . , b; s = 1, . . . , c, which has been proved in Brunner and

Munzel (2000) and Brunner and Puri (2001). Given p̂
(s)
ij are linear combinations of

ŵ
(s)
lm,ij, p̂

(s)
ij retain the same properties of being an unbiased and L2 consistent estimator

of p
(s)
ij .

Let wlm,ij = (w
(1)
lm,ij, . . . , w

(c)
lm,ij)

> = (
∫
F

(1)
lm dF

(1)
ij , . . . ,

∫
F

(c)
lm dF

(c)
ij )>, we further

write w analogously as follows,

w =
(
w>11, . . . ,w

>
1b, . . . ,w

>
a1, . . . ,w

>
ab

)>
and

wij =
(
w>11,ij, . . . ,w

>
1b,ij, . . . ,w

>
a1,ij, . . . ,w

>
ab,ij

)>
,

where i = 1, . . . a; j = 1, . . . , b. w is a vector of dimension (ab)2c × 1. The em-

pirical version ŵ is defined in the similar way but with empirical distributions,

i.e., ŵlm,ij = (ŵ
(1)
lm,ij, . . . , ŵ

(c)
lm,ij)

> = (
∫
F̂

(1)
lm dF̂

(1)
ij , . . . ,

∫
F̂

(c)
lm dF̂

(c)
ij )>. Further, let

E = Iab ⊗
(

1
ab

1>ab
)
⊗ Ic. The vector p and its estimator p̂ can be written as

p = Ew and (4.4)

p̂ = Eŵ. (4.5)

The asymptotic covariance matrix V of
√
N(p̂−p) can be expressed as V = ESE>,

where S is the asymptotic covariance matrix of
√
Nŵ and it is of dimension (ab)2c×

(ab)2c. To derive the elements of S, we partition S into blocks with dimension

abc× abc and we denote them by Sij,i′j′ , where i, i′ = 1, . . . , a; j, j′ = 1, . . . , b. There

are ab of such blocks.

Throughout the paper we will use the following notations. The d-dimensional

identity matrix is denoted by Id and a d × d matrix with all 1s as its elements is

denoted by Jd = 1d1
>
d , where 1d = (1, . . . , 1)>d×1. We further denote the centering

matrix by Pd = Id− 1
d
Jd. The operators

⊕
and

⊗
represent the Kronecker sum and

product, respectively (Schott, 2016, Chap. 8).
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4.3 Asymptotic Results

Asymptotic Distribution

To derive the asymptotic distribution of tN =
√
N(p̂− p), we assume

min
16i6a

(ni)→∞ such that N/ni 6 N0 <∞ for all i = 1, . . . , a, (4.6)

where N =
∑a

i=1 ni. Follow the same idea in Brunner and Munzel (2000), we have

the following asymptotic equivalence for
√
N(ŵ

(s)
i′j′,ij − w

(s)
i′j′,ij) =

√
N(
∫
F̂

(s)
i′j′dF̂

(s)
ij −∫

F
(s)
i′j′dF

(s)
ij ), which is the cornerstone of showing more complicated asymptotic results

of tN . The asymptotic equivalence theorem in the current setting is restated as

follows.

Theorem 4.3.1. (Asymptotic Equivalence) If min(ni′ , ni)→∞, then t
(s)
N (i′j′, ij) =

√
N(ŵ

(s)
i′j′,ij − w

(s)
i′j′,ij) is asymptotically equivalent to

U
(s)
N (i′j′, ij) =

√
N

{
1

ni

ni∑
k=1

[
F

(s)
i′j′

(
X

(s)
ijk

)
− w(s)

i′j′,ij

]
− 1

ni′

ni′∑
k=1

[
F

(s)
ij

(
X

(s)
i′j′k

)
− w(s)

ij,i′j′

]}
,

(4.7)

for all i, i′ = 1, . . . , a, j, j′ = 1, . . . , b, and s = 1, . . . , c.

For the proof of Theorem 4.3.1, we refer to Brunner and Munzel (2000). To

simplify the notation, we denote equation (4.7) by
√
NZ

(s)
i′j′,ij. Further, we construct

the following vector,

Z =
(
Z>11, . . . ,Z

>
1b, . . . ,Z

>
a1, . . . ,Z

>
ab

)>
, (4.8)

where

Zij =
(
Z>11,ij, . . . ,Z

>
1b,ij, . . . ,Z

>
a1,ij, . . . ,Z

>
ab,ij

)>
and Zi′j′,ij =

(
Z

(1)
i′j′,ij, . . . , Z

(c)
i′j′,ij

)>
.

(4.9)

Note that Zij,ij = 0, Zi′j′,ij = −Zij,i′j′ and E(Z) = 0. By asymptotic equivalence

in Theorem 4.3.1,
√
NE (ŵ −w) and

√
NEZ are asymptotically equivalent and by

equations (4.4) and (4.5),
√
N (p̂− p) and

√
NEZ are asymptotically equivalent.

Therefore, the asymptotic distribution of
√
N(p̂− p) is the same as that of

√
NEZ,

which implies that they have the same asymptotic covariance matrix.
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Theorem 4.3.2. (Asymptotic Multivariate Normality) Under the assumptions of

Theorem 4.3.1,
√
NEZ has an asymptotic multivariate normal distribution with

mean 0 and covariance matrix V = ESE>. Further,

√
N (p̂− p)

d−→ N (0,V ) ,

where S is given in Section 4.3.

The proof of Theorem 4.3.2 is given in the Appendix (Section 4.8).

Asymptotic Covariance

Now, we derive the asymptotic covariance matrix S of
√
NZ. From equations (4.8)

and (4.9), Z is partitioned into ab vectors, Zij for i = 1, . . . , a and j = 1, . . . , b.

Analogously, S is partitioned into ab blocks, Sij,i′j′ for i, i′ = 1, . . . , a and j, j′ =

1, . . . , b. On the main diagonal blocks, Sij,ij = Cov(
√
NZij). Otherwise, Sij,i′j′ =

Cov(
√
NZij,

√
NZi′j′), where (i, j) 6= (i′, j′).

Next, we show the cases of elements of the covariance matrix blocks Sij,ij and

Sij,i′j′ . Let s
(s,s′)
ij (lm, l′m′) denote the elements of Sij,ij and s

(s,s′)
ij,i′j′ (lm, l

′m′) denote

the elements of Sij,i′j′ for (i, j) 6= (i′, j′). For brevity, we consider c = 2 and the

general case follows in an obvious manner. For presentational convenience, we define

γ
(s,s′)
ij,ij′ (lm, l′m′) =

N

ni
E
{[
F

(s)
lm

(
X

(s)
ij1

)
− w(s)

lm,ij

] [
F

(s′)
l′m′

(
X

(s′)
ij′1

)
− w(s′)

l′m′,ij′

]}
. (4.10)

On the main diagonal blocks of the covariance matrix Sij,ij, there are two different

cases (equations (4.11) and (4.12)). There are five different cases for the off-diagonal

blocks (equations (4.13), (4.14), (4.15), (4.16), and (4.17)). All possible results of

s
(s,s′)
ij (lm, l′m′) are listed below.

1. l = l′,m = m′, l 6= iγ
(s,s)
ij,ij (lm, lm) + γ

(s,s)
lm,lm (ij, ij) if s = s′ = 1 or s = s′ = 2

γ
(s,s′)
ij,,ij (lm, lm) + γ

(s,s′)
lm,lm (ij, ij) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.11)
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2. l = l′,m = m′, l = i,m 6= j

γ
(s,s)
ij,ij (im, im) + γ

(s,s)
im,im (ij, ij)− if s = s′ = 1 or s = s′ = 2

2γ
(s,s)
ij,im (im, ij)

γ
(s,s′)
ij,ij (im, im)− γ(s,s

′)
ij,im (im, ij)− if s = 1, s′ = 2 or s = 2, s′ = 1

γ
(s,s′)
im,ij (ij, im) + γ

(s,s′)
im,im (ij, ij)

, (4.12)

3. l = l′,m 6= m′, l = i,m 6= j,m′ 6= j

γ
(s,s)
ij,ij (im, im′)− γ(s,s)im,ij (ij, im′)− if s = s′ = 1 or s = s′ = 2

γ
(s,s)
ij,im′ (im, ij) + γ

(s,s)
im,im′ (ij, ij)

γ
(s,s′)
ij,ij (im, im′)− γ(s,s

′)
ij,im′ (im, ij)− if s = 1, s′ = 2 or s = 2, s′ = 1

γ
(s,s′)
im,ij (ij, im′) + γ

(s,s′)
im,im′ (ij, ij)

, (4.13)

4. l = l′,m 6= m′, l 6= iγ
(s,s)
ij,ij (lm, lm′) + γ

(s,s)
lm,lm′ (ij, ij) if s = s′ = 1 or s = s′ = 2

γ
(s,s′)
ij,ij (lm, lm′) + γ

(s,s′)
lm,lm′ (ij, ij) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.14)

5. l 6= l′, l 6= i, l′ 6= iγ
(s,s)
ij,ij (lm, l′m′) if s = s′ = 1 or s = s′ = 2

γ
(s,s′)
ij,ij (lm, l′m′) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.15)

6. l 6= l′, l = i, l′ 6= i,m 6= jγ
(s,s)
ij,ij (im, l′m′)− γ(s,s)im,ij (ij, l′m′) if s = s′ = 1 or s = s′ = 2

γ
(s,s′)
ij,ij (im, l′m′)− γ(s,s

′)
im,ij (ij, l′m′) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.16)

7. l 6= l′, l 6= i, l′ = i,m′ 6= jγ
(s,s)
ij,ij (lm, im′)− γ(s,s)ij,im′ (lm, ij) if s = s′ = 1 or s = s′ = 2

γ
(s,s′)
ij,ij (lm, im′)− γ(s,s

′)
ij,im′ (lm, ij) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.17)
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8. otherwise 0.

For the elements s
(s,s′)
ij,i′j′ (lm, l

′m′) of the covariance matrix block Sij,i′j′ , there are

two main cases, i = i′, j 6= j′ and i 6= i′. There are five subcases (equations (4.18),

(4.19), (4.20), (4.21), and (4.22)) for i = i′ and j 6= j′ and six subcases (equations

(4.23), (4.24), (4.25), (4.26), (4.27) and (4.28)) for i 6= i′.

1. i = i′, j 6= j′, l = l′, l = i,m 6= j,m′ 6= j′

γ
(s,s)
ij,ij′ (im, im

′)− γ(s,s)ij,im′ (im, ij
′)− if s = s′ = 1 or s = s′ = 2

γ
(s,s)
im,ij′ (ij, im

′) + γ
(s,s)
im,im′ (ij, ij

′)

γ
(s,s′)
ij,ij′ (im, im′)− γ(s,s

′)
ij,im′ (im, ij

′)− if s = 1, s′ = 2 or s = 2, s′ = 1

γ
(s,s′)
im,ij′ (ij, im

′) + γ
(s,s′)
im,im′ (ij, ij

′)

, (4.18)

2. i = i′, j 6= j′, l = l′, l 6= iγ
(s,s)
ij,ij′ (lm, lm

′) + γ
(s,s)
lm,lm′ (ij, ij

′) if s = s′ = 1 or s = s′ = 2

γ
(s,s′)
ij,ij′ (lm, lm′) + γ

(s,s′)
lm,lm′ (ij, ij

′) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.19)

3. i = i′, j 6= j′, l 6= l′, l = i, l′ 6= i,m 6= jγ
(s,s)
ij,ij′ (im, l

′m′)− γ(s,s)im,ij′ (ij, l
′m′) if s = s′ = 1 or s = s′ = 2

γ
(s,s′)
ij,ij′ (im, l′m′)− γ(s,s

′)
im,ij′ (ij, l

′m′) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.20)

4. i = i′, j 6= j′, l 6= l′, l 6= i, l′ = i,m′ 6= j′γ
(s,s)
ij,ij′ (lm, im

′)− γ(s,s)ij,im′ (lm, ij
′) if s = s′ = 1 or s = s′ = 2

γ
(s,s′)
ij,ij′ (lm, im′)− γ(s,s

′)
ij,im′ (lm, ij

′) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.21)

5. i = i′, j 6= j′, l 6= l′, l 6= i, l′ 6= iγ
(s,s)
ij,ij′ (lm, l

′m′) if s = s′ = 1 or s = s′ = 2

γ
(s,s′)
ij,ij′ (lm, l′m′) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.22)
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6. i 6= i′, l = l′, l 6= i, l 6= i′γ
(s,s)
lm,lm′ (ij, i

