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ABSTRACT OF DISSERTATION

DIMENSION REDUCTION TECHNIQUES IN REGRESSION

Because of the advances of modern technology, the size of the collected data
nowadays is larger and the structure is more complex. To deal with such kinds of
data, sufficient dimension reduction (SDR) and reduced rank (RR) regression are
two powerful tools. This dissertation focuses on these two tools and it is composed of
three projects. In the first project, we introduce a new SDR method through a novel
approach of feature filter to recover the central mean subspace exhaustively along with
a method to determine the dimension, two variable selection methods, and extensions
to multivariate response and large p small n scenarios. In the second project, we
propose a novel SDR method by minimizing the distance between the population
basis and the sample directions and provide a cross-validation method to determine
dimension. In large p small n case, by adding a group lasso type penalty term to
the objective function, simultaneous dimension reduction and variable selection are
achieved. In the third project, we propose a new model by applying the RR idea to
multinomial logistic regression (MLR) and combining RR-MLR with the first-order
Markov Chain. Then, the model is applied to a dataset from a longitudinal study of
aging and dementia.
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Chapter 1 Introduction

1.1 Introduction

Due to the advances in computational procedures and the decreasing cost of collec-

tion, data is becoming more complex with high volume and dimension. Very large

datasets are now routinely collected in biomedicine, gerontology, genetics, systems

biology, finance, public health, and the social sciences. Most traditional statisti-

cal methods cannot be applied directly to analyze these data due to the complex

structure or the high dimensionality. In the regression setting high dimensionality

is encountered when the number of predictors is large compared to the number of

observations and in some cases exceeds the number of observations. One particular

issue is multicollinearity and to address this issue, several novel methods have been

proposed including ridge regression [30], partial least squares regression [65] and least

absolute shrinkage and selection operator (Lasso) [57]. To process large and com-

plex data sets effectively, dimension reduction also draws significant attention from

statisticians. In this dissertation, we investigate two dimension reduction techniques,

sufficient dimension reduction (SDR) and reduced rank regression (RRR).

1.2 Sufficient Dimension Reduction

SDR refers to the application of dimension reduction while retaining all the relevant

information in the regression model. In a classical regression setting with a response

Y ∈ R and a predictor vector X ∈ Rp, we are looking for a p×d dimension reduction

matrix B such that Y ⊥ X|BTX, where d < p and ⊥ means independence. That

is, Y is independent of X given BTX. The subspace spanned by the columns of B

is called dimension reduction subspace[11][38](DRS). Neither B nor DRS is unique

because the columns of multiple B’s are possible to span the same subspace and

any matrix comprised of B and any additional columns will make the independent

condition holds. Thus, the primary interest is to find the central subspace (CS), SY |X,
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which is defined as the intersection of all DRS with itself is a DRS [12]. The latter

always exists and is unique under mild conditions[12][75].

Following CS, many novel specific subspaces have been proposed including central

mean subspace[15], central moment subspace[72] and central variance subspace[79].

More generally, see Luo et al. [43] for a central T-subspace. One common example

is that we sometimes are interested in the conditional mean function E(Y |X), rather

than the full conditional distribution of Y | X. Along this line, dimension reduction on

the conditional mean E(Y |X) is the focus. We call the associated subspace as central

mean subspace (CMS). In referring the CMS, we are working on the mean function

E(Y |X) and seeking a matrix B such that Y ⊥ E(Y |X)|BTX. Then the subspace

spanned by the columns of such a B is called a dimension reduction mean subspace

[15]. Similarly, the central mean subspace (CMS) is defined as the intersection of all

dimension reduction mean subspaces if itself is a dimension reduction mean subspace

and it is denoted as SE(Y |X).

SDR serves as a pre-processor or an intermediate step in fitting models or analyz-

ing data that greatly reduces the data from high dimensional to a relatively low one

where the classical parametric and nonparametric modeling techniques can afterward

be readily applied. Cook [12] pointed out that the dimension of the reduced predictor

is often very small after pre-precessing the data with the SDR methods, usually 2-3

dimensions are enough.

Many SDR methods have been proposed since two pioneering methods, slice in-

verse regression (SIR) [38] and sliced average variance estimation (SAVE) [18]. These

methods are roughly classified into three categories: Inverse methods such as paramet-

ric inverse regression (PIR)[7], directional regression (DR) [35] etc.; Forward meth-

ods such as minimum average variance estimation (MAVE) [67] and sliced regression

(SR) [60]; and joint methods such as principal hessian direction (PHD) [39] and

Kullback-Leibler distance [73]. Some of the proposed methods in the literature can

accommodate multivariate response. See, Aragon [5], Cook and Setodji[17], Yin and

Bura[71], and Li et al.[36]. Different to the eigen-decomposition technique in most of

the SDR methods, Cook and Ni [16][44] estimated the target subspace by minimizing
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a discrepancy function based on the inverse regression (IRE; RIRE). However, most

of the methods in literature often involve kernel smoothing, information index opti-

mization or tend to have strong assumptions on the distribution of predictors or on

the link functions. The most common assumptions used in SDR are the linearity con-

dition: E(X|βTX) is a linear function of βTX and the constant variance condition:

var(X|βTX) is a nonrandom matrix, where β is the basis for the target subspace.

These two conditions are quite strong and usually we have to assume the normality

on X to satisfy the conditions. The linear and constant variance assumptions can

be relaxed by using nonparametric methods (MAVE and Kullback Leibler in Table

1.1) but the computations involved become cumbersome. We summarize the above

methods in Table 1.1.

Table 1.1: Summary of Existing Methods

Method Assumptions Estimation Method

SIR span(Σ−1(E(X|Y )− E(X))) ⊆ SY |X
Linearity Eigen-decomposition

IRE/RIRE span(Σ−1(E(X|Y )− E(X))) ⊆ SY |X
Linearity Quadratic function minimization

SAVE span(Σ− var(X|Y )) ⊆ ΣSY |X
Linearity & constant variance Eigen-decomposition

PIR span(Σ−1cov(X, F (Y ))) ⊆ SY |X
Linearity Eigen-decomposition

DR Σ−1/2span(2Ip − E(Z− Z̃)(Z− Z̃)T |Y, Ỹ ) ⊆ SY |X
Linearity & constant variance Eigen-decomposition

PHD span(Σ−1E((X− E(X))(X− E(X))T (Y − E(Y ))Σ−1) ⊆ SE(Y |X)

Linearity & constant variance Eigen-decomposition

MAVE L(a1, · · · , an, b1, · · · , bn, B) =
∑n

j=1

∑n
i=1(Yi − {aj + bTj B

T (Xi −Xj)})2wij

/ Need nonparametric smoothing

Kullback I(β) = E(log
p(βTX, Y )

p(Y )p(βTX)
)

Leibler (Conditional) Normality Nonparametric density estimation
and successive optimization

Note, Σ = cov(X); F (Y ) is formed by a set of functions of Y ; operation˜is used to denote the iid

copy and Z is the standardized version of X; p(·) is used to denote the density function.

All these difficulties lead us to develop new SDR methods with weak assumptions

and cheap computational cost. Without using the linearity and constant variance

conditions, we propose new SDR methods in this dissertation based on a assumption

that (β,β0) forms an orthogonal matrix and (Y,βTX) is independent of βT0 X. Under
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normality, this condition is satisfied and with βTX ⊥ βT0 X, Y ⊥ X|βTX is equivalent

to (Y,βTX) ⊥ βT0 X. However, the normality is not necessary. For instance, βTX ⊥

βT0 X when X1 ⊥ (X2, · · · , Xp) and β = (1, 0, · · · , 0)T [78]. In addition, when p

is reasonably large, the independence condition will hold approximately. Based on

these points, the condition used in this dissertation is considered as weak. See Cook

[13] and Sheng and Yin [54] for detailed discussion about this condition. Under

this condition, the new SDR method ends up to calculate sample average and eigen-

decomposition procedure which is computationally cheaper than the nonparametric

kernel smoothing technique. See Section 2 for details.

SDR projects the original predictors to a lower dimension subspace and the re-

duced predictors still contain all original predictors. This issue hampers the interpre-

tation of the results. To overcome this problem, sufficient variable selection (SVS),

closely related to SDR, is proposed. SVS refers to selecting a subset of predictors that

contains all the regression information. Similar to SDR, the goal is to find a p × k

matrix A such that Y ⊥ X|ATX, where k < p and the columns of A consist of unit

vectors, ei, whose ith element is 1 [74]. Li [40] propose to combine the SDR method

with a penalty to produce a sparse estimation to overcome this issue. See also, Chen

et al. [9]. Different from the penalization methods, screening approach aims to select

the important variables only. See Fan and Lv [23], Huang et al. [33], Fan et al. [24]

and Yang et al. [68]. In this dissertation, we combine the SDR procedure with a

penalty function to get the sparse matrix A.

1.3 Reduced Rank Regression

RRR is another example of dimension reduction [4] and it is widely used in mul-

tivariate regression. Consider the regression of k × 1 response Y on (q + p) × 1

covariates (WT ,ZT )T , where W,Z are q× 1, p× 1 vector respectively. We can write

the model as Yi = WT
i C1 + ZT

i C2 + εi. In RRR, we introduce a rank constraint on

the coefficient matrix C2. Instead of directly estimating the original p×k coefficients

matrix, we estimate two lower-rank coefficient matrices, p × T matrix A and T × k

matrix G, with T ≤ min{p, k}; and then take their product, C2 = AG. Aside from
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the multivariate regression analysis in the ordinary least square setting, the reduced

rank idea is commonly used in other regression methods. For example, Anderson first

applied the reduced rank idea to multinomial logistic regression (MLR) and named

it as stereotype model [3]. This stereotype model is limited to one dimension, and

Goodman [28] as well as Yee and Hastie [70] extended it to multidimensional setting.

Fiocco et al. applied the reduced rank idea to multi-state models in the proportional

hazards model [25] and applied the proposed model to analyze some survival data.

To describe the transitions among multiple states in longitudinal studies, multi

state models are useful. When successive observations are equally spaced in time,

multi state Markov chains are frequently operationalized via MLR models to gov-

ern the transitions within each row of the process one-step transition matrix (”P

matrix”)[1][10][58]. This modeling facilitates the study of risk factors associated with

transitions among states. However, because multinomial models require the estima-

tion of many unknown parameters, model fitting can become cumbersome whenever

the number of states or the number of potential transitions among states or the num-

ber of risk factors under consideration increases. This is often compounded when

certain transitions are rare in comparison to others. Thus it is necessary to reduce

the number of parameters that must be estimated and it motivates us to combine the

idea of reduced rank MLR to a Markov chain.

1.4 Overview of the Dissertation

In this dissertation, we first propose two novel SDR methods using characteristic

function along with their sparse solutions and then a new reduced rank model by

applying the reduced rank MLR to the one step transition matrix in a markov chain.

The dissertation is organized as follows.

In Chapter 2, we introduce a new computationally efficient SDR method based

on weak conditions and it is through a novel approach of feature filter. We first char-

acterize a series of directions belong to a target subspace; then combine them into a

candidate matrix; and extract the directions by applying eigen-decomposition to the

candidate matrix. The new method has higher computational efficiency compared
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to most of the forward methods which typically use nonparametric estimation. In

addition, the proposed method works well for both univariate and multivariate re-

sponses. We further provide a permutation test to estimate the structural dimension.

To select the informative predictors, we develop a sparse SDR estimator by building

on the work of Li [40] and Wu and Yin [66], and Chen et al. [9]. To deal with the

large p small n data, we propose two methods by adopting the two-stage selection

procedure of Yang et al.[68] and using the sequential approach of Yin and Hilafu[74].

In this project, we not only do extensive numerical analysis but also prove several

theoretical properties.

In Chapter 3, we extend the idea in Chapter 2 and develop another new SDR

method. We define a vector seed via characteristic function that generates a series of

vectors that belong to a certain subspace as in Chapter 2. It is natural to estimate the

population subspace spanned by the vector seeds with a d dimensional subspace that

is closest to the generated vectors, where d is the structure dimension. Motivated

by Cook and Ni [16], we take the quadratic discrepancy function to denote closeness

between the vectors and the population basis, and derive the estimator by minimizing

this quadratic function. This method has more flexibility since we can take advan-

tage of the inner product matrix and gain more information. In this project, we

take two special inner product matrices, the identity matrix and Kronecker product

between the identity matrix and the covariance matrix of X. The two estimators

from these two special quadratic discrepancy functions yield higher accuracy com-

pared to other classical methods. In addition, we adopt the cross-validation method

to test the dimensionality. The first project can be treated as a special case since

eigen-decomposition problem can always be reformulated to the ordinary least square

minimization problem, which also minimizes a quadratic function. In a high dimen-

sion dataset, it may be the case where only some of the predictors are significant

for regression. Towards this end, motivated by Qian et al. [46], we develop a new

method that works for SDR and SVS simultaneously. The key idea for this method

is to add a coordinate-independent penalty to the quadratic function. To minimize

the panelized quadratic function, we adopt the Coordinate descent algorithm and

6



Stiefel manifold optimization as in Qian et al.[46]. This strategy produces two sparse

estimators with high accuracy in both direction estimation and variable selection. In

addition, the theoretical properties about subspace estimation and variable selection

consistency are proved.

In Chapter 4, we propose a new regression model by applying dimension reduction

technique (reduced rank; RR) to MLR and combining RR-MLR with the first order

Markov Chain. This novel model could highly reduce the number of parameters to

be estimated and helps with inference for rare transitions in the chain. The model is

applied to a dataset from a longitudinal study of aging and dementia by analyzing

Apolipoprotein-E (APOE) gene ε4 allele(s) (i.e., carrying at least one ε4, APOE4) as

a risk factor for transitions among cognitive states after adjustment for the presence

of eight other covariates.
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Chapter 2 Feature Filter for Estimating Central Mean Subspace and Its

Sparse Solution

2.1 Introduction

SDR has been widely used in analyzing high-dimensional data. To overcome the

drawbacks among the existing methods, it is necessary to develop new methods. In

this chapter, we proposed a new SDR method by the technique of feature filter with

the target on CMS. This method is based on a weak assumption and the computation

cost is cheap. Chapter 2 is organized as follows. Section 2.2 introduces the methodol-

ogy of our method along with its motivation, theoretical results, estimation algorithm

and testing procedure. Section 2.3 illustrates two methods to get the sparse solution

(SVS). Section 2.4 shows two approaches to deal with the large p small n problem.

Section 3.4 reports numerical results. Section 2.6 concludes this chapter with a brief

discussion. Proofs, long derivations and additional numerical results are provided in

the appendix.

2.2 The Proposed Method

Let Y ∈ R and X ∈ Rp, with Σx = cov(X). Suppose that β = (β1, · · · , βd) is a

p × d basis matrix of SE(Y |X) with d < p. Then, m(X) = E(Y |X) = E(Y |βTX) =

m(βTX). To facilitate our development, let f be a generic density and i2 = −1.

Define ψ(ω) =
∫
eiωT Xd[m(X)f(βTX)] with ω ∈ Rp. Then, we have the following

result, whose proof is delayed in the supplement (A1.2).

Lemma 2.2.1 The CMS is exhaustively recovered by the collection of all of ψ(ω)

with ω ∈ Rp. That is, SE(Y |X) = span{ψ(ω) : ω ∈ Rp}.

Assume that density functions f(X), f(βTX) exist and f(βTX) → 0 as ||X|| →

∞. Then, by simple algebra, we have ψ(ω) = −E(iωeiωT XY
f(βTX)

f(X)
). Write ψ(ω) =

aω + ibω, then SE(Y |X) = span{aω,bω : ω ∈ Rp} [82]. However, using the form of
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ψ(ω) = −E(iωeiωT XY
f(βTX)

f(X)
) involves either estimating the respective densities on

X, or assuming a specific distribution of X. To avoid such difficulties, we will use a

simplified version: E(ωeiωT XY ), which is achieved under a simple condition as shown

in Lemma 2.2.2. On the other hand, this simplified version is also motivated by the

Martingale difference divergence (MDD) [51], which is defined as the nonnegative

number that satisfies

MDD(Y |X)2 =
1

cp

∫
Rp

|E(eiωT XY )− E(eiωT X)E(Y )|2

|ω|1+p
p

dω.

where, cp =
π(1+p)/2

Γ((1 + p)/2)
and MDD(Y |X)2 = 0 iff E(Y |X) = E(Y ). This motivates

us to search directions that maximize MDD(Y |ηTX)2 over η for CMS. Lemma 2.2.2

shows a condition under which the two motivations are indeed supporting the same

idea, whose proof is given in the supplement (A1.2).

Lemma 2.2.2 Assume (β,β0) forms an orthogonal matrix and (Y,βTX) is indepen-

dent of βT0 X, then we have the following two results.

1. ψ(ω) reduces to E(ωeiωT XY )k0 ∝ E(ωeiωT XY ), where k0 is a constant of β and

the exact form is given in the supplement (A1.2).

2. Let η be any p× d2 matrix and ηTη = Id2 . d2 can be less, larger or equal to d.

Assume S(η) * S(β), then MDD(Y |ηTX)2 < MDD(Y |βTX)2.

The independence condition that (Y,βTX) is independent of βT0 X is weaker than

the common assumptions in the current literatures [13]. Part 1 of Lemma 2.2.2

indicates that each direction E(ωeiωT XY ) can be used to estimate SE(Y |X); and Part

2 of Lemma 2.2.2 means that the maximum of MDD(Y |ηTX)2 is achieved when X

is projected onto the subspace that is spanned by the columns of β. To see why they

both support the same idea, we further suppose E(Y ) = 0, var(Y ) = 1, then we can

see that for the purpose of estimating the CMS, part 1 is going to use each individual

direction ω, while part 2 means that we will use the direction that maximizes the

“average” of these directions. Thus, in this paper, we propose to combine these

two ideas to use the directions of ω whose “value” in the sense of correlation of

9



E(eiωT XY ), is big. Then we take the “average” of them. Compare this idea to the

approach of Zhu and Zeng [82], we avoid assumption on the multivariate normal

distribution or nonparametric estimation on the density of X. Compare this idea

to the maximization on MDD, we avoid an optimization problem with a nonlinear

constraint. Because these informative directions are selected by the large value of

E(eiωT XY ), this part is named as feature filter.

To implement our method, next we use two ways to formulate a dimension reduc-

tion candidate matrix: One is based on a discrete kernel and the other is based on a

continuous kernel.

Euler Approach

Using the Euler formula, eiωT X = cos(ωTX) + i sin(ωTX), we have

E(ωeiωT XY ) = ωE[cos(ωTX)Y ] + iωE[sin(ωTX)Y ] = bω + iaω.

We can then form a dimension reduction candidate matrix, Me = CCT , where C =

(a1,b1, · · · , am,bm). Thus we call such a method Euler Approach. Theoretically we

should take all ω ∈ Rp. However, this is impossible practically. Fortunately, a finite

large number of ωs will be enough to estimate the CMS [76]. Assume that m ωs are

given, and {(Yj, XT
j ), j = 1, · · · , n} is a random sample of (Y,X). An estimation of

Me is a p× p matrix,

M̂e = ĈĈT , (2.1)

where Ĉ = (â1, b̂1, · · · , âm, b̂m) is a p × 2m matrix, âk = ωk
1

n

∑n
j=1 sin(ωTk Xj)Yj,

b̂k = ωk
1

n

∑n
j=1 cos(ωTk Xj)Yj and k = 1, · · · ,m. In theory, every p-dimensional vector

ω can serve to recover the CMS. However, in practice, an accurate CMS estimation

is related to how ω is generated. Empirically, we follow what is proposed by Zhu

et al. [80] to generate ωs: ω
iid∼ N(0, σ2Ip) with σ2 = sπ2/E(XTX) and s = 0.02.

Furthermore, we normalize each ω to have scale free on ω by taking ω =
ω√
ωTω

.

Finally, we only retain the ωs, whose absolute correlations between Y and cos(ωTX),

Y and sin(ωTX) are among the peak values. Assume that d is known, estimation for

d will be provided later. Now we are ready to describe our detailed algorithm.
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Algorithm of Euler Approach

Step 1: Let Y ∗i = Yi −
∑n

i=1 Yi
n

. Generate m ωs and normalize each one.

Step 2: Let ρk = max{|ρ(Y ∗, cos(ωTk X))|, |ρ(Y ∗, sin(ωTk X))|}, k = 1, . . . ,m, where ρ

is the correlation coefficient. Order these m correlations descending and choose

τ percent of these m ωs with the largest ρk.

Step 3: Using the chosen ωs to construct the matrix M̂e in equation (2.1), then

perform eigen-decomposition.

Step 4: The matrix formed by the first d eigenvectors, β̂ = [v̂1, · · · , v̂d], correspond-

ing to the largest d eigenvalues is our estimate.

In our limited study, using τ = 0.2 and m = 20000 achieved consistent and stable

results. Supplement (A2.4) provides additional simulations on various m and τ .

Theorem 2.2.1 Assume var(Y sin(ωTX)), var(Y cos(ωTX)) exist and (Yj,X
T
j ) is a

random sample, then
√
n(vec(M̂e) − vec(Me))

d−→ N(0,Σ1). The exact form of Σ1

and the proof of this theorem are given in the supplement (A1.2).

Corollary 2.2.1 Given vec(M̂e) → vec(Me) at
√
n rate, we have M̂e →Me at the

same rate. Then, the eigenvalues and eigenvectors of M̂e converge to those of Me at

the same rate [81].

Theorem 2.2.2 Let 2m > d and p > d. Then, the asymptotic distribution of Λ̂d is

the same as the distribution of

T =

(p−d)(2m−d)∑
j=1

δjTj,

where Λ̂d = n
∑p

j=d+1 λ̂j is a test statistic for testing the structure dimension [38],

Tj’s are independently distributed with Tj ∼ χ2
1 and δ1, δ2, · · · , δ(p−d)(2m−d) are the

ordered singular values from ΩT whose exact form is given in the supplement (A1.2).
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The justification of this theorem is included in the supplement (A1.2).

Theorem 2.2.2 enables us to determine dimension via sequential hypothesis tests.

We describe the brief procedure below and refer the details to Li[38] and Bura and

Cook[8]. In theorem 2, we replace all the unknown quantities by the corresponding

consistent estimates. Once Ω̂T is given, the asymptotic distribution of Λ̂d is estimated

by

T̂ =

(p−d)(2m−d)∑
j=1

δ̂jTj,

where δ̂1, δ̂2, · · · , ˆδ(p−d)(2m−d) are the ordered singular values from Ω̂T .

The sequential test procedure determines the dimension with the hypotheses form

d = k versus d > k [8][38]. We start with k = 0, and compare Λ̂k to a certain quantile

of distribution of T̂ . If the test statistic is small, which corresponds to a large p-value,

then there is no statistical evidence to reject the null hypothesis, we conclude that

d = k. If the test statistic is large and it means the p-value is small, we conclude that

d > k. Every large test statistic will result in 1 increment in k. This procedure stops

until it encounters a small test statistic.

Such a sequential procedure should work in theory, but it is not effective in prac-

tice. We will use an alternative test later.

