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Featured Article

Effects of the dual orexin receptor antagonist DORA-22 on sleep in
5XFAD mice

Marilyn J. Duncana,*, Hannah Farlowa, Chairtra Tirumalarajua, Do-Hyun Yuna, Chanung Wangb,
James A. Howarda, Madison N. Sandenc, Bruce F. O’Harab, Kristen J. McQuerryc,

Adam D. Bachstettera,d

aDepartment of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
bDepartment of Biology, University of Kentucky, Lexington, KY, USA
cDepartment of Statistics, University of Kentucky, Lexington, KY, USA

dSpinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, USA

Abstract Introduction: Sleep disruption is a characteristic of Alzheimer’s disease (AD) that may exacerbate
disease progression. This study tested whether a dual orexin receptor antagonist (DORA) would
enhance sleep and attenuate neuropathology, neuroinflammation, and cognitive deficits in an AD-
relevant mouse model, 5XFAD.
Methods: Wild-type (C57Bl6/SJL) and 5XFAD mice received chronic treatment with vehicle or
DORA-22. Piezoelectric recordings monitored sleep and spatial memory was assessed via sponta-
neous Y-maze alternations. Ab plaques, Ab levels, and neuroinflammatory markers were measured
by immunohistochemistry, enzyme-linked immunosorbent assay, and real-time polymerase chain re-
action, respectively.
Results: In 5XFAD mice, DORA-22 significantly increased light-phase sleep without reducing Ab
levels, plaque density, or neuroinflammation. Effects of DORA-22 on cognitive deficits could not be
determined because the 5XFAD mice did not exhibit deficits.
Discussion: These findings suggest that DORAs may improve sleep in AD patients. Further
investigations should optimize the dose and duration of DORA-22 treatment and explore additional
AD-relevant animal models and cognitive tests.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Keywords: Sleep-wake cycles; Sleep fragmentation; Orexin; Dual orexin receptor antagonist; Amyloid b; Neuroinflamma-

tion; Alzheimer’s disease

1. Introduction

Sleep disruption, including fragmentation and loss of
sleep, affects 25% to 40% of patients with Alzheimer’s dis-
ease (AD) [1–3] and often precedes overt cognitive
impairments and diagnosis of AD by a decade or more

[4]. Accumulating evidence suggests that sleep disrup-
tion—long recognized as a challenge for caregivers—may
contribute to the progression of AD neuropathology and
cognitive impairment. Sleep is essential for brain function
because it stimulates removal of neurotoxic waste products,
such as amyloid b (Ab) [5], and enhances learning-
dependent synapse formation and maintenance [6,7].
Humans with shorter sleep duration or lower sleep quality
have higher levels of Ab in the hippocampus and cortex
[8]. Similarly, sleep deprivation strongly increases hippo-
campal interstitial Ab levels [9] and reduces Ab clearance
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[5] in AD-relevant mouse models. Sleep disruption may
contribute to memory impairments in mice and in patients
with AD, because sleep promotes memory consolidation
[10] whereas sleep deprivation attenuates this process
[11,12]. Sleep fragmentation is associated with earlier
cognitive decline and greater risk of incident AD in older
humans [13]. In rodents and humans, sleep deprivation or
fragmentation impairs performance on many cognitive
measures [11,12,14–21]. Moreover, experimentally
induced sleep disruption stimulates inflammation and
reactive glia response [22,23], which could be cellular and
molecular contributors to accumulation of neurotoxic
waste products and cognitive deterioration. These
associations of sleep disruption with AD neuropathology
led to the following question: Can sleep enhancement
attenuate the progression of AD by reducing Ab
accumulation, restoring the homeostatic balance of glia,
and reducing cognitive decline?