′j′) if s = s′ = 1 or s = s′ = 2

γ
(s,s′)
lm,lm′ (ij, i

′j′) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.23)

7. i 6= i′, l = l′, l = i, l 6= i′,m 6= j−γ
(s,s)
ij,im′ (im, i

′j′) + γ
(s,s)
im,im′ (ij, i

′j′) if s = s′ = 1 or s = s′ = 2

−γ(s,s
′)

ij,im′ (im, i
′j′) + γ

(s,s′)
im,im′ (ij, i

′j′) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.24)

8. i 6= i′, l = l′, l 6= i, l = i′,m′ 6= j′−γ
(s,s)
i′m,i′j′ (ij, i

′m′) + γ
(s,s)
i′m,i′m′ (ij, i

′j′) if s = s′ = 1 or s = s′ = 2

−γ(s,s
′)

i′m,i′j′ (ij, i
′m′) + γ

(s,s′)
i′m,i′m′ (ij, i

′j′) if s = 1, s′ = 2 or s = 2, s′ = 1

,

(4.25)

9. i 6= i′, l 6= l′, l = i′, l′ 6= i−γ
(s,s)
i′m,i′j′ (ij, l

′m′) if s = s′ = 1 or s = s′ = 2

−γ(s,s
′)

i′m,i′j′ (ij, l
′m′) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.26)

10. i 6= i′, l 6= l′, l 6= i′, l′ = i−γ
(s,s)
ij,im′ (lm, i

′j′) if s = s′ = 1 or s = s′ = 2

−γ(s,s
′)

ij,im′ (lm, i
′j′) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.27)

11. i 6= i′, l 6= l′, l = i′, l′ = i−γ
(s,s)
ij,im′ (i

′m, i′j′)− γ(s,s)i′m,i′j′ (ij, im
′) if s = s′ = 1 or s = s′ = 2

−γ(s,s
′)

ij,im′ (i
′m, i′j′)− γ(s,s

′)
i′m,i′j′ (ij, im

′) if s = 1, s′ = 2 or s = 2, s′ = 1

, (4.28)

12. otherwise 0.

The explicit derivation of equations from (4.11) to (4.28) is given in the Appendix

(Section 4.8).
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Estimator of the Asymptotic Covariance

Finally, we obtain the asymptotic covariance matrix of
√
N (p̂− p), denoted by V .

The unknown quantity in equation (4.10) can be equivalently written as

γ
(s,s′)
ij,ij′ (lm, l′m′) =

N

ni
Cov

{[
F

(s)
lm

(
X

(s)
ij1

)
− w(s)

lm,ij

]
,
[
F

(s′)
l′m′

(
X

(s′)
ij′1

)
− w(s′)

l′m′,ij′

]}
,

which can be consistently estimated by replacing the distribution functions with their

empirical counterparts. Let D
(s)
ijk (lm) = F̂

(s)
lm

(
X

(s)
ijk

)
− ŵ(s)

lm,ij. It has been shown in

Brunner et al. (2017) that

F̂
(s)
lm

(
X

(s)
ijk

)
− ŵ(s)

lm,ij =
1

nl

[(
R

(s)
ijk(lm, ij)−R

(s)
ijk(ij)

)
−
(
R̄

(s)
ij· (lm, ij)−

ni + 1

2

)]
.

Then the estimator of γ
(s,s′)
ij,ij′ (lm, l′m′) in equation (4.10) is given by

γ̂
(s,s′)
ij,ij′ (lm, l′m′) =

N

ni(ni − 1)

ni∑
k=1

D
(s)
ijk(lm) ·D(s′)

ij′k (l′m′) . (4.29)

Replacing the quantities γ
(s,s′)
ij,ij′ (lm, l′m′) with γ̂

(s,s′)
ij,ij′ (lm, l′m′) in equations (4.11)

to (4.28), we obtain L2 consistent estimators ŝ
(s,s′)
ij (lm, l′m′) and ŝ

(s,s′)
ij,i′j′ (lm, l

′m′) for

the elements of covariance matrix blocks Sij,ij and Sij,i′j′ . The resulting estimator

of the asymptotic covariance matrix S of
√
NZ is denoted by Ŝ. Hence, Ŝ is also

an L2 consistent estimator of the unknown quantity S. Then an estimator V̂ of the

asymptotic covariance matrix V of the statistic
√
N (p̂− p) is

V̂ = EŜE>.

Theorem 4.3.3. (L2 Consistent Estimator) Under the assumptions of Theorem 4.3.1

and Theorem 4.3.2, γ̂
(s,s′)
ij,ij′ (lm, l

′m′) defined in equation (4.29) is an L2 consistent esti-

mator of the unknown quantity γ
(s,s′)
ij,ij′ (lm, l

′m′). Further, the estimators Ŝ and V̂ are

L2 consistent estimators of the unknown covariance matrices S and V , respectively.

The L2 consistency of the estimators γ̂
(s,s′)
ij,ij′ (lm, l′m′) is proved in the Appendix

(Section 4.8).
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4.4 Test Statistics

Asymptotic Wald-type Statistic (WTS)

The construction of test statistics relies on the asymptotic multivariate normality of

tN =
√
N (p̂− p). Let T = H>(HH>)−H be the unique project matrix onto the

column space of H and (HH>)− is some generalized inverse of HH>. It is easy

to show that Tp = 0 if and only if Hp = 0. Therefore, the unique, symmetric and

idempotent contrast matrix T is equivalent to H for testing Hp
0 : Hp = 0. The

Wald-type statistic (WTS) is denoted by

WN (T ) = N p̂>T (T V̂ T )+T p̂, (4.30)

where (T V̂ T )+ denotes the pseudo inverse or Moore-Penrose inverse of T V̂ T . Under

the null hypothesis, the statistic WN(T ) has an asymptotic chi-square distribution,

which is formally stated in the following theorem.

Theorem 4.4.1. Under the null hypothesis Hp
0 : Tp = 0 and the condition in

equation (4.6), the Wald-type statistic WN in equation (4.30) has, asymptotically

as N →∞, a central χ2
fT

distribution with degrees of freedom fT = rank (T ).

The test is given by ϕN = I{WN(T ) > χ2
fT ,1−α

}, where χ2
fT ,1−α denotes the (1−α)-

quantile of the χ2
fT

distribution. Under the asymptotic framework in equation (4.6)

and the null hypothesis, by Theorem 9.2.2 in Rao and Mitra (1971, p. 173), the

quadratic form WN (T ) has, asymptotically, χ2
fT

distribution, where fT = rank(T ).

The proof of Theorem 4.4.1 follows the same idea in Zeng and Harrar (2021a).

Wilks’ Lambda F -Approximation

In this section, we propose a multivariate test applied to a transformed version of the

raw data X
(s)
ijk. Let

Ŷ
(s)
ijk = Ĝs(X

(s)
ijk), (4.31)

where Ĝs(x) = 1
ab

∑a
i=1

∑b
j=1 F̂

(s)
ij (x) and F̂

(s)
ij (x) = 1

ni

∑ni
k=1 c(x−X

(s)
ijk). The asymp-

totic version of Ŷ
(s)
ijk denoted by Y

(s)
ijk = Gs(X

(s)
ijk) are independent for different val-
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ues of i or k. However, the covariance matrices differ for different values of i.

Therefore, it would be reasonable to apply the MANOVA test introduced in Zeng

and Harrar (2021b) on Ŷ
(s)
ijk . More specifically, with the observed c × 1 vector,

Xijk = (X
(1)
ijk , . . . , X

(c)
ijk)
>, we have the corresponding transformed c×1 vector, Ŷijk =

(Ŷ
(1)
ijk , . . . , Ŷ

(c)
ijk )>, where i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , ni. The type of effect

being tested is denoted by φ. The contrast matrices Dφ and Cφ target within-subject

and between-subject factor effects, respectively. Let Hφ = C>φ ⊗Dφ ⊗ Ic be an ap-

propriate contrast matrix. The unique projection matrix Tφ = H>φ (HφH
>
φ )−Hφ is

more convenient and equivalent to Hφ for testing the null hypothesis H0 : Hφµ = 0,

where µ is the overall mean vector of the transformed data Y . Note that the mean

vector µ is, in fact, p. Thus, the null hypothesis is equivalent to Hp
0 : Hφp = 0. For

the bc × 1 vector, Ŷik = (Ŷ >i1k, . . . , Ŷ
>
ibk)
>, i = 1, . . . , a; k = 1, . . . , ni, based on Zeng

and Harrar (2021b), we define

Z
(φ)
ik = (Dφ ⊗ Ic) Ŷik,

where Dφ is an appropriate within-subject contrast matrix and is full row rank with

dimension r × b with r = rank(Dφ). We further define the adjusted hypothesis and

error matrices H(φ) and G(φ),

H(φ) = Z
(φ)
Cφ Z

(φ)>
and

G(φ) =
a∑
i=1

Cφ,ii

ni(ni − 1)

ni∑
k=1

(
Z

(φ)
ik −Z

(φ)

i

)(
Z

(φ)
ik −Z

(φ)

i

)>
,

where Z
(φ)

= (Z
(φ)

1 , . . .Z
(φ)

a ), Z
(φ)

i = 1
ni

∑ni
k=1Z

(φ)
ik and Cφ is the between-subject

contrast matrix with dimension a× a. Let Vi = Cov(Ŷik),

Σ
(φ)
i = Cov

(
Z

(φ)
ik

)
= (Dφ ⊗ Ic)Vi (Dφ ⊗ Ic)> and Σφ =

a∑
i=1

Cφ,ii
Σ

(φ)
i

ni
.

Following the idea in Harrar and Bathke (2012a), the distributions of the adjusted

hypothesis and error matrices can be approximated by the following Wishart distri-
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butions,

f ∗H(φ) ·H(φ)
∗

approx∼
H

(φ)
0

Wrc

(
f ∗H(φ) , Irc

)
and

f ∗G(φ) ·G(φ)
∗

approx∼ Wrc

(
f ∗G(φ) , Irc

)
,

where f ∗
H(φ) , f

∗
G(φ) , H

(φ)
∗ = Σ

−1/2
φ H(φ)Σ

−1/2
φ and G

(φ)
∗ = Σ

−1/2
φ G(φ)Σ

−1/2
φ can be

calculated following the results in Zeng and Harrar (2021b). Then we conduct the

modified Wilks’ Lambda test (Zeng and Harrar, 2021b), where the statistic is defined

by

U = Urc,f∗
H(φ)

,f∗
G(φ)

=
|f ∗
G(φ)G

(φ)
∗ |

|f ∗
G(φ)G

(φ)
∗ + f ∗

H(φ)H
(φ)
∗ |

.

The Rao’s F -approximation (Rencher, 2001) for the null distribution is

F =
1− U1/q

U1/q
· df2

df1
, (4.32)

where

q =


√

(rc)2 f ∗ 2H(φ) − 4

(rc)2 + f ∗ 2H(φ) − 5
; if (rc)2 + f ∗ 2H(φ) − 5 > 0

1; if (rc)2 + f ∗ 2H(φ) − 5 6 0

,

df1 = rc · f ∗
H(φ) , df2 = ωq − 1

2
(rc · f ∗

H(φ) − 2), and ω = f ∗
G(φ) − 1

2
(rc− f ∗

H(φ) + 1).

The corresponding test is given by ϕ̃N = I {F > F1−α,df1,df2}, where F1−α,df1,df2 is

the (1− α)-quantile of the Fdf1,df2 distribution.

ANOVA-type Statistic F -Approximation (ATS)

We also consider another commonly used test statistic for multivariate repeated mea-

sures data, known as the analysis-of-variance (ANOVA) type of statistic, defined by

QN (T ) =
N

tr
(
T V̂

) p̂>T p̂,
for which we assume tr (TV ) 6= 0. This assumption means that the projection of

p̂ onto the hypothesis space is almost surely nonconstant and it is a quite weak

assumption (Brunner et al., 2017). We approximate the null distribution of QN (T )

using an F distribution from the modified Wilks’ Lambda test in equation (4.32).

The test is ϕ̂N = I {QN(T ) > F1−α,df1,df2}, where F1−α,df1,df2 is the (1 − α)-quantile

of the Fdf1,df2 distribution.
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Confidence Intervals

By applying delta method on the multivariate normal limiting distribution of tN =
√
N (p̂− p), we derive range preserving (1−α) confidence intervals for the nonpara-

metric treatment effects p
(s)
ij ,

CIg,i,j,s = g−1
{
g
(
p̂
(s)
ij

)
±
z1−α/2√
N

√
v̂
(s)
ij,ij|g′

(
p̂
(s)
ij

)
|
}
, (4.33)

where i = 1, . . . a; j = 1, . . . , b; s = 1, . . . , c, g is differentiable in pij with g′(pij) 6= 0

and v̂
(s)
ij,ij are diagonal elements of the covariance matrix V̂ . A possible choice of g is

the logit function (Konietschke et al., 2012b).

