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ABSTRACT OF DISSERTATION

Innovative Statistical Models in Cancer Immunotherapy Trial Design

A challenge arising in cancer immunotherapy trial design is the presence of non-proportional
hazards (NPH) patterns in survival curves. We considered three different NPH patterns
caused by delayed treatment effect, cure rate and responder rate of treatment group in
this dissertation. These three NPH patterns would violate the proportional hazard model
assumption and ignoring any of them in an immunotherapy trial design will result in sub-
stantial loss of statistical power.

In this dissertation, four models to deal with NPH patterns are discussed. First, a piece-
wise proportional hazards model is proposed to incorporate delayed treatment effect into
the trial design consideration. Second, we consider a piecewise proportional hazard model
with cure rate to deal with both delayed treatment effect and cure rate. Third, we extended
the second model as a general random delayed cure rate model in cancer immunotherapy
trials design. Fourth, we proposed a piecewise proportional hazard responder rate model to
deal with both delayed treatment effect and responder rate. Sample size formulas are de-
rived for weighted log-rank tests under a fixed alternative hypothesis under various models.
The accuracy of sample size calculation using the new formulas are assessed and compared
with the existing methods via simulation studies. The sensitivities for mis-specifying the
random delay time are also studied through simulations. What is more, a real immunother-
apy trial is used to illustrate the study design along with practical consideration of balance
between sample size and follow-up time in second model.

KEYWORDS: clinical trial, non-proportional hazards, delayed treatment effect, cure rate,

responder and non-responder, weighted log-rank test
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Chapter 1 Introduction

1.1 Immuno-oncology and immunotherapy

Cancer immunotherapy, also known as immuno-oncology, is a form of cancer treatment

that use the power of the body′s own immune system to prevent, control, and eliminate

cancer. Instead of poisoning a tumor or destroying it with radiation, the immune system

is educated to attack ′foreign′ cells but at the same time leave healthy, self-tissues alone.

Based on this characteristic, immunotherapy may have fewer side effects compared with

chemotherapy. Also, the immune system learns to go after cancer cells if they return,

which means some patients can get long term survival after treatment. What is more, some

cancers, such as skin cancer, do not respond well to chemotherapy or radiation, but may

respond well to immunotherapy. These benefits make immunotherapy a powerful tool in

oncology during recent years.

There are several types of cancer immunotherapy (Smith, Smith), some types of im-

munotherapy boost your disease-fighting powers overall. Others teach it to attack specific

kinds of cells found in tumors.

Checkpoint Inhibitors

Immune system usually uses checkpoints, which is a system of ”brakes”, to stop it from at-

tacking your own healthy cells when attacked by invaders like bacteria and viruses. Cancer

cells sometimes turn these checkpoints on or off so they can hide themselves. Checkpoint

inhibitors are drugs that release the brakes on your immune system. In general, they stop

the proteins on the cancer cells from pushing the stop button. This turns the immune system

back on and the T cells are able to find and attack the cancer cells.

Seven of these drugs are approved by FDA, like PD-1 inhibitors included Pembrolizumab

(Keytruda), Nivolumab (Opdivo) and Cemiplimab (Libtayo); PD-L1 inhibitors inclded

Atezolizumab (Tecentriq), Avelumab (Bavencio) and Durvalumab (Imfinzi); CTLA-4 in-

hibitor included Ipilimumab (Yervoy). These drugs block the proteins PD-1, PD-L1, and
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CTLA-4 on the surface of immune cells, to let these cells go after the cancerous growth.

Adoptive T cell therapies

Adoptive T cell therapies include a number of different types of immunotherapy treat-

ments. They all use immune cells that are grown in the lab to large numbers followed by

administering them to the body to fight the cancer. Sometimes, immune cells that natu-

rally recognize cancer cells are used, while other times they are modified to make them

recognize and kill the cancer cells.

There are several types of Adoptive T cell therapies such as Tumor-Infiltrating Lym-

phocytes (TIL) therapy, Engineered T-cell (TCR) therapy, CAR T-cell therapy and Natural

Killer (NK) cell therapy. TIL therapy is the treatment that T-cells are grown from the tumor

itself, TCR therapy is the treatment that tumor-specific T-cells are grown from the blood.

CAR T-cell therapy is the treatment that a chimeric antibody/T-cell receptor gene is put into

peripheral T-cells and NK cell therapy is the treatment that add CARs to NK cells helps

them target the cancer better.

Monoclonal Antibodies

Antibodies actually are proteins made by immune system. They find and stick to other

proteins called antigens on cancer cells and then recruit other parts of your immune system

to destroy the cancer. Monoclonal antibodies is the antibodies made in the lab. In general,

they are engineered versions of immune system proteins designed to attack specific parts

of cancer cells.

Naked monoclonal antibodies are the most common type used in cancer treatment.

These antibodies are unattached to anything and boost your immune system’s response

against the cancer, or block antigens that help the cancer grow and spread.

Conjugated monoclonal antibodies usually attach a chemotherapy drug or radioactive

particle and effect directly to cancerous cells. It reduces side effects and helps chemother-

apy and radiation treatments work better.

Bispecific monoclonal antibodies can attach to two proteins at once, for example can

attach to both a cancer cell and an immune cell, which helps the immune system attack the

2



cancer.

Cancer Vaccines

Cancer vaccines are made from dead cancer cells, proteins or pieces of proteins from can-

cer cells, or immune system cell, these substances put in the body to activate an immune

response against certain types of cancer.

FDA has approved three vaccines to treat cancer. Sipuleucel-T (Provenge) treats ad-

vanced prostate cancer when hormone therapy doesn’t work; Talimogene laherparepvec

(T-VEC) treats melanoma skin cancer that has spread and Bacillus Calmette-Guérin, or

BCG, treats early-stage bladder cancer.

1.2 Proportional hazards model

Most traditional time-to-event clinical trials are designed and analyzed using proportional

hazards assumption and log-rank test. Let S1(t), S2(t), and λ1(t), λ2(t) be the hazard

functions and survival functions for the control and treatment groups, respectively. The

hazard functions of two groups satisfy the proportional hazards model which can be written

as

λ2(t) = δλ1(t),

or equivalently, the survival distributions of the two groups satisfy

S2(t) = [S1(t)]δ,

where δ is a constant hazard ratio over time, which is a measurement of treatment effect

in survival curve between treatment group and control group. Figure 1.1 shows survival

function and hazard function between control and treatment groups, the survival function

of control group follows Weibull distribution with shape parameter κ = 1.2 and hazard

ratio δ = 0.7.
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Figure 1.1: Survival function and hazard function for two groups

1.3 Log-rank test

A two-sided hypothesis for testing the difference between survival distributions of the ex-

perimental treatment group and control group is represented by

H0 : S2(t) = S1(t) vs. H1 : S2(t) 6= S1(t).

Under the PH model λ2(t) = δλ1(t), this hypothesis is equivalent to the following hypoth-

esis for the hazard ratio:

H0 : δ = 1 vs. H1 : δ 6= 1. (1.1)

The log-rank test is a well-known optimal statistic to test the above hypothesis. To

introduce the log-rank test, we assume that the unique and ordered failure times for two

groups are denoted by t1 < t2 < · · · < tk, let d1j be the number of failures and n1j be the

number at risk in control group at time tj . Let d2j and n2j be the corresponding numbers

for treatment group. Thus, there are dj = d1j + d2j failure in both groups at tj and a total

of nj = n1j + n2j is the number at risk in both groups at tj , and e1j = n1jdj/nj is the

expected number of failure at tj for the control group. It is well known that the log-rank

score statistic

U =
k∑
j=1

(d1j − e1j)

is an asymptotically normally distributed with mean zero under the null hypothesis and its
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asymptotic variance can be estimated by

V =
k∑
j=1

n1jn2jdj(nj − dj)
n2
j(nj − 1)

.

The log-rank test is then given by

L =
U√
V
. (1.2)

Log-rank test is most commonly used for survival endpoint as well as sample size and

power calculation, since log-rank test is asymptotically the most powerful test when the

proportional hazards assumption holds. Based on log-rank test formula (1.2), Schoenfeld

(Schoenfeld, 1981) proposed a sample size calculation method under a local alternative

assumption. Given a two-side type I error of α, the study power of 1 − β, ω1 and ω2 are

the proportions of subjects assigned to treatment and control groups, and P is the overall

failure probability of two groups, then the total sample size n for the two groups is given

by

n =
(z1−α/2 + z1−β)2

ω1ω2[log(δ)]2P
,

and the total number of events is given by

d =
(z1−α/2 + z1−β)2

ω1ω2[log(δ)]2
. (1.3)

This number of events formula (1.3) is widely used in trial design since it is robustness

against the design parameters. This means there is no need to specify any assumption such

as censoring distribution or accrual distribution. Power of the study only depends on the

number of events observed, it is also called event-driven in trial design.

1.4 Non-proportional hazards pattens in immunotherapy trial design

In this thesis, we focus on cancer immunotherapy trial design and now the question is that

can proportional hazards assumption and log-rank test also be used and performed well for

cancer immunotherapy trail design?

Figure 1.2 is the study of Sipuleucel-T (Kantoff et al., 2010), the first therapeutic cancer

vaccine approved by FDA. This study shows a delayed separation of survival curves in
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Figure 1.2: Kaplan Meier estimates of overall survival curve for Sipuleucel-T study

Kaplan Meier plot, which means there is no difference between placebo and Sipuleucel-

T treatment group after randomization, then the curves separate after around 6 months.

This delayed patten is largely caused by the indirect mechanism of action of the vaccine,

which requires time to mount an effective immune response and time for that response to

be translated into an observable clinical response.

Since immunotherapies are very effective, a proportion of patients will have long term

survival, some patients will be cured after treatment. This is another typical feature in

immunotherapy trial. Coiffier conducted a study of a randomized trial to compare CHOP

plus Rituximab with CHOP alone in elderly patients with diffuse large-B-cell lymphoma

(Coiffier et al., 2002). Figure 1.3 is the survival curves of control and treatment groups

have a plateau at the end of the study.

Robert conducted a randomized Phase III immunotherapy trial for untreated metastatic

melanoma (Robert et al., 2011) in figure 1.4. Patients were randomly assigned to receive

either Ipilimumab plus dacarbazine or dacarbazine plus placebo. Delayed treatment effect
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Figure 1.3: Event-free Survival among Patients assigned to Chemotherapy with Cyclophos-
phamide, Doxorubicin, Vincristine, and Prednisone (CHOP) or with CHOP plus Ritux-
imab.

Figure 1.4: Overall survival of Robert’s study for previously treated metastatic melanoma.
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Figure 1.5: K-M plot of the random delayed treatment effect scenario with random time
lag.

and cure rate appear in this study together.

The delayed treatment effect in figure 1.2 and figure 1.4 happened at a fixed point,

there is no difference between survival distributions of control and treatment groups. After

fixed delayed time point, the survival distribution curves seperated. However, in practice

each patient may get different response to the same therapy based on individual biological

manner, and the duration of treatment effect time may vary heterogeneously from subject

to subject rather than fix at a constant. Xu illustrated a random delayed treatment effect

model (Xu et al., 2018) in which the treatment effect time follows a random variable on an

interval instead of a fixed time point. Figure 1.5 is the Kaplan-Meier plot in Xu’s paper,

which is generated using a synthetic dataset simulated based on a confidential real study.

This figure illustrates that random delayed pattern follows uniform distribution between 3

and 12 months, which means the two survival curves will not separate until 3 months, then

gradually separate at an increasing hazard ratio until 12 months, and remain at a constant
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hazard ratio after 12 months.

Delayed treatment effect and cure rate are two features in cancer immunotherapy trial

design, both of these two features imply violate proportional hazards assumption, using

standard sample size and power calculation methods based on log-rank test that would

lead to a loss of power. So in this thesis we focus on how to deal with such kind of non-

proportional hazards models, how to choose test statistics and how to calculate sample size

during trial design.

1.5 Summary

The dissertation is organized in six chapters. In Chapter 2, we introduce a piecewise

weighted log-rank test to incorporate the delayed treatment effect into the trial design and

derive a new sample size under a fixed alternative hypothesis for the delayed treatment

effect model.

Chapter 3 extends the delayed treatment effect model in Chapter 2. Here, we proposed

a piecewise proportional hazard cure rate model to incorporate both delayed treatment

effect and cure rate into the trial design consideration. Same as Chapter 2, the sample

size formula is derived under a fixed alternative hypothesis. Chapter 3 also includes a

real immunotherapy trial to illustrate the study design along with practical consideration to

balance between sample size and follow-up time.

Chapter 4 is concerned with general random delayed cure rate model to design cancer

immunotherapy trials. This kind of model considers the case when delayed treatment effect

is not happened at a fixed point and illustrates that duration of lag is more suitable to be

treated as an interval rather than a fixed constant. The sensitivity for mis-specifying random

delayed time is also studied through simulations.

A novel design is proposed in Chapter 5 to deal with the dichotomized response in-

curred from non-responders in treatment group. How to find the weight function is the key

point for such kind of NPH pattern. Sample size and empirical power are compared with

existing weight functions via simulation studies.

Chapter 6 is the summary of four models from Chapters 2-5 and also discuss the fu-

ture work. Appendices containing the proofs and other technical details are included after
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Chapters 6.
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Chapter 2 Delayed Treatment Effect

2.1 Introduction

In recent years, immunotherapies have been increasingly used for treating relapse or advanced-

stage cancer patients. Because of the indirect mechanism of action of immunotherapy, it

takes time for an immune outcome to be elicited and translated into a clinical outcome.

Hence, a delayed treatment effect is often seen in immunotherapy trials wherein survival

curves show no effect during the initial part of the study and evidence appears only later

in the study. For example, the cancer vaccine trial of sipuleucel-T showed delayed sepa-

ration of survival curves by 6 months (Kantoff et al., 2010). These findings suggest that

the proportional hazard (PH) assumption no longer holds true in such cases, and using

conventional sample size and power calculation methods (Schoenfeld, 1981; Freedman,

1982) based on the standard log-rank test will lead to substantial loss of statistical power.

Various methods based on weighted log-rank tests have been proposed to increase the ef-

ficiency of designing clinical trials with a delayed treatment effect. For example, Lakatos

(Lakatos, 1988) considered the Tarone-Ware class of weights to design clinical trials with

a delayed treatment effect. Fine (Fine, 2007) and Hasegawa (Hasegawa, 2014) presented

similar methods for calculating sample sizes with the Fleming-Harrington Gρ,γ class of

weights(Fleming and Harrington, 1991), however they were not optimal to maximize sta-

tistical power under the delayed treatment effect model.

Recently, Xu et al. (Xu et al., 2016) showed that the piecewise weighted log-rank

test was optimal for cases of delayed onset of treatment effect and derived sample size

and power calculations for the piecewise weighted log-rank test under a sequence of local

alternative hypotheses. However, in practice, the alternative hypothesis is always fixed and

does not change as sample size increases. Thus, the accuracy of the sample size formula

derived under the local alternative needs to be carefully assessed by simulations.

This Chapter is organized as follows. Section 2.2 introduces a piecewise weighted

log-rank test and section 2.3 derives a new sample size formula under a fixed alternative
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hypothesis for the delayed treatment effect model based on section 2.2. The accuracy of

the formula derived under local vs fixed alternative is compared for both balanced and

unbalanced designs showed in section 2.4 and a real example is in section 2.5. Section 2.6

contains discussions and conclusions.

2.2 Piecewise weighted log-rank test

A two-sided hypothesis for testing the difference between survival distributions of the ex-

perimental treatment group and control group is represented by

H0 : S2(t) = S1(t) vs. H1 : S2(t) 6= S1(t),

where labels 1 and 2 represent control and treatment groups, respectively. Under the PH

model λ2(t) = δλ1(t), where λ1(t) and λ2(t) are the hazard functions of the control and

treatment groups, respectively, and δ is the hazard ratio between the treatment and control

groups, this hypothesis is equivalent to the following hypothesis for the hazard ratio:

H0 : δ = 1 vs. H1 : δ 6= 1. (2.1)

The log-rank test is a well-known optimal statistic to test the above hypothesis. To

introduce the weighted log-rank test, consider a study that compares survival curves with

n subjects randomly allocated to the control or treatment group, with probability ω1 and

ω2 (ω1 + ω2 = 1), respectively. Let D be the set of indices of subjects who experience

the event of interest. At each distinct event time tj, j ∈ D, let d1j and d2j be the number

of events occurring at time tj for the control and treatment groups, respectively, with n1j

and n2j subjects being at risk in the two groups just before tj , for j ∈ D. Thus, there are

dj = d1j + d2j events at tj among a total of nj = n1j + n2j subjects, and e1j = n1jdj/nj

is the expected number of events at tj for the control group. Let wj be the weight at each

distinct event time tj and all wj are nonnegative weights, it is well known that the weighted

log-rank score statistic

U =
∑
j∈D

wj(d1j − e1j),
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is an asymptotically normally distributed with mean zero under the null hypothesis and its

asymptotic variance can be estimated by

V =
∑
j∈D

w2
j

n1jn2jdj(nj − dj)
n2
j(nj − 1)

. (2.2)

In cases where a delayed treatment effect occurs, let t0 denote the hazard ratio changing

time point, which measures the duration of the delayed treatment effect since randomiza-

tion. This delayed treatment effect model can be represented as follows:

λ2(t) =

 λ1(t), 0 ≤ t ≤ t0,

δλ1(t), t > t0,
(2.3)

which is referred to as the piecewise proportional hazard (PWPH) model. In practice, the

delayed treatment effect often arises when there are no detectable effects of the treatment

during the period [0, t0] but the treatment becomes fully effective afterward, as demon-

strated in the sipuleucel-T trial. In this case, the optimal weight function for the log-rank

test is proportional to log hazard ratio (Schoenfeld, 1981; Xu et al., 2016). Thus, we can

set optimal weights to be w1 = 0 for j ∈ D \ D2 and w2 = 1 for j ∈ D2 which results a

piecewise optimal weighted log-rank test given as follows:

L =

∑
j∈D2

(d1j − e1j){ ∑
j∈D2

n1jn2jdj(nj−dj)
n2
j (nj−1)

}1/2
, (2.4)

where D2 is the set of indices of subjects who had the event after t0. It is essentially similar

to the standard log-rank test when only the events accumulated after the delayed onset are

taken into account in the test statistics. This result makes intuitive sense, because if the

treatment effect is not revealed until t0, the events before t0 do not contribute to detecting

the treatment effects.