In this study, we tested the hypothesis that chronic admin-
istration of a dual orexin receptor antagonist (DORA) to
5XFAD mice would lead to sleep enhancement that would
be associated with attenuation of cognitive deficits, Ab accu-
mulation, and neuroinflammation. 5XFAD mice were
chosen for study because they exhibit AD-like sleep disrup-
tions as well as AD-like neuropathology and cognitive defi-
cits [24-26]. To improve sleep in 5XFAD mice, DORA-22
was used. In contrast to traditional insomnia medications
(e.g., zolpidem [Ambien] and eszopiclone [Lunesta]),
which tend to impair memory, DORAs such as DORA-22
exhibit a wide therapeutic margin between sleep induction
and cognitive disruption [27]. Furthermore, DORAs restore
natural sleep patterns by increasing both rapid eye move-
ment (REM) and non-REM sleep, whereas eszopiclone
and related nonbenzodiazepine hypnotics only increase
non-REM sleep and decrease REM sleep [28]. The diminu-
tion of REM sleep, such as that resulting from traditional
insomnia medications, interferes with spatial memory
[29,30]. The 5XFAD mice were selected for testing the
therapeutic effects of sleep enhancement because they
exhibit not only the prominent neuropathologic features
[24] but also sleep alterations resembling those seen in pa-
tients with AD including reduced total sleep and shorter
sleep bouts [25]. Moreover, the 5XFAD mice exhibit
increased neuroinflammation and impairments in spatial
memory around the age at which they show sleep disruption
[24,26]; thus, the 5XFAD mice provide a useful preclinical
model to test our hypothesis.

2. Methods

2.1. Experimental animals

Male and female 5XFAD hemizygous and wild-type
(WT) mice, 4 to 4.5 months old, were used. The 5XFAD
mouse is an early onset, aggressive amyloid model that
has five distinct human mutations associated with familial

early onset AD in two genes encoding the amyloid precur-
sor protein (APP) and presenilin 1 (PS1); these mutations
are engineered into two transgenes driven by a neuron-
specific promoter (murine Thy1) [24]. The mice were
obtained from a breeding colony established at the Univer-
sity of Kentucky using breeders from Jackson Laboratories
(hemizygous male 5XFAD [B6SJL-Tg(APPSwFlLon,
PSEN1*M146 L*L286V)6799Vas/Mmjax (MMRRC)]
and WT female mice [C57B6/SJL]). Three matings were
conducted to produce three cohorts of mice (�32 mice
per cohort). After weaning, tissue from ear punches was
used for genotyping (Transnetyx). The pups were identified
by tattoo. Until the age of 4 months, the mice were group-
housed (three to five per cage) with littermates (except
when aggression occurred), exposed to an alternating
14 hour light (L):10 hour dark (D) cycle (standard for
breeding colonies at our institution), and were weighed
monthly. The mice were gently handled three to four times
a week for 2 weeks before experimentation began. One
week before the study onset, the mice were singly housed
and transferred to a separate room dedicated to this study,
with a 12L:12D cycle (lights on at 9:15 AM, Eastern Stan-
dard Time) because 12L:12D is a standard photoperiod for
rodent sleep studies. Mouse chow and water were available
ad libitum throughout the study.

2.2. Experimental design

All procedures were performed according to the Amer-
ican Association for Accreditation of Laboratory Animal
Care Guide and were preapproved by the University of
Kentucky Institutional Animal Care and Use Committee.
The study was conducted sequentially on three cohorts
(32–36 mice per cohort) using the basic experimental
design described briefly here, with more details presented
subsequently. Before treatment, short-term working spatial
memory was assessed at zeitgeber time (ZT) 7 to 9 (ZT
0 5 lights on), using the Y-maze test (described in Section
2.4). After resting in their home cages for 3 to 5 days, base-
line sleep was assessed for 4 days (Section 2.5). Body
weight was recorded and daily oral gavage was conducted
at ZT 0 for 5 weeks, with either vehicle (VEH; Vitamin E
[d-alpha-tocopheryl polyethylene glycol 1000 succinate],
Sigma Aldrich) or DORA-22, 100 mg/kg, a dose that in-
creases sleep in WT mice [28]). The treatment groups
(N 5 10–12 each) were (1) WT, male, VEH; (2) WT,
male, DORA-22; (3) WT, female, VEH; (4) WT, female,
DORA-22; (5) 5XFAD, male, VEH; (6) 5XFAD, male,
DORA-22; (7) 5XFAD, female, VEH; and (8) 5XFAD, fe-
male, DORA-22. Y-maze testing was conducted during the
fourth treatment week, and sleep recording was conducted
the following week for 3 to 5 days. Sleep recording was
continued for 48 hours after the administration of the last
dose of DORA-22 or VEH. Body weight was monitored
daily during the first week of dosing and at least once a
week thereafter and remained stable throughout the study.
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2.3. Drug treatment

