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brational, electronic and electron translational energy modes, the degree of thermal

non-equilibrium can be evaluated by di↵erent levels of Ttr and Tve.

Thermal non-equilibrium can be observed in many regions of the flow field. Sec-

tion 4.3 studies the re-entry of the Stardust vehicle, where the relaxation region can

be seen behind the shock wave. In this region, the vibrational-electronic energy mode

lags behind the translation-rotational energy mode, as is seen by the di↵erent levels of

temperatures Ttr and Tve (Fig. 4.8 (a)). Another example is shown where the flow ex-

periences a strong expansion when it goes through a hypersonic convergent-divergent

nozzle facility. In this case, the translation-rotational energy has a high degree of

non-equilibrium with the vibrational-electronic energy along the radius in the nozzle

outlet as implied by the two temperatures (Fig. 4.32).

As pointed out above, a gas mixture reacts chemically in a high temperature. A

chemical reaction in the gas mixture occurs from collisions among the gas particles

to break the molecular bond. Since the vehicle flies at high speed, the flow is allowed

little time to go through the environment surrounding the vehicle. The character-

istic time for traveling velocity is, therefore, comparable to the one of the chemical

reactions. Thus, chemical reactions are not fully relaxed, and the flow is in chemical

non-equilibrium. A finite-rate chemical kinetics model is needed to take into account

this e↵ect.

General Numerical Approach to Model the Flow Field

In the flow field, problems can be characterized by local Knudsen number Kn, which

is defined as the ratio of the mean free path to some characteristic length based on

geometry or gradients. The mean free path is defined as the average distance of a

molecule travels before colliding with another molecule in a reference frame of the

flow field. Computational Fluid Dynamics (CFD) is a powerful numerical simulation

approach that has been introduced in the past three decades and can be used as a

design tool for reentry flow problems. The equation system is constructed assuming
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of a continuum description, which corresponds to low-Kn region. For rarefied gas or

low-density flow in high-Kn region, underlying assumptions in a continuum regime

tend to break down, and CFD is not valid, and other methods have to be used [10,11].

1.3 Thermal Protection System

Thermal Protection Systems are designed to withstand the high heating environment

of planetary entry, and to protect the underlying vehicle structure and payload. Since

the temperature level varies at di↵erent parts of the vehicle, several di↵erent materials

can be chosen for the TPS, considering that each material bears specific temperature

capability, durability, and weight [12, 13].

There are two main categories of TPS materials: ablative materials, such as the

one used on the Apollo missions, and non-ablative materials, such as the ceramic tiles

of the space shuttles. The former can also be divided into two sub-categories: charring

(also known as pyrolyzing) and non-charring ablators. Next generation of NASA

missions calls for larger, heavier entry system. One key challenge is the development

of low mass TPS for higher entry speeds. Of the many TPS options, light weight

charring ablators are very promising, and are more and more used because of their

e↵ectiveness and low density. They are made of a fibrous non-pyrolyzing matrix

(usually carbon or silicon carbide) and are impregnated with pyrolyzing material

(often phenolic resin). These materials react to the flow through pyrolysis and the

so-called “surface” ablation. Pyrolysis is the process in which the phenolic polymer

gradually carbonizes at high temperatures, losing mass, generating pyrolysis gases

and leaving pores within the material. These gasses are then expelled through the

porous structure of the material and blown into the chemical reacting boundary layer.

“Surface” ablation occurs in a thin volume near the surface TPS and takes the form

of mass loss through oxidation vaporization, and other erosive processes [14].

To numerically investigate the in-depth thermo-chemical behaviors of the charring

ablator problem, a Material Response (MR) code is used [15–19]. Details of the
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modeling approach of charring ablators are beyond the scope of this document, but

can be found in Ref. [19].

1.4 The Surface

Once the resin has pyrolyzed, the surface smoothness is altered because of the porous

nature of the material. The roughness of the ablative surface must be considered:

“dimples” in the surface can trigger the transition to turbulence in regions that were

previously laminar, thus drastically increasing heat transfer [20].

Pyrolysis chemistry e↵ects must also be modeled properly, which means that the

pyrolysis gas flowing through the porous surface must be carefully accounted for.

