
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Physiology Physiology 

2023 

Alzheimer’s Disease genetics and short-chain fatty acid treatment Alzheimer’s Disease genetics and short-chain fatty acid treatment 

in studies of the murine gut microbiome in studies of the murine gut microbiome 

Diana Zajac 
University of Kentucky, dza228@uky.edu 
Author ORCID Identifier: 

https://orcid.org/0000-0002-9488-5190 
Digital Object Identifier: https://doi.org/10.13023/etd.2023.243 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Zajac, Diana, "Alzheimer’s Disease genetics and short-chain fatty acid treatment in studies of the murine 
gut microbiome" (2023). Theses and Dissertations--Physiology. 62. 
https://uknowledge.uky.edu/physiology_etds/62 

This Doctoral Dissertation is brought to you for free and open access by the Physiology at UKnowledge. It has been 
accepted for inclusion in Theses and Dissertations--Physiology by an authorized administrator of UKnowledge. For 
more information, please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/physiology_etds
https://uknowledge.uky.edu/physiology
https://orcid.org/0000-0002-9488-5190
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Diana Zajac, Student 

Dr. Steve Estus, Major Professor 

Dr. Lance Johnson, Director of Graduate Studies 



     
 

 
ALZHEIMER’S DISEASE GENETICS AND SHORT-CHAIN FATTY ACID 

TREATMENT IN STUDIES OF THE MURINE GUT MICROBIOME 

 

 
 
 
 

________________________________________ 
 

DISSERTATION 
________________________________________ 

A dissertation submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in the 

College of Medicine 
at the University of Kentucky 

 

 

By 
Diana Joanna Zajac 

Lexington, Kentucky 
Director: Dr. Steven Estus, Professor of Physiology 

Lexington, Kentucky 
2023 

 

 

 

 

 

 

 

Copyright © Diana Joanna Zajac 2023 
[https://orcid.org/0000-0002-9488-5190] 



     
 

ABSTRACT OF DISSERTATION 
 

ALZHEIMER’S DISEASE GENETICS AND SHORT-CHAIN FATTY ACID 
TREATMENT IN STUDIES OF THE MURINE GUT MICROBIOME 

Elucidating the relationship of the gut microbiome in Alzheimer's Disease (AD) 
risk and pathogenesis is an area of intense interest. Since 60 to 80% of AD risk is related 
to genetics and APOE alleles represent the most impactful genetic risk factors for AD, 
their mechanism(s) of action are under intense scrutiny. 

 
First, I conducted a study on APOE targeted replacement mice to investigate the 

impact of APOE alleles on the murine gut microbiome. The relative abundance of 
bacteria from the family Ruminococacceae and related genera increased with APOE2 
status. The relative abundance of the class Erysipelotrichia increased with APOE4 status, 
a finding that extended to humans. Since Ruminococacceae have been associated with 
increased SCFA production, these findings suggest that SCFA-producing bacteria are 
increased in the AD-protective APOE2 positive mice.  
 

Next, I compared the effects of short-chain fatty acid (SCFA)- vs. saline-treated 
water on APPswe/PSEN1dE9 mice maintained under standard laboratory conditions. I 
found that SCFA treatment increased alpha-diversity and impacted the gut microbiome 
profile by increasing the relative abundance of the genera Bifidobacterium and 
Lactobacillus, which are known to produce SCFAs and SCFA precursors. Although gut 
microbiome changes in SCFA-treated mice were robust, SCFA treatment did not 
significantly affect behavior, cortical or hippocampal astrocyte activation, or soluble and 
insoluble amyloid levels.  
 

In conclusion, there is robust evidence of an APOE allelic effect on the murine 
gut microbiome that implies an AD-relevant genetic impact on the gut microbiome. The 
gut microbiome can be modulated by SCFA supplementation, revealing a potential 
therapeutic for AD prevention. These pioneering studies represent the medical 
importance of gut health on disease prevention and treatment.  