DORA-22 (100 mg/kg, Merck & Co, Inc) or VEH was
administered daily by oral gavage for 5 weeks. Dosing
occurred at the time of lights on, that is, at the beginning
of the daily inactive phase for mice to mimic a transla-
tionally relevant treatment regimen. In a previous study
of male C57BL6NTc mice, this dose of DORA-22,
although given at dark onset, significantly suppressed
wake time for 2 hours after administration while
increasing light sleep and REM sleep for w5 hours and
delta sleep for 1.5 hours [28]. On the basis of the instruc-
tions from Merck, the DORA-22 solution was prepared
the afternoon before dosing began and was stirred at
room temperature thereafter; a fresh solution was pre-
pared every 12 to 14 days.

2.4. Memory testing

Short-term working spatial memory was assessed using
the spontaneous alternation Y-maze test described previ-
ously [24,31]. The test was administered 7 to 9 hours after
lights on to assess performance at least 1 hour after the
end of any acute sleep promoting effect of DORA-22 as
determined previously [28]. During testing, the investigators
were na€ıve with respect to the genotype and treatment of
each mouse. Each mouse was placed at the end of one arm
of a symmetrical Y-maze and allowed to explore the maze
freely for 8 minutes. After each session, the Y-maze was
cleaned with Quatricide PV (second generation, Pharmacal
Research Laboratories). The sequence and total number of
arms entered were recorded by the Noldus EthoVision XT
8.0 system. The percentage alternation was defined as the
number of triads containing entries into all three arms/
maximum possible alternations (the total number of arms
entered 2 2) ! 100.

2.5. Sleep monitoring

A sleep recording system using piezoelectric films that
detect pressure changes induced by movements, including
small respiratory movements, was used as described for
5XFAD mice [25] and other strains [32,33]. On the basis of
the electroencephalography and human observations, the
piezoelectric system has a classification accuracy of .90%
[34–36]. This noninvasive method is more feasible than
polysomnography for monitoring sleep in 96 mice. In this
study, sleep and wake states were assessed for at least three
consecutive days, after 1 day of acclimation to the sleep
recording cages. The sleep parameters studied included
average total sleep percent for more than 24 hours, average
sleep percent at night, average sleep percent during the day,
average sleep bout length for more than 24 hours, average
sleep bout length at night, and average sleep bout length
during the day. Durations of consecutive sleep states were
used to compute mean sleep bout lengths, as reported
previously [25].Toeliminate the impact of short andambiguous
arousals on the bout length statistics, a bout length count is initi-
atedwhen a 30-second interval contains greater than 50% sleep
and terminates when a 30-second interval has less than 50%
sleep.

2.6. Brain tissue collection

Approximately 50 hours after the last dose, the mice were
anesthetized with isoflurane and perfused intracardially with
ice-cold phosphate-buffered saline (PBS) to exsanguinate.
Each brain was bisected in the sagittal plane and one-half
was fixed in paraformaldehyde, sucrose embedded, and
frozen before subsequent coronal sectioning for immunohis-
tochemistry. The other brain half was microdissected into
hippocampal and cortical samples that were frozen and
stored (280�C) for analysis of inflammatory markers and

Table 1

Genotype effects on sleep

Sleep parameter Genotype

Least-squared mean

(95% confidence interval)

Test statistic

(degrees of freedom) P value

Average % change,

5XFAD versus WT

Sleep percent

Light phase sleep 5XFAD 59.7 (58.3, 61.1) t(89) 5 22.23 .029 23.4

WT 61.8 (60.6, 63.2)

Dark phase sleep 5XFAD 24.2 (22.2, 26.3) t(89) 5 22.60 .011 213.6

WT 28.0 (25.9, 31.1)

