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ABSTRACT OF DISSERTATION 

ASSESSING THE PERFORMANCE OF TWO PROCEDURES FOR DETECTING 

DIFFERENTIAL ITEM FUNCTIONING WITHIN THE 

MULTILEVEL PARTIAL CREDIT MODEL 

This is a simulation study that evaluates the performances of two models for the 

detection of uniform differential item functioning (DIF). Simulated data are generated by 

a multilevel partial credit model (MLPCM). The purpose of this study was to compare 

the accuracy of two DIF detection procedures, hierarchical ordinal logistic regression 

(HOLR) for multilevel data and multilevel generalized Mantel-Haenszel (MGMH: 

French & Finch, 2013; French, Finch, & Imekus, 2019). Conditions manipulated were the 

number of participants per cluster (20, 40), number of clusters (50, 100, 200), DIF 

magnitude (0, .4, .8), and magnitude of intraclass correlation coefficient (.05, .25, .45). 

Furthermore, only one grouping variable was used within-groups. Data was simulated 

using R (R Core Team, 2019), whereas analyses will be performed using SAS 9.4 (SAS 

Institute, 2013) and R. In general, HOLR maintains the Type I error rate better than 

MGMH and HOLR has more power than MGMH under most simulation conditions. 

Keywords: item response theory, multilevel partial credit model, hierarchical ordinal 

logistic regression, multilevel generalized Mantel-Haenszel, multilevel differential item 

functioning 
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Chapter One: Introduction 

The Importance of Differential Item Functioning 

In our current political and educational environment, policymakers and educators 

rely heavily on standardized test scores to inform their decisions regarding schools, 

teachers, and students. To ensure these decisions are equitable, test developers must 

create assessment items that are fair for every test taker. Fairness in this case means that 

different groups of test takers, who have the same abilities, should have the same 

probability of getting any item correct, and test scores must accurately reflect each test 

taker’s ability on the construct of interest (e.g., reading achievement). The federal law, 

Every Student Succeeds Act 2015 (ESSA, 2015), requires states to use assessments that 

“are valid, reliable, and comparable for all students and for each subgroup of students and 

among participating schools and districts” (U.S. Department of Education, 2017, p. 5). 

For these reasons, accurate methods must exist to determine if items or tests contain bias.  

Test bias is defined as the systematic error in how a test measures members of a 

particular group and creates a distortion in results for one group over another (Camilli & 

Shepard, 1994). Differential item functioning (DIF), on the other hand, can be defined as 

“an unexpected difference among groups of examinees who are supposed to be 

comparable with respect to the attribute measured by the item and the test on which it 

appears” (Dorans & Holland, 1993, p. 37). Camilli and Shepard compared DIF to bias, 

asserting that DIF is an item’s psychometric property, whereas bias is a general term 

associated with interpretation. Bias can be defined as “construct-irrelevant components 

that result in systematically lower or higher scores for identifiable groups of examinees” 

(AERA et al., 2003, p. F6). In the high-stakes environment of state assessments, these 
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construct-irrelevant components may include gender, race, ethnicity, socioeconomic 

status, rurality, religion, sexual identity, or any combination thereof.  

DIF detection procedures were developed because of the possibility of bias in 

achievement tests (Wen, 2014). When examining items within a test or scale, it is 

essential to identify those items that contain DIF; however, it is not beneficial to flag 

items as containing DIF if they function as the test developer intended. Although there 

are many ways of considering test fairness, in this study, it will be examined through two 

DIF detection procedures. 

DIF versus Impact 

DIF should be distinguished from impact. While DIF matches students on their 

ability level in order to compare scores on an item, any difference in the two groups 

being compared in terms of overall test score means can still differ; however, this 

circumstance is not categorized as DIF. DIF refers to the situation in which different 

groups with equal ability do not have an equal chance of getting an item correct. An item 

is described as having DIF if it favors one group over another, such as one minority 

group over another while controlling for ability level. When a researcher attempts to 

identify items on which examinees with the same ability, but from different groups, 

respond differently, that researcher focuses on DIF, not on impact (Kim, 1992). When 

true differences in group performance exist due to proficiency, this situation is referred to 

as an impact. Impact is defined as the influence on the probability of correctly answering 

the target item based on the presence of differences on ability dimension between groups 

(Klokars & Lee, 2008). Therefore, when DIF is not present, but there are true differences 

in groups, then impact is present.  
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Kim (2003) suggests the differences in item performance be thought of as the “true” 

difference between groups and an “artificial” difference brought about by inappropriate 

and irrelevant (biased) items. In general, we desire for there to be no DIF among items on 

our test so that impact can be truly detected.  

The Perils of Ignoring Data Structure 

DIF detection procedures help ensure assessment items are bias-free, but they 

must be chosen to fit the data structure and the item response format, equally well 

(French & Finch, 2010, 2013). Unfortunately, DIF detection procedures are not always 

chosen to fit the data structure. For example, in educational environments, data are often 

hierarchically structured, meaning students are nested within teachers who may be further 

nested within schools. Although DIF detection procedures have been used for many 

years, often they are not conducted using multilevel methods that account for hierarchical 

data structure (French & Finch, 2010, 2013; Ryan, 2008; Wen, 2014). In general, when 

the multilevel data structure is not taken into account, it can lead to inaccurate estimation 

of standard errors (Raudenbush & Bryk, 2002). In regard to DIF detection, ignoring the 

multilevel data structure can result in parameter estimation problems, which can lead to 

biased statistical tests and faulty DIF detection (French & Finch). 

Multilevel DIF detection procedures have mostly been used with items that are 

dichotomously scored (1 = correct, 0 = incorrect). However, large-scale assessments 

contain a mix of dichotomously and polytomously scored (0 = no credit, 1 = partial 

credit, 2 = full credit) items, and more polytomously scored items may be on the way. For 

instance, the ESSA (ESSA of 2015, 2015) gives states the opportunity to design new 

types of assessments to better support teaching and learning by measuring higher-order 
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thinking skills via more authentic assessments. These authentic assessments include 

projects and extended performance tasks (Holahan, Young, Palmer, & Little, 2017). As 

states move from traditional items, such as multiple-choice and constructed-response, that 

assess a single attribute, to those that assess multiple competencies (Castle, 2018), they 

must think about different ways to design and score assessments and detect DIF. For 

example, Massachusetts included multiple item formats in their 2018 Massachusetts 

Comprehensive Assessment System mathematics tests (Massachusetts Department of 

Education, 2018), which may call for multiple forms of DIF detection. 

Brief Overview of Polytomous Item Response Models – Single-Level and Multilevel 

Many psychological constructs are assessed by polytomous formats rather than 

dichotomous scoring (Preston & Reise, 2014). Whereas dichotomous items are scored in 

a binary way, polytomous items have more than two possible scores and describe the 

probability of a test taker reaching a specific score category. Thissen and Steinberg 

(1986) categorized polytomous response models into difference and divide-by-total 

models. Difference models may be used for ordered responses (i.e., options are in a 

specific, meaningful order) and are those in which the probability of responding in a 

category is found by determining the difference between cumulative probabilities. 

Divide-by-total models, used with either nominal data (i.e., not ordered) or ordered data, 

such as the partial credit model (PCM; Masters, 1982), are those in which the exponent is 

divided by the sum of all the exponents that appear in the numerator.  

Classical item response theory single-level models include the PCM, generalized 

partial credit model (GPCM; Muraki, 1992), graded response model (GRM; Samejina, 

1969), Andrich’s (1978) rating scale model (RSM), and Bock’s (1972) nominal response 
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model (NRM). The PCM is an ordered category response model for polytomous data that 

is commonly used with achievement outcomes or items that can be given partial credit; 

however, it can be used in any situation in which the test taker has two or more ordered 

category choices (Kim, 2018; Masters & Wright, 1992). Andrich’s (1978) RSM can be 

used with Likert-type data, as well as performance data. In this model, thresholds on the 

latent continuum separate adjacent categories, which are constrained across items. The 

GPCM can be used with ordered response data, ratings, or Likert-type responses. In the 

GPCM, the assumption of equal item discriminations across items is relaxed, meaning the 

model contains a discrimination parameter that indicates the degree to which an item can 

differentiate among trait level values. Samejima’s (1969) GRM uses a different logic 

from the adjacent or divide-by-total models, wherein the polytomous scores are a series 

of cumulative comparisons, while allowing discrimination to vary across items. Bock’s 

(1972) NRM was originally designed for data with no order. However, the PCM, GPCM, 

and RSM are all special cases of the NRM; therefore, the NRM can be applied to ordinal 

data with specific constraints placed on model parameters. Furthermore, the NRM can be 

used with dichotomous data when specific constraints are placed on model parameters, 

which is better known as the Rasch model for dichotomous data.  

Hedeker (2008) described multilevel models for categorical data that 

accommodate multiple random effects and allow for covariates. He viewed ordinal and 

nominal models as different ways of generalizing the dichotomous response model. He 

stated that ordinal models use cumulative dichotomizations of categorical outcomes, 

while nominal models use dichotomizations based on the selection of one category as a 

reference to which all others are compared. Unlike classical item response theory (IRT) 
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models, the multilevel formula of the model allows multiple covariates at either level 

(i.e., item-level and/or person-level covariates), which enables multilevel models to 

examine whether item parameters vary by personal characteristics (Hedeker). 

Multilevel Data Structure Defined 

Administering a standard assessment to individual test takers in different teachers’ 

classrooms in different schools creates a multilevel data structure. Within the traditional 

multilevel modeling framework, student scores are the level-1 unit and are nested within 

teachers, which is level 2, and finally nested within schools, which is level 3. These 

groupings of schools are often referred to as “clusters”; however, the appropriate level of 

aggregation varies depending upon the research questions and hypotheses. 

Before a researcher moves forward with a hierarchical data analysis, the 

researcher must determine the amount of dependency within the groups by calculating the 

intraclass correlation coefficient (ICC). The ICC measures the proportion of variance in 

the outcome variable that can be explained at the between-group or cluster-level 

(Raudenbush & Bryk, 2002). The ICC for a two-level model, students nested in teachers, 

is expressed as 

 
 𝜌𝜌 =

𝜏𝜏00
(𝜎𝜎2 +  𝜏𝜏00)

.     (1) 

 

In Equation 1, ρ represents ICC, τ00 represents between group (level-2) variance and σ2 

represents within-group (level-1) variance. A high ICC indicates there is a lot of 

dependency within groups, and the hierarchical structure of the data should be accounted 

for during data analysis. If the ICC is 0 it indicates that none of the variability in the 

outcome variable is due to between-group differences and the hierarchical structure of the 
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data can be ignored. Even a low ICC indicates a dependency within groups and 

hierarchical linear modeling should be used.  