 
KEYWORDS: Alzheimer’s Disease, Genetics, Neurodegenerative disease, Gut 
microbiome, Short-chain fatty acids, Apolipoprotein E 
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CHAPTER 1. INTRODUCTION 

1.1 Alzheimer’s Disease: A brief overview of epidemiology and pathophysiology 

1.1.1 Epidemiology of Alzheimer’s Disease 

Alzheimer’s Disease (AD) is an aging-related disease and the most common form 

of dementia, affecting over 58 million people worldwide and 6 million in the United 

States [1]. AD affects the aging population and incidence rates increase with age, where 

about 10% of the population aged 65 years and older is diagnosed with AD, and 33% of 

the population aged 85 years and older is diagnosed with AD. Along with the increase in 

prevalence, mortality rates increased 146.2% from 2000 to 2018, making AD the fifth-

largest cause of death in elderly Americans [2]. AD also disparately affects women, where 

the estimated lifetime risk for AD at age 45 is 20% in women and 10% in men, and 

increases in both at age 65, although recent studies suggest that selection bias contributes 

to the reports of these sex differences [1]. Similarly, Blacks and Hispanics seem to be at a 

higher risk for AD and AD-related deaths, in part due to genetic risk factors that differ by 

race, but mostly due to historical socioeconomic disparities that influence lifestyle, 

healthcare and knowledge of risk factors in these populations [1]. In addition, mortality 

rates from AD increased in 2020 by 17% due to the neurological effects of COVID-19 

and the increased the risk of cognitive impairment following critical illness, mechanical 

ventilation, and stay in an Intensive Care Unit (ICU) [1]. For additional information 

regarding AD prevalence, risk, care and more, see the Alzheimer’s Association Fact and 

Figures 2022 [1]. 
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1.1.2 Discovery of Alzheimer’s Disease 

AD was first discovered and characterized by Alois Alzheimer when he reported 

abnormal anatomical findings in a patient that showed early clinical symptoms of 

cognitive decline that were unlike the classified clinical patterns known at the time ([3] 

and translated to English in [4]). At 51-years of age, the patient suffered from memory 

impairments, auditory hallucinations, perception disorders and delusions, and delirium. 

Alzheimer noted that his patient “showed a complete helplessness,” “was disoriented as 

to time and place,” and “often would scream for hours and hours in a horrible voice.” 

However, the patient did not show any signs of motor impairment or cardiac hypertrophy. 

The mental regression advanced steadily until the patient had lost all means of self-

reliance and passed away after four and half years of illness. Autopsy and brain staining 

by the neurologist, and his pupil, Perusini revealed an “evenly atrophic brain” with 

“characteristic changes in neurofibrils”, where about one-quarter to one-third of the 

cerebral cortex showed signs of neurofibrillary tangles (NFTs) that formed inside neurons 

[5]. In addition, throughout the entire cortex were “miliary foci” which represented sites 

of deposition of what is now known to be amyloid beta peptides, now referred to as 

amyloid beta (Aβ) plaques or Aβ accumulation. Alois Alzheimer concluded that he is 

reporting on a little-known disease and states that “we must reach the stage in which the 

vast well-known disease groups must be subdivided into many smaller groups, each one 

with its own clinical and anatomical characteristics.” 

 

1.1.3 Pathophysiology and Genetics of Alzheimer’s Disease 

1.1.3.1 Amyloid and tau pathology 
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AD is characterized by the accumulation of Aβ plaques and NFTs in the brain. Aβ 

was first isolated as the component of amyloid plaques in 1984 [6]. A few years later, the 

amyloid precursor protein (APP) was identified through genetic linkage analysis ([6,7] 

and cloned by [7]), and an AD-causing missense mutation identified [8]. In 1995, familial 

AD (FAD) mutations were discovered in presenilin1 (PSEN1) [9] and presenilin2 

(PSEN2) [10] were discovered, both of which are part of the enzyme ɣ-secretase that is 

involved in APP  processing. These discoveries supported the later proposed “amyloid 

cascade hypothesis” [11] which suggests that Aβ, a product of APP processing, 

aggregated into plaques, leading to neuronal death and the formation of NFTs. In the 