4.5 Simulation Studies

Simulation Design

The test procedures derived in the previous sections are investigated and compared

in extensive simulation studies in terms of their ability to maintain the preassigned

type-I error rate (α = 0.05) under the null hypothesis and to detect fixed alternatives

under different settings.

To study the finite-sample behavior of the Wald-type test (WTS), modified Wilks’

Lambda F -approximation test (WLF) and ANOVA-type test (ATS), we explore ex-

tensively with different sample sizes, covariance structures, data distributions and

effects tested.

All simulations are conducted in R version 3.6.2. The number of simulations

used to get the type-I error rates and powers is nsim = 5000. For our simulation

designs, we simulate multivariate growth curve data in the context of general factorial

designs. To be specific, we set the number of groups to be a = 2, with sample

sizes n = (n1, n2). Both balanced and unbalanced sample sizes are analyzed. For

balanced designs, n ∈ {(20, 20), (30, 30)} are investigated. For unbalanced designs,

n ∈ {(20, 35), (30, 45)} are examined.

In addition, the computational complexity of multivariate data analyses grows

exponentially as the dimension increases. Therefore, to illustrate our methodology
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in an efficient way, we set the dimension of the observations to be c = 2, and the

number of repeated measures to be b = 2. We are interested in whether there are

group, time and group-time interaction effects. The corresponding hypotheses are as

follows.

1. The hypothesis of no Group effect is

H0 : HGp = 0, where HG = Pa ⊗ 1
b
1>b ⊗ Ic.

2. The hypothesis of no Time effect is

H0 : HTp = 0, where 1
a
1>a ⊗ Pb ⊗ Ic.

3. The hypothesis of no Group× Time effect is

H0 : HGTp = 0, where HGT = Pa ⊗ Pb ⊗ Ic.

For covariance structure, we consider compound symmetric and autoregressive

covariance structures. With these two covariance structures, both homoscedastic and

heteroscedastic designs are investigated. Specifically, with the partitioned matrix

Σi = (Σi,jk) representation, two covariance structures to be considered are below.

1. Compound Symmetry

Σi,jk =

Σi,kk = (1− ρi)Ic + ρiJc k = j = 1, . . . , b

Σi,jk = ρiJc k 6= j and k, j = 1, . . . , b

,

where we take ρ = (0.2, 0.2) as the homoscedastic setting and ρ = (0.2, 0.7) as

the heteroscedastic setting.

2. Autoregressive Structure AR(1)

Σi,jk =

Σi,kk = (1− ρi)Ic + ρiJc k = j = 1, . . . , b

Σi,jk = ρ
|k−j|
i Jc k 6= j and k = j = 1, . . . , b

,

where we consider ρ = (0.2, 0.2) as the equal covariances setting and ρ =

(0.2, 0.7) as the unequal covariances setting.
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The compound symmetric and the autoregressive covariance structures will here-

inafter be referred to as CS and AR, respectively. In unbalanced heteroscedastic

designs, we also consider how the unequal covariance matrices are associated with

the unequal sample sizes in two groups. For example, in heteroscedastic designs with

correlation values ρ = (0.2, 0.7), we investigate unbalanced sample sizes in both in-

creasing order n ∈ {(20, 35), (30, 45)} and in decreasing order n = {(35, 20), (45, 30)},

for positive pairing and negative pairing, respectively.

Data are generated according to the model

Xik = µi + Σ
1/2
i εik, i = 1, . . . , a; k = 1, . . . ni,

where Σ
1/2
i is the square root of Σi. To generate independent and identically dis-

tributed random vectors εik = (ε>i1k, . . . , ε
>
ibk)
>, where εijk = (ε

(1)
ijk, . . . , ε

(c)
ijk)
>, we

generate each element from the same standardized distribution by

ε
(s)
ijk =

X
(s)
ijk − E(X

(s)
ijk)√

Var(X
(s)
ijk)

, s = 1, . . . , c,

where X
(s)
ijk are generated from symmetric distributions (standard normal and t(5)

distributions), skewed distributions (χ2(5) and standard lognormal distributions) and

discrete normal distribution, where data are generated by taking the integer part of

the standard normal data.

Simulation Results

For the simulation results, we consider five major scenarios, balanced homoscedastic

(Table 4.1), unbalanced homoscedastic (Table 4.2), balanced heteroscedastic (Table

4.3), unbalanced heteroscedastic with positive pairing (Table 4.4) and unbalanced

heteroscedastic with negative pairing (Table 4.5).

Table 4.1 shows the empirical type-I error rates in balanced homoscedastic set-

tings. The WTS and WLF methods are roughly the same for testing Group effect.

However, under the same settings, ATS is a little conservative when data are from

normal, t(5) and χ2(5) distributions. When data are from lognormal and discrete
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normal distributions, the three tests WTS, WLF and ATS are roughly the same for

testing the Group effect. For testing Time effect and Group×Time interaction effect,

WLF is the best test maintaining the type-I error rates well to the 0.05 level for all

data distributions, while WTS and ATS are much more liberal. Table 4.2 presents the

type-I error rates in unbalanced homoscedastic settings. Although the sample sizes

are unbalanced, the patterns of the test results are similar to that of the balanced

homoscedastic designs shown in Table 4.1.

Next, we comment on the balanced heteroscedastic settings shown in Table 4.3.

All three methods WTS, WLF and ATS are comparable for testing Group effect

with normal, t(5), χ2(5) and discrete normal data. When data come from the highly

skewed lognormal distribution for testing Group effect, WTS and WLF still perform

well, but ATS produces test results that are more liberal. For testing Time and

Group×Time effects with all data distributions, WLF is the best method leading to

test results that are almost exact. However, compared with WLF, WTS and ATS are

generally more liberal under the same settings. The liberality of ATS is less severe

than that of WTS. Table 4.4 shows the test results for unbalanced heteroscedastic

designs with positive pairing which share the same patterns as test results in balanced

heteroscedastic designs shown Table 4.3.

Test results for unbalanced heteroscedastic designs with negative pairing are dis-

played in Table 4.5. In general, WTS and WLF perform well in maintaining the

preassigned type-I error rate and are comparable for testing Group effect with all

five data distributions, normal, t(5), χ2(5), lognormal and discrete normal. However,

under the same settings, ATS test results are more liberal. For testing Time and

Group×Time effects, WLF performs the best producing test results that are almost

exact, but test results of WTS and ATS are generally more liberal. Like before, the

liberality of ATS is less severe than that of WTS.

In summary, the modified Wilks’ Lambda test ϕ̃N turns out to control the pre-

assigned type-I error rate the best in all settings investigated. Therefore, it is the

most recommended method for practical applications in terms of maintaining type-I

error rate. The Wald-type test ϕN , on the other hand, performs well when testing
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Group effect. Hence, it is highly recommended for testing Group effect. In addition

to test results, the nonparametric treatment effects along with the corresponding con-

fidence intervals can be calculated, which are interpretable and are used to quantify

the magnitude of effects.

Table 4.1: Type-I error rate (×100) of WTS, WLF and ATS for balanced homoscedas-
tic designs with a = 2, b = 2, c = 2, CS: ρ = (0.2, 0.2), AR: ρ = (0.2, 0.2).

Dist Cov n
Group Time Group×Time

WTS WLF ATS WTS WLF ATS WTS WLF ATS

N
o
rm

a
l CS

(20,20) 5.2 5.0 3.6 10.0 5.2 6.9 9.2 5.0 6.4
(30,30) 4.8 5.1 4.3 8.5 5.2 6.7 8.2 5.0 6.7

AR
(20,20) 5.5 5.4 4.4 8.9 4.5 6.0 8.8 4.6 6.1
(30,30) 4.8 4.8 3.9 8.4 4.8 6.5 8.5 5.3 7.0

t(
5)

CS
(20,20) 5.0 4.7 3.9 9.1 5.0 6.0 9.1 5.1 6.7
(30,30) 5.0 5.3 4.3 8.0 4.7 5.9 7.8 4.7 6.3

AR
(20,20) 6.1 5.5 4.6 8.8 4.5 6.0 9.6 5.3 7.0
(30,30) 4.7 4.8 4.0 8.2 5.0 6.6 8.4 5.2 6.7

χ
2

(5
) CS

(20,20) 5.6 5.3 4.5 8.4 4.8 5.9 8.7 4.9 6.1
(30,30) 5.1 5.2 4.4 8.3 4.9 6.5 8.2 5.0 6.6

AR
(20,20) 6.1 5.6 4.8 8.9 5.3 6.4 9.2 5.3 6.4
(30,30) 5.0 5.3 4.1 8.7 5.8 7.2 7.9 5.0 6.2

L
og

n
or

m
a
l

CS
(20,20) 5.8 5.1 5.1 8.5 5.0 6.0 8.0 4.7 5.7
(30,30) 5.3 5.3 5.5 7.4 4.1 5.9 8.3 4.9 6.5

AR
(20,20) 5.3 4.5 5.0 7.8 4.9 5.8 7.9 4.5 6.0
(30,30) 4.9 4.9 5.2 8.5 5.4 6.7 8.3 4.8 6.5

D
is

c.
N

or
m

CS
(20,20) 5.7 5.0 4.9 8.7 5.3 6.3 8.7 5.2 6.0
(30,30) 5.3 5.2 5.1 8.0 4.7 6.0 8.0 4.9 6.3

AR
(20,20) 5.4 4.6 4.5 9.0 5.6 6.4 9.3 5.2 6.5
(30,30) 4.7 4.7 4.8 8.5 5.2 6.7 7.9 4.8 6.4

Power Studies

We also investigate the empirical power of the test procedures to detect fixed alter-

natives. Similar to the type-I error rate simulations above, data are generated from

five different distributions. For symmetric distributions, normal and t (5) are investi-

gated. For skewed data, χ2 (5) and lognormal are examined. For ordered categorical

data, discrete normal is analyzed. To compare the power performance of the three

tests, WTS, WLF and ATS, with different data distributions and for detecting dif-
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Table 4.2: Type-I error rate (×100) of WTS, WLF and ATS for unbalanced ho-
moscedastic designs with a = 2, b = 2, c = 2, CS: ρ = (0.2, 0.2), AR: ρ = (0.2, 0.2).

Dist Cov n
Group Time Group×Time

WTS WLF ATS WTS WLF ATS WTS WLF ATS
N

o
rm

a
l CS

(20,35) 4.7 4.5 3.8 8.8 5.1 6.5 8.7 5.3 6.7
(30,45) 4.9 4.9 4.3 8.8 5.6 7.0 8.2 5.0 6.5

AR
(20,35) 5.6 5.3 4.2 8.7 4.9 6.0 9.2 5.1 6.4
(30,45) 4.4 4.6 4.2 8.4 4.8 6.3 8.1 4.9 6.6

t(
5)

CS
(20,35) 5.0 4.9 4.0 8.6 4.7 6.0 8.5 4.8 6.0
(30,45) 4.6 4.6 4.3 8.0 5.1 6.4 8.3 5.1 6.6

AR
(20,35) 5.2 5.1 4.4 9.1 4.8 6.6 8.4 4.7 6.3
(30,45) 4.9 5.3 4.4 8.5 4.7 6.5 8.5 4.8 6.4

χ
2

(5
) CS

(20,35) 5.8 5.6 4.4 8.7 4.9 6.3 8.9 5.2 6.5
(30,45) 5.1 5.2 4.5 8.2 5.2 6.5 7.6 4.6 6.3

AR
(20,35) 4.9 4.5 3.6 8.7 5.0 6.2 9.1 5.2 6.6
(30,45) 4.6 4.9 4.4 8.4 5.1 6.6 7.8 4.7 6.4

L
og

n
or

m
al

CS
(20,35) 5.2 4.8 4.9 8.4 5.2 6.3 8.6 5.4 6.2
(30,45) 4.9 5.2 5.1 8.3 5.2 6.9 8.1 5.1 6.5

AR
(20,35) 5.5 5.0 4.7 8.7 5.4 6.4 8.6 5.0 6.3
(30,45) 5.2 5.4 5.2 8.3 4.9 6.5 8.7 5.5 7.2

D
is

c.
N

o
rm CS

(20,35) 5.6 5.1 5.0 8.6 5.1 6.5 8.3 4.8 5.9
(30,45) 4.7 4.9 4.8 7.6 5.1 6.4 8.4 5.1 6.7

AR
(20,35) 6.1 5.7 5.2 8.0 4.9 6.1 8.8 5.4 6.4
(30,45) 4.8 4.7 5.1 8.0 5.5 6.9 7.9 4.6 6.4

ferent fixed alternatives, we set two groups (a = 2), two time points (b = 2) and

two response variables (c = 2). The sample sizes are balanced n = (30, 30). For

covariance structure, compound symmetry with correlation values ρ = (0.2, 0.2) is

used. We consider the following three fixed alternatives. For true Group effect, we set

µ1 = 0× 12 ⊗ 12 and µ2 = δ12 ⊗ 12. For true Time effect, µ1 = µ2 = δ (1, 2)> ⊗ 12.

