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FACTOR IS RELAYED THROUGH MYELOID ZINC FINGER 1 IN A 
RAT MODEL OF STROKE
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Ajmo Jr.3, Keith R. Pennypacker4,5,*
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Lexington, KY, 40536-0509, USA.

2Department of Molecular Medicine, University of South Florida, Tampa, FL, USA.

3Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 
USA.

4Department of Neurology, University of Kentucky, 741 S. Limestone BBSRB Room B457, 
Lexington, KY, 40536-0509, USA.

5Department of Neuroscience, University of Kentucky, Lexington, KY, USA.

Abstract

The aim of this study was to determine whether leukemia inhibitory factor (LIF) exerts its 

neuroprotective effects through signal transduction of the transcription factor myeloid zinc 

finger-1 (MZF-1). According to the hypothesis of this study, MZF-1 mediates LIF-induced 

neuroprotective signaling during ELVO through increased expression and transcriptional activity. 

To determine the in vivo role of MZF-1 in LIF-induced neuroprotection, we used Genomatix 

software was used to MZF-1 sites in the promoter region of the rat superoxide dismutase 3 

(SOD3) gene. Stroke was induced via middle cerebral artery occlusion, and animals were 

administered PBS or 125 μg/kg LIF at 6, 24, and 48 h after the injury. MZF-1 binding activity was 

measured using electrophoretic mobility shift assay (EmSa) and its expression/localization were 

determined using western blot and immunohistochemical analysis. To determine whether MZF-1 

relays LIF-induced neuroprotection in vitro, primary cultured neurons were subjected to oxygen-

glucose deprivation (OGD) after treatment with PBS or LIF. MZF-1 expression was measured in 
vitro using real time PCR and immunohistochemical staining. Transfection with siRNA was used 

to determine whether LIF protected cultured neurons against OGD after silencing MZF-1 

expression. Four MZF-1 binding sites were identified by Genomatix, and EMSA confirmed in 
vivo binding activity in brain after MCAO. LIF significantly increased MZF-1 protein levels 

compared to PBS treatment at 72 h post-MCAO. In vivo nuclear localization of MZF-1 as well as 

co-localization of SOD3 and MZF-1 was observed in the cortical neurons of LIF-treated rats. 

*Correspondence: Dr. Keith R. Pennypacker, 741 S. Limestone BBSRB Room B457, Lexington, KY 40536-0509, Phone: 
859-323-5226, keith.pennypacker@uky.edu. 
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Primary cultured neurons treated with LIF had significantly higher levels of MZF-1 mRNA and 

protein after LIF treatment compared to neurons treated with PBS. Finally, knockdown MZF-1 

using siRNA counteracted the neuroprotective effects of LIF in vitro. These data demonstrate that 

LIF-mediated neuroprotection is dependent upon MZF-1 activity. Furthermore, these findings 

identify a novel neuroprotective pathway that employs MZF-1, a transcription factor associated 

with hematopoietic gene expression.
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Introduction

Ischemic stroke remains the fifth leading cause of death in the United States as well as a 

major cause of adult disability (Talwalkar, Uddin et al. 2015). Of the patients affected by 

acute ischemic stroke, approximately 35% have an emergent large vessel occlusion (ELVO), 

which involves the blockage of a major brain artery such as the internal carotid artery or the 

most proximal segment of the middle cerebral artery (MCA) (Hastrup, Damgaard et al. 

2016). Treatment with thrombolytic agents, such as tissue plasminogen activator, may be 

sufficient for attenuating neurological damage during the early phases of stroke pathology 

(Hacke, Kaste et al. 2008). However, a report from the 2017 International Stroke Conference 

revealed that only 3.8% of eligible patients receive intravenous tPA within the therapeutic 

window (Madsen, Melluzzo et al. 2017).