The flow field is a↵ected by the chemical species that are expelled from the ablating

surface and injected into the near-wall flow. The presence of this ablation gas greatly

reduces the heat flux on the vehicle by (1) thickening the thermal boundary layer and

reducing the temperature gradient near the wall; (2) blowing a relatively cooler gas

into the flow field; and (3) changing the gas composition near the wall which triggers

chemical reactions.

To account for the surface chemistry, one can use thermo-chemical tables (the

so-called B0 tables) that use boundary layer theory and heat transfer coe�cient to

extract ablation rates from equilibrium chemistry calculation. Otherwise, the surface

chemistry can be assessed from the flow side or the material side, using finite-rate

kinetics models.

1.5 Coupling of the Aerothermal Free Flow and the Flow in Thermal

Protection System

To analyze an atmospheric entry trajectory, traditionally, the heat flux and pressure

at the surface of the vehicle is calculated using a CFD solver. These surface values

are then fed into an MR code which calculates surface recession rate, pyrolysis gas

blowing rate, species composition and temperature evolution. In such a way, the
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outer free flow and TPS can be loosely coupled. Because the entry process involves

transient interactions between spacecraft and the flow field, it is of interest to develop

a coupled method where both systems are solved simultaneously.

Recent research teams [21–24] have integrated a material response code within a

flow solver, using a strongly coupled approach. They use trajectory data to converge

the flow and compute the transient material response solution between trajectory

points. Their solid-gas interface, however, are not synchronized implicitly in time.

Moreover, the two solvers are not directly merged, and even though fully integrated,

the two codes are still separated and independent. For some certain type of problems,

a fully-coupled approach that provides time-dependent solutions for both the material

and the fluid is required.

Removing those surface e↵ects, coupling of the aerothermal flow field and the TPS

can be mainly taken as the coupling of a free flow and a porous medium flow, which

requires understanding of the physics at the free/porous interface. The following sec-

tion reviews the general research development on coupling of a free flow and a porous

medium flow to date, especially the interface condition implementations between two

flow regions.

Review on Coupling of A Free Flow and A Porous Medium Flow

Fluid entering a porous medium occurs over a wide range of natural phenomena

and industrial applications. It occurs, for instance, for water seeping into the ground,

seawater interacting within corals reef [25], a flow going through oil filters, and a mul-

tiphase counter-current flow in a packed bed reactor [26]. The mathematical theory

and numerical analysis are well established for either a free flow or a porous medium

flow: the Navier–Stokes equation is considered as a full description for the free flow’s

momentum in continuum, while Darcy’s law for the porous medium flow is formulated

based on experiments. In spite of being a research topic and a classical problem for

decades, coupling of a free flow with a porous medium flow is still unresolved. Even
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the mathematical theory of the coupled problem is not completely understood [27].

It is to be noted that, strictly speaking, the Navier–Stokes and Darcy’s equations

refer only to equations of momentum. A complete description of the fluid behavior

also includes mass conservation and energy conservation. Thus, when referring to

“coupling of a free flow with a porous medium flow”, the whole system of equation

is considered, not just the momentum e↵ects.

Coupling of a free flow and a porous medium flow can be accomplished by ana-

lyzing the whole problem in a two-domain or multi-domain method. That is, distinct

equation systems that account for each side are developed respectively. Two ma-

jor mathematical di�culties arise from coupling the two systems [28, 29]. First, the

orders of corresponding di↵erential operators of momentum equations (the Navier–

Stokes and Darcy’s law) are di↵erent on both regions. Second, the nature of the

boundary conditions at the interface between two regions is not trivial. An extension

of Darcy’s law, the Brinkman model [30], can remove the first di�culty. It is for-

mulated to account for the high porosity of the porous medium or to impose no-slip

conditions on solid walls.

When it comes to an application, previous works on the topic of using the multi-

domain method mainly considered incompressible, low-temperature flow regions. Mass

conservation is thus simplified to a divergence-free flow. Temperature changes can be

neglected most of the time, implying energy equation is not considered. Therefore,

the remaining di�culty lies in defining the condition for pressure, normal velocity

and tangential velocity. One classical condition states the continuity of pressure and

normal velocity across the interface. This approach is robust and generally accepted

as interface condition for both viscous and inviscid flows. In the case of tangential

velocity, one can assume it vanishes for very low permeability or it is continuous as

well for large permeability through the porous medium [31]. Beavers & Joseph [32]

proved the inaccuracy of both of these choices in their experiments, and later they

proposed an equation that accounts for the discontinuity of the interfacial tangential
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velocity. This boundary condition was validated experimentally by Beavers & Joseph

and analytically by Sa↵man [33]. Many other types of interfacial conditions have

been proposed since then, but mainly based on the manipulation of tangential veloc-

ity and tangential shear stress [34, 35]. In addition to these, Le Bars & Worster [31]

defined a viscous transition zone close to the interface on the porous medium side,

which yields a solution that agrees well with the already known result.