Note that our approach can be extended to multivariate response straightfor-

wardly based on Cook and Setodji [17]. Let Y ∈ Rq, then SE(Y|X) =
∑q

i=1 SE(Yi|X)

[17], where Yi is an element of Y. Define m(X) = E(YT |X), then all the theoretical

results hold. And in Step 2 of our algorithm, by letting ρk = max{|ρ(Y ∗1 , cos(ωTk X))|,

|ρ(Y ∗1 , sin(ωTk X))|, · · · , |ρ(Y ∗q , cos(ωTk X))|, |ρ(Y ∗q , sin(ωTk X))|}, the modified algorithm

will work for multivariate response. This is different from selecting ω by maximizing

the multivariate version of MDD(Y|X)2 [45].

Kernel Approach

Using a kernel, K(ω), we can form a candidate matrix as

Mk = Re(

∫
ψ(ω)ψ̄(ω)TK(ω)dω) =

∫
[aωa

T
ω + bωb

T
ω ]K(ω)dω.
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If we choose the Gaussian function K(ω) = (2πσ2
ω)−p/2 exp(−‖ ω ‖

2

2σ2
ω

)[82], and let

(Y1,X1), (Y2,X2) be iid copies of (Y,X), then Mk is proportional to E(X1,Y1),(X2,Y2)J,

where

J = Y1Y2e
−
σ2
ω ‖ X1 −X2 ‖2

2 σ2
ω[Ip − σ2

ω(X1 −X2)(X1 −X2)T ]. (2.2)

Derivation of equation (2.2) is given in the supplement (A1.1). We call this method

Kernel Approach. Let {(Yj, XT
j ), j = 1, · · · , n} be a sample of (Y,X), then an

estimate of Mk is

M̂k =
1

n2

n∑
i=1

n∑
j=1

YiYje
−
σ2
ω ‖ Xi −Xj ‖2

2 σ2
ω[Ip − σ2

ω(Xi −Xj)(Xi −Xj)
T ]. (2.3)

We have the following algorithm for Kernel Approach.

Algorithm of Kernel Approach

Step 1: Let Y ∗i = Yi −
∑n

i=1 Yi
n

.

Step 2: Use equation (2.3) to construct an estimated candidate matrix M̂k.

Step 3: Perform eigen-decomposition on M̂k and let β̂ = [v̂1, · · · , v̂d], where v̂is are

the first d eigenvectors associated with the largest d eigenvalues.

Step 4: Output β̂.

Practically, we use σ2
ω = 0.1 as suggested by Zhu and Zeng [82], which works quite

well. We have the following theorem for the Kernel Approach.

Theorem 2.2.3 Assume cov(vec(J((X1, Y1), (X2, Y2)))) exists. Then,

M̂k = Mk +
1

n

n∑
i=1

(J
′
(Xi, Yi)− 2Mk) + op(n

−1/2), as n→∞,

where J
′
(X, Y ) = E(X2,Y2)[J((X, Y ), (X2, Y2)) + JT ((X, Y ), (X2, Y2))]. Let Σ2 be the

p2×p2 covariance matrix of vec(J
′
(X, Y )), then

√
n(vec(M̂k)−vec(Mk))

d−→ N(0,Σ2).
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Note that Theorem 2.2.3 is a simpler case of Theorem 1 in Zhu and Zeng [82] and

our proof of theorem 2.2.3 is exactly the same as the proof of theorem 1 in Zhu and

Zeng [82]. Thus, we omit it.

Corollary 2.2.2 Given vec(M̂k)→ vec(Mk) at
√
n rate, we have M̂k →Mk at the

same rate. Then, the eigenvalues and eigenvectors of M̂k also converge to those of

Mk at the same rate [81].

Kernel Approach and its algorithm work for multivariate response. See comments

in supplement (A1.1).

Permutation Test

Previously, we assume that d is known, however, practically, we need to estimate it.

Previous experience and our simulations indicate that the sequential hypotheses test

is not effective. Therefore we adopt a permutation test. Permutation test is based

on the eigenvalues and eigenvectors of the candidate matrix and thus it works for

both Euler Approach and Kernel Approach. The idea behind the permutation test

is that for a given real dimension d, at the population level, the first d eigenvalues of

the candidate matrix are nonzero and the remaining eigenvalues are exact zero; At

the sample level, the first d eigenvalues are much larger than the remaining which

are close to zero. We refer more details to Cook and Yin[19], Yin and Cook [72] and

Wang et al.[62].

Consider the hypothesis test d = k vs. d > k, with k ∈ {0, 1, · · · , p − 2}. The

range of d is from 0 to p−1 under the assumption that the dimension can be reduced

at least by 1. Let v̂1, v̂2, · · · , v̂p be the orthonormal eigenvectors corresponding to the

ordered eigenvalues of candidate matrix M̂. Denote Ak = (v̂1, v̂2, · · · , v̂k) and Bk =

(v̂k+1, v̂k+2, · · · , v̂p). Then, the null hypothesis is equivalent to Y ⊥ E(Y |X)|AT
kX.

Based on this idea, Wang et al. [62] proposed a test statistic

Λ̂k = λ̂(k+1) −
1

p− (k + 1)

p∑
i=k+2

λ̂i.

The algorithm to estimate d is given below.
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Step 1: Obtain the matrix M̂ from data set by the algorithms in Section 2.2.

Step 2: Compute Λ̂k.

Step 3: Obtain (XAk,XBk, Y ), apply L independent permutations to the rows

of XBk. For each permutation, compute the test statistic Λ̂kl = λ̂(k+1)l −
1

p−(k+1)

∑p
i=k+2 λ̂il, where l = 1, 2, · · · , L and λ̂il is the ith eigenvalue of M̂l, the

candidate matrix from the lth permutation.

Step 4: Construct the p-value pk =
∑L

l=1 I(Λ̂kl>Λ̂k)

L
, where I is the indicator function.

Given a preset significance level α, reject the null if pk < α.

Step 5: Repeat steps 2-4 for k = 0, · · · , p − 2 until the null hypothesis cannot be

rejected and choose d̂ = k as the estimated dimension.

The setting of α = 0.05 and L = 100 works well in our limited study [20]. We use

m = 1000 and τ = 0.2 for Euler Approach in our simulations. A smaller m drastically

reduced computational cost while keep its accuracy, see the supplementary file (A2.4)

for additional simulations. Note that other estimation methods for d may be used

here, such as elbow plot of eigenvalues, variation plot of Ye and Weiss [69] and ladle

plot of Luo and Li [42].

2.3 Sufficient Variable Selection

It may still be difficult to interpret the reduced variables by SDR, as such variables

contain all the predictors while perhaps, only a few xi’s are informative. Thus,

the goal in this section is to select these informative xi’s by combining SDR with

penalization. We will investigate two approaches: directly incorporate the method of

Wu and Yin [66] which is modified from Li [40]; and embed the idea of Chen et al. [9].

In both of these two SVS approaches next, we fix τ = .2 and m = 1000 to reduce the

computational cost for Euler Approach, while keep its accuracy. See supplementary

file (A2.4) for additional simulations.
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Adaptive Lasso Type of SVS

Li [40] develop a general sparse estimator for eigen-decompostion approach, which is

further modified by Wu and Yin [66] who used adaptive lasso [83]. Wu and Yin [66]

further used Mδ = M + δΣ instead of the candidate matrix M, where δ is a small

positive constant to improve Li’s method [40], by reducing computation cost while

keeping its accuracy. The choice of δ has little effect [66]. We propose our algorithm

and present the details below.

Wu and Yin (2015) worked on the optimization problem

min
α,β
{

p∑
i=1

‖ Σ−1mi −αβTmi ‖2
Σ +

d∑
j=1

λj

p∑
h=1

|βjh|
wh
},

subject to αTΣα = Id, where Σ = cov(X), mi, i = 1, 2, · · · , p, are the columns of

M1/2 and w = (w1, · · · , wp)T is a known weight vector. In our algorithm, this weight

vector is chosen as the absolute OLS estimates.

The algorithm of adaptive lasso type SVS is summarized as follows.

Step 1: Calculate the candidate matrix M̂ and M̂δ for a given δ = 0.001.

Step 2: Get the initial α from the candidate matrix without the penalty term.

Step 3: Fixed α, updated β̂ = (β̂1, β̂2, · · · , β̂d) by replacing β̂j with

β∗j = min
βj
{‖ M̂

1/2
δ αj − M̂

1/2
δ βj ‖2 +λj

p∑
h=1

|βjh|
wh
},

where wi is the absolute OLS estimate of βj for j = 1, · · · , p.

Step 4: Fixed β̂, by Σ−1/2M̂δβ̂ = UDVT , we have α = Σ−1/2UVT .

Step 5: Repeat steps 3 and 4 until the maximum absolute value of difference between

two consecutive β̂’s < 10−3.

We use the following BIC criteria [40][59] to select the tuning parameter λj.

min
λ
{

p∑
i=1

||Σ−1mi − β̂λβ̂
T
λmi||2Σ + log(n) ∗ pλ/n},

where β̂λ is an estimated direction for a given λ and pλ is the effective number of

parameters which is estimated by the number of nonzero components in β̂λ.
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Group Lasso Type of SVS

Previous section for the algorithm of SVS is an element-wise penalization. Chen et

al. [9] pointed out that non-active variables should have zeros on the entire row of β,

and proposed a coordinate-independent penalty function based on the formulation of

Li [40]. The main idea is to shrink β by rows instead of columns. Follow Chen et al.

[9], we propose a group lasso type algorithm and present the details as below.

Chen et al. [9] worked on the optimization problem minβ{−tr(βTMβ) + ρ(β)},

subject to βTΣβ = Id, where ρ(β) = Σp
i=1 θi ‖ β∗i ‖2 is a coordinate-independent

penalty function and the d × 1 row vector β∗i is the ith row of β. When d = 1, this

method is the same as Li’s [40] proposal. Let β̂ = Σ̂−1/2Γ̂ and use a local quadratic

function[22] to approximate the penalty term, it ends up to an optimization function

min
Γ
{−tr(ΓTM1Γ) +

1

2
tr(ΓTΣ−1/2HΣ−1/2Γ)}, (2.4)

where M1 = Σ−1/2MΣ−1/2 and H = diag(
θ1

‖ β̂∗1 ‖2

,
θ2

‖ β̂∗2 ‖2

, · · · , θp

‖ β̂∗p ‖2

). Thus, Γ

can be easily solved by eigen-decomposition on M1 −
1

2
Σ−1/2HΣ−1/2. See Chen et

al.[9] for more details.

The algorithm can be summarized as follows.

Step 1: Get the candidate matrix M̂ and find initial Γ̂ from minΓ{−tr(ΓTM̂1Γ)}

and let β̂ = Σ̂−1/2Γ̂.

Step 2: Update Σ̂−1/2HΣ̂−1/2 based on a given β̂.

Step 3: Update Γ̂ and β̂ by eigen-decomposition of matrix M̂1 −
1

2
Σ̂−1/2HΣ̂−1/2

and Σ̂−1/2Γ̂ respectively.

Step 4: Repeat steps 2 to 3 until the angle between two consecutive β̂’s < 10−6.

During the procedure, variable Xi will be removed if ‖ β̂∗i ‖2< 10−6. The hard

threshold used here is different to the soft threshold in Lasso where xi is removed

for an exact zero. We use the BIC criteria of Chen et al. [9] to select the tuning

parameter θ. The criteria has a form −tr(β̂Tθ Mβ̂θ) + dfθ log(n)/n, where β̂θ is the
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estimated basis given θ, dfθ is estimated by (pθ−d)d and pθ is the number of nonzero

rows of β̂θ.

2.4 Large p small n

In modern data analysis, one critical issue is to deal with the scenario where p > n. In

this section, we embed the two-stage selection procedure [68], where a sparse model

is assumed, and the sequential approach [74] into our proposed method. In both of

these two approaches, we fix τ = .2 and m = 1000 for Euler Approach to reduce

the computational cost, while keep its accuracy. See supplementary file (A2.4) for

additional simulations.

Variable Screening

Yang et al. [68] proposed a two-stage selection procedure with distance correlation

[56] to screen the variables. We use their method first to select informative variables so

that the number of active predictors is less than the number of sample size, then apply

our methods to further reduce the data. Note that the two-stage selection procedure

not only considers the relationship between the response and the predictors, but

also considers the relationship among predictors. Thus, it achieves better selection

results. The details of this selection procedure are referred to Yang et al. [68] and

our algorithm is shown below.

Let ĉ(U,V) denote the sample distance correlation between random vectors U

and V. See Székely et al. [56] for details of distance correlation.

The algorithm for this two-stage variable screening can be summarized as follows.

Step 1: Calculate ĉj = ĉ(Y,Xj), j = 1, · · · , p, and select d1 Xj’s corresponding to

the largest ĉj’s.

Step 2: Obtain the conditional set:

1. Slice Y into 2 non-overlapping slices;
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2. Calculate ĉ∗j =
∑2

s=1 ĉj,s, where ĉj,s = ĉ((X−j, Xj)|Y = s), where X−j

means deleting the j th column from X.

3. Take d2 Xj’s corresponding to the largest ĉ∗j ’s, but not selected in step 1.

Step 3: Union the Xj’s from steps 1 and 2.

Where p′ = n/ log(n), d1 = 0.95p
′

and d2 = p
′ − d1 as suggested by Yang et al. [68]

and they work quite well in our simulations.

Sequential Procedure

Yin and Hilafu [74] propose a sequential sufficient dimension reduction (SSDR), to

deal with the ultrahigh dimensional dataset. The SSDR is based on the next propo-

sition, which is adopted from the proposition 1 of Yin and Hilafu [74].

Proposition 2.4.1 Let X1 and X2 be two random vectors, then either (a) or (b)

will imply (c) below:

(a) X1 ⊥ (X2, Y )|BTX1 ;

(b) X1 ⊥ X2|(BTX1, Y ) and X1 ⊥ Y |BTX1;

(c) X1 ⊥ Y |(BTX1,X2).

Based on (c), one can see that p(Y |X1,X2) = p(Y |BTX1,X2). If the dimension of

BTX1 is less than X1, then the goal of dimension reduction is achieved. Under the

case of p >> n, we can partition X into X1 and X2 such that the dimension of X1

is less than n. After reducing X1 to BTX1, we consider BTX1,X2 as new predictors

and partition the new predictors to have new X1 and X2. Repeat this until there is

no further reduction can be achieved. The target here is to find a matrix B such that

(c) is satisfied. In order to make (c) true, we can find B such that either (a) or (b) is

true. Two paths are proposed corresponding to (a) and (b). It is path I if (a) is used,

which may be better for quantitative response, and path II if (b) is used, which may

be better for qualitative response. We use path I as the response is quantitative.

We describe the SSDR algorithm below.
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Step 1: Rearrange the order of predictors by distance correlation of Székely et al.

[56].

Step 2: Partition X ∈ Rp to X1 ∈ Rp1 and X2 ∈ Rp2 such that p1 < n. Combine X2

and Y as a new response and let X1 be the predictors.

Step 3: Use the algorithm described in Section 2.2 to get the reduced variable BTX1.

Step 4: Let the new predictors be X = (BTX1,X2) and go back to step 1.

Step 5: Repeat steps 2-4 until no further reduction can be achieved.

We use p1 = 20 in our simulations [74]. To obtain a sparse estimation, we incor-

porate a penalty term to obtain a sparse solution, Bs. At each partition, we obtain a

sparse basis. Thus, in the procedure, we follow above SSDR algorithm except in Step

3, where we replace BTX1 with BsT X1. We call this approach as sequential sufficient

variable selection (SSVS). See Yin and Hilafu [74] for details.

2.5 Numerical Study

This section will evaluate the efficacy of our methods via simulations and application

to a real data example. Our code is written in R and is available at the github with

link https://github.com/wangpeinihao/code1. The R code for adaptive lasso type

sparse estimation follows from Wu and Yin [66]; the R code for CISE type sparse

estimation is based on Chen et al.’s Matlab code [9]; the R code for sequential SVS

is modified from Yin and Hilafu’s code [74]. We run 100 replicates to report our

results.

The estimation accuracy between the population p×d matrix β and the estimated

matrix β̂ = (β̂1, β̂2, · · · , β̂d) is measured by some commonly used criteria. Assume

that β and β̂ have orthonormal columns. We use trace correlation, r =
√∑d

i=1 ρ
2
i /d

[69], to measure the similarity, where ρ2
i ’s are the eigenvalues of β̂TββT β̂. The larger

the value is, the better the estimate is. Also, distances such as ∆m(β, β̂) defined as

the spectral norm of matrix A and Frobenius norm ∆f (β, β̂) =
√
trace(AAT ) [37]
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are used, where A = ββT − β̂β̂T . Another distance is m2
i (β̂i,β) = |(I − ββT )β̂i|2

[67]. The smaller the distance is, the better the estimate is. Additionally, |r1|, defined

as the absolute correlation between the true sufficient predictors and its estimate [74]

is used.

In sufficient variable selection, we report the true positive rate (TPR) and false

positive rate (FPR), where TPR stands for the ratio of the number of correctly

selected active predictors to the number of true active predictors and FPR stands

for the ratio of the number of falsely selected active predictors to the number of true

inactive predictors. Better estimate has bigger TPR and smaller FPR.

Simulations

We use the following models for our simulations and comparisons.

M1: Y = (XTβ)3 + 0.4ε.

M1a: Y = (XTβ)2 + 0.4ε.

M2: Y = cos(2XTβ1)− cos(XTβ2) + 0.5ε.

M3: Y1 = 1 + (XTβ1)2 + ε1, Y2 = XTβ2 + ε2, Y3 = ε3, Y4 = ε4.

M4: XY =
√

7/8βY + 0.5ε.

M5: Y =
√

7/8XTβ + 1.5ε.

The cubic Model M1 is modified from the quadratic model of Cook and Weisberg

[18]; the quadratic model M1a is from Section 2 of Cook and Weisberg [18] and it has

the same setting as M1; M2 is example 8.1 from Li [39]; M3 is a multivariate model

4.5 of Li et al. [36]; M4 is the model in Section 5.1 of Cook [14], and M5 is example

1 in the supplementary file of Yin and Hilafu[74]. All model settings are summarized

in Table 2.1 below.

Example 2.5.1

This example uses M1, M1a and M2 to show the estimation accuracy of our methods

in SDR for a univariate response with comparisons to SIR [38], SAVE [18], PHD [39]

and DR [35]. The results are reported in Tables 2.2–2.4. The entries are the means

of the criterion values and their respective standard errors (in parentheses). Since
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Table 2.1: Model Settings

No. Variables β p q n ε d
M1 X ∼ N(0, I) e1 + e2 10 1 200 N(0, 1) 1
M2 X ∼ N(0, I) (e1 e2) 10 1 400 N(0, 1) 2
M3 X ∼ N(0, I) (e1 2e2 + e3) 6 4 100/200 N(0,Σ3) 2
M4 Y ∼ N(0, 0.5) e100 + e200 + · · ·+ e800 1000 1 200 N(0, I) 1
M5 X ∼ N(0, I) e100 + e200 + · · ·+ e800 1000 1 200 N(0, 1) 1

Note: ei is a p× 1 vector with the ith element 1 and the other elements 0; q is the dimension of

the response; Except in M4, X is independent of ε, while in M3, Σ3 =


1 −0.5 0 0
−0.5 1 0 0

0 0 1 0
0 0 0 1

 .

MAVE is based on local polynomial approach which is different to other methods, we

present the MAVE results in the supplementary file (A2.3).

Table 2.2 indicates that SIR has the largest correlation and smallest distance

measures. It is expected since M1 has strong linear trend and SIR always performs

the best for such a model. Kernel Approach is the second best, close to SIR, with

the next two bests are Euler Approach and DR. Table 2.3 shows the results for M1a

and it says our Euler and Kernel Approaches have the best results. SIR fails to work

because of the symmetric pattern in this model. Table 2.4 reports the results for

M2. In this model, Euler Approach is the best. Since there is a symmetric pattern

in this model, SIR fails to recover the true direction as we expected. From these

three models, we conclude that our methods are consistent and stable with the best

performance, closely followed by DR and SAVE.

Table 2.2: SDR results of Model M1

method r ∆m ∆f m1

SIR 0.997 (0.002) 0.075(0.019) 0.106 (0.027) 0.075 (0.019)
SAVE 0.989 (0.012) 0.143 (0.055) 0.202 (0.078) 0.143 (0.055)

DR 0.993 (0.002) 0.113 (0.026) 0.160 (0.037) 0.113 (0.026)
PHD 0.652 (0.179) 0.722 (0.152) 1.021 (0.214) 0.722 (0.152)

Euler (Ours) 0.993 (0.007) 0.115 (0.045) 0.163 (0.065) 0.115 (0.045)
Kernel (Ours) 0.996 (0.002) 0.087 (0.022) 0.123 (0.031) 0.087 (0.022)

Example 2.5.2

This example uses modified M1a to show the efficacy of our methods in a case

where the error term is not normally distributed. Here we use the same M1a model
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Table 2.3: SDR results of Model M1a

method r ∆m ∆f m1

SIR 0.293 (0.237) 0.917 (0.130) 1.298 (0.184) 0.917 (0.130)
SAVE 0.975 (0.011) 0.217 (0.052) 0.306 (0.073) 0.217 (0.052)

DR 0.976 (0.011) 0.211 (0.052) 0.298 (0.073) 0.211 (0.052)
PHD 0.966 (0.032) 0.248 (0.071) 0.350 (0.100) 0.248 (0.071)

Euler (Ours) 0.978 (0.010) 0.202 (0.049) 0.286 (0.069) 0.202 (0.049)
Kernel (Ours) 0.978 (0.010) 0.205 (0.049) 0.290 (0.070) 0.205 (0.049)

Table 2.4: SDR results of Model M2

method r ∆m ∆f m1 m2

SIR 0.436 (0.131) 0.973 (0.041) 1.776 (0.133) 0.887 (0.112) 0.880 (0.116)
SAVE 0.947 (0.029) 0.376 (0.090) 0.624 (0.146) 0.302 (0.093) 0.313 (0.090)

DR 0.949 (0.027) 0.367 (0.082) 0.615 (0.137) 0.292 (0.087) 0.314 (0.084)
PHD 0.969 (0.016) 0.293 (0.070) 0.483 (0.112) 0.236 (0.071) 0.240 (0.068)

Euler (Ours) 0.971 (0.013) 0.278 (0.064) 0.464 (0.102) 0.220 (0.063) 0.235 (0.071)
Kernel (Ours) 0.933 (0.057) 0.435 (0.182) 0.669 (0.243) 0.335 (0.171) 0.307 (0.133)

except the error term ε has heavy tail, either t5 or χ2
9 distribution. The results are

in Table 2.5. In both situations, our Euler Approach has the best performance as in

the normal error term case and the Kernel Approach has a very competitive results.

It means that our proposed method is robust against heavy tail cases.