1980s, the diagnostic criteria for AD were the presence of amyloid plaques and NFTs at 

autopsy [12]. Since then, clinical biomarkers of AD have been identified that allow for a 

clinical prognosis before death: (i) abnormally phosphorylated tau proteins from the brain 

can be detected in the cerebrospinal fluid (CSF) of AD patients [13,14], (ii) amyloid 

protein can also be detected in the CSF of AD patients and Aβ42 begins to decline in the 

CSF as it accumulates in plaques [15], and (iii) radiotracers for positron emission 

tomography (PET) were developed to visualize NFT and amyloid deposits in the brains 

of living patients [16]. More recent studies employ big data analysis with the aim of 

identifying further CSF biomarkers of AD [17]. 

1.1.3.1 Genetics 

Lastly, with the advancement of sequencing technologies and big data analysis, 

AD research is identifying disease-associated single nucleotide polymorphisms (SNPs) in 

multiple genes that are becoming the latest targets of AD studies (reviewed in [18]). 

Importantly, family and twin studies of AD estimate that up to 80% of AD risk is genetic 
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[19]. Of the genes with identified AD-associated SNPs, several additional phenotypes are 

recognized to modulate disease progression, including cholesterol metabolism and 

neuroinflammation [20]. Furthermore, mutations in APP , PSEN1 and PSEN2 are 

causative for Familial Alzheimer’s Disease (FAD), which typically has an early onset by 

the age of 40-50yo [8-10,21,22]. Late Onset Alzheimer’s Disease (LOAD) occurs later in 

life, typically around the age of 65-80yo, and SNPs identified by Genome Wide 

Association Studies (GWAS) modulate AD risk for LOAD [23-26]. Tanzi et al. provides 

an excellent review of the history of identified FAD and LOAD SNPs [27], while Jayadev 

et al. and Andrade-Guerrero et al. provide more recent overviews of the genetics of AD 

including risk loci identified by GWAS [28,29]. 

1.1.3.1 Neuroinflammation 

Several common variants in genes that are associated with immune response and 

neuroinflammation have been identified that are associated with AD risk in GWAS: CR1, 

CD33, MS4A, CLU, ABCA7, TREM2, and INPP5D [20]. Some of these AD-associated 

genes—TREM2 [30] and CD33 [31]—encode receptors on microglia, the resident 

macrophages of the central nervous system (CNS), impacting immune signaling in the 

brain. Microglia act as sentinels in the brain pruning unused synapses for cell turnover 

and surveilling the environment for lesions and neurotoxic debris, such as protein 

aggregates, dead cells, and microbes (reviewed in [32]). In AD, a subset of microglia shift 

into a Disease Associated Microglia (DAM) transcriptional profile that is associated with 

inflammation and increased functions of motility, proliferation and phagocytosis [33-35]. 

Microglia respond to Aβ plaques in the brains of AD patients and in AD murine models, 

where they associate with the plaques and act to compact and phagocytose them, thereby 
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reducing amyloid burden [33]. In addition, microglia release cytokines and chemokines 

that modulate the immune response in the CNS (reviewed in [32]). It is now well 

established that along with amyloid and tau pathology, dysfunctional neurons, activated 

astrocytes and microglia, the AD brain is also prone to high levels of neuroinflammation 

([36-41] and reviewed in [42,43]), and therapeutic targets for AD are also targeting to 

reduce this neuroinflammation [37,44-46]. 