Types of DIF 

There are two types of DIF: uniform and nonuniform DIF. Uniform DIF occurs 

when the item in under consideration provides a constant relative advantage for the same 

group regardless of the trait level (Penfield & Camilli, 2007). In nonuniform DIF, one 

group may, for instance, have a relative advantage at low trait levels but a relative 

disadvantage at high levels (Penfield & Camilli). DIF can be examined by looking at the 

differences between focal and reference group item parameters, including item difficulty 

(location) for instance and item discrimination. The focal group is typically the group of 

interest, and the reference group is the standard or comparison group (Atar, 2007). 

However, the focal group can be thought of as the manifest group, which has the lower 

probability of obtaining the correct answer to or endorsing an item, and the reference 

group has a higher probability of getting the correct answer or endorsing the item (Wen, 

2014). Finally, according to Quesen (2016), focal groups often have smaller sample sizes, 

whereas reference group populations are usually larger.  

Traditional DIF Detection Procedures for Single-Level Data 

Researchers often organize DIF detection procedures into model-based and non-

model-based approaches. The most well-known non-model-based methods are the 

Mantel-Haenszel (MH) procedure (Holland & Thayer, 1988), and the simultaneous item 

bias test (SIBTEST; Shealy & Stout, 1993). Other well-known model-based DIF 

detection procedures are logistic regression (LR; Swaminathan & Rogers, 1990), Lord’s 

χ2 test (Lord, 1980), Raju’s area approach (Raju, 1988, 1990), and the likelihood ratio 
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test (Tay, Meade, & Cao, 2015). Two commonly used DIF detection procedures are the 

MH procedure and LR procedure with ordinal data. 

Mantel-Haenszel (MH) procedure. The MH procedure is one of the most widely 

studied and used methods for studying DIF in dichotomous items. It is a non-model-

based contingency table method for detecting test items that performs differently between 

groups of test takers. The MH procedure and its extensions are relatively easy to 

calculate, do not require large sample sizes (e.g., 200 examinees per group) when 

working with non-nested data structures (Clauser & Mazor, 1998), and have an 

associated test of significance (Wood, 2011). The MH procedure is highly efficient in 

terms of statistical power and computational requirements (Clauser & Mazor). When 

using the MH procedure, researchers should assume that test takers are comparable, 

meaning they know the same amount of information; therefore, they will perform in 

much the same way on a specific item, regardless of their group membership (Holland & 

Thayer, 1986).  

Ordinal logistic regression (OLR) procedure. Another popular DIF detection 

procedure is the LR procedure. As early as the 1990s, LR was being suggested as a DIF 

detection procedure. Miller and Spray (1993) described the use of LR, or the cumulative 

logit model (Agresti, 2007), for DIF detection. The separate, cumulative logits, Miller 

and Spray stated, can be incorporated into one model called a proportional odds model 

(Agresti). The LR procedure can identify uniform and nonuniform DIF, whereas the 

generalized Mantel-Haenszel procedure is only suited for identifying uniform DIF. 
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When item responses are ordinal, ordinal logistic regression (OLR) can also be 

used for detecting DIF. The OLR model is as follows (Scott et al., 2009, Equation 2): 

 

𝑙𝑙𝑙𝑙[ 𝑃𝑃𝑃𝑃�𝑌𝑌 ≤ 𝑘𝑘�𝑔𝑔,𝜃𝜃�
1−𝑃𝑃𝑃𝑃�𝑌𝑌 ≤ 𝑘𝑘�𝑔𝑔,𝜃𝜃�] = 𝛽𝛽0𝑘𝑘 +  𝛽𝛽1𝜃𝜃 + 𝛽𝛽2𝑔𝑔 +  𝛽𝛽3(𝑔𝑔𝑔𝑔).                      (2) 

 
               

In Equation 2, Pr (Y ≤ k) represents the probability of responding to an item in category k 

or below (for k = 0, 1, 2), θ represents ability, which is measured by the total score, g is 

the grouping variable (0 for reference, 1 for focal group), gθ is the interaction term 

between the grouping variable and ability, and β0k, β1, β2, and β3 are constants. When 

testing for uniform DIF, only two models need to be compared. The baseline model (R1), 

which only includes the ability term, whereas the larger model (𝑅𝑅2) includes the ability 

term plus the grouping variable as predictors. The value of the difference in −2 log-

likelihood of full R2 and 𝑅𝑅1 is used to detect DIF and tested for significance by using a 

Chi-square distribution with one degrees of freedom. If this comparison yields a 

significant result, the item is flagged for uniform DIF.  

Multilevel DIF Detection Procedures 

Multilevel regression models focus on the variability across levels of nested data. 

Research suggests that omitting levels of nesting during analysis leads to biased standard 

error estimates, inaccurate parameter estimates, inflated effect size estimates, and an 

increased risk of committing a Type I error (Snijders & Bosker, 2012). When data are 

sampled hierarchically, the observations are often not independent, which is a common 

assumption in many statistical analyses. For instance, if a researcher takes a sample 

consisting of students nested within schools and omits the school-level structure, the 

researcher assumes there is no similarity among students within those schools, and the 
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schools have no explanatory impact on the outcome variable of interest. Flawed tests of 

significance may occur, and researchers may conclude that there are true effects 

(impacts) present when only a sampler error differences exists (Nolan, 2016). 

Multilevel generalized Mantel-Haenszel (MGMH). In 2013, French and Finch 

stated that few evaluations of a multilevel version of MH for DIF detection procedure to 

account for nested data had been conducted. In the years that followed, French, Finch, 

and Imekus (2019) tested the procedure a second time. The researchers proposed a 

method to account for multilevel data based on an adjusted test statistic that accounts for 

higher level covariance (Begg, 1999). Begg (1999) modified the MH because it only 

works with binary outcomes and does not follow a chi-square distribution if the 

observations are correlated. The modified Begg MH (BMH) method involves estimating 

the variance in the MH statistic caused by clustering, in addition to the ordinary variance 

that assumes no clustering (Begg, 1999). The BMH adjusts the MH statistic using a factor 

based on the ratio of the score statistic variance estimated using logistic regression, which 

accounts for multilevel data using the generalized estimating equation (GEE), to the 

ordinary variance of the score statistic, which does not account for multilevel data 

(French & Finch, 2013). The ordinary and GEE-based logistic regression models are both 

expressed as (French & Finch, 2013) 

log �
𝑃𝑃𝑘𝑘𝑘𝑘

1 − 𝑃𝑃𝑘𝑘𝑘𝑘
� =  𝛽𝛽0 +  𝛽𝛽1𝑋𝑋𝑖𝑖 +  𝛽𝛽2𝑌𝑌𝑖𝑖. 

     (3) 

In Equation 3, Pki is the probability of a correct response to item k, β0 is the intercept, Xi 

is the group membership for subject i, Yi is the matching subtest score for subject i, β1 is 

the coefficient for group variable, and β2 is the coefficient for matching subtest variable. 
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GEE models are useful when finding population average effects of a covariate and 

not the individual specific effect, whereas multilevel modeling allows researchers to find 

the estimates of the varying coefficients, particularly varying slopes. Marginal models, 

such as GEE, answer different questions than conditional models, such as traditional 

multilevel models. For example, a marginal or population-average model might answer a 

question regarding the probability of an event in general; however, the conditional model, 

subject-specific models, would answer a question regarding the probability of an event 

for people in different situations. 

 The score statistic using this method tests the null hypothesis of no association 

between the predictor variable(s) and the response. The ordinary (not accounting for 

clustering) and GEE (accounting for clustering) models differ in how the covariance of 

the response is handled with respect to clustering. In the ordinary approach, the 

covariance matrix for the response with respect to clusters is the identity matrix, in which 

the off-diagonal elements are 0, which is equivalent to stating that the ICC is equal to 0.  

However, the GEE model does not assume an identify covariance matrix, but estimates 

the off-diagonal elements, which is an unstructured covariance matrix. In an unstructured 

covariance matrix, a unique covariance is estimated for each cluster. For each model, the 

variance of the score statistic is obtained using this covariance matrix. The ratio of these 

variances is expressed as  

 
 

𝑓𝑓 =
𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺2

𝜎𝜎𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂2 . 
                             (4) 
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In Equation 4, 𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺2 is the GEE-adjusted variance of the score statistic, accounting for 

clustering, and  𝜎𝜎𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂2  is the ordinary variance of the score statistic, ignoring 

clustering.  

The adjusted MH statistic (MHB) can be used to analyze data gathered under a 

cluster sampling design (Begg, 1999) and is expressed as (French & Finch) 

 
 𝑀𝑀𝐻𝐻𝐵𝐵 =

𝑀𝑀𝑀𝑀
𝑓𝑓

.                                      (5) 

 

In Equation 5, MH is the standard Mantel–Haenszel χ2 test statistic. When there is no 

correlation in scores among test takers from the same cluster, such as a school, f = 1 and 

MHB = MH.  When the within-cluster correlations are large, 𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺2  will be larger than 

𝜎𝜎𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂2  , leading to an f value that is relatively large and positive. Thus, this large 

positive f value serves to reduce the size of MHB, indicating that the ordinary MH is an 

overestimate because it ignores clustering. Thus, MHB is penalized for the degree to 

which clustering or dependency matters. Of note, the MHB is not a true multilevel 

statistic, instead the MHB is the MH adjusted for the degree to which the data deviate 

from ICC = 0. 

Hierarchical logistic regression (HLR) and hierarchical ordinal logistic 

regression (HOLR) with multilevel data. To account for the nested structure in a 

dataset, HLR and HOLR have been used as DIF detection procedures with both 

dichotomous and polytomous data, respectively. HOLR models are used with multilevel 

data to predict an ordinal dependent variable measured on a Likert-type scale based on 

one or more independent variables. Consequently, the single-level DIF detection 

procedure can be extended to accommodate multilevel data.  
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HOLR models can be used with multilevel data to predict an ordinal dependent 

variable measured on a Likert-type scale based on one or more independent variables. 

The single-level DIF detection method can be extended to accommodate multilevel data. 