Table 2.5: SDR results of M1a with a heavy tail error

error term method r ∆m ∆f m1

ε ∼ t5 SIR 0.217 (0.187) 0.955 (0.074) 1.351 (0.105) 0.955 (0.074)
SAVE 0.974 (0.014) 0.217 (0.056) 0.306 (0.080) 0.217 (0.056)

DR 0.969 (0.017) 0.238 (0.063) 0.337 (0.089) 0.238(0.063)
PHD 0.964 (0.019) 0.257 (0.067) 0.363 (0.095) 0.257 (0.067)

Euler (Ours) 0.977 (0.011) 0.209 (0.049) 0.296(0.069) 0.209(0.049)
Kernel (Ours) 0.966 (0.024) 0.246 (0.074) 0.348 (0.105) 0.246 (0.074)

ε ∼ χ2
9 SIR 0.272 (0.185) 0.941 (0.082) 1.331 (0.117) 0.941 (0.082)

SAVE 0.959 (0.021) 0.273 (0.070) 0.387 (0.100) 0.273 (0.070)
DR 0.949 (0.030) 0.301 (0.083) 0.426 (0.118) 0.301 (0.083)

PHD 0.959 (0.020) 0.275 (0.067) 0.389 (0.095) 0.275 (0.067)
Euler (Ours) 0.971 (0.014) 0.233 (0.056) 0.329 (0.079) 0.233(0.056)
Kernel (Ours) 0.946 (0.070) 0.296 (0.109) 0.418 (0.153) 0.296 (0.109)

Example 2.5.3

This example uses M3 to show the efficacy of our methods for multivariate response.

Li et al. [36] proposed projective resampling (PR) idea and developed PR-SIR and

PR-SAVE which outperformed K-means estimators [50] and central moment spaces
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estimator [71] using Forbenius norm as the criterion. Under the same criterion, results

in Table 2.6 indicate that Euler Approach is the best, Kernel Approach is the second

best, both their performances are better than PR-SIR and PR-SAVE.

Table 2.6: SDR results (∆f ) of Model M3

methods PR-SIR PR-SAVE Euler (Ours) Kernel (Ours)
n=100 1.205 (0.255) 0.612 (0.237) 0.353 (0.143) 0.527 (0.222)
n=200 1.203 (0.262) 0.313 (0.089) 0.241 (0.078) 0.309 (0.109)

Example 2.5.4

This example uses M1, M1a, M2 and M3 to show the performance of permutation test

in estimating dimension. The sample sizes are 400, 800 and 1200 for the four models.

The proportions of correct dimension determination for each model are reported in

Table 2.7, which clearly indicate that the results are better with bigger sample size,

and that it detects the dimension quite well, especially for Euler Approach and when

n ≥ 800.

Table 2.7: Dimension Test with correctly identified percentage

model method n=400 n=800 n=1200
M1 Euler 0.93 0.94 0.98

Kernel 0.90 0.97 0.98
M1a Euler 0.95 0.93 0.93

Kernel 0.98 0.97 0.95
M2 Euler 0.80 0.93 0.91

Kernel 0.20 0.89 0.97
M3 Euler 0.96 0.93 0.93

Kernel 0.90 0.96 0.93

Example 2.5.5

This example uses M1 and M2 to show the results of variable selection by adaptive

lasso method (ALasso, Section 3.1) and group Lasso as coordinator-independence

sparse estimation (CISE, Section 3.2). For ALasso sparse estimation, we compare

our results to SIR, SAVE, and PHD embedded with ALasso. Comparison to sparse

MAVE [61], is also available in the supplementary file (A2.3). For CISE type, we
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compare our results to SIR, SAVE and PHD embedded with CISE. Note that Chen

et al. [9] only reported CISE with SIR, but we extend CISE to SAVE and PHD.

Table 2.8 reports the results using TPR and FPR. SIR, Euler Approach and

Kernel Approach perform very well in M1, but SIR fails in M2. While PHD, SAVE,

Euler Approach and Kernel Approach all perform well in M2, PHD fails in M1, and

SAVE with ALasso fails in M1. Thus overall, Euler Approach and Kernel Approach

are the most consistent methods with large TPR and small FPR.

Table 2.8: Variable Selection Results

Penalty Model d Criteria SIR PHD SAVE Euler (Ours) Kernel (Ours)
ALasso M1 1 TPR 1.000 0.995 0.995 1.000 0.915

FPR 0.001 0.844 0.568 0.001 0.000
M1a 1 TPR 0.630 1.000 1.000 0.995 1.000

FPR 0.035 0.859 0.618 0.063 0.026
M2 2 TPR 0.390 1.000 1.000 1.000 0.990

FPR 0.155 0.004 0.184 0.019 0.038

CISE M1 1 TPR 1.000 0.885 0.980 1.000 0.975
FPR 0.000 0.663 0.008 0.004 0.000

M1a 1 TPR 0.170 1.000 0.995 1.000 0.895
FPR 0.163 0.353 0.024 0.024 0.006

M2 2 TPR 0.265 1.000 1.000 0.998 0.975
FPR 0.211 0.013 0.019 0.021 0.013

Example 2.5.6

This example uses M4 to illustrate the estimation accuracy of our methods in ultra-

high dimension settings. As we discussed before, we incorporate all the comparison

methods with the variable screening procedure. The results are reported in Table 2.9,

indicating that PHD and SAVE fail to capture the direction. Euler Approach is the

best, DR and Kernel Approach are the closest second and third best. The results for

MAVE with variable screening procedure is given in the supplementary file (A2.3).

Example 2.5.7

This example uses M5 to show the usefulness of our method with the SSVS approach

in ultra-dimensional setting. We report ∆f , absolute correlation |r1|, FPR and TPR

in Table 2.10. In terms of TPR, both of our methods are better than SIR sequential

method, Euler Approach is the best.
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Table 2.9: Estimation accuracy for model M4

|r1| r ∆m ∆f m1

SIR 0.973 (0.006) 0.793 (0.042) 0.605 (0.054) 0.856 (0.077) 0.605 (0.054)
SAVE 0.036 (0.030) 0.039 (0.041) 0.999 (0.003) 1.412 (0.004) 0.999 (0.003)

DR 0.991 (0.003) 0.926 (0.018) 0.375 (0.042) 0.530 (0.060) 0.375 (0.042)
PHD 0.167 (0.108) 0.068 (0.051) 0.996 (0.006) 1.409 (0.008) 0.996 (0.006)

Euler (Ours) 0.992 (0.002) 0.936 (0.011) 0.352 (0.029) 0.498 (0.041) 0.352 (0.029)
Kernel (Ours) 0.990 (0.003) 0.917 (0.014) 0.397 (0.033) 0.561 (0.046) 0.397 (0.033)

Table 2.10: Sequential SVS approaches

∆f |r1| TPR FPR
SSVSSIR 0.602 (0.222) 0.905 (0.063) 0.888 0.005

SSVSEuler (Ours) 0.713 (0.168) 0.917 (0.034) 0.994 0.095
SSVSKernel (Ours) 0.646 (0.147) 0.886 (0.068) 0.970 0.063

Note: The results for SSVSSIR are copied from Yin and Hilafu [74].

Example 2.5.8

We use this example to compare our method to Zhu and Zeng’s [82] Fourier

transformation method. To make a fair comparison, the same evaluation criterion,

1 −
√

tr(A(ATA)−1ATB(BTB)−1BT )/d, from Zhu and Zeng’s [82] paper is used,

where A, B are two p× d matrices. Boxplots are drawn based on the distances from

500 replicates. We run their method on R code of Zhu and Zeng[82]. The models

used include the example 1 of Zhu and Zeng[82] and M2 in this chapter.

M6 (Example 1, Zhu and Zeng, 2006): Y = (XTβ1)2/(3 + (XTβ2 + 2)2) + 0.2ε, β1 =

(1, 1, 1, 1, 0, 0, 0, 0, 0, 0)T , β2 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 1)T and X = (X1, · · · , X10)T , ε

are iid N(0, 1). Sample size, n = 500.

The boxplot in Figure 2.1 reports the results from Model M6. We can see that

Kernel Approach performs a slightly better than the FCN method and Euler Ap-

proach performs similar to FMN, where FCN stands for Fourier transform method of

Zhu and Zeng[82] with target of CS and FMN stands for Fourier transform method

of Zhu and Zeng[82] with target of CMS.

Figure 2.2 is the boxplot for Model M2 and it shows that Euler Approach is

the best compared to other approaches. Kernel Approach has a similar performance

compared to FMN which is definitely better than FCN.

These two simulations demonstrated that our approaches not only result in a
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Figure 2.1: Side-by-Side boxplot of model M6 for comparing the performance for
methods FCN, FMN, Euler and Kernel.

Figure 2.2: Side-by-Side boxplot of model M2 for comparing the performance for
methods FCN, FMN, Euler and Kernel.
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simpler form but also better results compared to the Fourier transform approaches

of Zhu and Zeng[82].

To summarize, across these models, our proposed methods are the best or perform

consistently in the top group.

Real Data Example

In this section, we apply our proposed approaches to Prostate Cancer Data, which

is from R package lasso2 : //cran.r-project.org/web/packages/lasso2/lasso2.pdf. The

goal is to study the relation between the level of prostate specific antigen and a series

of clinical measures in men who were about to have a radical prostatectomy. There

are n = 97 cases and 9 variables. The 9 variables are lcavol (X1; log(cancer volume)),

lweight (X2; log(prostate weight)), age(X3), lbph (X4; log(benign prostatic hyperpla-

sia amount)), svi (X5; seminal vesicle invasion), lcp (X6; log(capsular penetration)),

gleason (X7; gleason score), pgg45(X8; percentage gleason score 4 or 5) and lpsa (Y ;

log(prostate specific antigen)).
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Figure 2.3: Scree plots of two methods

Permutation test may not be effective because of small sample size (n = 97). Thus,

we use the elbow plots to determine the dimension of the central mean subspace. The

plots in figure 2.3, suggest d = 1 for both of our methods. The scatter plots between y
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and the first reduced variables for both methods in Figure 2.4, clearly show the linear

trend: plot (a) and plot (b) with added respective OLS fit. However, the patterns

between the response and the respective second reduced variables are hard to tell

(not shown here). Thus, we pursue further analysis using d = 1. The residual plots

for the OLS fit respectively using the first reduced variable are reported in Figure

2.5. For both residual plots from the two approaches, we see the residual points are

randomly distributed along the panels without any pattern. Therefore, we conclude

that the mean model fits well based on the first respective reduced variable, i.e., it is

reasonable to infer d = 1.
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Figure 2.4: Scatter plot between Y and the first respective reduced variables

To obtain the sparse estimates, adaptive lasso type method described in section

2.3 is used since d = 1. For both nonsparse and sparse estimates, we compare our

results to SIR. The results are reported in Table 2.11, which show very similar results.

The nonsparse estimates indicate that the direction is mainly determined by X1, and

X5. Indeed, all three sparse estimates pick up X1 and X5, additionally, SIR picks up

X2 and Euler Approach picks up X4. Due to the fact that our methods focus on the

mean function, we further analyze with the first sparse reduced variables by Euler

Approach and Kernel Approach.
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Figure 2.5: Residual plots for Euler and Kernel Approaches

Table 2.11: Estimated Directions for Prostate Dateset

Predictors x1 x2 x3 x4 x5 x6 x7 x8

Nonparse SIR -0.4805 -0.3445 0.0132 -0.0539 -0.7895 0.1508 -0.0340 -0.0053
Kernel -0.4344 -0.4076 0.0115 -0.0798 -0.7958 0.0528 -0.0503 -0.0045
Euler -0.4251 -0.4646 0.0154 -0.0566 -0.7712 0.0326 -0.0638 -0.0036

Sparse SIR -0.986 -0.038 0 0 -0.160 0 0 0
Kernel -0.639 0 0 0 -0.769 0 0 0
Euler -0.612 0 0 -0.020 -0.790 0 0 0
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Figure 2.6: Scatter plots between Y and reduced sparse variables for sparse estimates
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To verify our conclusion, we plot the first respective reduced sparse variables vs

the response, with added OLS fit. Figure 2.6 shows a clear linear trend for both

methods, which is similar to the nonsparse case. Thus, the sparse estimates are quite

reasonable. The residual plots from the OLS by regressing the response on the first

reduced sparse variables is reported in Figure 2.7, respectively. In both residual plots,

there are no clear patterns and all the points are scattered around 0, indicating that

the respective first reduced sparse variable is adequate for capturing the regression

information.

We further analyze the importance of the extra variable X4 that is selected by

Euler Approach. The two reduced first sparse variables by Euler Approach and

Kernel Approach have correlation coefficient 0.999. Thus with or without X4, it is

not affecting the reduced predictor. See figure 2.8.
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Figure 2.7: Residual plots of two methods

2.6 Discussion

In this project, we propose a new SDR method to recover the CMS by using char-

acteristic function, together with the novel filtering idea. Our method avoids to

use slicing technique and nonparametric estimation which overcomes the sensitivity
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Figure 2.8: The plot of the first reduced sparse variables by Euler Approach and
Kernel Approach.
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of slicing number choice and computational complexity, respectively. Our method

works well both in univariate and multivariate cases. We propose two choices of

weighting schemes. Other ideas of different weights may be pursued in the future.

For instance, after selecting important ωs, we can directly use ω as directions instead

of ωE(Y eiωT X), where E(Y eiωT X) serves as a weight.

The condition (Y, βTX) is independent of βT0 X is frequently used in sufficient

dimension reduction area. It is equivalent to Y ⊥ X|βTX under the assumption that

PβX ⊥ Pβ0X. Sheng and Yin [53] discussed that PβX ⊥ Pβ0X holds when X is

multivariate normal, but the normality is not necessary. For arbitrary predictors, low

dimensional projections of the predictor are approximately multivariate normal when

p is large. Thus, this condition is not as strong as it appears to be. In practice, most

of the predictors will satisfy the condition. See Section 3.5 of Sheng and Yin (2013)

for more details. We include a non-normal predictor example in the supplementary

file, see M9 for more details and leave the case where the independence condition is

severely violated for future investigation.
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Chapter 3 Minimum Discrepancy Approach for Sufficient Dimension

Reduction Using Characteristic Function

3.1 Introduction

In Chapter 2, all vectors that belong to the target CMS are aggregated to form

a candidate matrix and then by eigen-decomposition, we extract the eigen-vectors

to estimate the CMS. Different to the traditional eigen-decomposition approach on

a candidate matrix, Ni and Cook [16] proposed to minimize a quadratic function

to estimate the target subspace. Assume the structure dimension d is known, the

quadratic objective function is defined as

Fd(B,C) = (vec(ξ̂Rn)− vec(BC))TVn(vec(ξ̂Rn)− vec(BC)), (3.1)

where ξ̂ is a p × m matrix, Vn ∈ Rpm×pm is a positive definite matrix, B ∈ Rp×d

is a basis of span{ξRn}, ξ is the population version of ξ̂, C ∈ Rd×m is a matrix

that is used for fitting, Rn ∈ Rm×m is matrix to organize the columns of ξ̂ and vec

represents an operator that stacks the columns of a matrix to a single long vector.

Then, by minimizing this objective function through iteration on B and C, we can

use the final B as an estimated basis for Sy|x. Since every nonsingular matrix Rn can

be used to estimate the basis and it will not influence the estimation result, we can

let Rn be the identity matrix for simplicity [16]. With different choices for the inner

product matrix Vn, we have more flexibility and gain more information compared

to the eigen-decomposition type SDR methods. Motivated by this method, we can

apply the formulation here to our proposed vector seed in Section 2.2.

The rest of this chapter is structured as follows. Section 3.2 introduces the new

method for SDR along with its formulation, algorithm and the approach to determine

the structure dimension. Section 3.3 presents the SVS formulation, algorithm and

theoretical properties for high-dimensional data. We report the numerical results of

the proposed methods in Section 3.4. This chapter ends with a discussion in Section

3.5.
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3.2 The Proposed Method for SDR

For generality, let x = (x1, · · · , xp)T be a p dimensional vector, y ∈ R1 be a response

and Σ > 0 be the covariance matrix of x. If β = (β1, β2, · · · , βd) forms a basis for

SE(y|x), then the mean function m(x) = m(βTx). Based on the fact that the gradient

of m(x)f(βTx) is a linear combination of β for any fixed x and thus it is in the

SE(y|x), we define a vector seed by taking a Fourier transformation of the gradient.

That is, ψ0(ω) =
∫
eiωT xd(m(x)f(βTx)), where ω ∈ Rp is a constant vector. Wang et

al.[63] proved that the SE(y|x) is fully recovered by the collection of all the ψ0(ω). We

further assume that the densities f(x), f(βTx) exist, f(βTx)→ 0 as ||x|| → ∞, and

(β,β0) form an orthogonal matrix with (y,βTx) being independent to βT0 x. We have

ψ0(ω) = kE(ωyeiωT x) ∝ E(ωyeiωT x), where k is a constant of β. See more details in

Wang et al.[63]. If ψ(ω) = E(ωyeiωT x) = E(ωy cos(ωTx)) + iE(ωy sin(ωTx)), then

the CMS is spanned by the collection of ψ(ω).

Motivated by Cook and Ni[16], we develop a quadratic discrepancy function in

terms of our proposal. Before stating the objective function, we define the following:

ψ(ωi) = βζi, and ξ = (ξ1, · · · , ξm) ∈ Rp×2m, where ξi = (Re(ψ(ωi)), Im(ψ(ωi))),

i = 1, · · · ,m and m is the total number of ω used. Then, we have ξ = βν, with

ν = (Re(ζ(ω1)), Im(ζ(ω1)), · · · ,Re(ζ(ωm)), Im(ζ(ωm))) where operators Re(A) and

Im(A) are the real and imaginary part of A respectively. Given a random sample

(ỹj, x̃j), the sample version of ξi is defined as

ξ̂i = (
1

n

n∑
j=1

ωiỹj cos(ωTi x̃j),
1

n

n∑
j=1

ωiỹj sin(ωTi x̃j)), i = 1, · · · ,m.

Theorem 3.2.1 Assume var(y sin(ωTx)), var(y cos(ωTx)) exist for every given ω,

then we have
√
n(vec(ξ̂) − vec(βν))

d−→ N(0,Γ), where Γ is a 2pm × 2pm variance-

covariance matrix with its exact form given in Supplement B1.1.

Then we define the following quadratic objective function,

F cf
d (B,C) = (vec(ξ̂)− vec(BC))TVn(vec(ξ̂)− vec(BC)). (3.2)

If m ωs are used to estimate the basis, then ξ̂ is a p×2m matrix, B is a p×d matrix,

C is a d× 2m matrix and Vn is a 2mp× 2mp inner product matrix.
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For the unknown matrix Vn in equation 3.2, Cook and Ni[16] point out that it is

determined by the SDR method and different choices of Vn result in different SDR

methods. In this project, we choose Vn = I2m ⊗ Σ̂ and Vn = I2mp to formulate two

SDR methods.

Covariance Characteristic Function Estimator

In this section, we let Vn = I2m ⊗ Σ̂, and the objective function is

F ccf
d (B,C) = (vec(ξ̂)− vec(BC))T (I2m ⊗ Σ̂)(vec(ξ̂)− vec(BC)). (3.3)

If (β̂, ν̂) = argminB,CF
ccf
d (B,C), then β̂ is the estimated basis of SE(y|x). We call

this estimator the covariance characteristic function estimator (ccfe) of β.

Let (
∂vec(BC)

∂vec(B)
,
∂vec(BC)

∂vec(C)
) be the Jacobian matrix, and the value evaluated at

(B = β,C = ν) is ∆ = (νT ⊗ Ip, I2m ⊗ β), a 2mp × (2m + p)d matrix. Then the

asymptotic properties of this estimation are established in theorem 3.2.2.

Theorem 3.2.2 Assume var(y sin(ωTx)) and var(y cos(ωTx)) exist for every given

ω and a random sample (x̃, ỹ) is given. Let Sξ =
∑m

i=1 ξi and d = dim(Sξ). Then, we

have:

�

√
n(vec(β̂ν̂) − vec(βν)) → N(0,∆(∆TV∆)−∆TVΓV∆(∆TV∆)−∆T ), where

V = I2m ⊗Σ;

� nF̂ ccf
d is asymptotically distributed as

∑2mp
i=1 λiχ

2
i (1), where F̂ ccf

d is the minimum

value of F ccf
d , χ2

i (1)s are independent chi-square random variable with degrees

of freedom 1 and the weights λis are the eigenvalues of QΦV1/2ΓV1/2QΦ, where

Φ = V1/2∆ and QΦ = I− Φ(ΦTΦ)−ΦT ;

� span(β̂) is a consistent estimator of Sξ.

Identity Characteristic Function Estimator

In this section, if Vn = I2mp then the objective function in (3.1) becomes

F icf
d (B,C) = (vec(ξ̂)− vec(BC))T I2mp(vec(ξ̂)− vec(BC)). (3.4)
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If (β̂, ν̂) = arg minB,CF
icf
d (B,C), then β̂ is the estimated basis of SE(y|x). We call

this estimator the identity characteristic function estimator (icfe) of β.

Similarly, let (
∂vec(BC)

∂vec(B)
,
∂vec(BC)

∂vec(C)
) be the Jacobian matrix, and the value eval-

uated at (B = β,C = ν) is ∆ = (νT ⊗ Ip, I2m ⊗ β), a 2mp× (2m+ p)d matrix. The

asymptotic properties of this estimation are established in theorem 3.2.3. Note in

this formulation, Vn = V is an identity matrix and no estimation is needed for this

Vn.

Theorem 3.2.3 Assume var(y sin(ωTx)), var(y cos(ωTx)) exist for every given ω and

a random sample (x̃, ỹ) is given. Let Sξ =
∑m

i=1 ξi, d = dim(Sξ). Then we have:

�

√
n(vec(β̂ν̂)− vec(βν))→ N(0,∆(∆T∆)−∆TΓ∆(∆T∆)−∆T );

� nF̂ icf
d is asymptotically distributed as

∑2mp
i=1 λiχ

2
i (1), where F̂ icf

d is the minimum

value of F icf
d , χ2

i (1)s are independent chi-square random variable with degrees

of freedom 1 and the weights λis are the eigenvalues of Q∆ΓQ∆ ;

� span(β̂) is a consistent estimator of Sξ.

From theorems 3.2.2 and 3.2.3, we know that minimizing the objective function

F cf
d (B,C) gives a consistent estimate for vec(βν). And from the second conclu-

sion, we can use the sequential hypothesis test to determine the structure dimension

with all the population quantities replaced by the sample version[38][16].

Comment 1: Except I2m ⊗ Σ̂ and I2mp, we can let Vn = Γ̂−1. In theory, Γ =

WΣEWT , where ΣE = cov



y sin(ωT1 x)

y cos(ωT1 x)
...

y sin(ωTmx)

y cos(ωTmx)


and W =



ω1 0 0 · · · 0 0

0 ω1 0 · · · 0 0

0 0 ω2 · · · 0 0

· · · · · · · · · · · · · · ·

0 0 0 · · · ωm 0

0 0 0 · · · 0 ωm


is a 2mp × 2m matrix. The maximum rank of Γ is 2m and thus Γ is not full rank.

However, the formulation needs a positive definite Vn. In sample version, the ωs are

selected by large correlations between y and sin(ωTx) and cos(ωTx). If we use a large
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number of ωs, it is possible that we are repeating the information from ω. Choosing

a large number of ωs is not any better than choosing a small number. Therefore, we

are mainly focused on the two cases discussed in this project.

Comment 2: As Wang et al.[63] pointed out, all the p dimensional vectors ω

can be used to recover the CMS in theory. However, the selection of ω is crucial in

practice. Thus we generate a large number of ωs from N(0, σ2Ip) independently with

σ2 = 0.02π2/E(xTx) as Zhu et al. suggested (2010). Among all the ωs, we retain

those ωs having large absolute correlations between y and cos(ωTx), y and sin(ωTx).

Assume d is given, the objective functions F ccf
d (B,C) and F icf

d (B,C) can be

minimized by an alternating least squares method[16]. We summarize the algorithm

as follows.