2.3 Sample size calculation

Xu et al. (Xu et al., 2016) showed that the total number of events required after the treat-

ment effect onset calculated by the optimal piecewise weighted log-rank test of (2.4) is
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given as follows:

d =
(z1−α/2 + z1−β)2

ω1ω2{log(δ)}2
, (2.5)

where α and β are the type I and II errors, respectively, and ω1 is the sample size allocation

ratio of control group, ω2 = 1 − ω1. It is clear that the power in (2.5) is driven by the

number of events after the delayed phase. Under the PWPH exponential model, Xu et

al. (Xu et al., 2016) further derived an analytic power calculation method based on a

piecewise weighted log-rank test (APPLE) which has been implemented in an R package

‘DelayedEffect.Design’.

However, the exponential distribution assumption is strong and may be invalid for long-

term survival studies. In the following section, the APPLE method is extended to a general

class of PWPH models for flexibility of trial design. A new sample size formula is derived

under a fixed alternative hypothesis to improve the accuracy of sample size estimation, and

performance of the APPLE method and new formula are compared via simulation studies.

Let p1 and p2 be the failure probabilities of the control and treatment groups, respec-

tively, after the delayed phase and P = ω1p1 + ω2p2 be the overall failure probability of

two groups after the delayed phase. Then, the sample size required for the study is given

by

n =
(z1−α/2 + z1−β)2

ω1ω2[log(δ)]2P
, (2.6)

which has the same form as the Schoenfeld formula (Schoenfeld, 1981), however calcu-

lations of the failure probabilities are different. To calculate sample size, it is assumed

that subjects are uniformly accrued over a time period ta, an additional follow-up time tf ,

with a study duration τ = ta + tf , and no subject drops out or is lost to follow-up. Then,

the censoring distribution is a uniform distribution on interval [tf , ta + tf ]. As shown in

Appendix A, the probability of failure after the delayed phase for the control group can be

calculated as

p1 = S1(t0)− 1

ta

∫ ta+tf

tf

S1(t)dt, (2.7)
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and the probability of failure after the delayed phase for the treatment group can be calcu-

lated as

p2 = S2(t0)− 1

ta

∫ ta+tf

tf

S2(t)dt

= {S1(t0)}1−δ

[
{S1(t0)}δ − 1

ta

∫ ta+tf

tf

{S1(t)}δdt

]
. (2.8)

Under the PWPH exponential model, formula (2.6) reduces to the APPLE method derived

by Xu et al. (Xu et al., 2016) under a sequence of local alternatives (Schoenfeld, 1981)

which assume that the log hazard ratio is order of O(n−1/2), that is the hazard ratio δ → 1

as n → ∞. Thus, when the hazard ratio is small or effect size is large, the sample size

calculated by formula (2.6) may be inaccurate.

To provide accurate sample size calculation, we have shown that the piecewise weighted

log-rank test L under a fixed alternative H1 : δ < 1 is asymptotically normally distributed

with mean
√
ne and variance σ̃2/σ2, where e = µ/σ, and µ, σ2 and σ̃2 are given by equa-

tions (2.10-2.12), respectively (see Appendix B for the derivation). Thus, given a two-sided

type I error of α, the study power of 1− β satisfies the following:

1− β = P (|L| > z1−α/2|H1)

' P

{
σ(L−

√
ne)

σ̃
>
σ(z1−α/2 −

√
ne)

σ̃

∣∣∣H1

}
= Φ

(√
nµ− σz1−α/2

σ̃

)
,

and it follows that
√
nµ− σz1−α/2 = σ̃z1−β.

Solving for n, we obtain the following sample size formula

n =
(σz1−α/2 + σ̃z1−β)2

µ2
, (2.9)

where µ, σ2, and σ̃2 are given as follows:

µ = ω1ω2(1− δ)c(δ)
∫ ∞
t0

{S1(t)}δG(t)λ1(t)

[ω1 + ω2c(δ){S1(t)}δ−1]
dt, (2.10)

σ2 = ω1ω2c(δ)

∫ ∞
t0

{S1(t)}δ[ω1 + ω2δc(δ){S1(t)}δ−1]G(t)λ1(t)

[ω1 + ω2c(δ){S1(t)}δ−1]2
dt, (2.11)

σ̃2 = ω1ω2δc(δ)

∫ ∞
t0

{S1(t)}δG(t)λ1(t)

[ω1 + ω2δc(δ){S1(t)}δ−1]
dt. (2.12)
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with c(δ) = {S1(t0)}1−δ and G(t) is the common survival distribution of censoring time

for both control and treatment groups. The total number of events after delayed phase can

be calculated by d = nP , where P = ω1p1 + ω2p2 is the overall failure probability of two

groups after the delayed phase.

2.4 Simulation

To evaluate the accuracy of the APPLE method and formula (2.9), sample sizes were cal-

culated under a PWPH Weibull model for the following parameter settings: The Weibull

distribution of the control group was S(t) = e−λt
κ; hazard ratio changing time point was

set to t0 = 0.5 and the proportion of control patients who could survive beyond t0 was

set to S1(t0) = 90%; hazard ratio δ was set between 0.4 and 0.7; assuming a uniform ac-

crual with accrual duration ta = 1 and follow-up time tf = 2; the shape parameter of the

Weibull was set at κ = 0.5, 1, and 1.5 to represent the decreasing, constant and increas-

ing hazard functions, respectively; sample size allocation ratio was set to ω1 = 1/2 (1:1

allocation for control and treatment group), 1/3 (1:2 allocation and more subjects assigned

to the treatment group) and 2/3 (2:1 allocation and more subjects assigned to the control

group). Random samples for the PWPH Weibull model were generated according to the

method given in Appendix C. Assuming no loss to follow up, sample sizes were calculated

with a two-sided type I error of 5% and a power of 80%. Empirical powers were estimated

by performing 10,000 simulation runs. The simulation results for Xu’s formula (2.6) are

shown in Table 2.1 and for the new formula proposed by us (2.9) are shown in Table 2.2.
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Table 2.1: Sample sizes (n) were calculated using Xu’s formula (2.6) under the Weibull
delayed treatment effect model with S1(t0) = 90%, the proportion of subjects who could
survive beyond the delay time t0 = 0.5, a two-sided type I error of 5%, power of 80%. The
corresponding empirical type I errors (α̂) and powers (1− β̂) were estimated by performing
10,000 simulation runs.

κ = 0.5 κ = 1 κ = 1.5
ω1 δ n α̂ 1− β̂ n α̂ 1− β̂ n α̂ 1− β̂
1/2 .40 483 .053 .760 168 .051 .773 84 .048 .785

(1:1) .45 614 .051 .774 213 .049 .782 106 .052 .788
.50 787 .052 .785 273 .051 .790 137 .051 .798
.55 1025 .049 .792 356 .047 .788 178 .050 .797
.60 1361 .052 .798 473 .051 .792 238 .050 .802
.65 1856 .051 .799 647 .054 .789 327 .051 .804
.70 2631 .048 .792 918 .049 .799 466 .046 .803

1/3 .40 630 .052 .846 215 .053 .842 104 .054 .845
(1:2) .45 786 .048 .845 269 .050 .845 131 .051 .847

.50 991 .049 .840 340 .052 .844 166 .049 .838

.55 1270 .052 .833 436 .051 .830 214 .051 .835

.60 1662 .049 .840 573 .049 .833 283 .047 .835

.65 2239 .050 .832 773 .050 .826 385 .050 .834

.70 3134 .047 .829 1086 .052 .827 544 .050 .819
2/3 .40 478 .051 .684 167 .050 .696 85 .053 .730

(2:1) .45 616 .052 .708 216 .048 .716 110 .049 .739
.50 801 .052 .723 281 .051 .733 143 .053 .747
.55 1055 .052 .730 370 .049 .741 189 .052 .763
.60 1418 .050 .742 497 .052 .759 254 .051 .764
.65 1957 .052 .753 687 .047 .763 352 .048 .767
.70 2803 .049 .767 985 .046 .771 506 .050 .785
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Table 2.2: Sample sizes (n) were calculated using new formula (2.9) under the Weibull
delayed treatment effect model with S1(t0) = 90%, the proportion of subjects who could
survive beyond t0 = 0.5, a two-sided type I error of 5%, power of 80%. The correspond-
ing empirical type I errors (α̂) and powers (1 − β̂) were estimated by performing 10,000
simulation runs.

κ = 0.5 κ = 1 κ = 1.5
ω1 δ n α̂ 1− β̂ n α̂ 1− β̂ n α̂ 1− β̂
1/2 .40 514 .050 .793 175 .052 .797 85 .048 .799

(1:1) .45 644 .054 .793 220 .052 .793 107 .052 .795
.50 816 .054 .796 280 .054 .797 138 .051 .798
.55 1052 .052 .794 362 .049 .808 179 .050 .801
.60 1387 .049 .798 479 .048 .789 239 .050 .797
.65 1882 .053 .804 652 .051 .800 328 .051 .804
.70 2655 .050 .807 923 .047 .798 467 .046 .805

1/3 .40 547 .051 .801 188 .054 .797 94 .051 .819
(1:2) .45 690 .051 .802 239 .052 .795 120 .057 .809

.50 881 .051 .803 305 .050 .800 154 .053 .815

.55 1143 .050 .799 397 .052 .799 201 .049 .813

.60 1514 .046 .803 528 .046 .806 268 .051 .815

.65 2065 .046 .798 721 .052 .809 368 .050 .813

.70 2926 .054 .803 1025 .051 .803 525 .045 .802
2/3 .40 612 .048 .794 205 .049 .789 97 .052 .789

(2:1) .45 760 .050 .793 256 .051 .795 122 .051 .784
.50 957 .051 .793 324 .051 .792 156 .052 .791
.55 1227 .051 .792 418 .052 .790 203 .049 .790
.60 1608 .049 .799 550 .052 .798 270 .048 .795
.65 2171 .050 .799 746 .051 .797 369 .048 .791
.70 3050 .051 .790 1053 .047 .792 525 .049 .793
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The results from sample size calculations and simulations can be summarized as fol-

lows. For balanced designs, the APPLE estimates the sample size accurately for a large

hazard ratio (δ ≥ 0.5) (a small effect size), which is consistent with the simulation results

reported by Xu et al. (Xu et al., 2016) under the exponential distribution (κ = 1). How-

ever, for a small hazard ratio (δ < 0.5) (a large effect size), the sample sizes calculated

by the formula (2.6) were underestimated. Because the APPLE was derived under local

alternatives, it would be expected to perform well when the hazard ratio was close to 1 and

perform worse when hazard ratio departs away from 1. New formula (2.9) was derived

under the fixed alternative, so it would be expected to perform well no matter hazard ratio

was close to 1 or not. The simulation results shown in Table 2.2 confirmed this conclusion.

For unbalanced designs, the APPLE method overestimated the sample size when more

subjects were allocated to the treatment group (1:2 allocation ratio) and underestimated the

sample size when more subjects were allocated to the control group (2:1 allocation ratio).

The empirical power could be as low as 63% (17% lower than the nominal level), and

could be as high as 86% (6% higher than the nominal level) while the new formula (2.9)

performed very well for both cases of the unbalanced designs. The empirical powers simu-

lated from new formula (2.9) were all close to the nominal level of 80%. Thus, overall the

new formula (2.9) outperformed the APPLE method under both balanced and unbalanced

design.

2.5 Example

Eggermont et al. (Eggermont et al., 2016) conducted a phase III, placebo-controlled im-

munotherapy trial for advanced melanoma. Patients who had undergone complete resection

of stage III melanoma were randomly assigned in a 1:1 ratio to receive either placebo or

Ipilimumab (checkpoint inhibitor), and the primary endpoint for the trial is recurrence-free

survival and overall survival (OS) is a secondary endpoint. Visual separation of Kaplan-

Meier curves for OS occurred approximately 6 months after randomization. The original

trial design didn’t consider delayed treatment effect. Here, we illustrate sample size calcu-

lation to incorporate delayed treatment effect. It is assumed that the OS times for patients

receiving placebo follow an exponential distribution, whereas the OS times for patients re-

19



ceiving Ipilimumab follow a piecewise exponential distribution with a delay time t0 = 6

months as follows:

S1(t) = e−λt,

S2(t) =

 e−λt, 0 ≤ t < t0,

ce−δλt, t ≥ t0,

where c = e−λt0(1−δ) is a normalizing constant, λ is the hazard rate of the placebo group

and δλ is the hazard rate of the Ipilimumab group after time t0. Thus, the hazard ratio can

be expressed as

λ2(t)

λ1(t)
=

 1, 0 ≤ t < t0,

δ, t ≥ t0.

From the trial report (Eggermont et al., 2016), a 5-year OS for placebo group is 54.4%, or

hazard rate of the placebo group λ = − log(0.544)/(5 × 12) = 0.01, and hazard ratio δ

after the delay time t0 = 6 (months) is 0.72 (Figure 2.1).

Further, assuming patients are accrued to the trial for ta = 30 months at a constant rate

(uniform accrual), followed for tf = 50 months, and the study duration τ = ta + tf = 80

months. Using the new formula, the number of events after delayed phase and sample size

are 391 and 1051, respectively, to achieve 90% power with a two-sided type I error of 5%.

The R code for the sample size calculation is provided in Appendix D.

A major concern to use the proposed new formula (2.9) is its robustness against the

design parameters. To address this concern, we explored the relationship between sample

size/number of events after the delayed phase and different design parameters. Specifically,

we set up the length of accrual to 20 and 30 months; accrual duration to 40, 50 and 60

months; underlying distribution is the Weibull distribution e−λtκ with shape parameter κ =

0.7, 1 and 1.3, and hazard rate of the placebo group λ = 0.005 and 0.01. Sample size and

number of events after the delay time t0 = 6 months were calculated under the combination

of these design parameters. The results (Table 2.3) showed that sample size changed from

as small as 492 to as large as 7982. In contrast, the number of events after delayed phase

changed from 390 to 393, which is almost a constant and very robust against the length

of accrual, length of follow-up and underlying survival distribution. Therefore, to avoid
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Figure 2.1: Survival Curves for the ipilimumab and placebo groups

potential power loss due to misspecification of the design parameters, it is wise to design

the trial by an event-driven. That is the trial cutoff time point is based on the observed

number of events after the delayed phase rather than number of patients enrolled on the

study. Thus, if an event-driven design is used for this example, we will stop the trial

accrual after observing 393 deaths occurred after the delayed phase to guarantee the desired

statistical power for detecting the treatment effect.
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Table 2.3: Sample size (n) and number of events after delayed phase t0 = 6 months (d)
were calculated using new formula (2.9) Weibull model with shape κ = 0.7, 1 and 1.3;
hazard rate of control λ = 0.01 and 0.005; accrual duration ta = 20 or 30 months; follow-
up time tf = 40, 50 and 60; hazard ratio δ = 0.72; equal allocation ratio 1:1; two-sided
type I error of 5% and power of 90%. The corresponding empirical powers (%) were
estimated by performing 10,000 simulation runs.

κ = 0.7 κ = 1 κ = 1.3
λ ta tf d n 1− β̂ d n 1− β̂ d n 1− β̂

.01 20 40 392 4167 90.1 391 1326 90.2 391 603 89.5
50 392 3572 90.0 391 1124 89.8 391 541 90.0
60 392 3152 90.2 391 986 89.8 392 503 89.9

30 40 392 3850 89.6 391 1218 89.9 391 572 90.1
50 392 3351 89.8 391 1051 89.6 392 522 90.0
60 392 2988 90.0 390 934 90.3 393 492 90.5

.005 20 40 393 7982 89.8 392 2348 89.9 390 867 90.4
50 392 6814 90.2 392 1953 90.2 390 732 89.7
60 392 5988 89.8 391 1682 89.9 390 645 90.5

30 40 392 7358 89.8 392 2134 89.9 390 795 90.1
50 392 6378 89.8 391 1808 89.8 390 686 90.2
60 392 5664 90.0 391 1578 90.3 390 614 90.2
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2.6 Discussion

A challenge arising in cancer immunotherapy trials design is the presence of a delayed

treatment effect which violates the proportional hazards assumption. As a result, the tra-

ditional survival trial design based on the standard log-rank test that ignores the delayed

treatment effect will lead to substantial loss of statistical power. Xu et al. (Xu et al., 2016)

proposed using the piecewise weighted log-rank test to incorporate the delayed treatment

effect into the study design. However, their method was derived under the local alterna-

tive hypothesis and may result in an underestimated sample size when the hazard ratio is

small (δ < 0.5). Their formula could also overestimate or underestimate the sample size

for unbalanced designs even when the hazard ratio is relatively large. This is because Xu’s

formula used the Schoenfeld’s approach which makes assumption that the at-risk ratio is

constant throughout the trial. However, the actually at-risk ratio changes as the trial pro-

gresses, particularly for an unbalanced design.

To provide accurate sample size estimation, we derived a new sample size formula

under the fixed alternative hypothesis without making the constant at-risk ratio assumption.

The new formula is not limited to the exponential PWPH model. It can be applied to other

distribution as well. We conducted extensive simulation studies which show that the new

formula provides accurate sample size estimation not only for balanced design but also

for unbalanced design. Extraordinary, the number of events after delayed phase calculated

using new formula (2.9) is very robust against the length of accrual, length of follow-up

and underlying survival distribution. Thus, the widely used event-driven trial design is

applicable to the new formula to avoid potential power loss due to misspecification of the

design parameters.

The PWPH model discussed in this paper assumes that the delayed treatment effect is

homogeneous across the individual subjects. It is however more natural to assume that the

effect may vary heterogeneously across individuals, in which case a random delayed effect

model would be more appropriate. Both Xu et al. (Xu et al., 2018) and Liu et al. (Liu

et al., 2018) proposed a generalized weighted log-rank test to accommodate for the random

delayed effect model. Our proposed method can be extended to the random delayed effect
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model as well. Further extension the proposed method is possible to a general delayed

treatment effect model with random lag time by using generalized weighted log-rank test

which is an optimal test. We will discuss this extension in chapter 4.

Copyright© Jing Wei, 2021.
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Chapter 3 Delayed Treatment Effect with Cure Rate

3.1 Introduction

Cancer immunotherapy trials have two special features. First, a delayed treatment effect

discussed in Chapter 2 is common to see in survival distributions between the control and

treatment groups. Second, because immunotherapies are very effective, a proportion of

patients may be cured. These two features suggest that the standard proportional hazards

(PH) model (Cox, 1972) no longer holds true, and using conventional sample size and

power calculation methods based on the standard log-rank test will lead to substantial loss

of statistical power (Schoenfeld, 1981; Freedman, 1982).