Performing endovascular thrombectomy (EVT), which involves the mechanical removal of 

thrombi using a stent retriever, on stroke patients who are either ineligible or non-responsive 

to tPA administration alone has increased recanalization rates in 69.5% of ELVO patients 

(Dirnagl, Iadecola et al. 1999, Smith, Sung et al. 2008). According to the results of the 

HERMES meta-analysis, which reviewed the results of several clinical trials involving the 

use of EVT, this procedure yielded significant recovery among patients who underwent 

randomization ≥ 5 hours after the onset of stroke and patients who were ineligible for tPA 

(Goyal, Menon et al. 2016). As a result, the 2018 Guidelines for patients with acute ischemic 

stroke have implemented the following eligibility criteria for EVT: a pre-stroke modified 

Rankin scale between 0 and 1, an NIH Stroke Scale of ≥ 6, patient age is ≥ 18, computed 

tomography (CT) shows ischemic damage in no more than 4 areas of the MCA territory, 

ability to begin EVT ≥ 6 h after symptom onset, and confirmed blockage of the internal 

carotid artery or the most proximal segment of the MCA (Barber, Demchuk et al. 2000, 

Powers, Rabinstein et al. 2018). Unfortunately, not all ELVO patients meet these eligibility 

criteria for EVT (McMeekin, White et al. 2017). These patients remain vulnerable to 

delayed brain damage in the ischemic penumbra, which begins within hours after the onset 

of stroke (Dirnagl, Iadecola et al. 1999, Leonardo and Pennypacker 2011). The lack of 

treatment options for these patients with permanent stroke creates a need for novel 

therapeutics that will promote cellular survival in the ischemic penumbra.
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Leukemia inhibitory factor (LIF) is a cytokine that modulates inflammation and promotes 

neural cell survival (Azari, Galle et al. 2001, Butzkueven, Zhang et al. 2002, Hendriks, 

Slaets et al. 2008, Marriott, Emery et al. 2008). LIF is effective in reducing tissue damage 

and promoting functional recovery after permanent middle cerebral artery occlusion, a 

rodent model of ELVO. Futhermore, LIF promotes cell survival and antioxidant gene 

expression in neurons and oligodendrocytes during oxygen-glucose deprivation, an in vitro 
model of cerebral ischemia (Rowe, Collier et al. 2014, Davis, Collier et al. 2017). Signaling 

of LIF occurs via binding to a heterodimeric receptor containing the LIF receptor subunit 

and transmembrane receptor glycoprotein 130 (Ip, Nye et al. 1992). The protein kinase Akt 

is a critical component of this neuroprotective signaling, which results in transcription of 

antioxidant genes that are responsible for the neural cell protection after stroke (Suzuki, 

Yamashita et al. 2005, Rowe, Collier et al. 2014, Davis, Collier et al. 2017).

However, the transcription factors (TFs) that are activated by Akt and initiate transcription of 

antioxidant genes have not been defined. The promoter regions of these antioxidant genes 

contain GC-rich regions as well as binding sites for myeloid zinc finger 1 (MZF-1) (Rowe, 

Leonardo et al. 2010). MZF-1 belongs to the Kruppel family of TFs and is highly expressed 

by cells of myeloid origin (Hromas, Collins et al. 1991). Although previously implicated in 

hematopoietic development, MZF-1 modulates expression of several genes that play a role 

in stroke pathogenesis/recovery (Morris, Davis et al. 1995, Hromas, Boswell et al. 1996).

Zelko et al. previously showed that MZF-1 regulates expression of superoxide dismutase 3 

(SOD3), a secreted antioxidant enzyme (Zelko and Folz 2003, Zelko and Folz 2004). 

Although neurons do not express high levels of SOD3 under normal physiological 

conditions, cortical neurons increase the gene expression of SOD3 as an endogenous defense 

mechanism against ischemia (Strålin, Karlsson et al. 1995, Fukui, Ookawara et al. 2002, 

Zelko, Mariani et al. 2002). LIF protects cortical neurons from ischemia by increasing 

expression of SOD3 at 72 h after MCAO. The upregulation of SOD3 and other antioxidant 

genes by LIF promotes improvements in motor skills and reduces tissue damage from 

oxidative stress (Davis, Collier et al. 2017).