Step 1: Prepare ξ̂.

Step 2: Choose a constant matrix as the initial B = (b1, · · · ,bd), where bi is a unit

vector with the ith element being 1 and the remaining being 0. Let ite = 0.

Step 3: Fix B, update vec(C) with a least square coefficient by regressing V
1/2
n vec(ξ̂)

on V
1/2
n (I2m⊗B), that is vec(C) = ((I2m⊗BT )Vn(I2m⊗B))−1(I2m⊗BT )Vnvec(ξ̂).

Step 4: Fix C, for each k = 1, · · · , d, let αk = vec(ξ̂−B(−k)C(−k)), where B(−k) and

C(−k) denote that the kth column of B and kth row of C are removed respec-

tively. Then update b̂k = QB(−k)
[QB(−k)

(cTk ⊗Ip)Vn(ck⊗Ip)QB(−k)
]−QB(−k)

(cTk ⊗

Ip)Vnαk, where ck is the kth row of C and QB(−k)
is projecting onto the or-

thogonal complement of span(B(−k)) with the usual inner product. Normalize

b̂k to have unit length and update B = (b1, · · · ,bk−1, b̂k,bk+1, · · · ,bd).

Step 5: Calculate Fv = Fd(B,C) and let ite = ite+ 1.

Step 6: Repeat steps 3 to 5 until no decrease on Fv and output β̂ = B.

In our simulation, as Wang et al.[63] suggested, we generated 20,000 ωs. Since the

number of ω has heavy impact on the computational cost, we tend to select a small
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number of ω and 5% of the generated ωs that have the high correlation property are

selected to estimate the CMS.

Dimension Determination

In the above formulations, we have assumed d, the dimension of the CMS, is known.

However, in practice we have to estimate this d. In theory, we can use the sequential

hypothesis test [38][7] to determine d by theorem 3.2.2 and 3.2.3. However, the results

are not effective. Thus we adopt Xia et al.’s cross-validation approach to determine

d[67].

Suppose we have the estimated directions β̂1, · · · , β̂d0 for the assumed dimension

d0, where d0 ∈ {1, · · · , p}. Let

ŷj,d0 =
n∑

i=1,i 6=j

Ki,j
hd0
yi/

n∑
i=1,i 6=j

Ki,j
hd0
,

where Ki,j
hd0

= Khd0
[β̂T1 (xi−xj), · · · , β̂Td0(xi−xj)], hd0 is the bandwidth corresponding

to d0 and K(·) represents a kernel function. Then, define the corresponding cross-

validation value as CV(d0) =

∑n
j=1(yj − ŷj,d0)2

n
. For the trivial case, define CV(0) =∑n

i=1(yi − ȳ)2

n
. Then, we choose the estimated dimension d̂ = argmin0≤d≤pCV(d).

For the bandwidth h, as Xia et al. suggested, it is taken to be proportional to

n−1/(d+4)[67].

3.3 The Proposed Method for SVS

In a high dimensional dataset, it is common that only a small portion of the variables

are important for regressing y on x. In this section, we propose a new method to do

variable selection by imposing a coordinate-independence penalty on the objective

function. The coordinate-independence penalty is originally proposed by Chen et

al.[9] and further studied by Qian et al.[46]. The exact form of this penalty term is

ρθ(B) =
∑p

k=1 θk ‖ Bk ‖2, where θ = (θ1, · · · , θp) are the penalty weights andBk is the

kth row of matrix B = (B1, · · · , Bp)
T . If we assume the ith variable, xi, is redundant,

we have eTi β = 0, where ei is a unit vector with the ith element being 1 and the
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remaining elements being 0. Then, we can denote A = {1 ≤ i ≤ p : eTi ββ
Tei > 0}

as the index set for important variables. We further let s = |A| be the number of

important variables.

Corresponding to the two choices of Vn in Section 3.2, we develop two methods

to perform variable selection and central mean subspace estimation for the large p

small n scenario.

Covariance Weights: Vn = I2m ⊗ Σ̂

Objective function F ccf
d (B,C) can be reformulated as

F ccf
d (B,C) = tr((ξ̂ −BC)T Σ̂(ξ̂ −BC)), (3.5)

where tr is the operator for trace. By adopting the coordinate-independence penalty

term, we get a new objective function,

L(B,C) =
1

2
tr((ξ̂ −BC)T Σ̂(ξ̂ −BC) + λρθ(B), (3.6)

subject to CCT = Id. Note, according to proposition 1 of Qian et al. [46], most SDR

methods put constraints on B, but having constraints on C works the same. Thus,

to facilitate the algorithm, we choose CCT = Id instead of BTB = Id.

Once the minimizer (B̂, Ĉ) = argminB,CL(B,C) is given, we simultaneously es-

timate the CMS by span(B̂) and the index set for important variables by {1 ≤ i ≤

p : eTi B̂B̂Tei > 0}. For the penalty weights, we adopt the method from adaptive

lasso[83] and let θi = (eTi B̂λB̂
T
λei)

−ρ/2, where B̂λ is the minimizer of L(B,C) with a

given λ, ρ = 0.5 and θ = 1p. With the following conditions assumed, the theoretical

properties of these estimators are summarized in Theorem 3.3.1.

1. C1: y ∈ R is a sub-Gaussian random variable.

2. C2: The covariance matrix Σ = σij has an element-wise upper bound and

its minimum eigenvalue is bounded away from 0. That is, there are constants

σl, σu > 0 such that σij < σu for every 1 ≤ i, j ≤ p, and λmin(Σ) > σl, where

λmin(Σ) is denoted as the minimum eigenvalue of matrix Σ.
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3. C3: Assume m2s log pn = O(n1−2η) and ds2 log pn = O(n1−2η) for some constant

η ∈ (0, 1/2) and pn = max{p, n}.

4. C4: Assume mini∈AeTi ββ
Tei > Cφn

−φ for some φ ∈ [0, 2η) and constant Cφ.

5. C5: Assume the nonzero singular values of ξ̂ are bounded away from 0.

Theorem 3.3.1 Let ‖ · ‖F denote the Frobenius norm, under conditions C1 − C5,

the minimizer (B̂, Ĉ) and the estimated index set Â satisfy

� CMS estimation consistency: ‖ PSB̂ − PSE(y|x) ‖F= Op(
√
ms log pn/n),

� SVS estimation consistency: P (Â = A)→ 1 as n→∞.

Identity Weights: Vn = I2mp

For identity weights, we add a penalty term to the objective function F icf
d (B,C), and

we have

LI(B,C) =
1

2
tr((ξ̂ −BC)T (ξ̂ −BC) + λρθ(B), (3.7)

subject to CCT = Id. Similarly, if the minimizer (B̂, Ĉ) = argminB,CLI(B,C)

is given, we simultaneously estimate the CMS by span(B̂) and the index set for

important variables by {1 ≤ i ≤ p : eTi B̂B̂Tei > 0}. For the penalty weights, we

use the same adaptive lasso technique as suggested in the previous section. For the

estimators, we have the following theoretical properties.

Theorem 3.3.2 Under conditions C1 − C5, the minimizer (B̂, Ĉ) and estimated

index set Â satisfy

� CMS estimation consistency: ‖ PSB̂ − PSE(y|x) ‖F= Op(
√
sm log pn/n),

� SVS estimation consistency: P (Â = A)→ 1 as n→∞.

41



Algorithm

To optimize the penalized objective functions, we adopt the iterative parallelizable

coordinate decent (IPCD) algorithm from Qian et al.[46] which updates B and C

iteratively until the algorithm converges.

Algorithm for Covariance Weights

To update B, we first let

U(B,C) =
∂F ccf

d (B,C)

2∂vec(BT )
= −[Ip ⊗ (CΥT )]vec(Ip) + [Σ̂⊗ Id]vec(BT ),

where Υ = Σ̂ξ̂. We further define Ut = U(B(t),C(t)), h̃ = λ max(Σ̂) and Σ̃ = h̃Ip ⊗

Id, where (B(t),C(t)) is the estimator of (B,C) after t-th iteration. To get B(t+1),

we make use of a quadratic approximation of L(B,C). Given the estimator from

the tth estimator (B(t),C(t)),the quadratic approximation L
(t)
q (B) has the following

expression

UT
t (vec(BT )−vec(BT

(t))) +
1

2
(vec(BT )−vec(BT

(t)))
T Σ̃(vec(BT )−vec(BT

(t))) +λρθ(B).

We update B by minimizing L
(t)
q (B). That’s B(t+1) = argminBL

(t)
q (B). Qian et al.[46]

pointed out that the optimization guarantees that L(B(t+1),C(t+1)) ≤ L(B(t),C(t)).

Another descent property is that the minimizer of L
(t)
q (B) holds a closed form and

it is computationally efficient with the facilitation of parallel computing. Further

if the Karush-Kuhn-Tucker condition holds, then the jth row of B, B(t+1)j , can be

explicitly expressed as

1

h̃
(1− λθj

‖ C(t)ΥTej −
∑p

i=1 hjiB(t)i + h̃B(t)j ‖2

)+(C(t)Υ
Tej −

p∑
i=1

hjiB(t)i + h̃B(t)j),

where hji = (Σ̂)ji and a+ = max{0, a}. Now, it is obvious that the p rows can be

simultaneously estimated in a parallel manner.

To update C, we let B = B(t+1) be fixed and then solve a Stiefel manifold opti-

mization problem with the facilitation of reduced rank procrustes rotation [83]. That

is

C(t+1) = argminC − tr(ΥTB(t+1)C) = argmaxCtr(Λ1DΛ2C) = Λ2Λ1,
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where Λ1DΛ2 is the consequence of applying SVD on ΥTB(t+1).

Now, we summarize the algorithm as follows:

Step 1: Get the initial B and C.

Step 2: Update each row of B by B(t+1)j and let B(t+1) = (B(t+1)1 , · · · ,B(t+1)p)T .

Step 3: Update C by C(t+1) = argminC − tr(ΥTB(t+1)C).

Repeat steps 2 and 3 until the B and C converge.

Algorithm for Identity Weights

To update B, we first let

UI(B,C) =
∂F icf (B,C)

2∂vec(BT )
= −[Ip ⊗ (CξT )]vec(Ip) + vec(BT ).

We further define UIt = UI(B(t),C(t)), where (B(t),C(t)) is the estimator of (B,C)

after tth iteration. To get B(t+1), we make use of an quadratic approximation of

LI(B,C). Given the estimator from the tth estimator (B(t),C(t)), we have the

quadratic approximation, L
(t)
Iq (B), expressed as

UT
It(vec(BT )− vec(BT

(t))) +
1

2
(vec(BT )− vec(BT

(t)))
T (vec(BT )− vec(BT

(t))) + λρθ(B).

By minimizing L
(t)
Iq (B), we update B. That is B(t+1) = argminBL

(t)
Iq (B). Similarly,

according to Qian et al. [46], the optimization guarantees that LI(B(t+1),C(t+1)) ≤

LI(B(t),C(t)). For jth row of B, B(t+1)j , can be explicitly expressed as

B(t+1)j = (1− λθj
‖ C(t)ξTej ‖2

)+(C(t)ξ
Tej).

Again, the p rows can be simultaneously estimated by a parallel manner.

As in the covariance weights method, C(t+1) = argminC − tr(ξTB(t+1)C) =

argmaxCtr(Λ1DΛ2C) = Λ2Λ1, where Λ1DΛ2 is the consequence of applying SVD

on ξTB(t+1).

The detailed algorithm to solve LI(B,C) is summarized here.

Step 1: Get the initial B and C.
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Step 2: Update each row of B by B(t+1)j and let B(t+1) = (B(t+1)1 , · · · ,B(t+1)p)T .

Step 3: Update C by C(t+1) = argminC − tr(ξTB(t+1)C).

Step 4: Repeat step 2 and step 3 until the B and C converge.

In our simulation, when the maximum element-wise difference between two con-

secutive B and C is smaller than 1e-12, we say the algorithm converges. For the

tuning parameter, we use the cross-validation technique.

3.4 Numerical Study

In this section, we will show the efficacy of our method by simulation studies. These

numerical studies are mainly performed in Matlab. The SDR and dimension test

code is available on github with the link https://github.com/wangpeinihao/code2.

The SVS code is modified from Qian et al.’s [46] Matlab code; the dimension deter-

mination code is modified from Xia et al.’s R code.

The SDR accuracy of the estimation is measured by the vector correlation coeffi-

cient [32], trace correlation[31] and the angles[16], which are denoted by q2, r2 and θ.

They are expressed as
∏d

i=1 ρi,
∑d

i=1 ρi/d and 180 cos−1(
|βTi β̂i|
||βi||||β̂i||

)/π respectively,

where ρi is the ith largest eigenvalue of βT β̂β̂Tβ. Large values of q2, r2 (close to

1) and small values of θ (close to 0) are preferred. For the angle, we present the

benchmark angle θr for comparison. We compare our methods to IRE, RIRE and

PHD.

For SVS, to evaluate the performance, we use average true positive (ATP): the

number of correctly selected as active predictors; average false positive (AFP): the

number of falsely selected as actively predictors; Frobenius norm: ||β̂(β̂T β̂)−1β̂T −

β(βTβ)−1βT ||F and trace correlation. The better estimation will have ATP close to

the real number of active predictors, AFP close to 0, norm close to 0 and r2 close to

1.
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Simulation studies

Example 3.4.1

In this example, we use the following three models to show the efficacy of our

SDR methods (ICFE and CCFE). The models are

Model 1 Y = cos(2X1)− cos(X2) + 0.5ε;

Model 2 Y = X1 +X2 +X3 +X4 + 0.2ε;

Model 3 Xy =
√

7/8βy + 0.5ε.

Model 1 is example 8.1 from Li[39]. X ∼ N(0, I), ε is from standard normal

distribution, n = 400 and p = 10. Model 2 is a linear model with p = 10, d = 1,

n = 200, X ∼ N(0, I) and ε ∼ N(0, 1). Model 3 is a modified inverse model from

section 5.1 of Cook [14] with p = 10, d = 1, n = 200, β = c(1, 0, 1, 0, 1, 0, 1, 0, 1, 0),

y ∼ N(0, 0.5) and ε ∼ N(0, I).

The SDR results of these models are listed in Table 3.1 along with the comparison

to IRE, RIRE and PHD. For model 1, our ICFE performs the best and then followed

by CCFE and PHD with the large correlation and small angle. It is within our

expectation that the IRE and RIRE fail to find the true direction because they

cannot detect the symmetric pattern. For linear model 2, all IRE, RIRE, ICFE and

CCFE work well. For model 3, CCFE performs the best and ICFE is the second best.

PHD fails to work for both models 2 and 3 because as a second order method it easily

loses the linear pattern direction. Across the three models with different patterns,

our proposed new methods work very well.

Example 3.4.2

This example uses models 1, 2 and 3 to show the performance of cross-validation

in determining the structure dimension d. The results are reported in Table 3.2.

From the table, we see that the cross-validation method works well to determine the

dimension especially for model 2. In some cases, this method tends to overestimate
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Table 3.1: SDR results comparison

Models Methods r2 q2 θ1 θ2 θr
ICFE 0.955(0.018) 0.912(0.035) 15.030 18.066 79.687
CCFE 0.950(0.022) 0.902(0.042) 15.972 19.034 79.687

Model 1 IRE 0.216(0.116) 0.032(0.047) 77.433 77.142 79.687
d = 2 RIRE 0.215(0.116) 0.031(0.046) 77.823 76.830 79.687

PHD 0.936(0.027) 0.872(0.051) 19.507 20.233 79.687

ICFE 0.982(0.008) 0.982(0.008) 10.551 / 83.847
CCFE 0.976(0.010) 0.976(0.010) 12.251 / 83.847

Model 2 IRE 0.992(0.004) 0.992(0.004) 6.876 / 83.847
d = 1 RIRE 0.987(0.007) 0.987(0.007) 8.784 / 83.847

PHD 0.241(0.201) 0.241(0.201) 75.630 / 83.847

ICFE 0.967(0.024) 0.967(0.024) 14.161 / 84.975
CCFE 0.971(0.021) 0.971(0.021) 13.080 / 84.975

Model 3 IRE 0.904(0.042) 0.904(0.042) 24.675 / 84.975
d = 1 RIRE 0.885(0.049) 0.885(0.049) 27.152 / 84.975

PHD 0.304(0.163) 0.304(0.163) 71.905 / 84.975

the dimension. When the dimension cannot be determined accurately, we prefer the

overestimation because it guarantees no loss on the important regression information.

In addition, the method works better when the sample size is larger.

Example 3.4.3

Model 4 X =
√

7/8βy + 0.5ε,

where β = e100 + e200 + · · ·+ e800, p = 1000, n = 200, ε ∼ N(0, I) and y ∼ N(0, 0.5).

This model is from section 5.1 of Cook[14].

Model 5 Y = sin(XTβ)2 +XTβ + 0.2ε,

where β has coefficient 1 at 5 random positions, p = 500, n = 200, ε ∼ N(0, 1) and

X ∼ N(0,Σ) and Σ is a block diagonal matrix with 100 blocks and in each block,

it has 1 in the diagonal, 0.5 in the off-diagonal. This model is equation 3.1 in Weng

and Yin[64].

In this example, we use models 4 and 5 to evaluate the performance of the SVS

proposed in section 3.3. The results are reported in Table 3.3. We compare our results
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Table 3.2: Dimension Determination in CV

Models Methods n d = 0 d = 1 d = 2 d = 3 d = 4 d = 5
Model 1 ICFE 200 0 1 89 9 1 0
d = 2 400 0 0 99 1 0 0

800 0 0 100 0 0 0
CCFE 200 0 0 91 9 0 0

400 0 0 96 4 0 0
800 0 0 100 0 0 0

Model 2 ICFE 200 0 100 0 0 0 0
d = 1 400 0 100 0 0 0 0

800 0 100 0 0 0 0
CCFE 200 0 100 0 0 0 0

400 0 100 0 0 0 0
800 0 100 0 0 0 0

Model 3 ICFE 200 0 64 21 11 1 3
d = 1 400 0 69 20 6 0 5

800 0 75 14 5 5 1
CCFE 200 0 94 0 5 0 1

400 0 96 0 2 0 2
800 0 99 0 1 0 0

Table 3.3: SVS results comparison

Models Methods ATP AFP r2 norm
ICFE 8.00 1.97 0.991 0.183

Model 4 CCFE 7.95 7.34 0.934 0.489
d = 1 SSIR 8.00 54.96 0.756 0.910

ICFE 5.00 7.33 0.895 0.586
Model 5 CCFE 5.00 34.43 0.793 0.856
d = 1 SSIR 4.63 11.72 0.825 0.497

to sparse SIR (SSIR) by Qian et al.[46]. For model 4, the ICFE works best with

the largest ATP and smallest AFP for variable selection and largest correlation and

smallest distance for direction estimation; CCFE has a similar performance to SSIR

in variable selection but with a much better performance in direction estimation. For

model 5, ICFE is the best with large values in ATP/r2 and small values in AFP/norm.

The SSIR results here is taken from Weng and Yin since we are using their model

[64]. We conclude that our ICFE outperforms SSIR based on the example presented

here.
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3.5 Discussion

In the project, we let the matrix Rn in equation 3.1 be I2m because we believe all the

directions ψ(ωi) are of equal importance. We can also choose it as a diagonal matrix

with different weights for ψ(ω) on its diagonal. Although we start from different

methods to organize ψ(ω), we stop with the same quadratic discrepancy function since

the weight matrix Rn gets canceled if we use the optimal choose of Vn in equation

3.1. Thus theoretically, all other properties will follow the same. In practice, the

ψ(ω)s with small weights may not contribute to estimate the SDR and the targeted

subspace is mainly controlled by those with large weights.
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Chapter 4 Reduced Rank Multinomial Logistic Regression in Markov

Chains with Application to Cognitive Data

4.1 Introduction

Dimension reduction is an importance topic in statistics, especially when the given

data is in high volume and complex. Reduced-rank regression [4] is one of the exam-

ples. In reduced-rank regression, instead of directly estimating the p× J coefficients

matrix β, it estimates two lower-rank coefficient matrices, p×T matrix A and T ×J

matrix G, with T ≤ min{p, J}; and then takes their product, β = AG. We refer

more details to Izenman [34], Schmidli [49], Yee and Wild [70] and Fiocco et al. [26].

In this project, we propose a new model, called reduced rank (partial reduced

rank) multinomial logistic regression for Markov chains, abbreviated as RR-MLRfMC

(PRR-MLRfMC). In this novel model, we combine the RR-MLR idea with a first order

Markov chain. We then fit this novel model to a dataset from a longitudinal study of

aging and dementia. In addition, we show how the RR idea can be applied to only a

subset of the risk factors.

The rest of the chapter is outlined as follows: we introduce the RR-MLRfMC,

PRR-MLRfMC, along with its algorithm, in Section 4.2; the detailed development

and application to data using RR-MLRfMC are given in Section 4.3; and a discussion

concludes the project in Section 4.4.

4.2 The Proposed Method

RR-MLR

The MLR model is often used to analyze nominal responses with more than two

categories. Assume Y takes discrete values from 1, 2, · · · , J, and P (Y = j) is the

probability that the response falls into the jth category. Based on the fact that∑J
j=1 P (Y = j) = 1, we only work on J − 1 categories. In MLR, we assess whether
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the response probabilities depend on covariates z = (z1, · · · , zp) and assume the

log-odds of the response probability is linearly related to the covariates. That is,

log(
P (Y = j)

P (Y = 1)
) = zTβj, (4.1)

where j = 2, · · · , J and β = (β2, · · · ,βJ) is a p× (J − 1) matrix. Note the reference

category Y = 1 could be replaced by other categories.

A crucial problem of MLR is that the number of parameters to be estimated is

large, especially when p is large (e.g., p(J − 1) with the intercept excluded). In RR-

MLR, β = AG, where A is a p × T , and G is a T × (J − 1) matrix respectively,

T = 1, · · · ,min{p, J − 1}. Then, the number of parameters need to be estimated is

T (p+J−1−T ) and the difference (J−1−T )(p−T ) is large when T is small. When

dimension is T , by optimizing the log-likelihood function with respect to A and G,

the candidate coefficient matrix is given as β̂T = ÂĜ. The optimal T can be selected

by several information criteria, e.g., Akaike Information Criterion (AIC)[2].

RR-MLR for Markov Chains

In this section we show how to apply RR-MLR to a Markov Chain. Assume each

person i = 1, · · · , n provides ni observations {Xi1, · · · , Xini
}, where Xij is the state

person i occupies at time j. Let Xi,j−1 and Xi,j denote the prior and current states for

each observation respectively in the dataset. We use multinomial logits to compute

the probability of current states given the prior states. That is, for non-reference

categories,

P (Xij = l|Xi,j−1 = u) =
ezTi λul

1 +
∑L

l∗=1,l∗ 6=u e
zTi λul∗

; (4.2)

and for reference category (prior state),

P (Xij = u|Xi,j−1 = u) =
1

1 +
∑L

l∗=1,l∗ 6=u e
zTi λul∗

, (4.3)

where l = 1, · · · , u−1, u+1, · · · , L and u = 1, · · · , U . Combining the λuls from all the

transitions defines the coefficient matrix and β = (λ1,2, · · · ,λ1,L, · · · ,λU,1, · · · ,λU,U−1,

λU,U+1,λU,L) = (β1, · · · ,βU∗(L−1)), where λu,l = β(u−1)L+l for u > l and λu,l =
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β(u−1)L−u+l for u < l. With reduced-rank, β = AG and βb = AGb, where A

and G are p × T full column and T × p full row rank matrices respectively, T =

1, · · · ,min{p, U ∗ (L − 1)}. That is each coefficient βb is a linear combination of a

common matrix, A, for each transition.