For true Group×Time effect, µ1 = 0× 12 ⊗ 12 and µ2 = δ (1, 2)> ⊗ 12. In all three

cases, δ ∈ {0, 0.1, 0.2, . . . , 1.0} takes value from small to large. The simulation results

displayed in Table 4.6 are for symmetric distributions, in Table 4.7 are for skewed

distributions and in Table 4.8 are for discrete normal data. Generally, the power of

all three tests, WTS, WLF and ATS, are comparable but with the tendency that

WTS and ATS have slightly larger power than WLF does. The power advantage of

WTS and ATS for testing Time and Group×Time effects may be explained by the
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Table 4.3: Type-I error rate (×100) of WTS, WLF and ATS for balanced het-
eroscedastic designs with a = 2, b = 2, c = 2, CS: ρ = (0.2, 0.7), AR: ρ = (0.2, 0.7).

Dist Cov n
Group Time Group×Time

WTS WLF ATS WTS WLF ATS WTS WLF ATS
N

o
rm

a
l CS

(20,20) 6.2 5.4 5.8 8.3 4.8 5.8 8.7 4.7 5.7
(30,30) 5.1 5.1 5.6 8.3 5.0 6.2 8.3 5.1 6.6

AR
(20,20) 5.7 5.1 5.5 8.0 4.5 5.5 9.1 5.0 6.2
(30,30) 4.6 4.4 5.3 8.1 4.5 5.8 8.1 4.8 6.4

t(
5)

CS
(20,20) 5.3 4.5 5.2 8.5 4.6 5.6 8.6 5.3 6.0
(30,30) 4.7 4.4 5.1 7.8 4.8 6.1 7.8 4.8 5.7

AR
(20,20) 5.4 4.6 5.6 8.6 4.7 5.4 8.2 4.6 5.4
(30,30) 5.2 4.9 5.8 8.5 5.1 6.2 7.8 4.8 6.1

χ
2

(5
) CS

(20,20) 6.2 5.4 6.1 8.5 5.1 5.9 7.8 4.7 5.0
(30,30) 4.8 4.6 5.1 8.3 5.0 6.1 7.3 4.5 5.8

AR
(20,20) 5.8 5.0 5.2 8.7 5.4 6.2 9.2 5.3 6.0
(30,30) 5.5 5.4 6.3 8.1 5.1 6.5 8.2 5.2 6.5

L
og

n
or

m
al

CS
(20,20) 5.4 5.0 6.5 7.8 4.8 5.3 7.3 4.7 4.8
(30,30) 5.4 5.3 7.3 7.8 5.0 5.9 7.7 5.5 6.3

AR
(20,20) 5.6 5.0 6.4 8.3 5.3 5.8 7.1 4.7 4.9
(30,30) 5.1 4.9 6.9 7.6 4.8 5.9 7.5 4.6 5.6

D
is

c.
N

o
rm CS

(20,20) 6.0 5.6 5.7 8.5 5.3 5.8 9.0 5.4 5.8
(30,30) 4.9 5.0 5.5 7.7 4.8 6.0 7.9 4.8 6.1

AR
(20,20) 6.4 5.7 5.6 8.2 5.0 5.4 8.3 4.8 5.7
(30,30) 5.4 5.7 5.4 7.7 4.8 5.9 7.6 4.7 5.8

liberal behavior in type-I error rates.

4.6 Application

To illustrate how our methodology can be applied and to stimulate readers’ interest,

we introduce an example where multivariate growth curve data on idiopathic infantile

nystagmus syndrome (INS) are analyzed in the context of general factorial design.

In this study (Fadardi et al., 2017), 15 voluntary participants with idiopathic INS

were recruited from a referring ophthalmologist. Participants were asked to carry

out acuity tasks identifying the direction of horizontal Tumbling-E targets under

different mental load settings. For the low mental load setting, participants were

given unlimited time to respond. After responding, they were required to view a
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Table 4.4: Type-I error rate (×100) of WTS, WLF and ATS for unbalanced het-
eroscedastic designs (positive pairing) with a = 2, b = 2, c = 2, CS: ρ = (0.2, 0.7),
AR: ρ = (0.2, 0.7).

Dist Cov n
Group Time Group×Time

WTS WLF ATS WTS WLF ATS WTS WLF ATS

N
or

m
a
l CS

(20,35) 5.1 4.8 4.9 8.5 4.7 5.6 8.9 4.6 5.8
(30,45) 5.0 5.0 5.6 8.3 4.8 6.2 8.7 5.1 6.5

AR
(20,35) 5.9 5.3 5.2 9.2 5.0 5.9 9.5 5.0 6.2
(30,45) 4.6 4.7 5.1 8.8 5.1 6.4 8.7 4.8 6.2

t(
5)

CS
(20,35) 4.8 4.8 4.5 9.3 5.3 6.1 9.9 5.3 6.4
(30,45) 4.8 4.8 5.3 8.4 4.7 6.0 7.8 4.8 6.0

AR
(20,35) 5.4 4.8 5.2 9.2 5.0 5.9 9.5 5.0 5.7
(30,45) 4.8 4.7 5.2 8.8 5.2 6.3 8.7 5.1 6.3

χ
2

(5
) CS

(20,35) 5.3 4.8 5.2 9.3 5.2 6.0 9.1 5.3 6.2
(30,45) 5.5 5.4 5.7 7.7 4.4 5.9 8.6 5.2 6.4

AR
(20,35) 5.3 4.8 5.0 10.0 5.7 6.6 9.3 5.3 5.8
(30,45) 5.4 5.4 5.7 8.6 5.1 6.2 8.5 5.1 6.5

L
og

n
or

m
a
l

CS
(20,35) 5.3 4.5 5.8 8.6 4.9 5.3 8.7 5.4 5.7
(30,45) 5.6 5.4 7.1 8.8 5.5 6.8 8.1 5.0 6.0

AR
(20,35) 5.6 4.4 6.7 9.1 5.1 6.0 8.4 5.0 5.5
(30,45) 5.1 4.9 6.7 8.4 5.0 6.1 7.7 5.0 6.1

D
is

c.
N

or
m

CS
(20,35) 5.5 5.1 5.1 8.4 4.6 5.5 9.0 5.3 5.7
(30,45) 5.3 5.7 5.1 8.2 5.0 5.9 7.7 4.9 6.1

AR
(20,35) 5.6 5.4 4.7 9.3 5.5 6.2 8.9 5.2 5.6
(30,45) 4.8 5.0 5.2 8.4 5.1 6.2 8.3 5.1 6.6

fixation cross for 100 milliseconds prior to the presence of the next acuity target. For

the high mental load setting, participants were given only 0.5 second to view the target

and then 300 milliseconds to view a visual noise mask. Participants were required to

respond while they were viewing a fixation cross for 1 second. In addition, participants

were also asked to conduct mental arithmetic (continuously subtracting 7 from a

number randomly selected between 100 and 120 and given by the examiner during

the task) simultaneously with the acuity task. Both the low and the high mental

load effects were evaluated at two gaze positions (null position and away position).

Eventually, the size and contrast of the target at which participants’ task performance

plateaued were recorded. The main objective of the study is to investigate whether

there is any main effect of mental load (M), main effect of gaze position (P), and
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Table 4.5: Type-I error rate (×100) of WTS, WLF and ATS for unbalanced het-
eroscedastic designs (negative pairing) with a = 2, b = 2, c = 2, CS: ρ = (0.2, 0.7),
AR: ρ = (0.2, 0.7).

Dist Cov n
Group Time Group×Time

WTS WLF ATS WTS WLF ATS WTS WLF ATS

N
or

m
a
l CS

(35,20) 5.4 4.6 5.8 8.1 5.3 6.5 7.8 5.0 6.1
(45,30) 4.7 4.8 6.2 7.7 5.3 6.5 7.4 4.7 6.3

AR
(35,20) 5.3 4.5 5.7 7.3 4.9 5.9 7.6 5.0 5.9
(45,30) 4.6 4.4 6.1 7.7 5.1 6.4 7.0 4.4 5.8

t(
5)

CS
(35,20) 5.2 5.0 6.2 7.7 4.9 5.7 8.1 5.5 6.6
(45,30) 5.4 5.5 6.2 8.0 5.5 6.8 7.3 4.7 6.3

AR
(35,20) 5.8 5.0 6.5 7.4 4.8 5.7 8.0 5.1 5.9
(45,30) 4.8 4.6 6.1 8.1 5.3 7.0 6.5 4.2 5.5

χ
2

(5
) CS

(35,20) 6.1 5.3 6.8 7.2 4.9 5.8 7.6 5.1 6.1
(45,30) 5.5 5.4 6.4 7.5 5.4 6.7 6.6 4.5 5.8

AR
(35,20) 5.7 5.0 6.4 6.9 4.6 5.4 7.1 5.0 5.8
(45,30) 5.0 4.7 6.3 7.7 5.0 6.4 7.5 5.3 6.3

L
og

n
or

m
a
l

CS
(35,20) 6.3 5.6 7.9 6.4 4.5 5.2 6.8 4.7 5.3
(45,30) 5.2 5.1 7.2 7.2 5.3 6.2 7.3 5.2 6.2

AR
(35,20) 5.9 5.5 7.8 6.8 4.6 5.6 6.9 5.1 5.5
(45,30) 4.8 4.9 6.9 7.4 5.2 6.3 7.0 5.0 6.1

D
is

c.
N

or
m

CS
(35,20) 5.6 5.3 6.2 7.5 4.8 5.9 7.8 5.2 6.2
(45,30) 5.4 5.6 6.3 7.4 5.0 6.2 7.3 5.1 6.3

AR
(35,20) 6.2 5.8 6.7 7.3 4.7 5.6 7.3 5.0 5.5
(45,30) 5.2 5.4 6.0 7.4 4.7 5.9 8.0 5.5 6.6

interaction effect between the mental load and gaze position (MP).

Among all 15 participants with idiopathic infantile nystagmus syndrome, 11 of

them finished the task with no missing data. To test the interaction effect mentioned

above in the context of our method, we need the key parameters. All participants have

the disease. Thus, there is only one group (a = 1). There are four repeated measures

(b = 4) representing four different occasions, low mental load at null position, low

mental load at away position, high mental load at null position, and high mental load

at away position. There are two response variables measured each time, target size

and contrast (c = 2). For the Wald-type and ANOVA-type tests, the corresponding

contrast matrix for testing the interaction effect between the mental load and gaze

position isHMP = (1,−1,−1, 1)⊗I2. The contrast matrices for testing main effects of
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Table 4.6: Power (×100) at α = 0.05 of WTS, WLF and ATS for three fixed al-
ternatives with a = 2, b = 2, c = 2, n = (30, 30), CS: ρ = (0.2, 0.2). Symmetric
distributions, normal and t (5), are investigated.