To include these features in trial design, Wang et al. (Wang et al., 2012) proposed a

proportional hazards cure rate (PHCR) model while Xu et al. (Xu et al., 2016) proposed

a piecewise proportional hazards (PWPH) model. However, currently no model exits to

incorporate both features in the trial design. Recently, Liu et al. (Liu et al., 2018) proposed

a model to incorporate both cure rate and delayed treatment effect. However, the cure

rate is a nuisance parameter in their model and the trial can not be designed to testing the

hypothesis for the cure rate. Furthermore, the sample size calculations from all existing

methods were derived under a local alternative hypothesis. In practice, the alternative

hypothesis is always fixed and does not change as sample size increase. Thus, accuracy of

the sample size formula derived under a local alternative hypothesis may not be guaranteed.

So we proposed a new method to properly design an immunotherapy trial.

This Chapter is organized as follows. Section 3.2 proposed a piecewise proportional

hazards cure rate (PWPHCR) model to incorporate both delayed treatment effect and cure

rate. A sample size formula is derived for a weighted log-rank test under a fixed alternative

hypothesis in section 3.3. Section 3.4 is the simulation studies to access the accuracy of

sample size calculation using the new formula and compared with the existing methods.

Section 3.5 includes a real immunotherapy trial to illustrate the study design along with

practical consideration of balance between sample size and follow-up time for the long-
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term survivors.

3.2 Piecewise proportional hazards cure rate model

For a two-arm randomized survival trial, let Si(t) denote the overall survival distribution

(or latency survival distribution) and let λi(t) and fi(t) denote its corresponding hazard

function and density function for group i, where i = 1 and 2 represents control group

and treatment group, respectively. Similarly, let S∗i (t) denote the continuous conditional

survival function (or latency survival function) of uncured patients and let λ∗i (t) and f ∗i (t)

denote its hazard function and density function for group i. The cure rate in group i is

defined by πi, where 0 ≤ πi < 1. Then, overall survival distribution of the control group is

a mixture cure model (Farewell, 1982)

Si(t) = πi + (1− πi)S∗i (t). (3.1)

To incorporate a delayed treatment effect discussed in chapter 2 into the design con-

sideration, we assume no treatment effect within period up to a fixed time point t0 (> 0)

and then full treatment effect after time t0. Thus, the survival model can be described by a

PWPH model with the latency hazard function of the treatment group is given by

λ∗2(t) =

 λ∗1(t), t ≤ t0,

δλ∗1(t), t > t0,

where δ is the hazard ratio of uncured patients after a fixed delay time t0. We assume that

t0 is known from pilot data or preclinical study, then for t > t0 we can get

S∗2(t) = e−Λ∗
2(t)

= e−
∫ t
0 λ

∗
2(µ)dµ

= e
−

∫ t0
0 λ∗1(µ)dµ−

∫ t
t0
δλ∗1(µ)dµ

= e−
∫ t0
0 λ∗1(µ)dµe−

∫ t
0 δλ

∗
1(µ)dµe

∫ t0
0 δλ∗1(µ)dµ

= S∗1(t0)[S∗1(t)]δ[S∗1(t0)]−δ.
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Hence, the latency survival distribution of the treatment group is given by

S∗2(t) =

 S∗1(t), t ≤ t0,

[S∗1(t0)]1−δ [S∗1(t)]δ , t > t0.
(3.2)

Combining mixture cure model (3.1) and PWPH model (3.2) we can define following

PWPHCR model. A mixture cure model for the control group is

S1(t) = π1 + (1− π1)S∗1(t)

with density function f1(t) = (1− π1)f ∗1 (t) and hazard function λ1(t) = f1(t)/S1(t), and

a mixture cure rate model with a delayed effect for the treatment group

S2(t) =

 π1 + (1− π1)S∗1(t), t ≤ t0,

π̃2 + (1− π̃2) [S∗1(t0)]1−δ [S∗1(t)]δ , t > t0.

However, due to the delayed treatment effect and difference of cure rates between the

control arm and treatment arm, this mixture distribution S2(t) has a discontinuous point at

t0 with a jump size of (π̃2− π1)(1−S∗1(t0)). To smooth S2(t) at t0, we multiple a constant

c = {π1 + (1 − π1)S∗1(t0)}/{π̃2 + (1 − π̃2)S∗1(t0)} to rescaling of the S2(t) when t ≥ t0

and resulting following PWPHCR model

S2(t) =

 π1 + (1− π1)S∗1(t), t ≤ t0,

π2 + (1− π2)c̃ [S∗1(t0)]1−δ [S∗1(t)]δ , t > t0,
(3.3)

where π2 = cπ̃2 and c̃ = c(1− π̃2)/(1− cπ̃2). It can be verified that S2(t) is a continuous

survival function of a mixture cure model with cure rate of π2. The density function for

treatment group is

f2(t) =

 (1− π1)f ∗1 (t), t ≤ t0,

(1− π2)c̃δ [S∗1(t0)]1−δ [S∗1(t)]δ−1 f ∗1 (t), t > t0,

and the corresponding hazard function is λ2(t) = f2(t)/S2(t).

If π1 = π̃2 and δ = 1, we have c = 1 and π1 = π2 and S2(t) = S1(t). The PWPHCR

model (3.3) is a general model which includes, as special case, the following:

• π1 = π2 = 0 (no cure) and t0 = 0 (no delay), the PWPHCR model reduces to the

standard PH model (Schoenfeld, 1981);
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• π1 = π2 = 0 (no cure) and t0 6= 0 (with delay), the PWPHCR model reduces to the

PWPH model(Xu et al., 2016);

• π1 ≤ π2 6= 0 (with cure) and t0 = 0 (no delay), the PWPHCR model reduces to the

PHCR model (Wang et al., 2012).

Under the PWPHCR model, testing the null hypothesis of no treatment effect

H0 : S1(t) = S2(t),

is equivalent to testing the following null hypothesis:

H0 : δ = 1 and π1 = π2.

Various alternative hypotheses are of interest: H1a : δ 6= 1, π1 6= π2, with differences in

both the short-term survival and the cure fraction; H1b : δ 6= 1, π1 = π2, with a difference

in the short-term survival but not in the cure fraction; and H1c : δ = 1, π1 6= π2, with

difference in the cure fraction but not in the short-term survival.

3.3 Sample size calculation

Assume that there are n patients allocated between the control and treatment groups. Let

D be the set of identifiers in the two groups who died, and let tj be the death time of the jth

patient in either group. We assume that the {tj} are distinct. Let yj be an indicator variable

of the control group of jth patient; that is, yj = 1 if the jth patient belongs to the control

(group 1) and yj = 0 if the jth patient belongs to the treatment (group 2). If we define ni(t)

to be the number at risk just before time t in group i, then the weighted log-rank test L is

given by

L =

∑
j∈D

wj{yj − p(tj)}[∑
j∈D

w2
jp(tj){1− p(tj)}

]1/2
.

where p(tj) = n1(tj)/{n1(tj) + n2(tj)} and wj = W (tj), and W (t) is a weight function

converging to a deterministic function w(t). As shown in Appendix E, under the PWPHCR

model and a fixed alternative hypothesis, the weighted log-rank test L is asymptotically
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normally distributed with mean
√
ne, where e = µw/σw and variance σ̃2

w/σ
2
w, where µw, σ2

w

and σ̃2
w are given in following equations (3.5-3.7). With a two-sided type I error of α, the

power of 1− β satisfies the following:

1− β = P (|L| > z1−α/2|H1)

' P

(
σw(L−

√
ne)

σ̃w
>
σw(z1−α/2 −

√
ne)

σ̃w

∣∣∣H1

)
= Φ

(√
nµw − σwz1−α/2

σ̃w

)
.

Therefore it follows that
√
nµw − σwz1−α/2 = σ̃wz1−β.

Solving for n, we obtain the following sample size formula for the weighted log-rank test

n =
(σwz1−α/2 + σ̃wz1−β)2

µ2
w

, (3.4)

where

µw =

∫ ∞
0

w(t)
π(t)(1− π(t)){λ1(t)− λ2(t)}
π(t)λ1(t) + {1− π(t)}λ2(t)

V (t)dt, (3.5)

σ2
w =

∫ ∞
0

w2(t)π(t){1− π(t)}V (t)dt, (3.6)

σ̃2
w =

∫ ∞
0

w2(t)
π(t)(1− π(t))λ1(t)λ2(t)

[π(t)λ1(t) + {1− π(t)}λ2(t)]2
V (t)dt, (3.7)

and function V (t) is an incomplete density function of failure and π(t) is a ratio of prob-

ability at risk of a subject belong to the control group vs. the overall probability at risk of

the two groups. It can be shown that

V (t) = {ω1λ1(t)S1(t) + ω2λ2(t)S2(t)}G(t),

π(t) =
ω1S1(t)G(t)

ω1S1(t)G(t) + ω2S2(t)G(t)
.

where ω1 and ω2 are the allocation ratio to the control and treatment groups, respectively.

This new formula (3.4) can be applied to the following special cases:

• π1 = π2 = 0 and t0 = 0, sample size calculation under the standard PH model was

derived by Schoenfeld (Schoenfeld, 1981);

29



• π1 = π2 = 0 and t0 > 0, sample size calculation under the PWPH model was derived

by Xu et al. (Xu et al., 2016); and

• π1 ≤ π2 6= 0 and t0 = 0, sample size calculations under the PHCR model were

derived by Wang et al. (Wang et al., 2012) and Xiong and Wu (Xiong and Wu,

2017).

Because an optimal weight function for the log-rank test under the PWPHCR model is

unknown, we simply use the piecewise weighted log-rank test (i.e., w(t) = 0, t ≤ t0 and

w(t) = 1, t > t0) for sample size calculation in the following sections.

3.4 Simulation

To evaluate the accuracy of the proposed new sample size formula (3.4) and compare to

the existing methods, sample sizes were calculated under the PWPHCR model where the

latency distribution of the control group is the Weibull distribution S∗1(t) = e−λt
κ , cure

rate of the control group is set to π1 = 0.1 and fixed delay time is set to t0 = 0.5, with

other design parameters set as follows: Hazard ratio δ is set between 0.3 and 0.7; accrual

duration ta = 2 and follow-up time tf = 10 for the PWPHCR model and ta = 1 and tf = 2

for other models; the shape parameter of the Weibull distribution is set to κ = 0.5, 1, and

1.5 to represent the decreasing, constant and increasing hazard functions, respectively; the

hazard parameter λ is determined by the proportion of uncured control patients who could

survive beyond t0 is S∗1(t0) = 90% or set to λ = 0.1 for the model without a delayed

treatment effect; and sample size allocation ratio is set to ω1 = 1/2 (1:1 equal allocation).

Random samples for the PWPHCR Weibull model were generated according to the method

given in Appendix F. Assuming uniform accrual and no loss to follow up, sample sizes were

calculated with a two-sided type I error of 5% and power of 80% or 90%. Empirical powers

were estimated by performing 10,000 simulation runs.

First, sample sizes and total number of events were calculated under the general PW-

PHCR model and the corresponding empirical type I errors and powers were simulated and

shown in Table 3.1. Results showed that the simulated empirical powers are all close to the
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nominal level. Thus, the new formula gives the accurate sample size estimation in all three

hypothesis testing scenarios under the PWPHCR model.

Second, by setting π1 = π2 = 0 and t0 = 0, the PWPHCR model reduces to a stan-

dard PH model. We compared our new formula to the Schoenfeld formula. The simulation

results (Table 3.2) showed that the new formula provides more accurate sample size esti-

mation than the Schoenfeld formula, particular when the hazard ratio is small (δ < 0.5)

whereas the Schoenfeld formula underestimated the sample size and number of events.

Third, by setting π1 = π2 = 0, and t0 > 0, the PWPHCR model reduces to a PWPH

model with a fixed delay time t0. Therefore, we compared the new formula to the Xu’s

formula. Again, the simulation results (Table 3.3) showed that the new formula is more

accurate than the Xu’s formula, particular when the hazard ratio is small (δ < 0.5) whereas

the Xu’s formula underestimated the sample size and number of events.

Fourth, by setting π1 ≤ π2 6= 0, and t0 = 0, the PWPHCR model reduces to PHCR

model. Thus, we compared the new formula to the Wang’s formula. Simulation results

(Table 3.4) showed that Wang’s formula did not provide the correct sample size estima-

tion. However, the new formula provides more accurate sample size and number of events

estimation in all scenarios.

Overall, the new formula is general and applicable to many different survival models

to accommodate for the cancer immunotherapy trial design. The new formula provides

more accurate sample size and number of events estimation than exiting methods in the

literature.
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Table 3.1: Sample sizes (n) were calculated by the new formula (3.4) under the PWPHCR
Weibull model with S∗1(t0) = 90% for three hypothesis scenarios. Uniform accrual with
accrual period ta = 2 and follow-up duration tf = 10, no loss to follow-up, cure rate
of the control group π1 = 0.1, a two-sided type I error of 5% and power of 90%. The
corresponding empirical type I errors (α̂) and powers (1− β̂) were estimated by performing
10,000 simulation runs.

PWPHCR κ = 0.5 κ = 1 κ = 1.5

Test δ/π2 n(d) α̂ 1− β̂ n(d) α̂ 1− β̂ n(d) α̂ 1− β̂
H1a .70/.12 1324(418) .049 89.8 561(427) .053 90.1 870(775) .050 89.7

.65/.13 906(280) .049 90.2 368(276) .051 89.6 551(488) .052 89.4

.60/.14 653(197) .050 90.0 257(190) .050 90.6 377(332) .049 89.3

.55/.15 489(144) .047 89.6 188(135) .054 89.7 272(239) .052 89.2

.50/.16 376(108) .051 89.4 141(100) .056 90.6 204(178) .050 88.5

.45/.17 295(83) .049 89.6 109(75) .047 90.3 156(136) .055 88.7
H1b .70/.1 1525(484) .047 89.6 718(553) .053 90.0 1401(1261) .050 89.7

.65/.1 1075(335) .050 89.9 491(374) .051 89.7 964(867) .049 89.8

.60/.1 787(240) .050 89.7 349(262) .051 90.0 689(619) .050 89.3

.55/.1 593(178) .048 89.9 256(188) .050 90.3 505(455) .049 89.2

.50/.1 457(135) .049 89.9 191(139) .050 90.2 377(339) .049 88.9

.45/.1 358(103) .048 89.6 145(145) .047 90.0 385(256) .053 88.8
H1c 1/.30 1857(595) .051 90.0 301(219) .050 89.7 205(165) .051 90.2

1/.32 1525(484) .047 90.4 252(181) .047 90.3 173(138) .054 90.5
1/.35 1168(366) .055 90.0 198(140) .052 90.4 138(108) .054 89.8
1/.38 921(284) .051 89.8 160(112) .051 90.0 113(88) .055 90.5
1/.40 795(243) .050 89.3 141(97) .056 90.5 100(76) .050 90.6
1/.42 693(210) .052 89.3 125(85) .051 90.2 89(67) .054 90.0

Table 3.2: Sample sizes (n) were calculated using Schoenfeld’s formula (SF) under the
standard PH Weibull model with hazard parameter of control λ = 0.1; uniform accrual
with accrual period ta = 1 and follow-up duration tf = 2; no loss to follow-up; a two-
sided type I error of 5%, power of 80%. The corresponding empirical type I errors (α̂) and
powers (1− β̂) were estimated by performing 10,000 simulation runs.

PH κ = 0.5 κ = 1 κ = 1.5

Method δ n(d) α̂ 1− β̂ n(d) α̂ 1− β̂ n(d) α̂ 1− β̂
SF .30 226(22) .053 .743 148(22) .056 .753 99(22) .048 .751

.35 286(29) .047 .759 188(29) .050 .759 125(29) .047 .771

.40 362(38) .050 .770 237(38) .051 .770 159(38) .048 .784

.45 460(50) .050 .775 301(50) .049 .778 202(50) .052 .787

.50 590(66) .046 .784 387(66) .051 .789 259(66) .052 .789

.55 767(88) .051 .786 504(88) .047 .793 337(88) .050 .790

.60 1019(121) .051 .790 669(121) .051 .796 448(121) .047 .797

.65 1390(170) .054 .796 913(170) .054 .795 612(170) .047 .798

.70 1970(247) .051 .793 1295(247) .049 .798 869(247) .049 .795
New .30 251(25) .049 .793 163(24) .053 .788 107(24) .048 .799

.35 310(31) .051 .795 201(31) .047 .788 133(31) .049 .806

.40 384(40) .049 .788 250(40) .052 .799 166(40) .050 .796

.45 481(52) .049 .801 314(52) .052 .794 208(51) .051 .798

.50 610(68) .054 .793 399(68) .054 .805 265(68) .049 .793

.55 787(91) .046 .802 515(90) .049 .800 343(90) .049 .801

.60 1038(123) .048 .797 680(123) .048 .802 453(122) .043 .800

.65 1408(172) .051 .792 923(172) .051 .798 617(171) .052 .796

.70 1988(250) .049 .804 1305(249) .047 .799 874(249) .051 .799
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Table 3.3: Sample sizes (n) were calculated using Xu’s formula under the PWPH Weibull
model with S∗1(t0) = 90%, the proportion of subjects who could survival beyond t0 = 0.5
of fixed delay time. Assuming uniform accrual with a accrual period ta = 1 and follow-up
duration tf = 2; no loss to follow-up; a two-sided type I error of 5%, power of 80%. The
corresponding empirical type I errors (α̂) and powers (1− β̂) were estimated by performing
10,000 simulation runs.

PWPH κ = 0.5 κ = 1 κ = 1.5

Method δ n(d) α̂ 1− β̂ n(d) α̂ 1− β̂ n(d) α̂ 1− β̂
Xu .30 302(52) .050 .741 105(33) .055 .756 52(27) .053 .768

.35 382(67) .049 .759 132(42) .050 .763 66(36) .058 .779

.40 483(86) .049 .772 168(55) .053 .777 84(46) .052 .785

.45 614(111) .049 .775 213(71) .053 .779 106(60) .049 .788

.50 787(145) .050 .780 273(93) .051 .785 137(80) .051 .798

.55 1025(191) .052 .791 356(124) .048 .791 178(106) .053 .797

.60 1361(257) .051 .791 473(168) .048 .792 238(145) .049 .802

.65 1856(355) .054 .797 647(234) .048 .802 327(202) .051 .804

.70 2631(510) .049 .796 918(339) .050 .800 466(294) .048 .803
New .30 336(59) .050 .792 113(36) .059 .788 54(29) .054 .791

.35 415(73) .047 .787 140(45) .050 .787 68(37) .052 .789

.40 514(92) .052 .782 175(57) .053 .802 85(47) .048 .799

.45 644(117) .047 .789 220(73) .051 .798 107(61) .052 .795

.50 816(150) .050 .796 280(95) .049 .796 138(80) .051 .798

.55 1052(197) .049 .795 362(127) .048 .794 179(107) .050 .801

.60 1387(262) .049 .801 479(170) .050 .799 239(145) .050 .797

.65 1882(361) .052 .793 652(237) .049 .801 328(203) .051 .804

.70 2655(516) .049 .800 923(342) .051 .799 467(295) .046 .805

Table 3.4: Sample sizes (n) were calculated using Wang’s formula under the PHCR Weibull
model with hazard parameter λ = 0.1 and cure rate of π1 = 0.1 for the control group;
uniform accrual with accrual period ta = 1 and follow-up duration tf = 2; no loss to
follow-up; a two-sided type I error of 5%, power of 80%. The corresponding empirical
type I errors (α̂) and powers (1− β̂) were estimated by performing 10,000 simulation runs.