The general model for the logit of responding at or below category k to an item for the ith 

person (e.g., student) in the jth cluster (e.g., school) for two levels can be expressed as 

(Sharafi et al., 2017; Equation 2): 

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1: 𝜂𝜂𝑖𝑖𝑖𝑖 = ln [
𝑝𝑝�𝑌𝑌𝑖𝑖𝑖𝑖 ≤ 𝑘𝑘�𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞,𝑊𝑊𝑠𝑠𝑠𝑠�

1−𝑝𝑝�𝑌𝑌𝑖𝑖𝑖𝑖 ≤ 𝑘𝑘�𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞,𝑊𝑊𝑠𝑠𝑠𝑠�
]    

 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑗𝑗 + 𝛽𝛽1𝑗𝑗𝑋𝑋1𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑗𝑗𝑋𝑋2𝑖𝑖𝑖𝑖 + ⋯+ 𝛽𝛽𝑞𝑞𝑞𝑞𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞           (6)          

 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2: 𝛽𝛽𝑞𝑞𝑞𝑞 =  𝛾𝛾𝑞𝑞0 + ∑ 𝛾𝛾𝑞𝑞𝑞𝑞

𝑆𝑆𝑞𝑞
𝑠𝑠=1 𝑊𝑊𝑞𝑞𝑞𝑞 + 𝑢𝑢𝑞𝑞𝑞𝑞                   

 
 
In Equation 6, 𝑌𝑌𝑖𝑖𝑖𝑖 is the polytomous item response for person i in cluster j. The 𝑋𝑋s 

represent level 1 level predictors, whereas Ws are cluster level predictor. 𝛽𝛽 and 𝛾𝛾 are the 

associated regression coefficients for 𝑋𝑋 and W, respectively, and 𝑢𝑢𝑞𝑞𝑞𝑞 is the random effects 

at level 2. This general model for uniform DIF for within cluster variables can be 

expressed as (Sharafi et al., 2017; Equation 3): 

 

  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1: 𝜂𝜂𝑖𝑖𝑖𝑖 = ln [
𝑝𝑝�𝑌𝑌𝑖𝑖𝑖𝑖 ≤ 𝑘𝑘�𝜃𝜃𝑖𝑖𝑖𝑖 ,𝐺𝐺𝑖𝑖𝑖𝑖�

1−𝑝𝑝�𝑌𝑌𝑖𝑖𝑖𝑖 ≤ 𝑘𝑘�𝜃𝜃𝑖𝑖𝑖𝑖 ,𝐺𝐺𝑖𝑖𝑖𝑖�
]            

 
                                                  = 𝛽𝛽0𝑗𝑗 + 𝛽𝛽1𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑗𝑗𝐺𝐺𝑖𝑖𝑖𝑖                                       (7)            
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2: 𝛽𝛽0𝑗𝑗 =  𝛾𝛾00 + 𝜇𝜇0𝑗𝑗                                      
          

In Equation 7, 𝑌𝑌𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑖𝑖𝑖𝑖 are the polytomous item response and ability for person i in 

cluster j. 𝐺𝐺𝑖𝑖𝑖𝑖 is the group identifier. If the model in Equation 7 is significant when 
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compared with the baseline model which does not include the group identifier, then the 

studied item will be flagged as showing uniform DIF.  

Multilevel Applied and Simulation DIF Detection Studies 

A limited number of applied or simulation studies have considered multilevel DIF 

detection procedures, for either dichotomous or polytomously scored data. Those 

identified works are described below. 

Substantive studies examining three-level models for DIF detection using 

dichotomous items. Eight applied studies examined three-level models for DIF detection 

using dichotomous items between 2005 and 2018. Kamata, Chaimongkol, Genc, and Bilir 

(2005) used a random-effects model to estimate DIF across groups. They analyzed data 

from the 2003 NAEP 4th grade mathematics assessment and examined DIF between the 

limited English proficiency sample who received test accommodations and those students 

who did not. DIF between accommodated and non-accommodated students was detected, 

and the variations of the magnitude of DIF across schools was estimated.  

Cheong (2006) studied the effects of school context on DIF in a large-scale 

assessment. He used an HGLM framework to detect DIF and identify school-level 

variables that might cause DIF. He illustrated the method using civic items to determine 

if they contained ethnic–racial DIF. Cheong’s study had a three-level model: items within 

persons within schools.  

Although Kamata et al. (2005) and Park (2008) examined DIF in mathematics, 

they used different sources of data and different procedures. Park investigated a modeling 

approach using multilevel IRT for cross-national comparisons. He illustrated the 

application in a study of the Trends in International Mathematics and Science Study 
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(TIMSS) 2003 grade 8 mathematics assessment. He used a 3-level model: item-level, 

student-level, and country-level.  

Like Park, Burkes (2009) used TIMSS data to investigate DIF. She identified 

socioeconomic status (SES) differences in student performances on the 2003 TIMSS 

eighth-grade mathematics assessment, using Kamata and Binici’s (2003) multilevel-DIF 

methodology. She identified mathematics items that functioned differently in high and 

low SES students with similar ability. Burkes had a three-level model: item-level, 

student-level, and classroom-level.  

Beaver, French, Finch, and Ullrich-French (2014) used a multilevel MH DIF 

procedure to examine sex differences in dichotomous item responses for examiner ratings 

of children’s social-emotional skills on the Brigance Inventory of Early Development III 

SE scale. Children were nested within childcare sites. They found that scores did not 

appear to be influenced by rating distortions based on sex stereotypes.  

Finch, Finch, and French (2016) conducted a different cross-national study.  They 

investigated DIF in the Progress in International Reading Literacy Study (PIRLS) items 

across multiple European countries. They used a multilevel LR-type technique with 

students nested within nations (clusters). They were interested in the extent to which a 

mother’s primary language was associated with DIF on reading items and whether these 

relationships were consistent across countries. They showed that DIF based on the 

mother’s language was present for several items, but patterns of DIF differed across 

nations.  

French, Finch, and Vazques’ 2016 study is similar to the one conducted by 

Beaver et al. (2014) in that they both used Brigance data.  However, French et al. (2016) 
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investigated a multilevel version of SIBTEST (Shealy & Stout, 1993) to illustrate DIF 

detection in a multilevel context with dichotomous items. The authors used national data 

from the Brigance Comprehensive Inventory of Basic Skills – II mathematics assessment 

between boys and girls, and students were clustered within schools. They found that 

adjusting DIF statistics for clustered data resulted in fewer items flagged for DIF 

compared to no adjustments. 

French, Finch, Randel, Hand, and Gotch (2016) chose to study DIF in critical 

thinking rather than a traditional academic content area. They outlined a method for 

evaluating measurement sensitivity by conducting content and DIF analyses to detect 

intervention effects and test for measurement sensitivity. They collected data in a 

multilevel framework with students nested in classrooms from the Cornell critical 

thinking tests, which was scored dichotomously. They used the multilevel MH as a DIF 

detection procedure. Their results suggested that although mean differences were not 

observed across all content domains, there were intervention effects associated with some 

assessment items.  

The French et al. (2016) study was implemented in two distinct steps, the first 

engaging experts with a teacher-focused professional development intervention to 

conduct a content analysis to align items on a general assessment with the intervention. 

The second step used DIF analysis to test the sensitivity of items identified in step 1 that 

were related to the intervention. Data were taken from a randomized cluster field trial that 

used the science writing heuristic (SWH) approach to learning science. The SWH is an 

immersive approach to teaching scientific argument and is examined in a randomized 

control trail study in the Midwest with comparison and treatment schools. Participants 
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were a representative sample of 2,181 treatment and 1,004 control students taken from 48 

schools in a Midwestern location in grades 3 through 5.  

These eight applied studies conducted analyses in various academic contexts, 

including mathematics, civics, critical thinking, science writing, and reading, looking for 

items that exhibited DIF based on gender, disability, teaching method, and language. 

Their models used a basic format of item, within person within school. 

Simulation studies examining three-level models for DIF detection using 

dichotomous items. Eight simulation studies examined 3-level DIF detection using 

dichotomous items between 2010 and 2015. These studies appear to be a disparate 

collection of random studies, but they are anything but – they are united by performance 

questions based on Type I error and power and manipulated simulation conditions 

An example of a simulation study with dichotomous items is the one conducted 

by French and Finch (2010), in which they evaluated two DIF techniques, standard LR 

and HLR that accounts for multilevel data. They simulated data using a hierarchical 

framework, such as examinees clustered in schools. The authors found that when the 

grouping variable was within clusters, LR and HLR performed equally well in terms of 

Type I error control and power. However, when the grouping variable was between 

clusters, standard LR failed to maintain the Type I error rate of .05.  

Another example of a simulation performed with dichotomous items is illustrated 

by Patarapichayatham, Kamata, and Kanjanawasee (2012). This team examined cross-

level, two-way DIF models for dichotomously scored items in a Rasch item response 

model. Their simulation study demonstrated that the quality of parameter estimates can 

be affected by model selection strategies and certain simulation conditions. They found 
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that when cluster-level DIF and cluster size became larger, all model selection strategies 

tended to select the most complete model, However, when the effects of cluster size were 

smaller, this was not necessarily true. 

Next, French and Finch (2013) investigated the effectiveness of several DIF 

detection procedures with nested data (examinees nested in schools) using the multilevel 

MH procedure. They used the 2PL model to simulate data. They found that the multilevel 

MH procedure was preferable to the standard MH in the presence of multilevel data, 

mainly when the ICC was relatively large, over .25.  

Jin, Meyers, and Ahn (2014) compared the performance of DIF detection 

procedures when the ICC of the studied item (ρy) was less than the ICC of the total score 

(ρx), which is commonly found in practice. The performance of two DIF detection 

procedures that do not account for multilevel data structure, MH and LR, was compared 

with HLR when ρy < ρx, which have not been studied. They found that when the 

grouping variable was at the cluster level, HLR, LR, and MH performed equivalently in 

terms of controlling Type I error rate at the nominal alpha level 0f .05 when ρ was small 

(i.e., .25) under both item generating models, Rasch and 2PL. When ρ became larger 

(i.e., ρ = .25), HLR generally outperformed LR regarding Type I error rate, and MH was 

slightly conservative under both models. HLR, LR, and MH maintained power above the 

acceptable level (.80) with trivial differences across all levels of manipulated factors. 

Wen (2014) conducted DIF analyses with multilevel data using a simulation that 

emphasized DIF at the cluster-level only and DIF at the student and teacher levels. Wen 

extended Kamata’s (2001) three-level Rasch model by adding covariates, allowing him to 

understand the factors that affect DIF detection or the impact of DIF on ability estimation 
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more completely. Wen’s simulation showed that the estimates of fixed parameters were 

close to true values, indicating the multilevel Rasch model is reliable in terms of DIF 

detection.  

Like Wen, Francis (2015) based his study on Kamata’s previous work. Francis 

investigated the performance of two models for nested item response data, using 

Kamata’s multilevel IRT. He examined the causes of DIF, specifically if DIF was present 

at the cluster-level. He used a four-level longitudinal logistic regression model with the 

nesting pattern of items, time points, students, and schools. His simulation showed that 

the model for DIF detection was powerful and accurate in identifying DIF at the item and 

school levels and that sample size had a significant effect on DIF detection at both levels.  

