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ABSTRACT OF DISSERTATION

Novel Methods for Characterizing Conditional Quantiles in Zero-Inflated Count

Regression Models

Despite its popularity in diverse disciplines, quantile regression methods are primarily de-
signed for the continuous response setting and cannot be directly applied to the discrete
(or count) response setting. There can also be challenges when modeling count responses,
such as the presence of excess zero counts, formally known as zero-inflation. To address
the aforementioned challenges, we propose a comprehensive model-aware strategy that
synthesizes quantile regression methods with estimation of zero-inflated count regression
models. Various competing computational routines are examined, while residual analysis
and model selection procedures are included to validate our method. The performance of
these methods is characterized through extensive Monte Carlo simulations. An applica-
tion to the Oregon Health Insurance Experiment will also be discussed. We then extend
our methods to the setting of longitudinal data with zero-inflated count responses, where
the goal is to study identification and estimation of conditional quantile functions for such
data. We first show that conditional quantile functions for discrete responses are identified
in zero-inflated models with subject heterogeneity. Then, we develop a simple three-step
approach to estimate the effects of covariates on the quantiles of the response variable.
We present a simulation study to show the small sample performance of the estimator. Fi-
nally, we illustrate our model using the RAND Health Insurance Experiment data and the
Combined Pharmacotherapies and Behavioral Interventions (COMBINE) data.

KEYWORDS: Zero-Inflated Model, Quantile regression, Discrete response, Continuous
generalization, Nonlinear Least Squares, Subject Heterogeneity
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Chapter 1 Introduction

1.1 Zero-Inflated Model

In practice, researchers often need to model data where the response variables are integer-
valued. Discrete responses are discrete are used to represent counts of interest; for example,
the counts of failures during a manufacturing process (Lambert, 1992), the number of motor
vehicle crashes (Lord et al., 2005), or the number of housing units in a census block (Young
et al., 2017).

One problem that frequently arises in analyzing count data is the presence of excess
zeros. Count data with excess zeros are commonly found in many areas, including in-
dustry (Lambert, 1992), epidemiology (Bohning et al., 1999), ecology (Agarwal et al.,
2002), transportation (Lord et al., 2005) and insurance (Baetschmann and Winkelmann,
2012). This phenomenon is formally known as zero inflation. When the data contains
a higher proportion of zero counts than a model explains, this leads to biased estimation
and misleading inference. To alleviate the effects of excess zeros, one effective class of
models is zero-inflated (ZI) models. These models are parameterized as a mixture of two
components. One component is the process of interest by the researchers. This discrete,
conditional distribution determines the relationship between the response variable and the
independent variables. The other component is a degenerate distribution at zero. This is
used to account for the excess zeros in the observed dataset.

Lambert (1992) provided the fundamental paper on zero-inflated Poisson (ZIP) regres-
sion model, where the data is modeled as a mixture of a Poisson distribution and a degen-
erate distribution, and the model parameters are modeled as functions of covariates. The
first component is considered as an imperfect state, where random zero counts occur by
the Poisson distribution; the second component is considered as a perfect state, where a
structural zero is the only possibility.

It is well-known that the expectation and the variance of a Poisson distribution are

equal; hence, the ZIP model is most efficient when the variability matches the expected



value. This, however, is not always a tenable assumption. Another ZI model, zero-inflated
negative binomial (ZINB) model, is popular when the data shows additional overdispersion
other than excess zeros. The negative binomial distribution has separate mean and disper-
sion parameters, hence, ZINB is more flexible in situations when the variability is greater
than expected. Following the modeling strategies in Lambert (1992), Greene (1994) con-
sidered the modification of the negative binomial distribution to accomodate zero, and
discussed the distinction between zero inflation and over-dispersion. Ridout et al. (2001)
discussed ZINB models with inferences based on Score tests. Other works on ZINB mod-
els include Yau et al. (2003) and Mwalili et al. (2008).

Maximum likelihood estimation (MLE) for ZI modeling is commonly conducted via an
expectation-maximization (EM) algorithm (Dempster et al., 1977) as in the original work
by Lambert (1992). Another option is to use a Newton-Raphson algorithm, which has
faster convergence than the EM algorithm; however, Newton-Raphson algorithm could fail
to converge, as was noted by Lambert (1992).

Inferential aspects about ZI models have also been studied extensively in the literature.
The most fundamental question is whether ZI count regression shows improvements over
the corresponding count regression without ZI adjustments. This is equivalent to testing
the presence of ZI. To conduct such tests, researchers utilize a score test (van den Broek,
1995; Jansakul and Hinde, 2002, 2008) or a boundary likelihood ratio test (Hilbe, 2011).
Another popular choice is the Vuong’s non-nested test based on likelihood ratio (Vuong,
1989).

Diagnostics based on residual analysis also provide straightforward yet insightful infor-
mation in ZI count regression. Traditionally, researchers assess Pearson or deviance resid-
uals given by the models. More insightful for count regression models are the randomized
quantile residuals proposed by Dunn and Smyth (1996), which can be used for assessing
model fitting in ZI count regression. For example, Young et al. (2017) utilized randomized
quantile residuals in analyzing the quality of census frames for the 2020 Census.

The popularity of count regression models and ZI models is highlighted by its appli-
cations in various disciplines (Lambert, 1992; Bohning et al., 1999; Agarwal et al., 2002;

Lord et al., 2005), however, most methods in this area focus solely on the mean structure



of the conditional distribution for the response variable, given the independent variables.
To better understand the relationship between the response variable and the independent
variables, a natural extension of the analysis is to explore other aspects of the conditional

distribution.

1.2 Quantile and Quantile Regression Model

Let Y be a random variable with cumulative distribution function (CDF) Fy (y) = P(Y <

y). The 7™ quantile is defined as:

Qy(r) =inf{y: Fy(y) > 7}, (1.1)

where 0 < 7 < 1 is the quantile level. Quantiles provide important information in char-
acterizing a distribution, just like the expectation. However, the expectation summarizes
the central tendency, while the quantiles can describe the complete distribution. Thus, the
utilization of quantiles is preferred if the goal is to explore aspects other than the average.

When Y is a continuous random variable with strictly-increasing CDF Fy, then,

Qy(r) = Fy!, (1.2)

where Qy (7) is a strictly-increasing function of 7. Hence,

Fy[Qy(T)] = PlY <Qy(1)] =7 (1.3)

Of all the possible choices, perhaps the most famous quantile is obtained at 7 = 0.5,
such that the resulting 50" quantile is the median. In fact, for certain distributions (e.g.,
the normal distribution), the median equals the expectation. Hence, the quantile can be
considered as an extension of the expectation.

Analysis of the quantiles, especially the median and the quartiles, has a long history
(Galton, 1883), but one of the most significant advancements was due to Koenker and Bas-

sett (1978) for developing linear quantile regression (QR). As in the case of classic linear



regression, the goal of linear QR is to explore the conditional quantiles of the response, Y,

given values of the independent variables, X. Specifically,

Qy(r]x) =x'B(7), (1.4)

where the regression coefficients, 3 (7) depends on the quantile level, 7. It is immediate
from this notation, that the quantile regression coefficients can capture different effects
given different quantiles.

The goal of linear QR is to explore the conditional quantiles of the response, Y, given
values of the independent variables, X. Since the seminal work by Koenker and Bassett
(1978), countless theoretical results and methodological advancements have been made in
this area. Numerous real data analyses have also been informed by QR. For a detailed
discussion of QR literature and recent advancements, see Yu et al. (2003), Koenker (2005)
and Koenker et al. (2017).

Computationally, there is usually no closed-form solution to the objective function in
QR modeling, so results are obtained by numerical algorithms. Koenker and Bassett (1978)
showed that the estimation can be transformed into a linear programming (LP) problem,
where multiple algorithms are available. To date, the most popular choice is the simplex
algorithm (Barrodale and Roberts, 1978). When the sample size is moderate, the Simplex
algorithm is efficient and fast. The interior point algorithms are preferred for large sample
sizes (Portnoy and Koenker, 1997) or nonlinear modeling (Koenker and Park, 1996). For
more recent advancements in computational resources, see Geraci (2014, 2016).

The classic QR model does not assume a particular distribution for the response, and is
mainly studied in a nonparametric framework; see Koenker and Bassett (1978), Takeuchi
et al. (2006) and Chaudhuri (1991). More recently, parametric QR has been studied from
a Bayesian perspective (Yue and Rue, 2011), where one of the most important advance-
ments is the introduction of the asymmetric Laplace distribution (ALD) by Yu and Moyeed
(2001). In a Bayesian setup, the use of the ALD is critical since a working likelihood is
required. For a frequentist procedure, the ALD also provides a useful tool for likelihood-

based inference, as in Geraci and Bottai (2007).



1.3 Quantile Regression Model for Discrete/ZI Data

When Y is a discrete random variable, there is no one-to-one relationship between @y (7)
and 7 since both the CDF and quantile functions are step functions. Furthermore, the non-
differentiability inhibits the extension of the optimization routine as in the continuous case.
Lastly, the linearity assumption does not hold for most problems when the response is a
count.

A popular approach proposed by Machado and Santos Silva (2005) is to construct a
continuous variable by jittering on the original counts. For the computational routine to
work, an independent random variable that follows a continuous uniform distribution in
[0,1), is generated. The random noise is then added to the original count response to
transform it into a continuous variable. The traditional QR methods can then be applied to
the updated data.

The main advantage of the jittering-based approach is that all of the existing QR meth-
ods can be applied easily after the transformation. However, this method does not guarantee
the conditional quantiles for the new response to be the same as the conditional quantiles
for the original response. Another concern with the jittering-based approach is quantiles
crossing. By definition, the conditional quantile function ()y (7|x) is a nondecreasing func-

tion of 7 for any x. This implies that, for 71 > 7o,

Qy(T1|X) > Qy(TQ|X). (15)

Hence, quantiles crossing should be considered as an indicator of inaccurate estimation.
In practice, however, the jittering-based procedure tends to incur quantiles crossing. This
problem originates from the estimation routine in the traditional QR; furthermore, the ran-
dom terms added to the count worsens the situation.

An alternative approach for QR with count data is the asymmetric maximum likelihood
(AML) estimator proposed by Efron (1992). This estimator arises from the optimization
of a smoothed objective function as given in Koenker and Bassett (1978) and hence is
straightforward to interpret. However, the computation routine requires the quantile level,

T, to be greater than the proportion of zeros in the data. Thus, their method does not



work for ZI settings. Newey and Powell (1987) proposed an asymmetric least squares
(ALS) estimation that is akin to the AML approach. The resulting estimator, known as
the conditional expectile, gives a quantile-like extension of the expectation. However, the
ALS approach does not estimate the conditional quantiles for counts in a strict sense, so
the interpretation is difficult.

Finally, the existence of zero inflation in count data is highlighted in various disciplines
(Lambert, 1992; Bohning et al., 1999; Agarwal et al., 2002; Lord et al., 2005); however, to
the best of our knowledge, no reliable QR models have been developed for count response
with excess zeros. In this dissertation, we propose a novel method for modeling the quan-
tiles of counts. In particular, we focus on the extension to ZI settings that incorporate ZI

models in QR.

1.4 Longitudinal Setting

Longitudinal or panel study designs with count responses can also be subject to zero infla-
tion. As noted in Feng and Zhu (2011), ignoring the within-cluster correlation of longitudi-
nal data will lead to loss of efficiency and incorrect inference of the regression coefficients.
For the estimation of the conditional mean structure, most research in handling longitudi-
nal ZI count data has been restricted to the ZIP regression setting. In particular, a marginal
model and a conditional model for ZIP regression are two approaches commonly taken in
the literature.

Hall and Zhang (2004) framed the approach for finding the MLEs in marginal ZIP
regression models by using generalized estimating equations (GEEs). In a marginal ZI
count regression model, the random variable Y;; associated with the observation y;;, j =
1,...,n;, follows a ZI distribution as defined in Section 1.1, but where the count distribu-
tion must belong to the exponential dispersion family (Jgrgensen, 1987). Let Z;; be the
indicator variable that Y;; came from the degenerate distribution at 0. Under the assump-
tion of independence, the complete data loglikelihood can be separated and estimation is
conducted using an EM algorithm; see Hall and Zhang (2004) for how this procedure is ex-
plicitly defined. In the above, the formulas used in estimation have the form of (weighted)

GEEs with working correlation matrix equal to the identity matrix. Hall and Zhang (2004)



explore substituting the working correlation structures in the marginal model approach with
something other than the identity matrix, such as an exchangeable or AR(1) structure. To
guard against correlation misspecification, the authors advocate using the GEE-1 approach
of Liang et al. (1992), which treats the first and second moment parameters orthogonally.
Finally, Iddi and Molenberghs (2013) extended the framework of Hall and Zhang (2004)
and presented a marginalized ZI overdispersed model for correlated data.

The basic framework of the conditional model approach extends the traditional ZI mod-
els defined in Section 1.1 by including random effects in the estimation of ¢(7;) and A(m;)
for the i cluster, i = 1,..., M. The random effects are assumed to be independent nor-
mal random variables as in the longitudinal literature. This approach was first considered
in Hall (2000) for ZIP and ZIB regression with random intercepts. In particular, the paper
considered a random effect for the count regression component. For the ZIP regression
with a random effect, lety, € R™ be a vector of responses for the i cluster, i = 1,..., M.
Assume M independent random variables w4, ..., uy, are from the standard normal dis-
tribution. Conditional on a random effect w;, the random variable Y;; associated with the

observation y;;, 7 = 1, ..., n;, follows a ZIP distribution.

0, with probability 7;;;
Y ] (1.6)

Poisson(A;;), with probability (1 — m;;).
Hence, Hall (2000) obtained the following mixed effect model for the conditional mean,

A;

log(\;) = XI B + ou; (1.7)

while the logistic regression model for the mixing probability 7 is the same as in traditional
Z1 models. Parameter estimation was conducted by the EM algorithm as in the fixed effects
case. However, the computation is more complicated after the inclusion of the random
effects. To deal with the challenge, both the indicator variables for the state of the process
and the random effects were regarded as missing data. The EM algorithm with Gaussian
quadrature was employed to maximize the log likelihood for the ZIP model with random

effects.



Wang et al. (2002) extended the above model and included the random effects for both
the logistic regression portion and the count regression portion. The model assumed both
random effects to be independent normal random variables. Inspired by the generalized
linear mixed models (GLMM), they obtained the best linear unbiased estimator (BLUE)
via a penalized likelihood function. The residual maximum likelihood (REML) method
with an EM algorithm was used for estimation. A similar extension in Fang et al. (2016)
developed a hierarchical multilevel ZINB regression model with random effects in both the
count regression and zero-inflated portion of the model.

The above conditional model approaches are parametric estimation routines and co-
variates are assumed to have linear effects on the link function, instead of the observed
responses. More recently, the research on semi-parametric estimation explored the prob-
lem with more flexibility on the assumption. A smooth function can be included to allow
for a nonlinear effect of one continuous covariate. Feng and Zhu (2011) considered a semi-
parametric estimation by introducing a nonlinear relationship for one particular covariate

in the ZIP setting with longitudinal data. The two-component mixture model becomes

log(Aij) = X8 + u; + k(Ti;) 08
logit(m;) = Wla
The smooth function can be estimated by various nonparametric smoothing methods.
Feng and Zhu (2011) considered penalized splines with flexible choices of knots and
penalty terms. A Monte Carlo EM algorithm for the penalized log-likelihood is used to
estimate parameters and smoothing function, k(7};). In general, this semi-parametric esti-
mation routine is more robust but requires more computation resources. The model usually
includes only one smoothing function. Computationally, the g1mmTMB package (Brooks
et al., 2017) discussed in later chapters has made estimation of ZI count regression models
in the presence of mixed effects quite accessible for a variety of discrete distributions for
the count component.
The extension of QR models to longitudinal data (or panel data as it is called in the
field of econometrics) is almost exclusive to continuous responses. Inspired by a classical

random effects model, Koenker (2004) discussed QR for panel data by including a vec-



tor of individual effects in the linear QR setting. To alleviate the increased variability in
the estimation, regularization or shrinkage methods drive these individual effects toward a
common value. In particular, a class of penalized estimators are proposed where [, regu-
larization is introduced to the check loss function.

While theoretical and methodological research in the last 40 years have been address-
ing important generalizations of the original approach (Koenker, 2017), the literature on
the analysis of discrete data remains open to challenges and possibilities. In many appli-
cations, practitioners face the limitations of classical parametric models, where the effect
of a treatment variable can be heterogeneous throughout the conditional distribution of the
count variable, but policy recommendations can only be based on average effects. See
Cameron and Trivedi (2013) for a detailed summary of econometric analysis with count
data.

An important exception in the literature is the recent work by Chernozhukov, Fernandez-
Val, Melly, and Wiithrich (2020), who investigate inference for quantile functions, offering
simultaneous confidence bands for discrete response variables. While they consider the
analysis of cross-sectional data instead of longitudinal data, their work illustrates the in-
creasing importance of flexible methods for count data.

The literature on panel quantiles includes just a few papers, and two main methods for
smoothing the discrete objective functions are considered. The original work of Machado
and Santos Silva (2005) introduced a jittering approach to smooth the count response
variable. Lee and Neocleous (2010) proposed a Bayesian approach, and Chernozhukov,
Fernindez-Val, and Weidner (2017) develop an approach based on distribution regression.
Harding and Lamarche (2019a) extend the jittering approach to longitudinal data without
zero inflation and Wang, Wu, Zhao, and Zhou (2020) propose an estimator for time-varying
coefficients using a quadratic inference function approach within a quantile framework.
The estimator proposed in this paper is different than existing approaches for two impor-
tant reasons. First, existing quantile regression approaches have not been developed for
zero-inflated (ZI) models for longitudinal data. Second, we consider estimation of the con-
ditional mean model in the first step, rather than considering a quantile regression model

as in Padellini and Rue (2019a). Therefore, the proposed methodology allows practition-



ers to estimate a class of models with subject heterogeneity, without considerations on the
minimum number of repeated observations per subject as in panel data quantile regression
models (Harding and Lamarche, 2019a).

In a longitudinal setting where the response is discrete, there are two main works avail-
able. Harding and Lamarche (2019b) proposed a penalized QR model for count data. The
novel estimator combines the jittering approach (Machado and Santos Silva, 2005) with the
penalized method (Koenker, 2004; Lamarche, 2010), and applied their method to a panel
of transactions. Another work by Chernozhukov et al. (2017) incorporated the distribution
regression (DR) method first introduced by Williams and Grizzle (1972). This method re-
gressed the empirical cumulative distribution function on the covariates and also modeled
the canonical parameters conditional on covariates.

The rest of this dissertation is organized as follows: In Chapter 2, we develop a novel
modeling strategy that synthesizes zero-inflated models with quantile regression models.
The performance of our method is characterized through extensive Monte Carlo simula-
tions. Finally, we illustrate the method with an application to the Oregon Health Insurance
Experiment data. In Chapter 3, we extend the proposed model to the setting of longitudi-
nal data with zero-inflated count responses. A simple three-step approach to estimate the
effects of covariates on the quantiles of the response variable is introduced in this chapter.
We then present a simulation study to show the small sample performance of the estima-
tor. Finally, we illustrate our model using the RAND Health Insurance Experiment data.
In Chapter 4, we explore the Combined Pharmacotherapies and Behavioral Interventions
(COMBINE) data with the proposed model from Chapter 3. In particular, we analyze the
lasting effects of the therapies, accounting for the socioeconomic and policy factors. Fi-

nally, we summarize the models and their applications in Chapter 5.
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Chapter 2 Novel Strategies for Quantile Count Regression

2.1 Introduction

Quantiles provide important information in characterizing a distribution, just like the ex-
pectation. However, the expectation summarizes the central tendency, while the quantiles
can describe the complete distribution. Thus, the utilization of quantiles is preferred if the
goal is to explore aspects other than the average. Of all the possible choices, perhaps the
most famous quantile is obtained at 7 = 0.5, such that the resulting 50th quantile is the
median. In fact, for certain distributions, the median equals the expectation. For example,
the normal distribution and the t distribution with a degree of freedom greater than one.
Hence, the quantile can be considered as an extension of the expectation.

The analysis of the quantiles, especially the median and the quartiles, has a long history
(Galton, 1883), but one of the most significant advancements was due to Koenker and
Bassett (1978) for developing linear quantile regression (QR). The goal of linear QR is
to explore the conditional quantiles of the response, Y, given values of the independent
variables, X. Since the seminal work by Koenker and Bassett (1978), countless theoretical
results and methodological advancements have been made in this area. Numerous real data
analyses have also been informed by QR. For a detailed discussion of QR literature and
recent advancements, see Yu et al. (2003), Koenker (2005) and Koenker et al. (2017).

The classic QR model does not assume a particular distribution for the response, and is
mainly studied in a nonparametric framework; see Koenker and Bassett (1978), Takeuchi
et al. (2006) and Chaudhuri (1991). More recently, parametric QR has been studied from
a Bayesian perspective (Yue and Rue, 2011), where one of the most important advance-
ments is the introduction of the asymmetric Laplace distribution (ALD) by Yu and Moyeed
(2001). In a Bayesian set-up, the use of the ALD is critical since a working likelihood is
required. For a frequentist procedure, the ALD also provides a useful tool for likelihood-
based inference, as in Geraci and Bottai (2007).

Computationally, there is usually no closed-form solution to the objective function in
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QR modeling, so results are obtained by numerical algorithms. Koenker and Bassett (1978)
showed that the estimation can be transformed into a linear programming (LP) problem,
where multiple algorithms are available. To date, the most popular choice is the simplex
algorithm (Barrodale and Roberts, 1978). When the sample size is moderate, the Simplex
algorithm is efficient and fast. The interior point algorithms are preferred for large sample
sizes (Portnoy and Koenker, 1997) or nonlinear modeling (Koenker and Park, 1996). For
more recent advancements in computational resources, see Geraci (2014, 2016).

In practice, researchers often need to model data where the response is counts of inter-
est; for example, the counts of failures during a manufacturing process (Lambert, 1992),
the number of motor vehicle crashes (Lord et al., 2005), or the number of housing units
in a census block (Young et al., 2017). QR was originally developed for continuous re-
sponse, and extending to discrete response is non-trivial. This issue arises from the fact
that the discrete response gives a nondifferentiable objective function. Consequently, the
traditional routine for estimation does not guarantee convergence. To model the conditional
quantiles of discrete response, a pragmatic framework is to approximate discrete data with
continuous distributions that share certain characterizations.

A feature of count data that is commonly encountered is excess zeros relative to an
assumed count model. Count data with excess zeros are commonly found in many ar-
eas, including industry (Lambert, 1992), epidemiology (Bohning et al., 1999), ecology
(Agarwal et al., 2002), transportation (Lord et al., 2005) and insurance (Baetschmann and
Winkelmann, 2012). This phenomenon is formally known as zero-inflation. When the
data contains a higher proportion of zero counts than expected under a model, this leads
to unstable estimation and misleading inference. To account for excess zeros, zero-inflated
(Z1) models analyze the data as a mixture of two components: one component is the goal
process characterized by the non-ZI count model while the other component is a degener-
ate distribution at zero. The seminal work of Lambert (1992) introduced the zero-inflated
Poisson (ZIP) regression model. The model was characterized by the first component con-
sidered as an imperfect state, where random zero counts occur by the Poisson distribution
and the second component considered as a perfect state, where a structural zero is the only

possibility.

12



Since the expectation and the variance of a Poisson distribution are equal, the ZIP
model is most efficient when the variability matches the expected value. The zero-inflated
negative binomial (ZINB) regression model is popular when the data are overdispersed
other than from excess zeros. The negative binomial distribution has separate mean and
dispersion parameters, hence, the ZINB is more flexible in situations when the variability
is greater than expected. Following the modeling strategies in Lambert (1992), Greene
(1994) considered modification of the negative binomial distribution to accomodate zero-
inflation, and discussed the distinction between zero-inflation and overdispersion. Ridout
et al. (2001) discussed ZINB models with inferences based on a score test. For more recent
works on ZINB models, see Yau et al. (2003) and Mwalili et al. (2008).

The estimation routine for ZI modeling is commonly conducted via the expectation-
maximization (EM) algorithm (Dempster et al., 1977) as in the original work by Lambert
(1992). Another alternative is Newton-Raphson algorithm, which is faster to convergence
than the EM algorithm; however, Newton-Raphson algorithm could fail to converge, as
noted by Lambert (1992).