Total 24-h sleep 5XFAD 42.9 (41.7, 44.2) t(87) 5 23.13 .002 26.0

WT 45.6 (44.4, 46.8)

Bout length (s)

Light phase bouts 5XFAD 61.3 (58.1, 64.4) t(89) 5 22.40 .018 28.0

WT 66.6 (63.4, 69.7)

Dark phase bouts 5XFAD 33.8 (30.5, 37.2) t(87) 5 22.41 .018 214.4

WT 39.5 (36.2, 42.8)

Total 24-h bouts 5XFAD 49.7 (46.9, 52.5) t(87) 5 22.05 .043 27.6

WT 53.8 (51.0, 56.7)

Abbreviation: WT, wild type.
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Ab40 and Ab42 using enzyme-linked immunosorbent assay
(Section 2.7).

2.7. Tissue histologic and biochemical analysis

For each analysis, tissues from all mice were processed
simultaneously to reduce variability. Immunohistochem-
istry was conducted to identify Ab plaques, as described
previously [37,38]. Briefly, coronal sections (30 mm)
were made using a sliding microtome and a freezing
stage. Staining procedures were conducted on free-

floating brain sections using every 10th section of the
entire left hemisphere. Mouse anti-Ab 6E10 (Covance,
catalog #SIG-39340, 1:3000) monoclonal antibody was
used to stain for Ab. The Aperio ScanScope was used to
quantify Ab plaques in the subiculum, hippocampus, and
cortex, as previously described [37–40]. The entire tissue
section was scanned using a !20 objective and
converted into a single high-resolution digital image.
The Aperio-positive pixel count algorithm (version 9)
quantified the amount of specific staining in the region.
The number of positive pixels was normalized to the
area of the brain regions sampled. The resulting color
markup of the analysis was confirmed for each slide.
Personnel (D.-H.Y. and A.D.B.) blind to the experimental
conditions performed all quantifications.

Brain homogenates for Ab protein levels were made as
previously described [37]. Levels of Ab1-40 and Ab1-42
were measured by V-Plex enzyme-linked immunosorbent
assay from Meso Scale Discovery as previously described
[38]. RNA was isolated using RNeasy minicolumns on
dissected neocortical tissues stored at 280�C. cDNA was
made using the High Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, catalog #4368814) according to
the manufacturer’s protocol. Real-time polymerase chain re-
action was performed using TaqMan Array Microfluidic
Cards (Applied Biosystems, catalog no. 4342253) according
to the manufacturer’s instructions on a QuantStudio 7 Flex
Real-Time Polymerase Chain Reaction System (Applied
Biosystems). The following TaqMan probes (Applied Bio-
systems) were used: C1qa-Mm00432142_m1, C1qb-Mm01
179619_m1, C1qc-Mm00776126_m1, C3-Mm01232779_
m1, Il1b-Mm00434228_m1, Il6-Mm00446190_m1, Igf1-
Mm00439560_m1, Tgfb1-Mm01178820_m1, Ccl3-Mm004
41259_g1, Ccl4-Mm00443111_m1, Ccl6-Mm01302419_
m1, Cxcl10-Mm00445235_m1, Cd68-Mm03047343_m1,
Clec7a-Mm01183349_m1, Cst7-Mm00438351_m1, Itgax-
Mm00498701_m1, Gfap-Mm01253033_m1, Lcn2-Mm01
324470_m1, Ptx3-Mm00477268_m1, and S100b-Mm0048
5897_m1. Relative gene expression was calculated by the
22DDCT method. Hprt-Mm03024075_m1 was used as
the normalizing gene. Personnel (A.D.B.) blind to the
experimental conditions performed all quantifications.