Dist δ
Group Time Group×Time

WTS WLF ATS WTS WLF ATS WTS WLF ATS
N

or
m

a
l

0.0 4.7 5.0 3.7 7.9 4.6 6.4 7.9 4.8 6.3
0.1 7.7 8.0 7.6 15.6 10.2 12.9 10.6 6.4 8.3
0.2 17.7 17.3 18.8 37.3 28.5 33.5 15.2 9.8 12.2
0.3 34.5 33.5 37.9 67.8 58.5 63.8 24.9 17.3 21.6
0.4 55.9 55.0 61.5 89.9 84.5 88.6 36.6 28.1 33.0
0.5 76.8 75.9 80.5 98.0 96.1 97.7 51.5 42.0 48.0
0.6 89.7 89.2 92.4 99.7 99.4 99.7 67.5 58.5 64.0
0.7 97.1 96.7 98.0 100.0 100.0 100.0 79.5 72.2 77.2
0.8 99.2 99.2 99.5 100.0 100.0 100.0 87.5 82.4 86.0
0.9 99.9 99.9 99.9 100.0 100.0 100.0 93.7 90.2 92.8
1.0 100.0 100.0 100.0 100.0 100.0 100.0 97.5 95.6 97.3

t(
5
)

0.0 4.3 4.4 3.6 7.7 4.5 5.9 8.0 4.2 5.9
0.1 6.6 6.5 6.3 14.7 9.7 12.1 9.0 5.5 7.0
0.2 13.2 13.0 14.6 30.8 22.9 27.5 13.9 9.1 11.6
0.3 26.4 25.9 30.2 58.4 49.1 54.2 21.8 15.2 19.2
0.4 43.5 42.7 48.1 80.7 74.0 78.7 31.2 23.3 27.4
0.5 62.1 61.0 67.2 93.8 90.4 92.8 42.7 33.4 39.0
0.6 79.3 78.5 83.8 98.7 97.7 98.5 54.8 45.6 51.6
0.7 90.7 89.8 93.2 99.9 99.7 99.9 67.5 59.1 64.4
0.8 96.4 96.1 97.6 100.0 100.0 100.0 78.1 71.3 76.0
0.9 98.8 98.6 99.2 100.0 100.0 100.0 85.1 79.0 83.0
1.0 99.7 99.7 99.8 100.0 100.0 100.0 90.6 86.8 89.7

mental load and gaze position areHM = (1, 1,−1,−1)⊗I2 andHP = (1,−1, 1,−1)⊗

I2, respectively. For the modified Wilks’ Lambda F -approximation test, since a = 1,

Cφ is always 1, where φ = {M,P,MP}. However, Dφ varies with effect tested,

DMP = (1,−1,−1, 1) for testing the interaction effect,DM = (1, 1,−1,−1) for testing

mental load effect and DP = (1,−1, 1,−1) for testing gaze position effect.

The original study (Fadardi et al., 2017) noted that due to the limitations imposed

by the projector resolution, acuity target sizes were limited to 1.8, 1.75, 1.7, 1.65,

1.6, 1.5, 1.4, 1.3, 1.1 and 1 logMAR. Hence, it is reasonable to treat the target size as

an order categorical variable. Also, tumbling-E targets were presented on the screen

background with contrast of 98, 50, 25, 10, 5, and 2%, which makes the contrast

variable an ordered categorical variable as well. In this case, our test procedures,

WTS and ATS, which are based on nonparametric treatment effects in equation
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Table 4.7: Power (×100) at α = 0.05 of WTS, WLF and ATS for three fixed alterna-
tives with a = 2, b = 2, c = 2, n = (30, 30), CS: ρ = (0.2, 0.2). Skewed distributions,
χ2 (5) and lognormal, are investigated.

Dist δ
Group Time Group×Time

WTS WLF ATS WTS WLF ATS WTS WLF ATS
χ
2

(5
)

0.0 5.3 5.5 5.0 7.8 5.0 6.1 8.7 5.4 7.2
0.1 8.4 8.3 8.7 18.7 12.9 15.8 10.9 6.7 8.6
0.2 21.6 21.1 24.0 48.7 39.3 44.8 17.6 12.1 14.5
0.3 41.6 40.3 46.5 80.1 73.5 77.8 30.3 22.8 27.5
0.4 66.7 65.6 71.8 96.4 94.0 95.8 45.5 36.3 42.0
0.5 85.5 84.7 89.3 99.7 99.3 99.7 60.7 51.3 57.3
0.6 96.0 95.6 97.4 100.0 100.0 100.0 76.7 68.7 73.8
0.7 99.1 99.0 99.5 100.0 100.0 100.0 86.1 80.4 84.6
0.8 99.9 99.9 100.0 100.0 100.0 100.0 92.3 88.3 91.1
0.9 100.0 100.0 100.0 100.0 100.0 100.0 96.5 94.0 96.1
1.0 100.0 100.0 100.0 100.0 100.0 100.0 98.4 97.3 98.3

L
og

n
or

m
a
l

0.0 4.5 4.7 4.8 7.8 4.7 6.0 8.2 5.1 6.5
0.1 18.1 16.8 21.6 54.7 46.8 50.8 18.8 13.4 16.3
0.2 57.1 55.0 65.4 96.7 95.5 96.4 43.8 36.3 40.3
0.3 89.7 88.6 93.4 100.0 100.0 100.0 69.0 62.3 66.6
0.4 98.7 98.6 99.2 100.0 100.0 100.0 84.5 79.9 82.7
0.5 99.9 99.9 100.0 100.0 100.0 100.0 93.5 91.0 92.5
0.6 100.0 100.0 100.0 100.0 100.0 100.0 97.7 96.5 97.2
0.7 100.0 100.0 100.0 100.0 100.0 100.0 98.9 98.1 98.7
0.8 100.0 100.0 100.0 100.0 100.0 100.0 99.6 99.4 99.6
0.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.8
1.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9

Table 4.8: Power (×100) at α = 0.05 of WTS, WLF and ATS for three fixed alter-
natives with a = 2, b = 2, c = 2, n = (30, 30), CS: ρ = (0.2, 0.2). Discrete normal is
investigated.

Dist δ
Group Time Group×Time

WTS WLF ATS WTS WLF ATS WTS WLF ATS

D
is

c.
N

or
m

0.0 5.1 4.9 4.6 8.3 5.1 6.5 8.5 5.3 6.8
0.1 17.3 16.4 20.7 46.1 40.3 42.2 13.8 9.3 11.4
0.2 38.1 34.5 43.4 74.7 72.1 72.0 17.9 13.1 15.3
0.3 61.3 55.2 65.0 87.8 87.3 86.1 19.8 15.0 16.7
0.4 76.6 68.7 77.8 91.4 91.5 90.5 26.2 20.7 23.0
0.5 84.2 75.7 84.4 94.6 94.5 93.2 50.8 44.3 47.2
0.6 89.1 82.1 89.1 96.7 96.6 96.2 67.6 61.6 64.4
0.7 91.8 86.8 92.3 98.6 98.3 98.5 77.5 71.8 74.4
0.8 94.5 91.6 95.4 99.9 99.8 99.8 80.7 76.4 79.0
0.9 99.1 98.8 99.6 100.0 100.0 100.0 94.5 91.3 93.5
1.0 99.8 99.8 99.9 100.0 100.0 100.0 98.7 98.0 98.5
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(4.2), can be applied here. Moreover, the modified Wilks’ Lambda F -approximation

test based on the transformed data in equation (4.31) can also be applied in this

nonparametric setting.

As shown in Table 4.9, the p-values of WTS, ATS and WLF are less than α = 0.05

for testing the main effect of mental load, leading to significant results. However, for

testing the main effect of gaze position, the p-values of all three tests are larger than

0.05. Thus, there is no main effect of gaze position. For testing the mental×position

interaction effect, WTS method leads to significant result, whereas WLF and ATS

methods produce insignificant results. Based on our simulations in Section 4.5, WLF

is the best method in all settings, so it is more reasonable to claim that there is no

significant mental× position interaction effect. It is also worth mentioning that with

the total sample size of only 11, the asymptotic Wald-type test is not trustworthy.

Of the 11 participants, 3 are female and 8 are male. It might also be interesting to

investigate whether there are other interaction effects, for example, gender×mental

(GM), gender× position (GP), and gender×mental× position (GMP). In this case,

there are two groups (a = 2), i.e., female group and male group, four occasions

(b = 4) and two response variables (c = 2). Accordingly, the contrast matrices are

HGM = Pa⊗P2⊗ 1
2
1>2 ⊗Ic, HGP = Pa⊗ 1

2
1>2 ⊗P2⊗Ic, andHGMP = Pa⊗P2⊗P2⊗Ic.

For the modified Wilks’ Lambda F -approximation test, Cφ is always P2 for testing

all three interaction effects. However, Dφ varies with effect tested and they are

DGM = (1,−1)⊗ 1
2
1>2 , DGP = 1

2
1>2 ⊗ (1,−1), and DGMP = (1,−1)⊗ (1,−1).

Test results of these two- and three-way interactions are shown in Table 4.10. With

all three tests, the p-values for testing the two-way interactions gender×mental and

gender×position are greater than 0.05, leading to insignificant test results. The results

of the three methods for testing the three-way interaction gender×mental×position

are not aligned with each other. Given the group sample sizes of 3 and 8 for the two

genders, the test results of WTS and WLF are not trustworthy. However, the test

result of ATS is the most reliable one leading to an insignificant result.

In addition, point estimates of the nonparametric treatment effects p
(s)
ij in equa-

tion (4.2) for two variables and for the four different occasions are computed. The
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Table 4.9: Analysis of the idiopathic infantile nystagmus syndrome (INS) data using
fully nonparametric methods.

Effect WTS WLF ATS

Mental Load < 0.001 0.00566 0.00346
Gaze Position 0.29863 0.37348 0.22134
Mental× Position 0.04788 0.06728 0.08743

index i refers to the group (i = 1) and the index j refers to the time point (oc-

casion) (j = 1, low mental load at null position; j = 2, low mental load at away

position; j = 3, high mental load at null position; j = 4, high mental load at away

position). Lastly, the index s refers to the variable (s = 1, size; s = 2, contrast).

The two-sided 95% confidence intervals for both with and without range preserving

of the nonparametric treatment effect p
(s)
ij are calculated based on equation (4.33).

The estimated nonparametric treatment effects and their corresponding confidence

intervals are presented in Table 4.11.

The estimated nonparametric treatment effect p̂
(2)
11 = 0.3936 for the contrast vari-

able with low mental load at null position means that the observations from F
(2)
11

tend to be smaller than those from the mean distribution G2 = 1
4

∑1
i=1

∑4
j=1 F

(2)
ij .

More precisely, it can be interpreted as that the probability that a randomly selected

observation of variable 2 (contrast), Z2, from the mean distribution G2 is smaller

than a randomly selected observation X
(2)
111 from F

(2)
11 equals 0.3936. Analogously, the

estimated treatment effect p̂
(1)
13 = 0.6942 for the size variable with high mental load

at null position means that the observations from F
(1)
13 tend to be larger than those

from the mean distribution G1.

The confidence intervals of both variables do not overlap within each gaze po-

sition, which may be interpreted as that the mental load has an effect on the task

performance in both gaze positions. This result is aligned with the result of testing

the main effect of mental load as shown in Table 4.9. The visual representation of the

estimated nonparametric treatment effects along with their corresponding confidence

intervals (without range preserving) is shown in Figure 4.1. To further compare the

with and without range preserving confidence intervals, the side-by-side plots are
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shown in Figure 4.2. It can be seen that these two types of confidence intervals are

almost identical with the given optometry data.

Table 4.10: Analysis of the idiopathic infantile nystagmus syndrome (INS) data for
two genders using fully nonparametric methods.

Effect WTS WLF ATS

Gender×Mental 0.20337 0.32876 0.26494
Gender× Position 0.64313 0.84303 0.61250
Gender×Mental× Position < 0.001 0.03151 0.26456

Table 4.11: Estimated nonparametric treatment effects and their corresponding 95%
confidence intervals (with and without range preserving). The range preserving con-
fidence intervals are denoted by RP.

Group Time Mental Position Variable p̂ 95% L 95% U RP 95% L RP 95% U

1 1 low null size 0.3750 0.3562 0.3938 0.3563 0.3940
1 1 low null contrast 0.3936 0.3702 0.4170 0.3705 0.4172
1 2 low away size 0.3409 0.3271 0.3548 0.3272 0.3549
1 2 low away contrast 0.3017 0.2926 0.3107 0.2927 0.3108
1 3 high null size 0.6942 0.6733 0.7151 0.6729 0.7147
1 3 high null contrast 0.6581 0.6473 0.6688 0.6472 0.6688
1 4 high away size 0.5899 0.5701 0.6097 0.5699 0.6095
1 4 high away contrast 0.6467 0.6311 0.6623 0.6310 0.6621

4.7 Discussion and Conclusion

Multivariate growth curve data occur in various disciplines, which urges us to develop

robust and efficient methods for analyzing data of this type. Scholars and researchers

have developed some classical parametric and semiparametric procedures to analyze

such data but assumptions like multivariate normality and homoscedasticity are usu-

ally assumed. Moreover, due to the intrinsic nature of parametric methods, data that

can be analyzed are restricted to continuous data.