Since the upregulation of neuronal SOD3 and improvements in post-stroke motor function 

are observed at 72 h after MCAO, the goal of this study was to determine whether LIF 

induces neuroprotective signaling through MZF-1 expression and activity. This report tested 

the hypothesis that MZF-1 mediates LIF-induced neuroprotective signaling during ELVO 

through increased expression and transcriptional activity. This hypothesis will be tested 

using several in vivo and in vitro techniques. To test this hypothesis in vivo, ELVO was 

simulated using the permanent intraluminal rat model of MCAO. MZF-1 binding sites 

within the SOD3 promoter were identified using Genomatix software and binding activity as 

confirmed using electrophoretic mobility shift assay. Protein expression and localization of 

MZF-1 was determined using western blot and immunohistochemical staining. Real time 

PCR and immunohistochemistry were used to determine whether MZF-1 expression was 

altered in cultured neurons after in vitro oxygen-glucose deprivation (OGD). Finally, 

siRNA-mediated gene silencing was used to determine whether in vitro knockdown of 

MZF-1 counteracts LIF-mediated neuroprotection.
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Experimental Procedures

Animal Care

Animal procedures were performed according to the NIH Guide for the Care and Use of 

Laboratory Animals and pre-approved by the Institutional Animal Care and Use Committee 

at the University of South Florida. The minimum number of animals needed for each study 

was determined a priori using power analysis. All in vivo procedures were performed on 3-

month-old male Sprague-Dawley rats (300–350 g) purchased from Envigo (Indianapolis, IN, 

USA; RRID:RGD_10395233). Animals were maintained on a 12 h light-dark cycle (07:00–

19:00 h) in a climate-controlled room. Animas were allowed access to food and water ad 
libitum. Cultured neurons were isolated from embryonic day 18 (E18) Sprague-Dawley fetal 

rat pups.

Middle Cerebral Artery Occlusion

The permanent middle cerebral artery occlusion (MCAO) method, which was used as a 

model of ELVO in rodents, was performed as previously described (Ajmo, Vernon et al. 

2006). Subsequent reduction in cerebral blood flow was confirmed using Laser Doppler 

Measurement (Moore Lab Instruments, Farmington, CT). Only animals with a ≥ 60% 

reduction in cerebral perfusion were included in the study. Animals subjected to the sham 

MCAO procedure underwent exposure of the common carotid artery without cutting the 

external carotid or occluding the MCA.

Drug Administration

Rats were treated prophylactically with ketoprofen (10 mg/kg s.c.), atropine (0.25 mg/kg 

s.c.) with two additional doses of ketprofen at 24 and 48 h post-MCAO to control for post-

surgical pain. Animals were randomly assigned to receive recombinant human LIF (125 

μg/kg i.v.; ProSpec, Ness Ziona, Israel) or PBS (pH 7.4) treatment at 6, 24, and 48 h post-

MCAO as previously described (Rowe, Collier et al. 2014, Davis, Collier et al. 2017). All 

lab personnel administering drugs were blinded to drug treatments.

Tissue Collection

Rats were euthanized at 72 h post-MCAO via intraperitoneal injection of ketamine/xylazine 

(75 mg/kg and 7.5 mg/kg) as previously described (Ajmo, Vernon et al. 2006, Seifert, 

Leonardo et al. 2012) before perfusion of tissues. Tissue was collected and preserved for 

biochemical and immunohistochemical analysis as previously described (Leonardo, Hall et 

al. 2010). Brain tissue used in these experiments was located in the region between +1.7 to 

−3.3 mm from bregma.

Whole-Cell Tissue Homogenization

To obtain whole cell extracts, ipsilateral and contralateral brain tissue was homogenized in 

whole cell lysis buffer containing the following: 50 mM Tris pH 8, 150 mM NaCl, 0.1% 

SDS, 1% Igepal CA-630, 1 mM PMSF, and a Complete Mini protease inhibitor cocktail 

(Roche Diagnostics, Indianapolis, IN). Briefly, tissue was disrupted using a handheld 

electric homogenizer and allowed to incubate on ice for 10 min. Tissue lysates were 
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vortexed and pipetted to break up nuclei. Protein extracts were snap frozen and stored at 

−80°C.

Nuclear Fractionation

Extraction of nuclear and cytosolic fractions for use in electrophoretic mobility shift assay 

(EMSA) experiments was performed as previously described (Dignam, Lebovitz et al. 