PHCR κ = 0.5 κ = 1 κ = 1.5

Method δ/π2 n(d) α̂ 1− β̂ n(d) α̂ 1− β̂ n(d) α̂ 1− β̂
Wang .30/.12 162(14) .047 .559 108(15) .051 .562 75(15) .054 .594

.35/.13 208(19) .047 .601 139(19) .052 .606 96(20) .053 .608

.40/.14 266(25) .046 .618 177(25) .052 .626 122(26) .048 .635

.45/.15 338(33) .046 .646 225(33) .049 .651 154(34) .048 .658

.50/.16 431(42) .043 .676 286(43) .050 .672 195(44) .054 .690

.55/.17 552(56) .049 .699 366(56) .048 .695 249(57) .051 .701

.60/.18 712(74) .053 .722 471(74) .049 .727 319(75) .048 .730

.65/.19 929(98) .052 .747 612(98) .049 .745 413(99) .048 .755

.70/.20 1231(133) .049 .772 808(133) .046 .779 541(132) .049 .781
New .30/.12 274(24) .048 .784 179(24) .052 .787 119(24) .054 .790

.35/.13 330(30) .048 .795 216(30) .050 .795 144(30) .048 .795

.40/.14 398(37) .046 .790 261(37) .049 .789 174(37) .052 .798

.45/.15 481(46) .046 .794 315(46) .049 .791 211(46) .049 .803

.50/.16 581(57) .052 .797 381(57) .047 .799 255(57) .047 .796

.55/.17 705(71) .052 .806 462(71) .047 .803 309(71) .052 .797

.60/.18 860(89) .046 .793 563(88) .048 .795 376(88) .051 .804

.65/.19 1054(111) .051 .794 689(111) .050 .800 459(110) .047 .798

.70/.20 1302(140) .050 .789 849(139) .045 .788 562(137) .050 .797
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3.5 Example

Robert et al. (Robert et al., 2011) conducted a randomized Phase III immunotherapy trial

for previously untreated metastatic melanoma. Patients were randomly assigned in a 1:1

ratio to receive either Ipilimumab plus dacarbazine (treatment arm) or dacarbazine plus

placebo (control arm), and primary endpoint of the trial is overall survival (OS). Visual

separation of the Kaplan-Meier curves occurred approximately 3.5 months after random-

ization and plateaus in survival curves for both groups (Figure 3.1). The hazard functions

of the two groups approach to zero after the study duration beyond 50-60 months (Figure

3.2).

Figure 3.1: Survival distributions of the control and treatment groups for the example

The original trial design however didn’t consider either delayed treatment effect or cure

rate. With a two-sided type I error 0.05, and power of 90% to detect a hazard ratio 0.727,

the total number of events calculated by the Schoenfeld formula is d = 414. Assuming

accrual time 17 months and follow-up time 17 months, the total sample size calculated
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under exponential distribution is n = 496. Actually, a total of 502 patients were randomly

assigned to the study and it took 37 months follow-up to observe 414 deaths for the final

analysis and the total study duration was about 54 months.

Figure 3.2: Hazard functions of the control and treatment groups for the example

Here, we illustrate the trial design using proposed PWPHCR model to incorporate both

delayed treatment effect and cure rate. From the trial report (Robert et al., 2011), the

medians OS are m1 = 9.1 and m2 = 11.2 months, and cure rates are approximately

π1 = 12% and π2 = 18% for the control arm and treatment arm, respectively. We use the

Weibull distribution S∗1(t) = e−λ1t
κ to model the OS survival for uncured patients of the

control arm, where κ = 1.2 and λ1 = 0.059 are fitted shape and scale parameters. Thus,

the mixture cure model for the control group is

S1(t) = π1 + (1− π1)S∗1(t)

and the mixture cure model with a delayed treatment effect for the treatment group is given
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by

S2(t) =

 π1 + (1− π1)S∗1(t), t ≤ t0

π2 + (1− π2)c̃ [S∗1(t0)]1−δ [S∗1(t)]δ , t > t0

where δ is the hazard ratio after delayed time t0. The hypothesis of interest for this trial

could be

H0 : δ = 1 and π1 = π2 vs. H1a : δ 6= 1 and π1 6= π2

Based on the trial results, we calculate the sample size under the alternatives: δ = 0.72 and

π1 = 12% and π2 = 18% for the PWPHCR model with a delayed treatment effect time

t0 = 3.5 months. Additional, we assume accrual ta = 17 months and follow-up tf = 37

months, the total study duration τ = ta + tf = 54 months, with a two-sided type I error

5% and power of 90%, the total number of events and sample size required for the trial are

d = 466 and n = 553, respectively. This design requires more number of events or sample

size because of the delayed treatment effect. The R code for the sample size calculation is

provided in Appendix G.

3.6 Discussion

It is common that cancer immunotherapy trials present a delayed treatment effect and cure

fraction. Ignoring the delayed treatment effect and/or cure rate in the trial design will result

in substantial power loss. In this chapter, we proposed a PWPHCR model to incorporate

both delayed treatment effect and cure rate in cancer immunotherapy trial design and de-

rived a general sample size formula under a fixed alternative hypothesis. Simulation results

showed that the new formula provides more accurate sample size estimation than existing

methods.

However, a question for the trial design with long-term survivors is how to balance

between sample size and length of follow-up so that the trial is practically feasible and

data are also mature enough. To address this question, we use the example in section

3.5 for illustration. Figure 3.2 shows that hazard functions of both groups approach to

zero after 50-60 months from the time of randomization. Therefore, the study duration

should exceed 50-60 months so the data are mature enough and cure rates are identifiable.
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Figure 3.3: Relationship between sample size/number of events and length of follow-up
for the example

The relationships between follow-up time and total number of events and sample size in

Figure 3.3 shows that as the follow-up time increases, sample size and total number of

events decrease first and then gradually increase to approach reasonable levels after hazard

functions approach zero. To optimize the study design, we will choose the study cutoff

date at the follow-up time tf = 20 months (or study duration τ = 37 months) at which

time the study has a relative small sample size and large power (Figure 3.3). However, the

long-term survival cannot be observed. Therefore, the choice between detecting a short-

term risk reduction and identifying a long-term survival should be made in advance for the

trial design.

Planning an interim analysis is difficult for the trial with both delayed treatment effect

and long-term survival. We do not want to perform an interim analysis too early to stop

futility because it could result a high false negative rate due to the delayed treatment effect.

We also do not want to perform an interim analysis early to stop efficacy because it could
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result unobservable for the cure rate. Furthermore, event-driven trial design is no longer

applied for the PWPHCR model due to the non-proportionality. Additional research is

needed for group sequential design under the PWPHCR model.

Copyright© Jing Wei, 2021.
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Chapter 4 Random Delayed Treatment Effect with Cure Rate

4.1 Introduction

Immunotherapies have been increasingly used for treating patients with advanced-stage

cancers. Because of the indirect mechanism of action of immunotherapy, a delayed treat-

ment effect is often seen in immunotherapy trials. When patients are homogeneous across

the individual subjects, such delayed treatment effect occurs in a fixed time period which

results a threshold delayed effect model. We discussed such kind of delayed treatment

effect in chapter 2. Various weighted log-rank tests have been proposed to increase the

efficiency of trial design with a threshold delayed effect model. Hasegawa (Hasegawa,

2014) considered to use the Fleming-Harrington Gρ,γ class of weighted log-rank test. Xu

et al. (Xu et al., 2016) recommended a piecewise weighted log-rank test. Magirr and Bur-

man (Magirr and Burman, 2019) developed a modestly-weighted log-rank test. Zucker and

Lakatos (Zucker and Lakatos, 1990) proposed a general class treatment lag model and de-

rived a maximin efficiency robust test for the trial design. Ye and Yu (Ye and Yu, 2018)

extended Zucker and Lakatos’ results to a generalized linear lag model. The maximin ef-

ficiency robust test is also a weighted log-rank test which put less weight on early events

and full weight after the delayed period. Recently, Ding and Wu (Ding and Wu, 2020)

considered a simple robust test for designing cancer immunotherapy trials.

When patients enrolled on a immunotherapy trial are heterogeneous, the duration of

delayed effect is more suitable as a random variable rather than a fixed time period. Im-

munotherapy trial designs with a random delay time have also been studied in the literature

(Xu et al., 2018; Liu et al., 2018). Suppose the random delay time τ follows a distribution

Fτ (t), both Xu et al (Xu et al., 2018) and Liu at al (Liu et al., 2018) proposed to use the

Fτ (t)-weighted log-rank test and showed it is nearly optimal test for a random delayed

proportional hazards (PH) model. Furthermore, it is also uncommon to see a proportion

of patients had long-term survival or cure from immunotherapy trials. Liu et al (Liu et al.,

2018) included a cure rate in the random delayed model but limited to their study design
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under the PH model assumption, which results the difference of cure rates between treat-

ment groups can’t not be tested.

In this chapter, we extend Liu et al model to a general random delayed cure rate model

and derived a sample size formula for designing cancer immunotherapy trials which pro-

vides testing on the hypotheses for both short-term and long-term survival. The rest of this

chapter is organized as follows. In section 4.2, we describe the random delayed effect cure

rate model. Section 4.3 presents a sample size formula for the Fτ (t)-weighted log-rank

test. In section 4.4, simulations are conducted to study the performance of the proposed the

Fτ (t)-weighted log-rank test and sample size formula, the robustness of misspecification

is also considered in section 4.4. Discussions are given in Section 4.5.

4.2 Generalized piecewise proportional hazards cure rate model

Let λ∗k(t) be the hazard function of uncured patients for group k = 1, 2 which represents the

control and treatment groups, respectively, and τ be the random delay time. The survival

model with a random delay time for uncured patients can be described by a piecewise

proportional hazards model which is given by

λ∗2(t) =

 λ∗1(t), t ≤ τ,

δλ∗1(t), t > τ,

where δ is the hazard ratio of uncured patients after the random delay time τ . The survival

function of the treatment group for uncured patients is given by

S∗2(t) =

 S∗1(t), t ≤ τ,

[S∗1(τ)]1−δ [S∗1(t)]δ , t > τ.
(4.1)

Similar as Chapter 3, combine the cure rate model and piecewise random delayed treat-

ment effect model, We define a random delayed cure rate model as follows. A mixture cure

rate model for the control arm is

S1(t) = π1 + (1− π1)S∗1(t),
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where 0 ≤ π1 < 1 is the cure rate of control group, and a mixture cure model for the

experimental treatment arm is given by

S2(t, τ) =

 π1 + (1− π1)S∗1(t), t ≤ τ,

π̃2 + (1− π̃2) [S∗1(τ)]1−δ [S∗1(t)]δ , t > τ,

where 0 ≤ π̃2 < 1. The survival distribution S2(t, τ) also has a single jump time point τ .

To smooth the function S2(t, τ), we define following smooth factor

A(τ) =
π1 + (1− π1)S∗1(τ)

π̃2 + (1− π̃2)S∗1(τ)

and multiple it to S2(t, τ), we obtain

S2(t, τ) =

 π1 + (1− π1)S∗1(t), t ≤ τ,

A(τ){π̃2 + (1− π̃2) [S∗1(τ)]1−δ [S∗1(t)]δ}, t > τ.

Since the random delay time τ is not observed, we integrate respect to the distribution of τ

to obtain the marginal survival function

S2(t) = E(S2(t, τ))

= {π1 + (1− π1)S∗1(t)}P (τ > t) +

∫ t

0

A(µ){π̃2 + (1− π̃2) [S∗1(µ)]1−δ [S∗1(t)]δ}dFτ (u)

= {π1 + (1− π1)S∗1(t)}Sτ (t)

+ π̃2

∫ t

0

A(u)dFτ (u) + (1− π̃2)[S∗1(t)]δ
∫ t

0

A(u) [S∗1(u)]1−δ dFτ (u)

and marginal density

f2(t) =
−dS2(t)

dt

= −{(π1 + (1− π1)S∗1(t))
dSτ (t)

dt
+ (1− π1)

dS∗1(t)

dt
Sτ (t)}

− π̃2A(t)fτ (t)− (1− π̃2)A(t)[S∗1(t)]δ [S∗1(t)]1−δ fτ (t)

− δ[S∗1(t)]δ−1dS
∗
1(t)

dt

∫ t

0

A(u)(1− π̃2)[S∗1(u)]1−δdFτ (u)

= f ∗1 (t)

{
(1− π1)Sτ (t) + (1− π̃2)δ[S∗1(t)]δ−1

∫ t

0

A(u)[S∗1(u)]1−δdFτ (u)

}
,

where Fτ (t) are the survival function of the random delay time τ and Sτ (t) = 1 − Fτ (t),

and f ∗1 (t) is the density function of uncured patients for the control group.
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Assume that random variable τ has support on domain [t1, t2], let

π2 = π̃2

∫ t2

t1

A(u)dFτ (u)

be the cure rate of the treatment group, then, π̃2 can be solved from above equation. It is

easy to verify that the marginal survival function S2(t) = π1 + (1− π1)S∗1(t) when t ≤ t1

and S2(t) = π2 + (1− π2)c̃[S∗1(t)]δ when t > t2, where

c̃ =
(1− π̃2)

(1− π2)

∫ t2

t1

A(u) [S∗1(u)]1−δ dFτ (u).

Thus, the survival distribution of the treatment group is also a mixture cure model with

cure rate π2. Between t1 and t2, the hazard ratio changes from 1 to δ gradually, instead of

a sudden jump as in the fixed delay effect model.

When π1 = π2 = 0 (no cure), the random delayed cure rate model reduces to a gener-

alized piecewise proportional hazards (GPWPH) model with marginal survival function

S2(t) = S∗1(t)Sτ (t) + [S∗1(t)]δ
∫ t

0

[S∗1(u)]1−δdFτ (u) (4.2)

and the marginal density

f2(t) = f ∗1 (t)

{
Sτ (t) + δ[S∗1(t)]δ−1

∫ t

0

[S∗1(u)]1−δdFτ (u)

}
.

It has been shown that Fτ (t)-weighted log-rank test is a nearly optimal test under the GP-

WPH model (Xu et al., 2018; Liu et al., 2018).

4.3 Sample size calculation

In this section, we present a sample size formula for the Fτ (t)-weighted log-rank test for

trial designs under the random delayed cure rate models.

Consider a two-sided hypothesis for testing the difference of survival distributions be-

tween the experimental and control groups

H0 : S2(t) = S1(t) vs H1 : S2(t) 6= S1(t).

The log-rank test is a well-known optimal test statistic under the PH model. However, it

could loss the power when PH assumption is invalid. To increase the power to detect the
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treatment effect, a weighted log-rank test can be used. Let Ti and Ci denote, respectively,

the failure time and censoring time of the ith subject. We assume that Ti and Ci are contin-

uous random variables. The observed failure time and failure indicator are Xi = Ti ∧ Ci
and ∆i = I(Ti ≤ Ci), respectively, i = 1, · · · , n, and Zi = 0, 1 for group 1 and 2. Define

Ni(t) = ∆iI(Xi ≤ t) and Yi(t) = I(Xi ≥ t) be the failure process and at risk process, and

Y 1(t) =
∑n

i=1(1− Zi)Yi(t), Y 2(t) =
∑n

i=1 ZiYi(t), then the weighted log-rank score test

U = n−1/2

n∑
i=1

∫ ∞
0

Wn(t)

{
Zi −

Y 2(t)

Y 1(t) + Y 2(t)

}
dNi(t)

is asymptotically normal distributed and its asymptotic variance can be estimated by

σ̂2 = n−1

n∑
i=1

∫ ∞
0

W 2
n(t)

Y 1(t)Y 2(t)

{Y 1(t) + Y 2(t)}2
dNi(t),

where Wn(t) is a bounded nonnegative weight function that converges in probability to

w(t). By martingale central limited theorem (Fleming and Harrington, 1991), the weighted

log-rank test L = U/σ̂ is asymptotically standard normal distributed under the null hy-

pothesis H0. Thus, given a two-sided type I error rate α, we reject null hypothesis if

|L| > z1−α/2.

Under a general fixed alternative hypothesis, same as discussed in chapter 3, we derived

(Wei and Wu, 2020) an asymptotic distribution of the weighted log-rank test L, which

is normally distributed with mean
√
nµ/σ and variance σ2/σ̃2, where µ, σ2 and σ̃2 are

given in following equations (4.4), (4.5) and (4.6), respectively. Thus, sample size can be

calculated using following formula

n =
(σz1−α/2 + σ̃z1−β)2

µ2
, (4.3)

where µ, σ2, and σ̃2 are given as follows:

µ =

∫ ∞
0

w(t)
π(t)(1− π(t)){λ2(t)− λ1(t)}
π(t)λ1(t) + {1− π(t)}λ2(t)

V (t)dt, (4.4)

σ2 =

∫ ∞
0

w2(t)π(t){1− π(t)}V (t)dt, (4.5)

σ̃2 =

∫ ∞
0

w2(t)
π(t)(1− π(t))λ1(t)λ2(t)

[π(t)λ1(t) + {1− π(t)}λ2(t)]2
V (t)dt, (4.6)
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and the functions π(t) and V (t) are given by

π(t) =
ω1S1(t)

ω1S1(t) + ω2S2(t)
,

V (t) = {ω1λ1(t)S1(t) + ω2λ2(t)S2(t)}G(t),

where λ1(t) and λ2(t) are the hazard functions, ω1 and ω2 = 1 − ω1 are the allocation

ratios of the control and treatment groups, and G(t) is the common censoring distribution

function of two groups. We will use weight function w(t) = Fτ (t) for the sample size

calculation under the random delayed cure rate model proposed in section 4.2.