Inferential aspects about ZI models have also been studied in the literature. The most
fundamental question is whether ZI count regression shows improvements over the corre-
sponding count regression without ZI adjustments. This is equivalent to testing the pres-
ence of zero-inflation. To conduct such tests, researchers often utilize score tests (van den
Broek, 1995; Jansakul and Hinde, 2002, 2008), a boundary likelihood ratio test (Hilbe,
2011), or Vuong’s non-nested test based on likelihood ratio (Vuong, 1989).

Diagnostics based on residual analysis also provide straightforward, yet insightful in-
formation in ZI count regression. Traditionally, researchers assess Pearson or deviance
residuals given by the models. More recently, the randomized quantile residuals proposed
by Dunn and Smyth (1996) are used for assessing model fitting in ZI count regression. For
example, Young et al. (2017) utilized randomized quantile residuals in developing census
frames for the 2020 Census.

The popularity of ZI count regression models is highlighted by their application in
various disciplines (Lambert, 1992; Bohning et al., 1999; Agarwal et al., 2002; Lord et al.,

2005; Young et al., 2017), however, most ZI models focus on the mean structure just like
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the linear regression analyses. To the best of our knowledge, no reliable QR models have
been developed for count response with excess zeros. In this paper, we proposed a three-
step method for modeling the quantiles of counts. In particular, we focus on the extension
to ZI settings that incorporate ZI models in QR.

Our work is focused on an application involving the Oregon health insurance data from
Finkelstein et al. (2012). This randomized control trial explored the influence of multiple
covariates on the health care utilization in Oregon. The response of interest is the number
of visits to doctor so it is a discrete variable. An excess number of zeros is also present in
the data.

The rest of the paper is organized as follows. Section 2.2 discusses quantile regression
for count data, where the main method is by Machado and Santos Silva (2005). Section 2.3
introduces an alternative approach for quantile count regression proposed by Padellini and
Rue (2019b). In this section, the new approach from a frequentist perspective is discussed
in detail. Section 2.4 concerns the extension of our proposed model to ZI setting. Section
2.5 reports simulation results for different methods. Section 2.6 provides the empirical ap-
plication to the Oregon health insurance data. Section 2.7 gives conclusions and discussion
for future research. Section 2.8 provides mathematical details for derivations, additional

figures and further details for simulation results in the Appendix.

2.2 Quantiles for Counts
Let Y be a random variable with cumulative distribution function (CDF) Fy (y) = P(Y <

y). The 7™ quantile is defined as:

Qy(r)=inf{y: Fy(y) > 1}, (2.1)

where 0 < 7 < 1 is the quantile level. When Y is a continuous random variable with

strictly-increasing CDF Fy, then,

Qy(r) = F/, (2.2)
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where (Qy (7) is a strictly-increasing function of 7. Hence,

FylQy(r)=PlY <Qy(1)] =71 (2.3)

As in the case of classic linear regression, the goal of linear QR is to explore the condi-
tional quantiles of the response, Y, given values of the independent variables, X. Specifi-

cally,

Qy(7]x) =x'(7), 2.4)

where the regression coefficients, 3 (7) depends on the quantile level, 7. However,
when Y is a discrete random variable, there is no one-to-one relationship between Qy (7)
and 7 since both CDF and quantile functions are step functions. Furthermore, the non-
differentiability inhibits the extension of the optimization routine as in the continuous case.
Lastly, the linearity assumption does not hold for most problems when the response is a
count.

A popular approach proposed by Machado and Santos Silva (2005) is to construct a
continuous variable by jittering on the original counts. For the computational routine to
work, an independent random variable that follows a continuous uniform distribution in
[0,1), is generated. The random noise is then added to the original count response to
transform it into a continuous variable. The traditional QR methods can then be applied to
the updated data.

The main advantage of the jittering-based approach is that all of the existing QR meth-
ods can be applied easily after the transformation. However, this method does not guarantee
the conditional quantiles for the new response to be the same as the conditional quantiles
for the original response. Another concern with the jittering-based approach is quantiles
crossing. By definition, the conditional quantile function @)y (7|x) is a nondecreasing func-

tion of 7 for any x. This implies that, for 71 > 7o,

Qy (11]x) > Qy (12|x) (2.5)

15



Hence, quantiles crossing should be considered as an indicator of inaccurate estima-
tion. In practice, however, the jittering-based procedure tends to incur quantiles crossing.
This problem originates from the estimation routine in the traditional QR; furthermore, the

random terms added to the count worsens the situation.

An alternative approach for QR with count data is the asymmetric maximum likelihood
(AML) estimator proposed by Efron (1992). This estimator arises from the optimization
of a smoothed objective function as given in Koenker and Bassett (1978) and hence is
straightforward to interpret. However, the computation routine requires the quantile level,
T, to be greater than the proportion of zeros in the data. Thus, their method does not
work for ZI settings. Newey and Powell (1987) proposed an asymmetric least squares
(ALS) estimation that is akin to the AML approach. The resulting estimator, known as
the conditional expectile, gives a quantile-like extension of the expectation. However, the
ALS approach does not estimate the conditional quantiles for counts in a strict sense, so
the interpretation is difficult.

In order to overcome these issues and obtain reliable estimation, Padellini and Rue
(2019b) introduced another approximation routine based on mathematical interpolation.

This is the basis for our approach discussed in the next section.

2.3 Three-Step Quantile Count Regression

Interpolation

To approximate the quantiles for discrete response, another strategy is by interpolation. In
numerical analysis, interpolation is a method to construct new data points within the range
of a finite set of data points. This links the discrete variable to a continuous distribution,
where the CDFs match at integer values. Thus, the discrete response can be viewed as
generated by a continuous counterpart of the original discrete distribution.

To achieve this goal, the CDF of a discrete variable is required to satisfy the following
condition:

Fy (y;0) = P(Y <y) =k (ly];0) (2.6)
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where k is a continuous function and | | is the floor operator so |y| is the greatest
integer that is less than or equal to y. When y is an integer, |y| = y.

To obtain the corresponding continuous distribution, we remove the floor operator. The
CDF of a discrete random variable, Y, then becomes the CDF of a continuous counterpart,

Y since:

Fy (y;0) = k(ly];0) = k (y;0) = Fy (y;0), (2.7)

Ilienko (2013a) showed that the most common distributions for modeling counts, including

binomial, Poisson and negative binomial distribution, satisfy this condition.

Proposition 2.3.1. Suppose Y ~ Poisson (\) and Y is the continuous counterpart of Y by

interpolation, then Y follows a continuous Poisson distribution with CDF,

C(y+ 1,
—F(y 1) ,y >0, (2.8)

where T'(y + 1, \) is the upper incomplete gamma function.

Fy(y) =

This relationship is illustrated by the following graph for several values of A. The step

functions are the theoretical CDFs of the discrete random variable, Fy (y). The curves are
I(y+1,2)

I'(y+1)
functions match at the non-negative integer values.

= Fy(y), the CDFs of the continuous random variables. Notice that the two

Proposition 2.3.2. Suppose Y is the number of successes to get r failures in a series of
independent Bernoulli trials with a success probability, p. By definition, Y ~ Negative
Binomial (r,p). Let Y be the continuous counterpart of Y by interpolation, then Y follows

a continuous negative binomial distribution with CDF,

Fo(y) = Li_p(r,y + 1), (2.9)

where I,.(a,b) is the regularized incomplete Beta function.

A similar illustration of this relationship is provided in the Appendix 2.8. Proofs of

proposition (2.3.1) and (2.3.2) are also provided in the Appendix 2.8.
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Poisson CDF and Interpolation
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Figure 2.1: Poisson CDF(dashed line) and continuous Poisson CDF(solid curve).

Three-Step Approach

Based on the continuous counterpart of the generating distribution, Padellini and Rue
(2019b) proposed a model-aware approach for QR with discrete response in Bayesian set-
ting. Inspired by their method, we propose a three-step quantile count regression (TQCR)

in frequentist setting.

Given data (Y;, X;), suppose that Y;|X; ~ F(y;;0;), where 0; = E(Y;|X;), the condi-

tional mean.

1. Step 1: The conditional mean structure is modeled as

0, = g1(X,), (2.10)

where ¢, is an invertible function determined by the problem. This is analogous to
fitting a regression function in a linear mixed model, or to specifying a link function

in a generalized linear (mixed) model.
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2. Step 2: The conditional quantile Qy (7|X;) is mapped to the conditional mean pa-
rameter, 6, as

Qy (7]Xi) = g2(6:), 2.11)

where g, is given by the relation between the mean and quantile in the specified

distribution.

3. Step 3: The resulting composite g, © g; = g2(g1) maps the conditional quantile of Y’

to independent variables, X. That is,

Qy (T1X;) = g2 0 g1(Xi), (2.12)

The composite g2 0 g1 = g2(g1) is usually non linear. As a result, non linear least square
(NLS) method is employed for model fitting in this step. It can be seen from the above that,
the three-step approach can make full use of existing methods to estimate the mean function
in Step 1. This applies to a continuous response variable as well as a discrete response
variable. Techniques for fitting the mean structure include parametric, semi-parametric
and non-parametric techniques. Thus, the researcher is afforded considerable flexibility
to choose the most appropriate model for their problems. Examples of different fitting
methods for Step 1 are given in the Appendix 2.8.

Suppose the conditional distribution of the response variable, Y'|X = x follows a dis-
crete distribution that satisfies condition (2.6). Assume further that the discrete distribution
is fully parametric with parameter vector, 6. In practice, the modeling strategy is imple-

mented via the following steps described in Procedure 1.
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Procedure 1 Modeling Procedure for Quantile Regression with Count Data

ey

2)

3)

“)

®)

Select a discrete distribution and estimate the parameters 6 by fitting a corre-
sponding GLM to the data. Since the most common choices for discrete data
are the Poisson distribution and negative binomial distribution, this step can be

conducted by fitting their respective regression model.

Plug in the estimated parameters 0 to the interpolated CDF of the specified dis-

tribution. This estimates the CDF of the corresponding continuous distribution,

Fy(y).

Obtain the conditional quantiles of the continuous counterpart, Q¢ (7|X = x).

This is done by numerically solving for the value,

Qs (7]X = x) = argmin {y CFo(y) > 71X = X} (2.13)

The unique value is guaranteed by the identifiability for the continuous distribu-

tion.

Round the estimated quantiles up to the next integer, yielding the conditional

quantiles for the original discrete distribution.

Fit a non linear function to the estimated quantiles of the continuous counterpart
and the predictor variables, X. This models the composite g, o g; and estimates

the quantile regression coefficients, 3(7).

Hence, the above provides a new approach for fitting a QR model with discrete re-

sponses and for estimating the quantile regression coefficients, 3(7).

Distribution Regression

Another option to model the composite g o g; incorporates the distribution regression

(DR) method first introduced by Williams and Grizzle (1972) for the ordered response.
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Chernozhukov et al. (2018) considered DR estimator in a Poisson regression setting, given

by

B(y)), (2.14)

where

~

Bly) = ar%ergaxzj'{yisy} -In [Ay(X;B)] + Iy,syy - In [1 — Ay(X;ﬁ)} , (2.15)

When y = Qy(7) in (2.15), the DR coefficient B depends on the quantile level 7, and hence
B(T) can be interpreted as the regression coefficients as in a QR setting.

As can be seen in the above objective function (2.15), the DR method estimates the CDF
as well as the canonical parameter when modeling the response conditional on covariates.
This is similar to the idea of the three-step approach. Hence, DR can be combined naturally
into a three-step QR framework.

The above routines can be used in a QR for count response. In this situation, one ad-
vantage of our approach for discrete response variable is that, compared with Machado and
Santos Silva (2005), our method is less affected by quantiles crossing. A graphical com-
parison is provided by plots 2.10 in the Appendix 2.8. Another advantage of the three-step
approach is that it directly reflects characteristics of the data. This is particularly effective
when, for example, data show evidence for a specific distribution or possess excess zeros

relative to such a distribution.

2.4 Three-Step Quantile Count Regression for Zero-inflated Data

When the response is discrete, we cannot employ traditional QR methods, and even the
jittering-based approach has its own limitations. If the dataset also contains a certain pro-
portion of zero counts, the estimation of the conditional quantiles becomes more challeng-
ing. In this section, we extend the TQCR to the setting where the data possess excess zeros.
Following the terminology in Lambert (1992), we emphasize the distinction in estimating

the conditional quantiles for the Complete Process (the complete data is generated by one
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data generating mechanism) versus that for the Count Process (the non-ZI count distribu-
tion). Estimation of the Zero Process itself is not intriguing, since the Zero Process is a
degenerate distribution that only generates zero. In that case, there is no need to explore

the complete distribution.

Zero-Inflated Model

Z1 models can be considered as a special case of a mixture model: one component is a
point mass at zero and the other component is a discrete distribution. The first component,
considered a perfect state where the events of interests cannot occur, is the source of excess
zeros in the data; the second component, considered an imperfect state where events occur
according the assumed distribution, is often the focus of interest to researchers.

The probability of being in the perfect state, or the probability of a structural zero, pg,

is modeled by a logistic regression:

— Po

where z is the vector of covariates. The conditional mean of the count process, E[Y|X =

logit(pg) = log <1 Po ) =z'w, (2.16)

x| = 6, is modeled by a discrete distribution via a known link function, g(f) = x*3. In

practice, a log link function is usually assumed, thus,

log(0) = x* B, (2.17)

The most common choices for the discrete distribution in the ZI model are the Poisson
distribution and the negative binomial distribution. Note that the covariates for the count
process can be the same set of variables as the covariates for modeling the proportion of
being in the perfect state. In that case, z = X in equations (2.16) and (2.17).

In order to establish the continuous counterpart of a ZI count distribution, we first

note the following relationship between the CDF of a discrete random variable and its ZI
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version:

po+ (1 —po) - Fy(y),ify >0,
Fy(y) = (2.18)
0,ify < 0.

We then have the following proposition, the proof of which is in Appendix 2.8.
Proposition 2.4.1. Fy (y) is a valid cumulative distribution function.

We now derive the continuous counterparts of the ZIP and ZINB distributions.
First, suppose Y ~ Poisson(\) and Y is the ZI counterpart of Y. That is, ¥ ~
ZIP(\, po)-

Myl +1,0)
Fy(y) =po+ (1 —po) - Fy(y)=po+ (1 —po) — 77>y =0. (2.19)
The continuous counterpart is obtained by removing the floor function | -], as in the previ-

ous examples. Thus,

F(y+1’)\),y2
T(y+1)

As one can see, this extension only utilizes the property of CDF.

Fyry =po+ (1—po) - (2.20)

This extension to ZI model also works for negative binomial(r,p) with proportion of
zero-inflation equals po. Suppose that Y ~ negative binomial (r,p) and Y is the Zero-

Inflated counterpart of Y, then, Y ~ ZIN B(r,p, po), and we have the CDF,

+(1=po)- I, (r, |y + 1),y >0,
Foly) po+ (L—po) - Lip(r, |yl +1).,y 221)

0,ify < 0.

Again, the continuous counterpart is obtained by removing the floor function | -],

B(ray+171_p>
>0, 222
Bng 1)) V7 (2:22)

Fopr(y)=po+ (1 —po) - Lp(r,y+1) =

A similar illustration of this relationship is provided in Figure 2.2.
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ZIP CDF and Interpolation
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Figure 2.2: ZIP CDF (dashed line) and interpolation (solid curve).

ZINB CDF and Interpolation
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Figure 2.3: ZINB CDF (dashed line) and interpolation (solid curve).

Identifiability

To guarantee unique solutions in estimating model parameters, it is important to construct
a model that is identifiable. Li (2012) showed that ZIP models are identifiable. Based on Li

(2012), we stated the following proposition for the continuous counterpart of ZIP models.
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The proof is included in 2.8.

Proposition 2.4.2. For the continuous counterpart of a ZIP model with parameter A\ and

proportion of zero-inflation p,

F(yipi(x), M(2), ) = fy;pa(), Ao(), ) implies Ay (x) = Ao(x) and py(x) = pa(2).

Hence, the continuous counterpart of ZIP model is identifiable. Identifiability for the
ZINB model is still an open problem. Thus, we do not establish identifiability of the

continuous counterpart of the ZINB model in the present work.

Zero-Inflated Quantile Count Regression: Complete Process

We now extend our approach to model the quantiles of ZI count regression data. In the
first scenario, we define the quantiles of interest as the quantiles of the Complete Process.

Hence, the analysis treats the entire dataset as a single entity.

Given data (Y;, X;), suppose that Y;|X; ~ F(y;;6;, ), where 0; = E(Y;|X;) is the
conditional mean for the Count Process, and 7; is the probability that the response is from
the Zero Process. In this case, the extension to the ZI dataset is natural. Since the three-step
approach is based on the interpolation of the CDF, it only requires replacing the CDF of
the discrete distribution with that of the ZI version in equation (2.18). This introduces a

modeling strategy for the empirical distribution.

Zero-Inflated Quantile Count Regression: Count Process

In some situations, researchers are only concerned with the underlying count distribution
in the dataset without effects from excess zeros. In this case, the ZI model assumes the data
arises as a mixture of a discrete distribution and a degenerate distribution at 0. Structural
zeros are considered contamination while the quantiles of interest are for the Count Process.
Hence, the first goal is to distinguish these two mixture components.

The steps of the modeling strategy for a ZI data is described in Procedure 2.
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Procedure 2 Modeling Procedure for Quantile Count Regression with Zero-Inflated

Data

(1) Fit a ZI count regression model to the data. Obtain estimates for the parameters

0 of the Count Process and the probability of ZI, ;.

(2) Plug in the estimated parameters 6 to the interpolated CDF of the discrete dis-
tribution for the Count Process. This estimates the CDF of the corresponding

continuous distribution for the Count Process, F ().

(3) Obtain the conditional quantiles of the continuous counterpart, QAY/ (71X). The
unique value is guaranteed by the (assumed) identifiability for the continuous

distribution.

(4) Round the estimated quantiles up to the next integer, yielding the conditional

quantiles of interest.

(5) Fitanon linear function to the estimated quantiles of the continuous counterpart
and the predictor variables, X. This models the composite g, o g; and estimates

the quantile regression coefficients 3(7) for the Count Process.

From the above description, it can be seen that the interpolation is on the CDF of the
discrete distribution for the Count Process instead of the entire data. When the goal is to
explore the Count Process, this fits a QR model for the quantiles of interest.

In the presence of zero-inflation, our approach shows much better results compared
with the jittering-based approach. This is due to the fact that jittering-based approach does
not distinguish the Count process from Zero process. The three-step approach, on the other
hand, can tackle this problem. This is accomplished in the first step, where researchers can
choose existing methods to analyze the ZI model. This will be the focus of the following

sections.
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Distribution Regression for Zero-Inflated setting

Inspired by the DR estimator in Chernozhukov et al. (2018), we modified the objective
function in equation (2.15) for a ZI setting. When the estimation is on the Complete Pro-
cess, the modification is the same as the extension from a discrete distribution to the ZI
model. Hence, the modeling requires solving equation (2.15) with the CDF of the ZI coun-

terpart, (2.18).

Another situation requires the distinction between two generating mechanisms. In this

situation, the objective function for a ZI setting is given by:

ZI{YZ-Sy} [ln <Ay(X;IB>> Ltyi>0p + (pz' +(1—=p;)-In (Ay(X;ﬂ>)> I{Y,L-:O}]
¢ (2.23)

¢ Tooin 1= 2,008)]

where p; is the probability that an observation comes from the zero process. It can be

seen that only the first component in objective function (2.15) is adjusted for a ZI setting.

If a positive count is observed, then the observation must come from the count process

and hence p; = 0. The first component in the objective function (2.23) becomes,

Iz [In (A4(X08)) + (04 1-1n (A,(X,8))) - 0] = Ly In [A,(XiB)] , 224)

If a zero count from the count process is observed, then p; = 0. The first component in

objective function (2.23) becomes,

Tivi<yy - [0 +(0+in <Ay(X;ﬁ)> )} = Ityi<yy - In [Ay(Xéﬁ)} : (2.25)
In both situations, the first component in (2.23) is the same as the first component in (2.15),

that is, the regular situation without zero-inflation.

27



When zero-inflation exists and a structural zero from the zero process is observed, then

p; > 0. The first component in (2.23) becomes,

Iy |0+ i+ (L= p) - 0 (A,(Xi8) )] = Ly (i + (L= 1) - In [A,(XiB)] ).
(2.26)

This is in accordance with the CDF in expression (2.18).

Inference

For classic ZI models, we can rely on established asymptotic theory for estimating stan-
dard error (SE) and conducting inferences, that is, constructing confidence intervals and
testing hypotheses. QR models, on the other hand, employ both asymptotic theory and
bootstrapping to obtain the SE.

We proceed to compare different bootstrap methods and their performance in inference.
One natural choice is a parametric bootstrap routine, given the fact that the three-step ap-
proach estimates the canonical parameters, 8. Nonparametric bootstrap routines, such as
pairwise bootstrap and multiplier bootstrap, are easy to implement and more robust to the
distributional assumptions.

The first nonparametric bootstrap method considered is the pairwise bootstrap. This
method applies the idea of sampling with replacement to the pairs of response variable and
independent variables. That is, we obtain a bootstrap sample by sampling with replacement
from the pairs (y;, x;) where y; is the observed response and x; is the vector of independent
variables associated with observation i, ¢ = 1,--- ,n. An equivalent way to think about
the pairwise bootstrap is to re-sample with replacement from the sequence of observation
numbers: 1,--- ,n.

The other nonparametrc bootstrap method to be considered is the multiplier bootstrap,
also known as the weighted bootstrap (Ma and Kosorok, 2005). This method fixes the
response and independent variables at the original values, hence the data itself is not re-
sampled. Instead, another independent vector of weights, W = (W7, --- W), is gener-
ated within each bootstrap sample. Further, this vector of weights must be an i.i.d sample

such that F(WW;) = 1 and Var(W;) < oo. Finally, each vector of weights is applied to the
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estimation routine within each bootstrap run. In summary, the multiplier bootstrap is based
on a weighted estimation with different weights sampled under certain conditions.
Compared with asymptotic theory, inference based on bootstrapping is easy to compute
and straightforward to interpret. Bootstrap confidence interval (CI) can also be obtained
in the same computation. This allows one to further explore the inferential aspects of the
three-step approach. Results regarding the performance of different inferential procedures

are reported in Section 2.5.

Goodness-of-Fit Assessment and Model Selection

Traditional residuals are commonly based on the discrepancy between the observed values,
y and the fitted values, ¥. In a QR setting, however, traditional residuals cannot be applied
directly since the observed values are at different quantile levels. In order to calculate the
traditional residuals, it is required to know the true quantiles of the response beforehand.
Furthermore, when the response is discrete, traditional residual plots are less helpful since
the discreteness usually induces near-parallel curves corresponding to different integer-

valued response.

To check the goodness-of-fit(GOF) for QR with discrete response, we utilize the ran-
domized quantile residuals proposed by Dunn and Smyth (1996). When the CDF F'(y) is
continuous, F'(y;) are uniformly distributed on the unit interval. In this case, the random-

ized quantile residuals are given by:

rei =" {F(yi; é)} , (2.27)
where ®~! is the CDF of standard normal distribution. This implies that if the model

gives consistent estimates of the parameter 0, the distribution of T4, converges to standard

normal. Hence, the normal Q-Q plot can be employed for an illustration of model checking.

The three-step approach simultaneously estimates the parameter # and the quantile
Qy (1) conditional on the values of covariates. As a result, when the method works in

a QR setting, it also consistently estimates the parameter. This equivalence allows assess-
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ment of the GOF for the fitted QR model based on the assessment for the parameter. A
graphical illustration based on simulated data can be found in Figure 2.12 and 2.13 in the
Appendix 2.8.

Because the three-step approach uses interpolation to obtain a continuous counterpart
of the discrete response, the resulting CDF is continuous. Thus, the application of random-
ized quantile residuals is straightforward. It is worth noting that there is a more general
definition of randomized quantile residuals if the CDF is not continuous (Dunn and Smyth,

1996).