It is noted that coupling a free flow with a porous medium flow can also be

accomplished by analyzing the whole problem in a single-domain. The interface

between two subdomains is now within one domain implicitly, thus avoiding a lot of

mathematical di�culties. The Navier–Stokes equation or Darcy’s law is solved on

either side of the interface as the momentum equation accordingly. Alternatively, a

single Darcy–Brinkman equation [31] that is valid for both sides can be used. The

solution for the free flow and the porous medium flow are thus fully coupled. This

requires the development of a whole new universal code for both sides from the very

beginning, which is a very limited constraint, or to extend the current CFD solver to

become a universal code, which is more promising.

The literature related to the single-domain method concentrates on the finite-

element method (FEM) [36,37], and the control-volume finite-element method (CVFEM)

[3,4]. Recently, Schrooyen [38] extended a universal Discontinuous Galerkin Method

(DGM) solver and successfully simulated a multi-species reactive flow case with the

presence of a porous medium. However, traditional CFD solvers, especially the

modern hypersonic fluid dynamics solvers, are constructed in terms of finite volume

method (FVM).

1.6 Scope of Current Work

There is still a long way to go before having a real-time, full assessment of the whole re-

entry flight integrating all of phenomena previously described. This thesis, however,

aims to push the state of the art one step further by using compressible, viscous
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flow, and investigating coupled e↵ects for further use in exploring thermo-chemical

non-equilibrium e↵ects in hypersonic flows with ablation.

For this purpose, a CFD code has been developed to solve the flow field. This flow

solver is part of the Kentucky Aerothermodynamics and Thermal Response System

(KATS) [39] for the work. KATS also includes an MR solver, which shares the

same numerical platform and framework as the CFD solver, that has been developed

independently and is not part of this work [40].

This proposed work mainly consists of two topics. First, the development of a

CFD solver, using FVM, capable of accurately and e�ciently dealing with thermo-

chemical non-equilibrium e↵ects in weakly ionized hypersonic flows, as well as very

low Mach number flows via switch of convective flux schemes and the use of a pre-

conditioner. It has been extensively coupled with the MR solver [41] and spallation

phenomenon code [42–44].

The second topic focuses on the modification or extension of the CFD solver to

couple the free flow and the porous medium flow involved in the coupling of the

aerothermal flow field and the TPS. A first attempt is made on the multiple-domain

method [41], which is carried out to couple the existing CFD solver and MR solver

through balancing the fluxes at the flow/porous interface. A series of coupling nu-

merical tests are conducted progressively. Promising results are obtained for free flow

coupled with solid material through heat and mass transfer only, both in transient

and steady state. However, the boundary condition inconsistency in the full coupling

flow tube problem is still a question for further investigation. Later, a single-domain

method is selected. Specifically, a new Darcy–Brinkman equation for the compressible

free flow and the porous medium flow is developed. The mass conservation and en-

ergy balance are also volume averaged by incorporating the porosity. The location of

the free flow region and the porous medium is known a priori. Transitions of di↵erent

regions are through controlled values of porosity and permeability. Coupling of the

free flow and the porous medium flow is thus implicitly accomplished, and solutions
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of the free flow field and the porous domain are solved simultaneously. Additionally,

instead of imposing explicit interface boundary conditions, such as Beavers & Joseph

conditions in the FEM and CVFEM, this work aims to let the flow “formulate” inter-

face conditions implicitly. This is achieved by balancing the flux across the interface,

the same as for the free flow and the porous medium flow itself.