When π1 = π2 = 0, the random delayed cure rate model reduces to GPWPH model.

By using Fτ (t)-weighted log-rank test, Xu et al (Xu et al., 2018) propose to use following

sample size formula

n =
(z1−α/2 + z1−β)2

ω1ω2[log(δ)]2
∫∞

0
F 2
τ (t)V (t)dt

. (4.7)

4.4 Simulation

In this section, we conduct simulations to study the performance of the proposed a Fτ (t)-

weighted log-rank test and sample size formula and the impact of misspecifying the random

delayed effect on the sample size and study power in following two sub-sections.

Performance of new sample size formula

To evaluate the accuracy of the proposed sample size formula (4.3) and compare to the

existing methods, sample sizes were calculated under the random delayed cure rate models

where the distribution of uncured patients for the control group is the Weibull distribution

S∗1(t) = e−λt
κ and cure rate of the control group is set to π1 = 0.1 and cure rate of the

treatment group π2 is set as given in table 4.1, with other design parameters are set as

follows: the scale parameter is set to λ = 0.01; the shape parameter is set to κ = 0.7, 1,

and 1.3 to represent the decreasing, constant and increasing hazard functions, respectively;

hazard ratio δ is set between 0.45 and 0.7; uniform accrual with accrual duration ta = 2

and follow-up time tf = 10; sample size allocation ratio is set to ω1 = 0.5 (1:1 equal

allocation). Assuming the random delay time τ follows an uniform distribution on interval
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[2, 6], sample sizes were calculated with a two-sided type I error rate 5% and power of

90%. Empirical type I error rate and power were estimated from 10,000 simulated trials.

Results recorded in Table 4.1 showed that the simulated empirical type I error rates

and powers were all close to the nominal levels. Thus, the proposed Fτ (t)-weighted log-

rank test preserved type I error rate and sample size formula provided accurate sample size

estimation in all three hypothesis testing scenarios: H1a: differences in both the short-term

survival and the cure fraction; H1b: difference in the short-term survival but not in the cure

fraction; and H1c: difference in the cure fraction but not in the short-term survival. Results

recorded in Table 4.2 showed that sample sizes were quite robust against the random delay

time τ distributions: either an uniform distribution or a Beta(a, b) distribution with different

parameters on domain [2, 10], that is Beta( t−2
10−2

, a, b), where a, b are the parameters. Results

also showed that the simulated empirical powers were all close to the nominal level.

By setting π1 = π2 = 0, and random delay time τ follows an uniform distribution on

domain [1, 6] or [2, 10], the random delayed cure rate model reduces to a GPWPH model.

Therefore, we compared the new formula to Xu’s formula. The simulation results recorded

in Table 4.3 showed that the new formula is more accurate than the Xu’s formula, particular

when the hazard ratio is small (δ ≤ 0.5) whereas the Xu’s formula underestimated the

sample size.

Impact of misspecifying delayed effect

To explore impact of misspecifying delayed effect for the proposed methods, we first con-

sider scenarios where the true underlying delayed effect is fixed but misspecified to be a

random delay or vice verse. We compared empirical powers by simulations under each mis-

specification scenario. Under the fixed delay scenario where the true fixed time is t0 = 6

months, results recorded in Table 4.4 showed that the power loss was nearly 10% when

under-specified the fixed time point less than 5 months whereas the power gain was nearly

11% when over-specified the fixed time point more than 5 months. Similar results were

observed when misspecifying random delayed effect on domain [3, 9] months as fixed time

points. Therefore, we can conclude that misspecifying a random delay to a fixed delay

could result a relative a big loss or gain on the study power. In contrast, misspecifying to
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a fixed delay to a random delay led only 1% to 3% power loss or gain no matter the true

scenario is fixed or random delay effect.

We also assessed the robustness of the proposed methods when the distribution of ran-

dom delay time τ was misspecified in the study design. Two scenarios of misspecifications

are considered.

First, we assumed that the true random delay time τ follows an uniform distribution on

domain [3, 9] months whereas the misspecified domains are [3, 7], [3, 11], [1, 7] and [1, 11]

months. Table 4.5 illustrated the impact of misspecifiying the random delay time domain

on the sample size and empirical power. Sample sizes did not change much and empirical

powers were close to the nominal level and misspecifying domains led to only 1% to 2%

power loss or gain.

Second, we assumed that the true random delay time τ follows an uniform distribution

on domain [2, 10] months whereas the misspecified random delay time τ follows Beta(2,3),

Beta(2,2) and Beta(3,2) distributions on domain [2, 10]. From results recorded in Table

4.6, we can make the conclusion that sample size and empirical power were not sensitive

to the distributions of random delay time.

Overall, new formula under random delayed cure rate model is not sensitive to the

distribution or lag time of the random delay, which means the new formula is more robust

when compared with fixed delay effect. Also, the new formula provides more accurate

sample size estimation than the exiting methods in the literature.
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Table 4.1: Sample sizes (n) were calculated by proposed formula under the Weibull random
delayed cure rate model with uniform random delayed treatment effect on interval [2, 6] for
three hypothesis scenarios. Uniform accrual with accrual period ta = 2 and follow-up
duration tf = 10, baseline λ = 0.01, no loss to follow-up, cure rate of the control group
π1 = 0.1, a two-sided type I error of 5% and power of 90%. The corresponding empirical
type I errors (α̂) and powers (EP) were estimated by performing 10,000 simulation runs.

κ = 0.7 κ = 1 κ = 1.3
Test δ/π2 n α̂ EP n α̂ EP n α̂ EP
H1a .70/.12 1668 .050 89.7 590 .054 90.4 759 .051 90.1

.65/.13 1147 .049 89.9 396 .051 90.0 478 .052 89.8

.60/.14 829 .049 90.2 282 .050 89.9 325 .050 89.6

.55/.15 622 .048 89.9 208 .051 90.4 232 .047 89.9

.50/.16 479 .051 89.6 158 .049 89.5 171 .051 89.8

.45/.17 376 .046 89.0 123 .048 90.0 129 .054 89.7
H1b .70/.1 1895 .046 90.1 706 .052 89.9 1155 .047 90.3

.65/.1 1338 .047 90.3 491 .052 90.6 778 .049 89.6

.60/.1 982 .053 90.3 355 .052 90.1 542 .050 89.4

.55/.1 742 .048 89.5 264 .049 90.4 387 .050 89.9

.50/.1 573 .048 90.2 200 .048 89.8 281 .053 89.8

.45/.1 449 .052 89.6 155 .049 90.3 207 .047 89.5
H1c 1/.30 2755 .046 88.9 508 .048 90.1 202 .054 90.2

1/.32 2251 .050 88.9 419 .048 89.9 170 .055 90.1
1/.35 1712 .049 88.6 324 .049 90.2 135 .050 90.7
1/.38 1339 .052 89.1 258 .055 89.8 110 .048 90.5
1/.40 1152 .053 89.8 224 .049 89.7 97 .053 91.3
1/.42 998 .051 89.4 196 .051 89.5 86 .052 90.0
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Table 4.2: Sample sizes (n) were calculated using different random delayed effect distri-
butions (Uniform and Beta) on domain [2, 10] under the Weibull random delayed cure rate
model with hazard parameter of control λ = 0.01; uniform accrual with accrual period
ta = 1 and follow-up duration tf = 2; no loss to follow-up; cure rate of the control group
π1 = 0.1; a two-sided type I error of 5% and power of 90%. The corresponding empirical
type I errors (α̂) and powers (EP) were estimated by performing 10,000 simulation runs.

κ = 0.7 κ = 1 κ = 1.3
Dist δ/π2 n α̂ EP n α̂ EP n α̂ EP
Unif .70/.12 1737 .050 89.2 608 .501 90.4 816 .051 89.7

[2, 10] .65/.13 1195 .048 89.9 409 .048 89.9 512 .049 89.4
.60/.14 864 .053 89.8 291 .051 89.3 347 .052 89.6
.55/.15 648 .051 89.5 215 .050 90.2 247 .048 89.5
.50/.16 499 .051 89.2 163 .052 89.7 182 .050 89.1
.45/.17 393 .051 88.9 127 .045 89.6 137 .050 89.2

Beta .70/.12 1721 .048 91.1 603 .050 90.5 804 .051 89.8
(2, 2) .65/.13 1183 .050 90.7 405 .050 90.5 505 .050 90.4

.60/.14 856 .049 91.2 288 .051 90.8 342 .050 90.0

.55/.15 642 .053 90.0 213 .051 90.7 244 .054 90.6

.50/.16 494 .047 90.9 162 .054 90.7 180 .052 90.4

.45/.17 389 .053 90.1 126 .051 90.3 136 .053 90.7
Beta .70/.12 1683 .051 91.6 595 .052 91.1 768 .048 90.3
(1, 3) .65/.13 1157 .048 91.4 400 .046 91.4 484 .050 90.1

.60/.14 837 .052 91.1 284 .051 90.3 329 .05 0 90.9

.55/.15 628 .050 91.8 210 .052 90.8 235 .054 91.1

.50/.16 484 .053 91.2 160 .048 90.8 173 .051 90.5

.45/.17 380 .049 90.8 124 .053 90.9 131 .050 90.9
Beta .70/.12 1805 .051 92.8 631 .053 92.1 847 .047 91.9

(.5, .5) .65/.13 1241 .048 92.5 424 .048 91.5 531 .050 91.3
.60/.14 898 .051 92.0 301 .053 92.1 360 .048 91.8
.55/.15 674 .051 92.2 223 .053 91.6 256 .053 91.7
.50/.16 520 .053 92.4 169 .052 92.0 189 .054 91.7
.45/.17 409 .052 92.1 132 .046 92.1 143 .054 92.2
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Table 4.3: Sample sizes (n) were calculated using Xu’s formula under the Weibull random
delayed effect model with baseline hazard parameter of control group is λ = 0.01. As-
suming uniform accrual with a accrual period ta = 2 and follow-up duration tf = 10; no
loss to follow-up; a two-sided type I error rate 5% and power of 90%. The corresponding
empirical powers (EP) were estimated by performing 10,000 simulation runs.

New Method Xu’s Method
Unif[1, 6] Unif[2, 10] Unif[1, 6] Unif[2, 10]

δ n EP n EP n EP n EP
.70 516 90.5 690 90.9 500 89.6 676 89.9
.65 358 89.6 479 91.3 342 89.1 460 89.0
.60 259 90.8 346 91.0 242 88.7 325 88.8
.55 192 90.0 257 90.8 176 88.0 236 88.4
.50 146 90.4 195 91.7 131 87.9 175 88.3
.45 113 91.5 151 91.0 98 86.6 131 87.7
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Table 4.4: The empirical power comparison when the delayed effect scenarios misspeci-
fied, the fixed delay time point t0 = 6 months and random delay τ follows an uniform on
interval [3, 9] months. Uniform accrual with accrual period ta = 1 and follow-up duration
tf = 2, no loss to follow-up, cure rate of the control group π1 = 0.1 and of the treatment
group π2 = 0.12, hazard parameter of control λ = 0.2 and hazard ratio δ = 0.7; a two-
sided type I error rate 5% and power of 80%. The corresponding empirical powers (EP)
under misspecified scenarios were estimated by 10,000 simulation runs.

Misspecified Setting True Setting
Fixed delay t0 = 6 Random delay Unif[3, 9]

PWPHCR EP EP
1 month 70.5% 67.1%
3 months 73.6% 70.8%
6 months 81.0% 76.2%
9 months 85.7% 83.6%

12 months 91.4% 89.1%
New Model EP EP

[1, 11] months 82.4% 80.4%
[1, 9] months 81.2% 78.1%
[3, 11] months 83.9% 81.2%
[3, 9] months 82.6% 79.5%
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Table 4.5: Sample sizes (n) were calculated under the Weibull random delayed cure rate
model model with misspecified random delayed effect domain. The true random delay is
uniform on interval [3,9]. Hazard parameter of control λ = 0.01 and Uniform accrual with
accrual period ta = 1 and follow-up duration tf = 2; no loss to follow-up;cure rate of the
control group π1 = 0.1; a two-sided type I error rate 5% and power of 90%.

Dist Unif[3, 9] Unif[3, 7] Unif[3, 11] Unif[1, 7] Unif[1, 11]
κ δ/π2 n EP n EP n EP n EP n EP

0.7 .70/.12 1739 90.4 1697 88.8 1745 90.2 1659 88.3 1745 90.1
.65/.13 1196 89.9 1167 88.0 1200 89.9 1141 88.3 1200 89.7
.60/.14 865 90.2 844 88.2 868 90.0 825 88.4 868 89.4
.55/.15 649 89.3 633 88.7 651 89.7 619 87.6 651 89.2
.50/.16 500 89.4 487 88.9 501 89.3 476 87.2 502 89.6
.45/.17 393 89.3 383 88.9 394 89.4 375 87.5 395 89.1

1 .70/.12 609 89.9 597 89.4 609 90.0 586 89.4 611 90.5
.65/.13 409 90.1 401 89.4 409 89.8 394 88.7 411 90.8
.60/.14 291 90.2 285 89.4 291 89.5 280 88.2 292 89.7
.55/.15 215 89.7 211 88.6 215 89.6 207 88.8 216 89.4
.50/.16 164 90.4 160 89.1 164 90.2 158 88.5 164 89.5
.45/.17 127 89.4 125 89.1 127 90.5 122 87.9 128 89.9

1.3 .70/.12 811 89.8 779 88.8 832 91.0 761 88.3 827 91.1
.65/.13 510 89.3 490 89.3 521 90.8 480 88.2 519 90.6
.60/.14 345 89.8 333 88.8 353 90.2 326 87.6 351 90.1
.55/.15 246 89.4 237 88.4 251 90.8 232 87.9 250 90.4
.50/.16 181 89.5 175 88.8 185 90.3 171 88.0 164 89.7
.45/.17 137 89.7 132 88.6 140 90.1 129 88.4 139 90.2
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Table 4.6: Sample sizes (n) were calculated under the Weibull random delayed cure rate
model by mis-specified Beta distributions of random delayed effect on domain [2, 10].
The true random delay time is Uniform on interval [2,10]. Hazard parameter of control
λ = 0.01 and Uniform accrual with accrual period ta = 1 and follow-up duration tf = 2;
no loss to follow-up; cure rate of the control group π1 = 0.1; a two-sided type I error of
5% and power of 90%.

Dist Unif[2, 10] Beta(2, 3) Beta(2, 2) Beta(3, 2)
κ δ/π2 n EP n EP n EP n EP

0.7 .70/.12 1737 89.2 1695 89.2 1721 89.6 1740 90.3
.65/.13 1195 89.9 1165 89.1 1183 89.5 1197 89.6
.60/.14 864 89.8 843 88.7 856 89.2 865 89.2
.55/.15 648 89.5 632 88.7 642 89.0 649 89.4
.50/.16 499 89.2 487 88.2 494 89.0 500 89.7
.45/.17 393 88.9 382 88.3 389 89.2 393 88.9

1 .70/.12 608 90.4 596 88.9 603 89.3 608 89.8
.65/.13 409 89.9 400 89.2 405 89.5 409 90.1
.60/.14 291 89.3 285 89.2 288 89.3 290 89.7
.55/.15 215 90.1 210 89.5 213 89.6 215 89.9
.50/.16 163 89.7 160 88.9 162 89.0 163 90.2
.45/.17 127 89.6 124 88.9 126 89.3 127 89.3

1.3 .70/.12 816 89.7 783 88.5 804 89.8 818 89.7
.65/.13 512 89.4 493 88.8 505 89.5 513 90.0
.60/.14 347 89.6 334 88.6 342 88.8 347 90.1
.55/.15 247 89.5 238 87.7 244 88.8 247 89.7
.50/.16 182 89.2 133 89.0 180 88.6 182 89.3
.45/.17 137 89.2 133 89.0 136 88.9 138 89.4
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4.5 Example

In this section, we use data from a two-arm phase III Eastern Cooperative Oncology Group

(ECOG) trial for melanoma to illustrate the trial design. There were 92 deaths among

146 patients in the treatment group. The treatment arm (high-dose interferon alpha-2b)

relapse-free survival (RFS) data was fitted using SAS macro PSPMCM (Corbière and Joly,

2007) and got the Weibull cure rate model with an estimated shape parameter κ = 1.018

(take as 1, ie, exponential distribution), scale parameter λ = 0.836 (years) (ie, median

RFS 10 months for uncured patients) and cure rate of 35%. Thus, for designing a new

immunotherapy trial, the RFS for the control arm could be appropriately assumed to be

S1(t) = 0.35 + 0.65e−
log(2)
10

t.

Further assuming that new immunotherapy has a random delay effect which follows an

uniform distribution on interval [0, 6] months. Three scenarios are considered here: (1)

improve the short-term survival by increasing the median RFS to 14.28 months for uncured

patients but not the cure rate; (2) increase the cure rate to 0.45 but not the short-term

survival; and (3) increase the cure rate to 0.45 and improve the median short-term RSF

to 14.28 months for uncured patients. With a two-sided type I error rate of 0.05, power of

80% at the alternative, 24 months accrual period, and 12 months follow up, the total sample

sizes for two groups are 1641, 1281, and 423 for scenarios (1), (2) and (3), respectively.

The corresponding simulated empirical type I error and power are 0.05 and 80%, 0.049 and

77%, and 0.051 and 79% for scenarios (1), (2) and (3), respectively. Thus, the proposed

methods preserved the type I error rate and provided adequate power for the trial designs.

Figure 4.1 shows the RFS survival functions for three different hypotheses scenarios. The

vertical dot line indicates a uniform random delay on interval [0, 6] (months). The R code

for the sample size calculation is provided in Appendix H.

4.6 Discussion

How to deal with delayed treatment effect in cancer immunotherapy trial design is a typical

challenge since the duration of lag time can be considered as a fixed time period or a ran-
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Figure 4.1: Hypothetical random delayed cure rate model for three scenarios

dom interval by different enrollment types of patients. Xu et al (Xu et al., 2016) proposed a

fixed delayed effect model whereas both Xu et al (Xu et al., 2018) and Liu at al (Liu et al.,

2018) proposed a random delayed effect model. However, Xu et al did not include a cure

rate in their random effect model and Liu et al’s model included a cure rate but limited to

their study design under the PH model assumption. In this chapter, we proposed a random

delayed cure rate model to incorporate both random delayed effect and cure rate for cancer

immunotherapy trial designs. Simulation results showed that the new formula provides an

accurate sample size estimation under the random delayed cure rate model.