1983). Nuclear and cytosolic tissue fractions were snap frozen and stored at −80°C.

Primary Neuronal Culture

Primary neurons were isolated and cultured as described previously (Katnik, Guerrero et al. 

2006, Davis, Collier et al. 2017). Cells were treated with 2 μM cytosine-β-D-

arabinofuranoside (Sigma-Aldrich; St. Louis, MO) at 5 days post-isolation to suppress 

proliferation of glial cells.

Oxygen-Glucose Deprivation

In vitro ischemia was achieved via oxygen-glucose deprivation (OGD) as previously 

described (Hall, Guyer et al. 2009, Rowe, Leonardo et al. 2010, Davis, Collier et al. 2017). 

After 24 h, cells were removed from the chamber and supernatants were collected. Cells 

were washed twice with PBS and either fixed for 10 min in 4% paraformaldehyde in 

phosphate buffer or pelleted via centrifugation and snap-frozen prior to storing at −80°C. 

Fixed cells were used for immunohistochemical staining and frozen cells were used for RNA 

extraction.

Lactate Dehydrogenase Assay

Measurement of lactate dehydrogenase (LDH) in the cellular supernatant was performed as 

previously described according to the manufacturer’s protocol (Davis, Collier et al. 2017) 

using the LDH Cytotoxicity Detection Kit (Takara Biosciences, Madison, WI).

Promoter Analysis

Identification of TF binding sites was performed as previously described (Rowe, Leonardo 

et al. 2010) using Genomatix Software (Munich, Germany). The sequences for the rat 

(Rattus norvegicus) SOD3 gene was used in the search query and a table was generated for 

all TF sites. Consensus sites for the TFs in the table were aligned with the rat SOD3 

promoter sequence to identify their locations.

siRNA-mediated Gene Silencing

MZF-1 siRNA was used to suppress its expression in primary cortical neuronal cultures. 

Neurons were isolated and transfected with MZF-1 siRNA or Control-A siRNA (Santa Cruz 

Biotechnology, Santa Cruz, CA) using the as previously described (Gartner, Collin et al. 

2006, Davis, Collier et al. 2017).

Isolation of Total RNA

Total RNA was isolated from primary cortical neurons using the Qiagen RNeasy Mini Kit 

(Valencia, CA) as previously described according to the manufacturer’s protocol (Rowe, 
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Leonardo et al. 2010). RNA samples were immediately converted to cDNA or stored at 

−80°C.

Real-time PCR

Two-step real-time PCR was performed as previously described to measure in vitro changes 

in MZF-1 mRNA (Rowe, Leonardo et al. 2010, Davis, Collier et al. 2017). Cycle threshold 

values from the gene of interest and housekeeping gene (18s rRNA) were used to calculate 

the relative change in gene expression.

Immunohistochemical Analysis

3, 3-diaminobenzidine immunohistochemistry was performed as previously described on 

fixed primary cultured neurons (Rowe, Leonardo et al. 2010, Davis, Collier et al. 2017). 

Neurons were labeled with rabbit anti-MZF-1 antibodies (1:500; Abcam, San Francisco, 

CA; RRID:AB_1139620). Biotinylated goat anti-rabbit secondary antibodies (1:300; Vector 

Laboratories, Burlingame, CA; RRID:AB_2313606) were used for visualization. Coverslips 

were dried and coverslipped with DPX mounting medium (BDH Laboratories, Poole, 

England). Images were captured using a Zeiss AxioCam color camera attached to a Zeiss 

AxioSkop2 microscope (Thornwood, NY) interfaced with ZEN 2 Imaging Software.

Fluorescent immunohistochemistry was performed on brain tissue sections using a 

previously described protocol (Hall, Guyer et al. 2009). The following antibodies were used: 

rabbit anti-MZF-1 (1:500; Abcam, San Francisco, CA; RRID:AB_1139620), mouse anti-

SOD3 4G11G6 (1:250; Novus Biologicals) and mouse anti-neuronal nuclear antigen (NeuN) 

(1:500; EMD Millipore, Billerica, MA; RRID:AB_2298772) antibodies. AlexaFluor® 488-

conjugated goat a-rabbit AlexaFluor® 594-conjugated goat anti-rabbit antibodies (1:250; 

Life Technologies, Carlsbad, CA; RRID:AB_2576217;) were used for visualizing antigens. 