Unlike other researchers, French and Finch (2015) investigated uniform and 

nonuniform DIF. They examined the performance of multilevel adaptations of SIBTEST 

with multilevel data to examine Type I error and power rates. Dichotomous data were 

generated using the 2PL item response model, and students were nested within clusters. 

Results showed that for both uniform and nonuniform DIF detection, ignoring the 

multilevel data structure will likely yield inflated Type I errors, which could lead to an 

incorrect determination of DIF. 

In 2018, Shear conducted a simulation to demonstrate and evaluate a random 

coefficient hierarchical logistic regression model to test for uniform DIF and DIF 

variance. Item responses were generated via a 2PL model, and examinees were clustered 

in groups. He found that the model is a promising approach to understanding DIF. 

Through the use of simulation, these eight groups of researchers employed and/or 

compared the performance of DIF detection techniques based on Type I error and 
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statistical power. They used multiple types of data generating models, such as a three-

level Rasch and 2PL. Their DIF detection procedures included LR, HLR, MH, and the 

SIBTEST. The researchers also varied where DIF was occurring, within or between 

clusters. Their results helped clarify the appropriate use of DIF detection procedures with 

multilevel data. 

Substantive studies examining three-level models for DIF detection using 

polytomous items. Only one applied study was found that examined DIF in a 3-level 

model with polytomous items. Finch and French (2010) tested for uniform DIF between 

male and female students on end-of-semester class evaluations in a university science 

course and demonstrated DIF detection procedures that accounted for nested data. They 

used the multiple indicator multiple cause (MIMIC) model, which allows for the 

representation of a latent variable using multiple indicators, such as items on a survey. 

This research demonstrated the flexibility of analyzing such data using the MIMIC and 

the hierarchical MIMIC model, which allows for the inclusion of individual and group-

level variables.  

Simulation studies examining three-level models for DIF detection using 

polytomous items. Three simulation studies examined three-level models for DIF using 

polytomous items between 2006 and 2017. Vaughn (2006) investigated DIF for 

polytomous items from a 3-level (item, person, and cluster) LR perspective using the 

GRM as a generating model. His first simulation used a fixed multilevel DIF model, 

whereas the second simulation applied a random DIF model. Results showed that all 

parameter estimations in the fixed and random DIF models had little bias.  
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Sharafi et al.’s 2017 had features in common with Vaughn’s. They evaluated the 

effectiveness of two DIF detection procedures in nested polytomously scored data 

generated by a multilevel GRM. The authors used OLR, which only accommodates level 

1 information, and HOLR to assess DIF in simulated and empirical multilevel 

polytomous data. They found that HOLR and OLR performed almost equally in terms of 

controlling Type I error rate at the alpha level of .05. 

Unlike Vaughn (2006) and Sharafi el al. (2017), French et al. (2019) did not use 

LR-related procedures to examine DIF but instead used MH-related techniques. French et 

al. investigated the performance of the GMH procedure and a MGMH procedure for the 

detection of uniform DIF with multilevel data and polytomous items. Multilevel data 

were generated with manipulated factors, including intraclass correction, subjects per 

cluster, to examine Type I error rates and power. Their results showed the differences in 

DIF detection when the analytic strategy matches the data structure. Specifically, the 

GMH had an inflated Type I error rate across conditions, and therefore, artificially high 

power. On the other hand, the MGMH had good power rates and maintained the Type I 

error rate.  

These three studies are tied together by their use of polytomous items to 

investigate DIF but differ in the techniques the researchers employed. While the first sets 

of researchers used LR-type procedures, French et al. used Mantel-Haenszel-related 

techniques to explore DIF. 

Purpose  

French et al. (2019) recognized that DIF detection procedures, such as MH and 

LR, have been evaluated for dichotomously scored test items; however, they also 
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acknowledge there is a gap in the research literature on the use of the MGMH procedure 

for DIF detection with polytomously scored items in a multilevel framework. Their study 

examined the performance of the Begg (1999) adjusted methods for MH with polytomous 

items, building on work done with dichotomous items. French et al. (2019) simulated 

data for their study and used the GRM to generate data.  

Although one might find a compendium of research papers on DIF simulation 

studies with polytomous items to be thin at best, to find a 3-level (item, participant, 

school) DIF simulation study with polytomous items generated by the PCM would indeed 

be a rarity. At a time when large-scale assessment development is in transition, the 

assessment development community must have a comprehensive repertoire of reliable 

analysis techniques, for DIF detection and other procedures, available for both 

dichotomous and polytomously scored items at both the single-level and multilevel. 

The purpose of this Monte Carlo simulation is to evaluate the Type I error rate 

and Power of two multilevel DIF detection procedures, HOLR and the MGMH, with data 

simulated under various conditions in a multilevel data structure perspective. While the 

generalized MH (GMH) is one of the most proven methods of DIF detection for 

polytomous item response data, support for the MGMH is just beginning to accumulate 

(French et al., 2019, French & Finch, 2013). In addition, although these methods have 

been examined under some simulation conditions, they have never been directly 

compared. Findings from this study will directly benefit practitioners who work with 

hierarchical polytomously scored data. The fundamental research question is one of DIF 

detection procedure performance efficacy: How do the two DIF detection procedures, 

MGMH and HOLR, compare in terms of performance efficacy measured by Type I error 
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and statistical power? Using a multilevel version of the PCM (Master, 1982) to generate 

data, the accuracy of the MGMH and HOLR DIF detection procedures with respect to 

Type I error and power will be evaluated. 

The significance of this study lies in the use of the MLPCM to generate data, the 

further investigation of MGMH and its comparison to HOLR, and addition to the 

knowledge base of HOLR as a DIF detection procedure.  

Chapter Two: Method 

Simulation Design  

Data were generated using a multilevel version of Master’s partial credit model 

(1982). Four factors were manipulated: number of participants per cluster (20, 40; 

Chaimongkol, 2005; French & Finch, 2010, 2013; Jin et al., 2014), number of clusters 

(50, 100, 200; French & Finch, 2010), DIF magnitude (0, .4, .8; French & Finch, 2010; 

Garrett, 2009; Sharafi et al., 2017; Su & Wang, 2005; Wen, 2014), and ICC (.05, .25, .45; 

French & Finch, 2010, 2013; Sharafi et al., 2017) resulting in 72 conditions. Test length 

(20 polytomous items; Dodeen, 2004; Dodeen & Johanson, 2001; French & Finch, 2010; 

Finch & French, 2007; Garrett, 2009; Sharafi et al., 2017), number of response categories 

(5), number of items with DIF (10% or 2; Chang, Mazzeo, & Roussos, 1996; Su & 

Wang, 2005; Wang & Su, 2004; Zwick, Thayer, & Mazzeo, 1997), type of DIF (uniform; 

Williams, 2003; Zwick, Donoghue, & Grima, (1993), data generating model (MLPCM), 

grouping variable (level 1 within cluster, French & Finch), and balanced sample size 

ratios (SSR) between focal and reference groups (10:10, 20:20; French & Finch, 2010) 

were kept constant. The number of replications per condition is 400. Table 1 shows the 

simulation variables.  
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Table 1 

Simulation Variables  

Variable Value 

Manipulations  

Number of participants per cluster 10, 20, 40 

     Number of clusters 25, 50, 100 

ICC .05, .25 

Magnitude of DIF 0, .2, .4, .8 

Constant  

Number of items 20 

Type of items Polytomous with five response categories 

Data generating model MLPCM  

Type of DIF Uniform  

Location of DIF Within cluster – level 1 

Grouping variable - dichotomous Level 1: Within cluster  

Proportion of DIF 10% or 2 items 

Theta distribution Normal (0, 1) 

     Sample size ratio  Balanced between reference and focal 

groups: 10:10 and 20:20 

Note. DIF = differential item functioning; MLPCM = multilevel partial credit model; ICC 
= intraclass correlation coefficient. 
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Data Generation 

Item parameters. Table 2 shows the item parameters that were used in the 

MLPCM, which are based on item parameters used by Wang and Shih (2010) and Wang 

and Su (2004). For the rest of the items in the study, the parameters will be duplicated. 

Table 2 

Item Parameters for Data Generation 

Item αi δi τi1 τi2 τi3 τi4 

1 1 0.81 -1.16 -0.29 0.32 1.13 

2 1 1.07 -0.89 -0.33 0.35 0.87 

3 1 0.72 -1.09 -0.69 0.20 1.58 

4 1 0.58 -1.14 -0.71 0.22 1.64 

5 1 0.87 -1.25 -0.38 0.17 1.46 

6 1 0.93 -1.54 -0.30 0.44 1.41 

7 1 1.05 -1.04 -0.38 0.28 1.13 

8 1 0.88 -1.11 -0.57 0.10 1.58 

9 1 1.00 -1.31 -0.40 0.27 1.44 

10 1 0.93 -1.29 -0.40 0.27 1.41 

Note. αi = slope (discrimination) of item i, δi = difficulty of item i, τi1 – τi4 = category 
thresholds for item i. Reprinted from Wang, W. C., & Shih, C. L. (2010). MIMIC 
methods for assessing differential item functioning in polytomous items. Applied 
Psychological Measurement, 34(3), 166-180. 

Software 

Data generation was conducted in R (R Core Team, 2019). The MGMH data 

analyses were conducted in SAS 9.4 (SAS Institute, 2013), and the HOLR analyses were 

conducted in R (R Core Team, 2019). See Appendix A for the R code that generated the 
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data. Appendix B contains the code for the MGMH analysis (French, Finch & Iverson, 

2015) and Appendix C contains the code for the HOLR analysis. 

Evaluation Criteria 

Type I error rates and power. The dependent variables in this study are the 

Type I error rate and statistical power of the two DIF detection procedures, HOLR and 

MGMH. Items generated to have DIF were examined for power, and Type I error rates 

were examined for non-DIF items. Type I error rate is the percentage of time a DIF 

detection procedure flags an item for DIF when it does not contain DIF. Statistical power 

is the percentage of time the DIF detection procedure flags an item for DIF when the 

studied item contains DIF or the proportion of cases in which DIF items are correctly 

identified. Values that are equal to or larger than 0.8 are thought to indicate high power. 

Type I error rates were calculated by assuming that the parameters of the studied item 

were identical for the focal and reference groups. Both Type I error rates and power were 

calculated within each condition and across all replications. Type I error rates were 

evaluated at the .05 level. 

Chapter Three: Results 

Non-convergence 

During data analysis for the MGMH DIF detection procedure, a non-convergence 

issue occurred. It is likely that the MGMH and Begg adjustment conducted relied on the 

inversion of a matrix that could not be performed with some random datasets and was 

more likely in the conditions specified.  
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The data were organized in the following manner. A total of 72 folders were 

created, representing 72 simulated conditions. An abbreviated outline of the first six 

folders is shown in Table 3 to illustrate the format. 