In real trial design, a fixed delayed effect or random delayed effect need to be pre-

specified. Usually we make assumption for the time domain of delayed effect from pilot

data during the trial design. However, the true time domain is unknown in advance, the

misspecification is inevitable when doing trial design. Our simulation results showed that

misspecifying a random delayed effect to a fixed delayed effect could result a relative a

larger loss or gain on the study power while random delayed effect model is less sensitive
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to the lag time domain and distribution compared to the fixed delayed effect model.

Copyright© Jing Wei, 2021.
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Chapter 5 Delayed Treatment Effect with Non-responders

5.1 Introduction

We discussed fixed or random delayed treatment effect model with cure rate in Chapters

3 and 4 repectively and summarized that fixed/random delayed treatment effect and cure

rate are the two underlying causes behind non-proportional hazards (NPH) patterns in can-

cer immunotherapy trial design. Since proportional hazard assumption no longer holds

under NPH patterns, using standard sample size and power calculation methods based on

log-rank test would lead to a loss of power. Various weighted log-rank tests have been

proposed to improve the efficiency of trial design. As we discussed in chapter 2, 3 and 4,

Xu et al. (Xu et al., 2016) considered a piecewise weighted log-rank test since piecewise

weight is an optimal weight for fixed delayed treatment effect model. Xu et al. (Xu et al.,

2018) also recommended a weighted log-rank test and proved that Fτ (t)-weight is a nearly

optimal weight for a random delayed model (Xu et al., 2018). Magirr and Burman (Ma-

girr and Burman, 2019) developed a modestly-weighted log-rank test (MWLRT) and used

1/max(Ŝ(tj−), Ŝ(t0)) as a weight function, which is entirely analogous to implement-

ing the Fleming-Harrington-(0,1) test. To avoid pre-specifying the delay changed time t0,

a milestone weight function was also included in Magirr’s paper and performed well in

delayed-effect scenario with reasonable mature data.

On the other hand, compared with other oncology trials of traditional cancer treat-

ments, only a limited percentage of patients would respond to the treatment in reality since

immunotherapy-sensitive of tumors are heterogeneous (Schlom and Gulley, 2018) in im-

munotherapy trials. It is more suitable to treat patients as non-responders and responders in

treatment group. Immunotherapy trial designs with such kind of dichotomized response in-

curred by treating responders and non-responders in treatment group have also been studied

in literature (Xu et al., 2020). Xu et al. showed responders and non-responders in treat-

ment group of inadequate size would give rise to a variety of NPH patterns and present a

novel P%-responder information embedded (PRIME) method to deal with dichotomized
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response in treatment group. However, sample size calculation based on PRIME method is

complex and the corresponding R package (Immunotherapy.Design) is not efficient.

In this chapter, we follow the assumption of Xu et al. (Xu et al., 2020) to consider

responders and non-responders in treatment group and derive a sample size formula under

weighted log-rank test for canner immunotherapy trials design. The rest of this chapter

is organized as follows. In section 5.2, we describe the responder model with delayed

treatment effect. Section 5.3 presents how to calculate weight function wR(t) and derives

a sample size formula under proposed weighted log-rank test. In section 5.4, simulations

are conducted to study the performance of the proposed sample size formula under various

weight functions. Discussions are given in Section 5.5.

5.2 Piecewise proportional hazards responder rate model

For a two-arm randomized survival trial, let SC(t) and ST (t) denote the overall survival

distributions for control and treatment groups. Let λC(t), fC(t), λT (t) and fT (t) denote the

corresponding hazard functions and density functions for two groups. Similarly, let SR(t)

and SNR(t) denote the continuous conditional survival functions of responder patients and

non-responder patients in treatment group. Let λR(t), fR(t), λNR(t) and fNR(t) denote

its hazard functions and density functions for corresponding responder and non-responder

patients. The response rate in treatment group is defined by p, where 0 ≤ p ≤ 1. Then,

overall survival distribution of the treatment group is a mixture model

ST (t) = pSR(t) + (1− p)SNR(t) (5.1)

To incorporate a delayed treatment effect discussed in Chapter 2 into the design con-

sideration, we assume no treatment effect within period up to a fixed time point t0 (> 0)

and then full treatment effect after time t0. Thus, the survival model can be described by a

PWPH model with the hazard function of the treatment group for responders. It is can be

written in the form of

λR(t) =

 λC(t), t ≤ t0,

δλC(t), t > t0,
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where δ is the hazard ratio between responder patients in treatment group and patients in

control group after a fixed delay time t0. We assume that t0 is known from pilot data

or preclinical study and SNR(t) = SC(t), then survival distribution of the responders in

treatment group is given by

SR(t) =

 SC(t), t ≤ t0,

[SC(t0)]1−δ [SC(t)]δ , t > t0.
(5.2)

Combining mixture cure model (5.1) and PWPH model (5.2), we can define the follow-

ing model: The piecewise proportional hazards responder rate (PWPHRR) model for the

treatment group is

ST (t) =

 SC(t), t ≤ t0,

p [SC(t0)]1−δ [SC(t)]δ + (1− p)SC(t), t > t0.
(5.3)

The density function for treatment group when t > t0 can be written as

fT (t) =
dFT (t)

dt

=
d(1− ST (t))

dt

= −p[SC(t0)]1−δδ[SC(t)]δ−1dSC(t)

dt
− dSC(t)

dt
+ p

dSC(t)

dt

= p[SC(t0)]1−δδ[SC(t)]δλC(t) + SC(t)λC(t)− pSC(t)λC(t),

where dSC(t)
dt

= fC(t) = λC(t)SC(t). Hence the density function for treatment group can

be written as

fT (t) =

 fC(t), t ≤ t0,

{pδ[SC(t0)]1−δ[SC(t)]δ + (1− p)SC(t)}λC(t), t > t0

and the corresponding hazard function is λ2(t) = f2(t)/S2(t) can be written as

λT (t) =

 λC(t), t ≤ t0,

{pδ[SC(t0)]1−δ[SC(t)]δ+(1−p)SC(t)}λC(t)

p[SC(t0)]1−δ[SC(t)]δ+(1−p)SC(t)
, t > t0.

The PWPHRR model (5.3) is a general model which includes special cases as the fol-

lowing

58



• p = 1 (fully response) and t0 = 0 (no delay), the PWPHRR model reduces to the

standard PH model (Schoenfeld, 1981);

• p = 1 (fully response) and t0 6= 0 (with delay), the PWPHRR model reduces to the

the PWPH model (Xu et al., 2016).

Under the PWPHRR model, a two-sided hypothesis for testing the difference between

survival distributions of the experimental treatment group and control group is represented

by

H0 : ST (t) = SC(t) vs. H1 : S2(t) 6= S1(t),

and this hypothesis is equivalent to the following hypothesis for the hazards ratio and re-

sponder rate for treatment group:

H0 : δ = 1 vs. H1 : δ 6= 1.

5.3 Sample size calculation

As we discussed in Chapter 3 and Chapter 4, the weighted log-rank test L is asymptotically

standard normal distributed under the null hypothesis H0. Thus, given a two-sided type I

error rate α, we reject null hypothesis if |L| > z1−α/2.

Under a general fixed alternative hypothesis, same as we discussed in Chapters 3 and

4, we derived (Wei and Wu, 2020) an asymptotic distribution of the weighted log-rank test

L, which is normally distributed with mean
√
nµw/σw and variance σ2/σ̃2

w, where µw, σ2
w

and σ̃2
w are given in following equations (5.5), (5.6) and (5.7), respectively. Thus, sample

size can be calculated using following formula

n =
(σwz1−α/2 + σ̃wz1−β)2

µ2
w

, (5.4)

where

µw =

∫ ∞
0

wR(t)
π(t)(1− π(t)){λ1(t)− λ2(t)}
π(t)λ1(t) + {1− π(t)}λ2(t)

V (t)dt, (5.5)

σ2
w =

∫ ∞
0

w2
R(t)π(t){1− π(t)}V (t)dt, (5.6)

σ̃2
w =

∫ ∞
0

w2
R(t)

π(t)(1− π(t))λ1(t)λ2(t)

[π(t)λ1(t) + {1− π(t)}λ2(t)]2
V (t)dt, (5.7)
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and wR(t) is the weight function for proposed model, function V (t) is an incomplete den-

sity function of failure and π(t) is a ratio of probability at risk of a subject belong to the

control group versus the overall probability at risk of the two groups. It can be shown that

V (t) = {ω1λ1(t)S1(t) + ω2λ2(t)S2(t)}G(t),

π(t) =
ω1S1(t)G(t)

ω1S1(t)G(t) + ω2S2(t)G(t)
.

where ω1 and ω2 are the allocation ratio to the control and treatment groups, respectively.

This new formula (5.4) can be applied to the following special cases:

• p = 1 and t0 = 0, sample size calculation under the standard PH model was derived

by Schoenfeld (Schoenfeld, 1981);

• p = 1 and t0 > 0, sample size calculation under the PWPH model was derived by

Xu et al. (Xu et al., 2016).

Schoenfeld (Schoenfeld, 1981) showed that the optimal weighting function is given

basically by the log hazards ratio function, that is weight function w(tj) ≈ log(
λT (tj)

λC(tj)
), an

optimal weight function for the log-rank test under the PWPHRR model when t > t0 can

be write as following by using Taylor expansion.

log

(
λT (t)

λC(t)

)
= log

(
pδ[SC(t0)]1−δ[SC(t)]δ + (1− p)SC(t)

p [SC(t0)]1−δ [SC(t)]δ + (1− p)SC(t)

)

= log

(
1− (1− δ)p[SC(t0)]1−δ[SC(t)]δ

p [SC(t0)]1−δ [SC(t)]δ + (1− p)SC(t)

)

≈ (1− δ)p[SC(t0)]1−δ[SC(t)]δ

p [SC(t0)]1−δ [SC(t)]δ + (1− p)SC(t)
.

Hence, we will use the following weight function

wR(t) =


0, t ≤ t0,
1

p [SC(t0)]1−δ + (1− p)[SC(t)]1−δ
, t > t0

(5.8)

for the sample size calculation under the piecewise proportional hazard responder rate

model.
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5.4 Simulation

In this section, we conduct simulations to study the performance of the proposed sample

size formula for responder rate model and compare proposed weight function with other

existing weight functions.

Performance of new sample size formula

To evaluate the accuracy of the proposed sample size formula (5.4), sample sizes were

calculated under a PWPHRR Weibull model for the following parameter settings: The

Weibull distribution of the control group was S(t) = e−λt
κ; hazard ratio changing time

point was set to t0 = 6 months and the proportion of control patients who could survive

beyond t0 was set to S1(t0) = 90%; the responder rate in treatment group was set as

p = 0.2, 0.4 and 0.6; hazard ratio δ between responders in treatment group and control

groups was set as 0.01, 0.05 and 0.1; assuming a uniform accrual with accrual duration

ta = 12 months and follow-up time tf = 24 months; the shape parameter of the Weibull

was set at κ = 0.7, 1, and 1.3 to represent the decreasing, constant and increasing hazard

functions, respectively; sample size allocation ratio was set to ω1 = 1/2 (1:1 allocation

for control and treatment group), 1/3 (1:2 allocation and more subjects assigned to the

treatment group) and 2/3 (2:1 allocation and more subjects assigned to the control group).

Random samples for the PWPHRR Weibull model were generated according to the method

given in Appendix I. Assuming no loss to follow up, sample sizes were calculated with a

two-sided type I error of 5% and a power of 80%. Empirical powers were estimated by

performing 10,000 simulation runs. The simulation results for the new formula (5.4) are

shown in Table 5.1.
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Table 5.1: Sample sizes (n) were calculated using formula (5.4) under the Weibull delayed
treatment effect model with S1(t0) = 90%, the proportion of subjects who could survive
beyond the delay time t0 = 6 months, a two-sided type I error of 5%, power of 80%. The
corresponding empirical type I errors (α̂) and powers (1− β̂) were estimated by performing
10,000 simulation runs.

κ = 0.7 κ = 1 κ = 1.3
ω1 δ/p n α̂ 1− β̂ n α̂ 1− β̂ n α̂ 1− β̂
1/2 .01/.2 2727 .049 .804 1605 .050 .804 1010 .051 .798

(1:1) .01/.4 616 .047 .805 370 .050 .798 239 .048 .799
.01/.6 238 .050 .795 146 .053 .804 96 .049 .802
.05/.2 3007 .048 .800 1781 .049 .802 1129 .047 .802
.05/.4 684 .053 .798 413 .053 .796 269 .051 .799
.05/.6 267 .052 .802 164 .053 .801 110 .049 .801
.1/.2 3415 .049 .800 2038 .045 .797 1305 .049 .804
.1/.4 783 .050 .799 476 .053 .798 313 .050 .799
.1/.6 310 .048 .801 192 .048 .798 129 .049 .802

1/3 .01/.2 3032 .052 .804 1789 .051 .803 1129 .049 .805
(1:2) .01/.4 674 .054 .804 406 .051 .808 264 .052 .814

.01/.6 254 .054 .802 156 .047 .802 104 .054 .802

.05/.2 3346 .054 .806 1986 .051 .804 1263 .050 .803

.05/.4 750 .049 .798 454 .048 .808 298 .054 .811

.05/.6 287 .050 .794 177 .047 .803 119 .050 .808
.1/.2 3803 .048 .793 2274 .051 .797 1461 .050 .808
.1/.4 860 .052 .799 525 .056 .803 347 .051 .808
.1/.6 334 .051 .805 208 .047 .798 141 .053 .805

2/3 .01/.2 3104 .050 .808 1823 .044 .796 1143 .048 .793
(2:1) .01/.4 713 .047 .796 426 .048 .801 274 .051 .808

.01/.6 282 .047 .789 172 .046 .793 113 .051 .800

.05/.2 3421 .051 .800 2022 .049 .800 1278 .053 .798

.05/.4 790 .053 .802 475 .050 .803 308 .054 .812

.05/.6 316 .049 .785 193 .051 .801 128 .049 .795
.1/.2 3882 .051 .793 2313 .049 .802 1477 .049 .791
.1/.4 902 .046 .806 547 .048 .801 357 .048 .805
.1/.6 365 .049 .795 225 .051 .795 150 .051 .795
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The results in table 5.1 showed that the simulated empirical type I error rates and powers

were all close to the nominal levels. Thus, the proposed weighted log-rank test preserved

type I error rate and sample size formula provided accurate sample size estimation for

either balance design or unbalance design.

Evaluation of study efficiency by parameters setting
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Figure 5.1: The relationship between sample size and responder rate under different trial
durations. Hazard ratio for responding patients is 0.01 and t0 = 2 months.

Three figures have similar tends between responder rate p and sample size n, that the

sample size decreases as responder rate increases. What is more, there is no too much dif-
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ference in sample size among three scenarios when responder rate is high (p=0.6), but sig-

nificant differences are present when responder rate is low (p=0.2). Our proposed method

performs better than Xu’s method under three scenarios in the same setting, in the other

words, our method need less sample size in order to achieve the target power compared

with Xu’s PRIME design.
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Figure 5.2: The relationship between sample size and responder rate under different hazard
ratios of responding patients. Study duration is 29 months and t0 = 2 months.

We explored the relationship between the responder rate in treatment group and the

sample size under different scenarios of parameters setting based on our proposed new

formula and Xu’s PRIME design (Xu et al., 2020). Figure 5.1, 5.2 and 5.3 include the trial
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Table 5.2: Formulas for different weight functions.

Weight P-W Responder MWLRT Milestone
t ≤ t0 0 0 0 0
t > t0 1 1

p[SC(t0)]
1−δ+(1−p)[SC(t)]1−δ

1/max{Ŝ(tj−), ˆS(t0)} 1/max{Ŝ(tj−), 0.5}

parameters of interest such as trial durations, hazard ratios between responder in treatment

group and control group and delayed change points.

Figure 5.1 illustrates the relationship between sampler size and responder rate under

various trial duration based on two methods. A larger sample size (n= 256) is requested

with less study duration time (19 months) at the same responder rate (p= 0.3) and if the

study duration is longer (39 months), the trial needs fewer subjects (n=76) for target power

in proposed new methods. Hazards ratio between responders in treatment group and control

group also affect the the sample size when response rate p is fixed in figure 5.2. For

example, when the hazards ratio is 0.1, sample size n decreases from 426 to 45 as response

rate p increases from 0.2 to 0.6. Similar results when hazards ratio is 0.05 and 0.01 can

be obtained, sample size changed from 426 to 323, then from 323 to 264 as the hazards

ratio changed from 0.1 to 0.05, then 0.05 to 0.01 at fixed responder rate (p=0.2). A larger

subjects (n=391) is required to achieve the targeted power in trial design when the pre-

specified delayed change point is larger (t0 = 4) in figure 5.3.

Weight functions comparison

We compared proposed weight function with other existing weight functions we discussed

in introduction part and all weight function formulas are shown in table 5.2. All sample

sizes in table 5.3 were calculated under the PWPHRR model using weight function in table

5.2, where the distribution of the control group is the Weibull distribution SC(t) = e−λt
κ ,

response rate of the treatment group is set between 0.2 and 0.6, and fixed delay time is set

to t0 = 2 months, with other design parameters set as follows: Hazard ratio δ is set as 0.01,

0.05 and 0.1; accrual rate is 36.8 subjects per month and total study duration is 29 months;

the shape parameter of the Weibull distribution is set to κ = 1; the hazard parameter is set

as λ = 0.0737 of the control group; and sample size allocation ratio is set to ω1 = 1/2
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Figure 5.3: The relationship between sample size and responder rate under different de-
layed time points. Hazard ratio for responding patients is 0.01 and study duration is 29
months.

(1:1 equal allocation). Assuming no loss to follow up, sample sizes were calculated with

a two-sided type I error of 5% and power of 80%. Empirical powers were estimated by

performing 10,000 simulation runs.

Table 5.3 shows that sample size derived using responder weight function is more effi-

cient than other weight functions for the targeted power. Milestone weight function enroll

fewer subjects than piecewise weight function when HR=0.01 or vice versa when HR=0.1.