Tissue sections were dried and coverslipped with DPX mounting medium. Images were 

captured using a C2+ Confocal Microscope System (Nikon Instruments Inc., Melville, NY) 

interfaced with NIS-Elements C software.

Western Blot Analysis

Western blotting was used for semi-quantitative measurement of protein expression using a 

previously described procedure (Davis, Collier et al. 2017). Samples from ipsilateral brain 

tissue were run on 10% SDS-PaGe gels. Contralateral tissue served as an internal negative 

control for the ischemic injury. Membranes were probed with rabbit anti-MZF-1 antibodies 

(1:250; Abcam; RRID:AB_1139620). Membranes were incubated in IRDye 800CW goat 

anti-rabbit antibodies (1:20,000; Li-Cor; RRID:AB_2651127) for detection of protein bands. 

Membranes were visualized using the Odyssey CLx Imaging System (Li-Cor). Membranes 

were re-probed with mouse anti-β-actin (1:5000; Novus Biologicals; RRID:AB_1216153) 

and IRDye 680RD goat anti-mouse antibodies (1:20,000; Li-Cor; RRID:AB_10956588).

Electrophoretic Mobility Shift Assay

Electrophoretic mobility shift assays (EMSAs) were performed using Odyssey IRDye® 

680RD-labeled consensus oligonucleotides (Integrated DNA Technologies, Coralville, IA) 
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and identical unlabeled nucleotides were obtained from Affymetrix (Santa Clara, CA). The 

following consensus sequence was for and MZF-1:

5’ AGTGGGGAAGTGGGGAAGTGGGGA 3’

EMSAs were performed as described in the protocol described in the Supplementary 

Methods online (Li-Cor, Lincoln, NE). Contralateral tissue was included alongside 

ipsilateral tissue to serve as an internal negative control for the ischemic injury.

To confirm the specificity of the interaction between the labeled oligonucleotides and their 

respective TFs, unlabeled oligonucleotides were added in excess to the binding reaction 

prior to adding the labeled oligonucleotides. To further confirm the specificity of binding, 

antibodies complementary to MZF-1 (RRID:AB_1139620) were added to the binding 

reaction in order to either induce a supershift or disrupt the binding reaction between the TF 

and the labeled oligonucleotides.

Data Analysis

Data values are expressed as the mean ± the standard error of the mean. Images were 

minimally processed in a uniform manner across treatment groups and were analyzed using 

ImageJ software (NIH, Bethesda, MD). Statistical analysis for experiments containing two 

groups was performed using a Mann-Whitney U test and a Kruskal-Wallis test was used for 

those containing three or more groups. To detect outliers, the interquartile method was used 

as previously described (Rousseeuw and Hubert 2011). Detected outliers based on this 

criterion were removed for analysis of Fig. 3e to prevent significant effects from being 

masked by skewed data. A p-value ≤ 0.050 was considered significant. All p values reported 

are one-tailed.

Results

MZF-1 is Transcriptionally Active in the Ischemic Brain

Within the rat SOD3 promoter, four MZF-1 sites were identified. The locations of these 

binding sites are found in Table 1. A visual diagram showing the locations of these sites is 

found in Fig. 1A. Supershift assays performed using antibodies against MZF-1 disrupted 

formation of the MZF-1/probe complex (Fig. 1B). The results of the EMSA showed no 

significant difference in MZF-1 binding activity between PBS- and LIF-treated ipsilateral 

and contralateral tissue (p =0.5378; H = 2.338; Fig. 1C).

LIF Promotes Upregulation of MZF-1 in vivo and in vitro

MZF-1 protein expression in the ipsilateral tissue were normalized to the average MZF-1 

expression in the contralateral tissue of each treatment group. The normalized MZF-1 levels 

were significantly increased after LIF treatment compared to rats that were treated with PBS 

after MCAO (p = 0.0411; U = 5.000; Fig. 2A–2B).