Table 3 

Organizational Structure of Data for First Six Folders 

Folder 
Number of 

clusters 
Persons per 

cluster DIF ICC 
1 25 10 0 .05 

2 50 10 0 .05 

3 100 10 0 .05 

4 25 20 0 .05 

5 50 20 0 .05 

6 100 20 0 .05 
Note. DIF = differential item functioning; ICC = intraclass correlation coefficient. 

In each of the 72 folders, 400 files were stored that represented the 400 

replications for each condition. This means that 28,800 data files (72 x 400) were created. 

The creation of these files was not a smooth, seamless process. At times, four computers 

were engaged to create the necessary files. Often, random test sets were not analyzed for 

no apparent reason and had to be re-analyzed.  

When all 72 folders contained 400 files, meaning all 28,800 data files were 

created, a final check was made. Each of the 400 files contains 20 items with associated 

p-values for a total of 576,000 p-values (72 x 400 x 20). At this time, it was found that a 

seemingly random selection of the 400 files were completely empty, while others were 

only partially empty, with only a few missing p-values. Upon further inspection, one 

hundred fifty-five (155) files were found to be completely empty. Therefore, those 
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associated 155 test sets were re-analyzed creating the appropriate 3,100 p-values (155 x 

20).  

Even though the vast majority of files had a full complement of p-values, 

unfortunately, random files still with missing p-values remained, as shown in Table 4. 

The missing p-values occurred in conditions with 25 clusters, 10 persons per cluster at all 

levels of DIF, and both levels of ICC. In the final compilation for the MGMH analysis, 

290 p-values were missing or .0053% (290/576,000). Of the 72 conditions, 8 (11.1%) had 

missing p-values (i.e., 25 clusters, 10 persons per cluster, all levels of DIF, both levels of 

ICC). Although these non-convergence issues are small, they could affect the results for 

Type I error and power associated with these 8 conditions.  

Table 4 

Folders and Files with Used and Missing p-values 

Folder 
Number 

of clusters 

Persons 
per 

cluster DIF ICC 

Files with 
missing p-

values 

Number 
of p-

values 
used 

(missing) 
1 (1-400) 25 10 0 .05 25 375 (25) 

10 (3,601-4,000) 25 10 .2 .05 33 367 (38) 

19 (7,201-7,600) 25 10 .4 .05 34 366 (34) 

28 (10,801-11,200) 25 10 .8 .05 66 336 (66) 

37 (14,401-14,800) 25 10 0 .25 35 366 (35) 

46 (18,001-18,400) 25 10 .2 .25 19 381 (19) 

55 (21,601-22,000) 25 10 .4 .25 36 364 (36) 

64 (25,201-25,600) 25 10 .8 .25 34 366 (37) 

Note. DIF = differential item functioning; ICC = intraclass correlation coefficient 



 

29 
 

Of the 18 conditions used to determine Type I error rates, the first 2 conditions 

(i.e., 25 clusters, 10 persons per cluster, 0 DIF, .05, .25 ICC) could have been affected by 

this non-convergence issue even though the number of missing p-values is quite small.  

Type I Error Rate 

The Type I error rates for the two DIF detection procedures, HOLR and MGMH, 

for all simulated test sets are summarized in Table 5. As can be seen from the table, 

across all 18 conditions, the Type I error rate for the HOLR DIF detection procedure was 

closely maintained to the nominal .05 level (ranged from .053 to .059). Sample size 

(number of clusters times number of participants per cluster) had little to no effect on 

Type I error for the HOLR DIF detection method. The mean Type I error for 250 

participants was .055, .057 for 500, .055 for 1000, .055 for 2000, and .055 for 4000 

participants.  

The ICC has a small but perceptible impact on the Type I error rate for the HOLR 

DIF detection procedure. For example, within a pair of Type 1 error rates, the one with 

the higher ICC, has the higher Type I error rate. Note the comparison between two 

samples of 25 clusters with 10 persons per cluster but one with an ICC of .50 and the 

other with an ICC of .25. The first sample has a Type I error rate of .0534 and the second 

has a slightly higher error rate of .0578. This pattern of higher Type I error rates with 

larger ICCs is repeated throughout the data for the HOLR DIF detection procedure. 

Table 5 also shows Type I error rates for the MGMH DIF detection procedure. 

Across all 18 conditions, Type I error rates for the MGMH procedure ranged from .010 to 

.130. Type I error rates tended to be inflated when the ICC was .05. Type I error rates for 
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the MGHM were at or above the nominal level of .05 for 13 of 18 (72%) conditions, with 

lowest rates occurring at ICCs of .25.  

The mean Type I error rate for the HOLR procedure is .0594, whereas the mean 

value for the MGMH is .0754. Maximum difference in Type I error rates between the two 

procedures is |.0754| at 25 clusters times 40 persons per cluster and an ICC of .05. 

Minimum difference is |.0048| at 25 clusters times 20 persons per cluster and ICC at .25. 

Finally, the average difference between the two rates is -0.0205. 

Table 5 

Type I Error Rate for Two DIF Detection Procedures by Number of Clusters, Number of 
Persons per Cluster, Magnitude of DIF, and ICC 
 

Number of 
clusters 

Persons per 
cluster DIF ICC HOLR MGMH 

25 10 0 .05 .053 .121 

25 10 0 .25 .058 .086 

25 20 0 .05 .059 .125 

25 20 0 .25 .055 .050 

25 40 0 .05 .055 .130 

25 40 0 .25 .054 .023 

50 10 0 .05 .055 .104 

50 10 0 .25 .057 .066 

50 20 0 .05 .053 .108 

50 20 0 .25 .057 .033 

50 40 0 .05 .055 .106 

50 40 0 .25 .052 .011 
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100 10 0 .05 .055 .100 

100 10 0 .25 .054 .061 

100 20 0 .05 .057 .102 

100 20 0 .25 .052 .028 

100 40 0 .05 .052 .095 

100 40 0 .25 .058 .010 

Note. HOLR = hierarchical ordinal logistic regression; MGMH = multilevel generalized 
Mantel-Haenszel. 
 
Power 

Power for the two DIF detection procedures, HOLR and MGMH, for all 

simulated test sets are provided in Table 6. As can be seen from the table, across all 54 

conditions for items 19 and 20, power for HOLR ranged from .250 to 1. Power increases 

as DIF magnitude increases, reaching 1 for a DIF magnitude of 0.80 and as sample size 

increases (number of clusters times persons per cluster). In many conditions, power was 

above the acceptable rate of .80. This included the following conditions: 

• Lower sample sizes (N = 250, 500), DIF at .80, ICC at .05, .25 

• Medium sized samples (N = 1,000), DIF at .40, .8; ICC at .05, .25 

• Large sized samples (N = 2,000, 4000) DIF at .20, .40, .80; ICC at .05, .25 

Not all conditions elicited high power, especially those with small sample sizes 

(i.e., 250, 500). For example, under the conditions of  

• Sample size 250, DIF magnitude .20, ICC .05 power = .250,  

• Sample size 250, DIF magnitude .20, ICC .25 power = .210,  

• Sample size DIF magnitude of 0.4 and ICC .05 and .25, power = 0.690, 

.6750,  
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• Sample size = 250, DIF magnitude = 0.4, ICC = .05, power = .690  

• Sample size = 250, DIF magnitude = 0.4, ICC = .25, power = .690  

• Sample size = 500, DIF magnitude = 0.4, ICC = .05, power = .935 

• Sample size = 500, DIF magnitude = 0.4, ICC = .25, power = .910 

• At sample sizes of 2,000 and 4,000, power is 1. 

Table 5 also shows power for the MGMH DIF detection procedure. Across all 54 

conditions, power for the MGMH DIF detection procedure ranged from .1350 to 1. 

Statistical power increases for the MGMH procedure as sample size (number of clusters 

by persons per cluster) increases. Power was found to be consistently high with sample 

sizes over 1,000.  

DIF magnitude appears to have an impact on power but that impact is not 

consistent, especially with smaller sample sizes. Moreover, the interaction of DIF 

magnitude and ICC influences power for the MGMH. There does seems to be a 

consistent trend of lower power with higher ICCs that is relatively consistent throughout 

the data. This is true for both detection procedures, but it is not present at the largest 

sample sizes. The following examples are given to illustrate this point.  

• At a sample size of 500 or 1,000, power is greater than .80 with a DIF 

magnitude of .40 if the ICC is .05 but not if ICC is .25.  

• At smaller sample sizes (e.g., N = 250), DIF magnitude = .80, and ICC = 

.05, power is .60. However, power is only .22 when ICC increased to .25.  

• At sample size of 500 and DIF magnitude = .80, when ICC was .05 power 

was .8950 but was only .51 when ICC increased to .25.  
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The HOLR showed more values closer or greater to .80 compared to MGMH. 

Mean power, across all conditions, for the HOLR procedure is .8690, whereas the mean 

value for the MGMH is .7690. Maximum difference in power between the two 

procedures is 1.000 at 100 clusters times 20 persons per cluster, DIF = .8 and an ICC of 

.25. Minimum difference is .000 under most conditions. Finally, the average difference in 

power between the two detection procedures is .100. 

Table 6 

Power for Two Detection Procedures by Number of Clusters, Participants per Cluster, 
DIF Magnitude, and ICC for Items 19 and 20 

Number of 
clusters 

Participants 
per cluster DIF ICC 

Power 
HOLR 

Power 
MGMH 

25 10 0.2 .05 .250 .235 

25 10 0.2 .25 .210 .135 

25 10 0.4 .05 .690 .380 

25 10 0.4 .25 .675 .220 

25 10 0.8 .05 1.000 .600 

25 10 0.8 .25 1.000 .220 

25 20 0.2 .05 .410 .000 

25 20 0.2 .25 .400 .250 

25 20 0.4 .05 .935 .600 

25 20 0.4 .25 .910 .375 

25 20 0.8 .05 1.000 .895 

25 20 0.8 .25 1.000 .510 

25 40 0.2 .05 .685 .585 
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25 40 0.2 .25 .655 .500 

25 40 0.4 .05 1.000 .895 

25 40 0.4 .25 1.000 .720 

25 40 0.8 .05 1.000 1.000 

25 40 0.8 .25 1.000 .970 

50 10 0.2 .05 .400 .520 

50 10 0.2 .25 .370 .380 

50 10 0.4 .05 .935 .800 

50 10 0.4 .25 .925 .635 

50 10 0.8 .05 1.000 .990 

50 10 0.8 .25 1.000 1.000 

50 20 0.2 .05 .680 .845 

50 20 0.2 .25 .685 .680 

50 20 0.4 .05 1.000 .980 

50 20 0.4 .25 .995 1.000 

50 20 0.8 .05 1.000 1.000 

50 20 0.8 .25 1.000 1.000 

50 40 0.2 .05 .920 .995 

50 40 0.2 .25 .930 .970 

50 40 0.4 .05 1.000 1.000 

50 40 0.4 .25 1.000 .895 

50 40 0.8 .05 1.000 .990 

50 40 0.8 .25 1.000 .885 



 

35 
 

100 10 0.2 .05 .730 .870 

100 10 0.2 .25 .685 1.00 

100 10 0.4 .05 .995 1.00 

100 10 0.4 .25 0.995 1.00 

100 10 0.8 .05 1.00 1.00 

100 10 0.8 .25 1.00 1.00 

100 20 0.2 .05 0.930 1.00 

100 20 0.2 .25 0.930 1.00 

100 20 0.4 .05 1.00 1.00 

100 20 0.4 .25 1.00 1.00 

100 20 0.8 .05 1.00 1.00 

100 20 0.8 .25 1.00 .000 

100 40 0.2 .05 1.00 1.00 

100 40 0.2 .25 1.00 1.00 

100 40 0.4 .05 1.00 1.00 

100 40 0.4 .25 1.00 1.00 

100 40 0.8 .05 1.00 1.00 

100 40 0.8 .25 1.00 1.00 
Note. HOLR = hierarchical ordinal logistic regression; MGMH = multilevel generalized 
Mantel-Haenszel. 
 