Then, the log likelihood for these data is ln(β) =
∑n

i=1

∑nj

j=1 lnP (Xij|Xi,j−1); and

for each observation, the log likelihoods for without and with reduced-rank are

Lij = − log(1 +
L∑

l=1,l 6=Xi,j−1

ezTi λXi,j−1,l) + (1− δXi,j−1,Xij
)zTi λXi,j−1,Xij

, (4.4)

and

Lij = − log(1 +
L∑

l=1,l 6=u

ezTi AGb) + (1− δu,Xij
)zTi AGb, (4.5)

where b = (u− 1)L+ l for u > l and b = (u− 1)L− u+ l for u < l.

Since there is no explicit solution for A and G, we use Newton-Raphson Algorithm

to get the numerical solution by iteratively updating A and G. Note, the choice

of A and G are not unique because for any nonsingular matrix M, β = AG =

AMM−1G = A
′
G
′
, where A′ = AM and G′ = M−1G. In this project, to get the

unique A and G, we use singular value decomposition as Fiocco et al. suggested[26].

That is AG = (UD1/2)(D1/2V T ), where β = UDV T . See Yee and Hastie [70] for

other remedies.

Algorithm 4.2.1 We summarize the algorithm as follows:

� Step 1: Set an initial G, initial ∆ = 10, L1 = 100;

� Step 2: If ∆ > 10−5, continue; otherwise, stop;

� Step 3: (Zig Step) Fix G, update A by Newton-Raphson method until it con-

verges, which is vec(A)q = vec(A)q−1 − D−1
a2 Da1/A = Aq−1, where Da1 and

Da2 are the first and second derivatives of log-likelihood function with respect to

vec(A);

� Step 4: (Zag Step) Fix A, update G by U individual multinomial logistic regres-

sions; here, the covariates are zTi A instead of zi and the initial A is a constant

matrix with elements 0.01;
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� Step 5: Find β = AG, calculate the log likelihood L2, get ∆ = L1 − L2 and let

L1 = L2;

� Step 6: Repeat step 2 to step 5.

Comment: The algorithm here is called the Zigzag method; the convergence of

this method is not guaranteed.

Partial RR-MLR for Markov Chains

It is possible to have some scenarios where the RR is applied only to a subset of

the covariates. In this case, we assume the covariates comprise a (q + p)× 1 vector,

(w1, · · · ,wq, z1, · · · , zp)T and RR applies to the covariates in z. Thus, we label this

method as Partial RR-MLR for Markov Chain (PRR-MLRfMC). Given the dataset,

the log-likelihood for each observation, Lij, in Equations 4.4 and 4.5 are modified as

− log(1+
L∑

l=1,l 6=Xi,j−1

ewT
i ρXi,j−1,l

+zTi λXi,j−1,l)+(1−δXi,j−1,Xij
)(wT

i ρXi,j−1,Xij
+zTi λXi,j−1,Xij

),

(4.6)

and

− log(1 +
L∑

l=1,l 6=u

ewT
i ρu,l+zTi AGb) + (1− δu,Xij

)(wT
i ρu,l + zTi AGb), (4.7)

where b = (u− 1)L+ l for u > l and b = (u− 1)L− u+ l for u < l.

Let θ = (ρ1,2, · · ·ρ1,L, · · · ,ρU,1, · · · ,ρU,U−1,ρU,U+1, · · · ,ρU,L) = (θ1, · · · ,θU∗(L−1)).

Now the goal is to estimate β and θ. We use the same zigzag method as indicated

in Algorithm 4.2.1 and it is modified as follows:

Algorithm 4.2.2 This is the algorithm for PRR-MLRfMC.

� Step 1: Set an initial G, initial θ, initial ∆ = 10, L1 = 100;

� Step 2: If ∆ > 10−5, continue; otherwise, stop;

� Step 3: (Zig Step) Fix G and θ, update A by Newton-Raphson method until it

converges, which is vec(A)q = vec(A)q−1 −D−1
a2 Da1/A = Aq−1, where Da1 and
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Da2 are the first and second derivatives of log-likelihood function with respect to

vec(A);

� Step 4: (Zag Step) Fix A, update θ and G by U individual multinomial logistic

regressions; here, the covariates are (wT
i ,A

Tzi)
T instead of zi and the initial A

is a constant matrix with elements 0.01;

� Step 5: Use θ and β = AG to calculate the log-likelihood L2, get ∆ = L1 − L2

and let L1 = L2;

� Step 6: Repeat step 2 to step 5.

4.3 Application to longitudinal data on cognitive assessments

To illustrate the methodology we analyze Apolipoprotein-E (APOE)[47] gene ε4 al-

lele(s) (i.e., carrying at least one ε4, APOE4) as a risk factor for transitions among

congnitive states. A seven-state Markov Chain model was constructed with four

transient states: normal cognition, amnestic MCI (A-MCI; a classification of mild

impairment due solely to poor performance on a memory exam taken annually but

otherwise cognitively normal), mixed MCI (M-MCI; poor performance on a non-

memory cognitive test, instead of or in addition to, in the memory domain; otherwise

cognitively normal), and MCI (a clinician diagnosis of mild cognitive impairment

verified by an informant and poor cognitive test scores). The model also includes

three absorbing states: dropout, death without a diagnosis of clinical dementia, or

a diagnosis of a clinical dementia. Table 4.1 provides the frequency of the one-tep

transitions based on the data discussed by Abner et al. [1] and collected annually on

the first 649 participants in the BRAiNS (Biologically Resilient Adults in Neurolog-

ical Studies) cohort at the University of Kentucky’s Alzheimer’s Disease Center.[49]

Notice that once in the clinical MCI state a participant can only transition forward

to an absorbing state or remain in MCI. The purpose of the analysis is to compute

log-odds, can be transformed back to transition probabilities, associated with APOE4

carrier status adjusted for the presence of eight known risk factors for a dementia (see
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next section). Referring to Table 4.1, if Xi,j−1 = 1, 2, 3, then Xi,j = 1, 2, 3, 4, 5, 6, 7;

and if Xi,j−1 = 4, then Xi,j = 4, 5, 6, 7.

54



Table 4.1: One-step Transition Matrix

Current State(Xi,j)
Prior State(Xi,j−1) Normal Amnestic MCI Mixed MCI MCI Dementia Dropout Death Total

Normal 2634(69.1) 524(13.8) 464(12.2) 40(1.1) 15(0.4) 33(0.9) 101(2.7) 3811(100)
Amnestic MCI 497(57.6) 172(19.9) 129(15.0) 23(2.7) 9(1.0) 13(1.5) 20(2.3) 863(100)

Mixed MCI 404(30.7) 97(7.4) 601(45.7) 66(5.0) 35(2.7) 30(2.3) 80(6.2) 1313(100)
MCI / / / 154(61.4) 50(19.9) 16(6.4) 31(12.4) 251(100)

Dementia / / / / / / /
Dropout / / / / / / /
Death / / / / / / /

Note: The entries are occurrence (percentage).
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RR-MLRfMC in the Application

The eight covariates used as adjustments to the effects of APOE4 are baseline age

(centered at age 72), family history of dementia, self reported high blood pressure

(high BP), self reported head injury (head injury), low education, and cigarette smok-

ing level (none versus < 10, 11-19, and ≥ 20 pack years). Dimension reduction is

appropriate to consider here because the covariates are established risk factors for

dementia or mortality, and they are not confounders of APOE’s association with

dementia because they are not causes of APOE. In modeling, we use prior state as

references. That is, Xij = 1, 2, 3, 4 for Xi,j−1 = 1, 2, 3, 4 as references respectively,

then the log likelihood for each observation,Lij, is− log(1 +
∑7

l=1,l 6=Xi,j−1
ezTi λXi,j−1,l) + (1− δXi,j−1,Xij

)zTi λXi,j−1,Xij
, if Xi,j−1 = 1, 2, 3

− log(1 +
∑7

l=5 e
zTi λ4,l) + (1− δ4,Xij

)zTi λ4,Xij
, if Xi,j−1 = 4,

where λu,l is a 8 dimensional vector and it determines the effect of the covariates on the

transition from state u to l (l = 1, · · · , u−1, u+1, · · · , 7 if u = 1, 2, 3 and l > 4 if u =

4). Then, our target is β = (λ12, · · · ,λ17;λ21,λ23, · · · ,λ27;λ31,λ32,λ34, · · · ,λ37;λ45,

λ46,λ47) = (β1, · · · ,β21), a 8 × 21 matrix. Under the decomposition β = AG, the

log likelihood function, Lij, is modified to− log(1 +
∑7

l=1,l 6=u e
zTi AGb) + (1− δu,Xij

)zTi AGb, if u = 1, 2, 3

− log(1 +
∑7

l=5 e
zTi AG(14+l)) + (1− δ4,Xij

)zTi AG(14+Xij), if u = 4,

where b = 6(u− 1) + l for u > l and b = 6(u− 1)− u+ l for u < l. To use Newton-

Raphson Method, we need the first and second derivatives of ln(A,G) w.r.t A. We

refer to the corresponding derivatives in Appendix A1.

Given the log-likelihood function and both derivatives, we use Algorithm 4.2.1 to

get the estimated Â, Ĝ and β̂. In terms of determining the initial G, we first fit four

individual MLR without intercepts, one MLR for each possible prior state (normal

cognition, A-MCI, M-MCI, and MCI), and get β0. Then, let β0 = UDV T by singular

value decomposition and choose G0 = D1/2V T as initial value, where D is a diagonal

matrix with the non-zero singular values of β0 along its diagonal and V T has rows
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that are the right singular vectors. This type of initial G highly improved the speed

of convergence compared to some random generated initial G.

Another point is that the algorithm may fail to converge if we directly use A and

G in each iteration due to the non-uniqueness of A and G. In our computation,

we use A = UD1/2 and G = D1/2V T , where β = UDV T during each iteration.

This modification reduces the time and improves the likelihood that convergence is

attained.

To get the 8 × 21 matrix, β, we iteratively fit the RR-MLRfMC with rank T =

1, 2, · · · , 8 to the dataset. The partial results are reported in Table 4.2. From Table

4.2, we see that T = 2 results in the smallest AIC. Since the purpose of this project is

to investigate the effect of APOE4 as a fixed term, we do not report further results.

Table 4.2: Fit statistics based on 8 adjusting covariates (no intercept)

Rank T Log-likelihood Number of Parameters AIC
1 -8010.84 28 16077.68
2 -7909.92 54 15927.85
3 -7890.74 78 15937.48
4 -7873.61 100 15947.22
5 -7861.91 120 15963.83
6 -7853.48 138 15982.97
7 -7849.65 154 16007.30
8 -7847.93 168 16031.87

PRR-MLRfMC in the Application

In this section, in addition to the 8 covariates mentioned in Section 4.3, we consider

a study risk factor, APOE4, that is not involved in the dimension reduction.

Given the observations as in Section 4.3, the log-likelihood Lij for each observation

is, for Xi,j−1 = 1, 2, 3,

− log(1+
7∑

l=1,l 6=Xi,j−1

ewT
i DXi,j−1,l

+zTi λXi,j−1,l)+(1−δXi,j−1,Xij
)(wT

i DXi,j−1,Xij
+zTi λXi,j−1,Xij

)

and for Xi,j−1 = 4,

− log(1 +
7∑
l=5

ewT
i D4,l+zTi λ4,l) + (1− δ4,Xij

)(wT
i D4,Xij

+ zTi λ4,Xij
).

57



The goal now is to get D, q × 21 matrix and β, p× 21 matrix.

With the partial reduced-rank idea involved, the log-likelihood Lij for each ob-

servation is modified as, for Xi,j−1 = 1, 2, 3, − log(1 +
∑7

l=1,l 6=Xi,j−1
ewT

i Db+zTi AGb) +

(1− δXi,j−1,Xij
)(wT

i Db + zTi AGb), where b = 6(Xi,j−1 − 1) + l for Xi,j−1 > l and b =

6(Xi,j−1−1)−u+l forXi,j−1 < l; and forXi,j−1 = 4, − log(1+
∑7

l=5 e
wT

i D14+l+zTi AG14+l)+

(1− δ4,Xij
)(wT

i D(14+l) + zTi AG(14+l)).

To optimize the log-likelihood function, the Algorithm 2 in Section 4.2 which

involves six steps is used. In the zig step, we update A with fixed D and G by

Newton-Raphson’s method; in the zag step, we update D and G by fixing A which is

easily obtained by using standard software to fit four individual multinomial logistic

regressions with (wT ,ATz)T as covariates and stratified by 4 prior states.

In this section we now measure the effect of APOE4 adjusted for the 8 covariates

in Section 4.3. Note that the indicator for APOE4 is not involved in the reduced

rank data. In addition, we include the intercept as a fixed term in the model. The

optimum value of T is determined by Table 4.3.

Table 4.3: Fit statistics using 8 adjusting covariates, fixed intercept, and APOE4

Rank T Log-likelihood Number of Parameters AIC
1 –6800.70 70 13741.39
2 -6768.80 96 13729.60
3 -6746.20 120 13732.40
4 -6732.92 142 13749.85
5 -6722.19 162 13768.38
6 -6713.80 180 13787.60
7 -6710.73 196 13813.46
8 -6709.02 210 13838.03

We choose T = 2 since rank 2 is the best fit to the data. The estimates of the

elements of A and G are listed in Tables 4.4–4.7. While there is not much interest

in interpreting the eight adjusting covariates in the reduced rank model, there is

interest in interpreting the effect of APOE 4 on each one step transition. To this end

we suggest using the standard errors and p values for the beta coefficients associated

with APOE 4 obtained from the last iteration of the Zag step. In this instance
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APOE 4 is found to be a significant predictor of a transition from normal cognition

to dementia (P = 0.029) and from mixed MCI to Normal (P = 0.011).

59



Table 4.4: Parameter Estimates for Rank 2 Model with Normal as Prior State

Covariates A-MCI M-MCI MCI Dementia Dropout Death A1 A2

intercept -1.471 -1.582 -4.568 -5.371 -3.740 -5.264
se 0.077 0.081 0.294 0.460 0.196 0.369
P 0.000 0.000 0.000 0.000 0.000 0.000

APOE4 -0.184 -0.225 0.428 1.142 -0.314 0.075
se 0.109 0.119 0.328 0.523 0.249 0.376
P 0.092 0.058 0.192 0.029 0.208 0.841

family history -0.047 -0.100 -0.033 -0.177 -0.179 0.001 0.003 0.226
high BP -0.022 -0.016 0.271 -0.383 0.431 0.698 -0.473 -0.115

< 10 pack years -0.138 -0.269 0.146 -0.776 -0.091 0.595 -0.393 0.478
11-19 pack years -0.026 -0.043 0.093 -0.213 0.102 0.272 -0.183 0.038
≥ 20 pack years 0.021 0.087 0.419 -0.346 0.806 0.986 -0.672 -0.411
low education 0.170 0.348 -0.032 0.804 0.379 -0.373 0.240 -0.705
baseline age 0.034 0.072 0.021 0.130 0.125 -0.006 0.001 -0.161
head injury -0.002 0.014 0.168 -0.185 0.296 0.413 -0.281 -0.120

0.097 0.142 -0.538 1.003 -0.721 -1.482
-0.209 -0.446 -0.138 -0.798 -0.783 0.025

G1 G2 G3 G4 G5 G6
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Table 4.5: Parameter Estimates for Rank 2 Model with A-MCI as Prior State

Covariates Normal M-MCI MCI Dementia Dropout Death A1 A2

intercept 1.172 -0.442 -1.784 -3.365 -2.617 -2.685
se 0.144 0.195 0.343 0.620 0.434 0.496
P 0.000 0.023 0.000 0.000 0.000 0.000

APOE4 0.050 0.232 0.459 0.897 0.001 -1.393
se 0.205 0.262 0.473 0.695 0.547 1.056
P 0.807 0.375 0.332 0.197 0.999 0.187

family history 0.049 -0.028 -0.013 -0.077 -0.040 0.004 0.003 0.226
high BP -0.152 0.073 -0.431 0.015 0.375 0.274 -0.473 -0.115

< 10 pack years -0.004 -0.009 -0.400 -0.183 0.215 0.243 -0.393 0.478
11-19 pack years -0.041 0.018 -0.173 -0.022 0.131 0.108 -0.183 0.038
≥ 20 pack years -0.268 0.134 -0.595 0.106 0.574 0.383 -0.672 -0.411
low education -0.086 0.055 0.274 0.253 -0.062 -0.159 0.240 -0.705
baseline age -0.034 0.019 0.013 0.055 0.026 -0.005 0.001 -0.161
head injury -0.101 0.050 -0.252 0.027 0.231 0.161 -0.281 -0.120

0.269 -0.126 0.929 0.051 -0.751 -0.586
0.213 -0.122 -0.072 -0.342 -0.168 0.025
G7 G8 G9 G10 G11 G12
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Table 4.6: Parameter Estimates for Rank 2 Model with M-MCI as Prior State

Covariates Normal A-MCI MCI Dementia Dropout Death A1 A2

intercept -0.415 -1.920 -2.327 -3.198 -2.437 -2.966
se 0.103 0.178 0.214 0.305 0.214 0.294
P 0.000 0.000 0.000 0.000 0.000 0.000

APOE4 -0.381 -0.092 0.331 0.447 -0.347 0.300
se 0.150 0.243 0.272 0.358 0.284 0.391
P 0.011 0.707 0.224 0.212 0.222 0.442

family history 0.047 0.072 -0.020 0.009 -0.055 0.060 0.003 0.226
high BP 0.186 0.195 -0.038 0.225 0.378 -0.086 -0.473 -0.115

< 10 pack years 0.278 0.350 -0.084 0.215 0.181 0.080 -0.393 0.478
11-19 pack years 0.089 0.102 -0.022 0.091 0.127 -0.011 -0.183 0.038
≥ 20 pack years 0.211 0.197 -0.031 0.308 0.595 -0.188 -0.672 -0.411
low education -0.258 -0.348 0.089 -0.151 -0.014 -0.158 0.240 -0.705
baseline age -0.035 -0.053 0.015 -0.008 0.037 -0.042 0.001 -0.161
head injury 0.099 0.099 -0.017 0.131 0.237 -0.065 -0.281 -0.120

-0.445 -0.492 0.102 -0.488 -0.743 0.117
0.214 0.327 -0.091 0.048 -0.234 0.265
G13 G14 G15 G16 G17 G18
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Table 4.7: Parameter Estimates for Rank 2 Model with MCI as Prior State

Covariates Normal A-MCI M-MCI Dementia Dropout Death A1 A2

intercept / / / -0.809 -2.108 -1.890
se / / / 0.282 0.393 0.442
P / / / 0.004 0.000 0.000

APOE4 / / / 0.585 -0.007 0.043
se / / / 0.340 0.430 0.570
P / / / 0.085 0.987 0.940

family history / / / -0.003 -0.056 0.045 0.003 0.226
high BP / / / -0.598 0.348 -0.384 -0.473 -0.115

< 10 pack years / / / -0.516 0.152 -0.211 -0.393 0.478
11-19 pack years / / / -0.234 0.115 -0.133 -0.183 0.038
≥ 20 pack years / / / -0.841 0.554 -0.592 -0.672 -0.411
low education / / / 0.328 0.007 0.051 0.240 -0.705
baseline age / / / 0.007 0.038 -0.029 0.001 -0.161
head injury / / / -0.353 0.219 -0.238 -0.281 -0.120

/ / / 1.272 -0.678 0.766
/ / / -0.032 -0.240 0.188
/ / / G19 G20 G21
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4.4 Discussion

In this project we show how to study the effect of a risk factor for transitions in a

complex Markov chain adjusted for the presence of a set of covariates after subjecting

the effect of the covariates to dimension reduction. The methodology assumes that

transitions within each row of the one step transition matrix are governed by a multi-

nomial logistic regression model. Extensions to other models are possible such as a

probit model or a multinomial model with random effects (see e.g. Salazar et al [48],

or Song et al. [55]) although the latter would involve additional numerical integration

steps. The methodology is useful since it is not clear how to adjust for covariates in

a complex chain which are often characterized by select transitions being relatively

rare as illustrated in Table 4.1. In the example chosen to illustrate this methodology

the number of unknown parameters to be estimated and associated with the eight

covariates was reduced by over two thirds (in Tables 4.2 and 4.3 we estimated 54

unknown parameters instead of 168). Our method is limited to homogenous Markov

chains and does not apply to chains having time dependent covariates (see e.g. Yu

et al.[77]).

Dimension reduction can also be achieved by applying a proportional odds model

or a stereotype model[41] to each row of the one step transition matrix in Equation

(2). A proportional odds model will apply only to the situation where the states of the

chain are ordered while a stereotype model can be applied without this assumption.

In a proportional odds model the parameter vectors λul in Equation 4.2 depend only

on the prior sate u but not on the next state l while in a stereotype model this

parameter vector expresses dependence on the covariates through d latent factors

where d varies from 1 to min(J − 1, p + q). Both models can be fit to data using

standard statistical software but require each covariate in the model to meet these

assumptions. If these strategies were applied to the example discussed in Section 4.3

the number of unknown parameters to be estimated would be reduced from 210 to 57

under a proportional odds model and to 72 − 210 under various stereotype models.

Our solution estimated 96 unknown parameters and has the advantage that APOE
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4 carrier status, the risk factor of interest, is not required to meet the proportional

odds or the stereotype model assumptions. As seen in Section 4.3 the APOE 4 risk

affects only a few select transitions in the chain.

The proposed methodology makes a generalized linear model into a nonlinear

model by introducing a product of two unknown matrices (A and G in Section 4.3).

Nonlinearity is handled by maximizing the likelihood function using an iterative zig-

zag Algorithm (see e.g. Heckman [29]). The zig sub-step (G fixed) is nonlinear and

it is possible that the iteration will not converge to a solution. However, we found

that if we account for the non-uniqueness of the solutions for A and G using single

value decomposition convergence is obtained. In the zag step (A fixed), the problem

reduces to fitting a multinomial model using standard software (package nnet in R)

to estimate G and the effect of the risk factors of interest.

The choice of initial value plays an important role regarding the convergence

speed. In our numerical studies, we take advantage of the four individual multinomial

regressions stratified by prior states to get the initial value for G. And this method

greatly reduces the time to converges compared to random initial values. Another

point is that, in each iteration, the higher rank model takes more time than the

lower rank model. However, there is no necessary connection between the iteration

numbers towards convergence and rank. See Table 4.8 for the computing time needed

to construct Table 4.3.

Table 4.8: Computing time needed (in second) to get Table 3

Rank T number of iteration time
1 31 133.53
2 18 98.35
3 40 250.09
4 41 296.36
5 27 229.32
6 19 179.03
7 30 421.26
8 2 28.76

In this project we fit multinomial logistic models to the data and it is well known

that these models have stability problems in the presence of complete/quasi complete
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separation of the covariates or a collinearity among the covariates. These latter are

often caused by small sample sizes and/or rare categories in the multinomial. These

issues occur more frequently when evaluating the exact likelihood for the Markov

chain since the latter fits individual multinomial models to each row of the one step

transition matrix. Hence, each row is at risk for encountering these problems. A

reduced rank regression addresses these issues by borrowing strength from neighboring

rows of the one step transitions matrix in much the same way as done in an empirical

Bayes method [26].