Real-time PCR analysis was used to measure the change in MZF-1 mRNA levels in neurons 

that were treated with LIF prior to 24 h of OGD. The PCR results confirmed a significant 
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upregulation of MZF-1 mRNA after LIF treatment compared to PBS-treated neurons (p = 

0.0500; U = 0.000; Fig. 2C).

The percentage of cultured neurons that stained positive for MZF-1 was calculated by 

dividing by the total number of cells imaged. Neurons that were treated with LIF prior to 

OGD showed a significant increase in the percentage of MZF-1-positive cells compared to 

the cells that were treated with PBS (p = 0.0143; U = 0.0000; Fig. 2D–2E).

MZF-1 Co-Localizes with Neuronal Nuclei and SOD3 in vivo

Sections from rats euthanized at 72 h post-MCAO were double-labeled with antibodies 

against MZF-1 (red), and NeuN (green). MZF-1 immunoreactivity was also observed in the 

nuclear and cytosolic regions of cortical cells in animals from both treatment groups (Fig. 3).

Tissue sections from PBS and LIF-treated rats were also stained with SOD3 and MZF-1 

antibodies. Co-localization of SOD3 (green) with MZF-1 (red) was observed after PBS and 

LIF treatment (Fig. 4).

MZF-1 siRNA counteracts in vitro Neuroprotection by LIF

MZF-1 siRNA was used suppress MZF-1 expression immediately following isolation. 

Transfected neurons were treated with PBS or LIF (200 ng/ml) and subjected to 24 h of 

OGD.. There was a significant difference in LDH release among neurons transfected with 

scrambled and MZF-1 siRNA and treated with LIF after 24 h OGD (p = 0.0273; H = 7.41). 

Furthermore, there was a 176% increase in LDH release between neurons transfected with 

scrambled siRNA and treated with LIF and neurons transfected with MZF-1 siRNA and 

treated with LIF (Fig. 5).

Discussion

To our knowledge this is the first report to show that MZF-1 is directly involved with 

survival signaling in neurons. Previously, MZF-1 has been associated with gene regulation in 

immune and hematopoietic cells (Hromas, Collins et al. 1991);Hromas, 1996 #5977;Hui, 

1995 #5983;Robertson, 1998 #4608}. MZF-1, which belongs to the Kruppel family of TFs 

and is highly expressed by cells of myeloid origin, (Hromas, Collins et al. 1991) modulated 

expression of several genes that play various roles in stroke pathogenesis/recovery (Morris, 

Davis et al. 1995, Hromas, Davis et al. 1996). Apomorphine stimulated upregulation of 

fibroblast growth factor-2, a neuroprotective factor, in astrocytes through MZF-1 activity 

(Luo, Zhang et al. 2009). MZF-1 binding sites were identified in the promoter region for 

peroxiredoxin I, a member of the peroxiredoxin family that is highly expressed by 

oligodendrocytes (Mizusawa, Ishii et al. 2000, Kim, Bogner et al. 2008). In addition, levels 

of matrix metalloproteinase 2, a gelatinase released by activated microglia during stroke, 

was significantly decreased by overexpressing MZF-1 in the SiHa cervical cancer line (Tsai, 

Hwang et al. 2012). Other groups showed that increasing PI3K/Akt signaling may increase 

levels of MZF-1. For instance, calcitriol regulates CD11b and CD14 expression in 

mononuclear cells by upregulating MZF-1 protein levels in a PI3K-dependent manner 

(Moeenrezakhanlou, Shephard et al. 2008). Granulocyte/macrophage colony stimulating 

factor, a cytokine implicated in leukocyte maturation, increases neuronal survival through 
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PI3K/Akt activation (Takahashi, Hayashi et al. 2006, Schabitz, Kruger et al. 2007). In 

addition, Hui et al. demonstrated that granulocyte/macrophage colony-stimulating factor, 

which signals through Akt, increases levels of MZF-1 (Hui, Guo et al. 1995).