Chapter Four: Discussion 

Implications 

The importance of DIF and its potential impact on the validity of assessments, 

especially in an environment that relies heavily on standardized testing, should not be 
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understated. Consequently, practitioners and test developers should endeavor to ensure 

that test items and test scores accurately reflect the traits of test takers being measured.  

Rightfully so, researchers have focused on procedures for detecting DIF; 

however, they have not paid as much attention on the procedures to explore DIF in 

multilevel data structures. As the importance of assessments that are “valid, reliable, and 

comparable for all students and for each subgroup of students among participating 

schools and districts” (U.S. Department of Education, 2017, p. 5) continues, increases, or 

expands across contexts, the importance of DIF detection procedures for educational tests 

that polytomous in nature continues to increase.  

DIF analysis methodologies are psychometric tools used to confirm assessment 

fairness and validity and employing more than one method to analyze DIF is beneficial in 

confirming DIF results. Given its prominence in the test development process, it is 

imperative that DIF detection procedures are accurate. The results of this study help 

clarify and enhance several issues for test developers and psychometric practitioners. For 

example, this study contributes to the budding literature begun by French and Finch 

(2013) and French et al. (2019) on the effectiveness of adjusted statistical methods for 

DIF detection in the presence of multilevel data. In addition, this study contributes to the 

literature that examines DIF detection procedures for polytomously scored items (e.g., 

French and Miller, 1996) within a multilevel framework.  

As additional work is done to evaluate DIF detection procedures with multilevel 

data, psychometric tools are refined, improved, and enhanced, thus sharpening their 

ability to provide accurate item and test development guidance and decisions. Certainly, 
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other students and psychometricians will pick up where this study ends to create better 

tools. 

Type I Error  

The purpose of this study was to compare the performance of two DIF detection 

procedures, HOLR and MGMH, by comparing Type I error rates and power. Results of 

this study showed that the HOLR DIF detection procedure maintains the Type I error rate 

of .05 better than the MGMH DIF detection procedure. In addition, the HOLR Type I 

error rates showed a smaller range than the MGMH rates. 

In this study, using the HOLR DIF detection procedure, higher Type I error rates 

were found with smaller sample sizes and ICC has a small but perceptible effect on Type 

I error, but the range of values was very small. These results indicate that HOLR 

controlled the nominal Type I error rate of .05 reasonably well. The Type I error rate for 

the MGMH DIF detection procedure was at or below the nominal level of .05 for six 

(33.33%) conditions, and mean Type I error rate was .0754, whereas the mean Type I 

error rate for the HOLR procedure was .0594.  

The results of this study are consistent with those researchers who have studied 

DIF using LR techniques but not consistent with results from the few studies using 

MGMH. In a study similar to this one, Sharafi et al. (2017) found that HOLR controlled 

the nominal Type I error rate of .05, and French and Finch (2010) found that both 

standard LR and HOLR maintained the nominal Type I error rate of .05 across all 

manipulated conditions when the grouping variable was at the within-clusters level as is 

the case in this study. 
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Findings from this simulation study are not entirely consistent with the findings of 

French et al. (2019), who used the same MGMH and Begg’s adjustment method as the 

one used in this study. The manipulated factors used in the French et al. study were 

similar to those in this study. For example, five ICCs were used: .05, .15, .25, .35, and 

.45. The number of clusters simulated was 50, 100, and 200, whereas the number of 

subjects per cluster was 5, 15, 25, and 50. Four DIF magnitudes were simulated: 0, .4, .6, 

and .8, and uniform DIF was specified. Although the constants in the French et al. study 

were also similar, differences should be noted. French et al. simulated 20 items, each with 

four response levels. Note, however, that the items in this study had five response 

options. A purified scale score was used in the French et al. study, with only one targeted 

item, whereas this current study did not use a purified scale score and had two targeted 

items. Moreover, data in their study were simulated using a multilevel graded response 

model, and in this study a multilevel partial credit model with different threshold 

parameters and discrimination values was used. Last, French et al. used 1000 replications. 

French et al. (2017) found that for the within-cluster condition, the condition used 

in this study, all DIF detection procedures reported Type I error rates at or below the 

nominal level. In this study, the MGMH reported Type I error rates at or above the 

nominal level of .05 for 13 of 18 (72%) conditions, with lowest rates occurring at ICCs of 

.25. More interestingly, French et al. found that Type I error rates for all DIF detection 

procedures increased with associated increases of the ICC. In this study, when comparing 

a pair of conditions, the highest Type I error rates occurred when the ICC was .05 and the 

lower Type I error occurred when the ICC was .25; under no conditions did the Type I 

error rate meet the nominal .05 level when the ICC was .05 but sometimes did when the 
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ICC was .25. Consider the ICC levels in following pairs; Type I error rate is always lower 

for the condition with a higher ICC: 

• Number of clusters 25, participants per cluster 10, DIF = 0, ICC = .05 and 

.25, Type I error = .1206 and .0861, respectively. 

• Number of clusters 25, participants per cluster 20, DIF = 0, ICC = .05 and 

.25, Type I error = .1250 and .0500, respectively. 

• Number of clusters 25, participants per cluster 40, DIF = 0, ICC = .05 and 

.25, Type I error = .1300 and .0228, respectively. 

French et al. (2019) found that the Type I error rates decreased as the number of 

subjects per cluster increased. In this study, the trends in Type I error rates associated 

with the MGMH procedure are harder to characterize; however, the mean of the error 

rates for the top 9 conditions with smaller sample sizes is .090, whereas the mean for the 

bottom 9 conditions with larger sample sizes is .061.  

Power 

In this study, it was found that power is better for HOLR than MGMH DIF 

detection procedure. HOLR showed more values closer or greater to .80 compared to 

MGMH. In general, for either DIF detection procedure, for any DIF magnitude, 0, .2, .4 

or .8, a large sample size is needed for adequate power. 

The findings regarding HOLR and sample size are consistent with other studies 

that showed power rates increase as sample size increase. However, the increase in power 

does not appear to be tied only to cluster size but to overall sample size. The findings in 

Table 6 show that for sample sizes at or over 1,000, 83.33% (30/36) of the conditions 

have power rates at or above .80. Other studies, such as French and Finch (2010) found 
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that power increase with increasing cluster size. Last, Sharafi et al. found that HOLR 

maintained power above the acceptable level (.80) across most of the studied conditions. 

Power was lower than .80 for sample sizes less than 500 with low level of DIF magnitude 

across all levels of ICC. They found that power was high for larger samples. 

The MGMH power results are more consistent with results from previous studies 

than the MGMH findings for Type I error. In this study, power increases for the MGMH 

procedure as sample size (number of clusters by persons per cluster) increases. Power 

was found to be consistently high with sample sizes over 1,000. French et al. (2019) 

found that only when the ICC was .05 did the MGMH procedure report power estimates 

above the desired .80 level. However, in this study, power estimates reached .80 with an 

ICC of .25 only when sample sizes reached 1,000.  

The influence of DIF magnitude in this study was consistent with that found by 

French et al. They found that power rates were lowest for the lowest level of DIF 

condition (i.e., .40). In this study, at lower sample sizes and ICC .05, power was .380 at 

DIF magnitude .4 and .600 at DIF magnitude 0.8. French et al. noted that only when the 

DIF magnitude was .60 did the MGHM procedure report statistical power above 0.80. In 

addition, only when the number of clusters was 100 or 200 did the MGHM report an 

acceptable level of power for DIF detection. 

The most likely reason for the discrepancy in the findings between the French et 

al. (2019) and this study is the way the data were simulated. The data in their study were 

simulated using a multilevel graded response model, and in this study a multilevel partial 

credit model with different threshold parameters and discrimination values was used. The 

use of a purified sample also could have affected the results. Last, because the non-
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convergence issue systematically affected all conditions with 25 clusters, 10 persons per 

cluster at all levels of DIF, and both levels of ICC, they could affect the results for Type I 

error and power associated with these conditions. 

Limitations and Future Research 

Five important limitations are worth noting. First, purification was not performed 

on the simulated data. The Mantel-Haenszel procedure distinguishes between DIF and 

item impact by comparing the odds for success between groups after conditioning on 

ability; however, this conditioning requires a valid criterion. Most of the time, an 

appropriate external criterion is not available, therefore practitioners typically use the 

total test score as the matching criterion. Holland and Thayer (1988) recommended a 

way of improving the matching criterion by using  a two-step form of the Mantel-

Haenszel procedure in which items identified as showing DIF are removed from the 

matching criterion for subsequent analyses. Clauser, Mazor, and Hambleton (1993) 

reported that the results for the two-step procedure were equal or superior to the 

single-step procedure in identifying simulated DIF items across conditions 

investigated.  

Clauser, Mazor, and Hambleton (1993) found that the most substantial 

improvement was noted when the purification procedure was applied to data 

simulated to have focal and reference groups of equal ability. If there is relatively 

little DIF in the test, the advantage afforded with the difference associated with using 

the two-step procedure will be minimal; however, when the test contains more DIF, the 

advantage will be greater. Since this simulation study only included two items, which 

is minimal (10% of the test), we chose to not use a purification approach. 
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Researchers have suggested the use of purification for use with LR DIF detection 

procedures (Rogers & Swaminathan, 1993; Zumbo, 1999), although it is rarely used in 

practice, perhaps because of the time commitment. Consequently, little published 

empirical evidence demonstrates the effects of purification on LR DIF detection (French 

& Maller, 2007) or any other DIF detection procedure. 