With the proposed methods, null hypotheses can be formulated in terms of mean-

ingful nonparametric measures of treatment effects. Such nonparametric treatment

effects are characterized in terms of functionals of distribution functions with the

sole assumption of nondegenerate marginal distributions. For the WTS method, we

showed that it is asymptotically exact under the null hypothesis of interest. For
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Figure 4.1: Visual representation of the estimated nonparametric treatment effects
and their corresponding 95% confidence intervals (without range preserving).
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the WLF method, instead of analyzing the original data, we proposed to analyze

the transformed data using the modified Wilks’ Lambda F -approximation test which

was developed in Zeng and Harrar (2021b). For the ATS method, we used an F

distribution obtained from the WLF method to approximate the distribution of the

ANOVA-type statistic. In addition, we showed asymptotic multivariate normality of

the estimated nonparametric treatment effects vector p̂, which leads to the construc-

tion of confidence intervals of the treatment effects.

Our simulation studies indicated that WLF method is the most recommended

method for testing Time and Group×Time effects in practical applications. How-

ever, for testing Group effect, WTS is highly recommended due to its superiority in

maintaining the type-I error rate under the null hypotheses and achieving large power

for detecting fixed alternatives.
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Figure 4.2: Side-by-side plots of estimated nonparametric treatment effects and their
corresponding 95% confidence intervals (with and without range preserving).
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Compared with the classical parametric test procedures, our nonparametric tests

are appropriate for analyzing multivariate growth curve data without assuming nor-

mality or homoscedasticity. Also, these methods can deal with discrete, ordered

categorical and continuous data in the same way. Some other existing rank-based

nonparametric methods were developed but are suitable for univariate data only.

The proposed methods are most appropriate when sample size is large. However,

when sample size is small, they may lead to liberal test results. For future research, we

plan to investigate other multiple contrast statistics and resampling methods based

on nonparametric treatment effects to overcome the small sample issue.
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4.8 Appendix

Derivation of the Covariance S in (4.11) to (4.28)

We show the derivation of the main diagonal covariance blocks Sij,ij = Cov
(√

NZij

)
and the off-diagonal covariance blocks Sij,i′j′ = Cov

(√
NZij,

√
NZi′j′

)
, where (ij) 6=

(i′j′). For presentational convenience, we use the following notations,

ξ
(s)
lm,ij;k = F

(s)
lm

(
X

(s)
ijk

)
− w(s)

lm,ij

and

ξ
(s)
lm,ij = ξ

(s)
lm,ij;1 = F

(s)
lm

(
X

(s)
ij1

)
− w(s)

lm,ij.

Note that E
(
ξ
(s)
lm,ij

)
= E

(
F

(s)
lm

(
X

(s)
ij1

))
− w(s)

lm,ij = 0 and that E
(
ξ
(s)
lm,ijξ

(s)
lm,i′j′

)
= 0

when i 6= i′ due to independence. In the case of l = l′,m = m′, l 6= i and s = s′ = 1,

the element s
(s,s′)
ij (lm, l′m′) is

s
(1,1)
ij (lm, lm)

= NVar
(
Z

(1)
lm,ij

)
= NVar

{
1

ni

ni∑
k=1

[
F

(1)
lm

(
X

(1)
ijk

)
− w(1)

lm,ij

]
− 1

nl

nl∑
k′=1

[
F

(1)
ij

(
X

(1)
lmk′

)
− w(1)

ij,lm

]}

=
N

ni
E

{[
F

(1)
lm

(
X

(1)
ij1

)
− w(1)

lm,ij

]2}
+
N

nl

{[
F

(1)
ij

(
X

(1)
lm1

)
− w(1)

ij,lm

]2}
=
N

ni
E

{[
ξ
(1)
lm,ij

]2}
+
N

nl
E

{[
ξ
(1)
ij,lm

]2}
= γ

(1,1)
ij,ij (lm, lm) + γ

(1,1)
lm,lm (ij, ij) .
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In the case of i = i′, j 6= j′, l = l′, l = i,m 6= j,m′ 6= j′ and s = s′ = 1, the element

s
(s,s′)
ij,i′j′ (lm, l

′m′) is

s
(1,1)
ij,ij′ (im, im

′)

=NCov
(
Z

(1)
im,ij, Z

(1)
im′,ij′

)
=NCov

{[
1

ni

ni∑
k=1

ξ
(1)
im,ij;k −

1

ni

ni∑
k=1

ξ
(1)
ij,im;k

]
,

[
1

ni

ni∑
k=1

ξ
(1)
im′,ij′;k −

1

ni

ni∑
k=1

ξ
(1)
ij′,im′;k

]}

=NCov

[
1

ni

ni∑
k=1

ξ
(1)
im,ij;k,

1

ni

ni∑
k=1

ξ
(1)
im′,ij′;k

]
−NCov

[
1

ni

ni∑
k=1

ξ
(1)
im,ij;k,

1

ni

ni∑
k=1

ξ
(1)
ij′,im′;k

]
−

NCov

[
1

ni

ni∑
k=1

ξ
(1)
ij,im;k,

1

ni

ni∑
k=1

ξ
(1)
im′,ij′;k

]
+NCov

[
1

ni

ni∑
k=1

ξ
(1)
ij,im;k,

1

ni

ni∑
k=1

ξ
(1)
ij′,im′;k

]

=
N

n2
i

· ni · Cov
[
ξ
(1)
im,ij;1, ξ

(1)
im′,ij′;1

]
− N

n2
i

· ni · Cov
[
ξ
(1)
im,ij;1, ξ

(1)
ij′,im′;1

]
−

N

n2
i

· ni · Cov
[
ξ
(1)
ij,im;1, ξ

(1)
im′,ij′;1

]
+
N

n2
i

· ni · Cov
[
ξ
(1)
ij,im;1, ξ

(1)
ij′,im′;1

]
=
N

ni
E
[
ξ
(1)
im,ij · ξ

(1)
im′,ij′

]
− N

ni
E
[
ξ
(1)
im,ij · ξ

(1)
ij′,im′

]
− N

ni
E
[
ξ
(1)
ij,im · ξ

(1)
im′,ij′

]
+
N

ni
E
[
ξ
(1)
ij,im · ξ

(1)
ij′,im′

]
=γ

(1,1)
ij,ij′ (im, im

′)− γ(1,1)ij,im′ (im, ij
′)− γ(1,1)im,ij′ (ij, im

′) + γ
(1,1)
im,im′ (ij, ij

′) .

All other nonzero cases can be calculated analogously. Moreover, using the same

technique as above and independence, the zero cases can also be calculated.

Proof of Theorem 4.3.2

Proof. Now we show the multivariate normality of the statistic
√
N (p̂− p). There

are two aspects to show multivariate normality. They are

1. the Asymptotic Equivalence Theorem in Theorem 4.3.1 and

2. Cramer-Wold device.

As shown in (4.7) that

√
NZ

(s)
i′j′,ij =

√
N

{
1

ni

ni∑
k=1

[
F

(s)
i′j′

(
X

(s)
ijk

)
− w(s)

i′j′,ij

]
− 1

ni′

ni′∑
k′=1

[
F

(s)
ij

(
X

(s)
i′j′k′

)
− w(s)

ij,i′j′

]}
,

where i, i′ = 1, . . . , a; j, j′ = 1, . . . , b. For illustration purpose, we are showing the

case when there are two variables. That is, c = 2. (For cases when c > 2, the proof
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follows the same idea.) By (4.3) and (4.4), we have the following relationship,

p = Ew = Iab ⊗
(

1

ab
1>ab

)
⊗ I2w.

To prove multivariate normality, we need to apply Cramer-Wold device. Let

v =
(
v>11, . . . ,v

>
1b, . . . ,v

>
a1, . . . ,v

>
ab

)>
=
(
v
(1)
11 , v

(2)
11 , v

(1)
12 , v

(2)
12 , . . . , v

(1)
ab , v

(2)
ab

)>
be arbitrary vectors of constants with ‖v‖ = 1 and vij =

(
v
(1)
ij , v

(2)
ij

)>
, where i =

1, . . . , a; j = 1, . . . , b. By asymptotic equivalence stated in Theorem 4.3.1, we have

√
Nv> (p̂− p) +

√
Nv>EZ and

√
Nv>EZ =

√
Nv>


1
ab

∑a
i=1

∑b
j=1 Z

(1)
ij,11

...

1
ab

∑a
i=1

∑b
j=1 Z

(2)
ij,ab


︸ ︷︷ ︸

2ab×1

. (4.34)
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We calculate the first element in the vector of (4.34). The others can be calculated

in the same way. First note that

1

ab

a∑
i=1

b∑
j=1

Z
(1)
ij,11

=
1

ab

a∑
i=1

b∑
j=1

{
1

n1

n1∑
k=1

[
F

(1)
ij

(
X

(1)
11k

)
− w(1)

ij,11

]
− 1

ni

ni∑
k′=1

[
F

(1)
11

(
X

(1)
ijk′ − w

(1)
11,ij

)]}

=
1

n1

n1∑
k=1

G1

(
X

(1)
11k

)
− 1

ab

a∑
i=1

b∑
j=1

w
(1)
ij,11 −

1

ab

a∑
i=1

b∑
j=1

1

ni

ni∑
k′=1

F
(1)
11

(
X

(1)
ijk′

)
+

1

ab

a∑
i=1

b∑
j=1

w
(1)
11,ij

=
1

n1

n1∑
k=1

G1

(
X

(1)
11k

)
− p(1)11 −

1

ab

a∑
i=1

b∑
j=1

1

ni

ni∑
k′=1

F
(1)
11

(
X

(1)
ijk′

)
+

1

ab

a∑
i=1

b∑
j=1

(
1− w(1)

ij,11

)
=

1

n1

n1∑
k=1

G1

(
X

(1)
11k

)
− p(1)11 −

1

ab

a∑
i=1

b∑
j=1

1

ni

ni∑
k′=1

F
(1)
11

(
X

(1)
ijk′

)
+ 1− p(1)11

=
1

n1

n1∑
k=1

G1

(
X

(1)
11k

)
− 1

ab
· 1

n1

n1∑
k′=1

F
(1)
11

(
X

(1)
11k′

)
︸ ︷︷ ︸

(i,j)=(1,1)

−

1

ab

a∑
i=1

b∑
j=1

(i,j) 6=(1,1)

1

ni

ni∑
k′=1

F
(1)
11

(
X

(1)
ijk′

)
︸ ︷︷ ︸

(i,j)6=(1,1)

+1− 2p
(1)
11

=
1

n1

n1∑
k=1

[
G1

(
X

(1)
11k

)
− 1

ab
F

(1)
11

(
X

(1)
11k

)]
− 1

ab

a∑
i=1

b∑
j=1

(i,j) 6=(1,1)

1

ni

ni∑
k′=1

F
(1)
11

(
X

(1)
ijk′

)
+ 1− 2p

(1)
11 .
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Then (4.34) becomes,

√
Nv>EZ =

√
Nv>



1
ab

∑a
i=1

∑b
j=1 Z

(1)
ij,11

1
ab

∑a
i=1

∑b
j=1 Z

(2)
ij,11

...

1
ab

∑a
i=1

∑b
j=1 Z

(1)
ij,ab

1
ab

∑a
i=1

∑b
j=1 Z

(2)
ij,ab


︸ ︷︷ ︸

2ab×1

=
√
N

a∑
g=1

b∑
t=1

2∑
s=1

v
(s)
gt ·

(
1

ab

a∑
i=1

b∑
j=1

Z
(s)
ij,gt

)

=
√
N

a∑
g=1

b∑
t=1

2∑
s=1

v
(s)
gt ·

{
1

ng

ng∑
k=1

[
Gs

(
X

(s)
gtk

)
− 1

ab
F

(s)
gt

(
X

(s)
gtk

)]
−

1

ab

a∑ b∑
i=1 j=1 (i,j) 6=(g,t)

1

ni

ni∑
k′=1

F
(s)
gt

(
X

(s)
ijk′

)
+ 1− 2p

(s)
gt


=
√
N

a∑
g=1

b∑
t=1

2∑
s=1

{
1

ng

ng∑
k=1

v
(s)
gt ·

[
Gs

(
X

(s)
gtk

)
− 1

ab
F

(s)
gt

(
X

(s)
gtk

)]
−

1

ab

a∑ b∑
i=1 j=1 (i,j) 6=(g,t)

1

ni

ni∑
k′=1

v
(s)
gt · F

(s)
gt

(
X

(s)
ijk′

)
+ v

(s)
gt ·

(
1− 2p

(s)
gt

)
=
√
N

a∑
g=1

b∑
t=1

2∑
s=1

{
1

ng

ng∑
k=1

v
(s)
gt ·

[
Gs

(
X

(s)
gtk

)
− 1

ab
F

(s)
gt

(
X

(s)
gtk

)]
− 1

ng

ng∑
k=1

1

ab

a∑ b∑
i=1 j=1 (i,j)6=(g,t)

v
(s)
ij · F

(s)
ij

(
X

(s)
gtk

)+ v
(s)
gt ·

(
1− 2p

(s)
gt

)
=

a∑
g=1

√
N

ng

ng∑
k=1

{
b∑
t=1

2∑
s=1

v
(s)
gt ·

[
Gs

(
X

(s)
gtk

)
− 1

ab
F

(s)
gt

(
X

(s)
gtk

)]
−

1

ab

a∑ b∑
i=1 j=1 (i,j) 6=(g,t)

v
(s)
ij · F

(s)
ij

(
X

(s)
gtk

)
+ v

(s)
gt ·

(
1− 2p

(s)
gt

)
=

a∑
g=1

√
N

ng

ng∑
k=1

Z?
gk =

a∑
g=1

√
N
√
ng

ng∑
k=1

Z?
gk√
ng
,
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where

Z?
gk =

b∑
t=1

2∑
s=1

v
(s)
gt ·

[
Gs

(
X

(s)
gtk

)
− 1

ab
F

(s)
gt

(
X

(s)
gtk

)]
−

1

ab

a∑ b∑
i=1 j=1 (i,j)6=(g,t)

v
(s)
ij · F

(s)
ij

(
X

(s)
gtk

)
+ v

(s)
gt ·

(
1− 2p

(s)
gt

)
,

for g = 1, . . . , a; k = 1, . . . , ng. By assumption in (4.6),

√
N
√
ng
→ κ > 0 for g = 1, . . . , a.