2.8. Statistical analyses

Statistical analyses were completed in SAS 9.4 (SAS
Institute Inc, Cary, NC, USA). The significance level was
set at .05. Repeated measures analysis of covariance (AN-
COVA), adjusting for cohort, sex, and the interaction of
sex with time, were performed. The arcsine of the square
root of all percent data and the square root of total alterna-
tions and total arms entered were used to satisfy assumptions
of the ANCOVA. If the repeated measures ANCOVA re-
vealed significant effects, post hoc least square difference
tests were performed. Also, to investigate the interaction

Baseline Post-dosing
0

20

40

60

Sl
ee

p
pe

rc
en

t(
%

) VEHICLE
DORA-22

****
***

Light phase sleep

Baseline Post-dosing
0

20

40

60

Dark phase sleep

Sl
ee

p
pe

rc
en

t(
%

) VEHICLE
DORA-22

***
***

Baseline Post-dosing
0

10

20

30

40

50

24 hours sleep

VEHICLE
DORA-22

Fig. 1. Comparison of sleep percent before and after chronic treatment with

DORA-22 (100mg/kg per day for 5 weeks). Bars represent the least-squared

mean and the upper limit of the 95% confidence interval for all mice

(collapsed across genotypes). ***P , .005; ****P , .0001 (N 5 22–24

per group). Abbreviation: DORA, dual orexin receptor antagonist.
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and main effects of sex and drug treatment, postdosing data
were analyzed by two-way analysis of variance.

3. Results

3.1. Sleep monitoring

Sleep was disrupted in 5XFAD mice, as reported [25],
and was improved by chronic DORA-22 treatment. Repre-
sentative 24-hour sleep-wake profiles are shown in
Supplementary Figs. 1 and 2. Repeated measures ANCOVA
revealed that compared with WT mice, the 5XFAD mice
exhibited lower percentages of sleep and shorter sleep bout

lengths; these effects were observed during the light phase,
the dark phase, and across the entire 24-hour period
(Table 1). Also, repeated measures ANCOVA showed signif-
icant effects of DORA-22 treatment collapsed across geno-
types (Fig. 1). DORA-22 increased the light phase sleep
percent compared with either the baseline period
(t(89) 5 23.83; P 5 .0002) or VEH administration during
the treatment period (t(87)5 6.14; P, .0001). Sleep percent
during the dark phase was lower during treatment with
DORA-22 than VEH (t(89) 5 23.04; P 5 .0031), whereas
VEH treatment led to a small increase in dark phase sleep
compared with baseline sleep (t(89) 5 22.95; P 5 .0041).
Sleep percent during the 24-hour period was not
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significantly affected by DORA-22 treatment. Unlike sleep
percent, sleep bout length in 5XFAD mice (during the light
phase, dark phase, or 24-hour period) was not affected by
DORA-22 treatment (data not shown).

In view of sex differences in cortical Ab accumulation in
the 5XFADmice and the interactions between Ab and sleep,
two-way analysis of variance was conducted to assess the
effects of sex and DORA-22 treatment on sleep percent in
each genotype (Fig. 2). In the 5XFAD mice, sleep percent
during the light phase was significantly increased by
DORA-22 treatment (F [1, 41] 5 19.17; P , .0001) but
not by sex or by an interaction of sex and treatment. Dark
phase sleep percent in 5XFAD mice showed nonsignificant
trends toward an effect by sex (F [1, 41] 5 3.431;
P 5 .0712) and an interaction effect of sex and treatment
(F [1, 41] 5 3.136; P 5 .0840). Sleep percent during the
24-hour period was significantly affected by sex (F [1,
41] 5 8.028; P 5 .0071) but not by DORA-22, and there
was a trend toward an interaction effect (F [1,
41] 5 4.008; P 5 .0519). The sleep percent in WT mice
showed similar effects of DORA-22 treatment and sex
(Fig. 2). Light phase sleep was significantly increased by
DORA-22 (F [1, 43] 5 17.44; P 5 .001) but not by sex or
an interaction of sex and DORA-22 inWTmice. Dark phase
sleep in WT mice was significantly decreased by DORA-22
(F [1, 43]5 10.13; P5 .0027) and was lower in females (F
[1, 43]5 28.65; P5 .0001). Sleep percent over the 24-hour
period also was lower in females (F [1, 43] 5 28.65;
P , .0001) but was not affected by DORA-22 or by an
interaction between sex and DORA-22 in WT mice.