French and Maller (2007) found that purification resulted in an 18% increase in 

power and a 20% decrease in Type I errors when only uniform DIF was evaluated, 

ignoring the influence of purification on the primary advantage of LR over MH (i.e., 

detection of nonuniform DIF). Moreover, methodological studies have implemented 

purification when comparing various DIF detection procedure (e.g., SIBTEST, MH), yet 

these same studies did not purify with LR (Narayanan & Swaminathan, 1996; Rogers & 

Swaminathan, 1993). French and Maller recommend the evaluation of the influence of 

purification on DIF detection rates with LR. Purification should be included in future 

studies. 

Second, only uniform DIF was investigated yet nonuniform DIF is a threat to 

validity. For example, Maller (2001) found that 16% of DIF items in a major 

standardized intelligence test were nonuniform. Finch and French (2007) examined 

previous nonuniform or crossing-DIF (CDIF) detection work by comparing the 

performance of four single-level procedures: LR, SIBTEST, IRTLR, and CFA. The 

researchers recognized that practitioners are interested in investigating both uniform and 

nonuniform DIF, and therefore, the current simulation study could be extended with the 

goal of detecting nonuniform DIF. 
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Third, as in most simulation studies, study conditions were limited due to time 

and computer capacity, thereby findings may not generalize to all possible conditions and 

may not be valid for other situations. For example, DIF was only simulated to the within-

cluster condition, whereas the between cluster condition is often found in simulation 

literature on DIF. In addition, only two ICC values were used, .05 and .25, in contrast to 

other researchers who used a wider range. 

Fourth, in this study, DIF was confined to level 1. In future research, a random 

effect for the item of interest across clusters could be introduced. If the random effect is 

significant, this implies that the item difficulty varies across clusters, meaning that the 

item functions differentially in different classrooms. If there is insignificant random 

effect of items, student-level DIF can be tested, followed by the detection of teacher-level 

DIF.  

 Last, a source of error in the MGMH analyses was the inability to efficiently and 

consistently analyze the simulated test sets with the SAS Begg adjustment method code, 

resulting in missing p-values. If this study is replicated, the source of this error must be 

definitively identified and corrected, and thereby capture all the p-values. 

An extension to the multilevel DIF model used in this study is proposed for future 

research and involves the modeling of random effects at the between cluster level within 

the original model. When multilevel models are used, the hierarchical structure of data 

is considered. Moreover, the variance components are decomposed into the appropriate 

level so the homogeneity of students in a class or school can be modeled. However, the 

multilevel models considered herein only considered the intercept to be random and did 

not consider the slope to be random. By mirroring the approach of Kamata (2001) and 
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Kamata et al. (2005) with three-level Rasch model in which they allowed the coefficient 

of the person-level DIF to be random across higher-level clusters, such as schools, this 

model could be extended. This extension would be a random-effect DIF model, 

indicating that the effect of classroom or school membership can vary from unit to 

unit. The choice to parameterizing DIF as a random-effects DIF model rather than fixed 

effects and to estimate the variance of the DIF magnitude across higher-level clusters 

could be a useful extension to this research.  
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Appendix A 

## This function takes person, cluster, and item parameters and generates a random 
response 

item_response <- function(beta, nu, delta, transition_locations) { 

 denominator <- 1 + exp(beta+nu-delta-transition_locations[1]) + 

                    exp(beta+nu-delta-transition_locations[1] + beta+nu-delta-
transition_locations[2]) + 

                    exp(beta+nu-delta-transition_locations[1] + beta+nu-delta-
transition_locations[2] + beta+nu-delta-transition_locations[3]) + 

                    exp(beta+nu-delta-transition_locations[1] + beta+nu-delta-
transition_locations[2] + beta+nu-delta-transition_locations[3] + beta+nu-delta-
transition_locations[4]) 

 prob_0 <- 1 / denominator 

 prob_1 <- exp(beta+nu-delta-transition_locations[1]) / denominator 

 prob_2 <- exp(beta+nu-delta-transition_locations[1] + beta+nu-delta-
transition_locations[2]) / denominator 

 prob_3 <- exp(beta+nu-delta-transition_locations[1] + beta+nu-delta-
transition_locations[2] + beta+nu-delta-transition_locations[3]) / denominator 

 prob_4 <- exp(beta+nu-delta-transition_locations[1] + beta+nu-delta-
transition_locations[2] + beta+nu-delta-transition_locations[3] + beta+nu-delta-
transition_locations[4]) / denominator 

 p <- runif(1, 0, 1) 

 if (p < prob_0) { 

   0 

 } else if (p < prob_0 + prob_1) { 

   1 

 } else if (p < prob_0 + prob_1 + prob_2) { 

   2 

 } else if (p < prob_0 + prob_1 + prob_2 + prob_3) { 

   3 

 } else if (p < prob_0 + prob_1 + prob_2 + prob_3 + prob_4) { 
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   4 

 } else { 

   5 

 } 

} 

## To make this data generation replicable, set the seed (random.org)  

set.seed(431124659) 

## FIX CONSTANTS AND CREATE SIMULATION CONDITION MATRIX 

{ 

# Fix item parameters (we will change items 19 and 20 to create DIF 

transition_locations <- matrix(rep(c(-1.16,-.29,.32,1.13,-.89,-.33,.35,.87,-1.09,-
.69,.2,1.58, 

                          -1.14,-.71,.22,1.64,-1.25,-.38,0.17,1.46,-1.54,-.30,.44,1.41, 

                          -1.04,-.38,.28,1.13,-1.11,-.57,.10,1.58,-1.31,-.40,.27,1.44, 

                          -1.29,-.40,.27,1.41),2),nrow=20,ncol=4,byrow=TRUE) 

colnames(transition_locations) <- c("ti1","ti2","ti3","ti4") 

item_difficulties <- rep(c(0.81, 1.07, 0.72, 0.58, 0.87, 0.93, 1.05, 0.88, 1.00, 0.93), 2) 

# Simulation Details 

num_reps         <- 400    # number of iterations per condition = 400 

# Conditions 

num_cluster      <- c(25, 50,100) 

pers_per_cluster <- c(10, 20, 40) 

dif              <- c(0, .2, .4, .8) 

icc              <- c(.05, .25) 

# Make a matrix of all conditions 

conditions = expand.grid(num_cluster, pers_per_cluster, dif, icc) 

colnames(conditions) <- c("num_cluster", "pers_per_cluster", "dif", "icc") 

# Number of conditions so we can loop over them 

num_conditions <- nrow(conditions) 
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} 

## Loop over conditions 

for (c in 1:num_conditions) { 

  # DIF happens here. 

  dif_item_diff <- item_difficulties 

  dif_item_diff[19] <- dif_item_diff[19] + conditions$dif[c] 

  dif_item_diff[20] <- dif_item_diff[20] + conditions$dif[c] 

  ## Loop over replications 

  for (iteration in 1:num_reps){ 

    # Draw cluster and person abilities 

    beta <- rnorm(conditions$num_clust[c]*conditions$pers_per_cluster[c], 0, 1) 

    nu   <- rnorm(conditions$num_clust[c], 0, conditions$icc[c]/(1-conditions$icc[c])) 

    # Create empty dataframe to hold the data 

    sim_data <- data.frame() 

    # Loop over clusters then persons to cycle through all the persons 

    for (clust in 1:conditions$num_cluster[c]) { 

      for (pers in  1:conditions$pers_per_cluster[c]) { 

        # Make a vector of person variables (id, cluster, group) 

        pers_id <- (clust-1)*conditions$pers_per_cluster[c]+pers 

        sim_pers <- c(pers_id, clust, pers %% 2) 

        # Make vector of item responses - different item parameters if in group 0 or 1 

        if (pers %% 2 == 0) { # Reference group has no DIF 

          sim_items <- c() 

          # loop over items, adding the responses 

          for (i in 1:20) { 

            sim_items <- c(sim_items, item_response(beta[pers_id], nu[clust], 
item_difficulties[i], transition_locations[i, ])) 

          } 

        } else { # Focal group has DIF 
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          sim_items <- c() 

          # loop over items, adding the responses 

          for (i in 1:20) { 

            sim_items <- c(sim_items, item_response(beta[pers_id], nu[clust], 
dif_item_diff[i], transition_locations[i, ])) 

          } 

        } 

        # Add to sim_data 

        sim_data <- rbind(sim_data, c(sim_pers, sim_items)) 

      } 

    } 

    # Put names onto sim_data and save to file 

    names(sim_data) <- c("PersID", "Clust", "Group", paste0("Item", 1:20)) 

    write.csv(sim_data, paste0("TestSet", (c-1)*num_reps+iteration, ".csv"), row.names = 
FALSE) 

  } 

} 
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Appendix B 

/* French, Finch, & Iverson, 2015 
 
%macro pvals(data,item,pvalues); 
/*Taking mean of items 1-20*/ 
/*Take mean of items 1-18 when analyzing data with DIF - purify the 
total score*/ 
/*See French & Maller (2007)*/ 
data b1; set &data; 
ability = mean (of item1-item20); /*20 items*/ 
run; 
 
/*Assuming a cluster is Clust*/ 
data Clust; 
   set b1; 
keep Clust; 
rename Clust=id; 
 
/*Assuming this is for items*/ 
data &item; 
   set b1; 
keep &item; 
rename &item=response; 
 
/*Assuming exposure is Group - this is column 3 - and it is coded 1-0 
for reference and focal*/ 
data Group; 
   set b1; 
keep Group; 
rename Group=exposure; 
 
data ability; 
   set b1; 
keep ability ; 
rename ability=stratum; 
 
data mhdat; 
   merge Clust &item Group ability; 
 
ods output covB=naivecovb; 
proc glimmix empirical data=mhdat; 
      model response = exposure / dist=normal 
                                  covb; 
run; 
 
ods output covB=geecovb; 
proc glimmix empirical data=mhdat; 
      class id; 
      model response = exposure / dist=normal 
                                  covb; 
      random _residual_ / subject=id type=cs vcorr; 
run; 
 
proc freq data=mhdat; 
   table stratum*exposure*response / cmh; 
   output out=mhresults cmh; 
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   run; 
 
data naivecovb2; 
   set naivecovb; 
if _n_=1; 
keep col1; 
rename col1=naivevar; 
 
data geecovb2; 
   set geecovb; 
if _n_=1; 
keep col1 geevar; 
rename col1=geevar; 
 
data mhresults2; 
   set mhresults; 
keep _cmhcor_ _cmhrms_ _cmhga_; 
 
data &pvalues; 
format item $char7.; 
item="&item"; 
   merge mhresults2 naivecovb2 geecovb2; 
f=geevar/naivevar; 
*bcmhcor=_cmhcor_/f; 
*bcmhrms=_cmhrms_/f; 
bcmhga=_cmhga_/f; 
*bcmhcor85=_cmhcor_/(.85*f); 
*bcmhrms85=_cmhrms_/(.85*f); 
bcmhga85=_cmhga_/(.85*f); 
*bcmhcor9=_cmhcor_/(.9*f); 
*bcmhrms9=_cmhrms_/(.9*f); 
*bcmhga9=_cmhga_/(.9*f); 
*bcmhcor95=_cmhcor_/(.95*f); 
*bcmhrms95=_cmhrms_/(.95*f); 
*bcmhga95=_cmhga_/(.95*f); 
 