Multiple inferential procedures can be used to determine the distribution that bests fits
the data. Likelihood ratio (LR) test, score test and Vuong’ non-nested test can be used
for comparison of distributions (van den Broek, 1995; Jansakul and Hinde, 2002; Hilbe,
2011). When LR test is used to test the presence of ZI, a boundary-correction gives more
power, see Hilbe (2011). Information criteria, such as AIC and BIC, can also be used for
model selection (Hilbe, 2011). In summary, GOF assessment and model selection should
be conducted to find the distribution or the structure that best fits the data. As the simulation

results indicate in the next section, this step is advantageous to achieve the superb results.

2.5 Simulation Studies

This section reports the results of exclusive Monte Carlo simulations to investigate the
performance of our method compared with existing method. The overall performance is
measured by the empirical mean integrated squared errors(MISE) of each method. The
standard errors of estimators are reported to compare efficiencies.

We adopted similar simulation conditions as in Machado and Santos Silva (2005). In
the first two simulation settings, the responses Y7, Y5, - - - , Y,, were generated from Poisson
distributions; in the third setting, the responses were generated from negative binomial
distribution. Under each simulation setting, data were generated with a proportion of zero-
inflation equals {0,0.10,0.45}, respectively. That is, data with no zero-inflation, slight
zero-inflation, moderate zero-inflation. Notice that while the proportion of zero-inflation

varies, the structure of the discrete distribution stays the same; hence, the stability of the
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estimators (the values of the estimators do not significantly vary across different zero-
inflation settings) indicates good performance with respect to the Count Process.

In the first simulation setting, the conditional mean of the count process is p; = exp(by+
by - x1;), where the x1;’s were obtained as random draws from a uniform distribution over
(0,5). In the second simulation setting, the conditional mean of the count process is
p; = exp(by + by - x1; + by - x9;), where the xy;’s and z;’s were obtained as random
draws from a uniform distribution over (0,5). In the third simulation setting, the condi-
tional mean p; of the count process is the same as in the first situation and the variance
equals y; + 0.5 - u?. All experiments were performed with (bg, b;) = (0.7,0.5) for one
covariate and (b, by, b2) = (0.7,0.5,—0.35) for two covariates. N = 5000 simulations
for each case were performed. Within each simulation, samples with size n € {250, 500}
were generated. A different set of values for covariates were drawn in each of the 5000
simulations.

We then compare the MISE of different QR models. The MISE is defined as:

MISE =+ i[@(xi) - 9-(Xy)%, (2.28)
o

This is an SSE-based criterion, so a smaller value of MISE indicates a better fit to the
data. Note that in the literature, some researchers report the square root of the empirical
MISE, known as empirical root mean integrated squared errors (RMISE).

Overall, when there is no excess zero counts, the three-step approach with NLS routine
shows better results compared with the jittering method; when zero-inflation exists, both
three-step approaches based on NLS routine and DR routine show better performance than
the jittering method.In particular, the values given by the NLS routine only change slightly
across different zero-inflation settings. As we pointed out, this indicates that the estimators
are more robust to the contamination of excess zeros. When the primary goal is to explore

the Count Process, our approach shows great improvement over the existing methods.

Another observation about the DR routine is that this method tends to perform the best
when the primary interest is in the Complete Process and the sample has a medium to large

size. The method is originally derived from the empirical distribution of the whole dataset,

31



hence the name “Distribution”. While its performance in a ZI setting is compromised,
it provides a good model in exploring the overall structure, which could be beneficial if
considering marginalized ZI count regression models. More simulations details regarding

the point is provided in the Appendix.
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Table 2.1: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as Poisson distribution. Results based on a sample size

n = 250.

Table 2.2: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as Poisson distribution. Results based on a sample size

n = 500.

7 | Method | 0o(7)(SE) | bi(r)(SE) | MISE
TS-NLS | -0.279(0.075) | 0.642(0.020) | 0.206
0.10 | TS-DR | 0.145(0.366) | 0.502(0.106) | 2.874
JB | -0.243(0.162) | 0.644(0.042) | 0.496
TS-NLS | 0.197(0.071) | 0.573(0.019) | 0.182
0.25 | TS-DR | 0.598(0.154) | 0.485(0.040) | 1.085
JB | 0.240(0.103) | 0.569(0.028) | 0.313
TS-NLS | 0.645(0.062) | 0.510(0.017) | 0.176
0.50 | TS-DR | 0.770(0.074) | 0.490(0.021) | 0.534
JB | 0.634(0.079) | 0.514(0.022) | 0.231
TS-NLS | 1.016(0.056) | 0.461(0.016) | 0.199
0.75 | TS-DR | 0.962(0.165) | 0.482(0.042) | 0.813
JB | 0.971(0.073) | 0.468(0.020) | 0.325
TS-NLS | 1.296(0.052) | 0.425(0.014) | 0.227
0.90 | TS-DR | 1.406(0.121) | 0.406(0.033) | 1.148
JB | 1.246(0.079) | 0.432(0.022) | 0.530

7 | Method | 0o(7)(SE) | bi(r)(SE) | MISE
TS-NLS | -0.281(0.053) | 0.642(0.014) | 0.172
0.10 | TS-DR | -0.023(0.291) | 0.550(0.081) | 1.697
JB | -0.238(0.113) | 0.644(0.029) | 0.385
TS-NLS | 0.197(0.050) | 0.573(0.013) | 0.142
0.25 | TS-DR | 0.551(0.160) | 0.497(0.040) | 0.875
JB | 0.242(0.074) | 0.569(0.020) | 0.236
TS-NLS | 0.646(0.044) | 0.510(0.012) | 0.129
0.50 | TS-DR | 0.780(0.056) | 0.487(0.016) | 0.456
JB | 0.636(0.056) | 0.513(0.015) | 0.158
TS-NLS | 1.017(0.039) | 0.461(0.011) | 0.139
0.75 | TS-DR | 1.003(0.160) | 0.471(0.040) | 0.646
JB | 0.971(0.051) | 0.468(0.014) | 0.225
TS-NLS | 1.295(0.036) | 0.426(0.010) | 0.161
0.90 | TS-DR | 1.411(0.077) | 0.404(0.021) | 0.732
JB | 1.245(0.054) | 0.432(0.015) | 0.380
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Table 2.3: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as ZI Poisson distribution with proportion of zero-inflation

p(0) = 0.10. Results based on a sample size n = 250.

7 | Method | by(T)(s.e) bi(T)(SE) | MISE
TS-NLS | -0.281(0.082) | 0.642(0.021) | 0.215

0.10 | TS-DR | 0.410(0.270) | 0.466(0.075) | 2.321
JB -0.927(0.504) | 0.452(0.366) | 25.640

TS-NLS | 0.196(0.078) | 0.574(0.020) | 0.191

0.25 | TS-DR | 0.664(0.107) | 0.482(0.029) | 1.703
JB -0.036(0.172) | 0.614(0.045) | 0.772

TS-NLS | 0.649(0.067) | 0.509(0.018) | 0.186

0.50 | TS-DR | 0.786(0.081) | 0.492(0.022) | 0.876
JB 0.539(0.094) | 0.528(0.026) | 0.430

TS-NLS | 1.016(0.062) | 0.460(0.017) | 0.210

0.75 | TS-DR | 1.025(0.171) | 0.470(0.043) | 1.043
JB 0.922(0.079) | 0.475(0.022) | 0.547

TS-NLS | 1.295(0.056) | 0.425(0.015) | 0.244

0.90 | TS-DR | 1.426(0.122) | 0.403(0.034) | 1.461
JB 1.215(0.082) | 0.436(0.023) | 0.744

Table 2.4: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as ZI Poisson distribution with proportion of zero-inflation

p(0) = 0.10. Results based on a sample size n = 500.

7 | Method | by(7)(SE) bi(T)(SE) | MISE
TS-NLS | -0.281(0.059) | 0.642(0.015) | 0.176

0.10 | TS-DR | 0.292(0.269) | 0.499(0.073) | 1.557
JB -0.922(0.407) | 0.453(0.334) | 25.956

TS-NLS | 0.196(0.055) | 0.574(0.014) | 0.147

0.25 | TS-DR | 0.639(0.107) | 0.489(0.028) | 1.605
JB -0.032(0.123) | 0.614(0.032) | 0.596

TS-NLS | 0.649(0.049) | 0.509(0.013) | 0.135

0.50 | TS-DR | 0.795(0.062) | 0.489(0.017) | 0.756
JB 0.541(0.067) | 0.527(0.018) | 0.339

TS-NLS | 1.015(0.043) | 0.461(0.012) | 0.146

0.75 | TS-DR | 1.068(0.148) | 0.459(0.037) | 0.839
JB 0.922(0.056) | 0.475(0.016) | 0.426

TS-NLS | 1.295(0.040) | 0.425(0.011) | 0.169

0.90 | TS-DR | 1.428(0.082) | 0.402(0.023) | 0.961
JB 1.218(0.059) | 0.436(0.016) | 0.570
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Table 2.5: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as ZI Poisson distribution with proportion of zero-inflation

p(0) = 0.45. Results based on a sample size n = 250.

7 | Method | by(7)(SE) bi(T)(SE) | MISE
TS-NLS | -0.282(0.105) | 0.643(0.027) | 0.256

0.10 | TS-DR | 0.656(0.107) | 0.453(0.022) | 4.495
JB -2.365(0.320) | 0.046(0.107) | 53.860

TS-NLS | 0.191(0.102) | 0.574(0.027) | 0.252

0.25 | TS-DR | 0.728(0.101) | 0.492(0.028) | 4.843
JB -1.363(0.267) | 0.042(0.091) | 76.421

TS-NLS | 0.646(0.090) | 0.510(0.024) | 0.259

0.50 | TS-DR | 0.827(0.122) | 0.497(0.033) | 2.678
JB -0.641(0.547) | 0.628(0.303) | 28.050

TS-NLS | 1.015(0.079) | 0.461(0.022) | 0.288

0.75 | TS-DR | 1.179(0.167) | 0.442(0.043) | 2.389
JB 0.610(0.137) | 0.522(0.037) | 4.457

TS-NLS | 1.296(0.075) | 0.425(0.021) | 0.351

0.90 | TS-DR | 1.481(0.145) | 0.399(0.041) | 3.641
JB 1.052(0.108) | 0.459(0.030) | 3.149

Table 2.6: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as ZI Poisson distribution with proportion of zero-inflation

p(0) = 0.10. Results based on a sample size n = 500.

7 | Method | by(7)(SE) bi(T)(SE) | MISE
TS-NLS | -0.280(0.075) | 0.642(0.019) | 0.198

0.10 | TS-DR | 0.633(0.086) | 0.461(0.019) | 4.148
JB -2.290(0.201) | 0.042(0.068) | 53.585

TS-NLS | 0.195(0.072) | 0.574(0.019) | 0.178

0.25 | TS-DR | 0.733(0.076) | 0.491(0.021) | 4.721
JB -1.343(0.185) | 0.040(0.064) | 76.057

TS-NLS | 0.648(0.062) | 0.510(0.017) | 0.169

0.50 | TS-DR | 0.849(0.100) | 0.491(0.026) | 2.492
JB -0.672(0.404) | 0.694(0.193) | 20.453

TS-NLS | 1.015(0.057) | 0.461(0.016) | 0.191

0.75 | TS-DR | 1.224(0.108) | 0.431(0.028) | 2.059
JB 0.615(0.096) | 0.521(0.026) | 4.189

TS-NLS | 1.295(0.051) | 0.426(0.014) | 0.219

0.90 | TS-DR | 1.483(0.090) | 0.397(0.025) | 2.193
JB 1.054(0.075) | 0.459(0.021) | 2.896
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Table 2.7: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as negative binomial distribution. Results based on a

sample size n = 250.

7 [ Method | bo(r)(SE) | bi(7)(SE) | MISE
TS-NLS | -1.538(0.230) | 0.671(0.042) | 0.240
0.10 | TS-DR | 0.628(0.350) | -0.067(0.643) | 3.158
JB -1.082(0.322) | 0.593(0.099) | 0.620
TS-NLS | -0.338(0.142) | 0.556(0.039) | 0.352
0.25 | TS-DR | 0.515(0.259) | 0.342(0.091) | 1.905
JB -0.232(0.211) | 0.540(0.067) | 0.651

TS-NLS | 0.466(0.120) | 0.510(0.037) | 0.615

0.50 | TS-DR | 0.707(0.120) | 0.456(0.043) | 1.335
JB 0.448(0.156) | 0.515(0.050) | 0.974
TS-NLS | 1.055(0.109) | 0.489(0.036) | 1.375
0.75 | TS-DR | 0.979(0.221) | 0.521(0.069) | 4.729
JB 1.009(0.135) | 0.498(0.044) | 2.128
TS-NLS | 1.482(0.111) | 0.478(0.036) | 3.148

0.90 | TS-DR | 1.502(0.266) | 0.481(0.082) | 10.460
JB 1.443(0.141) | 0.484(0.047) | 5.114

Table 2.8: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as negative binomial distribution. Results based on a

sample size n = 500.

7 | Method | by(7)(SE) bi(7)(SE) | MISE
TS-NLS | -1.542(0.163) | 0.671(0.030) | 0.176

0.10 | TS-DR | 0.539(0.441) | -0.039(0.668) | 2.985
JB -1.081(0.229) | 0.594(0.071) | 0.448

TS-NLS | -0.332(0.100) | 0.554(0.027) | 0.211

0.25 | TS-DR | 0.374(0.285) | 0.385(0.088) | 1.319
JB -0.224(0.146) | 0.539(0.047) | 0.400

TS-NLS | 0.468(0.086) | 0.510(0.027) | 0.357

0.50 | TS-DR | 0.701(0.089) | 0.458(0.032) | 0.861
JB 0.450(0.111) | 0.515(0.036) | 0.551

TS-NLS | 1.056(0.078) | 0.490(0.026) | 0.735

0.75 | TS-DR | 1.062(0.183) | 0.496(0.057) | 2.574
JB 1.007(0.097) | 0.499(0.032) | 1.112

TS-NLS | 1.484(0.079) | 0.478(0.026) | 1.649

0.90 | TS-DR | 1.530(0.203) | 0.473(0.062) | 5.509
JB 1.447(0.101) | 0.483(0.033) | 2.701
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Table 2.9: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as ZINB distribution with proportion of zero-inflation

p(0) = 0.10. Results based on a sample size n = 250.

7 | Method | by(7)(SE) bi(T)(SE) | MISE
TS-NLS | -1.537(0.320) | 0.671(0.052) | 0.326
0.10 | TS-DR | 0.380(0.513) | 0.268(0.224) | 4.759
JB -1.468(0.380) | 0.351(0.189) | 2.881
TS-NLS | -0.339(0.190) | 0.556(0.045) | 0.471
0.25 | TS-DR | 0.582(0.229) | 0.373(0.076) | 3.328
JB -0.660(0.306) | 0.566(0.101) | 1.930
TS-NLS | 0.467(0.146) | 0.510(0.042) | 0.783
0.50 | TS-DR | 0.727(0.150) | 0.475(0.048) | 3.156
JB 0.285(0.188) | 0.527(0.060) | 1.947
TS-NLS | 1.059(0.131) | 0.488(0.042) | 1.652
0.75 | TS-DR | 1.040(0.260) | 0.515(0.079) | 7.173
JB 0.933(0.147) | 0.502(0.048) | 3.129
TS-NLS | 1.485(0.127) | 0.476(0.041) | 3.562
0.90 | TS-DR | 1.543(0.270) | 0.476(0.083) | 11.786
JB 1.402(0.152) | 0.484(0.050) | 6.508

Table 2.10: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as ZINB distribution with proportion of zero-inflation

p(0) = 0.10. Results based on a sample size n = 500.

7 | Method | by(7)(SE) bi(7)(SE) | MISE
TS-NLS | -1.544(0.221) | 0.671(0.036) | 0.213

0.10 | TS-DR | 0.194(0.564) | 0.326(0.211) | 4.178
JB -1.427(0.270) | 0.332(0.140) | 3.008

TS-NLS | -0.336(0.137) | 0.555(0.032) | 0.263

0.25 | TS-DR | 0.506(0.230) | 0.396(0.073) | 2.826
JB -0.659(0.221) | 0.568(0.072) | 1.630

TS-NLS | 0.469(0.102) | 0.510(0.030) | 0.444

0.50 | TS-DR | 0.718(0.112) | 0.479(0.036) | 2.497
JB 0.290(0.131) | 0.526(0.042) | 1.513

TS-NLS | 1.056(0.092) | 0.489(0.029) | 0.853

0.75 | TS-DR | 1.120(0.201) | 0.493(0.060) | 4.277
JB 0.934(0.105) | 0.502(0.034) | 2.180

TS-NLS | 1.487(0.088) | 0.477(0.029) | 1.887

0.90 | TS-DR | 1.562(0.203) | 0.472(0.062) | 7.182
JB 1.406(0.105) | 0.485(0.035) | 3.937
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Table 2.11: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as ZINB distribution with proportion of zero-inflation

p(0) = 0.45. Results based on a sample size n = 250.

7 | Method | by(7)(SE) bi(T)(SE) | MISE
TS-NLS | -1.556(1.048) | 0.672(0.068) | 0.474

0.10 | TS-DR | 0.566(0.266) | 0.415(0.087) | 23.911
JB -2.700(0.367) | 0.118(0.116) | 5.316

TS-NLS | -0.389(1.580) | 0.556(0.058) | 0.768

0.25 | TS-DR | 0.691(0.191) | 0.446(0.067) | 18.361
JB -1.637(0.270) | 0.101(0.092) | 21.505

TS-NLS | 0.462(0.198) | 0.511(0.055) | 1.276
0.50 | TS-DR | 0.784(0.214) | 0.516(0.070) | 17.744
JB -1.176(0.497) | 0.479(0.289) | 50.175

TS-NLS | 1.051(0.173) | 0.489(0.055) | 2.648

0.75 | TS-DR | 1.172(0.323) | 0.512(0.098) | 22.463
JB 0.440(0.270) | 0.534(0.085) | 29.723

TS-NLS | 1.477(0.161) | 0.478(0.053) | 5.869

0.90 | TS-DR | 1.629(0.278) | 0.475(0.088) | 28.203
JB 1.157(0.196) | 0.497(0.064) | 28.446

Table 2.12: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as ZINB distribution with proportion of zero-inflation

p(0) = 0.45. Results based on a sample size n = 500.

7 | Method | by(7)(SE) bi(17)(SE) | MISE
TS-NLS | -1.552(0.743) | 0.671(0.047) | 0.288
0.10 | TS-DR | 0.474(0.251) | 0.443(0.079) | 23.701
JB -2.573(0.211) | 0.102(0.070) | 5.313
TS-NLS | -0.338(0.172) | 0.556(0.040) | 0.396
0.25 | TS-DR | 0.679(0.141) | 0.451(0.046) | 17.454
JB -1.620(0.183) | 0.099(0.063) | 21.501
TS-NLS | 0.466(0.139) | 0.510(0.039) | 0.673
0.50 | TS-DR | 0.795(0.164) | 0.514(0.052) | 15.953
JB -1.218(0.342) | 0.507(0.224) | 50.346
TS-NLS | 1.055(0.119) | 0.489(0.038) | 1.371
0.75 | TS-DR | 1.256(0.236) | 0.490(0.072) | 16.303
JB 0.453(0.180) | 0.532(0.058) | 28.734
TS-NLS | 1.483(0.117) | 0.478(0.038) | 3.118
0.90 | TS-DR | 1.644(0.202) | 0.471(0.063) | 18.312
JB 1.164(0.140) | 0.496(0.046) | 26.251
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In order to explore the properties of the estimators, another set of simulations were
performed with sample size n = 1000000. This enables researchers to check the large-
sample performance of the estimators. Also, this enables researchers to obtain the pseudo-
true (3 (7). This simulation-based strategy to calculate the pseudo-true parameter values is

done so as defined in the context of model selection; see Sawa (1978) and Vuong (1989).

Table 2.13: Pseudo-true parameter values for QR coefficients. Data generated from Poisson
distribution with a sample size of n = 1, 000, 000.

7 | Method | bo(7) | by(7) | MISE
TS-NLS | -0.279 | 0.642 | 0.14
0.10 | TS-DR | -0.153 | 0.588 | 0.74

JB -0.238 | 0.643 | 0.26
TS-NLS | 0.195 | 0.574 | 0.10
0.25 | TS-DR | 0.379 | 0.541 | 0.37

JB 0.238 | 0.570 | 0.16
TS-NLS | 0.648 | 0.510 | 0.08
0.50 | TS-DR | 0.814 | 0.477 | 0.34

JB 0.636 | 0.513 | 0.08
TS-NLS | 1.016 | 0.461 | 0.08
0.75 | TS-DR | 1.151 | 0.432 | 0.30

JB 0.969 | 0.468 | 0.14
TS-NLS | 1.295 | 0.425 | 0.10
0.90 | TS-DR | 1.407 | 0.401 | 0.30
JB 1.248 | 0.432 | 0.21

39



Table 2.14: Pseudo-true parameter values for QR coefficients. Data generated from Poisson
distribution with a proportion of zero-inflation p(0) = 0.10. Results computed based on a
sample size of n = 1, 000, 000.

7 | Method | by(7) | by(7) | MISE
TS-NLS | -0.277 | 0.642 | 0.14
0.10 | TS-DR | 1.336 | 0.008 | 26.56

JB -0.923 | 0.425 | 34.06
TS-NLS | 0.198 | 0.574 | 0.10
0.25 | TS-DR | 0.375 | 0.551 | 0.78

JB -0.030 | 0.615 | 0.42
TS-NLS | 0.650 | 0.510 | 0.08
0.50 | TS-DR | 0.823 | 0.478 | 0.43

JB 0.542 | 0.528 | 0.23
TS-NLS | 1.017 | 0.461 | 0.08
0.75 | TS-DR | 1.165 | 0.432 | 0.46

JB 0.926 | 0.474 | 0.32
TS-NLS | 1.297 | 0.425 | 0.10
0.90 | TS-DR | 1.421 | 0.402 | 0.50
JB 1.221 | 0.435 | 0.41

Table 2.15: Pseudo-true parameter values for QR coefficients. Data generated from Poisson
distribution with a proportion of zero-inflation p(0) = 0.45. Results computed based on a
sample size of n = 1, 000, 000.

7 | Method | by(7) | by(7) | MISE
TS-NLS | -0.279 | 0.642 | 0.14
0.10 | TS-DR | 0.569 | 0.478 | 3.43

JB -2.244 | 0.038 | 53.38
TS-NLS | 0.195 | 0.574 | 0.10
0.25 | TS-DR | 0.731 | 0.492 | 4.58

JB -1.328 | 0.037 | 75.69
TS-NLS | 0.648 | 0.510 | 0.08
0.50 | TS-DR | 1.009 | 0.452 | 2.73

JB -0.708 | 0.742 | 14.25
TS-NLS | 1.016 | 0.461 | 0.08
0.75 | TS-DR | 1.249 | 0.423 | 1.63

JB 0.617 | 0.521 | 3.96
TS-NLS | 1.295 | 0.425 | 0.10
0.90 | TS-DR | 1.457 | 0.402 | 1.41
JB 1.056 | 0.458 | 2.72
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Table 2.16: Pseudo-true parameter values for QR coefficients. Data generated from Poisson
distribution with two predictors for the mean model specification. Results computed based

on a sample size of n = 1,000, 000.

7 | Method | bo(7) | bi(7) | ba(7) | MISE
TS-NLS | -0.376 | 0.669 | -0.467 | 0.14
0.10 | TS-DR | 0.691 | -0.034 | -0.059 | 8.15
JB -0.491 | 0.731 | -0.501 | 0.34
TS-NLS | 0.142 | 0.589 | -0.410 | 0.12
0.25 | TS-DR | 0.859 | 0.038 | -0.074 | 10.43
JB 0.147 | 0.607 | -0.425 | 0.21
TS-NLS | 0.635 | 0.514 | -0.360 | 0.09
0.50 | TS-DR | 1.103 | 0.045 | 0.004 | 14.51
JB 0.598 | 0.530 | -0.372 | 0.11
TS-NLS | 1.043 | 0.453 | -0.320 | 0.08
0.75 | TS-DR | 1.226 | 0.400 | -0.282 | 0.37
JB 0.971 | 0.468 | -0.328 | 0.13
TS-NLS | 1.349 | 0.410 | -0.290 | 0.11

0.90 | TS-DR | 1.495 | 0.366 | -0.260 | 0.39
JB 1.277 | 0.419 | -0.295 | 0.22

Table 2.17: Pseudo-true parameter values for QR coefficients. Data generated from ZIP
distribution with a proportion of zero-inflation p(0) = 0.10. Two predictors were used for
the mean parameters. Results computed based on a sample size of n = 1,000, 000.