3.2. Memory testing

The percent alternation in theY-mazewas not significantly
affected by genotype, sex, or treatment, but was affected by
study time point (i.e., baseline vs. during treatment;
P, .0001; Table 2). The percent alternationwas lower during
treatment (mean 0.48; confidence interval, 0.45–0.51) than at
baseline (0.56; confidence interval, 0.54–0.59). The total
arms entered showed a significant interaction effect between
treatment and study time point. Post hoc tests revealed that
DORA-22–treated mice entered fewer arms during treatment
than before treatment (P5 .0275) and showed fewer arm en-
tries than VEH-treated mice either before (P 5 .0037) or
during treatment (P 5 .0011) (Table 2), possibly indicating
residual sleepiness.

3.3. Neuroinflammation and Ab plaques

The cortical levels of PBS soluble, and insoluble Ab1-40
and Ab1-42, and the density of Ab (6E101) plaques in the
neocortex, hippocampus, and subiculum of 5XFAD mice
were not affected by DORA-22 treatment (Fig. 3).
Compared with WT mice, the 5XFAD mice showed signif-
icantly higher cortical expressions of all the investigated
neuroinflammatory markers (Fig. 4). These markers repre-
sented five distinct classes of neuroinflammatory responses
including the complement system, cytokines, chemokines,
microglial reactivity, and astrocytic reactivity, which have
all been implicated in the progression of AD neuropa-
thology. Only females showed overexpression of S100b
whereas both sexes showed overexpression of all other
neuroinflammatory markers investigated. DORA-22 did
not affect the expression of any of the neuroinflammatory
markers.

4. Discussion

Sleep disruption is a common characteristic of AD that
impairs quality of life for patients and caregivers and is
strongly associated with the progression of neuropathologic
changes and cognitive decline. In spite of the prevalence of
sleep problems, strategies to improve sleep in patients with
AD have received relatively little attention. The traditional
sleep-inducing medications, which modify GABAergic ac-
tivity, tend to impair memory, and thus are not appropriate
for patients with AD. Therefore, we tested DORA-22 with
a broad therapeutic window between its sleep-inducing
and memory-impairing effects [27] for its ability to improve
sleep in 5XFADmice, which display disrupted sleep patterns
[25,41]. In this study, 5XFAD mice exhibited less total
24-hour sleep, dark phase sleep, and light phase sleep than
WTmice. The 5XFADmice also showed shorter sleep bouts
over the 24-hour period, during the dark phase, and during
the light phase. Chronic daily DORA-22 treatment at lights
on increased sleep during the light phase in both 5XFAD and
WT mice. Although the magnitude of the DORA-22
enhancement of light phase sleep was small (3.2% increase

Table 2

Y-maze performance

Group

% Alternation # Arms entered

Baseline During Rx Baseline During Rx

WT

Male, vehicle 61.7 6 3.34 47.7 6 5.41 28.7 6 2.60 32.7 6 4.27

Male, DORA-22 56.4 6 5.00 48.8 6 3.99 28.9 6 2.61 24.9 6 1.70

Female, vehicle 55.2 6 4.16 54.3 6 4.10 31.4 6 2.84 31.8 6 3.38

Female,

DORA-22

53.7 6 2.71 52.9 6 2.81 27.8 6 2.72 29.1 6 3.06

5XFAD

Male, vehicle 59.2 6 1.76 46.7 6 3.68 29.5 6 2.88 27.1 6 1.60

Male, DORA-22 58.9 6 2.99 48.4 6 3.30 28.6 6 1.33 22.2 6 1.94

Female, vehicle 54.9 6 3.84 45.3 6 3.47 33.2 6 2.73 35.4 6 3.15

Female,

DORA-22

55.6 6 2.95 46.7 6 4.68 29.5 6 8.94 25.1 6 2.30

Abbreviations: WT, wild type; SEM, standard error of the mean.

NOTE. Values represent the mean 6 SEM (n 5 10–14 per group).