*cmhcor_p=1-probchi(_cmhcor_,1); 
*cmhrms_p=1-probchi(_cmhrms_,1); 
cmhga_p=1-probchi(_cmhga_,4); 
*bcmhcor_p=1-probchi(bcmhcor,1); 
*bcmhrms_p=1-probchi(bcmhrms,1); 
bcmhga_p=1-probchi(bcmhga,4); 
*bcmhcor85_p=1-probchi(bcmhcor85,1); 
*bcmhrms85_p=1-probchi(bcmhrms85,1); 
bcmhga85_p=1-probchi(bcmhga85,4); 
*bcmhcor9_p=1-probchi(bcmhcor9,1); 
*bcmhrms9_p=1-probchi(bcmhrms9,1); 
*bcmhga9_p=1-probchi(bcmhga9,4); 
*bcmhcor95_p=1-probchi(bcmhcor95,1); 
*bcmhrms95_p=1-probchi(bcmhrms95,1); 
*bcmhga95_p=1-probchi(bcmhga95,4); 
 
proc print; 
run; 
%mend; 
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/*Running macro*/ 
%macro maketable(number); 
 %do i=1 %to &number; 
  PROC IMPORT OUT= WORK.b1  
   /*CHANGE THE LINE BELOW TO THE FILE LOCATION OF TEST 
SETS*/ 
     DATAFILE= 
"C:\Users\mdto223\Dropbox\Carol_Simulation\Checking Work\Checking SAS 
Syntax\Data1\TestSet&i..csv"  
            DBMS=csv REPLACE; 
  RUN; 
  %pvals(b1,item1,all1) 
  %pvals(b1,item2,all2) 
  %pvals(b1,item3,all3) 
  %pvals(b1,item4,all4) 
  %pvals(b1,item5,all5) 
  %pvals(b1,item6,all6) 
  %pvals(b1,item7,all7) 
  %pvals(b1,item8,all8) 
  %pvals(b1,item9,all9) 
  %pvals(b1,item10,all10) 
  %pvals(b1,item11,all11) 
  %pvals(b1,item12,all12) 
  %pvals(b1,item13,all13) 
  %pvals(b1,item14,all14) 
  %pvals(b1,item15,all15) 
  %pvals(b1,item16,all16) 
  %pvals(b1,item17,all17) 
  %pvals(b1,item18,all18) 
  %pvals(b1,item19,all19) 
  %pvals(b1,item20,all20) 
  /*combining pvalue tables together*/ 
  data allitems; 
   set all1 all2 all3 all4 all5 all6 all7 all8 all9 
all10 all11 all12 all13 all14 all15 all16 all17 all18 all19 all20; 
  proc print; 
  run;  
  /*CHANGE THE BELOW LINE TO THE FILE LOCATION OF THE OUTPUT 
TABLES*/ 
  proc export data=allitems dbms=csv 
outfile="C:\Users\mdto223\Dropbox\Carol_Simulation\Checking 
Work\Checking SAS Syntax\OutputTable&i..csv" replace; 
  run; 
  /*dm 'log;clear;output;clear;'*/ 
 %end; 
%mend; 
 
%maketable(5) 
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Appendix C 

#install.packages("ordinal") 

library(ordinal) 

library(parallel) 

# Build up results matrix with conditions data 

{ 

  # Conditions 

  num_cluster      <- c(25, 50, 100) 

  pers_per_cluster <- c(10, 20, 40) 

  dif              <- c(0, .2, .4, .8) 

  icc              <- c(.05, .25) 

  # Make a matrix of all conditions 

  conditions = expand.grid(num_cluster, pers_per_cluster, dif, icc) 

  colnames(conditions) <- c("num_cluster", "pers_per_cluster", "dif", "icc") 

  # Copy each row 400 times for the iterations. 

  repconditions <- conditions[sort(as.numeric(rep(rownames(conditions), 400))),] 

} 

sim_analysis <- function(i) { 

  temp_data <- read.csv(paste0("Data/TestSet", i, ".csv")) 

  ## create a total score upon which we can regress item responses 

  temp_data$Total <- rowSums(temp_data[,4:23]) 

  # outcomes need to be factors for clmm to use ordinal logistic regression 

  # This line doesn't work, and it's really bothering me 

  # temp_data[,4:23] <- apply(temp_data[,4:23], 2, as.factor) 

  # So I'll do it the lazy way 

  for (x in 4:23) {temp_data[,x] <- as.factor(temp_data[,x])} 

  pvals <- NULL 

  for (x in 4:23) { 
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    modelA <- clm(as.formula(paste0(colnames(temp_data)[x], " ~ Total")), data = 
temp_data, Hess = FALSE) 

    modelB <- clm(as.formula(paste0(colnames(temp_data)[x], " ~ Total + Group")), data 
= temp_data, Hess = FALSE) 

    #model3 <- clmm(as.formula(paste0(colnames(temp_data)[x+3], " ~ Total + Group + 
Total*Group + (1 | Clust)")), data = temp_data) 

    #pvals <- c(pvals, pchisq(2*(modelB$logLik-modelA$logLik), df = 1, ncp = 0, 
FALSE)) 

    pvals <- c(pvals, anova(modelA, modelB)$`Pr(>Chisq)`[2]) 

  } 

  c(repconditions[i,1], repconditions[i, 2], repconditions[i, 3], repconditions[i, 4], pvals) 

} 

# set up clusters 

{ 

cl <- makeCluster(detectCores(logical = FALSE)) 

clusterEvalQ(cl, library(ordinal)) 

clusterEvalQ(cl, setwd("D:/Dropbox/4. Completed Projects/Carol_Simulation")) 

clusterExport(cl, "repconditions") 

clusterExport(cl, "sim_analysis") 

} 

results1 <- parLapply(cl, 1:24, sim_analysis) 

results1 <- as.data.frame(do.call(rbind, results1)) 

# Let's give the columns reasonable names 

colnames(results1)[1:4] <- c("num_cluster", "pers_per_cluster", "dif", "icc") 

colnames(results1)[5:24] <- c(paste0("p_item", 1:20)) 

# Save this data before it's too late! 

write.csv(results1, "SimulationAnalysisResults1_NoRandom.csv", row.names = FALSE) 

results2 <- parLapply(cl, 4001:8000, sim_analysis) 

results2 <- as.data.frame(do.call(rbind, results2)) 

# Let's give the columns reasonable names 
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colnames(results2)[1:4] <- c("num_cluster", "pers_per_cluster", "dif", "icc") 

colnames(results2)[5:24] <- c(paste0("p_item", 1:20)) 

# Save this data before it's too late! 

write.csv(results2, "SimulationAnalysisResults2_NoRandom.csv", row.names = FALSE) 

results3 <- parLapply(cl, 8001:12000, sim_analysis) 

results3 <- as.data.frame(do.call(rbind, results3)) 

# Let's give the columns reasonable names 

colnames(results3)[1:4] <- c("num_cluster", "pers_per_cluster", "dif", "icc") 

colnames(results3)[5:24] <- c(paste0("p_item", 1:20)) 

# Save this data before it's too late! 

write.csv(results3, "SimulationAnalysisResults3_NoRandom.csv", row.names = FALSE) 

results4 <- parLapply(cl, 12001:16000, sim_analysis) 

results4 <- as.data.frame(do.call(rbind, results4)) 

# Let's give the columns reasonable names 

colnames(results4)[1:4] <- c("num_cluster", "pers_per_cluster", "dif", "icc") 

colnames(results4)[5:24] <- c(paste0("p_item", 1:20)) 

# Save this data before it's too late! 

write.csv(results4, "SimulationAnalysisResults4_NoRandom.csv", row.names = FALSE) 

results5 <- parLapply(cl, 16001:20000, sim_analysis) 

results5 <- as.data.frame(do.call(rbind, results5)) 

# Let's give the columns reasonable names 

colnames(results5)[1:4] <- c("num_cluster", "pers_per_cluster", "dif", "icc") 

colnames(results5)[5:24] <- c(paste0("p_item", 1:20)) 

# Save this data before it's too late! 

write.csv(results5, "SimulationAnalysisResults5_NoRandom.csv", row.names = FALSE) 

results6 <- parLapply(cl, 20001:24000, sim_analysis) 

results6 <- as.data.frame(do.call(rbind, results6)) 

# Let's give the columns reasonable names 



55 

colnames(results6)[1:4] <- c("num_cluster", "pers_per_cluster", "dif", "icc") 

colnames(results6)[5:24] <- c(paste0("p_item", 1:20)) 

# Save this data before it's too late! 

write.csv(results6, "SimulationAnalysisResults6_NoRandom.csv", row.names = FALSE) 

results7 <- parLapply(cl, 24001:28000, sim_analysis) 

results7 <- as.data.frame(do.call(rbind, results7)) 

# Let's give the columns reasonable names 

colnames(results7)[1:4] <- c("num_cluster", "pers_per_cluster", "dif", "icc") 

colnames(results7)[5:24] <- c(paste0("p_item", 1:20)) 

# Save this data before it's too late! 

write.csv(results7, "SimulationAnalysisResults7_NoRandom.csv", row.names = FALSE) 

results8 <- parLapply(cl, 28001:28800, sim_analysis) 

results8 <- as.data.frame(do.call(rbind, results8)) 

# Let's give the columns reasonable names 

colnames(results8)[1:4] <- c("num_cluster", "pers_per_cluster", "dif", "icc") 

colnames(results8)[5:24] <- c(paste0("p_item", 1:20)) 

# Save this data before it's too late! 

write.csv(results8, "SimulationAnalysisResults8_NoRandom.csv", row.names = FALSE) 

results <- rbind(results1, results2, results3, results4, results5, results6, results7, results8) 

# Let's give the columns reasonable names 

colnames(results)[1:4] <- c("num_cluster", "pers_per_cluster", "dif", "icc") 

colnames(results)[5:24] <- c(paste0("p_item", 1:20)) 

# Save this data before it's too late! 

write.csv(results, "SimulationAnalysisResults_NoRandom.csv", row.names = FALSE) 

stopCluster(cl) 
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