7 | Method | bo(7) | bi(7) | bao(7) | MISE
TS-NLS | -0.380 | 0.669 | -0.466 | 0.14
0.10 | TS-DR | 0.703 | -0.126 | 0.013 | 9.42
JB -1.081 | 0.599 | -0.429 | 4.65
TS-NLS | 0.138 | 0.589 | -0.409 | 0.12
0.25 | TS-DR | 0.745 | 0.058 | -0.017 | 10.42
JB -0.139 | 0.654 | -0.452 | 0.22
TS-NLS | 0.633 | 0.513 | -0.358 | 0.09
0.50 | TS-DR | 1.215 | 0.011 | 0.025 | 15.55
JB 0.471 | 0.556 | -0.388 | 0.18
TS-NLS | 1.041 | 0.453 | -0.318 | 0.08
0.75 | TS-DR | 1.245 | 0.401 | -0.285 | 0.41
JB 0.915 | 0478 | -0.335 | 0.24
TS-NLS | 1.348 | 0.409 | -0.289 | 0.11

0.90 | TS-DR | 1.522 | 0.365 | -0.264 | 0.45
JB 1.244 | 0424 | -0.298 | 0.35
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Table 2.18: Pseudo-true parameter values for QR coefficients. Data generated from ZIP
distribution with a proportion of zero-inflation p(0) = 0.45. Two predictors were used for
the mean parameters. Results computed based on a sample size of n = 1,000, 000.

7 | Method | bo(7) | bi(7) | bao(7) | MISE
TS-NLS | -0.382 | 0.671 | -0.467 | 0.14
0.10 | TS-DR | 0.769 | 0.055 | -0.026 | 7.27

JB -2.535 | 0.177 | -0.122 | 11.56
TS-NLS | 0.136 | 0.591 | -0.410 | 0.12
0.25 | TS-DR | 1.179 | 0.000 | 0.006 | 11.59

JB -1.613 | 0.176 | -0.124 | 17.88
TS-NLS | 0.630 | 0.515 | -0.359 | 0.09
0.50 | TS-DR | 1.437 | -0.000 | -0.001 | 15.25

JB -0.555 | 0.690 | -0.471 | 6.83
TS-NLS | 1.038 | 0.454 | -0.319 | 0.08
0.75 | TS-DR | 1.308 | 0.407 | -0.288 | 1.20

JB 0.523 | 0.560 | -0.391 | 2.00
TS-NLS | 1.345 | 0.411 | -0.290 | 0O.11
0.90 | TS-DR | 1.563 | 0.369 | -0.261 | 1.18
JB 1.060 | 0.458 | -0.322 | 1.56

Table 2.19: Pseudo-true parameter values for QR coefficients. Data generated from nega-
tive binomial distribution with a sample size of n = 1, 000, 000.

7 | Method | by(7) | bi(7) | MISE
TS-NLS | -0.777 | 0.613 | 0.14
0.10 | TS-DR | 0.774 | -0.112 | 10.14

JB -0.667 | 0.608 | 0.29
TS-NLS | -0.070 | 0.557 | 0.09
0.25 | TS-DR | 0.179 | 0.511 | 0.33

JB 0.010 | 0.546 | 0.15
TS-NLS | 0.561 | 0.510 | 0.08
0.50 | TS-DR | 0.735 | 0.475 | 0.30

JB 0.550 | 0.513 | 0.08
TS-NLS | 1.039 | 0.484 | 0.09
0.75 | TS-DR | 1.184 | 0.451 | 0.33

JB 1.002 | 0.489 | 0.14
TS-NLS | 1.397 | 0.468 | 0.11
0.90 | TS-DR | 1.523 | 0.437 | 0.45
JB 1.364 | 0471 | 0.25
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Table 2.20: Pseudo-true parameter values for QR coefficients. Data generated from neg-
ative binomial distribution with a proportion of zero-inflation p(0) = 0.10. Results com-
puted based on a sample size of n = 1,000, 000.

7 | Method | by(7) | bi(7) | MISE
TS-NLS | -0.780 | 0.613 | 0.14
0.10 | TS-DR | 0.881 | -0.023 | 7.90

JB -1.130 | 0.318 | 9.97
TS-NLS | -0.074 | 0.558 | 0.09
0.25 | TS-DR | 0.140 | 0.553 | 2.00

JB -0.360 | 0.587 | 1.06
TS-NLS | 0.558 | 0.510 | 0.08
0.50 | TS-DR | 0.734 | 0.491 | 1.10

JB 0.417 | 0.526 | 0.66
TS-NLS | 1.037 | 0.484 | 0.08
0.75 | TS-DR | 1.192 | 0.462 | 1.13

JB 0.936 | 0.995 | 0.77
TS-NLS | 1.395 | 0.468 | 0.11
0.90 | TS-DR | 1.541 | 0.443 | 1.11
JB 1.322 | 0474 | 0.99

Table 2.21: Pseudo-true parameter values for QR coefficients. Data generated from neg-
ative binomial distribution with a proportion of zero-inflation p(0) = 0.45. Results com-
puted based on a sample size of n = 1,000, 000.

7 | Method | bo(7) | bi(7) | MISE
TS-NLS | -0.777 | 0.613 | 0.14
0.10 | TS-DR | 0.685 | 0.317 | 4.01

JB -2.385 | 0.072 | 15.08
TS-NLS | -0.070 | 0.557 | 0.09
0.25 | TS-DR | 0.632 | 0.492 | 12.62

JB -1.467 | 0.071 | 37.88
TS-NLS | 0.561 | 0.510 | 0.08
0.50 | TS-DR | 1.013 | 0.460 | 8.43

JB -1.118 | 0.6827 | 38.16
TS-NLS | 1.039 | 0.484 | 0.09
0.75 | TS-DR | 1.332 | 0.449 | 6.15

JB 0.540 | 0.528 | 15.82
TS-NLS | 1.397 | 0468 | 0.11
0.90 | TS-DR | 1.607 | 0.440 | 4.60
JB 1.119 | 0.488 | 12.05
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Figure 2.4: Comparison of different methods when zero-inflation exists; data generated
from ZIP distribution with proportion of zero-inflation p(0) = 0.10. Red dots are the true

conditional quantiles at 7 = 0.25.
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Figure 2.5: Comparison of different methods when zero-inflation exists; data generated
from ZINB distribution with proportion of zero-inflation p(0) = 0.45. Red dots are the
true conditional quantiles at 7 = 0.50.
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2.6 Data Analysis

In 2008, the state of Oregon initiated a Medicaid expansion program to provide health
care coverage for its low-income, uninsured residents. Individuals were first required to
sign up for a lottery during a five-week window; the state then conducted eight drawings
from the lottery list. The winners of the lottery were given the opportunity to apply for the
Oregon Health Plan (OHP) Standard for themselves and any listed (or unlisted) household
members. If these selected individuals submitted the application following the instructions,
and they met the eligibility criteria set by the state, they would be enrolled in OHP Standard.
Details about the Oregon health insurance experiment can be found in Finkelstein et al.
(2012).

From a statistical point of view, the Oregon health insurance experiment represents a
large-scale randomized experiment in which the lottery mechanism corresponds to a ran-
dom assignment to treatments. Multiple data sets have been collected since the experiment,
and many have been analyzed by researchers from different perspectives (Finkelstein et al.,
2012; Baicker et al., 2013, 2014).

In this section, we analyzed one specific data source from the Oregon health insurance
experiment. This data set was first introduced as the Survey Data in Section V of Finkel-
stein et al. (2012). Chernozhukov et al. (2018) studied this data set after excluding subjects
with incomplete information in selected variables. The resulting subset consists of 13, 173
observations. The response variable is the count of outpatient visits during a six-month pe-
riod and 5, 027 of all the observations are zero counts. That is, about 38% of the counts are
zero. A histogram of the response variable is provided in Figure (2.6) for illustration. The
independent variable of interest is an indicator variable for whether one household won the
lottery (Treatment) or not (Control); hence, the corresponding regression coefficient can
be interpreted as the intent-to-treat (ITT) effect, the effect of being able to apply for OHP
Standard on the health care utilization. Other covariates include the number of prescription
medications currently taking (truncated at 2 x 99" percentile), the indicator variables for
the number of household individuals, the indicator variables for the survey waves, and their

interactions.
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Figure 2.6: Number of visits to physicians in the Oregon Health Insurance Experiment
data.
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In the real life, there are two mechanisms that lead to a zero count in the number of
outpatient visits during a specific period. The first mechanism, which corresponds to the
perfect state as in Lambert (1992), is when people are healthy during the period so that
they have no need to visit hospitals at all. In this case, a structural zero is simply the only
possibility if researchers record the number of outpatient visits. The second mechanism,
which corresponds to the imperfect state in the same paper, happens when patients contract
diseases and need to visit hospitals. Depending on the illness and the economic consider-
ation, some patients might not go to the hospitals while others have multiple visits. Under
this circumstance, a random zero count could be observed but a positive integer is also
possible.

In the Oregon health insurance experiment, researchers wanted to estimate the ITT
effect of winning the lottery on health care utilization. Based on the literature and real-life
experience, we believe it is a decent assumption that not all the participants experienced
illness during the 6-month period. Hence, these participants were in the perfect state and
had no intent to visit hospitals. To analyze the ITT effect as specified, it is necessary to
distinguish healthy participants from participants who need to visit hospitals. As a result,
the application of ZI models is plausible in the analysis.

We began the analyses with the conditional mean structure. Finkelstein et al. (2012)

considered a linear model with the following specification:

yi = Bo + f1D; + X8 + €, (2.29)

where D; is an indicator variable for whether the household of subject ¢ was selected
by the lottery. Thus, the regression coefficient 3; is the coefficient of interest and estimates
the ITT effect. X includes the indicator variables for the number of individuals in the
household, the indicator variables for survey wave and the interaction of these indicator
variables. In this paper, we first considered a similar model specification with the same
set of predictors. The only difference is that we also added one numerical predictor, the
number of prescription medications currently taking, into our model specification. This

model specification will be denoted as the full model thereafter.
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Based on the existing analyses (Finkelstein et al., 2012; Baicker et al., 2013, 2014),
we also considered a simpler model specification where X only includes the significant
predictors; hence, this specification keeps the indicator variables for the number of indi-
viduals in the household and the number of prescription medications currently taking. The
simpler specification, denoted as the reduced model thereafter, is parsimonious and helps
the researchers focus on the illustration of the proposed method. However, it also turns out
that this specification provides a better fit to the data compared to the full model.

Given the fact that the responses are counts and certain number of observations are
zero counts, we considered the four aforementioned count regression models: Poisson
regression model, ZIP regression model, negative binomial regression model and ZINB
regression model. The linear regression model was included for the purpose of comparison.
Model comparisons via the BIC values are provided in Table (2.22). From Table (2.22), it
is obvious that the four count regression models provide better fit than the linear regression
model; it is also obvious that the reduced model fits the data better than the full model. Thus,
the following analyses focuses on the reduced model specification with count regression

models.

Table 2.22: Model comparisons via BIC values with degree of freedoms (df) in the paren-
theses.

Model Full(df) Reduced(df)
Linear Regression | 63678.56(20) | 63561.00(6)
Poisson Regression | 58280.13(19) | 58207.00(5)
ZIP Regression | 50972.68(21) | 50902.23(7)
NB Regression | 47979.72(20) | 47863.83(6)
ZINB Regression | 45412.40(22) | 45301.08(8)

In the first step, we modeled the mean structure of the data by four different count
regression models: Poisson regression model, negative binomial regression model, ZIP
regression model and ZINB regression model. This helps researchers explore the overall
structure of the data, and also provides the starting point for the three-step routine in QR
modeling. The randomized quantile residuals under each model is used for GOF assess-

ment.
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A comparison reveals huge differences among models. Clearly, Poisson regression
model shows the worst fit, due to the fact that it fails to capture the presence of zero-
inflation and certain large values. ZIP regression shows some improvements over Poisson
regression, but still fails to tackle the overdispersion. On the other hand, both negative
binomial regression and ZINB regression provide satisfactory fit to the data, as indicated

by the randomized quantile residual plot in Figure 2.7.
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Figure 2.7: Randomized quantile residuals of fitted models. First row shows results for
Poisson regression (left) and negative binomial regression (right); second row shows results
for ZIP regression (left) and ZINB (right).

To test for the presence of zero-inflation, we conducted a boundary-corrected LR test.
Results for three tests are reported in Table 2.23. All the tests show evidence for the pres-

ence of zero-inflation, and ZINB regression gives the best fit based on these results.
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Table 2.23: Results of the boundary likelihood ratio test. All p-values are significant at
0.001

Models tested Test statistic | Results
ZIP versus Poisson 7323.8 ZIP
ZINB versus negative binomial 2581.8 ZINB
ZINB versus Z1P 5610.6 ZINB
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Table 2.24: Estimated regression coefficients, /5’ and BT, for the Oregon Health Insurance

Experiment data.

Variables Lottery Prescription ~ Household Size (= 2) Household Size (> 3)
Mean (ZINB) | 0.084 (0.020) 0.113 (0.004) 20.095 (0.022) 20515 (0.251)
T =0.30 0.126 (0.028) 0.121 (0.005) -0.141 (0.039) -0.794 (0.241)
7 =0.40 0.106 (0.019)  0.125 (0.004) -0.096 (0.019) -0.754 (0.253)
7 =10.50 0.092 (0.042) 0.125 (0.005) -0.099 (0.043) -0.420 (0.205)
7 =0.60 0.036 (0.031) 0.112 (0.004) -0.060 (0.029) -0.533 (0.192)
7=0.70 0.111 (0.036) 0.109 (0.005) -0.120 (0.030) -0.473 (0.233)
T =0.80 0.094 (0.022) 0.109 (0.004) -0.089 (0.019) -0.507 (0.197)
7 =0.90 0.091 (0.022)  0.104 (0.004) -0.096 (0.020) -0.471 (0.191)

The next part models the conditional quantiles of the count process. Table 2.24 presents
results for the conditional mean effects and quantile effects corresponding to ITT(treatment)
effect, health status and demographics. The first row presents point estimates for the mean
parameters, and the following rows show results for the quantile parameters. The table also
reports SE of the estimator obtained by the multiplier bootstrap. 200 bootstrap samples are
used to compute the SE.

The point estimates corresponding to the first step are in row 1 of Table 2.24. As
supported by earlier evidence, the ZINB regression model provides a better fit to the data,
due to the fact that the data shows both zero-inflation and over-dispersion. The positive
sign of the estimated coefficients for the variable Lottery indicates a positive ITT effect.
That is, participants in the treatment group have higher health care utilization. This is
consistent with standard public health results in the literature. For instance, Finkelstein
et al. (2012) found the same conclusion regarding the ITT effect. When we examine the
ITT effects across quantiles, we notice some variability compared to that at the mean level.
The estimated value is greater at the lower quantile (7 = 0.30), then drops gradually as
the quantile increases up to (7 = 0.60). The value then increases as the quantile keeps
increasing. When (7 = 0.70), it is similar to that at (7 = 0.30). Finally, the estimates
seems to drop back and converge to the value at the mean level. It is also noticeable
that the mean ITT estimates is quantitatively similar to the estimated effects at the median

(7 = 0.50) and the top quantiles (7 > 0.80). In summary, these results reveal the difference
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of distributional effects, depending on the conditional quantiles at which the participants
are located. At the same time, the finding also suggest that the mean effect captures an
incomplete description of the variable.

Results about other predictors also provide important findings. The variable Prescrip-
tion, the number of prescription medicines one is currently taking, can be interpreted as
an indicator of health and is directly related to the health care utilization. The sign is pos-
itive and significant at every levels, which agrees with our expectation. In the real life,
one would expect the less healthy people to have more prescriptions, and to have higher
numbers of outpatient visits if they can. At the same time, we notice that the effects of
Prescription are greater at the lower quantiles.

The signs of the indicators for household size are all negative, suggesting that a single
person is more likely to have higher number of outpatient visits. This makes sense as family
members can help take care of each other, while a single person has to visit doctors and
hospitals in case of illness.

Figure 2.8 and 2.9 provide visual illustrations of the estimated mean effects (dashed
lines) and quantile effects (continuous lines) in Table 2.24. In addition, we would like
to show the importance of accommodating for the zero-inflation in the data. Hence, we
also report estimates obtained by the jittering approach (Machado and Santos Silva, 2005).
These figure show some interesting differences. First, we find that the ITT effect asso-
ciated with Lottery varies differently across quantiles, particularly among those at lower
and around the median. Secondly, the estimates for the effect of prescription medication
show huge gap between the two methods. These findings suggest that when the data shows

zero-inflation, the corresponding analyses should accommodate the effects of excess zeros.

2.7 Discussion

Quantiles provide a more comprehensive description of the conditional distribution, yet
classic QR is not feasible for data with discrete responses. At the same time, the presence
of zero-inflation in a count data makes inference even more complicated. In this paper, we
proposed a three-step approach for modeling the conditional quantiles of count data and

Z1 data . Our approach is essentially parametric, where all existing methods for regression
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Figure 2.8: Estimated I'TT effect (regression coefficient for treatment) in the Oregon Health
Insurance Experiment data. The dotted line is the estimated value of (3 for the mean struc-
ture, obtained by ZI GLMM model in the first step with ZINB specification

can be applied directly. This also includes extension to semi-parametric regression and
non-parametric regression. When the data shows evidence for a particular distribution, our
method gives better results by making use of that information. In particular, the extension
of our method to ZI data demonstrates an efficacious modeling strategy.

Theoretically, a parametric model is less robust to mis-specification of which distribu-
tion to use. However, as stated earlier, in the first step of our approach the estimation of the
conditional mean function can be carried out by semi-parametric or non-parametric meth-
ods. This gives hope to provide more robust extensions of our method, and will be one of
our research topics in the future.

Our approach is based on interpolation of the discrete distribution for the count model

under consideration. This approach was thoroughly introduced in Ilienko (2013b) and
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Figure 2.9: Estimated regression coefficient for covariates in the Oregon Health Insurance
Experiment data. The dotted line is the estimated value of 5 for the mean structure, ob-
tained by ZI GLMM model in the first step with ZINB specification

further developed in Padellini and Rue (2019a), with the latter extending this approxi-
mation to perform quantile regression for discrete data. An important distinction of our
method from Padellini and Rue (2019a) is that we first consider estimation of the con-
ditional mean rather than the conditional quantiles. This flexibility allows us to employ
existing methods for consistent estimation of a class of models. In a ZI setting, a conve-
nient yet powerful class of models for the first step are ZI GLMMs. This broad class of
models enables researchers to extensively explore reasonable distributions to for the con-
ditional mean structure. Computationally, modeling can be conveniently performed using

the R package g1lmmTMB (Brooks et al., 2017).
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The interpolation technique introduces a continuous counterpart for the discrete distri-
bution of choice. Given that the requirement of continuous distributions is usually the first
regularity condition for deriving the asymptotic distribution, the use of continuous Poisson
or continuous negative binomial distribution gives researchers new directions for inference
about the regression parameters.

We have seen that the extension of our method to ZI problems provides a novel mod-
eling strategy. This is highlighted by analyzing data from the Oregon Health Insurance
Experiment. While these data have been analyzed in the literature based on mean regres-
sion models, we extended the analyses with a through examination of quantile effects while
capturing zero-inflation. Our analysis provides a more comprehensive view that can help
public health policymakers and researchers understand how certain policies affect the par-
ticipants differently. Overall, the empirical results obtained for this data analysis, combined
with the extensive simulation results, suggest the benefit of our novel techniques to model

quantile effects when ZI count responses occur.

2.8 Appendix

Interpolation for Poisson Distribution

Proof. Suppose X ~ poisson()\), then:

Il
e

Fx(x)

| /\

x),x >0

(X
P(X < |z]),since X only takes non-negative integer values.
P(Y >

) Y ~ Gamma(|z| +1,1)

lz] . o=y
/ xJ+1 "y e “ay
f e Ydy

+1)
_F(HHA)
- D(lz]+ 1)

, numerator is the definition of incomplete gamma function.

(2.30)
Then, the continuous counterpart of X is obtained by removing the floor function.

Suppose X ~ poisson()\) and X' is the continuous counterpart of X by interpolation,
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then:
F(z+1,))
F = — > x> 2.31

For non-negative integer x, have:

P([X|=2)=P(X € (z—1,z])

= Fy/(z) = Fy/(z — 1)
T+ 1)) T(x,))
T T(z+1)  T(x) (2.32)
Cx+1,\) =z -T(x,\)
T(z+1) T(z+1)
T+ 1LA) —a-T'(z,A)
B [(z+1)

where

Flx+1L,A) —x-T'(z,\) = / e’ -s%ds —x - / e * - s*"ds, by definition (2.33)
A A

Using integration by parts with ©u = s* and dv = e~%,

[o¢] o0
/ e’ s%ds =" (—e %) |2, —|—/ r-e® 5" ds
A A
o
=\ +/ r-e 5" ds
A
Hence,

F(m+1,>\)—x~F(x,>\):>\x-e)‘—i-/ x-es~s’”1d5—/ r-e 5" ds
A A

:)\x'ef)\
/ D+ 1,A) —x-T'(z, )
P([X=2) =
=PIXT=2) e+ 1)
_)\x,e—)\
7

= P(X = x), for non-negative integer x.
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Interpolation for Negative Binomial Distribution

Proof. Suppose Z is the number of successes to get r failures in a series of indepen-
dent Bernoulli Trials with a success probability equal p. By definition, Z ~ Negative

Binomial(r, p) with pmf:

) (L= p) (234)
and CDF:
Fz(lz])=P(Z < |z]),forz 0
=1-—P(Z > |z])

(
=1-P(Z>|z]+1)
(

=1—P(Z>k),wherek=|z] +1
[z +r—1 . ,
—1- () raen)
z=k
= i el Lwhere -t
= 5 P =T

Taking derivative w.r.t ¢ yields,
8FZ(M)—§: z+r—1 z -2l 7 (z+1)
o z (14+t)=+r (14 t)=tr+!

Zfi(zﬂ”m -t (ptr—1b (z+r).tz}

=Dl T+t 2l (=1 (1)

> z+r—1)! =1 (z +7)! t?
:;[z—l (r—1)! (1+t)z+r_z!-(r—l)!'(1+t)z+r+1}
(k+r—1)! th=1
T k=D (r=1)! (TR
GRS ¢k N (k+7r)! o
Bl (r— 1)1 (TR kL (r— 1)U (14 )kt
(ke pt (k+r+npt L
k+Dl-(r=1)1 T+ 2 " (k+ D) (r—1)1 (14 )ktrt2
(k+7—1)! th—1

T k=Dl (r—= 10 (L+ )k
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where the last equation follows since all the intermediate terms cancel out except the

first and the last term. However, the last term converges to 0 as k — oo. Hence,

_@FZ(LzJ) - D(k+r) =1

ot T(k)-T(r) (1+t)k+
1 !

© B(r,k) (14 t)kt4

(2.35)

Then, integration yields,

t
1
—Fy(k—1)= B / " (14 2) " de + C
0

_t
, 1+¢ , )
— : A UL (O dp + C'
B(r, k) (1—19) (1—19) (1—19)2])Jr
0
_t
X 1+¢
_ . k_l'l— r=1g !
B0 b) P (1—p)dp+C

1 t /
- B (k, r; > + C', by definition of Incomplete Beta function.