As we can see Z?
gk’s are independent and uniformly bounded random variables,

E
(√

Nv>EZ
)

= E

(
a∑
g=1

√
N
√
ng

ng∑
k=1

Z?
gk√
ng

)
= 0.

Let

Sn,g =

ng∑
k=1

Z?
gk,

and

s2n,g = Var

(
ng∑
k=1

Z?
gk

)
=

ng∑
k=1

Var
(
Z?
gk

)︸ ︷︷ ︸
>η>0

>
ng∑
k=1

η = ngη →∞.

That is, s2n,g →∞. By Theorem 27.3 in Billingsley (2008),

Sn,g
sn,g

=

∑ng
k=1 Z

?
gk√

Var
(∑ng

k=1 Z
?
gk

) d−→ N (0, 1) .

That is, ∑ng
k=1 Z

?
gk/
√
ng√

Var
(∑ng

k=1 Z
?
gk/
√
ng
) d−→ N (0, 1) .

Note that,

Var

(
ng∑
k=1

Z?
gk/
√
ng

)
=

1

ng

ng∑
k=1

Var
(
Z?
gk

)
= Var

(
Z?
g1

)
= u2 (a constant).

Thus,
ng∑
k=1

Z?
gk/
√
ng

d−→ N
(
0, u2

)
.
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We know any linear combination of independent normal random variables is still

normal. Hence,
√
Nv>EZ =

∑a
g=1

√
N√
ng

∑ng
k=1

Z?gk√
ng

converges in distribution to some

univariate normal distribution.

So far we showed that for any v ∈ R2ab,
√
Nv>EZ is univariate normal. By

Cramer-Wold device,
√
NEZ has asymptotically multivariate normal distribution.

By Theorem 4.3.1 that
√
NEZ and

√
N (p̂− p) are asymptotically equivalent, we

have
√
N (p̂− p)

d−→ N (0,V ) .

Proof of Theorem 4.3.3

Proof. To show the L2 consistency of the estimators γ̂
(s,s′)
ij,ij′ (lm, l′m′) in equation

(4.29),

E
[
γ̂
(s,s′)
ij,ij′ (lm, l′m′)− γ(s,s

′)
ij,ij′ (lm, l′m′)

]2
=
N2

n2
i

·

E


1

ni − 1

ni∑
k=1

D
(s)
ijk(lm) ·D(s′)

ij′k (l′m′)︸ ︷︷ ︸
S1

−

E
[(
F

(s)
lm

(
X

(s)
ij1

)
− w(s)

lm,ij

)
·
(
F

(s′)
l′m′

(
X

(s′)
ij′1

)
− w(s′)

l′m′,ij′

)]
︸ ︷︷ ︸

S2


2

.
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Observe that

S1 =
1

ni − 1

ni∑
k=1

D
(s)
ijk(lm) ·D(s′)

ij′k (l′m′)

=
1

ni − 1

ni∑
k=1

[
F̂

(s)
lm

(
X

(s)
ijk

)
− ŵ(s)

lm,ij

]
·
[
F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
− ŵ(s′)

l′m′,ij′

]
=

ni
ni − 1

· 1

ni

ni∑
k=1

[
F̂

(s)
lm

(
X

(s)
ijk

)
· F̂ (s′)

l′m′

(
X

(s′)
ij′k

)
− F̂ (s)

lm

(
X

(s)
ijk

)
· ŵ(s′)

l′m′,ij′−

ŵ
(s)
lm,ij · F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
+ ŵ

(s)
lm,ij · ŵ

(s′)
l′m′,ij′

]
=

ni
ni − 1

{
1

ni

ni∑
k=1

F̂
(s)
lm

(
X

(s)
ijk

)
· F̂ (s′)

l′m′

(
X

(s′)
ij′k

)
−

[
1

ni

ni∑
k=1

F̂
(s)
lm

(
X

(s)
ijk

)]
ŵ

(s′)
l′m′,ij′−

ŵ
(s)
lm,ij

[
1

ni

ni∑
k=1

F̂
(s′)
l′m′

(
X

(s′)
ij′k

)]
+ ŵ

(s)
lm,ij · ŵ

(s′)
l′m′,ij′

}

=
ni

ni − 1

{
1

ni

ni∑
k=1

F̂
(s)
lm

(
X

(s)
ijk

)
· F̂ (s′)

l′m′

(
X

(s′)
ij′k

)
− ŵ(s)

lm,ij · ŵ
(s′)
l′m′,ij′

}
.

Note that
1

ni

ni∑
k=1

F̂
(s)
lm

(
X

(s)
ijk

)
=

∫
F̂

(s)
lm dF̂

(s)
ij = ŵ

(s)
lm,ij and

1

ni

ni∑
k=1

F̂
(s′)
l′m′

(
X

(s′)
ij′k

)
=

∫
F̂

(s′)
l′m′ dF̂

(s′)
ij′ = ŵ

(s′)
l′m′,ij′ .

Further,

S2 =E
[(
F

(s)
lm

(
X

(s)
ij1

)
− w(s)

lm,ij

)
·
(
F

(s′)
l′m′

(
X

(s′)
ij′1

)
− w(s′)

l′m′,ij′

)]
=E

[
F

(s)
lm

(
X

(s)
ij1

)
· F (s′)

l′m′

(
X

(s′)
ij′1

)]
− E

[
F

(s)
lm

(
X

(s)
ij1

)]
· w(s′)

l′m′,ij′−

w
(s)
lm,ij · E

[
F

(s′)
l′m′

(
X

(s′)
ij′1

)]
+ w

(s)
lm,ij · w

(s′)
l′m′,ij′

=E
[
F

(s)
lm

(
X

(s)
ij1

)
· F (s′)

l′m′

(
X

(s′)
ij′1

)]
− w(s)

lm,ij · w
(s′)
l′m′,ij′ .

114



Note that E
[
F

(s)
lm

(
X

(s)
ij1

)]
= w

(s)
lm,ij and E

[
F

(s′)
l′m′

(
X

(s′)
ij′1

)]
= w

(s′)
l′m′,ij′ . Now,

S1 − S2 =
ni

ni − 1


a1︷ ︸︸ ︷

1

ni

ni∑
k=1

F̂
(s)
lm

(
X

(s)
ijk

)
· F̂ (s′)

l′m′

(
X

(s′)
ij′k

)
−

a2︷ ︸︸ ︷
ŵ

(s)
lm,ij · ŵ

(s′)
l′m′,ij′︸ ︷︷ ︸

A

−
b1︷ ︸︸ ︷

E
[
F

(s)
lm

(
X

(s)
ij1

)
· F (s′)

l′m′

(
X

(s′)
ij′1

)]
−

b2︷ ︸︸ ︷
w

(s)
lm,ij · w

(s′)
l′m′,ij′︸ ︷︷ ︸

B

.

Then,

S1 − S2 =
ni

ni − 1
A−B

=
ni

ni − 1
(A−B) +

1

ni − 1
B

=
ni

ni − 1
[(a1 − a2)− (b1 − b2)] +

1

ni − 1
B

=
ni

ni − 1
[(a1 − b1)− (a2 − b2)] +

1

ni − 1
B.

Then by cr-inequality, (i.e., E | X + Y |r6 cr | X |r +cr | Y |r, where cr = 1 for

0 < r < 1, and cr = 2r−1 for r > 1),

E
[
γ̂
(s,s′)
ij,ij′ (lm, l′m′)− γ(s,s

′)
ij,ij′ (lm, l′m′)

]2
=
N2

n2
i

E

{
ni

ni − 1
[(a1 − b1)− (a2 − b2)] +

1

ni − 1
B

}2

6
N2

n2
i

2E

[(
ni

ni − 1
[(a1 − b1)− (a2 − b2)]

)2
]

+
2

(ni − 1)2
E
(
B2
)︸ ︷︷ ︸

61


6
N2

n2
i

{
4n2

i

(ni − 1)2
[
E (a1 − b1)2 + E (a2 − b2)2

]
+

2

(ni − 1)2

}
.

Note that

B = E
[
F

(s)
lm

(
X

(s)
ij1

)
· F (s′)

l′m′

(
X

(s′)
ij′1

)]
− w(s)

lm,ij · w
(s′)
l′m′,ij′ ,

where F
(s)
lm

(
X

(s)
ij1

)
, F

(s′)
l′m′

(
X

(s′)
ij′1

)
∈ [0, 1] and w

(s)
lm,ij, w

(s′)
l′m′,ij′ ∈ [0, 1], which makes B ∈

[−1, 1]. Also, the last inequality holds because (x− y)2 = x2− 2xy+ y2 6 2x2 + 2y2.

We show E
[
γ̂
(s,s′)
ij,ij′ (lm, l′m′)− γ(s,s

′)
ij,ij′ (lm, l′m′)

]2
→ 0 by showing the following,

E(a1 − b1)2 → 0 and (4.35)
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E(a2 − b2)2 → 0. (4.36)

By assumption, min
16i6a

ni →∞,

2

(ni − 1)2
→ 0. (4.37)

To show (4.35),

E (a1 − b1)2

= E

{
1

ni

ni∑
k=1

F̂
(s)
lm

(
X

(s)
ijk

)
· F̂ (s′)

l′m′

(
X

(s′)
ij′k

)
− E

[
F

(s)
lm

(
X

(s)
ij1

)
· F (s′)

l′m′

(
X

(s′)
ij′1

)]}2

= E


1

ni

ni∑
k=1

F̂
(s)
lm

(
X

(s)
ijk

)
· F̂ (s′)

l′m′

(
X

(s′)
ij′k

)
− 1

ni

ni∑
k=1

F
(s)
lm

(
X

(s)
ijk

)
· F (s′)

l′m′

(
X

(s′)
ij′k

)
︸ ︷︷ ︸

C1

+

1

ni

ni∑
k=1

F
(s)
lm

(
X

(s)
ijk

)
· F (s′)

l′m′

(
X

(s′)
ij′k

)
− E

[
F

(s)
lm

(
X

(s)
ij1

)
· F (s′)

l′m′

(
X

(s′)
ij′1

)]
︸ ︷︷ ︸

C2



2

.

By cr-inequality,

E (a1 − b1)2 6 2E
(
C2

1

)
+ 2E

(
C2

2

)
. (4.38)

Next, we show E(C2
2) → 0. Let Sni =

∑ni
k=1 F

(s)
lm

(
X

(s)
ijk

)
· F (s′)

l′m′

(
X

(s′)
ij′k

)
and µ =

E
[
F

(s)
lm

(
X

(s)
ij1

)
· F (s′)

l′m′

(
X

(s′)
ij′1

)]
. By the assumption of min

16i6a
ni →∞ and L2 weak law,

we have the following,

E(C2
2) = E

(
Sni
ni
− µ

)2

= Var

(
Sni
ni

)
=

1

n2
i

ni∑
k=1

Var
(
F

(s)
lm

(
X

(s)
ijk

)
· F (s′)

l′m′

(
X

(s′)
ij′k

))
= O

(
1

ni

)
→ 0 as ni →∞.