Copyright c� Huaibao Zhang 2015.
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Chapter 2 Governing Equations of Fluid Dynamics

2.1 Introduction

The governing equations necessary to model the flow field take the form of unsteady

compressible Navier–Stokes equations, combined with mass conservation and energy

conservation equations. They can be cast in conservation form, in three-dimensional

Cartesian coordinates as

@Q

@t
+r · (FFF �FFFd) = S . (2.1)

By introducing the JacobianJJJ = @Q
@P , the primary dependent variables in the time

derivative are changed from the conservative variables Q to the primitive variables

P while preserving the conservative formulation:

JJJ @P

@t
+r · (FFF �FFFd) = S . (2.2)

The reason justifying this change of dependent variables is two-fold. First, it is closely

associated to the implementation of Jacobians. In this work, numerical flux Jacobians

are constructed based on primitive variables rather than conservative variables. Using

the primitive variables also facilitates the derivation of analytical Jacobians. Secondly,

preconditioning can be accomplished by modifying only some specific terms in the

matrix JJJ . Such modification is needed for very low Mach number flow. This pro-

cedure can rescale the system eigenvalues, overcome the disparity among them and

successfully be able to converge a steady-state solution with satisfactory convergence

rate.

In the energy equation, the flow can either be described by a single temperature

T , when in equilibrium, or by two temperatures, when in non-equilibrium. The
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Table 4.5: Nozzle geometry

Inlet diameter Di 22.1 mm
Throat diameter Dt 3.18 mm
Exit diameter De 31.8 mm
Longitudinal radius RL 3.18 mm
Wall thickness tw 1.65 mm
Lip thickness tl 0.25 mm
Inlet half-angle ✓i 45 deg
Exit half-angle ✓e 20 deg
Area ration (De/Dt)

2 100

Table 4.6: Nozzle flow condition for the experimental configurations

Total pressure Po 6400 Pa
Total temperature To 699 K
Mass flow rate ṁ 6.8 ⇥ 10�5 kg/s
Reynolds number Rea 850
Wall temperature Tw1

551 K
Wall temperature Tw2

539 K

Rea = 4ṁ/µoDt,where µo is the gas viscosity at To.

1 includes the region from the inlet down to the point a little downstream of the

throat, and zone 2 the remaining region. Zone 1 can still be specified with the inlet

boundary conditions while for zone 2, a factor 1⇥ 10�4 is multiplied to both pressure

and density, while the temperature remains unchanged.

Numerical Investigation

The numerical simulation involves four boundaries: inlet, outlet, symmetry, and wall.

Physical parameters were computed from the given testing conditions in Table 2 then

used to feed inlet and wall boundary conditions. The outlet and symmetry properties

are set as zero gradient, and zero normal velocity respectively.
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Results and Discussion

Iso-contours

Iso-contours of flow properties are shown in Fig. 4.25 to Fig. 4.29 . A much higher level

of pressure and density can be noticed at the converging section, and both of them

decrease along the streamwise direction. Ttr and Tve have di↵erent contour patterns

since the flow in this nozzle is in thermal non-equilibrium, and Tve lags behind of Ttr.

The flow accelerates out of the nozzle through the converging section which is shown

from the Mach number contour. Downstream of the physical throat, but quite close

to it, a Mach 1 line is shown, which indicates the actual throat location.

The nozzle flow lies in variant flow regimes, which are characterized by di↵erent

Kn numbers. Mean free path is calculated according to Eqn. (4.1). The Kn number is

then evaluated based on this mean free path and the nozzle outlet diameter De (Table

4.6) as the characteristic length. The Kn number contours are shown in Fig. 4.30,

in which a large value of Kn number is found at the outlet and the maximum value

occurs in the corner close to the wall boundary. The order of the magnitude of the

Kn number indicates that the flow is in rarefied regime, and the possible breakdown

of the continuum in the boundary layer. Therefore, CFD may fail to capture the flow

behaviors in this region.

Properties Profile at Exit

The velocity in Fig. 4.31 is normalized by the thermal speed Uo in equilibrium and

the radial distance R is normalized by the nozzle exit diameter De. Uo is defined by

Uo =
p

2RTo , (4.9)

When compared to another CFD solution [1], small discrepancy is found. KATS

predicts a relative lower value of velocity magnitude than the reference CFD data.