Oh et al. reported that LIF binding to its receptor activates the PI3K/Akt pathway(Oh, Fujio 

et al. 1998). Furthermore, Akt signaling regulates the activity of TFs such as MZF-1, which 

regulate the expression of protective genes during stroke (Rowe, Leonardo et al. 2010, 

Rowe, Leonardo et al. 2012). SOD3, which increases total SOD activity and promotes 

antioxidant protection in the ischemic brain, is a crucial protective gene induced by LIF. 

Furthermore, Genomatix identified MZF-1 binding sites within the rat SOD3 gene. This 

current report establishes MZF-1 as a key regulator of LIF-induced protective signaling 

during ischemia (Fig. 6).

The identification of a novel transcription factor that plays a role in LIF-mediated 

neuroprotection allows for the continued evaluation of LIF as a preclinical stroke 

therapeutic. Knowing the mechanism of cellular protection for LIF in this model provides 

valuable insight regarding its potential as a treatment for stroke in humans. Further studies 

warrant the investigation of pharmaceutical agents that increase the activity of MZF-1 after 

stroke, as well as the identification of new protective genes under the transcriptional control 

of MZF-1. Although the mechanisms underlying the regulation of these transcription factors 

during LIF treatment are not entirely understood, these data provide information on a new 

neuroprotective pathway as and a target for stroke treatments.
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ELVO emergent large vessel occlusion

EVT endovascular thrombectomy
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LIF leukemia inhibitory factor

MCAO middle cerebral artery occlusion

MZF-1 myeloid zinc finger-1

NeuN neuronal nuclear antigen

SOD3 superoxide dismutase 3

TF transcription factor
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Figure 1. MZF-1 is Transcriptionally Active in Brain Tissue.
(a) Locations of MZF-1 binding sites identified by Genomatix in the rat SOD3 promoter. (b) 

Supershift assays confirmed the specificity of MZF-1 binding. (c) Probe/Protein complexes 

were quantified by measuring the optical densities corresponding bands. n = 4 samples per 

group. Ips; ipsilateral, Contra; contralateral.
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Figure 2. LIF Treatment Increases MZF-1 Expression in vivo and in vitro.
(a-b) Normalized MZF-1 protein levels were significantly increased in the ipsilateral brain 

tissue of LIF-treated rats compared to those of PBS-treated rats (*p<0.05). n ≥ 5 samples per 

group. (c) Cultured treated with 200 ng/ml LIF prior to OGD showed significantly higher 

levels of MZF-1 mRNA compared to PBS-treated neurons. n = 3 wells per group (p = 0.05; 

d-e). MZF-1 immunoreactivity was significantly increased after LIF treatment in cultured 

neurons compared to PBS-treated cells (*p<0.05). n = 5 wells per group.
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Figure 3. MZF-1 Accumulates in Nuclei of Cortical Neurons after MCAO and LIF Treatment.
Tissue sections were labeled with MZF-1 (red) and neuronal nuclear antigen (NeuN; green) 

antibodies to visualize localization of MZF-1 in neuronal nuclei. Arrows identify 

representative cells. Scale bars = 50 μm.
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Figure 4. SOD3 co-localizes with MZF-1 after LIF treatment.
Tissue sections were labeled with antibodies against MZF-1 (red) and SOD3 (green) to show 

co-localization in brain tissue. Arrows identify representative cells. Scale bars = 50 μm.
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Figure 5. MZF-1 siRNA counteracts LIF-mediated neuroprotection in vitro
Lactate dehydrogenase (LDH) activity was used to measure cellular death after 24 h OGD. 

LIF treatment and transfection with MZF-1 siRNA significantly altered LDH release after 

OGD (*p<0.05). n =3–4 wells per group.
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Figure 6. LIF promotes neural cell survival through MZF-1 transcriptional activity.
Upon binding to its receptor, LIF increases Akt signaling, which increases downstream 

transcriptional activity of TFs, including MZF-1.
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Table 1.

Location and sequences of all MZF-1 binding sites in the rat SOD3 gene promoter.

Start
Position

End
Position

Strand
(+/−)

Sequence

13 23 + aaGGGGaacta

46 56 + gtGGGGacaat

73 83 + ggGGGGaaagg

368 378 + ggGGGGaggag
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