B(r, k) 1+¢
t
B<k’r;1+t) !
—Fyk—1) = ' set —— = p.
= —Fz(k=1) Bk st TP
_ B(k,m;p) ,
k-1
z+r—1 B(k,r;p) ,
- pf (1 —p) = C
~ Z;( : )p L= =50 *

where B(k,r) = B(r, k) by property of the binomial function.
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Take p = 0, the last equation becomes

—1=0+C
= =-1
i—FZ(k—l):%—l
S Rk —1)=1- _B];’z;j;;f)
=1—1,(k,r)
=I_,(r k)

= Fylk—1)=P(Z<k—1)
=P(Z < |z])

—P(Z<2)

= I (r, k)

= Fy(z) = I_,(r, |2) + 1)

where [, (a, b) is the regularized incomplete Beta function with the property: I,(a, b) =

1-— Il—x(b> (I)

Interpolation for Zero-Inflated Model

Proof. Suppose Y follows a discrete distribution that can only take non-negative integer

values. Let Y be the ZI counterpart of Y. Then, Fory > 0
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Validity of CDF for ZI Model
Proof. For myy = 0, Gy (y) = k(y,0i) where k(y,0;) = Fy (y) is a valid cumulative
distribution function (Ilienko, 2013b; Padellini and Rue, 2019a).

For 7y > 0, Gy (y) = 7 + (1 — mi)k(y, 0i). Since k(y, 0;) is a valid cumulative
distribution function, functions (3.3) and (3.4) satisfy the following:

yEer Gy, (y) = lim [ + (1 = mit) - k(y, 0ir)] - Iy>0p = 0

Yy—>—00

and

Jim Gy, (y) = Jimy (it + (1 =) - k(y, 0ie)] - Ty>oy
=my+ (1 —my) - lim k(y, 0;)
Y—00
= Tt -+ (1 - 7Tit> = 1
Moreover, G, (y) is non-decreasing since k(y, 0;;) is non-decreasing and (1 — m;;) > 0,

and G, (y) is right-continuous since k(y, ;) is right-continuous. O
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Identifiability

Proof. Following Li (2012), to show the identifiability for the continuous counterpart of

ZIP model, it is sufficient to show that,

fyspi(z), Mi(2),2) = fy;p2(2), Aa(2), 2) = Ai(2) = A2(z) and py () = pa(2)
(2.36)
For simplicity, denote py (), pa(z), A1 (), Ae(z) by p1, P2, A1, A2, respectively. Follow-
ing Ilienko (2013a) , the density of the continuous Poisson distribution is given by the

form,

e ANY

['(y+1)

where c) is a normalizing constant.

fly) =ca , wherey > 0 (2.37)

Hence, the density for the continuous counterpart of ZIP model is given by the form,
e ANY

fly) =01 _p)'l{y=0}+p'0A

where p is the probability that the observation Y is from the count process. That is, 1-p

is the probability that the observation is from the zero process.

(1 =p1) - Iy—oy + G
— . _ - C _—
b {y=0} T P1 " Cxy T (y T 1)

e 2\
= (1— T sy T2
( pz) {y=0} T P2 " Cx, T (y T 1)

7 e MY 7 e 2)\Y
=y (L — Cri ——— ) = 9y - (Lry—qy — Cy, ——2—
p1-( {y=0} C)“I’(y—i— 1)) P2 ( {y=0} C’\QF(qu 1))
I ey, 2N
=0} — CoTTn)
N R ’ :Ez;r;), , the LHS is a function of x.
P2 Iiygy — ey F(y+1$
I Oy, SN
{y=0} = CAaT(y+1)
= C(x) = ef?il)\'qf
Ly=0y — x5y
e 2. )\g e M. )\'7{

= Iy=0} — Cxy - Tyl c(z) - Liy=oy —c(x) - ey, - T+l

= cy, e Ny =[1—c(@)] Iyy=oy - T'(y+ 1) + c(x) - ¢y, - e . Y
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This equation holds for any y > 0, so,

Cr, e Xy =c(x) cy e M N, ify =1
(2.39)

Cr, €2 N =c(x) -y - e N2 iy =2.

Insert the first equation into the second equation yields,

Cr-€ M Ay Ao =c(x) ¢y, -e M N2
=c(x)cn e M A Ay =c(x) ey, e N
=X =\
Thus, can see that \;(z) = Ao(z) and c¢(z) = 1. Since ¢(z) = pi(x)/p2(z) = 1,
p1(z) = p2(x). Hence, the identifiability for the continuous counterpart of ZIP.

Similar extensions to other cases as in Li (2012) can also be obtained. ]
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Figure 2.10: Comparison of three-step method and jittering-based method with respect to
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Figure 2.12: Randomized quantile residuals when data generated from Poisson distribution.
The left plot is for Poisson regression model (correct model); the right plot is for ZIP
regression model (incorrect model).
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Figure 2.13: Randomized quantile residuals when data generated from ZIP distribution
with p(0) = 0.10. The left plot is for Poisson regression model (incorrect model); the right
plot is for ZIP regression model (correct model).
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Simulation Study: Model Misspecification

As can be seen from the description, the three-step approach is fully parametric and re-
quires the specification of a discrete distribution. In order to explore the issue of model
mis-specification, simulations were performed with both correct and incorrect distribu-
tions. In the following two tables, data were generated from Poisson or ZIP distribution.
three-step approaches with Poisson (correct model) and Negative Binomial (model mis-
specification) are fitted to the data as before. A smaller value is MISE indicates better fit to

the data.

In general, when the data is generated from Poisson distribution, models fitted assum-
ing negative binomial distribution does not show huge drop in the performance. This is not
very surprising since the negative binomial distribution has more flexibility than the Pois-
son. On the other hand, when the data is generated from negative binomial distribution,

model fitted by Poisson is less robust.

Table 2.25: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as Poisson distribution. Results based on a sample size
n = 250.

T Method bo(T) | bi(7) | MISE
TS-NLS(Poisson) -0.280 | 0.642 | 0.206

0.10 | TS-NLS(Negative Binomial) | -0.284 | 0.641 | 0.222
JB -0.244 | 0.645 | 0.489

TS-NLS(Poisson) 0.196 | 0.574 | 0.180

0.25 | TS-NLS(Negative Binomial) | 0.194 | 0.573 | 0.203
JB 0.238 | 0.570 | 0.312

TS-NLS(Poisson) 0.649 | 0.510 | 0.176

0.50 | TS-NLS(Negative Binomial) | 0.648 | 0.510 | 0.178
JB 0.638 | 0.513 | 0.230

TS-NLS(Poisson) 1.016 | 0.461 | 0.196

0.75 | TS-NLS(Negative Binomial) | 1.016 | 0.461 | 0.201
JB 0.972 | 0.468 | 0.323

TS-NLS(Poisson) 1.295 | 0.426 | 0.230

0.90 | TS-NLS(Negative Binomial) | 1.297 | 0.427 | 0.543
JB 1.243 | 0.433 | 0.529
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Table 2.26: Comparison of point estimates and MISE values obtained by three methods
when the response is distributed as Poisson distribution contaminated by 10% of zero-
inflation. Results based on a sample size n = 250.

T Method bo(T) | bi(7) | MISE
TS-NLS(Poisson) -0.281 | 0.642 | 0.214

0.10 | TS-NLS(Negative Binomial) | -0.286 | 0.641 | 0.233
JB -0.923 | 0.455 | 25.319

TS-NLS(Poisson) 0.196 | 0.573 | 0.189

0.25 | TS-NLS(Negative Binomial) | 0.194 | 0.573 | 0.201
JB -0.038 | 0.615 | 0.770

TS-NLS(Poisson) 0.647 | 0.510 | 0.188

0.50 | TS-NLS(Negative Binomial) | 0.647 | 0.510 | 0.194
JB 0.540 | 0.528 | 0.426

TS-NLS(Poisson) 1.017 | 0.460 | 0.215

0.75 | TS-NLS(Negative Binomial) | 1.018 | 0.461 | 0.453
JB 0.922 | 0.475 | 0.562

TS-NLS(Poisson) 1.295 | 0.425 | 0.247

0.90 | TS-NLS(Negative Binomial) | 1.296 | 0.427 | 0.351
JB 1.214 | 0.436 | 0.755
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Table 2.27: Comparison of point estimates and MISE values obtained by two methods
when the response is distributed as Poisson distribution contaminated by 45% of zero-
inflation. Results based on a sample size n = 1000.

7 | Method | by(7)(SE) bi(7)(SE) | MISE
0.50 TS-NLS | 0.648(0.045) | 0.509(0.012) | 0.126
' JB -0.698(0.292) | 0.730(0.099) | 16.196
0.75 TS-NLS | 1.015(0.040) | 0.461(0.011) | 0.136
' JB 0.618(0.066) | 0.521(0.018) | 4.045
0.90 TS-NLS | 1.293(0.036) | 0.426(0.010) | 0.157
' JB 1.054(0.052) | 0.459(0.015) | 2.821

Table 2.28: Comparison of point estimates and MISE values obtained by two methods
when the response is distributed as Poisson distribution contaminated by 45% of zero-
inflation. Results based on a sample size n = 2500.

7 | Method | by(7)(SE) bi(17)(SE) | MISE
0.50 TS-NLS | 0.647(0.027) | 0.510(0.007) | 0.098
’ JB -0.696(0.202) | 0.737(0.050) | 14.680
0.75 TS-NLS | 1.017(0.026) | 0.460(0.007) | 0.104
' JB 0.621(0.041) | 0.520(0.011) | 4.026
0.90 TS-NLS | 1.297(0.025) | 0.425(0.007) | 0.124
' JB 1.059(0.035) | 0.458(0.010) | 2.705
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Table 2.29: Comparison of point estimates and MISE values obtained by two methods
when the response is distributed as Poisson distribution contaminated by 10% of zero-

inflation. Results based on a sample size n = 1000.

T

Method

bo(7)(SE)

bi(T)(SE)

MISE

0.50

TS-NLS
JB

0.648(0.036)
0.543(0.047)

0.509(0.010)
0.527(0.013)

0.112
0.298

0.75

TS-NLS
JB

1.016(0.030)
0.924(0.039)

0.461(0.008)
0.474(0.010)

0.115
0.371

0.90

TS-NLS
JB

1.296(0.028)
1.219(0.043)

0.425(0.008)
0.435(0.012)

0.136
0.507

Table 2.30: Comparison of point estimates and MISE values obtained by two methods
when the response is distributed as Poisson distribution contaminated by 45% of zero-

inflation. Results based on a sample size n = 2500.

T

Method

bo(7)(SE)

bi(1)(SE)

MISE

0.50

TS-NLS
JB

0.649(0.021)
0.541(0.029)

0.510(0.006)
0.527(0.008)

0.093
0.264

0.75

TS-NLS
JB

1.016(0.020)
0.922(0.026)

0.461(0.005)
0.475(0.007)

0.097
0.345

0.90

TS-NLS
JB

1.296(0.018)
1.218(0.027)

0.425(0.005)
0.436(0.008)

0.114
0.439
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Table 2.31: Comparison of point estimates and MISE values obtained by two methods
when the response is distributed as Poisson distribution. Results based on a sample size

n = 1000.

Method

bo(7)(SE)

bi(T)(SE)

MISE

0.50

TS-NLS
JB

0.650(0.031)
0.640(0.041)

0.509(0.009)
0.512(0.011)

0.105
0.121

0.75

TS-NLS
JB

1.016(0.029)
0.971(0.037)

0.460(0.008)
0.468(0.010)

0.111
0.178

0.90

TS-NLS
JB

1.294(0.024)
1.247(0.037)

0.426(0.007)
0.432(0.011)

0.129
0.305

Table 2.32: Comparison of point estimates and MISE values obtained by two methods
when the response is distributed as Poisson distribution. Results based on a sample size

n = 2500.

Method

bo(7)(SE)

bi(T)(SE)

MISE

0.50

TS-NLS
JB

0.646(0.020)
0.637(0.026)

0.510(0.005)
0.513(0.007)

0.093
0.101

0.75

TS-NLS
JB

1.016(0.017)
0.972(0.022)

0.461(0.005)
0.468(0.006)

0.095
0.153

0.90

TS-NLS
JB

1.295(0.016)
1.247(0.025)

0.425(0.004)
0.432(0.007)

0.111
0.260
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Table 2.33: Comparison of point estimates and MISE values obtained by two methods
when the response is distributed as negative binomial distribution contaminated by 45% of

zero-inflation. Results based on a sample size n = 1000.

7 | Method | by(7)(SE) bi(7)(SE) | MISE
0.50 TS-NLS | 0.468(0.091) | 0.511(0.026) | 0.351
’ JB -1.229(0.232) | 0.529(0.168) | 50.828
0.75 TS-NLS | 1.051(0.082) | 0.491(0.026) | 0.743
’ JB 0.449(0.127) | 0.534(0.041) | 27.822
0.90 TS-NLS | 1.487(0.079) | 0.477(0.026) | 1.564
’ JB 1.173(0.092) | 0.494(0.030) | 25.301

Table 2.34: Comparison of point estimates and MISE values obtained by two methods
when the response is distributed as negative binomial distribution contaminated by 45% of

zero-inflation. Results based on a sample size n = 2500.

7 | Method | by(7)(SE) bi(17)(SE) | MISE
0.50 TS-NLS | 0.476(0.059) | 0.508(0.017) | 0.200
’ JB -1.280(0.140) | 0.567(0.097) | 48.972
0.75 TS-NLS | 1.057(0.050) | 0.489(0.017) | 0.357
' JB 0.459(0.078) | 0.532(0.025) | 27.674
0.90 TS-NLS | 1.488(0.053) | 0.478(0.017) | 0.722
' JB 1.169(0.065) | 0.495(0.022) | 24.530
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Table 2.35: Comparison of point estimates and MISE values obtained by two methods
when the response is distributed as negative binomial distribution contaminated by 10% of

zero-inflation. Results based on a sample size n = 1000.

T

Method

bo(7)(SE)

bi(T)(SE)

MISE

0.50

TS-NLS
JB

0.470(0.077)
0.292(0.093)

0.509(0.022)
0.525(0.030)

0.252
1.290

0.75

TS-NLS
JB

1.060(0.064)
0.940(0.072)

0.488(0.020)
0.501(0.024)

0.444
1.630

0.90

TS-NLS
JB

1.493(0.063)
1.414(0.076)

0.477(0.021)
0.483(0.024)

0.956
2.454

Table 2.36: Comparison of point estimates and MISE values obtained by two methods
when the response is distributed as negative binomial distribution contaminated by 10% of

zero-inflation. Results based on a sample size n = 2500.

T

Method

bo(7)(SE)

bi(1)(SE)

MISE

0.50

TS-NLS
JB

0.469(0.044)
0.288(0.060)

0.510(0.013)
0.527(0.019)

0.149
1.125

0.75

TS-NLS
JB

1.060(0.039)
0.938(0.046)

0.489(0.012)
0.501(0.015)

0.233
1.413

0.90

TS-NLS
JB

1.488(0.041)
1.407(0.047)

0.478(0.013)
0.485(0.015)

0.456
1.957
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Table 2.37: Comparison of point estimates and MISE values obtained by two methods
when the response is distributed as negative binomial distribution. Results based on a

sample size n = 1000.

7 | Method | by(7)(SE) bi(7)(SE) | MISE
0.50 TS-NLS | 0.466(0.061) | 0.511(0.019) | 0.225
’ JB 0.449(0.078) | 0.516(0.025) | 0.315
0.75 TS-NLS | 1.060(0.056) | 0.489(0.019) | 0.402
' JB 1.011(0.0068) | 0.498(0.022) | 0.592
0.90 TS-NLS | 1.486(0.063) | 0.479(0.021) | 0.869
' JB 1.448(0.072) | 0.485(0.024) | 1.469

Table 2.38: Comparison of point estimates and MISE values obtained by two methods
when the response is distributed as negative binomial distribution. Results based on a

sample size n = 2500.

7 | Method | by(7)(SE) | bi(7)(SE) | MISE
0.50 TS-NLS | 0.468(0.038) | 0.510(0.012) | 0.138
' JB 0.448(0.050) | 0.516(0.016) | 0.181
0.75 TS-NLS | 1.060(0.034) | 0.489(0.011) | 0.221
' JB 1.017(0.041) | 0.496(0.014) | 0.341
0.90 TS-NLS | 1.488(0.034) | 0.478(0.011) | 0.408
' JB 1.451(0.046) | 0.483(0.015) | 0.750

Simulation Study: Regression Setting

The following Monte Carlo simulation results investigate the performance of our method
compared with existing method in a regression setting. The comparison is similar to the
previous unconditional scenario. However, the unconditional scenario deals with only one
distribution (for example, Poisson(3) in previous simulation); on the other hand, the re-
gression setting deals with n conditional distributions. For each unique level of the predic-

tors, there is a distribution with different values of parameter.

Another distinction to make is that, in the main content of the paper, a parametric

bootstrap is employed to estimate the SE of the regression coefficients. Hence, the focus
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of the inference is on the 3(7). In the following simulation setting, the goal is to construct
bootstrap confidence intervals for the response values and the inference is on the Y.

The first measurement is the Mean Squared Error of Prediction. This is defined as
the MSE between the true conditional quantile, Q,(Y|X = z) and the predicted values,
Q-(Y|X = ).

n

% D IQ(YIX = 2) — Q(YIX = ;)] (2.40)

i=1

This gives us a straightforward measurement of how close each method predicts the

conditional quantiles.

The other two measurements are the coverage probability and the average length for
the bootstrap confidence intervals based on each method. In the main content of the paper,
a parametric bootstrap is employed to estimate the SE of the regression coefficients. In
the following simulation setting, the goal is to construct bootstrap confidence intervals for
the response values. a paired bootstrap will be used instead of the parametric bootstrap
to construct the bootstrap confidence intervals. That is, we obtain a bootstrap sample by
sampling with replacement from the pairs, (y1,%1), ..., (Yn, ). In total, each bootstrap
confidence interval is calculated by averaging B bootstrap samples. Note that each boot-
strap sample could have different values of covariate. Thus, to guarantee the average is

meaningful across B samples, we proposed the following routine:

1. In each simulation j (j = 1, ..., N) with a specific sample size n, generate the training
covariate, 1, ..., ¥, from a uniform distribution over (0,1). Then, for a specified
proportion of ZI, 7y, generate the corresponding response, 41, ..., Y,. This yields the

original dataset with pairs, (y1, 1), ., (Yn, Tn)-

2. Within the same simulation, obtain a sequence of equally-spaced test covariate, 9, ..., z

from the same support, (0, 1). Then, obtain the conditional quantiles at each value of
2V, ..., 29, The resulting sequence, Q. (Y [2?), ..., Q. (Y|2Y), is equally-spaced over

the support.
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3. Conduct a paired bootstrap by sampling with replacement from the pairs, (y1, 1), ..., (Yn, Tn)-

Within each bootstrap sample, calculate a bootstrap confidence interval for the con-

0

ditional quantile at each unique value of the test covariate, z9, ..., z°.

4. Obtain the pointwise coverage probability and average length at each unique value

of the test covariate, ¥, ..., 2°. The results are based on B bootstrap samples within

“ey n

the j* simulation.

5. Calculate the coverage probability and average length at each unique value of the test
covariate, ¥, ..., 9. Average the results from the previous step over N to obtain the
empirical coverage probability and average interval length at each unique value of the

test covariate, 20, ..., 9. The final results are plotted to show the overall performance

n

by each method.

This section extends unconditional distributions to conditional distributions, that is,
regression setting. The first scenario is the regular Poisson regression with one covariate.
Below is a summary of the MSE by different methods. In the following table, data were

simulate from Poisson distribution with mean parameter,

A= TN X uni form(0, 1) (2.41)

Table 2.39: Comparison of MSE values for different implementations. Data generated
from Poisson distribution. Results based on 1000 simulations.

N T DR | NLS | [NLS]| | Jit | |Jit]
0.50 | 0.19 | 0.35 | 0.14 | 0.40 | 0.18
100 | 0.75 1 027 | 0.35 | 0.19 | 0.52 | 0.24
090 | 042 | 040 | 024 | 0.64 | 0.38
0.50 | 0.08 | 0.32 | 0.06 | 0.35]| 0.07
400 | 0.75]0.11 | 0.29 | 0.08 | 0.44 | 0.11
090 |0.19 | 034 | 0.13 | 046 | 0.18
0.50 | 0.03 | 0.31 | 0.03 | 0.33 | 0.03
1600 | 0.75 | 0.05 | 0.27 | 0.04 | 0.42 | 0.06
0.90 | 0.10 | 0.32 | 0.07 | 0.43 | 0.11

As can be seen from the above table, the three-step approach with NLS routine ([ N LS'|)

performed well in estimating the true quantiles. This further confirms the validity of the
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estimation for the regression coefficients.

When the data exhibits certain degree of ZI (tables on the following pages), the three-
step approach provided even greater advantages over competing methods. Hence, when the
goal is to infer about the conditional quantiles of the count process, the three-step approach

provides a consistent mechanism to distinguish responses from different sources.
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Table 2.40: Comparison of MSE values for different implementations. Data generated
from ZIP distribution with 7y = 0.15. Results based on 1000 simulations.

N | 7 | DR [NLS [ [NLST[ Jit | [Jit
0.50 | 0.39 | 040 | 0.19 | 0.19 | 0.37
100 | 0.75 | 036 | 040 | 026 | 031 0.32
0.90 | 049 | 047 | 031 |0.46 | 0.43
0.50 | 0.32 | 033 | 0.07 |0.12 | 0.31
400 | 0.75 | 0.20 | 0.30 | 0.10 |0.22 | 0.17
0.90 | 023 | 035 | 0.15 | 0.29 | 0.20
0.50 | 030 | 0.31 | 0.03 | 0.10 | 0.29
1600 | 0.75 | 0.16 | 0.27 | 0.04 | 0.20 | 0.13
0.90 | 0.19 | 033 | 0.08 |0.25|0.15

Table 2.41: Comparison of MSE values for different implementations. Data generated
from ZIP distribution with 7wy = 0.45. Results based on 1000 simulations.

N | 7 | DR [NLS[[NLS][ Jit | [Jit]
0.50 | 3.61 | 0.44 | 026 | 1.72] 3.52
100 | 0.75 | 1.33 | 045 | 033 |0.46 | 1.20
0.90 | 1.06 | 0.55 | 0.41 | 0.41 | 0.92
0.50 | 3.58 | 034 | 0.09 | 1.79 | 3.44
400 | 0.75 | 1.04 | 032 | 0.13 | 0.29 | 1.01
0.90 | 0.76 | 0.38 | 0.19 | 0.19 | 0.71
0.50 | 3.45 | 031 | 0.04 | 1.85]| 321
1600 | 0.75 [ 0.98 | 0.28 | 0.06 | 0.24 | 0.96
0.90 | 0.72 | 0.33 | 0.10 | 0.13 | 0.66

Simulation Study: Prediction Intervals for Partial Effects by Different Bootstrap Im-

plementations

The following tables report the overall coverage probability for the difference in the condi-

tional quantiles. This difference is considered as a partial effect in the econometric field:

Qy(7]7:) — Qy(7]x0), (2.42)

where in this simulation setting, vy = 2.0 and x; = 2.1,2.2,--- /2.9, 3.
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For example, when data were generated from Poisson distribution without ZI, the
50" conditional quantile at zy = 2 and z; = 2.1 are 5 and 6, respectively. Hence, the
difference in the conditional quantile is 1.

As can be seen from Table 2.42, the overall coverage probability is usually higher than
the nominal level, 0.95. One main reason for this performance can be due to the discrete
nature of both the response variables and the constructed Cls. To illustrate the difference,
similar tables reporting the overall coverage probability in the continuous case are reported.

In Table 2.43, the true quantiles and the difference in conditional quantiles are defined
for the underlying continuous Poisson distribution. The bootstrap Cls are constructed by
the percentile method. One difference between the Cls for the discrete case and the Cls for
the continuous case is that, the ceiling transformation [x] is applied to the predictions for

the discrete case, while the predictions for the continuous case are used directly.
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Table 2.42: Coverage probability based on different implementations of pairwise bootstrap
and multiplier(weighted) bootstrap; data generated from Poisson distribution.

o 7 | [Pairwise| | [Multiplier]
0.50 0.990 0.992
0 |0.75 0.997 0.996
0.90 0.978 0.983
0.50 0.994 0.994
0.15 | 0.75 0.995 0.994
0.90 0.980 0.974
0.50 0.989 0.988
0.45 | 0.75 0.998 0.997
0.90 0.984 0.982

Table 2.43: Coverage probability based on different implementations of pairwise bootstrap
and multiplier(weighted) bootstrap; data generated from continuous Poisson distribution.

o 7 | Pairwise | Multiplier
0.50 | 0.933 0.937
0 |0.75] 0.940 0.942
0.90 | 0.920 0.930
0.50 | 0.940 0.932
0.15 | 0.75 | 0.940 0.930
0.90 | 0.930 0.940
0.50 | 0.937 0.940
0.45 | 0.75 | 0.950 0.940
0.90 | 0.940 0.940
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The following tables report the overall coverage probability for the difference in the

conditional quantiles where 2y = 5.0 and x; = 5.1,5.2,--- | 5.9,6.