MWLRT function performs worst when compared with other weights function under re-

sponder rate model. Therefore, the choice among weight functions should be made care-
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Table 5.3: Sample size (n) were calculate by the new formula under different weight func-
tions.

p P-W Responder MWLRT Milestone
n 1− β̂ α̂ n 1− β̂ α̂ n 1− β̂ α̂ n 1− β̂ α̂

HR = 0.01
0.2 321 .804 .048 264 .809 .050 398 .793 .048 315 .783 .049
0.3 132 .800 .048 114 .808 .048 158 .798 .051 130 .775 .051
0.4 75 .804 .054 67 .820 .051 89 .800 .052 75 .790 .052
0.5 48 .798 .052 44 .812 .049 58 .792 .057 49 .792 .055
0.6 33 .804 .057 31 .822 .050 41 .815 .062 34 .774 .058

HR = 0.05
0.2 388 .798 .053 323 .806 .051 495 .801 .053 386 .789 .050
0.3 155 .797 .051 135 .809 .051 184 .794 .052 154 .784 .052
0.4 87 .804 .054 79 .816 .051 104 .801 .053 87 .787 .054
0.5 56 .802 .051 52 .814 .049 67 .800 .053 57 .799 .056
0.6 39 .810 .052 37 .821 .052 47 .806 .052 40 .780 .056

HR = 0.1
0.2 507 .803 .047 426 .803 .046 726 .794 .050 517 .785 .049)
0.3 189 .809 .053 168 .804 .053 226 .792 .054 190 .782 .054)
0.4 106 .800 .053 97 .820 .050 125 .801 .051 107 .796 .057)
0.5 68 .808 .051 64 .810 .046 81 79.6 .052 70 .794 .056)
0.6 48 .801 .053 45 .822 .051 57 80.9 .056 50 .793 .057)

fully for non-proportional hazards model in cancer immunotherapy trial design.

5.5 Example

Borghaei et al. (Borghaei et al., 2015) conducted a phase III, immunotherapy vs. chemother-

apy trial for non-squamous non-small cell lung cancer (NSCLC) whose disease progresses

after first-line chemotherapy are limited. Patients after failure of platinum double were

randomly assigned in a 1:1 ratio to receive either Docetaxel (chemotherapy) or Nivolumab

(PD-1), and the primary endpoint for the trial is overall survival (OS). The observed me-

dian OS for Docetaxel group is 9.4 months (baseline hazard rate is 0.074 under exponential

distribution) and the overall hazard ratio between Nivolumab and Docetaxel group is 0.73.

Consider a total study duration is 29 months and enrollment rate for patients is 36.8 sub-

jects/months, the sample size required for the study is 582 under 90% power and two side

5% type I error setting.

However, visual separation of Kaplan-Meier curves for OS has been observed approx-

imately 2 months after randomization and the responder rate in Nivolumab group is ap-
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proximately 20% in Borghaei’s study (Borghaei et al., 2015). Since the original trial design

didn’t consider delayed treatment effect and the responder rate in treatment group, we illus-

trate sample size recalculation to incorporate both delayed treatment effect and responder

rate in treatment group.

It is assumed that the OS times for patients receiving Docetaxel follow an exponential

distribution, whereas the OS times for patients receiving Nivolumab follow a piecewise

exponential distribution with a delay time t0 = 2 months and responder rate p = 0.2 as

follows

S1(t) = e−0.074t

S2(t) =

 e−0.074t 0 ≤ t < 2

0.2ce−δλt + 0.8e−0.074t t ≥ 2,

where c = e−0.074∗2∗(1−δ) is a normalizing constant, and δ is the hazard ratio between the

responders in Nivolumab group and patients in Docetaxel group after 2 months. Xu et al.

used a simulation-based grid searching algorithm (Xu et al., 2020) to explore responder

hazard ratio and get hazard ratio δ2 = 0.01 when overall hazard ratio δ1 is 0.73 and respon-

der rate is 0.2 (Figure 5.4). Thus, assuming patients are accrued to the trial with enrollment

rate 36.8 subjects/months and the study duration is 29 months. Using the new formula, the

sample size is 392, to achieve 90% power with a two-sided type I error of 5%. The R code

for the sample size calculation is provided in Appendix J.

5.6 Discussion

Delayed treatment effect and long term survival are two challenges in cancer immunother-

apy trials design which violate the proportional hazards assumption. Other causes of non-

proportional hazards patten such as responder rate in treatment group are discussed in this

section. Xu et al. (Xu et al., 2020) illustrated this kind of responder rate in treatment

group in immunotherapy trial design and proposed a PRIME approach to incorporate the

dichotomized response incurred from nonresponders in treatment group. However, their

method used PRIME likelihood test and more complex in sample size and power calcula-

tion compared with our methods.
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Figure 5.4: Survival curves for the Docetaxel and Nivolumab groups.

Same as PWPHCR model discussed in Chapter 3, the PWPHRR model discussed in this

chapter assumes that the delayed treatment effect is homogeneous across the individual

subjects. It is more natural to assume that the effect may vary heterogeneously across

individuals, in which case a random delayed effect model would be more appropriate. Our

proposed method can be extended to the random delayed effect model with responder rate

as well. It is also possible to extend the proposed method to a general delayed treatment

effect model with random lag time by using weighted log-rank test. How to choose the

weight function is also needed to be considered in the extended model.

In real trial design, the responder rate in treatment group needs to be pre-specified.
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Usually we make assumption for the responder rate from pilot data during the trial design.

However, the true responder is unknown in advance, the mis-specification is inevitable

when doing trial design. So how to develop a robust method to choose responder rate is

another extension in the future.

Copyright© Jing Wei, 2021.
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Chapter 6 Summary

6.1 Summary and conclusion

In this dissertation, new statistical models used to design and analysis cancer immunother-

apy trials were introduced. Delayed treatment effect, long term survivors, responders and

non-responders in treatment groups are underlying causes of non-proportional hazards pat-

terns in cancer immunotherapy trials. As a result, a traditional survival trial design based

on standard log-rank test will lead to substantial loss of power.

A piecewise weighted log-rank test is proposed to incorporate the delayed treatment

effect into consideration of the trial design and derive sample size under a fixed alternative

hypothesis for the proposed piecewise proportional hazards (PWPH) model. This new sam-

ple size formula provides accurate sample size estimation for both balance and unbalance

design regardless of the size of hazard ratio.

A piecewise proportional hazard cure rate (PWPHCR) model is proposed to incorporate

both delayed treatment effect and cure rate into the trial design consideration. Sample size

formula also is derived under a fixed alternative hypothesis. The accuracy of sample size

calculation using this new formula is assessed and compared with existing methods via

simulation studies.

A more general and suitable random delayed cure rate model was proposed to design

cancer immunotherapy trials. Fτ weighted log-rank test is used to do sample size calcula-

tion. The sensitivity for mis-specifying the random delay lag time duration and distribu-

tions is also studied via simulation.

A limited percentage of patients would response to the treatment in reality. In light

of this, we need to treat patients as non-responders and responders in treatment group. A

piecewise proportional hazard responder rate (PWPHRR) model considering responders

and non-responders in treatment group is proposed and a sample size formula is derived

under wR weighted log-rank test for canner immunotherapy trials design. Simulations are

conducted to study the performance of the proposed sample size formula under various
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weight functions.

6.2 Future work

We proposed several statistical models, weighted log-rank tests and sample size formulas

to deal with NPH patterns in cancer immunotherapy trial design. An R package included

all discussed models in this thesis will be developed for implementation later.

Other problems in cancer immunotherapy trial design such as how to do interim anal-

ysis or sample size calculation in adaptive design are also need to be considered in the

future.

At last, more general models combining fixed/random delayed effect, cure rate or re-

sponse and non-response rate together will be proposed to satisfy more complex scenarios

in cancer immunotherapy trial design.

Copyright© Jing Wei, 2021.
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Appendices

Appendix A: Derivation of the probability of failure

Assume that patients are accrued over a time period ta, with an additional follow-up time

tf , so that the study duration τ = ta + tf , and the entry time Y is uniformly distributed

over [0, ta] with distribution H(t). If no patient drops out or is lost to follow-up, the ad-

ministrative censoring time τ − Y follows survival distribution G(t) = H(τ − t) which is

uniform over the interval [tf , ta + tf ]. Let T be the event time with survival distribution

S1(t) for the control group. The probability of a participant in the control group having an

event before calendar time t(> t0) but after the delayed phase can be calculated by

p1 = P{(t0 < T ) ∩ (T ≤ τ − Y )}

=

∫ ∞
0

P{(t0 < T ) ∩ (T ≤ τ − Y )|Y = x}dH(x)

=

∫ ∞
0

P{(t0 < T ≤ τ − x)}dH(x)

=
1

ta

∫ ta

0

{S1(t0)− S1(τ − x)}dx

= S1(t0)− 1

ta

∫ ta+tf

tf

S1(t)dt, t > t0,

under the delayed treatment effect model, it is easy to show

S2(t) = {S1(t0)}1−δ{S1(t)}δ, t > t0.

Thus, the probability of a participant in the treatment group having an event before calendar

time t but after the delayed phase can be calculated by

p2 = S2(t0)− 1

ta

∫ ta+tf

tf

S2(t)dt

= {S1(t0)}1−δ

[
{S1(t0)}δ − 1

ta

∫ ta+tf

tf

{S1(t)}δdt

]
, t > t0.

which are formulae p1 and p2 given by equations (2.7) and (2.8), respectively.
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Appendix B: Derivation of asymptotic distribution of the piecewise weighted log-rank

test

Assume that n patients are allocated between the control and treatment groups, which are

designated groups 1 and 2, respectively. Let D be the set of identifiers in the two groups

who died, and let tj be the death time of the jth patient in either group. We assume that the

{tj} are distinct. Let yj be an indicator variable of the control group, that is, yj = 1 if the

jth event belongs to the control group and yj = 0 if the jth event belongs to the treatment

group. If we define ni(t) to be the number at risk just before time t in group i, then, the

weighted log-rank score can be expressed as

U =
∑
j∈D

wj{yj − p(tj)},

where p(tj) = n1(tj)/{n1(tj) + n2(tj)} and {wj} are a set of predetermined weights. The

weighted log-rank test is given by

L =

∑
j∈D

wj{yj − p(tj)}[∑
j∈D

w2
jp(tj){1− p(tj)}

]1/2
.

Conditional on n1(tj) and n2(tj), the {yj} are a sequence of Bernoulli random variables

with means

µj =
n1(tj)λ1(tj)

n1(tj)λ1(tj) + n2(tj)λ2(tj)

and variances µj(1 − µj), where λi(t) is the hazard function of group i. To derive the

asymptotic distribution, we define function π(t) be the ratio of probability a subject in

group 1 being at risk at time t vs. overall probability of the subject at risk at time t and

V (t) be the incomplete density function of failure at time t, given as

π(t) =
ω1S1(t)G(t)

ω1S1(t)G(t) + ω2S2(t)G(t)
(B.1)

and

V (t) = {ω1λ1(t)S1(t) + ω2λ2(t)S2(t)}G(t), (B.2)
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where Si(t) is the survival distribution of group i, ωi is the proportion of subjects assigned

to group i, and G(t) is the common survival distribution of the censoring time for the two

groups (Schoenfeld, 1981). The log-rank test L can be written as

L =

∑
j∈D

wj{yj − p(tj)}[∑
j∈D

w2
jp(tj){1− p(tj)}

]1/2

=

∑
j∈D

w2
j{yj − µj}[∑

j∈D
w2
jµj(1− µj)

]1/2
×

[∑
j∈D

w2
jµj(1− µj)

]1/2

[∑
j∈D

w2
jp(tj){1− p(tj)}

]1/2

+

∑
j∈D

wj{µj − p(tj)}[∑
j∈D

w2
jp(tj){1− p(tj)}

]1/2

= I1 × I2 + I3.

Using the martingale central limit theorem (Fleming and Harrington, 1991), we can show

that the first term I1 has a limiting standard normal distribution. As

µj − p(tj) =
n1(tj)

n1(tj) + n2(tj)δ(tj)
− n1(tj)

n1(tj) + n2(tj)

=
n1(tj)n2(tj){1− δ(tj)}{

n1(tj) + n2(tj)
}{

n1(tj) + n2(tj)δ(tj)
}

=
p(tj){1− p(tj)}(1− δ(tj))[
p(tj) + {1− p(tj)}δ(tj)

] ,
where δ(t) = λ2(t)/λ1(t), replacing p(tj) by its limit π(tj), we have

n−1
∑
j∈D

wj{µj − p(tj)}

P−→
∫ ∞

0

w(t)
π(t){1− π(t)}{1− δ(t)}[
π(t) + {1− π(t)}δ(t)

] V (t)dt

= µ,
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and

n−1
∑
j∈D

w2
jp(tj){1− p(tj)}

P−→
∫ ∞

0

w(t)2π(t){1− π(t)}V (t)dt = σ2.

Thus, the third term, I3, converges to∑
j∈D

wj{µj − p(tj)}[∑
j∈D

w2
jp(tj){1− p(tj)}

]1/2
−
√
ne

P−→ 0,

where e = µ/σ. We can further show

n−1
∑
j∈D

w2
jµj(1− µj)

= n−1
∑
j∈D

w2
j

n1(tj)n2(tj)δ(tj){
n1(tj) + n2(tj)δ(tj)

}2

= n−1
∑
j∈D2

w2
j

p(tj)(1− p(tj))δ(tj)[
p(tj) + {1− p(tj)}δ(tj)

]2

P−→
∫ ∞

0

w2(t)
π(t){1− π(t)}δ(t)[

π(t) + {1− π(t)}δ(t)
]2V (t)dt = σ̃2.

and it follows that

I2 =

{∑
j∈D

w2
jµj(1− µj)

}1/2

[∑
j∈D

w2
jp(tj){1− p(tj)}

]1/2

P−→ σ̃

σ
.

Combining these results, we have shown that the log-rank test L is asymptotically normally

distributed with a variance σ̃2/σ2 and mean
√
ne, where e = µ/σ.

We now consider the delayed treatment effect model (2.3), and using the piecewise

weight function w(t) = 0 when t ≤ t0 and w(t) = 1 when t > t0, and hazard ratio

δ(t) = 1 when t ≤ t0 and δ(t) = δ when t > t0 and substituting π(t) of equation (B.1),

V (t) of equation (B.2) and S2(t) = [S1(t0)]1−δ[S1(t)]δ into µ, σ2 and σ̃2, we obtain the
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following expressions

µ = ω1ω2(1− δ)c(δ)
∫ ∞
t0

{S1(t)}δG(t)λ1(t)[
ω1 + ω2c(δ){S1(t)}δ−1

]dt,
σ2 = ω1ω2c(δ)

∫ ∞
t0

{S1(t)}δ[ω1 + ω2δc(δ){S1(t)}δ−1]G(t)λ1(t)

[ω1 + ω2c(δ){S1(t)}δ−1]2
dt,

σ̃2 = ω1ω2δc(δ)

∫ ∞
t0

{S1(t)}δG(t)λ1(t)

[ω1 + ω2δc(δ){S1(t)}δ−1]
dt,

where c(δ) = {S1(t0)}1−δ.
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Appendix C: Generating random number under the delayed treatment effect model

Under the PWPH model (2.3), we have

S2(t) =

 S1(t), t ≤ t0,

{S1(t0)}1−δ{S1(t)}δ, t > t0.

Assume that T is a random variable with survival distribution S2(t). Then, U = S2(T ) is

a uniform random variable on interval [0, 1]. If U ≥ S1(t0), then U = S1(T ), and thus

T = S−1
1 (U). If U < S1(t0), then U = c{S1(T )}δ, where c = {S1(t0)}1−δ, and thus

T = S−1
1 {(U/c)1/δ}. Therefore, a random variable T can be generated, which follows

survival distribution S2(t) as follows:

T = S−1
2 (U) =

 S−1
1 (U), U ≥ S1(t0),

S−1
1 {(U/c)1/δ}, U < S1(t0).

For the Weibull distribution S1(t) = e−λt
κ , solving t, its inverse function, is given by

t = S−1
1 (u) = {− log(u)/λ}1/κ.
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Appendix D: R code used for sample size calculation in Chapter 2

The R function ‘Size’ used for the sample size calculation in Section 5 is given below.

‘Size’ has implemented the sample size calculation using formulae (2.6) and (2.9) with

the Weibull distribution. It can be modified to accommodate other parametric or non-

parametric logspline survival distribution. The input parameters in the R function ‘Size’:

kappa is the Weibull shape parameter; lambda is the hazard parameter of the control group;

delta is the hazard ratio; alpha and beta are the type I and II errors; ta and tf are accrual du-

ration and follow-up period; t0 is the fixed delay time; omega is the sample size allocation

ratio.

####################################################################

### kappa is the shape parameter of the Weibull distribution; ######

### lambda is the hazard parameter of control group; delta is ######

### the hazard ratio; alpha and beta are type I and II error; ######

### ta and tf are accrual and follow-up durations; t0 is the ######

### lag time, omega is the sample size allocation ratio. ######

####################################################################

Size=function(kappa, lambda, delta, alpha, beta, ta, tf, t0, omega)

{S1=function(t){exp(-lambda*tˆkappa)}

S2=function(t){S1(t)ˆdelta}

h1=function(t){lambda*kappa*tˆ(kappa-1)}

G=function(t){1-punif(t, tf, ta+tf)}

c=S1(t0)ˆ(1-delta)

m1=function(t){(S1(t)ˆdelta)/(omega+(1-omega)*c*S1(t)ˆ(delta-1))}

m2=function(t){(S1(t)ˆdelta)*(omega+(1-omega)*delta*c*S1(t)ˆ(delta-1))/

(omega+(1-omega)*c*S1(t)ˆ(delta-1))ˆ2}

m3=function(t){(S1(t)ˆdelta)/(omega+(1-omega)*delta*c*S1(t)ˆ(delta-1))}

f1=function(t){m1(t)*G(t)*h1(t)}

f2=function(t){m2(t)*G(t)*h1(t)}

f3=function(t){m3(t)*G(t)*h1(t)}

I1=integrate(f1, t0, ta+tf)$value

I2=integrate(f2, t0, ta+tf)$value

I3=integrate(f3, t0, ta+tf)$value

mu=(1-delta)*omega*(1-omega)*c*I1
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var1=omega*(1-omega)*c*I2

var2=omega*(1-omega)*delta*c*I3

z0=qnorm(1-alpha/2); z1=qnorm(1-beta)

nW=(sqrt(var1)*z0+sqrt(var2)*z1)ˆ2/muˆ2 ## new formula (8)

p1=S1(t0)-integrate(S1, tf, ta+tf)$value/ta

p2=c*(S1(t0)ˆdelta-integrate(S2, tf, ta+tf)$value/ta)

P=omega*p1+(1-omega)*p2

dW=ceiling(nW*P)

dX=(z0+z1)ˆ2/(omega*(1-omega)*log(delta)ˆ2)

nX=ceiling(dX/P) ## Xu’s formula (3.5)

ans=list(c(dX=ceiling(dX),nX=nX,dW=dW, nW=ceiling(nW)));

return(ans)}

Size(kappa=1,lambda=0.01,delta=0.72,alpha=0.05,beta=0.1,ta=30,tf=50,

t0=6,omega=1/2)

dX nX dW nW # X and W refer to Xu and New method #

390 1050 391 1051 # d and n refer to events and sample size #
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Appendix E: Derivation of the asymptotic distribution of the weighted log-rank test

under PWPHCR model

The weighted log-rank test Lw is given by

L =

∑
j∈D

wj{yj − p(tj)}[∑
j∈D

w2
jp(tj){1− p(tj)}

]1/2
,

where p(tj) = n1(tj)/{n1(tj) + n2(tj)} and wj = W (tj). Conditionally on n1(t) and

n2(t), the {yj} are a sequence of Bernoulli random variables with means

µj =
n1(tj)λ1(tj)

n1(tj)λ1(tj) + n2(tj)λ2(tj)

and variances µj(1 − µj), where λi(t) is the hazard function of group i. To derive the

asymptotic distribution, we define the functions

V (t) = {ω1λ1(t)S1(t) + ω2λ2(t)S2(t)}G(t),

π(t) =
ω1S1(t)G(t)

ω1S1(t)G(t) + ω2S2(t)G(t)
.