Rx 5 treatment. The percent alternation was not significantly affected by

genotype, sex, or treatment, but was affected by study time point

(t(91) 5 4.55, P , .0001). The percent alternation was lower during the

treatment than at baseline. The total arms entered showed a significant inter-

action effect between treatment and study time point. Post hoc tests revealed

that DORA-22–treated mice entered fewer arms during treatment than

before treatment (t(90) 5 2.24, P 5 .0275) and that they showed fewer

arm entries compared with vehicle-treated mice either before

(t(90)522.98, P5 .0037) or during treatment (t(90)523.36, P5 .0011).
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over baseline sleep), it essentially overcame the light phase
sleep deficit (3.4%) compared with WT mice. Prior studies
administered DORA-22 in WT mice during the active phase
for the mice (i.e., at lights off) to demonstrate that DORA-22
can increase sleep during a time when the percentage of
sleep is usually low [28]. In contrast, the present study
administered DORA-22 during the inactive phase (i.e., at
lights on). This dosing protocol was done to be translation-
ally relevant; however, it does limit the overall magnitude
of the effect of DORA-22 treatment as it aims to restore
homeostatic levels of sleep in the 5XFAD mice and not
necessarily to improve unimpaired sleep in WT mice.
The results for the present study support the ability of
DORA-22 to restore physiological levels of sleep in the
5XFAD mice. In addition, the results suggest that

DORA-22 does not have a major impact on increasing ho-
meostatic drive for sleep above physiological levels in
WT mice.

It was not surprising that DORA-22 did not increase sleep
during the dark phase that began approximately 11.5 to
12 hours after dosing because a previous study showed
that DORA-22 (100 mg/kg per os) was biologically active
in male C57Bl6J mice for only 5 to 6 hours [28] (although
in that study DORA-22 was administered at lights off). In
WTmice, DORA-22 decreased dark phase sleep, suggesting
that the homeostatic drive for nighttime sleep is lower after
DORA-22 administration during day. In 5XFAD mice, there
was not a significant effect of DORA-22 on dark phase sleep,
although therewas a trend toward an interaction between sex
and DORA-22 with lower levels in males. A decrease in
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Fig. 3. Effect of chronic DORA-22 treatment (100 mg/kg per day for 5 weeks) on amyloid b plaques in 5XFAD mice. Representative photomicrograph of am-

yloid b plaque staining with 6E10 antibody is shown in the brown staining from a female 5XFADmouse treated with vehicle (A) or treated with DORA-22 (B).

Tissue sections are counterstained with methyl green. An arrow in (A) indicates the location of higher magnification view of the staining shown in (C). (D) The

color markup of the positive pixel algorithm (Aperio Image Scope software) demonstrates the ability of the algorithm to quantify the 6E10 immunohistochem-

ical staining accurately. The blue color in the markup indicates negative (unstained) pixels. The yellow, orange, and red color in the markup indicates positive

(stained) pixels of increasing intensity, respectively. Orange and red color positive pixels were used in the quantification. Results of the area fraction quanti-

fication for the neocortex, hippocampus, and subiculum identified according to the Allen Institute mouse brain atlas (mouse.brain-map.org) on the digital

neuropathologic slides, is shown in (E). Levels of PBS soluble and FA soluble Ab1-40 (F) and Ab1-42 (G) were measured in cortex homogenates by

enzyme-linked immunosorbent assay. Data are plotted as the mean6 SEM (N5 10–12 per group). Abbreviations: FA, formic acid; DORA, dual orexin receptor

antagonist; PBS, phosphate-buffered saline; SEM, standard error of the mean.
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sleep during the inactive phasewould be desirable in patients
with AD who exhibit excessive sleepiness during the day-
time [42,43]. It is important to note that unlike humans,
mice normally exhibit .25% of their daily sleep during
the “active” phase, and thus administering DORA-22 at
night as well as during the day might have been worthwhile.
Finally, DORA-22 treatment did not affect sleep bout length,
which was shorter in 5XFAD mice than in WT mice,
suggesting that DORA-22 does not attenuate sleep
fragmentation in mice.