The mass flow rate, however, is conserved in this work. The mass flow rates at
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Figure 4.25: Pressure iso-contour for the convergent-divergent nozzle flow

Figure 4.26: Density iso-contour for the convergent-divergent nozzle flow
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Figure 4.27: Ttr iso-contour for the convergent-divergent nozzle flow

Figure 4.28: Tve iso-contour for the convergent-divergent nozzle flow
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Figure 4.29: Mach iso-contour for the convergent-divergent nozzle flow

Figure 4.30: Kn iso-contour for the convergent-divergent nozzle flow
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the inlet and the outlet only di↵er by a relative error of 0.39%. A more significant

di↵erence of velocity profile, however, occurs when compared to the DSMC result.

It is to be noted that the DSMC solution is believed to be more accurate, which

shows the velocity at the nozzle wall is nonzero. It also predicts a higher velocity

than the CFD solution. The significant discrepancy indicates that the slip e↵ect in

rarefied flows has important e↵ects on the boundary layer. The no-slip boundary

conditions normally employed for continuum CFD code are not su�cient to capture

this phenomenon. Instead, a slip wall boundary account for the rarefied e↵ects must

be used [1].

Figure 4.31: U/U
o

results from KATS compared to Ref. [1]
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Figure 4.32: T/T
o

results from KATS compared to Ref. [1]

The Pitot pressure and Mach number immediately behind the shock are related by

po2 = p
2

(1 +
� � 1

2
M2

2

)
�

��1 . (4.13)

One can also get Rayleigh Pitot tube formula combining the above equations.

After some manipulation, it implies

po2 =
po2
p
2

p
2

p
1

p
1

= p
1

✓

(� + 1)2M2

1

4�M2

1

� 2(� � 1)

◆

�

��1 1� � + 2�M2

1

� + 1
. (4.14)

To account for rarefaction e↵ects, the ideal pressure po2 is corrected by

pom =
100.089

Re0.12
po2 , for Re  5.6 , (4.15)
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Then the Jacobian of conservative variables Q with respect to primitive variables

P, is given by

JJJ =
@Q

@P
=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 · · · 0 0 0 0 0
...

. . .
...

...
...

...
...

0 · · · 1 0 0 0 0

u · · · u ⇢ 0 0 0

v · · · v 0 ⇢ 0 0

w · · · w 0 0 ⇢ 0

@E
@⇢1

· · · @E
@⇢

ns

⇢u ⇢v ⇢w @E
@T

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

The total energy per unit volume, E, is given by

E =
X

s

⇢ses +
1

2
⇢(u2 + v2 + w2)

=
X

s

⇢sCvtr,sT +
X

s

⇢seve,s +
X

s

⇢sh
o
s +

1

2
⇢(u2 + v2 + w2) .

(7.82)

It yields

@E

@⇢s
= es +

1

2
(u2 + v2 + w2)

@E

@T
=
X

s

⇢s(Cvtr,s + Cvve,s)
(7.83)

Chemistry Jacobians

The chemistry Jacobians take the form of

@S

@P
=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

@ẇ
i

@⇢
s

@ẇ
i

@u
@ẇ

i

@v
@ẇ

i

@w
@ẇ

i

@T
tr

@ẇ
i

@T
ve

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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1

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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Recall the chemical production rate of species Ai in reaction r is given by

ẇir = (⌫ 00
ir � ⌫ 0

ir)

"

103kfr

ns
Y

j=1

✓

10�3

⇢j
Mj

◆⌫0
jr

� 103kbr

ns
Y

j=1

✓

10�3

⇢j
Mj

◆⌫00
jr

#

. (7.84)

And the net mass production of species Ai is given by

ẇi = Mi

nr
X

r=1

(⌫ 00
ir � ⌫ 0

ir)



kfr
Rf

kfr
� kbk

Rb

kbr

�

. (7.85)

where nr is the number of reaction, and

Rfr

kfr
= 103

ns
Y

j=1

✓

10�3

⇢j
Mj

◆⌫0
jr

(7.86)

Rbr

kbr
= 103

ns
Y

j=1

✓

10�3

⇢j
Mj

◆⌫00
jr

(7.87)

The Jacobians of ẇi with respect to primitive variables are given by

@ẇi

@P
= Mi

nr
X

r=1

(⌫ 00
ir � ⌫ 0

ir)



@kfr
@P

Rfr

kfr
+ kfr

@

@P

✓

Rfr

kfr

◆

� @kbr
@P

Rbr

kbr
� kbr

@

@P

✓

Rbr

kbr

◆�

(7.88)