For example, when data were generated from Poisson distribution without ZI, the

50" conditional quantile at 7y = 5 and x; = 5.1 are 24 and 26, respectively. Hence,

the difference in the conditional quantile is 2.

Table 2.44: Coverage probability based on different implementations of pairwise bootstrap
and multiplier(weighted) bootstrap; data generated from Poisson distribution.

m | T | [Pairwise| | [Multiplier]
0.50 0.990 0.987

0 | 0.75 0.993 0.994
0.90 0.988 0.987

Table 2.45: Coverage probability based on different implementations of pairwise bootstrap
and multiplier(weighted) bootstrap; data generated from continuous Poisson distribution.

mo | T | Pairwise | Multiplier
0.50 | 0.940 0.949

0 [0.75 | 0.940 0.940
0.90 | 0.940 0.933
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The following tables report the overall coverage probability for the difference in the

conditional quantiles with data generated from negative binomial/ZINB distribution.

Table 2.46: Coverage probability based on different implementations of pairwise boot-
strap and multiplier(weighted) bootstrap; data generated from negative binomial distribu-
tion with different proportions of zero-inflation.

o 7 | [Pairwise]| | [Multiplier|
0.50 0.999 0.999
0 |0.75 0.996 0.997
0.90 0.982 0.983
0.50 0.994 0.994
0.15 ] 0.75 0.995 0.994
0.90 0.980 0.974
0.50 0.989 0.988
0.45 | 0.75 0.998 0.997
0.90 0.984 0.982
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Chapter 3 Quantile Functions for Zero-Inflated Longitudinal Count Data

3.1 Introduction

As introduced in the previous chapter, QR is a widely used approach to estimate flexi-
ble models in economics and statistics. While theoretical and methodological research in
the last 40 years has been addressing essential generalizations of the original approach
(Koenker, 2017), the literature on the analysis of discrete data remains open to challenges
and possibilities. In many applications, practitioners face the limitations of classical para-
metric models, where the effect of a treatment variable can be heterogeneous throughout
the conditional distribution of the count variable. However, policy recommendations can
only be based on average effects. See Cameron and Trivedi (2013) for a detailed summary
of econometric analysis with count data.

An illustrative example includes the number of visits to physicians and the demand
for medical services. Using RAND Health Insurance Experiment data (Deb and Trivedi,
2002), Figure 3.1 shows that the proportion of zero visits to physicians exceeds 30% for
patients with no greater than 15 visits per year. Moreover, the count response distribution
has a long tail reaching a maximum of 77 visits, while the average is 2.86. As in many other
applications, the need for a flexible approach that simultaneously addresses zero inflation
and latent subject heterogeneity while allowing estimation of effects across the conditional
distribution is immediately apparent.

This chapter investigates the estimation of conditional quantile functions and covari-
ate effects for discrete responses in a longitudinal setting. Our approach is based on a
continuous approximation to distribution functions for count data within a class of models
commonly employed in the literature. We adopt an approach based on interpolation of
functions for discrete responses as in Ilienko (2013b) and Padellini and Rue (2019a). This
provides an alternative smoothing method to the jittering approach proposed by Machado
and Santos Silva (2005) and adopted by Harding and Lamarche (2019a). We extend the

three-step estimation procedure in Chapter 2, which provides a flexible statistical frame-
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Figure 3.1: Number of visits to physicians in the RAND Health Insurance Experiment data.

work to handle over/underdispersion, shrinkage estimation and smoothing of regression
relationships. In the first step, we consider the estimation of the conditional mean model.
In the second step, we obtain a conditional quantile variate as the solution of a nonlinear
moment condition defined for the conditional mean. We show that the solution exists and it
is unique. Finally, in a third step, interpolation is employed to model conditional quantile
responses. The estimator’s finite sample performance is investigated using a simulation
study, and we find that the estimator has a satisfactory performance for the estimation of
quantile effects under different degrees of zero inflation.

Our work is based on the previous chapter and is related to the recent research that has
contributed to the generalization of conditional quantile models for count data. The orig-
inal work of Machado and Santos Silva (2005) introduced a jittering approach to smooth
the count response variable. Lee and Neocleous (2010) proposed a Bayesian approach, and
Chernozhukov, Fernandez-Val, and Weidner (2017) develop an approach based on distri-
bution regression. The literature on panel quantiles includes just a few papers. Harding and

Lamarche (2019a) extend the jittering approach to longitudinal data without zero inflation,
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and Wang, Wu, Zhao, and Zhou (2020) propose an estimator for time-varying coefficients
using a quadratic inference function approach within a quantile framework. The estimator
proposed in this chapter is different from existing approaches for two important reasons.
First, existing QR approaches have not been developed for ZI models with longitudinal
data. Second, we consider estimating the conditional mean model in the first step, rather
than considering a QR model as in Padellini and Rue (2019a). Therefore, the proposed
methodology allows flexibility to estimate a class of models with subject heterogeneity,
without considerations on the minimum number of repeated observations per subject as in
panel data QR models (Harding and Lamarche, 2019a).

As highlighted in the preceding chapter, one of this work’s contributions is addressing
zero inflation in longitudinal data. Zero inflation occurs when zero counts arise from one
of two possible states: a degenerate state or some discrete probability distribution. This
structure is easily modeled using a two-component mixture model. The seminal work by
Lambert (1992) is the earliest paper to thoroughly develop the ZIP regression model as
a way to characterize zero defects in a manufacturing process as manifesting from one
of two states: a perfect state and an imperfect state. Since then, numerous extensions to
the ZIP regression model have been developed; see Young et al. (2021) and Young et al.
(2021) for a contemporary review. In particular, just like in non-ZI models, the random
effects in ZI models have been used to capture various features of the data, such as subject
heterogeneity (Zhu, 2012), serial dependency between successive responses (Yau et al.,
2004), and spatial association (Agarwal et al., 2002). Our work is consistent with the spirit
of such contributions in that we will be using random individual intercepts accounting for
subject heterogeneity when estimating conditional quantiles for longitudinal data with ZI
discrete responses.

This chapter is organized as follows. In Section 3.2, we formalize the development of
quantiles for ZI count regression models by transferring the problem to one that utilizes the
continuous version of the discrete model under consideration. In Section 3.3, we provide
details of GLMMs with an emphasis on panel count outcomes, how to incorporate zero
inflation, and pose the problem of performing quantile regression in such ZI GLMMs. In

Section 3.4, we provide an extensive simulation study to assess our approach’s performance
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in estimating mean and quantile effects. In Section 3.5, we analyze data from the RAND
Health Insurance Experiment and provide new insights using our modeling paradigm. We

end with a discussion in Section 3.6.

3.2 Conditional Quantiles of Count Responses

In a longitudinal setting, we observe a random sample of N subjects. The " subject has
T; measured count outcomes, which are collectively represented by the 7;-dimensional
vector y; = (Yi1,-.-,%t,) »1 = 1,..., N. Note that the T} need not be the same for all
units, however, the setting where 7; = 7T’ is considered balanced. Henceforth, we only
consider the balanced setting to keep notation simple, but everything discussed extends to
the unbalanced setting. Associated with the ¢ record from the i™ subject is a vector of
p independent variables, given by X;; = (Zip1,...,Tip) . Assume further that with the
t" record from the " unit is a vector of ¢ predictor variables (random effects), given by
zi = (Zit1y- - -, zitp)T. It is clear from the above description that all the results in Chapter
2 can be extended to a longitudinal setting. The only difference is the subscript 7 replaced
by it, reflecting the fact that each unit now has ¢ repeated measurements.

Let 6, = E[yi1|Xt, Z;¢] denote the conditional mean of the distribution £}, of the count

response, y;;. Let Gy, be the cumulative distribution function of a ZI count variable,

Gyiz(y> = T + (1 - ﬂ-’it)Fyz‘t (y)> (31)

for y € N, where 7, is the probability that the outcome variable has a degenerate distribu-
tion at zero. This is the source of extra zeros and the probability 7;; can be influenced by
covariates, as shown below.
As before, we propose to consider the following continuous counterpart to the ZI count
distribution (3.1):
Gy (y) = mir + (1 — mi )k (y, i), (3.2)

where k(y,0;;) = Fy (y) is the CDF of y;;, which is defined as the continuous version of

i~ The function k(+, 6;;) is continuous and increasing in its first argument, and it satisfies
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k(ly],0:i) = Fy,(y), where the floor function |z| := max{y € Z : y < x}. See Chapter
2 for similar derivations in the setting without repeated measures.
The extension (3.2) can be used on the two leading distributions: the ZIP and ZINB

regression model, in the same way as in Chapter 2. If y;; ~ ZIP (6, ), then

L(lyl +1,0:)
Pyl +1)

where I'(x,0) = f 900 e~*s""1ds denotes the upper incomplete gamma function. It follows

Gy, (y) = 7 + (1 — )

then, fory > —1,
F(y+1)

On the other hand, if y;; ~ ZIN B(r, p;;), where r is the number of failures in a series of

Gy (y) = mie + (1 — my) (3.3)

Bernoulli trials and p;; € (0, 1) is the probability of success, we have

B<Tay+ 171 _plt)
B(r,y+1)

Gygt(y) = Tt + (1 o 7Tit>[1—pit(7"7 Y+ 1) = Tt + (1 - 7Tit) , (34

where I_,,(r,y + 1) is the regularized incomplete beta function and B(r,y + 1) =
fol s"(1 — s)¥ds is the beta function.

A logistic regression model is used to model the zero-inflation probability,

o enwy)
(1 + exp(W}y))
T Ty,
ez‘t _ (1 . 7Tit) eXp(X;,B + thllz) — eXp<thIB + zztul)

(14 exp(wjy))
I(gi +1,0,)

T = 7Tit+(1_7rit) F(qt—l—l) y

where w;; is a vector of independent variables that can be the same as x;;, and 7 € (0, 1) is

the quantile level. The unknowns are the parameters (v, 3", u;

)T, and the 7-th quantile
of the continuous response variable, ¢;;, in a model with mean 6;; and probability 7;;.
In the third step, we obtain the quantile-specific effects on the count response variable

from the following problem:

E{L(qi(T) — g(nt))}, (3.5)

where L(+) is a loss function, g(-) is a link function, and 7;; is a predictor variable which is

determined by regressors and individual intercepts.
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In a longitudinal setting, the computational routine of our three-step model is more
complicated than the cross-sectional version in Chapter 2. Due to repeated measures and
random effects, the interpolation in the second step requires extra caution. See Lamarche
et al. (2021) for relative results for the existence and uniqueness of the solution.

The above procedures offer a general formulation extended to the longitudinal settings.

We then provide specific forms for our model in the Section 3.3.

3.3 Model Specification and Estimation

Let the x;, be the rows of the T x p design matrix X; and the z;; be the rows of the T x ¢
design matrix Z;. Both X; and Z; include a column of 1s for a fixed intercept and a random
intercept, respectively. That is, z;;; = 1 and 2;;1 = 1 for all 7 and ¢.

In GLMMs, the link function g(-) is used to relate y, to the linear predictor
n; = Xi8 + Zu;, (3.6)

where 3 € RP and u; € R? are vectors of fixed-effect coefficients and random-effect
coefficients, respectively. Let p;|u; denote the mean of the conditional distribution for the
response variable. The link function is defined such that E[y;|u;] = (w;|u;) = ¢~ 1(Xi8 +
Zu;lu;) = g '(nilw;), where h(-) £ g~'(-) is used to write the inverse link function.
Typically, the preceding setup assumes that the w; are iid N, (0, G), where G is positive
definite. To further solidify the form of the random component of (3.6) for the application
presented in Section 3.5, consider the case where only a random intercept is present. In
that setting, Z; = 17 and u; = u;, which becomes a scalar. That is, ¢ = 1. However, our
proposed methodology can be framed using a more general form of Z; and u;, which can
be extended to situations with more complex mixed-effects structures.

The GLMM is a type of hierarchical model where the hierarchical structure is charac-
terized through the random effects. Thus, GLMMs allow a natural framework to reflect
panels of units, such as repeated measures on the same subject. The framework also ac-

commodates intra-subject correlation, a statistical feature leveraged in longitudinal data

setting as in the present chapter.
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As in the previous chapter, our work is focused on the setting where the data’s response
values are counts. Thus, the choices of the Poisson and the negative binomial for y;;|u; are
reasonable. Given the many parameterizations of the negative binomial distribution, it is
worth emphasizing again that the Type 2 parameterization is used for the negative binomial
(the NB2 model in Hilbe (2011) and Chapter 2).

One challenge with MLE of GLMMs in a longitudinal setting is that the marginal like-
lihood involves integration over a complicated product of Gaussian and exponential family
likelihoods (or quasi-likelihoods). As a result, direct maximization is generally impossi-
ble; computationally, integral approximations are done via Gauss-Hermite quadrature or
Laplace approximations, both of which typically perform very well. In R (R Core Team,
2016), both approximations are options in the glmer () function within the 1me 4 package
(Bates et al., 2015), while only the Laplace approximation is available in the g1mmTMB ()
function within the g1mmTMB package (Brooks et al., 2017). For a thorough treatment of
GLMM methodology, we refer to the text by Stroup (2013).

We next describe ZI GLMMs for ZIP and ZINB distributions in the longitudinal set-
ting. For G, the variance-covariance matrix of the random effects u;, let vech(G) € A,
where A be an open subset of R%+1/2 such that the dimension is determined by the
half-vectorization of G. Let & € = generically denote the s-dimensional parameter vec-
tor for either the Poisson GLMM or negative binomial GLMM. Specifically, & = 3 for
the Poisson GLMM and € = (3", ¢) " for the negative binomial GLMM, thus resulting in
s € {p,p+1}. Here, = is the parameter space, which is an open subset of R*. Suppose now
that the zeroes in our count outcomes are generated from one of two possible processes: a
degenerate distribution with probability 7;; = d(w/,~y) or the count distribution p,,, |, With
probability 1 — ;. Therefore,

0, with probability 7;;
Yit[w; ~ (3.7)

Dyilu;»  With probability 1 — 7.

Here, m;; is again a probability that determines the source of zero counts from the two
states, so d(+) is taken as a logit link function as logistic regression model is used. The

linearization involves an r-dimensional vector of predictors, w;;, and a parameter vector
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~ € I', where I' is an open subset of R". Note that w;;; = 1 and represents the intercept
term. The pmf for the ZI count variable defined in (3.7) is thus

Tit + (1 — Tit)Py,, o, (0: €, G),  if yir = 0;
fyit|ui (it; Xit, Wit, Zig, 03, 9) = ! 3.8)

(1 - ﬂit)pyiﬂui (ym Ev G)7 if Yit € N+7

where Nt = N\ {0} and 9 = (¢7,47,vech(G)")" € © = Z x ' x A. Maximum
likelihood of ZI GLMMs can be done via TMB in the g1mmTMB package, which is how we
proceed. In particular, we are able to obtain point estimates of all parameters, which are
BLUESs, as well as the best linear unbiased predictors (BLUPs) of the u;. For a detailed
description of ZI GLMMs derivation and methodology, we refer to the text by Lamarche
et al. (2021).

Three-Step Estimator

We now summarize the three-step procedure in the longitudinal setting for constructing the

estimated quantile effects, BT in Procedure 3.
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Procedure 3 Modeling Procedure for Quantile Count Regression with Zero-Inflated

Longitudinal Data

(1) For the assumed ZI GLMM having pmf of the form in (3.8), find the maximum
likelihood estimate for the mean parameters 19, 9, using £*(4), the Laplace

approximation for the marginal likelihood as defined in previous chapters.

(2) Let7 € (0, 1) be the quantile level of interest for the estimated ZI GLMM based
on the maximum likelihood estimate 9. For each i,t, find yl,|(Xs, Wir, Z;y) =

¢i+(7), which is the solution to K;;(y) = 0.

(3) Letting y7 = (y3,...,y%) ", find the quantile-specific effects 3" minimizing
the risk function

E{L(y; —9(n,))}- (3.9)

Note that 7), is implicitly based on the maximum likelihood estimate 9.

In order to obtain the estimated quantile effects BT in Step 3 above, we extend the
NLS model in Chapter 2 to nonlinear mixed model (NLMM), accounting for the random

intercepts from subject heterogeneity:

yi = h(ni) + €
n; = X" + Zuj,

(3.10)

where h(-) is the same inverse log link function used for our ZI GLMMs and the €; are
itd N7(0, O'QIT). Here, I is the T" x T identity matrix. Notice that we find ourselves in
the same situation as when performing MLE for the ZI GLMM. All of these quantities
are explicitly written to show their dependency on the quantile 7 since the NLMM being
estimated has the conditional quantile y; as the response.

Following the presentation in Chapter 7 of Pinheiro and Bates (2000), we first note that
the variance-covariance matrix G of the random effects u” can be rewritten in terms of
the precision factor A", so that (GT)_1 = o 2 AT A7. We further note that if G > 0, as
is assumed for our setting, then such a A™ exists, but need not be unique. Estimation can

be accomplished using penalized iteratively reweighted least squares using the two steps
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outlined in Lindstrom and Bates (1990): a penalized nonlinear least squares (PNLS) step
and a linear mixed model (LMM) estimation step.

As in Chapter 2, we turn to the bootstrap for statistical inference for the three-step
estimator and to provide confidence intervals in the empirical Section 3.7. The estimation
is carried out by employing the multiplier bootstrap. Results presented in Section 3.4
found that the multiplier bootstrap confidence intervals’ coverage probabilities tend to give
results close to the nominal probabilities under the ZIP and the ZINB distributions. While
this chapter focuses on identifying and estimating quantile functions for ZIP and ZINB
distributions, we continue to investigate improvements in terms of statistical inference as,
for example, exploring the use of bootstrap calibration to improve coverages of bootstrap-

based confidence intervals (Loh, 1991).

3.4 Numerical Study

We next conduct a simulation study designed to evaluate our method’s finite-sample perfor-
mance proposed in Section 3.3. We first present results for models with a fixed proportion
of zero inflation. Then we include simulations for the case where the model generates a
proportion of zeros that varies by subjects and time.

We follow data generating processes similar to those considered in Machado and Santos
Silva (2005), and extend them to the panel data setting. We consider that the response
vector y, for the 7™ subject was generated from a count distribution subject to zero inflation.
That is, y;; 1s generated from a degenerate distribution at zero with probability 7;; and from
a count distribution p,,, |y, With probability 1 — 7;;. In our numerical work, the Poisson and

negative binomial portions of the ZI models each have the following conditional mean:

pir = exp{Bo + Prxit + Pazi + wi}

where z;; = ro+71€; +1ra€;, and the variables ¢; and ¢;; are i¢d Gaussian random variables.
The variable u; is iid N'(0, 02), where 02 = (.2. The values for the time-invariant regressor
x; are chosen as equally-spaced design points over the interval [0, 10]. In all the simulation

settings, 5y = 0.75, 51 =r;1 = 0.25, B =19 = 0, and ry = 1.
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We consider N € {150,250} and 7" € {5, 10}. The aforementioned simulation settings
allow us to identify and estimate mean effects and quantile effects at 7 € {0.50, 0.75,0.90}.
To evaluate the small sample performance of our approach, we report the bias and root
mean square error (RMSE) of the first-step and third-step estimators. That is, the results
for the parameters 3; and 5 of the conditional mean model estimated in the first step, and
the results for coefficients 5] and /3] estimated using the quantile response variable, as a
solution of the nonlinear equation specified in the third step. The bias and RMSE of the
mean effect are calculated with respect to the parameter ; = 0.25 and 3, = 0. However,
we do not have a true parameter value of B(T) to which we can reference. The strategy we
employ is to determine pseudo-true parameter values via simulation using very large V.
Different n were also explored for the same data generating process. As can be seen from
Table 3.1, the values have already stabilized at the given sample size; hence we will use
the values at the sample size N = 20, 000. Albeit our strategy to calculate the pseudo-true
parameter values of the B (7)’s is simulation-based, it is done so in a spirit similar to the
notion of pseudo-true parameter values as defined in the context of model selection; see
Sawa (1978) and Vuong (1989).

Table 3.1: Average slope values at each quantile level for the Poisson GLMM (top-half of

table) and negative binomial GLMM (bottom-half of table). Results are based on M =
5000 simulations.

N | n | £(0.50) | £:1(0.75) | 5:(0.90)
Poisson
5 0.265 0.223 0.197
10000 | 10 | 0.265 0.223 0.197
25 | 0.265 0.223 0.197
5 0.265 0.223 0.197
20000 | 10 | 0.265 0.223 0.197
25 | 0.265 0.223 0.197
Negative Binomial
5 0.268 0.238 0.225
10000 | 10 | 0.268 0.238 0.225
25 | 0.268 0.238 0.225
5 0.268 0.238 0.225
20000 | 10 | 0.268 0.238 0.225
25 | 0.268 0.238 0.225
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Table 3.2 and Table 3.3 show the small sample performance of the estimators for 5; and
(B2 when y;, is distributed as ZIP with a constant proportion of zero inflation. We consider
i € {0,0.15,0.30}, corresponding to no zero inflation, moderate zero inflation, and high
zero inflation, respectively. The table shows that the methods perform quite well, yielding
negligible biases for the mean effect and quantile effects. For each combination of subjects
and time, the table shows small biases and excellent RMSE performance. Moreover, the
table highlights that the proposed approach is robust to zero inflation. The performance of
the proposed approach is stable as the proportion of zero inflation increases. The biases are
almost unchanged, while the RMSEs only slightly increase for the respective cases. When
we turn our attention to the case of ZINB shown in Table 3.4 and Table 3.5, we find similar
results. The methods continue to perform well, and the results do not seem to vary across

the different proportions of zero inflation.
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Table 3.2: Bias and RMSE of (3; estimators when the response is distributed as ZIP.

=05 =075 7 =0.90
N T | Method | po ' RMSE | Bias RMSE | Bias RMSE
Tt =0
0 s | TS [0002 0028 [-0001 0024 [-0002 0021
AT | 0003 0039 | 0.019 0040 | 0.025 0.044
0 10| TS 0000 0019 [-0001 0016 | -0.001 0014
OT | 0003 0027 | 0018 0031 | 0.025 0.037
50 s | TS | 0002 0021 [-0.001 0018 | -0.002 0016
OT | 0004 0029 | 0019 0032 | 0025 0.038
50 10| TS | 0000 0014 [-0001 0012 |-0.001 001
OT | 0004 0022 | 0019 0027 | 0025 0.033
Tt = 0.15
0 5 | TS [0003 0032 [-0001 0027 |-0002 0024
NT | 0028 0060 | 0027 0048 | 0.029  0.049
50 10| TS [000T 0022 [ 0002 0019 | 0.003 0017
NT | 0026 0045 | 0.026 0039 | 0.028  0.040
5o s | TS | 0003 0025 [-0.001 0021 |-0002 0018
OT | 0028 0049 | 0.028 0041 | 0.029 0.042
50 10| TS | 0001 0017 [ 0001 0014 |-0.001 0013
NT | 0028 0040 | 0027 0035 | 0.028 0.036
o = 0.30
0 5 | TS [0003 0036 [0002 0031 [-0.003 0027
OT | 0078 0116 | 0.041 0063 | 0.032 0.053
50 10| TS 0001 0024 [0001 0021 |-0.002 0019
NT | 0083 0103 | 0040 0054 | 0033  0.046
50 5 | TS | 0004 0028 [-0001 0024 |-0003 0021
T | 0084 0107 | 0.042 0056 | 0.034 0.048
50 10| TS | 0002 0019 [-0001 0016 | -0.001 0014
AT | 0086 0098 | 0.042 0049 | 0.034 0.041
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Table 3.3: Bias and RMSE of (3, estimators when the response is distributed as ZIP.