This study has some limitations, including the investi-
gation of only one dose, route, and duration of treatment
for DORA-22. The present study showed that chronic

daily administration of DORA-22 (100 mg/kg) for 5
weeks to 5XFAD mice increased sleep percent during
the inactive phase but did not attenuate neuroinflamma-
tion or reduce the density of amyloid plaques. Stress
associated with chronic oral gavage might have reduced
some of the protective effects of the DORA-22–improved
sleep, although this stress did not prevent sleep enhance-
ment. However, future studies using a different route of
administration or longer treatment may be warranted.
In a previous study, 8 weeks of daily intraperitoneal in-
jections of another DORA compound, almorexant,
reduced cortical plaque burden in APPswe/PS1sE9
mice [9]. Whether sleep enhancement with DORA-22
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ameliorates cognitive deficits remains to be tested
because the 5XFAD mice in the present study did not
exhibit a deficit compared with WT control subjects in
spontaneous alternations in the Y-maze. The reason for
the absence of a deficit in Y-maze spontaneous alterna-
tion performance in the 5XFAD mice compared with
WT mice in the present study, unlike two previous re-
ports [24,26], is unclear. In the present study, the WT
mice performed poorly, with a percent alternation
similar to that in 5XFAD mice in previous studies
[24,26]. Because the WT and the 5XFAD mice in the
present study were singly housed for at least a week
before Y-maze testing, chronic social isolation may
have impaired their performance. Another factor that
may have contributed to the discrepancy between the
current and previous findings is a potential difference
in the time of day of testing, as this factor influences
the spontaneous alternations in the T-maze and Y-maze
tests [44,45]. The test time was late in the light phase
for the present study but was not reported in previous
studies of 5XFAD mice. Finally, as noted in the
limitations, the stress associated with the chronic oral
gavage may have reduced Y-maze performance.

The 5XFAD mice showed robust increases in cortical
expression of a range of neuroinflammatory markers,
including cytokines, chemokines, components of the com-
plement system, microglia activation markers, and astrocyte
activation markers. Neuroinflammation contributes to the
progression of AD pathology and cognitive impairment
[37,45]. These findings support and extend previous
findings that revealed increased expression of many
inflammation-associated genes in 5XFAD mice [45–47]. In
contrast to earlier studies, both sexes were included in the
present study. In general, female 5XFAD mice showed
higher expression of neuroinflammatory markers,
consistent with observations that females exhibit higher
levels of Ab than males of this transgenic strain [24].
Because inflammation and the reactive glia response are
increased by sleep disruption [22,23], this study tested
whether sleep enhancement with DORA-22 administration
would attenuate these phenomena, but no attenuation was
observed. DORA-22 also did not reduce the density of Ab
plaques. As the 5XFAD is a very aggressive model, longer
treatment with DORA-22 and a less stressful route of
administration may be necessary to elicit a change in neuro-
inflammation or Ab plaques. Alternatively, a less aggressive
AD-relevant model could be used to test the effects of
DORA-22 on neuroinflammation or Ab plaques, assuming
the model shows sleep abnormalities.

In conclusion, DORA-22 increased sleep in 5XFAD
mice, suggesting that treatment with a DORA such as Bel-
somra (Merck & Co) may be feasible for improving sleep
in patients with AD, as recently reported in a pilot study
[48]. Furthermore, additional research is necessary to
determine optimal dosing and therapeutic window for

DORA-22, and to test this drug in additional AD-relevant
animal models and cognitive tests.
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RESEARCH IN CONTEXT

1. Systematic review: The literaturewas reviewed using
PubMed and abstracts and presentations at national
meetings, including those of the Society for Neuro-
science and the Society for Research on Biological
Rhythms. Relevant articles are cited appropriately.

2. Interpretation: Review of the literature revealed that
Alzheimer’s disease is associated with sleep disrup-
tion, and sleep disruption impairs cognition and brain
clearance of amyloid b (Ab) and increases neuroin-
flammation. These findings led to the hypothesis
that sleep enhancement would attenuate memory
deficits, Ab accumulation, and neuroinflammation
in an ADmouse model. Treatment with a dual orexin
receptor antagonist (DORA-22) increased sleep, but
did not reduce Ab or neuroinflammation. The
5XFAD mice did not show the expected memory
deficit.

3. Future directions: To further test the hypothesis,
several directions for further studies are proposed,
including further exploring: (1) the therapeutic win-
dow of DORA-22 delivery; (2) cognitive effects of
DORA; and (3) additional animal models of AD.
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