The forward reaction rate coe�cient is given by

kfr = AfrT
⌘
r

c exp(�Tar/Tc) (7.89)

Its derivatives, @k
fr

@P , are given by

@kfr
@P

= kfr

✓

⌘r
T 0
c

+
Tar

T 02
c

◆

dT 0
c

dTc
(ar

Tc

Ttr

@Ttr

@P
+ br

Tc

Tve

@Tve

@P
) (7.90)

T 0
c =

1

2

h

(Tc + Tmin) +
p

(Tc � Tmin)2 + ✏2
i

, (7.91)

dT 0
c

dTc
=

1

2
+

1

2

Tc � Tmin
p

(Tc � Tmin)2 + ✏2
(7.92)

The backward reaction rate coe�cient is given by

kbr(Tbc) =
kfbr(Tbc)

Kcr(Tbc)
(7.93)
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Its derivatives, @k
br

@P , are given by

@kbr
@P

= �kbr
1

Kcr

dKcr

dT 0
bc

(ar
Tbc

Ttr

@Ttr

@P
+ br

Tbc

Tve

@Tve

@P
) +

1

Kcr

@kfbr
@P

(7.94)

1

Kcr

@kfbr
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T 0
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T 02
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)
dT 0

b
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+ br
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@Tve
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) (7.95)
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1
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=
ns
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The derivatives of the forward reaction rate divided by the forward reaction rate

coe�cient, @
@P

⇣

R
fr

k
fr

⌘

, are given by
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The derivatives of the translational-rotational temperature, Ttr, are given by

@Ttr
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(7.99)

The derivatives of the vibrational-electron-electronic temperature, Tve, are given

by

@Tve
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The backward reaction rate divided by the backward reaction rate coe�cient, R
br

k
br

,

is given by
Rbr

kbr
= 103

Y

j=1

(10�3

⇢j
Mj

)⌫
00
jr (7.101)

Its derivatives are similar to those of forward.
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Non-Equilibrium Jacobians

The non-equilibrium Jacbians take the form of
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v

@⇢
ns

@ẇ
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The total vibrational energy is composed of

ẇv = Sc2v + St2v + Sh2e � Se2i . (7.102)

Its Jacobians are given by
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The derivatives of chemistry terms are given by
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=
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where
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, (7.105)

The derivatives of translational-vibrational energy relaxation term are given by
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@P
=
X

s=mol.



@⇢s
@P

e⇤vs � evs
⌧s

+ ⇢s
@e⇤vs/@P� @evs/@P

⌧s

�

, (7.106)

where the relaxation time, ⌧s, is assumed to be constant.
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The derivatives of electron-vibrational energy relaxation terms, @S
h2e

@P are quite

straightforward, whose derivation is neglected here.

Finally,the derivatives of electron impact ionization energy relaxation term are

given by

@Se2i

@P
= M+

N ÎN
@ẇN+,eii

@P
+M+

O ÎO
@ẇO+,eii

@P
(7.107)

where the subscript, eii, denotes the electron impact ionization reaction.

Three-body dissociation reaction

A speedup approach can be used for a dissociation reaction where one reactant de-

noted by AB, is going to be dissociated into atoms A and B. The collision partner

involved can be any of the species (AB, A or B) in the gas mixture. It is denoted by

M in the following reaction.

AB +M ⌦ A+B +M (7.108)

Dealing with reaction in terms of each collision partner M separately would be

time consuming. An e�cient way which can take account of them all together pro-

posed by Alexandre Martin is used in this work. The associated computations are

then immensely speeded up.

In the dissociation of AB coming about by collision with a particle M , there is no

production change for M in this reaction, leaving only AB, A and B to be considered.

The chemical production rate of AB can be given by
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Forward and backward reaction rate coe�cients, kf and kb may not the same for

variant collision particles. However, by setting reference reaction rate coe�cients,

denoted by k⇤
f and k⇤

b , and introducing a ratio coe�cient ' which can account for the

variation of them, it ends up with a form of more consistency.
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Similarly, the production rate of species A is calculated by
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Note that the variation of kf or kb for each collision particle M only comes from

the coe�cient of Afr in Arrhenius curve fit equation. By using this trick, the chemical

production rate of the species due to all dissociation reactions can be taken account

of together without doing repeatable work. This can greatly save computation time.
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