By using the AIC we assume we have chosen the correct value of T from among

a finite set of possible values for T . This has consequences for the estimate of β

since that estimator depends directly on the choice for T . The need to account for

the error in estimating T when making inference for β is debated in the literature

(see e.g. a discussion of oracle estimation in Goldberg et al.[27]).The problem is

more complicated in this project since our main focus is on inference for the target

parameter matrix θ (Section 4.2 and the application). As far as we know this is not

discussed in the literature and remains an open problem for further investigation.
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Appendices

A Supplementary Materials for Chapter 2

A1. Formulation and Proofs

A1.1 Formulation of equation (2)

If we choose the Gaussian function K(ω) = (2πσ2
ω)−p/2exp(−‖ ω ‖

2

2σ2
ω

), then
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Mk = Re(

∫ ∫
eiωT X1d[m(X1)f(βTX1)][

∫
e−iωT X2d[m(X2)f(βTX2)]]T (2πσ2

ω)−p/2e

‖ ω ‖2

−2σ2
ω dω)

= Re(

∫ ∫ ∫
(2πσ2

ω)−p/2e
−
‖ ω ‖2 −2σ2

ωiω
T (X1 −X2)

2σ2
ω dωd[m(X1)f(βTX1)]d[m(X2)f(βTX2)]T )

=

∫ ∫
e
−
σ2
ω ‖ X1 −X2 ‖2

2 d[m(X1)f(βTX1)]d[m(X2)f(βTX2)]T

=

∫
[−
∫
m(X1)f(βTX1)d(e

−
σ2
ω ‖ X1 −X2 ‖2

2 )]d[m(X2)f(βTX2)]T

= −
∫ ∫

m(X1)f(βTX1)[m(X2)f(βTX2)]Td[e
−
σ2
ω ‖ X1 −X2 ‖2

2 σ2
ω(X1 −X2)]TdX1

=

∫ ∫
m(X1)f(βTX1)[m(X2)f(βTX2)]T e

−
σ2
ω ‖ X1 −X2 ‖2

2 σ2
ω[Ip − σ2

ω(X1 −X2)(X1 −X2)T ]dX1dX2

= E(X1,Y1),(X2,Y2)Y1Y2
f(βTX1)

f(X1)

f(βTX2)

f(X2)
e
−
σ2
ω ‖ X1 −X2 ‖2

2 σ2
ω[Ip − σ2

ω(X1 −X2)(X1 −X2)T ]

= E(X1,Y1),(X2,Y2)Y1Y2
1

f(βT0 X1)

1

f(βT0 X2)
e
−
σ2
ω ‖ X1 −X2 ‖2

2 σ2
ω[Ip − σ2

ω(X1 −X2)(X1 −X2)T ]

∝ E(X1,Y1),(X2,Y2)Y1Y2e
−
σ2
ω ‖ X1 −X2 ‖2

2 σ2
ω[Ip − σ2

ω(X1 −X2)(X1 −X2)T ].

�
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Comment: This is the formulation for an univariate response Y . For a multivariate

response Y, all the steps are the same, except start from the ninth equation, we will

have YT
1 Y2 instead of Y1Y2.

A1.2 Proofs

Proof of lemma 1

Given β = (β1, · · · , βd), a basis of SE(Y |X), we havem(X) = E(Y |X) = E(Y |βTX)

= m(βTX). Then,

d[m(X)f(βTX)]

dX
=
d[m(βTX)f(βTX)]

dX

=
d(βTX)T

dX
(m′(βTX)f(βTX) +m(βTX)f ′(βTX))

= β(m′(βTX)f(βTX) +m(βTX)f ′(βTX)).

Thus, the gradient of [m(X)f(βTX)] is a linear combination of β, and it is in SE(Y |X).

Let supp(X) = {x ∈ Rp : f(x) > 0} be the support of X. To show SE(Y |X) is fully

spanned by the collection of all of the gradient of m(X)f(βTX) over X ∈ supp(X),

we show that αTβ = 0 is equivalent to αT d[m(X)f(βT X)]
dX

= 0 for α ∈ Rp.

⇒ If αTβ = 0, then αT d[m(X)f(βT X)]
dX

= αTβ d[m(βT X)f(βT X)]
dβT X

= 0 for all X ∈

supp(X).

⇐ We prove this direction by contradiction. Assume there is an α0 such that

αT0
d[m(X)f(βT X)]

dX
= 0 for all X ∈ supp(X) and αT0 β 6= 0. We denote

αT
0 β

||αT
0 β|| = γT1 ∈

Rd with γ1 6= 0. By the assumption, we have γT1
d[m(βT X)f(βT X)]

dβT X
= 0. It means

the directional derivative of m(βTX)f(βTX) is 0 along γ1 and m(βTX)f(βTX)

is a constant along γ1. Now, we can expand γ1 to Γ = (γ1, · · · , γd) such that Γ

forms an orthonormal basis for Rd. Let V = ΓTβTX = (v1, · · · ,vd)T . Then, we

have βTX = ΓV and m(βTX)f(βTX) = m(ΓV)f(ΓV). Now, d[m(ΓV)f(ΓV)]
dv1

=

d[ΓV]
dv1

d[m(βT X)f(βT X)]
dβT X

= γT1
d[m(βT X)f(βT X)]

dβT X
= 0. It means m(ΓV)f(ΓV) does not de-

pend on v1 and we have m(βTX)f(βTX) = m(ΓV)f(ΓV) = m̃(v2, · · · ,vd) =

m̃((γT2 , · · · , γTd )βTX). It means that β(γ2, · · · , γd) is also a dimension reduction basis

matrix for SE(Y |X) and has dimension at most d− 1. It contradicts to the given con-
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dition that β has d columns. Thus, given αT0
d[m(X)f(βT X)]

dX
= 0 for all X ∈ supp(X),

we have αT0 β = 0.

We have proved that SE(Y |X) = span{d[m(X)f(βT X)]
dX

,X ∈ supp(X)}. By the facts

that Fourier transformation is one-to-one and d[m(X)f(βT X)]
dX

= (2π)−1
∫
e−iωT Xψ(ω)dω,

we have SE(Y |X) = span{ψ(ω), ω ∈ Rp}.

�

Proof of lemma 2

Assume β is a basis of SE(Y |X), (β,β0) forms an orthogonal matrix and (Y,βTX)

is independent to βT0 X.

1. Given the above assumptions, we have

ψ(ω) = −E(iωeiωT XY
f(βTX)

f(X)
)

= −E(iωeiωTPβX+iωTPβ0
XY

1

f(βT0 X)
)

= −E(iωeiωTPβXY )E(eiωTPβ0
X 1

f(βT0 X)
)

= −E(iωeiωTPβXY )E(eiωTPβ0
X)E(eiωTPβ0

X)−1E(eiωTPβ0
X 1

f(βT0 X)
)

= −E(iωeiωT XY )E(eiωTPβ0
X)−1E(eiωTPβ0

X 1

f(βT0 X)
)

= k0E(ωeiωT XY )

∝ E(ωeiωT XY )

= ωE(eiωT XY ),

where k0 = −iE(eiωTPβ0
X)−1E(eiωTPβ0

X 1

f(βT0 X)
) is a constant. Then, we can

use the ωs that have large |E(eiωT XY )| to recover the CMS.

2. Let η and β be notations defined as before. Then, there is a rotation matrix Q

such that ηQ = (βa,βb) with S(βa) ⊆ S(β) and S(βb) ⊆ S(β0). Then, given

the above assumptions, let W1 = (XTβa,0)T , V1 = Y , W2 = (0,XTβb)
T ,

V2 = 0 and we know (W1, V1) ⊥ (W2, V2). By the following 3 claims, we have

MDD(Y |ηTX)2 = MDD(Y |QTηTX)2 < MDD(Y |βTa X)2 ≤ MDD(Y |βTX)2.
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The first equation holds because MDD(Y |X)2 = −E[(Y−E(Y ))(Y ′−E(Y ′))|X−

X′|p] and it is easy to see that it’s invariant under rotation transformation [51].

The first inequality is true due to claim 3. The last inequality is true because

of claim 2.

Claim 1: Suppose β is a d dimensional basis of SE(Y |X), and (β1,β2) is any

partition of β. Then, MDD(Y |βTi X)2 < MDD(Y |βTX)2, i = 1, 2.

Proof: Let X1 = βT1 X, X2 = βT2 X, G(a, b) = MDD(Y |(aXT
1 , bX

T
2 )T )2 with

a, b ∈ R and g1(a, b) =
∂G(a, b)

∂a
, g2(a, b) =

∂G(a, b)

∂b
. After simple com-

putation, we have G(a, b) = ag1(a, b) + bg2(a, b), g1(ca, cb) = g1(a, b) and

g2(ca, cb) = g2(a, b) for any c > 0. G(a, b) = 0 if and only if E(Y ) =

E(Y |(aXT
1 , bX

T
2 )T ) almost surely [51]. In addition, because MDD(Y |cX)2 =

cMDD(Y |X)2, G(ca, cb) = cG(a, b)[51].

Given (β1,β2) ∈ S(β), we have G(0, 1) > 0 and G(1, 0) > 0. For any γ ∈ [0, 1),

G(1, γ) < G(1, 1) and G(γ, 1) < G(1, 1). If it is not true, then there must be a

γ0 ∈ [0, 1) such that at least one of G(1, γ0) ≥ G(1, 1) and G(γ0, 1) ≥ G(1, 1)

holds. Without loss of generality, we only need to show that the statement

“there exists a γ0 ∈ [0, 1) such that G(1, γ0) ≥ G(1, 1)” is wrong. Because

G(1, γ) = γG(1/γ, 1), we have G(1/γ, 1) → G(0, 1) > 0 and G(1, γ) → ∞ as

γ → ∞. It means there exists a γ1 ∈ (γ0,∞) such that G(1, γ1) is minimized.

Then, it’s partial derivative g2(1, γ1) = 0. Because G(1, γ) = γG(1/γ, 1), then

g1(1, γ1) = g1(1/γ1, 1) = 0. Thus G(1, γ1) = g1(1, γ1) + γ1g2(1, γ1) = 0. It

means that E(Y ) = E(Y |(XT
1 , γ1X

T
2 )T ) almost surely, which contradicts to the

assumption that β forms a d dimensional basis for SE(Y |X). Therefore, G(0, 1) <

G(1, 1) and G(1, 0) < G(1, 1) and they are equivalent to MDD(Y |βTi X)2 <

MDD(Y |βTX)2, i = 1, 2.

Claim 2: Suppose β is a d dimensional basis of SE(Y |X), and η is a p×d2 matrix

with d2 ≤ d and S(η) ⊆ S(β). Then, MDD(Y |ηTX)2 ≤ MDD(Y |βTX)2 and

the equality holds when S(η) = S(β).

Proof: Given S(η) ⊆ S(β) and d2 ≤ d, there is a matrix A such that

71



η = βA. We can then apply singular value decomposition to A and have

A = UDVT with U and V are d × d and d2 × d2 orthogonal matrices and D

is a d× d2 diagonal matrix with 1 along its diagonal. Then, MDD(Y |ηTX)2 =

MDD(Y |VDTUTβTX)2 = MDD(Y |DTUTβTX)2. We further let UTβTX =

(X̃1, · · · , X̃d). Then, DTUTβTX = (X̃1, · · · , X̃d2) and MDD(Y |DTUTβTX)2 ≤

MDD(Y |UTβTX)2 by claim 1. Thus MDD(Y |ηTX)2 = MDD(Y |VDTUTβTX)2

≤ MDD(Y |UUTβTX)2 = MDD(Y |βTX)2. The equality holds when S(η) =

S(β).

Claim 3: Suppose (W1,V1) ⊥ (W2,V2), where W1,W2 ∈ Rp and V1,V2 ∈

Rq, then MDD((V1 +V2)|(W1 +W2))2 ≤MDD(V1|W1)2 +MDD(V2|W2)2.

Proof:

MDD((V1 + V2)|(W1 + W2))2

=
1

cp

∫
Rp

|E(eiωT (W1+W2)(V1 + V2))− E(eiωT (W1+W2))E(V1 + V2)|2q
|ω|1+p

p

dω

=
1

cp

∫
Rp

|T1 + T2 − T3 − T4|2q
|ω|1+p

p

dω

≤ 1

cp

∫
Rp

|T1 − T3|2q + |T2 − T4|2q
|ω|1+p

p

dω

=
1

cp

∫
Rp

|[E(eiωT W1V1)− E(eiωT W1)E(V1)]E(eiωT W2)|2q
|ω|1+p

p

dω

+
1

cp

∫
Rp

|[E(eiωT W2V2)− E(eiωT W2)E(V2)]E(eiωT W1)|2q
|ω|1+p

p

dω

≤ 1

cp

∫
Rp

|E(eiωT W1V1)− E(eiωT W1)E(V1)|2q
|ω|1+p

p

dω

+
1

cp

∫
Rp

|E(eiωT W2V2)− E(eiωT W2)E(V2)|2q
|ω|1+p

p

dω

= MDD(V1|W1)2 +MDD(V2|W2)2

where T1 = E(eiωT W1V1)E(eiωT W2), T2 = E(eiωT W1)E(eiωT W2V2),

T3 = E(eiωT W1)E(eiωT W2)E(V1) and T4 = E(eiωT W1)E(eiωT W2)E(V2). The

equality holds if and only if E(V1|W1) = E(V1) and E(V2|W2) = E(V2).

�
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Proof of theorem 2.2.1

In order to prove that M̂e converges to Me at rate of
√
n, it is equivalent to prove

that vec(M̂e) converges to vec(Me) at rate of
√
n, where vec is an operation to stack

all the columns of a matrix to a single vector.

By the form of Me, it can be written:

vec(Me) = vec(
m∑
k=1

(c2
kωkω

T
k + d2

kωkω
T
k ))

=
m∑
k=1

((c2
kvec(ωkω

T
k ) + d2

kvec(ωkω
T
k )) = AE,

where A = (vec(ω1ω
T
1 ), vec(ω1ω

T
1 ), · · · , vec(ωmω

T
m), vec(ωmω

T
m)) is a p2 × 2m matrix,

ck = E(Y sin(ωTk X)), dk = E(Y cos(ωTk X)), and E = (c2
1, d

2
1, · · · , c2

m, d
2
m)T is a 2m×1

vector. In the same manner, M̂ = AÊ with Ê = (ĉ2
1, d̂

2
1, · · · , ĉ2

m, d̂
2
m)T .

Let E1 = (c1, d1, · · · , cm, dm)T and Ê1 = (ĉ1, d̂1, · · · , ĉm, d̂m)T . As n→∞,

√
n(Ê1 − E1) =

√
n(



1

n

∑n
j=1 Yj sin(ωT1 Xj)

1

n

∑n
j=1 Yj cos(ωT1 Xj)

...
1

n

∑n
j=1 Yj sin(ωTmXj)

1

n

∑n
j=1 Yj cos(ωTmXj)


−



E(Y sin(ωT1 X)

E(Y cos(ωT1 X)
...

E(Y sin(ωTmX)

E(Y cos(ωTmX)


)

=
√
n(

1

n

n∑
j=1



Yj sin(ωT1 Xj)

Yj cos(ωT1 Xj)
...

Yj sin(ωTmXj)

Yj cos(ωTmXj)


−



E(Y sin(ωT1 X)

E(Y cos(ωT1 X)
...

E(Y sin(ωTmX)

E(Y cos(ωTmX)


)
d−→ N2m(0,ΣE),
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where

ΣE = cov



Y sin(ωT1 X)

Y cos(ωT1 X)
...

Y sin(ωTmX)

Y cos(ωTmX)


.

Then, by delta method for a random vector, it can be shown that

√
n(Ê− E)

d−→ N2m(0,DΣEDT ),

where

D =



2c1 0 0 · · · 0 0

0 2d1 0 · · · 0 0

0 0 2c2 · · · 0 0

· · · · · · · · · · · · · · ·

0 0 0 · · · 2cm 0

0 0 0 · · · 0 2dm


.

Thus, we have
√
n(AÊ−AE)

d−→ Np2(0,ADΣEDTAT ).

That is,
√
n(vec(M̂1)− vec(M1))

d−→ Np2(0,Σ1), where Σ1 = ADΣEDTAT . �

Proof of theorem 2.2.2

We have M = CCT , where the p× 2m matrix C = (a1,b1, a2,b2, · · · , am,bm) =

(cω1, dω1, cω2, dω2, · · · , cωm, dωm). The correspondent sample version is M̂ = ĈĈT

with values c and d in C replaced by ĉ and d̂. Under this form, we will investigate

the asymptotic distribution of the smallest min(p − d, 2m − d) singular values of

Ĉ with an approach proposed by Eaton and Tyler [21]. After that, the asymptotic

distribution of the smallest min(p− d, 2m− d) singular values of ĈĈT can be found

easily. By singular value decomposition, C can be expressed as

C = U

∆ 0

0 0

VT ,
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where U and V are orthonormal matrices with dimension p × p and 2m × 2m ac-

cordingly and ∆ is a d× d diagonal matrix with non-zero singular values of C as its

elements. We partition U into U1 and U2 with dimensions p×d and p× (p−d), and

then partition V into V1 and V2 with dimensions 2m× d and 2m× (2m− d).

Let C̃ =
√
n(Ĉ − C) and W̃ =

√
nUT

2 (Ĉ − C)V2. Because UT
2 CV2 = 0,

W̃ =
√
nUT

2 ĈV2, which is a (p− d)× (2m− d) matrix. Eaton and Tyler[21] showed

that the asymptotic distribution of the smallest min(p − d, 2m − d) singular values

of C̃ is identical to the asymptotic distribution of the singular values of W̃. By

multivariate version of central limit theorem, vec(C̃) converges to a multivariate

normal distribution with mean 0 and variance-covariance matrix Σc = DωΣEDT
ω ,

where Dω =



ω1 0 0 · · · 0 0

0 ω1 0 · · · 0 0

0 0 ω2 · · · 0 0

· · · · · · · · · · · · · · ·

0 0 0 · · · ωm 0

0 0 0 · · · 0 ωm


is a 2mp× 2m matrix.

Now, the asymptotic distribution of Λ̂d is identical to the asymptotic distri-

bution of the sum of the squared singular values of
√
n · vec(UT

2 ĈV2). That is,

the asymptotic distribution of Λ̂d is the same as the asymptotic distribution of

traceW̃W̃T = n · trace(UT
2 ĈV2)(UT

2 ĈV2)T = n · vec(UT
2 ĈV2)Tvec(UT

2 ĈV2). Be-

cause of the asymptotic normality of vec(C̃), as n→∞ we have

√
nvec(UT

2 ĈV2)→ N(2m−d)(p−d)(0, (V
T
2 ⊗UT

2 )Σc(U2 ⊗V2)).

Based on the formulation above, we have vec(W̃) =
√
nvec(UT

2 ĈV2) converges to

multivariate normal distribution with mean 0 and variance-covariance ΩT = (VT
2 ⊗

UT
2 )Σc(V2 ⊗U2). That is, as n→∞,

vec(W̃)→ Ω
1/2
T Z,

where Z denotes the multivariate standard normal distribution.

Then, Λ̂d = vec(W̃)Tvec(W̃) → (Ω
1/2
T Z)T (Ω

1/2
T Z) = ZTΩTZ. By eigenvalue de-

composition, the nonnegative definite and symmetric covariance matrix can be ex-
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pressed as ΩT = P∆PT , where P is orthonormal matrix and ∆ is a (2m−d)(p−d)×

(2m − d)(p − d) matrix with δjs, eigenvalues of ΩT , along its diagonal and 0 along

its off-diagonal. Thus,

ZTΩTZ =

(2m−d)(p−d)∑
j=1

δj(p
T
j Z)T (pTj Z) =

(2m−d)(p−d)∑
j=1

δj(

(2m−d)(p−d)∑
i=1

(pijz)2)

=

(2m−d)(p−d)∑
j=1

δjz
2 =

(2m−d)(p−d)∑
j=1

δjχ
2
1.

�

A2. Additional Simulations

A2.1 SDR Simulations

M7 Non-linear model (Model 12, Zhu et al., 2010 [80]): Y = 2 cos(βT1 X)+cos(βT2 X)+

0.25ε.

Let p = 10, n = 400, X = (X1, · · · , X10)T , β1 = (1, 0, · · · , 0)T , β2 = (0, 1, · · · , 0)T

and ε,X1, · · · , X10 be iid N(0, 1). Table A1 reports the results.

Table A1: Model M7 SDR results

method r ∆m ∆f m1 m2

SIR 0.419 (0.147) 0.975 (0.041) 1.787 (0.144) 0.882 (0.120) 0.898 (0.093)
SAVE 0.973 (0.012) 0.286 (0.073) 0.456 (0.094) 0.217 (0.059) 0.231 (0.066)

DR 0.973 (0.012) 0.284 (0.073) 0.450 (0.096) 0.214 (0.073) 0.223 (0.072)
PHD 0.976 (0.011) 0.274 (0.072) 0.429 (0.098) 0.205 (0.062) 0.217 (0.061)

Euler (Ours) 0.983 (0.007) 0.223 (0.058) 0.354 (0.077) 0.172 (0.064) 0.171 (0.053)
Kernel (Ours) 0.982 (0.010) 0.237 (0.067) 0.370 (0.090) 0.180 (0.073) 0.177 (0.060)

M8 Non-linear model (Model 14, Zhu et al., 2010[80]): Y = 2(βT1 X)2+(βT2 X)2+0.25ε.

Let p = 10, n = 400, X = (X1, · · · , X10)T , the real direction β1 = (1, 0, · · · , 0)T ,

β2 = (0, 1, 0, · · · , 0)T and ε,X1, · · · , X10 be iid N(0, 1). Table A2 listed the results.

M9 Non-normal model (Model A, Sheng and Yin, 2016 [54]): Y = (βT1 X)2 +(βT2 X)+

0.1ε.

Let n = 500, p = 20, β1 = (1, 0, · · · , 0)T , β2 = (0, 1, 0, · · · , 0)T , ε ∼ N(0, 1) and
Xi + 2

5
∼ Beta(0.75, 1). The results are in Table A3.