Under the PWPHCR model, we have

µj − p(tj) =
n1(tj)λ1(tj)

n1(tj)λ1(tj) + n2(tj)λ2(tj)
− n1(tj)

n1(tj) + n2(tj)

=
p(tj){1− p(tj)}{λ1(tj)− λ2(tj)}
p(tj)λ1(tj) + {1− p(tj)}λ2(tj)

.

Replacing wj = W (tj) and p(tj) by their limits w(tj) and π(tj), we obtain

n−1
∑
j∈D

wj{µj − p(tj)}

→
∫ ∞

0

w(t)
π(t)(1− π(t)){λ1(t)− λ2(t)}
π(t)λ1(t) + {1− π(t)}λ2(t)

V (t)dt = µw (E.1)

and

n−1
∑
j∈D

w2
jp(tj){1− p(tj)}

→
∫ ∞

0

w2(t)π(t){1− π(t)}V (t)dt = σ2
w. (E.2)
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The weighted log-rank test Lw can be written as

L =

∑
j∈D

wj{yj − p(tj)}[∑
j∈D w

2
jp(tj){1− p(tj)}

]1/2

=

∑
j∈D

wj{yj − µj}[∑
j∈D

w2
jµj(1− µj)

]1/2
×

[∑
j∈D

w2
jµj(1− µj)

]1/2

[∑
j∈D

w2
jp(tj){1− p(tj)}

]1/2

+

∑
j∈D

wj{µj − p(tj)}[∑
j∈D

w2
jp(tj){1− p(tj)}

]1/2

= I1 × I2 + I3.

By martingale central limiting theorem (Fleming and Harrington, 1991), we can show that

the first term I1 has a limiting standard normal distribution. From equations (E.1) and

(E.2), the third term I3 converges in probability to

n−1/2
∑
j∈D

wj{µj − p(tj)}[
n−1

∑
j∈D

w2
jp(tj){1− p(tj)}

]1/2
−
√
n
µw
σw

P−→ 0

and∑
j∈D

w2
jµj(1− µj)]1/2

P−→
∫ ∞

0

w2(t)
π(t)(1− π(t))λ1(t)λ2(t)

[π(t)λ1(t) + {1− π(t)}λ2(t)]2
V (t)dt = σ̃2

w.

Thus, the weighted log-rank testLw is asymptotically normal distributed with mean
√
nµw/σw

and variance σ2
w/σ̃

2
w, where

µw =

∫ ∞
0

w(t)
π(t)(1− π(t)){λ1(t)− λ2(t)}
π(t)λ1(t) + {1− π(t)}λ2(t)

V (t)dt,

σ2
w =

∫ ∞
0

w2(t)π(t){1− π(t)}V (t)dt,

σ̃2
w =

∫ ∞
0

w2(t)
π(t)(1− π(t))λ1(t)λ2(t)

[π(t)λ1(t) + {1− π(t)}λ2(t)]2
V (t)dt.
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Appendix F: Generating random number under the PWPHCR model in chapter 3

Under the PWPHCR model (3.3), we have

S1(t) = π1 + (1− π1)S∗1(t)

and

S2(t) =

 π1 + (1− π1)S∗1(t), t ≤ t0,

π2 + (1− π2)c̃ [S∗1(t0)]1−δ [S∗1(t)]δ , t > t0,

where π2 = cπ̃2 and c̃ = c(1− π̃2)/(1− cπ̃2)

Assume that T1 is a random variable with survival distribution S1(t) and separate S1(t)

as cured patients and uncured patients. Setting t = inf for cured patients and using the

same inverse method discussed in Appendix C to get T = S−1
1 (U) for uncured patients.

For the Weibull distribution S1(t) = e−λt
κ , solving t, its inverse function, is given by

t = S−1
1 (u) = {− log(u)/λ}1/κ.

Similarity, Assume that T2 is a random variable with survival distribution S2(t) and

separate S2(t) as cured patients and uncured patients. Setting t = inf for cured patients

and using the same inverse method discussed in Appendix C to get

T = S−1
2 (U) =

 S−1
1 (U), U ≥ S1(t0),

S−1
1 {(U/c)1/δ}, U < S1(t0)

for uncured patients where c = {S1(t0)}1−δ c̃. For the Weibull distribution S1(t) = e−λt
κ ,

solving t, its inverse function, is given by t = S−1
1 (u) = {− log(u)/λ}1/κ.
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Appendix G: R code for the sample size calculations of Chapter 3

Below is the R function ‘Size’ used for the sample size calculation in Chapter 3. ‘Size’ has

implemented sample size calculation for several different models. By setting π1 = π2 = 0

and t0 = 0, it does the sample size calculation under the standard PH model; by setting

π1 = π2 = 0 and t0 > 0, it does the sample size calculation under the PWPH model;

by setting π1 < π2 6= 0 and t0 = 0, it does the sample size calculation under the PHCR

model; by setting π1 ≤ π2 6= 0 and t0 6= 0, it does the sample size calculation under

the PWPHCR model. For the PWPH model, the optimal piecewise weighted log-rank

test is implemented. However, for the PHCR model or PWPHCR model, we used the

standard log-rank test because the optimal weight function for the log-rank test remains

unknown. The R function ‘Size’ can be modified to accommodate other parametric survival

distribution and non-parametric logspline distribution.

####################################################################

### kappa and lambda are the Weibull shape and hazard parameter; ###

### pi1 and pi2 are the cure rates of two groups; ###

### p is the allocation ratio of control group; ###

### ta and tf are accrual duration and follow-up period; ###

### alpha and beta are type I and II errors; ###

### delta is the hazard ratio; t0 is the delay time; ###

####################################################################

Size=function(kappa,lambda,pi1,pi2,p,ta,tf,delta,alpha,power,t0)

{ z0=qnorm(1-alpha/2); z1=qnorm(power)

S1=function(t){exp(-lambda*tˆkappa)}

h1=function(t){kappa*lambda*tˆ(kappa-1)}

tau=ta+tf; c0=S1(t0)ˆ(1-delta)

St0=S1(t0)

pi2.tilde=1/(1+((pi1+(1-pi1)*St0)/pi2-1)/St0)

c=(pi1+(1-pi1)*St0)/(pi2.tilde+(1-pi2.tilde)*St0)

c.tilde=c*(1-pi2.tilde)/(1-c*pi2.tilde)

G=function(t){1-punif(t, tf, tau)}

S2=function(t){c0*S1(t)ˆdelta}

h2=function(t){delta*h1(t)}

S11=function(t){pi1+(1-pi1)*S1(t)}

84



S21=function(t){pi2+(1-pi2)*c.tilde*S2(t)}

h11=function(t){(1-pi1)*S1(t)*h1(t)/S11(t)}

h21=function(t){(1-pi2)*c.tilde*S2(t)*h2(t)/S21(t)}

pi=function(t){p*S11(t)/(p*S11(t)+(1-p)*S21(t))}

V=function(t){(p*h11(t)*S11(t)+(1-p)*h21(t)*S21(t))*G(t)}

f1=function(t){pi(t)*(1-pi(t))*(h11(t)-h21(t))*V(t)/

(pi(t)*h11(t)+(1-pi(t))*h21(t))}

f2=function(t){pi(t)*(1-pi(t))*V(t)}

f3=function(t){pi(t)*(1-pi(t))*h11(t)*h21(t)*V(t)/

(pi(t)*h11(t)+(1-pi(t))*h21(t))ˆ2}

mu=integrate(f1, t0, tau)$value

sigma1=integrate(f2, t0, tau)$value

sigma2=integrate(f3, t0, tau)$value

P=integrate(V, t0, tau)$value

n=(sqrt(sigma1)*z0+sqrt(sigma2)*z1)ˆ2/muˆ2

dt0=ceiling(n*P)

d1=(1-S11(t0))*n

d=ceiling(d1+dt0)

ans=c(dt0=dt0,d=d,n=ceiling(n)); return(ans)

}

Size(kappa=1.2,lambda=0.059,pi1=0.12,pi2=0.18,p=0.5,ta=17,tf=37,

delta=0.72,alpha=0.05,power=0.9,t0=3.5)

dt0 d n # dt0 and d are number of events after delay and

352 466 553 # total number of events; n is sample size
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Appendix H: R code used for sample size calculation of chapter 4

Below is the R function ‘Size’ used for the sample size calculation in chapter 4. ‘Size’ has

implemented the sample size calculation using formulae (4.3) and (4.7) with the Weibull

random delayed cure rate model.

####################################################################

### kappa and lambda are the Weibull shape and hazard parameter; ###

### pi1 and pi2 are the cure rates of two groups; ###

### omega is the allocation ratio of control group; ###

### ta and tf are accrual duration and follow-up period; ###

### alpha and beta are type I and II errors; ###

### delta is the hazard ratio; ###

### T1 and T2 are the lag domain for the random delay time; ###

####################################################################

library (statmod)

GQ<-gauss.quad(n=50,kind="legendre")

GQ.int<-function (g, limits=c(0,t)){

upp=limits[2];low=limits[1];

sum(sapply(GQ$nodes, function(x){g((upp-low)*x/2+

(upp+low)/2 )*(upp-low)/2})*GQ$weights)}

Size<-function(alpha,beta,kappa,lambda,ta,tf,pi1,pi2,delta,T1,T2,omega)

{ total<-ta+tf

lambda1star<-function(x){kappa*lambda*xˆ(kappa-1)}

G<-function(x){1-punif(x,min=tf,max=total)}

s1star<-function(x){exp(-lambda*xˆkappa)}

s1<-function(x){pi1+(1-pi1)*s1star(x)}

f1<-function(x){(1-pi1)*s1star(x)*lambda1star(x)}

lambda1<-function(x){f1(x)/s1(x)}

g<-function(pi2tu){

f_tau<-function(mu){return(dunif(mu,T1,T2))}

s1star<-function(mu){exp(-lambda*muˆkappa)}

A_tau<-function(mu){(pi1+(1-pi1)*s1star(mu))/

(pi2tu+(1-pi2tu)*s1star(mu))}

intepart<-function(mu){A_tau(mu)*f_tau(mu)}

return(pi2tu*integrate(intepart,lower=T1,upper=T2)
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$value-pi2)}

pi2tu<-uniroot(g,c(0,0.99))$root

A_tau<-function(tau){(pi1+(1-pi1)*s1star(tau))

/(pi2tu+(1-pi2tu)*s1star(tau))}

s_tau<-function(x){1*I(x<T1)+((T2-x)/(T2-T1))*I((T1<= x)&(x<= T2))

+0*I(x>T2)}

weight<-function(x){1-s_tau(x)}

f_tau<-function(x){return(dunif(x,T1,T2))}

intepart1<-function(mu){A_tau(mu)*f_tau(mu)}

intepart2<-function(mu){A_tau(mu)*(s1star(mu))ˆ(1-delta)*f_tau(mu)}

intepart3<-function(mu){A_tau(mu)*((s1star(mu))ˆ(1-delta)*f_tau(mu))}

s2<-function(x){(pi1+(1-pi1)*s1star(x))*s_tau(x)+

pi2tu*GQ.int(intepart1,limits=c(0,min(T2,x)))+

(s1star(x))ˆdelta*(1-pi2tu)*

GQ.int(intepart2,limits=c(0,min(T2,x)))}

f2<-function(x){s1star(x)*lambda1star(x)*((1-pi1)*s_tau(x)

+(1-pi2tu)*delta*s1star(x)ˆ(delta-1)

*GQ.int(intepart3,limits=c(0,min(T2,x))))}

lambda2<-function(x){f2(x)/s2(x)}

pifunction<-function(x){omega*s1(x)/(omega*s1(x)+(1-omega)*s2(x))}

v<-function(x){omega*f1(x)*G(x)+(1-omega)*f2(x)*G(x)}

bndry.mat=matrix(c(0,total),nrow = 1,ncol = 2)

integrand1 <- function(x) {pifunction(x)*(1-pifunction(x))*

(lambda1(x)-lambda2(x))*v(x)*weight(x)/(pifunction(x)*lambda1(x)+

(1-pifunction(x))*lambda2(x))}

mu0=sum(apply(bndry.mat,1,function(x) GQ.int(integrand1,limits=x)))

integrand2 <- function(x) {pifunction(x)*(1-pifunction(x))

*lambda1(x)*lambda2(x)*v(x)*weight(x)ˆ2/

((pifunction(x)*lambda1(x)+

(1-pifunction(x))*lambda2(x))ˆ2)}

sigma1=sum(apply(bndry.mat,1,function(x) GQ.int(integrand2,limits=x)))

integrand3<-function(x) {pifunction(x)*

(1-pifunction(x))*v(x)*weight(x)ˆ2}

sigma0=sum(apply(bndry.mat,1,function(x)

GQ.int(integrand3,limits=x)))

n=(qnorm(1-alpha/2)*sqrt(sigma0)+
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qnorm(1-beta)*sqrt(sigma1))ˆ2/((mu0)ˆ2)

return(ceiling(n))}

Size(alpha=0.05,beta=0.2,kappa=1,lambda=log(2)/(10/12),

ta=2,tf=1,pi1=0.35,pi2=0.35,

delta=0.7,T1=0/12,T2=6/12,omega = 0.5)

1641
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Appendix I: Generating random number under the PWPHRR model in chapter 5

Under the PWPHCR model (5.3), we have

ST (t) =

 SC(t), t ≤ t0,

p [SC(t0)]1−δ [SC(t)]δ + (1− p)SC(t), t > t0.

Assume that T is a random variable with survival distribution ST (t) and can generate

T = S−1
C (U) for non-responder patients. For the Weibull distribution SC(t) = e−λt

κ ,

solving t, its inverse function, is given by t = S−1
C (u) = {− log(u)/λ}1/κ. For responder

patients, can get

T = S−1
2 (U) =

 S−1
1 (U), U ≥ S1(t0),

S−1
1 {(U/c)1/δ}, U < S1(t0),

where c = {SC(t0)}1−δ. For the Weibull distribution S1(t) = e−λt
κ , solving t, its inverse

function, is given by t = S−1
C (u) = {− log(u)/λ}1/κ.
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Appendix J: R code used for sample size calculation of chapter 5

Below is the R function ‘Size’ used for the sample size calculation in chapter 5. ‘Size’

has implemented the sample size calculation using formula (5.4) with the Weibull delayed

responder rate model.

####################################################################

### kappa and lambda are the Weibull shape and hazard parameter; ###

### p is the responder rates of two groups; ###

### omega1 and omega2 are the allocation ratio of two groups; ###

### total is the study period; ###

### alpha and beta are type I and II errors; ###

### delta is the hazard ratio; ###

### t0 is the fixed delay time; ###

### r is the enrollment rate for patients ###

####################################################################

Size<-function(alpha,beta,r,total,k,lambda,delta,w1,w2,p,t0){

root<-function(ta){

tf<-total-ta

G<-function(x){

1-punif(x,min=tf,max=total)

}

##control group survival

s1<-function(x){

exp(-lambda*xˆk)

}

##control hazard

lambda1<-function(x){

k*lambda*xˆ(k-1)

}

###treatment survival after t0

s2<-function(x){

p*s1(t0)ˆ(1-delta)*s1(x)ˆdelta+(1-p)*s1(x)
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}

###treatment hazard after t0

lambda2<-function(x){

(p*delta*s1(t0)ˆ(1-delta)*s1(x)ˆ(delta-1)+1-p)/(p*s1(t0)ˆ(1-

delta)*s1(x)ˆ(delta-1)+1-p)*lambda1(x)

}

pifunction<-function(x){

w1*s1(x)/( w1*s1(x)+ w2*s2(x))

}

v<-function(x){

w1*s1(x)*lambda1(x)*G(x)+w2*s2(x)*lambda2(x)*G(x)

}

weight<-function(x){

(p*s1(t0)ˆ(1-delta))/(p*s1(t0)ˆ(1-delta)+(1-p)*s1(x)ˆ(1-delta))

}

integrand1 <- function(x) {pifunction(x)*(1-pifunction(x))

*(lambda1(x)-lambda2(x))*v(x)*weight(x)/

(pifunction(x)*lambda1(x)+(1-pifunction(x))*lambda2(x))}

mu0=(integrate(integrand1, lower = t0, upper = total)$value)

integrand2 <- function(x) {pifunction(x)*(1-pifunction(x))*lambda1(x)

*lambda2(x)*v(x)*weight(x)ˆ2

/((pifunction(x)*lambda1(x)+(1-pifunction(x))*lambda2(x))ˆ2)}

sigma1=(integrate(integrand2, lower = t0, upper = total)$value)

integrand3<- function(x) {pifunction(x)*(1-pifunction(x))*v(x)*

weight(x)ˆ2}

sigma0=(integrate(integrand3, lower = t0, upper =total)$value)

n=(qnorm(1-alpha/2)*sqrt(sigma0)+qnorm(1-beta)*sqrt(sigma1))ˆ2

/((mu0)ˆ2)
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ans<-r*ta-n

}

ta<-uniroot(root,lower=0.1,upper=200)$root

n<-ceiling(r*ta)

ta<-round(ta,2)

ans<-list(c(ta=ta,n=n))

return(ans)

}

Size(alpha=0.05,beta=0.1,r=36.8,total=29,k=1,

lambda=0.074,delta=0.01,w1=0.5,w2=0.5,p=0.2,t0=2)

ta n

10.65 392.00

Copyright© Jing Wei, 2021.
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