N T Method 7=0.5 7=0.75 7=0.90

Bias RMSE Bias RMSE Bias RMSE
Tt — 0
150 5 TS 0.000 0.016 0.000 0.013 0.000 0.012
JIT 0.000 0.018 0.000 0.016 | 0.000 0.017
150 10 TS 0.001 0.015 0.001 0.012 | 0.001 0.011
JIT 0.000 0.016 0.001 0.015 0.001 0.015
250 5 TS 0.000 0.013 0.000 0.011 0.000  0.009
JIT 0.000 0.014 | 0.000 0.013 0.000 0.014
250 10 TS 0.000 0.011 0.000 0.009 | 0.000 0.008
JIT 0.000 0.012 0.000 0.011 0.000 0.012
Tt = 0.15
150 5 TS -0.001 0.017 | -0.001 0.014 | -0.001 0.012
JIT -0.001 0.022 | -0.001 0.017 | -0.001 0.018
150 10 TS 0.000 0.016 0.000 0.013 0.000 0.011
JIT -0.001  0.019 | -0.001 0.016 | 0.000 0.016
250 5 TS 0.000 0.014 | 0.000 0.011 0.000 0.010
JIT 0.000 0.018 0.000 0.014 | 0.000 0.014
250 10 TS 0.000 0.012 0.000 0.010 | 0.000 0.009
JIT 0.000 0.015 0.000 0.012 | 0.000 0.012
e = 0.30

150 5 TS 0.000  0.019 0.000 0.016 | 0.000 0.014
JIT 0.000 0.036 0.000 0.021 0.000 0.019
150 10 TS 0.000 0.017 0.000 0.014 | 0.000 0.012
JIT -0.001  0.028 0.000 0.017 0.000 0.017
250 5 TS 0.000 0.015 0.000 0.012 | 0.000 0.011
JIT 0.000 0.028 0.000 0.016 | 0.000 0.015
250 10 TS 0.001 0.012 0.000 0.010 | 0.000 0.009
JIT 0.001 0.021 0.001 0.013 0.000 0.012
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Table 3.4: Bias and RMSE of 3; estimators when the response is distributed as ZINB.

=05 =075 7 =0.90
N T | Method | po ' RMSE | Bias RMSE | Bias RMSE
Tt =0
0 5 | TS [0004 0039 [-0001 0036 |-0.003 0034
OT | 0002 0052 | 0012 0048 | 0.012  0.052
0 10| TS [-0001 0028 [-0002 0025 |-0.003 0.024
OT | 0000 0038 | 0.011 0036 | 0012 0.038
50 s | TS | 0004 0031 [-0.001 0028 | -0.003 0027
OT | 0000 0040 | 0012 0039 | 0014 0.041
50 10| TS |-0001 0022 [-0001 0020 |-0.003 0019
AT | 0000 0029 | 0012 0029 | 0012 0.031
Tt = 0.15
0 5 | TS [0002 0049 [-0004 0045 0006 0.042
OT | 0024 0085 | 0017 0060 | 0013  0.058
0 10| TS 0000 0032 [-0002 0030 |-0.003 0028
OT | 0026 0062 | 0019 0044 | 0014  0.042
0 s | TS | 0006 003 |-0001 0033 |-0003 003
OT | 0027 0067 | 0.020 0047 | 0016 0.045
50 10| TS | 0001 0026 |-0001 0024 |-0.003 0022
OT | 0026 0051 | 0020 0037 | 0015 0.034
o = 0.30
0 5 | TS [0007 0053 [0001 0049 [-0.004 0046
OT | 0044 0117 | 0.034 0077 | 0020 0.064
0 10| TS 0003 0036 | 0000 0033 |-0.002 0031
OT | 0049 0088 | 0036 0060 | 0.020 0.047
50 s | TS | 0007 0041 [-0002 0037 |-0005 0036
OT | 0047 0094 | 0.033 0061 | 0.018 0.050
5o 10| TS | 0003 0029 [-0.001 0027 [-0.003 002
T | 0053 0077 | 0034 0053 | 0019  0.039
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Table 3.5: Bias and RMSE of (3, estimators when the response is distributed as ZINB.

=05 =075 7 =0.90
N T | Method | po ' RMSE | Bias RMSE | Bias RMSE
7'(‘1‘,5:0
0 s | TS [-0001 0019 [-0001 007 | -0.001 0015
AT | -0.001 0022 | -0.001 0020 | -0.001 0.021
0 10| TS [ 0000 0016 [ 0000 0014 [ 0000 0013
AT | 0000 0018 | 0000 0017 | 0000 0.018
50 s | TS | 0000 0014 [ 0000 0013 | 0.000 0012
OT | 0000 0017 | 0000 0015 | 0.000 0.016
50 10| TS | 0001 0012 [0001 00IT | 0.001 0010
OT | 0001 0014 | 0.000 0013 | 0.001 0.013
7Tit:0~15
0 5 | TS [0000 0021 [ 0000 0018 [ 0.000 0017
OT | 0000 0029 | 0000 0023 | 0000 0.022
0 10| TS [-000T 0017 [ 0000 0015 | 0.000 0014
T | -0.001 0024 | -0.001 0019 | -0.001 0.018
50 s | TS | -0001 0016 [-0.001 0014 | 0.000 0013
T | -0.001 0022 | -0.001 0017 | 0.000 0.017
50 10| TS | 0000 0013 | 0000 0012 | 0.000 00l
AT | 0000 0018 | 0.000 0014 | 0000 0.014
o = 0.30
o 5 | TS [0001 0023 [ 0001 0020 | 0001 0018
OT | 0002 0045 | 0.002 0026 | 0.001  0.024
0 10| TS 0000 0019 [ 0000 0016 | 0.000 0015
OT | 0000 0034 | 0000 0021 | 0.000 0.019
>0 s | TS | 0000 0018 [ 0000 0016 | 0.000 0014
AT | 0000 0035 | 0.000 0021 | 0.000 0.019
50 10| TS | 0000 0014 [ 0000 0012 | 0.000 0012
T | -0.001 0026 | 0.000 0016 | 0.000 0.015
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Table 3.6: Bias and RMSE when the response is distributed as ZIP under a varying propor-
tion of zeros.

7=0.5 7 =0.75 7 =0.90

N T | Method | o RMSE | Bias RMSE | Bias RMSE
o s | TS 0002 0032 [-0002 0027 |-0003 0.024
OT | 0026 0056 | 0.027 0047 | 0.028 0.048

50 10| TS 0001 0021 [ 0001 0018 | -0.00I 0016
NT | 0028 0046 | 0.027 0039 | 0.028 0.039

50 s | TS | 0004 0025 [-0001 0021 |-0002 008
NT | 0028 0048 | 0028 0041 | 0028 0.041

50 10| TS | 0001 0016 [-0.001 0014 [-0.001 0013
AT | 0.027 0039 | 0027 0034 | 0029 0037

Next, we consider a scenario with varying proportions of zero inflation. The response
variable y;; is now generated from the degenerate distribution at zero with probability 7

specified via the following logistic regression model:
lOgit(’]Tit) =% + Y1Wit (31 1)

where wy; are iid U(0, 1) random variables and y = —2 and 7; = 0.45. This model
specification generates a sequence of ;; that ranges over the interval (0.12,0.17) with an
average of (0.145. In a first step not reported to save space, these probabilities are estimated
using MLE.

Tables 3.6 and 3.8 show the small sample performance of the estimators for the slope
parameters when y;; is distributed as ZIP and ZINB and m;; is generated as in equation
(3.11). Once again, the tables show good performance of the estimator in each step. It
also shows that the proposed approach is robust to different models of zero inflation, as
indicated by the similar performance of the first-step and third-step estimators compared to
their performance under constant zero inflation. The bias of the estimator is small, and the
RMSE tends to decrease as the sample size increases, as expected.

These tables indicate that the model-aware approach yields negligible biases for the
mean effect and the three quantile effects. For each combination of /V (number of subjects)
and n (number of replicates), the values of biases are on the same scale for each of the
four estimators. A similar pattern is also observed for the corresponding RMSE values.
This highlights our approach’s empirical performance for both the mean structure and the

quantile levels is practically equivalent.
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Table 3.7: Bias and RMSE when the response is distributed as ZIP under a varying propor-

tion of zeros.

7=0.5 7 =0.75 7 =0.90

N T | Method | poc RMSE | Bias RMSE | Bias RMSE
0 5 | TS [ 0000 0017 [0000 0014 [ 0000 0012
AT | 0000 0022 | 0000 0018 | 0.000 0.018

0 10| TS [-0001 0015 [ 000 0013 |-0.001 0011
OT | -0001 0019 | -0.001 0015 | -0.001  0.016

>0 s | TS | 0000 0014 [ 0000 0011 | 0.000 0010
AT | 0000 0017 | 0.000 0014 | 0.000 0.014

5o 10| TS | 0000 0012 [ 0000 0010 [ 0.000 0009
AT | 0000 0015 | 0000 0012 | 0.000 0.012

Table 3.8: Bias and RMSE for 3; when the response is distributed as ZINB under a varying

proportion of zeros.

=05 7 =0.75 7 =0.90
N T | Method | po  RMSE | Bias RMSE | Bias RMSE
50 s TS | 0.005 0.046 | -0.001 0.042 | -0.003  0.040
JIT | 0027 0081 | 0019 0058 | 0015 0.056
50 10| TS [0000 003 [-000I 0028 [-0.003 0027
JT | 0024 0060 | 0019 0043 | 0015 0.041
50 s TS | 0.005 0.036 | -0.003 0033 | -0.005 0.032
JIT | 0024 0065 | 0019 0047 | 0014  0.045
550 10| TS | 0001 0025 [-0.001 0023 [ 0002 0.02I
JIT | 0026 0050 | 0020 0037 | 0015 0.033

Table 3.9: Bias and RMSE for 3, when the response is distributed as ZINB under a varying

proportion of zeros.

7=0.5 7 =0.75 T=10.90

N T | Method | po ' RMSE | Bias RMSE | Bias RMSE
0 s | TS 0000 0021 [0000 0018 |0.000 0017
OT | -0.001 0030 | 0.000 0.023 | 0.000 0.022

0 10| TS 0001 0017 [0001 0015 |0.001 0014
AT | 0001 0023 | 0001 0019 | 0.001 0.019

5o s | TS | 0000 0016 [0.000 0014 [0000 0013
AT | 0001 0023 | 0.000 0017 | 0.000 0.017

50 10| TS | 0000 0013 [0.000 0012 [ 0000 0011
OT | 0000 0018 | 0.000 0.014 | 0.000 0014
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Table 3.10: Bias and RMSE of two bootstrap routines when the response is distributed as
ZIP.

N T Pair-Block Multiplier
Bias RMSE | Bias RMSE
it = 0

150 5 | 0.001 0.036 | 0.000 0.033
150 10 | 0.001  0.023 | -0.001  0.022
250 5 | 0.002 0.027 | -0.002 0.024
250 10 | -0.001 0.018 | -0.002 0.018
it = 0.15
150 5 | 0.005 0.044 | 0.005 0.040
150 10 | 0.001  0.028 | 0.001  0.026
250 5 | 0.003 0.033 | 0.003 0.031
250 10 | 0.000 0.022 | 0.000  0.020
mi; = 0.30
150 5 | 0.002 0.051 | 0.010 0.046
150 10 | 0.002  0.032 | 0.004  0.029
250 5 | 0.004 0.037 | 0.007 0.035
250 10 | 0.000 0.025 | 0.003  0.023

Moreover, these tables highlight that the model-aware approach is robust to zero infla-
tion. The performance is stable as the proportion of zero inflation increases or changes.
The biases are almost unchanged, while the RMSEs only slightly increase for the respec-
tive cases. This shows that one can reasonably expect to get meaningful estimates of 3;(7)
in the presence of zero inflation, thus allowing one to convey practical interpretations about
the behavior of the sampled population at the 7" quantile in the presence of zero inflation.

We finally turn to confidence interval estimation by employing the bootstrap. A com-
parison of two bootstrap implementations, pair-block bootstrap and multiplier bootstrap,
reveals similar performance in Table 3.10 and Table 3.11. Hence, we focus on the multi-
plier bootstrap for confidence interval estimation.

Table 3.12 and 3.13 give the coverage probabilities for the 95% multiplier bootstrap
confidence intervals under the ZIP GLMM and the ZINB GLMM, respectively. Confidence
intervals are constructed by reporting the middle 95% of the multiplier bootstrap samples.
However, the empirical coverage probabilities in these tables are liberal relative to the
nominal level. This is noticeable as the amount of zero inflation increases, suggesting that

improvements could be sought through, for example, a bootstrap calibration (Loh, 1991).
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Table 3.11: Bias and RMSE of two bootstrap routines when the response is distributed as
ZINB.

N T Pair-Block Multiplier
Bias RMSE | Bias RMSE
Tt — 0

150 5 | 0.001 0.054 | 0.001 0.051
150 10 | 0.001 0.036 | 0.000 0.034
250 5 | 0.002 0.040 | 0.000 0.036
250 10 | -0.001 0.028 | -0.001  0.026
Tt — 0.15
150 5 | 0.001 0.064 | 0.004 0.058
150 10 | -0.001 0.042 | 0.001  0.038
250 5 | 0.001 0.048 | 0.000 0.044
250 10 | -0.001  0.033 | 0.000 0.029
it = 0.30
150 5 | -0.001 0.074 | 0.005 0.067
150 10 | -0.002 0.048 | 0.000  0.043
250 5 | -0.002 0.054 | 0.000 0.049
250 10 | -0.002 0.038 | 0.001  0.033

Table 3.12: Coverage probabilities for multiplier bootstrap confidence intervals for the
mean effect and quantile effects. The data were generated from a ZIP GLMM with results
based on M = 400 simulations with B = 200 bootstrap samples in each simulation.

n_ m | AMean) | 5:(05) | 51(0.75) | 1(09)
Dot = 0

150 | 5 0.895 0.898 0.900 0.900
150 | 10 0.918 0.918 0.905 0.915
250 | 5 0.922 0.925 0.925 0.925
250 | 10 0.938 0.930 0.940 0.930
post = 0.15
150 | 5 0.862 0.872 0.868 0.872
150 | 10 0.908 0.918 0.908 0.912
250 | 5 0.900 0.902 0.895 0.895
250 | 10 0.918 0.922 0.918 0.915
Po,it = 0.30
150 | 5 0.885 0.895 0.890 0.888
150 | 10 0.922 0.930 0.928 0.918
250 | 5 0.840 0.848 0.840 0.858
250 | 10 0.885 0.902 0.888 0.895
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Table 3.13: Coverage probabilities for multiplier bootstrap confidence intervals for the
mean effect and quantile effects. The data were generated from a ZINB GLMM with results
based on M = 400 simulations with B = 200 bootstrap samples in each simulation.

n_ m | AMean) | 5:(0.5) | 51(0.75) | $1(09)
Tt = 0

150 | 5 0.882 0.870 0.875 0.852
150 | 10 0.882 0.890 0.885 0.872
250 | 5 0.865 0.870 0.858 0.845
250 | 10 0.900 0.910 0.910 0.892
Tt — 0.15
150 | 5 0.852 0.858 0.848 0.840
150 | 10 0.890 0.895 0.908 0.898
250 | 5 0.895 0.888 0.882 0.870
250 | 10 0.862 0.865 0.862 0.862
mie = 0.30
150 | 5 0.872 0.872 0.875 0.855
150 | 10 0.868 0.872 0.860 0.862
250 | 5 0.902 0.888 0.892 0.878
250 | 10 0.892 0.895 0.898 0.885
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3.5 An Application using the RAND Health Insurance Experiment

Using data from Deb and Trivedi (2002), this section investigates how medical care uti-
lization measured by the number of visits to a medical doctor (MD) is affected by health
insurance plans, demographic characteristics, and health status of patients. Over 30% of
the observations are zeros, motivating the use of the proposed approach. From a health pol-
icy viewpoint, it is important to understand how policies affect the participants who need
health care. Hence, a distinction between non-users and users helps learn the effect of pol-
icy more precisely. Overall, the conditional quantile functions and effects reported in this
section contribute to an informative discussion that goes beyond mean effects. We find that
the effect of insurance variables and demographics vary across the conditional distribution
of medical care utilization, while revealing interesting differences with respect to results

obtained by existing methods that ignore subject heterogeneity and zero inflation.

Data

In the 1970s, the RAND Corporation initiated the 15-year, multimillion-dollar social exper-
iment in health care research. This remains the largest and longest controlled experiment
on health policy in U.S. history. The RAND Health Insurance Experiment (RHIE) was
originally designed to study how multiple factors affected the usage of medical care and
the corresponding participants’ health consequences. During the study, data were collected
from participants of 2823 families, where each family was enrolled in the insurance plans
for 3 or 5 years.

In this paper, we analyzed one subset of data from the RHIE as in Deb and Trivedi
(2002), where the participants were only enrolled in the fee-for-service plans. This partic-
ular dataset consists of 5908 participants with 20,186 observations in total: each participant
has 3 or 5 observations; each observation corresponds to data collected for the participant
in a given year. The response variable MDU is the yearly count of outpatient visits to physi-
cians, which represents the health care utilization for the experimental subject for a specific
year. The insurance variables were randomly assigned and include a coinsurance rate (LC),

an indicator variable for plans with a deductible (IDP), a maximum dollar-expenditure
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function (FMDE), and a participation-incentive payment function (LPI). Other covariates
include factors representing the participants’ socioeconomic status, demographic informa-
tion, and health status. For detailed variable definitions and summary statistics, see Table
3.17 in the Appendix.

The use of a ZI count model is also supported by some features of the RHIE. As men-
tioned in Section 3.1, the distribution of the response shows medium-to-high proportion
of zero utilization. Moreover, while a number of people are healthy during the period and
they have no need to visit hospitals at all, a number of patients are unhealthy and have the
need to visit physicians. Depending on the severeness and the practical considerations (for
example, the possible payment to the health care service), some patients might not go to
the physicians while others have multiple visits. Under this circumstance, a random zero

count could be observed but a positive integer-valued count is also possible.

Model specification

In the first step, we model the conditional mean considering four different specifications:
Poisson model, negative binomial model, ZIP model, and ZINB model. Due to the exis-
tence of both zero inflation and a long tail to the right, the ZINB model provides the best
fit. This is supported by the evidence from the information criterion and an assessment of
the randomized quantile residuals (Dunn and Smyth, 1996).

We considered four count regression models: Poisson regression model, ZIP regression
model, negative binomial regression model, and ZINB regression model. Model compar-
isons via the AIC values are consistent with that based on BIC values; results are provided
in Table (3.14). Table (3.14) shows that the ZINB regression models provide a better fit.

Table 3.14: Model comparisons via AIC/BIC values with degree of freedoms (df) in the
parentheses.

Model AIC(df) BIC(df)
Poisson Regression | 85757.14(19) | 85907.49(19)
ZIP Regression | 84418.78(20) | 84577.04(20)
NB Regression | 80763.38(20) | 80921.63(20)
ZINB Regression | 80548.38(26) | 80754.11(26)
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The randomized quantile residuals under each model provide a visual illustration for
GOF assessment. A comparison reveals huge differences among models. Clearly, the
Poisson regression model shows the worst fit because it fails to capture the presence of
zero-inflation and certain large values. ZIP regression shows some improvements over
Poisson regression but still fails to tackle the overdispersion. On the other hand, both
negative binomial regression and ZINB regression provide a satisfactory fit to the data, as

indicated by the randomized quantile residual plot in Figure 3.2.

Poisson ZIP
8- . 759 “e
- J
[
J
14
5.0-
o 4 )
< <
g § 25-
=] =]
o . &
K K
[=N [=N
£ £ 00-
© ©
n n
~4-
JI -255-
4 2 0 2 4 -4 2 0 2 4
Theoretical Quantiles Theoretical Quantiles
negative binomial ZINB
(oo
25-
2-
n n
< <
g g
e S 00-
o 0- (o4
K K
[=N [=N
£ £
& &,
2 -25
-4 -2 0 2 4 -4 -2 0 2 4
Theoretical Quantiles Theoretical Quantiles

Figure 3.2: Randomized quantile residuals of fitted models. First row shows results for
Poisson regression (left) and negative binomial regression (right); second row shows results
for ZIP regression (left) and ZINB (right).

To test for the presence of zero-inflation, we conducted a boundary-corrected LR test.
Results for three tests are reported in Table 3.15. All the tests show evidence for the pres-
ence of zero-inflation, and ZINB regression gives the best fit based on these results.

Since all the evidence supports the ZINB regression model, we will focus on the ZINB
structure hereafter. We then estimate a ZINB count model for the number of visits to a
medical doctor considering the vector of treatment variables and covariates used by Deb

and Trivedi (2002). We estimate 7;; as a function of a covariate vector w;; that includes
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Table 3.15: Results of the boundary likelihood ratio test. All p-values are significant at
0.001

Models tested Test statistic | Results
ZIP versus Poisson 1340.4 ZIP
ZINB versus negative binomial 227.0 ZINB
ZINB versus Z1P 3882.4 ZINB

Table 3.16: Estimated regression coefficients for the RAND Health Insurance Experiment

dataset.

Variables Mean 7=0.50 7=0.75 7=0.90

LC -0.059 (0.020) -0.109 (0.006) -0.051 (0.006) -0.046 (0.007)
IDP -0.165 (0.038) -0.281 (0.013) -0.151 (0.013) -0.142 (0.017)
LPI 0.013 (0.006)  0.024 (0.002) 0.012 (0.002)  0.011 (0.002)
FMDE -0.020 (0.012) -0.026 (0.004) -0.019 (0.003) -0.018 (0.003)
LINC 0.079 (0.014)  0.140 (0.005)  0.085 (0.003)  0.063 (0.004)
LFAM -0.125 (0.028) -0.126 (0.019) -0.119 (0.012) -0.111 (0.011)
AGE 0.001 (0.001)  0.001 (0.001)  0.000 (0.001) 0.001 (0.001)
FEMALE 0.411 (0.036) 0.569 (0.017) 0.377 (0.020)  0.343 (0.020)
CHILD 0.359 (0.050)  0.390 (0.052) 0.340(0.045) 0.316 (0.039)
FEMCHILD | -0.383 (0.053) -0.395 (0.029) -0.369 (0.029) -0.339 (0.025)
BLACK -0.538 (0.050) -1.160 (0.018) -0.490 (0.014) -0.438 (0.022)
EDUCDEC | 0.023 (0.006) 0.042 (0.002) 0.020 (0.002) 0.019 (0.002)
PHYSLIM 0.297 (0.046)  0.427 (0.023) 0.275(0.017)  0.243 (0.018)
NDISEASE | 0.028 (0.002) 0.044 (0.001) 0.025 (0.001)  0.023 (0.001)
HLTHG 0.019 (0.031) 0.013(0.015) 0.020 (0.011)  0.014 (0.009)
HLTHF 0.208 (0.058)  0.249 (0.018) 0.194 (0.017)  0.177 (0.018)
HLTHP 0.537 (0.115)  0.802 (0.042) 0.514 (0.041) 0.448 (0.038)

LC, LPI, an indicator for children under the age of 18, an indicator for race, and the number
of years of education of the head of the household. Moreover, the conditional mean and
conditional quantile functions are augmented by individual-specific intercepts. Modeling
individual-specific intercepts as random effects is consistent with the use of experimental
data. A vital advantage of the RHIE data is that insurance plans were randomly assigned,
and, consequently, the treatment variables are not correlated with individual-specific latent

characteristics.
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Empirical Results

Table 3.16 presents the conditional mean effects and quantile effects corresponding to in-
surance, demographics, and health status parameters. The first column presents point es-
timates for the mean parameters, and the last three columns show results for the quantile
parameters estimated at the 0.5, 0.75, and 0.90 quantiles. The table also includes standard
errors obtained by employing the bootstrap.

The point estimates corresponding to the first step shown in column 1 of Table 3.16
is similar to the estimates in Table 4 in Deb and Trivedi (2002). However, the estimates
presented here are estimated more precisely. The sign of the coefficients is consistent with
expectations and standard economic theory. For instance, the coefficient of LC can be
interpreted as a price effect, and it is negative and significant at standard levels. We expect
the effect of LC on the count variable to be negative because the patient’s cost is higher
as the rate of coinsurance increases. Also, as expected, the number of visits to an MD
increases with the natural logarithm of income (LINC).