76



Table A2: M8 SDR results

method r ∆m ∆f m1 m2

SIR 0.435 (0.124) 0.983 (0.026) 1.780 (0.120) 0.888 (0.110) 0.883 (0.109)
SAVE 0.977 (0.009) 0.256 (0.055) 0.416 (0.079) 0.195 (0.052) 0.214 (0.057)

DR 0.978 (0.009) 0.253 (0.055) 0.411 (0.080) 0.203 (0.061) 0.199 (0.055)
PHD 0.972 (0.011) 0.287 (0.064) 0.461 (0.085) 0.221 (0.059) 0.231 (0.066)

Euler (Ours) 0.982 (0.007) 0.226 (0.056) 0.366 (0.076) 0.178 (0.059) 0.180 (0.049)
Kernel (Ours) 0.981 (0.009) 0.240 (0.060) 0.377 (0.081) 0.192 (0.067) 0.173 (0.057)

Table A3: Mean and variance of Criteria for model M9

method r ∆m ∆f m1 m2

SIR 0.931 (0.023) 0.467 (0.085) 0.718 (0.117) 0.350 (0.066) 0.365 (0.067)
SAVE 0.700 (0.069) 0.927 (0.121) 1.413 (0.163) 0.707 (0.139) 0.685 (0.153)

DR 0.961 (0.011) 0.311 (0.043) 0.549 (0.073) 0.276 (0.046) 0.269 (0.055)
PHD 0.709 (0.020) 0.976 (0.030) 1.410 (0.042) 0.692 (0.045) 0.716 (0.045)

Euler (Ours) 0.956 (0.017) 0.362 (0.082) 0.577 (0.106) 0.278 (0.083) 0.282 (0.093)
Kernel (Ours) 0.983 (0.005) 0.207 (0.030) 0.364 (0.049) 0.181 (0.034) 0.180 (0.033)

Results in Tables A1, A2 and A3 are from these additional SDR simulations, with

models including non-linear and non-normal, support the same conclusion that the

estimation from our approaches are consistent and have top performance.

A2.2 Additional Dimension Test Results

We present the dimension determination results by permutation method for models

M7 and M8. In our simulation, we choose α = 0.05 and L = 100. The proportion of

correctly determined dimension d for each model is reported in Table A4. The results

show that permutation test works quite well with large samples.

Table A4: Dimension estimation by permutation test

model method n=400 n=800 n=1200
M7 Kernel 0.96 0.96 0.98

Euler 0.93 0.91 0.93
M8 Kernel 0.96 0.98 0.95

Euler 0.98 0.93 0.93

A2.3 Comparisons to Other Methods

Comparison to MAVE
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We present the simulation results of MAVE in Table A5. Compare this table to

our results in section 5.1 of the paper, our methods outperform MAVE for all the

models. The sparse MAVE results are reported in Table A6, where we use the method

developed by Wang and Yin [61] and their Matlab code. For both Models M1 and

M2, our two approaches have similar TPR but smaller FPR.

Table A5: MAVE SDR results

Models r ∆m ∆f m1 m2

M1 0.982 (0.007) 0.184 (0.039) 0.260 (0.055) 0.184 (0.039) –
M2 0.860 (0.078) 0.659 (0.203) 0.972 (0.276) 0.484 (0.219) 0.431 (0.207)
M4 0.840 (0.032) 0.538 (0.055) 0.761 (0.077) 0.538 (0.055) –
M6a 0.876 (0.141) 0.427 (0.176) 0.604 (0.247) 0.427 (0.176) –
M7 0.877 (0.093) 0.601 (0.255) 0.877 (0.349) 0.372 (0.250) 0.416 (0.267)
M8 0.916 (0.070) 0.494 (0.212) 0.736 (0.283) 0.296 (0.190) 0.374 (0.219)
M9 0.970 (0.008) 0.282 (0.043) 0.481 (0.063) 0.234 (0.050) 0.241 (0.050)

Table A6: SparseMAVE Results

Model d Criteria SparseMAVE
M1 1 TPR 1.000

FPR 0.293
M2 2 TPR 1.000

FPR 0.058

A2.4 Additional simulations on Euler Approach

SDR results with various m’s and τ ’s

We compare the estimation accuracy for Euler Approach in different models with

either fixing τ and varying m or fixing m and varying τ , where m is the total number

of ω generated and τ is the percentage of ω selected. The estimation accuracy for

models M2, M6a, M7 and M8 are reported in Table A7.

From Table A7, we can see that with a fixed percentage of ω, the estimation

gets better as the number of ω gets larger. For a simple model (d = 1; M6a), the

estimation is very stable after m = 5000; and for relatively complex models (d = 2;

M2, M7 and M8), the results start to be stable after m = 10000. It is within our

expectation that more ωs are needed to recover the true directions for a complex

model. When m is fixed in a relative small number, the results are better with a
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Table A7: SDR Estimation from Euler Approach in Various Settings

Model m τ r ∆m ∆f m1 m2

M6a 1000 0.20 0.962 (0.018) 0.264 (0.063) 0.373 (0.089) 0.264 (0.063)
0.10 0.964 (0.017) 0.256 (0.063) 0.362 (0.090) 0.256 (0.064)
0.05 0.965 (0.017) 0.253 (0.064) 0.357 (0.091) 0.253 (0.064)

5000 0.20 0.969 (0.014) 0.239 (0.054) 0.339 (0.076) 0.239 (0.054)
0.10 0.972 (0.012) 0.228 (0.051) 0.323 (0.072) 0.228 (0.051)
0.05 0.975 (0.011) 0.217 (0.048) 0.307 (0.068) 0.217 (0.048)

10000 0.20 0.970 (0.013) 0.239 (0.052) 0.337 (0.073) 0.239 (0.052)
0.10 0.973 (0.012) 0.227 (0.049) 0.320 (0.069) 0.227 (0.049)
0.05 0.976 (0.010) 0.211 (0.045) 0.298 (0.064) 0.211 (0.045)

20000 0.20 0.970 (0.013) 0.236 (0.050) 0.334 (0.070) 0.236 (0.050)
0.10 0.974 (0.011) 0.223 (0.047) 0.316 (0.066) 0.223 (0.047)
0.05 0.978 (0.010) 0.206 (0.044) 0.291 (0.062) 0.206 (0.044)

M2 1000 0.20 0.951 (0.026) 0.361 (0.098) 0.598 (0.141) 0.286 (0.085) 0.300 (0.101)
0.10 0.947 (0.049) 0.364 (0.135) 0.604 (0.189) 0.289 (0.123) 0.300 (0.109)
0.05 0.950 (0.032) 0.367 (0.105) 0.602 (0.151) 0.275 (0.082) 0.312 (0.116)

5000 0.20 0.966 (0.028) 0.297 (0.096) 0.495 (0.139) 0.236 (0.074) 0.249 (0.093)
0.10 0.970 (0.027) 0.280 (0.088) 0.468 (0.128) 0.232 (0.085) 0.228 (0.070)
0.05 0.970 (0.025) 0.281 (0.088) 0.467 (0.126) 0.228 (0.087) 0.230 (0.068)

10000 0.20 0.969 (0.028) 0.283 (0.094) 0.472 (0.135) 0.220 (0.063) 0.243 (0.095)
0.10 0.972 (0.027) 0.267 (0.090) 0.446 (0.129) 0.227 (0.094) 0.211 (0.057)
0.05 0.974 (0.021) 0.258 (0.081) 0.433 (0.117) 0.214 (0.082) 0.212 (0.057)

20000 0.20 0.964 (0.036) 0.309 (0.122) 0.503 (0.169) 0.251 (0.118) 0.237 (0.085)
0.10 0.975 (0.011) 0.261 (0.058) 0.432 (0.086) 0.208 (0.058) 0.216 (0.061)
0.05 0.977 (0.009) 0.255 (0.053) 0.423 (0.076) 0.210 (0.058) 0.204 (0.058)

M7 1000 0.20 0.967 (0.016) 0.307 (0.080) 0.493 (0.116) 0.220 (0.089) 0.254 (0.086)
0.10 0.959 (0.020) 0.349 (0.094) 0.548 (0.131) 0.248 (0.107) 0.272 (0.110)
0.05 0.929 (0.053) 0.456 (0.165) 0.697 (0.223) 0.265 (0.149) 0.372 (0.191)

5000 0.20 0.981 (0.008) 0.238 (0.057) 0.384 (0.078) 0.178 (0.060) 0.194 (0.064)
0.10 0.982 (0.008) 0.233 (0.055) 0.373 (0.076) 0.172 (0.064) 0.189 (0.058)
0.05 0.978 (0.013) 0.259 (0.076) 0.408 (0.103) 0.180 (0.073) 0.206 (0.091)

10000 0.20 0.982 (0.007) 0.226 (0.052) 0.367 (0.072) 0.167 (0.054) 0.187 (0.066)
0.10 0.984 (0.007) 0.218 (0.053) 0.353 (0.072) 0.157 (0.057) 0.182 (0.061)
0.05 0.982 (0.008) 0.232 (0.059) 0.367 (0.079) 0.163 (0.065) 0.185 (0.074)

20000 0.20 0.983 (0.007) 0.221 (0.052) 0.360 (0.075) 0.160 (0.057) 0.188 (0.059)
0.10 0.985 (0.006) 0.205 (0.049) 0.336 (0.072) 0.145 (0.047) 0.181 (0.057)
0.05 0.986 (0.006) 0.200 (0.052) 0.325 (0.075) 0.152 (0.053) 0.162 (0.059)

M8 1000 0.20 0.966 (0.015) 0.312 (0.077) 0.502 (0.109) 0.231 (0.074) 0.253 (0.096)
0.10 0.956 (0.025) 0.357 (0.107) 0.563 (0.148) 0.246 (0.106) 0.288 (0.121)
0.05 0.923 (0.055) 0.478 (0.171) 0.729 (0.227) 0.290 (0.161) 0.375 (0.202)

5000 0.20 0.980 (0.008) 0.237 (0.052) 0.386 (0.075) 0.178 (0.056) 0.198 (0.058)
0.10 0.981 (0.008) 0.236 (0.058) 0.381 (0.081) 0.173 (0.059) 0.197 (0.063)
0.05 0.977 (0.013) 0.260 (0.082) 0.412 (0.112) 0.177 (0.073) 0.215 (0.090)

10000 0.20 0.982 (0.008) 0.228 (0.051) 0.373 (0.074) 0.177 (0.049) 0.187 (0.064)
0.10 0.983 (0.008) 0.223 (0.055) 0.361 (0.078) 0.159 (0.054) 0.190 (0.061)
0.05 0.981 (0.012) 0.236 (0.073) 0.376 (0.099) 0.157 (0.057) 0.201 (0.084)

20000 0.20 0.983 (0.007) 0.221 (0.051) 0.362 (0.077) 0.173 (0.050) 0.179 (0.061)
0.10 0.985 (0.007) 0.203 (0.049) 0.335 (0.073) 0.160 (0.054) 0.167 (0.049)
0.05 0.986 (0.007) 0.197 (0.054) 0.323 (0.078) 0.152 (0.049) 0.162 (0.059)

79



relative large τ while the results are very stable across different τs when m is large.

Thus, conservatively to have a stable estimation, we unify the m = 20000 and τ = 0.2

for SDR study.

Permutation results with various m’s

Table A8: Permutation Test with a fixed τ and different m’s for Euler Approach

Model m n=400 n=800 n=1200
M6a 500 0.96 0.91 0.89

1000 0.95 0.93 0.93
2000 0.98 0.95 0.92

We fixed the percentage τ = 0.2 as in SDR and work on a relative small number

of ω, m. We compare the results from m = 500, 1000 and 2000. The results for model

M6a are reported in Table A8. As we can see in the table, from m = 500 to m = 1000,

there is a bit increment in the percentage of correct dimension determination while

there is no significant difference between m = 1000 and m = 2000. Therefore, we use

m = 1000 and τ = 0.2 in permutation test.

SVS results with various m’s

For sufficient variable selection, the primary goal is to identify the informative

variables and a relative good direction estimation will be enough. Thus we use a

relative small number of ωs to save the computation expense with τ = 0.2. As in the

permutation test, we compare the results from m = 500, 1000 and 2000. The results

for model M6a are reported in Table A9, which clearly indicates that from m = 500

to m = 1000, the variable selection accuracy is a bit improved; From m = 1000 to

m = 2000, the improvement is ignorable. Thus, we use m = 1000 in reported result.

Table A9: SVS with a fixed p and different m’s for Euler Approach

Model Method m TPR FPR
M6a Alasso 500 0.940 0.065

1000 0.995 0.063
2000 1.000 0.091

CISE 500 1.000 0.075
1000 1.000 0.024
2000 1.000 0.020

SSVS Euler results with various m’s
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For the SSVS Euler approach, to reduce the computational cost, we also use a

relative small m, the number of ω generated. The results with Model M5 for m = 500,

m = 1000 and m = 2000 are reported in Table A10. From m = 500 to m = 1000,

there is an increment while from m = 1000 to m = 2000, there is no significant

difference.

Table A10: Sequential SVS for Euler Approach with Model M5 and different ms

Method m ∆f |r1| TPR FPR
SSVSEuler 500 0.940 (0.164) 0.861 (0.042) 0.991 0.128

1000 0.713 (0.168) 0.917 (0.034) 0.994 0.095
2000 0.708 (0.159) 0.913 (0.033) 0.996 0.149

B Supplementary Materials for Chapter 3

B1. Proofs

B1.1 Proof of theorem 3.2.1

Here we will prove that the sample ξ̂ converges to ξ at the rate of
√
n.

√
n(vec(ξ̂)− vec(ξ)) =

√
n(



1

n

∑n
j=1 ω1ỹj cos(ωT1 x̃j)

1

n

∑n
j=1 ω1ỹj sin(ωT1 x̃j)

...
1

n

∑n
j=1 ωmỹj cos(ωT1 x̃j)

1

n

∑n
j=1 ωmỹj sin(ωT1 x̃j)


−



E(ω1y cos(ωT1 x)

E(ω1y sin(ωT1 x)
...

E(ωmy cos(ωTmx)

E(ωmy sin(ωTmx)


)

=
√
n(

1

n

n∑
j=1



ω1ỹj cos(ωT1 x̃j)

ω1ỹj sin(ωT1 x̃j)
...

ωmỹj cos(ωTmx̃j)

ωmỹj sin(ωTmx̃j)


−



E(ω1y cos(ωT1 x)

E(ω1y sin(ωT1 x)
...

E(ωmy cos(ωTmx)

E(ωmy sin(ωTmx)


)
d−→ N(0,Γ).
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The conclusion is based on the multivariate version of central limit theorem and

Γ = cov



ω1y sin(ωT1 x)

ω1y cos(ωT1 x)
...

ωmy sin(ωTmx)

ωmy cos(ωTmx)


=



ω1 0 · · · 0 0

0 ω1 · · · 0 0
...

0 0 · · · ωm 0

0 0 · · · 0 ωm


Σξ



ω1 0 · · · 0 0

0 ω1 · · · 0 0
...

0 0 · · · ωm 0

0 0 · · · 0 ωm



T

,

where Σξ = cov



y sin(ωT1 x)

y cos(ωT1 x)
...

y sin(ωTmx)

y cos(ωTmx)


is a 2m by 2m matrix and Γ is a 2mp by 2mp matrix.

�

B1.2 Proof of theorem 3.2.2 and 3.2.3

The proofs of theorem 3.2.2 and 3.2.3 are based on Shapiro’s results[52] and Cook and

Ni’s lemmas A.3 and A.4[16]. They are labeled as Propositions B1.1, B1.2 and B1.3

here and they are directly adopted from Cook and Ni[16]. The whole proof follows

the proof in the Appendix of Cook and Ni[16].

Proposition B1.1(Shapiro, 1986[52]) Assume η is a p dimensional parameter vec-

tor in a parameter space Θ ⊆ Rp and η0 is the true value of η. Let f(η) =

(f1(η), · · · , fm(η))T : Θ → Rm be a vector of twice continuously differentiable func-

tions on Θ and ∆ be the corresponding Jacobian matrix. ∆ can be rank deficiency

and f will be overparameterized. In addition, suppose the following conditions hold.

1. The sample estimate x̂ is asymptotically multivariate normal distributed. That

is
√
n(x̂− f(η0))

d−→ N(0,Γ).

2. The discrepancy function F (x̂, f(η)) = (x̂− f(η))TV(x̂− f(η)) with a given V

has the following conditions:

� F (x, y) ≥ 0 for any x, y;

� F (x, y) = 0 if and only if x = y;
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� F is twice continuously differentiable in x and y;

� There exist constants ε1 > 0 and ε2 > 0 such that F (x, y) ≥ ε2 whenever

||x− y|| ≥ ε1.

3. η0 is regular;

4. V is positive definite on the linear space spanned by the columns of ∆. That

is rank(∆TV∆) = rank(∆) given ∆TV∆ is nonnegative definite.

With the above conditions hold, we have the following results:

� Assume F̂ = F (x̂, f(η̂)) is the minimized value of F (x̂, f(η)) over Θ. Then

nF̂ has the same distribution of W TUW with W ∼ N(0,Γ) and U =

V − V∆(∆TV∆)−∆TV = V1/2QΦV1/2, where Φ = V1/2∆ and QΦ =

I − Φ(ΦTΦ)−ΦT ;

� The estimate f(η̂) which minimized F (x̂, f(η)) is a consistent estimator

and an asymptotically normal estimate of f(η0):
√
n(f(η̂)− f(η))

d−→ N(0,V−1/2PΦV1/2ΓV1/2PΦV−1/2);

If V is random instead of fixed, we need the following two additional propositions

from Cook and Ni[16].

Proposition B1.2(Cook and Ni[16]) Assume {Xn} ∈ Rs is a sequence of random

vectors , and ξ ∈ Ξ ⊂ Rs. In addition, let {Vn > 0} be a sequence of s× s matrices

that converges in probability to V > 0. If nF̂V = minξ∈Ξn(Xn−ξ)TV(Xn−ξ)
d−→ Ψ,

then nF̂Vn = minξ∈Ξn(Xn−ξ)TVn(Xn−ξ)
d−→ Ψ is also true and vice versa. Moreover,

let ξ̂1 and ξ̂2 be the values of ξ that approach nF̂V and nF̂Vn . If V1/2Xn
p−→ α, then

V1/2ξ̂1 and V
1/2
n ξ̂2 converges to α in probability.

Proposition B1.3(Cook and Ni[16]) Let X̃n be a simple random sample {X1, · · · ,Xn}

with Xi being either scalar or vector. The distribution of X depends on parameters

that include a vector η ∈ Θ ⊂ Rk. Assume η0 is the true value of η and the following

conditions hold:

� Θ is an open set;
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� g(η) : Θ → Rs is one-to-one, bi-continuous, and twice continuously differen-

tiable. Denote D(η) =
∂g(η)

∂η
∈ Rs×k and the true value D0 = D(η0);

� Yn = Yn(X̃n) ∈ Rs is a consistent estimate of g(η0) with
√
n(Yn − g(η0))

d−→

N(0,Γ);

� Vn = Vn(X̃n) is a positive-definite matrix that converges to a constant matrix

V in probability.

Assume a discrepancy function is given by H(Yn,g(η)) = (Yn−g(η))TVn(Yn−g(η))

and η̂ = η̂(X̃n) is the value of η that minimizes H. Then

√
n(η̂ − η̂0)

d−→ N(0, (DT
0 VD0)−1DT

0 VΓVD0(DT
0 VD0)−1)

and

√
n(g(η̂)− g(η̂0))

d−→ N(0, D0(DT
0 VD0)−1DT

0 VΓVD0(DT
0 VD0)−1D0).

Proof of Theorem 3.2.2

Given V = I2m⊗Σ, the estimated version is Vn = I2m⊗Σ̂. Then by equation 3.2,

we have the discrepancy function F ccf
d (B,C) = (vec(ξ̂)−vec(BC))T (I2m⊗Σ̂)(vec(ξ̂)−

vec(BC)). Since Vn converges to V in probability, by proposition B1.2, we know the

asymptotic distributions of nF̂ ccf
d and nF̂1d are the same, where nF̂1d is the minimized

value of discrepancy function F1d(B,C) = (vec(ξ̂)−vec(BC))TV(vec(ξ̂)−vec(BC)).

In addition, we will use reparameterization and proposition B1.3 to show that the

asymptotic distribution of vec(β̂ν̂) from F ccf
d (B,C) and F1d(B,C) are the same.

First, βν = (βT1 ,β
T
2 )Tν = (Id, (β2β

−1
1 )T )Tβ1ν with β1 is a d × d invertible matrix.

Let β1 be identity, then we have new parameters β2 ∈ R(p−d)×d and ν ∈ Rd×2m. Now

β2 together with ν is the η in proposition B1.3 which has a full rank Jacobian and an

open parameter space in Rd(2m+p−d). In addition, the reparameterization will not in-

fluence the minimization and asymptotic properties. Thus, we can investigate F1d di-

rectly. In the setting, η = (vec(B)T , vec(C)T )T ∈ Rd(p+2m), f(η) = vec(BC) ∈ R2mp,

x̂ = vec(ξ̂), and f(η0) = βν. Here, β ∈ Rp×d is the population basis for Sξ and

ν ∈ Rd×2m is the fitting matrix. The Jacobian matrix is ∆ = (νT ⊗ Ip, I2m ⊗ β) and
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rank(∆) = rank(νT⊗Qβ, I2m⊗β) = d(p−d)+2md = d(2m+p−d). By theorem 3.2.1,

proposition B1.1 condition 1 is satisfied; Given V = (I2m⊗Σ), condition 2 is met; f(η)

is analytic, condition 3 holds; V is positive definite, then condition 4 is true. Thus,

vec(β̂ν̂) is a consistent estimator of vec(βν) and
√
n(vec(β̂ν̂)−vec(βν))

d−→ N(0,Γc),

where the covariance matrix Γc = ∆(∆TV∆)−∆TVΓV∆(∆TV∆)−∆T . Thus the

first conclusion in theorem 3.2.2 is proved. What’s more, nF̂ ccf
d has the same asymp-

totic distribution of W TV1/2QΦV1/2W , where W has normal distribution with mean

0 and covariance matrix Γ and Φ = V1/2∆. Thus, nF̂ ccf
d has an asymptotic weighted

chi-square distribution Σ2mp
i=1 λiχ

2
(1), where χ2

(1)s are independent chi-square distribu-

tion with degrees of freedom 1 and λis are the ordered eigenvalues of QΦV1/2ΓV1/2QΦ.

Thus the second conclusion in theorem 3.2.2 is proved. Note, λ2m+1 = · · · = λ2mp = 0

because rank(Γ) = 2m. Conclusion 3 in theorem 3.2.2 follows directly from conclusion

1. �

Proof of Theorem 3.2.3

The proof of theorem 3.2.3 is similar to theorem 3.2.2. Here, V = I and we

do not need to estimate it. Thus, proposition B1.1 is enough for this proof. By

taking I as V, all the conditions in propositions are satisfied. Thus, vec(β̂ν̂) is a

consistent estimator of vec(βν) and
√
n(vec(β̂ν̂) − vec(βν))

d−→ N(0,ΓI), where the

covariance matrix ΓI is expressed as ∆(∆T∆)−∆TΓ∆(∆T∆)−∆T . Conclusion 1 in

theorem 3.2.3 is proved. In addition, nF̂ icf
d has the same asymptotic distribution of

W TQ∆W , where W has normal distribution with mean 0 and covariance matrix Γ.

That is, nF̂ icf
d has an asymptotic weighted chi-square distribution Σ2mp

i=1 λiχ
2
(1), where

χ2
(1)s are independent chi-square distribution with degrees of freedom 1 and λis are

the ordered eigenvalues of Q∆ΓQ∆. Conclusion 2 in theorem 3.2.3 is proved. Note,

λ2m+1 = · · · = λ2mp = 0 because rank(Γ) = 2m. Conclusion 3 of theorem 3.2.3

follows directly from conclusion 1. �

Proof of Theorem 3.3.1

We follow Qian et al. to prove this theorem[46]. Let (B0,C0) and (B̂, Ĉ) be the

minimizers of objective function 3.5 and 3.6 respectively, with B0 = (B01, · · · , B0p)
T
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and B̂ = (B̂1, · · · , B̂p)
T . Then, we have L(B̂, Ĉ) ≤ L(B0,C0). That is,

1

2
tr[(ξ̂ − B̂Ĉ)T Σ̂(ξ̂ − B̂Ĉ)] + λ

p∑
j=1

θj||B̂j||2

≤ 1

2
tr[(ξ̂ − B̂0Ĉ0)T Σ̂(ξ̂ − B̂0Ĉ0)] + λ

p∑
j=1

θj||B0j||2.