(4.39)

Finally, we show E (C2
1) → 0. In order to do so, we first calculate the following

inequality by adding and subtracting two terms. Note that for any fixed k in the

116



fixed group i, we have

| F̂ (s)
lm

(
X

(s)
ijk

)
F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
− F (s)

lm

(
X

(s)
ijk

)
F

(s′)
l′m′

(
X

(s′)
ij′k

)
|

=| F̂ (s)
lm

(
X

(s)
ijk

)
F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
− 1

2
F̂

(s)
lm

(
X

(s)
ijk

)
F

(s′)
l′m′

(
X

(s′)
ij′k

)
−

1

2
F

(s)
lm

(
X

(s)
ijk

)
F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
− F (s)

lm

(
X

(s)
ijk

)
F

(s′)
l′m′

(
X

(s′)
ij′k

)
+

1

2
F̂

(s)
lm

(
X

(s)
ijk

)
F

(s′)
l′m′

(
X

(s′)
ij′k

)
+

1

2
F

(s)
lm

(
X

(s)
ijk

)
F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
|

=| 1

2
F̂

(s)
lm

(
X

(s)
ijk

) [
F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
− F (s′)

l′m′

(
X

(s′)
ij′k

)]
+

1

2
F̂

(s′)
l′m′

(
X

(s′)
ij′k

) [
F̂

(s)
lm

(
X

(s)
ijk

)
− F (s)

lm

(
X

(s)
ijk

)]
+

1

2
F

(s′)
l′m′

(
X

(s′)
ij′k

) [
F̂

(s)
lm

(
X

(s)
ijk

)
− F (s)

lm

(
X

(s)
ijk

)]
+

1

2
F

(s)
lm

(
X

(s)
ijk

) [
F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
− F (s′)

l′m′

(
X

(s′)
ij′k

)]
|

=| 1

2

[
F̂

(s)
lm

(
X

(s)
ijk

)
+ F

(s)
lm

(
X

(s)
ijk

)] [
F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
− F (s′)

l′m′

(
X

(s′)
ij′k

)]
+

1

2

[
F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
+ F

(s′)
l′m′

(
X

(s′)
ij′k

)] [
F̂

(s)
lm

(
X

(s)
ijk

)
− F (s)

lm

(
X

(s)
ijk

)]
|

6| 1

2

[
F̂

(s)
lm

(
X

(s)
ijk

)
+ F

(s)
lm

(
X

(s)
ijk

)]
︸ ︷︷ ︸

62

[
F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
− F (s′)

l′m′

(
X

(s′)
ij′k

)]
| +

| 1

2

[
F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
+ F

(s′)
l′m′

(
X

(s′)
ij′k

)]
︸ ︷︷ ︸

62

[
F̂

(s)
lm

(
X

(s)
ijk

)
− F (s)

lm

(
X

(s)
ijk

)]
|

6| F̂ (s′)
l′m′

(
X

(s′)
ij′k

)
− F (s′)

l′m′

(
X

(s′)
ij′k

)
| + | F̂ (s)

lm

(
X

(s)
ijk

)
− F (s)

lm

(
X

(s)
ijk

)
| .

That is,

| F̂ (s)
lm

(
X

(s)
ijk

)
F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
− F (s)

lm

(
X

(s)
ijk

)
F

(s′)
l′m′

(
X

(s′)
ij′k

)
|6

| F̂ (s′)
l′m′

(
X

(s′)
ij′k

)
− F (s′)

l′m′

(
X

(s′)
ij′k

)
| + | F̂ (s)

lm

(
X

(s)
ijk

)
− F (s)

lm

(
X

(s)
ijk

)
| .

(4.40)

117



Now by the inequality in (4.40), we get

E
(
C2

1

)
= E

(
| C1 |2

)
=

1

n2
i

E

{
|

ni∑
k=1

F̂
(s)
lm

(
X

(s)
ijk

)
· F̂ (s′)

l′m′

(
X

(s′)
ij′k

)
− F (s)

lm

(
X

(s)
ijk

)
· F (s′)

l′m′

(
X

(s′)
ij′k

)
|2
}

6
1

n2
i

E


[

ni∑
k=1

| F̂ (s)
lm

(
X

(s)
ijk

)
· F̂ (s′)

l′m′

(
X

(s′)
ij′k

)
− F (s)

lm

(
X

(s)
ijk

)
· F (s′)

l′m′

(
X

(s′)
ij′k

)
|

]2
= E


[

1

ni

ni∑
k=1

| F̂ (s)
lm

(
X

(s)
ijk

)
· F̂ (s′)

l′m′

(
X

(s′)
ij′k

)
− F (s)

lm

(
X

(s)
ijk

)
· F (s′)

l′m′

(
X

(s′)
ij′k

)
|

]2
6 E


[

1

ni

ni∑
k=1

| F̂ (s)
lm

(
X

(s)
ijk

)
− F (s)

lm

(
X

(s)
ijk

)
| + | F̂ (s′)

l′m′

(
X

(s′)
ij′k

)
− F (s′)

l′m′

(
X

(s′)
ij′k

)
|

]2
By cr-inequality,

6 2E


[

1

ni

ni∑
k=1

| F̂ (s)
lm

(
X

(s)
ijk

)
− F (s)

lm

(
X

(s)
ijk

)
|

]2+

2E


[

1

ni

ni∑
k=1

| F̂ (s′)
l′m′

(
X

(s′)
ij′k

)
− F (s′)

l′m′

(
X

(s′)
ij′k

)
|

]2
By proposition about bounds on the absolute moments of a sum/averaege of

random variables,

6
2

ni

ni∑
k=1

E
{
| F̂ (s)

lm

(
X

(s)
ijk

)
− F (s)

lm

(
X

(s)
ijk

)
|2
}

+

2

ni

ni∑
k=1

E
{
| F̂ (s′)

l′m′

(
X

(s′)
ij′k

)
− F (s′)

l′m′

(
X

(s′)
ij′k

)
|2
}

=
2

ni

ni∑
k=1

E

{[
F̂

(s)
lm

(
X

(s)
ijk

)
− F (s)

lm

(
X

(s)
ijk

)]2}
︸ ︷︷ ︸

C1.1

+

2

ni

ni∑
k=1

E

{[
F̂

(s′)
l′m′

(
X

(s′)
ij′k

)
− F (s′)

l′m′

(
X

(s′)
ij′k

)]2}
︸ ︷︷ ︸

C1.2

=
2

ni

ni∑
k=1

C1.1 +
2

ni

ni∑
k=1

C1.2.

(4.41)
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Next, we show C1.1 → 0 and C1.2 → 0. Firstly, for any fixed k in the fixed group i,

we show C1.1 → 0. Note that F̂
(s)
lm

(
X

(s)
ijk

)
= 1

nl

∑nl
k′=1 c

(
X

(s)
ijk −X

(s)
lmk′

)
.

C1.1 =E

{[
F̂

(s)
lm

(
X

(s)
ijk

)
− F (s)

lm

(
X

(s)
ijk

)]2}

=E


[

1

nl

nl∑
k′=1

c
(
X

(s)
ijk −X

(s)
lmk′

)
− F (s)

lm

(
X

(s)
ijk

)]2
=

1

n2
l

E


[

nl∑
k′=1

[
c
(
X

(s)
ijk −X

(s)
lmk′

)
− F (s)

lm

(
X

(s)
ijk

)]]2
By Fubini’s Theorem,

=
1

nl

nl∑
k′=1

nl∑
k′′=1

E
{[
c
(
X

(s)
ijk −X

(s)
lmk′

)
− F (s)

lm

(
X

(s)
ijk

)]
·[

c
(
X

(s)
ijk −X

(s)
lmk′′

)
− F (s)

lm

(
X

(s)
ijk

)]}
Apply conditional expectation E (X) = E [E (X|Y )] for k′ 6= k′′ cases,

=
1

n2
l

nl∑
k′=1

nl∑
k′′=1

k′ 6=k′′

E
{

E
([
c
(
X

(s)
ijk −X

(s)
lmk′

)
− F (s)

lm

(
X

(s)
ijk

)]
·

[
c
(
X

(s)
ijk −X

(s)
lmk′′

)
− F (s)

lm

(
X

(s)
ijk

)]
|X(s)

ijk

)}
+

1

n2
l

nl∑
k′=k′′=1

E

{[
c
(
X

(s)
ijk −X

(s)
lmk′

)
− F (s)

lm

(
X

(s)
ijk

)]2}

=
1

n2
l

nl∑
k′=1

nl∑
k′′=1

k′ 6=k′′

E

E
([
c
(
X

(s)
ijk −X

(s)
lmk′

)
− F (s)

lm

(
X

(s)
ijk

)]
|X(s)

ijk

)
︸ ︷︷ ︸

=0

·

E
([
c
(
X

(s)
ijk −X

(s)
lmk′′

)
− F (s)

lm

(
X

(s)
ijk

)]
|X(s)

ijk

)
︸ ︷︷ ︸

=0

+

1

n2
l

nl∑
k′=k′′=1

E

{[
c
(
X

(s)
ijk −X

(s)
lmk′

)
− F (s)

lm

(
X

(s)
ijk

)]2}

=
1

n2
l

nl∑
k′=k′′=1

E

{[
c
(
X

(s)
ijk −X

(s)
lmk′

)
− F (s)

lm
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Note that |c
(
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(s)
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)
− F (s)
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(
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)
|X(s)

ijk| 6 1.
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Similarly,

C1.2 → 0 as nl′ →∞. (4.43)

Therefore, by (4.41), (4.42) and (4.43), we have

E
(
C2

1

)
→ 0 as min(nl, nl′)→∞. (4.44)

Now, by (4.38), (4.39) and (4.44), we showed (4.35),

E (a1 − b1)2 → 0 as min(ni, nl, nl′)→∞. (4.45)

Next, we show (4.36). In order to do so, we calculate the following inequality first,
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By (4.46), we have
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To show (4.36), we only need to show D1 → 0 and D2 → 0. Below, we first show
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We check D1.2 first. Similar to the proof in (4.39), we get
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Next, we check D1.1. By (4.42) and the proposition about bounds on the absolute

moments of a sum/average of random variables, we have
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(4.50)

So far, by (4.48), (4.49), and (4.50), we showed that

D1 → 0 as min (ni, nl)→∞. (4.51)

Similarly, following the same idea, we can also show

D2 → 0 as min (ni, nl′)→∞. (4.52)

Thus, by (4.47), (4.51) and (4.52), we showed (4.36),

E (a2 − b2)2 → 0 as min (ni, nl, nl′)→∞. (4.53)

Hence, by (4.37),(4.45) and,(4.53), we showed
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Chapter 5 Summary

In this dissertation, novel nonparametric testing approaches for analyzing multivari-

ate growth curve data are introduced. Without assuming multivariate normality

and homogeneity conditions, these methods have favorable numerical performance.

Based on the generalized MANOVA, a modified Wilks’ Lambda test statistic is pro-

posed to mitigate the effect of potential heteroscedasticity. Moreover, the invariance

property of the null distribution of the test statistic makes the method applicable to

data that are skewed and heavy-tailed. We also propose Wald-type resampling-based

test statistics for general factorial designs, where permutation, bootstrap and hybrid

permutation-bootstrap procedures are investigated. For the permutation test, the

studentization technique is used to correct the covariance of the permuted data lead-

ing to an asymptotically exact permutation test despite the time dependencies. The

parametric and wild bootstrap tests are also shown to be asymptotically exact un-

der the nonparametric settings. Additionally, we propose fully nonparametric tests

where nonparametric treatment effects are characterized in terms of functionals of

distribution functions with the only assumption of nondegenerate marginal distribu-

tions. The asymptotic properties of the nonparametric treatment effects are derived

and, therefore, confidence intervals can be calculated. These rank-based tests can be

applied to both metric and nonmetric data.

For applications in practice, we recommend practitioners to use the robust mod-

ified Wilks’ Lambda test rather than the classical methods for multivariate growth

curve data, especially, in unbalanced heteroscedastic designs with nonnormal data.

Although the modified Wilks’ Lambda test has satisfactory performance, it involves

approximations. Our Wald-type resampling-based tests, on the other hand, are

asymptotically exact and can be applied to skewed and heavy-tailed data with small

samples in real-world applications. In cases of nonmetric data, the aforementioned

tests are no longer appropriate. The fully nonparametric rank-based methods ac-

commodate discrete, ordered categorical and continuous data that could possibly be
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skewed and heavy-tailed in a unified manner.

For future research, we plan to explore more parametric and nonparametric re-

sampling schemes that are appropriate for nonmetric data. Also, based on the non-

parametric effect measures, we plan to investigate other multiple contrast statistics.

Moreover, we plan to study resampling methods in the presence of covariates for

multivariate growth curve data.

Copyright© Ting Zeng, 2021.
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