When we examine the effects across quantiles, we see some interesting differences
in LC, LINC, and the indicator for race of the head of the household (BLACK). We find
that the mean effect of these variables is quantitatively similar to the estimated effects at the
0.75 and 0.90 quantiles, revealing the importance of distributional effects and that the mean
effect offers an incomplete description of the effect of some insurance, demographics, and
socioeconomic variables. To examine this claim in more detail, we estimate the model as
in Table 3.16 considering now 13 equally spaced quantiles 7 in the interval [0.3,0.9]. We
then concentrate our attention on some of the variables considered in Table 3.16.

Figure 3.3, Figure 3.4 and Figure 3.5 illustrate the estimated mean effects (dashed lines)
and quantile effects (continuous lines) obtained from our proposed method, across all se-
lected quantiles. In order to examine the importance of accommodating for the large num-
ber of zeros in the RHIE, we also report estimates obtained by the jittering approach of
Machado and Santos Silva (2005) and Harding and Lamarche (2019a). The figure shows
some interesting new findings. First, we find that the health insurance option associated

with coinsurance (LC) significantly reduce medical care utilization, particularly among
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Figure 3.3: Estimated regression coefficients, ,BT, for policy variables, socio-economic
variables and demographic variables. The dotted line is the estimated value of 3 for the
mean structure, obtained by ZI GLMM model in the first step with ZINB specification
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those with conditionally low number of visits to a medical doctor. While the effect at the
mean is -0.05, the effect at the 0.3 quantile is about three times smaller, revealing increas-
ing price sensitivity at the lower tail. Interestingly, we also find a significant black-white
gap in terms of utilization, and the estimates reveal that the gap widens as we move from
the center of the conditional distribution to the lowest quantiles. Lastly, the comparison
of the quantile effects for LINC and BLACK obtained by different methods reveal non-
negligible differences arising from simultaneously addressing subject heterogeneity and

zero inflation.

3.6 Discussion

The primary aim of this work is to study the identification and estimation of conditional
quantile functions for discrete responses with zero inflation in the longitudinal data setting.
Our approach uses a continuous approximation to the discrete distribution for the count
model under consideration. This approach has been developed in Ilienko (2013b) and
Padellini and Rue (2019a), with the latter leveraging this approximation to perform quan-
tile regression for discrete data. We extended to the longitudinal setting where the count
responses are also subject to zero inflation. Another important distinction from Padellini
and Rue (2019a) is that we first consider estimation of the conditional mean rather than
considering a quantile regression model. This critical innovation allows consistent estima-
tion of a class of models with subject heterogeneity, without restrictions on the minimum
number of repeated observations per subject.

The class of models used in our first step is ZI GLMMs, which affords the practitioner
considerable flexibility regarding the structural form of the model for their application. The
class of ZI GLMMs is, of course, predicated on classic GLMs, which formally require the
dependent variable to be from a distribution in the exponential family. However, the ZI
GLMMs are much broader in that one can model the parameters in a ZI model (includ-
ing the mixing proportion) as a function of covariates. This includes distributions that are
not part of the exponential family, like the negative binomial with an unknown dispersion
parameter. Having this broad class of distributions at our disposal allows for practical

exploration of reasonable and meaningful structures to consider for the conditional mean
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structure for the application at hand. MLE is accomplished using the Laplace approxi-
mation to calculate the marginal likelihood, which can be performed using the R package
glmmTMB (Brooks et al., 2017).

The BLUEs and BLUPs from our estimated ZI GLMM are used in our second step to
obtain a conditional quantile variate as a solution of a nonlinear moment condition defined
for the conditional mean. The material presented in Section 3.2 shows that the solution
exists and is unique. Then, a flexible NLMM is employed for a model of conditional
quantile responses. We demonstrated through extensive simulation work in Section 3.4
that the proposed estimator has satisfactory performance to estimate quantile effects under
different degrees of zero inflation.

The efficacy of our procedure is highlighted by analyzing data from the RAND Health
Insurance Experiment. While these data have been analyzed in the literature using count
regression models, we have provided a thorough examination of quantile effects while
capturing subject heterogeneity and the fact that the data are longitudinal and subject to
zero inflation. Our analysis provides a more nuanced view that can inform health policy
experts to understand how specific policies affect the participants who need health care.
Overall, the empirical results obtained for this data analysis, combined with the extensive
simulation results, suggest the benefit of our more sophisticated techniques to understand

quantile effects when modeling ZI longitudinal count responses.

3.7 Appendix
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Chapter 4 COMBINE Study

4.1 Introduction

As highlighted in the preceding chapters, we proposed a novel modeling strategy for char-
acterizing the conditional quantiles of count data. Our three-step method is able to handle
both zero-inflation and over-dispersion in the data; furthermore, the method is also appli-
cable in longitudinal settings.

In this chapter, we summarize our method with an illustrative example for alcohol de-
pendence treatment. This application uses data from the Combined Pharmacotherapies
and Behavioral Interventions (COMBINE) Study. The main goal is to investigate how
combinations of medical therapies and behavioral interventions affect alcohol dependency,
measured by average number of daily drinks, while accounting for demographic and so-
cioeconomic variables. In particular, it is important to understand how these treatments
affect patients with different degrees of alcohol dependency, and how these effects vary
over time. Hence, a quantile count regression model for longitudinal data can help charac-

terize the treatment effects more precisely.

4.2 Data

From January 2001 to January 2004, the National Institute on Alcohol Abuse and Alco-
holism sponsored a randomized controlled trial across 11 US academic sites. The main
goal was to study whether the efficacy of certain medications for alcoholism can be im-
proved with specialist intervention. Two medications, naltrexone and acamprosate, were
used for medical therapy. Certified alcoholism treatment specialists were employed to pro-
vide specialist care and intervention.

A total of 1383 volunteers, all of whom were diagnosed with primary alcohol depen-
dence, were admitted into this trial. They were randomly assigned to one of nine groups
to receive one combination of treatments over 16 weeks. Eight of these nine groups re-

ceived some medications, while the ninth group did not. The medication is one of placebo
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pills, naltrexone, acamprosate or both drug. One set of these four groups received ad-
ditional specialist treatment known as combined behavioral intervention (CBI), while the
other four groups only took the respective medications. The ninth group, which did not
receive medication, only received CBI during the 16 weeks. Information were collected at
the initial date before the treatment (week 0), during the treatment (week 8 and week 16),
6 months after the initial date (week 26), 12 months after the initial date (week 52) and
12 months after the conclusion of the treatment (week 68). For detailed description of the
study design and assessment, see Anton et al. (20006).

In this chapter, we analyze a specific subset of data from the COMBINE study. This
particular dataset consists of 1240 subjects with 5734 observations in total. Although
the original data has 6 observations for each subject, some observations contain missing
records or errors. Hence, the dataset we analyze contains less than 6 observations for some
subjects. The response variable (MEAN) is the average number of daily drinks, which is
treated as a count. One standard drink is defined to be 0.5 oz of absolute alcohol, or 10 oz
of beer, or 4 oz of wine, or 1.0 oz of 100-proof liquor (Anton et al., 2006).

Originally, the main predictors of interest are the categorical variables for the nine
treatments. However, evidence from existing literature (Anton et al., 2006; Greenfield et al.,
2010; Zweben et al., 2008) found no difference across these nine treatment groups. Hence,
to focus on the illustration of our application, we collapsed the 9 groups into 4 groups: the
first group (Treatment 0) is the same as the original group 1, in which participants only
received placebo pills without CBI; the next group (Treatment 1) includes the previous
group 2-4, in which participants received some medications without CBI; the original group
5-8 became a new group (Treatment 2), in which participants received both medications
and CBI; the last group (Treatment 3) is the same as the original group 9 (CBIl-only).
Furthermore, an indicator variable for post-treatment effect was included in the analysis.
The “post-treatment” corresponds to measurements in week 26, 52 and 68, as opposed to
measurements before and in week 16.

Other predictor variables include demographic information for gender(FEMALE), an
indicator variable for marital status (Married) and Race/Ethnicity. Socioeconomic covari-

ates include the years of education one received (EduYear) and an indicator variable for the
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Figure 4.1: Average number of daily alcohol drinks in the COMBINE study data.

current working status (WORK). For detailed variable definitions and summary statistics,
see Table 4.5 in the Appendix.

The proportion of zero drinks per day exceeds 35% for this particular dataset. More-
over, the count response distribution has a long tail extending to over 40 drinks per day.
While the median is 2 drinks per day, the mean is 3.39. As in previous chapters, all these
exploratory results show the need for a flexible approach that addresses zero-inflation, over-
dispersion and subject heterogeneity.

The use of a ZI count model is obvious from Figure 4.1 and exploratory analysis. As
mentioned in Section 4.1, the distribution of the response shows medium-to-high propor-
tion of zero drinks per day. Moreover, while some treatments might be highly efficient for
some subjects during specific periods, such that these people are not drinking at all dur-

ing the period, a number of patients are unhealthy and might relapse. Depending on the
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severeness of their addictions to alcohol and the received treatments, some patients might
not want to drink while others have multiple drinks per day. Under this circumstance, a
random zero count could be observed, but a non-zero count is also possible This is also

supported by the fact that all of the COMBINE Study participants are alcoholics.

4.3 Model specification

In the first step, we model the conditional mean in a similar fashion. Four different speci-
fications, Poisson model, negative binomial model, ZIP model, and ZINB model, are fitted
to the data. Due to the existence of both zero inflation and a long tail to the right, the ZINB
model provides the best fit. This is further supported by BIC and randomized quantile
residuals (Dunn and Smyth, 1996).

We considered four count regression models: Poisson regression model, ZIP regression
model, negative binomial regression model, and ZINB regression model. Model compar-
isons via the AIC values are consistent with those based on BIC values; results are provided
in Table 4.1. Table 4.1 shows that the ZINB regression models provide a considerably bet-

ter fit.

Table 4.1: Model comparisons via AIC/BIC values with degree of freedoms (df) in the
parentheses.

Model AIC(df) BIC(df)
Poisson Regression | 31544.41(15) | 31644.22(15)
ZIP Regression | 26930.53(18) | 27050.31(18)
NB Regression | 25942.72(16) | 26049.19(16)
(19) (19)

ZINB Regression | 25654.54(1 25780.97

The randomized quantile residuals under each model provide a visual illustration for
GOF assessment. A comparison reveals huge differences between models. Clearly, the
Poisson regression model shows the worst fit because it fails to capture the presence of
zero-inflation and certain large values. ZIP regression shows some improvements over
Poisson regression but still fails to tackle the overdispersion. On the other hand, both
negative binomial regression and ZINB regression provide a satisfactory fit to the data, as

indicated by the randomized quantile residual plot in Figure 4.2.
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Figure 4.2: Randomized quantile residuals of fitted models. First row shows results for
Poisson regression (left) and negative binomial regression (right); second row shows results
for ZIP regression (left) and ZINB (right).

To test for the presence of zero-inflation, we conducted a boundary-corrected LR test.
Results for three tests are reported in Table 4.2. All the tests show evidence for the presence

of zero-inflation, and ZINB regression gives the best fit based on these results.

Table 4.2: Results of the boundary likelihood ratio test. All p-values are significant at 0.001

Models tested Test statistic | Results
ZIP versus Poisson 4619.8 ZIP
ZINB versus negative binomial 294.2 ZINB
ZINB versus Z1P 1278 ZINB

Since all the evidence indicate that the ZINB regression model provides the best fit,
we focus on the ZINB structure for the following steps. We modeled the average number
of daily drinks with the vector of treatment variables plus some covariates used by Anton

et al. (2006). We estimate 7;; as a function of a covariate vector w;; that includes gender
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Table 4.3: Estimated slopes and standard errors for the ZINB model (mean structure).

Variables Estimates(SE)
Female -0.469(0.050)
Married -0.102(0.044)
Race(Black) -0.169(0.088)
Race(Other ) 0.175(0.108)
EduYear -0.043(0.008)
Treatment1 -0.085(0.079)
Treatment2 -0.142(0.076)
Treatment3 -0.019(0.097)
Work -0.373(0.050)
PostTreatment -0.160(0.079)
Treatment]l x PostTreatment | -0.189(0.093)
Treatment2 x PostTreatment | -0.169(0.089)
Treatment3 x PostTreatment | -0.180(0.116)

(Female), current employment status (Work) and an indicator for measurements taken after
the treatment period (Week 26, 52 and 68). Existing research (Edwards and Gross, 1976;
Anton et al., 2006) on alcohol dependency has found evidence that females are less likely
to become alcoholic, and that subjects with stable employment are less prone to alcohol
dependency. Hence, it is reasonable to include the indicator variables for gender and current
employment status for the logistic regression part. Also, patients show different drinking
patterns after receiving these treatment combinations. As a result, the indicator variable for

post-treatment is included for the model.
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4.4 Empirical Results

Table 4.3 presents the conditional mean effects. At the mean level, females and married
participants tend to drink less on a daily basis. The race and ethnicity show some difference
across groups, however, these differences are not statistically significant. Education and
current employment status are very significant predictors for the average number of drinks
per day, which agrees with current research (Anton et al., 2006; Greenfield et al., 2010);
more specifically, participants who have received longer years of education and who are
currently working are drinking less after receiving the treatment. The treatments and their
interactions with post-treatment indicator all have negative signs. This indicates that the
therapies show some efficacy in reducing the alcohol dependency, although the efficacy
is not strong. One particular treatment combination, Treatment 2 in our notation, shows
the greatest efficacy in reducing daily drinks and is highly significant in our model. This
treatment combination includes the three groups that received some medication therapy
(naltrexone, acamprosate or both) and CBI. This is similar to the findings in Anton et al.
(2006) and emphasizes the importance of combining medication therapy with behavioral
intervention for the best results.

Table 4.4 presents the conditional quantile effects. The table presents point estimates
for the selected predictors with SEs in the parentheses. SEs were obtained by the multiplier
bootstrap with 200 bootstrap samples. Table 4.4 includes seven equally spaced quantiles 7
in the interval [0.3, 0.9]

The point estimates corresponding to the third step show some changes compared to
the estimates in Table 4.3. However, the estimates presented here are generally close to the
estimates at the mean level. The signs of the coefficients are the same and the ranges of the
values are consistent. This is uncommon from a QR viewpoint, where quantile estimates
usually change as the quantile level 7 changes. The exceptions are gender variable (Fe-
male), years of completed education (EduYear) and current employment status (Work), as
we can see some stable changes across the quantiles. The estimated slopes for these three
predictors are all negative, suggesting similar results as for the mean level. For example,

females tend to drink less per day. Their effects are greater at the lower quantile than at
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the higher quantile; that is, as the quantile level 7 increases, the estimated regression coef-
ficients move towards zero. In other words, their effects diminish for alcoholics who drink
considerably more. This calls for attention to patients who drink heavily on a daily basis,
as heavy alcohol dependency is dangerous and difficult to treat.

It is also worth noting that these three variables are the most significant predictors for
the mean model, where as other predictors show small-to-none significance. This finding is
interesting as in the QR settings, variables might show different patterns compared to those
in the mean regression setting. The fact that the mean effect of these variables is quantita-
tively similar to the estimated effects at the quantiles indicates the minimal importance of
the variables. This holds not only for the average, but also for the complete distribution.

Figure 4.3 illustrate the estimated mean effects (dashed lines) and quantile effects (con-
tinuous lines) for the demographic variables. Figure 4.4 illustrate the estimated mean ef-
fects (dashed lines) and quantile effects (continuous lines) for the socio-economic vari-
ables. Figure 4.5 illustrate the estimated mean effects (dashed lines) and quantile effects
(continuous lines) for the therapy variables and Figure 4.3 illustrate those for the inter-
action terms. The figures provide a visual illustration of Table 4.3 and Table 4.4. As we
discussed, we find that the gender, years of completed education and current working status
reduce daily number of drinks, particularly among those with slight alcohol consumption.
This suggests the importance of prevention for heavy alcohol dependence, as policies tend
to work the best when patients are not drinking too much. The same conclusion also holds
for other variables, although the effects for the heavy drinkers seem to be similar to that of

the rectified patients.

4.5 Discussion

In this chapter, we provided an empirical case study using data from the COMBINE Study.
The purpose is to illustrate our method for count data with zero-inflation and subject het-
erogeneity. The analysis helps provide new insights into alcohol dependency and therapies.

Since the response variable is a count, the use of a count regression model is suitable.
Furthermore, we illustrate our modeling strategy that includes variable selection, model

comparison and diagnostics. These provide valuable assessments for the validity of the
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Figure 4.3: Estimated regression coefficients, BT, for demographic variables. The dotted
line is the estimated value of 3 for the mean structure, obtained by ZI GLMM model in the
first step with ZINB specification

124



EduYear

—0.1 -

—0.02 -

—0.2 -

—0.03 -

—0.3 -

—0.04 -

WORK

—0.4 -

—0.05 -

—0.5 -

—0.06 -

—_o0.6-
—0.07 = . . . . . .
o.a o.6 o.8 o.a 0.6 o.8

Method [l Three—Step Estimator
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The dotted line is the estimated value of 3 for the mean structure, obtained by ZI GLMM
model in the first step with ZINB specification

final model. Our analysis found similar estimates between the mean structure and the
quantile functions, except for the highly significant predictors. This indicates the effects
do not vary across the conditional distribution, which is not commonly observed in quan-
tile regression analyses; on the other hand, this pattern could help inform more advanced
experimental design for similar future studies.

Based on our analysis, prevention of heavy drinking is important as the effects of poli-
cies and treatments are stronger. When patients are not heavy alcoholics and do not drink
too much, relatively speaking, the medication and behavioral intervention tend to work
better; however, if patients become heavily alcohol dependent and cannot control their al-
cohol consumption, the efficacy of therapy diminishes. For the best outcomes, our model

suggests the combination of medication and behavioral care at the same time.

4.6 Appendix
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Chapter 5 Discussion and Future Study

5.1 Discussion

Chapter 1 of this dissertation provided a comprehensive review of count regression models
and QR model. In particular, we focused on the ZI regression model as our research’s
main focus was on data with zero-inflation. We then discussed the literature for the ZI
regression model in longitudinal settings, while the current literature on QR for count/ZI1
data is almost minimal.

Chapter 2 formally introduced our three-step model for characterizing the conditional
quantiles of count data and ZI data. The first step models the count responses’ conditional
mean structure, where all existing models can be incorporated into our framework. The
class of GLMMs and ZI GLMMs are effective classes of models for this step, based on
parametric model fitting. Two main distributions, Poisson and negative binomial, are good
choices for the count data. Their extensions to the ZI settings, ZIP model and ZINB model,
provide reasonable estimates under the circumstance of zero-inflation. The second step uti-
lizes interpolation to make the transition from the mean structure to the quantile functions.
This step leverages the connection between a discrete distribution and its continuous coun-
terpart. Finally, the third step regresses the quantiles on the independent variables. This
provides a novel estimation routine to investigate the effects of predictors on the dependent
variable’s conditional quantiles. Inferential considerations based on presumed asymptotic
theory as well as bootstrap methods were given to compliment the estimation procedure.
Non-parametric bootstrap, such as the multiplier bootstrap (also known as weighted boot-
strap), is straightforward. Methods for model selection and GOF assessment are also pro-
vided in this chapter. Extensive simulations were conducted to check the performance of
the proposed method. An empirical application to the OHIE data was provided to illustrate
the application to real data.

In Chapter 3, we extended our method to longitudinal settings, where repeated mea-

surements were recorded for the same unit. We provided computational details of such
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an extension, emphasizing subject heterogeneity while accounting for zero-inflation and
over-dispersion. An extensive simulation study also supported our method’s performance.
We analyzed data from the famous RAND Health Insurance Experiment to provide new
insights for the modeling strategies.

Chapter 4 discussed another empirical analysis for alcohol dependency, which is of
great practical importance. By applying our method to the COMBINE Study data, we
provided a novel and comprehensive characterization for policy-making and public health.
Given the economic and social costs caused by heavy drinking, our analysis is informative
for the disease of alcoholism.

In summary, we proposed a three-step approach for modeling the conditional quantiles
and measuring the effects of predictor variables on multiple quantiles’ responses. This
novel method works for regular count data and extends to ZI data and longitudinal settings.
Our approach is parametric in the first step, where mean regression models such as the
Poisson regression model and ZIP regression model can be applied directly. Computation-
ally, we found modeling via the R package g1mmTMB (Brooks et al., 2017) to be convenient
and powerful since the most popular choices of distributions were already implemented in
this package.

Parametric models are usually less robust compared to semi-parametric models or non-
parametric models. Hence, it is worth noting that semi-parametric or non-parametric meth-
ods can carry out our approach’s first step. On the other hand, model diagnostics and valida-
tion are important for our approach. They help check the parametric structures, determine
the best model fit, and improve the estimation performance by decreasing the bias and
variance. As the simulation results show, a model’s performance is excellent when a good
model is fitted to the data. Hence, we emphasized the importance of model checking via
different techniques, such as information criterion and residuals analysis, and incorporated
them as an essential part of our modeling strategy. Based on our study, information criteria,
such as AIC or BIC, are useful for variable selection and model comparison. Boundary LR
tests can be used to test for the presence of zero-inflation and over-dispersion, thus help-
ing researchers determine which model to use. This is very useful when, for example, a

comparison between a negative binomial regression and a ZINB regression is to be made.
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Another model checking tool is the randomized quantile residuals (Dunn and Smyth, 1996),
which provides a straightforward visualization for illustration.

Our approach then uses interpolation of the discrete distribution for the count model
under consideration. The resulting distribution is a continuous counterpart of the selected
discrete distribution. Certain important features are the same between the two versions.
Firstly, the canonical parameters are the same for both the discrete version and the continu-
ous version. For example, the mean (and variance) parameter A from a Poisson distribution
stays the same when interpolation introduces the corresponding continuous Poisson distri-
bution. This is the reason why the estimation in the first step is useful, since the estimated
parameters are always the same for the different versions of distribution. Secondly, the
quantile functions for both versions match at integer values. Given that the observed val-
ues are always counts, this feature sets up the transition to the quantile estimation in the
third step.

The final step uses the NLS estimation for the effects of predictors on the quantiles of
the response. The NLS method provides a flexible routine to estimate the specified func-
tional forms. For the longitudinal settings, an extension of NLS estimation that includes
random effects is utilized. In our application, we consider individual intercepts for subject
heterogeneity, but NLS can also handle more complicated model specifications. Another
point worth noting is that the NLS method requires the specification of a functional form.
For our study, an exponential function is used as it is the assumed form in the QR literature.
This assumption can be relaxed if a non-parametric routine is used in the third step, and
this can be a potential extension for future study.

The aforementioned framework works for cross-sectional data and longitudinal data.
The efficacy of our procedure is highlighted by applications to the Oregon Health Insurance
data, the RAND Health Insurance Experiment data and the COMBINE Study. By capturing
the specific patterns of the data, our analyses provide better fits and yield more accurate

characterization.
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5.2 Future Study

Given the limitations of our study, we proposed the following directions for research study.
These points are of great importance and can be interesting topics on their own.

The first point we have is to derive more comprehensive asymptotic results regarding
the three-step estimator. This is important for researchers to better understand the prop-
erties of three-step estimator, and efficient for inferences. In Chapter 2, we derived some
asymptotic results for the sampling distribution of the estimator; however, given the com-
plexity of the problem, we turned to bootstrap for the inferences, including the estimation
of SEs and the construction of confidence intervals. Bootstrap methods, albeit straightfor-
ward and easy to implement, are computationally expensive. If researchers need to analyze
a large dataset, a good direction is to employ asymptotic theories. In their separate liter-
ature, asymptotic results under certain circumstances have been derived for the methods
in the first step (Gan, 2000) and the third step (Wu, 1981; Kundu, 1993). These resources
provide a good foundation for the asymptotic theories of our models.

The other potential direction for future study is to relax the parametric assumption by
introducing more robust estimation. This can be accomplished by using semi-parametric
or non-parametric estimations in the first step and the third step. Given the flexibility of
our strategies, this extension is actually natural and easy to implement. The main obstacle,
however, is in the second step. When no assumption is made on the distribution, the con-
nection between the mean structure and the quantile structure is unclear. To overcome this
difficulty, one potential direction is to combine the first two steps into one integral step,

where the conditional quantiles can be estimated directly.

Copyright® Xuan Shi, 2021.
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