After simplification, we have

T1 + T2 +
1

2
T3 + λ

p∑
j=1

θj||B̂j||2 ≤ λ

p∑
j=1

θj||B0j||2, (B.1)

where T1 = −tr[(ξ̂ −B0C0)T (Σ̂−Σ)(B̂Ĉ−B0C0)],

T2 = −tr[(ξ̂ −B0C0)TΣ(B̂Ĉ−B0C0))], and

T3 = tr[(B̂Ĉ−B0C0)T Σ̂(B̂Ĉ−B0C0)].

Given y is distributed as a sub-Gaussian (C1) and cos(·), sin(·) are bounded functions,

both y cos(ωTx) and y sin(ωTx) follow sub-Gaussian. That is, there exist constants

ν, c1 > 0 such that for every k > 2, we have

E{|yg(ωTx)− E(yg(ωTx))|k} ≤ k!ν2ck−2
1

2
,

where g(·) can be either cos(·) or sin(·). Then for every ε and large enough n, we

have the following inequality based on the Bernstein inequality[6],

P (

∑n
k=1[ykg(ωTxk)− E(yg(ωTx))]

n
> ε) ≤ exp(− nε2

2(ν2 + c1ε)
).

Take ε = 1, with pn = max{p, n} and with a large enough n, we have

P (

∑n
k=1[ykg(ωTxk)− E(yg(ωTx))]

n
> 1) ≤ exp(− n

2(ν2 + c1)
).

Thus, with a large n, we have the following inequality with probability greater than

1− exp(− n

2(ν2 + c1)
),

∣∣∣∣∑n
k=1[ykg(ωTxk)− E(yg(ωTx))]

n

∣∣∣∣ ≤ 1.

Given condition C2, there exist constants c3, c4 > 0 for every 1 ≤ i, j ≤ p,

p(|σ̂i,j − σi,j| > ε) ≤ c3 exp(−8nε2

c4

),
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where σ̂i,j = (Σ̂)i,j and σi,j = (Σ)i,j. Now, take ε = c5(
log pn
n

)1/2 with c5 >
√
c4, then

p(|σ̂i,j − σi,j| > c5(
log pn
n

)1/2) ≤ c3

p8
n

.

By union bound, with probability greater than 1− c3

p6
n

,

max
1≤i,j≤p

|σ̂i,j − σi,j| < c5(
log pn
n

)1/2.

Thus, with probability greater than 1− c3

p6
n

− exp(− n

2(ν2 + c1)
), we have

max
1≤i,j≤p

|σ̂i,j − σi,j|
∣∣∣∣∑n

k=1[ykg(ωTxk)− E(yg(ωTx))]

n

∣∣∣∣ ≤ c5(
log pn
n

)1/2.

Now, we consider∣∣∣eTi (ξ̂ −B0C0)T (Σ̂−Σ)ej

∣∣∣
=

∣∣∣∣∣
[

1

n

n∑
k=1

ykg(ωTi xk)− E(yg(ωTi x))

]∑
k∈A

ωki(σ̂kj − σkj)

∣∣∣∣∣
≤ max

1≤i,j≤p
|σ̂ij − σij|

∣∣∣∣∣ 1n
n∑
k=1

ykg(ωTi xk)− E(yg(ωTi x))

∣∣∣∣∣ .
With above formulations, we have

|T1| ≤
p∑
j=1

∣∣∣eTj (B̂Ĉ−B0C0)(ξ̂ −B0C0)T (Σ̂−Σ)ej

∣∣∣
≤

p∑
j=1

||eTj (B̂Ĉ−B0C0)||2||(ξ̂ −B0C0)T (Σ̂−Σ)ej||2

≤c5

√
2m

√
log pn
n

p∑
j=1

||ej(B̂Ĉ−B0C0)||2

=c5

√
2m

√
log pn
n

p∑
j=1

||η̂j||2,

where η̂j = ĈT B̂j −CT
0B0j.

Next, with the condition C1 and C5, there exists a constant c6 such that with

high probability ∣∣∣∣∑n
k=1[ykg(ωTxk)− E(yg(ωTx))]

n

∣∣∣∣ ≤ c6(
log pn
n

)1/2.
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|T2| ≤
p∑
j=1

∣∣∣eTj (B̂Ĉ−B0C0)(ξ̂ −B0C0)TΣej

∣∣∣
≤

p∑
j=1

||eTj (B̂Ĉ−B0C0)||2||(ξ̂ −B0C0)TΣej||2

≤c6

√
2mσu

√
log pn
n

p∑
j=1

||eTj (B̂Ĉ−B0C0)||2

=c6

√
2mσu

√
log pn
n

p∑
j=1

||η̂j||2.

Put the up bounds of |T1| and |T2| to equation (B.1), we have

1

2
T3 + λ

p∑
j=1

θj||η̂j||2

≤λ
p∑
j=1

θj||B0j||2 − λ
p∑
j=1

θj||B̂j||2 + λ

p∑
j=1

θj||η̂j||2 + c̃

√
log pn
n

p∑
j=1

||η̂j||2,

where c̃ = c7

√
m and c7 =

√
2(c5 + c6σu). Now, we know for every j ∈ A,∣∣∣||B0j||2 − ||B̂j||2

∣∣∣ ≤ ||η̂j|| and for every j ∈ Ac, ||B̂j||2 = ||η̂j||. Then

1

2
T3 + λ

p∑
j=1

θj||η̂j||2 ≤ 2λ
∑
j∈A

θj||η̂j||2 + c̃

√
log pn
n

p∑
j=1

||η̂j||2,

which equals to

1

2
T3 +

∑
j∈Ac

(λθj − c̃
√

log pn
n

)||η̂j||2 ≤
∑
j∈A

(λθj + c̃

√
log pn
n

)||η̂j||2.

Choosing λ = 21−ρc7C
ρ/2
φ

√
m

√
log pn
n1+ρφ

, and 2ρ(η−φ/2) > 1−2η, then under conditions

C3 and C4, we have

λθj ≤ 2c̃

√
log pn
n

,∀j ∈ A and λθj ≥ 2c̃

√
log pn
n

,∀j ∈ Ac,

which implies

1

2

∑
j∈Ac

λθj||η̂j||2 ≤
1

2

∑
j∈Ac

λθj||η̂j||2 +
1

2
T3 ≤ 3

∑
j∈A

c̃

√
log pn
n
||η̂j||2,
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and ∑
j∈Ac

||η̂j||2 ≤ 3
∑
j∈A

||η̂j||2.

Let T0 = tr[(B̂Ĉ−B0C0)TΣ(B̂Ĉ−B0C0)], we have

|T3 − T0| ≤|
p∑
j=1

p∑
k=1

(σ̂jk − σjk)η̂Tj η̂k|

≤c5

√
log pn
n

[|
∑
j∈A

∑
k∈A

η̂Tj η̂k|+ |
∑
j∈Ac

∑
k∈Ac

η̂Tj η̂k|+ 2|
∑
j∈A

∑
k∈Ac

η̂Tj η̂k|]

≤c5

√
log pn
n

[(
∑
j∈A

||η̂j||2)2 + (3
∑
j∈A

||η̂j||2)2 + 6(
∑
j∈A

||η̂j||2)2]

=16c5

√
log pn
n

(
∑
j∈A

||η̂j||2)2.

Now, let Â0 denote the index set in Ac that corresponds to the s largest ||η̂j||2
with j ∈ Ac. Define Ã = A ∪ Â0,

T0 ≤|T0 − T3|+ T3

≤32c5

√
log pn
n

(
∑
j∈A

||η̂j||2)2 + 6c̃

√
log pn
n

∑
j∈A

||η̂j||2

≤64c5s

√
log pn
n

∑
j∈Ã

||η̂j||22 + 6c̃(
2s log pn

n

∑
j∈Ã

||η̂j||22)1/2.

And it results in

(
∑
j∈Ã

||η̂j||22)1/2 ≤
6c̃

√
2s log pn

n

T0/
∑

j∈Ã ||η̂j||22 − 64c5s

√
log pn
n

≤ 12c̃

σl

√
s log pn
n

.

Furthermore, we have
∑

j∈Ac\Â0
||η̂j||22 ≤ 9

∑
j∈Ã ||η̂j||22 follow the exact same steps

in Qian et al.’s [46] proof. Thus we have

||B̂Ĉ−B0C0||F ≤
48c̃

σl

√
s log pn
n

,

and by Wedin’s theorem,

||PSB̂ − PSE(y|x) ||F = Op(
√
sm

√
log pn
n

).
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The second statement in Theorem 3.3.1 can be proved similar to the proof of Qian

et al. [46] and thus we omit it. �

Proof of Theorem 3.3.2

Let (B̂, Ĉ) be the minimizer of objective function 3.7 and (B0,C0) be the mini-

mizer of objective function without the penalty term, with B0 = (B01, · · · , B0p)
T and

B̂ = (B̂1, · · · , B̂p)
T . Then, we have LI(B̂, Ĉ) ≤ LI(B0,C0). That is,

1

2
tr[(ξ̂−B̂Ĉ)T (ξ̂−B̂Ĉ)]+λ

p∑
j=1

θj||B̂j||2 ≤
1

2
tr[(ξ̂−B̂0Ĉ0)T (ξ̂−B̂0Ĉ0)]+λ

p∑
j=1

θj||B0j||2.

After simplification, we have

TI1 +
1

2
TI3 + λ

p∑
j=1

θj||B̂j||2 ≤ λ

p∑
j=1

θj||B0j||2, (B.2)

where TI1 = −tr[(ξ̂ −B0C0)T (B̂Ĉ−B0C0)], and

TI3 = tr[(B̂Ĉ−B0C0)T (B̂Ĉ−B0C0)].

Similar to the proof for Theorem 3.3.1, given condition C1, we have for a constant

cI

|TI1| ≤
p∑
j=1

∣∣∣eTj (B̂Ĉ−B0C0)(ξ̂ −B0C0)Tej

∣∣∣
≤

p∑
j=1

||eTj (B̂Ĉ−B0C0)||2||(ξ̂ −B0C0)Tej||2

≤cI
√

2m

√
log pn
n

p∑
j=1

||ej(B̂Ĉ−B0C0)||2

=cI
√

2m

√
log pn
n

p∑
j=1

||η̂j||2

=c∗
√

log pn
n

p∑
j=1

||η̂j||2.

Plug this inequality back to (B.2), we have

1

2
TI2 + λ

p∑
j=1

θj||η̂j||2

≤ λ

p∑
j=1

θj||B0j||2 − λ
p∑
j=1

θj||B̂j||2 + λ

p∑
j=1

θj||η̂j||2 + c∗
√

log pn
n

p∑
j=1

||η̂j||2.
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Now under conditions C3 and C4, choose λ = 21−ρc∗C
ρ/2
φ

√
log pn
n1+ρφ

, and 2ρ(η −

φ/2) > 1− 2η, we have

1

2

∑
j∈Ac

λθj||η̂j||2 ≤
1

2

∑
j∈Ac

λθj||η̂j||2 +
1

2
TI2 ≤ 3

∑
j∈A

c∗
√

log pn
n
||η̂j||2,

and it results in ∑
j∈Ac

||η̂j||2 ≤ 3
∑
j∈A

||η̂j||2.

Now, let Â0 denote the index subset from Ac that corresponds to the s largest

||η̂j||2 with j ∈ Ac. Define Ã = A ∪ Â0, then

∑
j∈Ã

||η̂j||22 ≤ TI2 ≤ 6
∑
j∈A

c∗
√

log pn
n
||η̂j||2 ≤ 6c∗(

2s log pn
n

∑
j∈Ã

||η̂j||22)1/2.

After simplification, we get

(
∑
j∈Ã

||η̂j||22)1/2 ≤ 12c∗
√
s log pn
n

.

Thus, we have

||B̂Ĉ−B0C0||F ≤ 48c∗
√
s log pn
n

and by Wedin’s theorem,

||PSB̂ − PSE(y|x)||F = Op(
√
m

√
s log pn
n

).

�

C Supplementary Materials for Chapter 4

C1 Derivatives of ln(A,G)

The first derivative of ln(A,G) to vec(A) isDa1 =
∂ ln(A,G)

∂vec(A)
=
∑n

i=1

∑ni

j=1

∂Lij
∂vec(A)

,

where for Xi,j−1 = 1, 2, 3,

∂Lij
∂vec(A)

= −
∑7

l=1,l 6=Xi,j−1
ezTi AGb(Gb ⊗ zi)

1 +
∑7

l=1,l 6=Xi,j−1
ezTi AGb

+ (1− δXi,j−1,Xij
)(Gb ⊗ zi);
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and for Xi,j−1 = 4,

∂Lij
∂vec(A)

= −
∑7

l=5 e
zTi AG(14+l)(G(14+l) ⊗ zi)

1 +
∑7

l=5 e
zTi AG(14+l)

+ (1− δ4,Xij
)(G(14+l) ⊗ zi).

The correspondent second derivative is

Da2 =
∂2 ln(A,G)

∂vec(A)∂vec(A)T
=

n∑
i=1

ni∑
j=1

∂2Lij
∂vec(A)∂vec(A)T

.

Here, for Xi,j−1 = 1, 2, 3,

∂2Lij
∂vec(A)∂vec(A)T

= −
∑7

l=1,l 6=Xi,j−1
ezTi AGb(Gb ⊗ zi)(G

T
b ⊗ zTi )(1 +

∑7
l=1,l 6=Xi,j−1

ezTi AGb)

(1 +
∑7

l=1,,l 6=Xi,j−1
ezTi AGb)2

+

∑7
l=1,l 6=Xi,j−1

ezTi AGb(Gb ⊗ zi)
∑7

l=1,l 6=Xi,j−1
ezTi AGb(GT

b ⊗ zTi )

(1 +
∑7

l=1,l 6=Xi,j−1
ezTi AGb)2

;

for Xi,j−1 = 4,

∂2Lij
∂vec(A)∂vec(A)T

= −
∑7

l=5 e
zTi AG(14+l)(G(14+l) ⊗ zi)(G

T
(14+l) ⊗ zTi )(1 +

∑7
l=5 e

zTi AG(14+l))

(1 +
∑7

l=5 e
zTi AG(14+l))2

+

∑7
l=5 e

zTi AG(14+l)(G(14+l) ⊗ zi)
∑7

l=5 e
zTi AG(14+l)(GT

(14+l) ⊗ zTi )

(1 +
∑7

l=5 e
zTi AG(14+l))2

;

where b = 6(Xi,j−1− 1) + l for Xi,j−1 > l and b = 6(Xi,j−1− 1)− u+ l for Xi,j−1 < l.

C2 Additional Results

C2.1: Additional results for RR-MLRfMC in the Application

In this section, we also reported the partial results when considering the intercept

and the 8 adjusting covariates. In the model with 8 adjusting covariates in reduced

rank and fixed intercept, the partial results are reported in Table C1 and rank 2 is the

best. In the model with 9 adjusting covariates (including the intercept), the results

are shown in Table C2 and rank 3 is the best. Since we are interested in interpreting

the effect of APOE 4, we do not report further results for these two models.
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C2.2: Additional results for PRR-MLRfMC in the Application

In PRR-MLRdMC model, if we included the intercept in the RR part instead of

treating it as fixed, then we have the results reported in Table C3. Note that here,

rather than rank 2, rank 3 is optimal since it fit the data best. We also reported the

coefficient matrix along with A and G in Tables C4–C7. We can make the similar

conclusion to the model with intercept as fixed. APOE 4 is found to be a significant

predictor of a transition from normal cognition to dementia (P = 0.024) and from

mixed MCI to Normal (P = 0.011).

Table C1: Fit statistics using 8 adjusting covariates, fixed intercept

Rank T Log-likelihood Number of Parameters AIC
1 -6819.16 49 13736.31
2 -6787.23 75 13724.45
3 -6765.11 99 13728.23
4 -6752.56 121 13747.12
5 -6741.25 141 13764.50
6 -6733.18 159 13784.36
7 -6730.24 175 13810.48
8 -6728.33 189 13834.33

Table C2: Fit statistics using 9 adjusting covariates (include intercept)

Rank T Log-likelihood Number of Parameters AIC
1 -6891.06 29 13840.11
2 -6813.53 56 13739.06
3 -6785.55 81 13733.11
4 -6763.43 104 13734.43
5 -6752.17 125 13754.34
6 -6741.08 144 13770.17
7 -6732.98 161 13787.97
8 -6730.08 176 13812.16
9 -6728.33 189 13834.66
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Table C3: Fit statistics using 9 adjusting covariates, and fixed APOE4

Rank T Log-likelihood Number of Parameters AIC
1 -6873.02 50 13846.05
2 -6795.72 77 13745.44
3 -6766.73 102 13737.45
4 -6744.23 125 13738.45
5 -6732.18 146 13756.37
6 -6722.11 165 13774.22
7 -6712.73 182 13789.46
8 -6710.69 197 13815.39
9 -6709.02 210 13838.03
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Table C4: Parameter Estimates for Rank 3 Model with Normal as Prior State

Covariates A-MCI M-MCI MCI Dementia Dropout Death A1 A2 A3

APOE4 -0.176 -0.228 0.440 1.185 -0.315 0.075
se 0.109 0.119 0.328 0.526 0.249 0.375
P 0.106 0.055 0.180 0.024 0.207 0.842

intercept -1.452 -1.597 -4.501 -5.266 -3.728 -5.227 -0.994 -0.074 0.000
family history -0.064 -0.096 -0.127 -0.255 -0.174 -0.111 -0.032 -0.033 0.086

high BP -0.031 -0.004 0.292 -0.487 0.436 0.782 0.042 -0.501 -0.101
< 10 pack years -0.151 -0.252 0.073 -0.880 -0.104 0.518 -0.015 -0.446 0.295
11-19 pack years 0.019 -0.038 0.262 -0.017 0.065 0.429 0.046 -0.110 0.202
≥ 20 pack years 0.005 0.112 0.399 -0.464 0.782 1.011 0.067 -0.647 -0.360
low education 0.091 0.344 -0.320 0.482 0.422 -0.640 -0.036 0.194 -0.832
baseline age 0.033 0.073 0.023 0.134 0.123 -0.002 0.010 0.018 -0.123
head injury -0.014 0.024 0.132 -0.253 0.282 0.387 0.019 -0.275 -0.131

1.445 1.590 4.544 5.184 3.779 5.344
0.210 0.228 -0.226 1.502 -0.397 -1.163
-0.123 -0.429 0.137 -0.451 -0.761 0.270

G1 G2 G3 G4 G5 G6
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Table C5: Parameter Estimates for Rank 3 Model with A-MCI as Prior State

Covariates Normal M-MCI MCI Dementia Dropout Death A1 A2 A3

APOE4 0.051 0.227 0.482 0.924 0.005 -1.381
se 0.205 0.262 0.474 0.698 0.548 1.056
P 0.803 0.386 0.309 0.186 0.992 0.191

intercept 1.168 -0.454 -1.729 -3.304 -2.581 -2.645 -0.994 -0.074 0.000
family history 0.050 -0.024 -0.074 -0.129 -0.075 -0.058 -0.032 -0.033 0.086

high BP -0.156 0.086 -0.467 -0.015 0.383 0.290 0.042 -0.501 -0.101
< 10 pack years 0.003 -0.002 -0.442 -0.239 0.169 0.189 -0.015 -0.446 0.295
11-19 pack years -0.032 0.004 -0.006 0.088 0.162 0.205 0.046 -0.110 0.202
≥ 20 pack years -0.262 0.150 -0.620 0.050 0.545 0.363 0.067 -0.647 -0.360
low education -0.096 0.081 0.011 0.059 -0.123 -0.328 -0.036 0.194 -0.832
baseline age -0.034 0.020 0.016 0.055 0.027 -0.004 0.010 0.018 -0.123
head injury -0.096 0.056 -0.275 -0.011 0.206 0.134 0.019 -0.275 -0.131

-1.188 0.465 1.661 3.298 2.635 2.690
0.169 -0.105 1.041 0.336 -0.524 -0.390
0.205 -0.142 0.158 -0.133 -0.086 0.188
G7 G8 G9 G10 G11 G12
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Table C6: Parameter Estimates for Rank 3 Model with M-MCI as Prior State

Covariates Normal A-MCI MCI Dementia Dropout Death A1 A2 A3

APOE4 -0.381 -0.089 0.319 0.458 -0.343 0.302
se 0.150 0.243 0.271 0.358 0.284 0.390
P 0.011 0.716 0.239 0.202 0.227 0.440

intercept -0.395 -1.849 -2.279 -3.091 -2.408 -2.862 -0.994 -0.074 0.000
family history 0.022 -0.004 -0.077 -0.070 -0.076 -0.050 -0.032 -0.033 0.086

high BP 0.197 0.204 -0.033 0.197 0.386 -0.088 0.042 -0.501 -0.101
< 10 pack years 0.253 0.283 -0.127 0.120 0.149 0.003 -0.015 -0.446 0.295
11-19 pack years 0.117 0.231 0.089 0.222 0.138 0.221 0.046 -0.110 0.202
≥ 20 pack years 0.200 0.166 -0.028 0.226 0.566 -0.218 0.067 -0.647 -0.360
low education -0.311 -0.570 -0.080 -0.384 -0.051 -0.546 -0.036 0.194 -0.832
baseline age -0.035 -0.052 0.020 -0.008 0.035 -0.041 0.010 0.018 -0.123
head injury 0.087 0.065 -0.031 0.074 0.215 -0.105 0.019 -0.275 -0.131

0.428 1.885 2.274 3.122 2.461 2.856
-0.410 -0.353 0.246 -0.187 -0.529 0.295
0.260 0.521 0.056 0.285 -0.167 0.603
G13 G14 G15 G16 G17 G18
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Table C7: Parameter Estimates for Rank 3 Model with MCI as Prior State

Covariates Normal A-MCI M-MCI Dementia Dropout Death A1 A2 A3

APOE4 / / / 0.676 0.038 0.189
se / / / 0.346 0.435 0.578
P / / / 0.051 0.930 0.743

intercept / / / -0.800 -2.065 -1.838 -0.994 -0.074 0.000
family history / / / -0.048 -0.066 -0.039 -0.032 -0.033 0.086

high BP / / / -0.603 0.336 -0.417 0.042 -0.501 -0.101
< 10 pack years / / / -0.506 0.130 -0.252 -0.015 -0.446 0.295
11-19 pack years / / / -0.066 0.118 0.098 0.046 -0.110 0.202
≥ 20 pack years / / / -0.810 0.494 -0.644 0.067 -0.647 -0.360
low education / / / 0.066 -0.039 -0.355 -0.036 0.194 -0.832
baseline age / / / 0.008 0.031 -0.035 0.010 0.018 -0.123
head injury / / / -0.346 0.187 -0.277 0.019 -0.275 -0.131

/ / / 0.713 2.111 1.783
/ / / 1.228 -0.462 0.871
/ / / 0.176 -0.151 0.553
/ / / G19 G20 G21
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