1.1.4 Apolipoprotein E and Alzheimer’s Disease Risk 

Apolipoprotein E (APOE) is one of the genes identified to have polymorphisms 

that significantly associate with AD risk [20]. The most common APOE allele is APOE3, 

with an allele frequency of 78% (reviewed in [47]). The APOE4 allele has a frequency of 

14% and increases AD risk up to four-fold with one copy, and up to twelve-fold with 

both copies of the allele relative to APOE3. On the other hand, the APOE2 allele is 

protective for AD, and has a frequency of 8% ([48-51] and reviewed in [47,52]). APOE, 

along with TREM2, has also been studied regarding neuroinflammation and microglial 

activation, and is required for the shift of homeostatic microglia to the DAM state [33]. In 

AD murine models, targeting of the APOE-TREM2 pathway restored the homeostatic 

microglial phenotype and reduced neuronal loss [33]. In postmortem AD brains, APOE4 

is associated with increased Aβ plaque accumulation and increased severity of cerebral 

amyloid angiopathy (CAA), whereas APOE2 is associated with reduced neuritic plaques 

(reviewed in [52]).  
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1.2 The Gut-Brain-Axis 

Neurological and neurodegenerative disorders are CNS diseases, yet there is 

extensive evidence of periphery-CNS cross-talk in many of these diseases (reviewed in 

[53,54]). Specifically, multiple lines of evidence point to the involvement of the gut 

microbiome in the development of CNS disorders, including stress [55,56], autism [57-59], 

depression [60,61], Multiple Sclerosis (MS) [62], Parkinson’s Disease (PD) [63-65] and AD 

[66]. The gut microbiome is made of up a diverse variety of microbiota living in the 

human gut, which is the entire gastrointestinal tract, including the esophagus, stomach, 

small intestine and colon. These microorganisms live in the human gut in a host-specific 

symbiosis, where they regulate digestion, immune, metabolic and neurological functions 

(reviewed in [67]). Of these microorganisms, bacteria in the gut are involved in the 

digestion and absorption of food sources for the production of metabolites essential for 

host function, such as the bacterial fermentation of complex carbohydrates for the 

synthesis of short-chain fatty acids (SCFAs) [68]. These types of bacterial metabolites are 

involved in the cross-talk between the gut, the periphery and the CNS [68-72]. This 

bacterial cross-talk with the brain is mediated by key pathways involving the vagus nerve 

[73], the immune and neuroendocrine system [74,75], and the neurotransmitters and 

metabolites of the gut microbiota (reviewed in [53,73]). With the rise in big data analysis 

and sequencing technologies, several metabolites have been identified as potential 

therapeutic targets for AD [76-81].  

1.2.1 Gut Microbiome and Alzheimer’s Disease 

Gut microbiome studies in the context of AD pathology are of growing interest. 

Initial studies identified significant differences in the gut microbial compositions of AD 
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patients versus individuals without amyloid pathology (reviewed in [82]). In one study, 

some of the bacteria that were increased in the AD patients were previously associated as 

pro-inflammatory taxa, whereas anti-inflammatory taxa were increased in the non-AD 

individuals [83]. Another study showed that bacterial diversity appeared to be decreased 

in AD patients compared to controls [84]. Additional studies have examined gut 

microbiome differences between AD and non-AD aged adults [83,85-90], as well as altered 

microbiome profiles in mouse models of amyloidosis [66,91,92].   

Here, I summarize the findings from a few of the relevant gut microbiome studies 

done in AD patients. First, One study found that AD individuals exhibited profiles with 

increased genera belonging to the families Lachnospiraceae (genera Agathobacter, 

unclassified_f_Lachnospiraceae, Eubacterium_ventriosum_group, 

Lachnospiraceae_NC2004 and Coprococcus_1), Ruminococcaceae (genera 

Faecalibacterium and Ruminococca-ceae_UCG-007), Prevotellaceae (genus 

Alloprevotella), Atopobiaceae (genus Atopobium), Clostridial (genus Parvimonas), 

Synergistaceae (genus Cloacibacillus), Erysipelotrichaceae (genus Solobacterium), and 

Pseudomonadaceae (genus Pseudomonas). In contrast, AD individuals showed a 

decrease in genera belonging to families Lachnospiraceae (genus Tyzzerella) and 

Erysipelotrichaceae (genus Erysipelatoclostridium) [89]. Second, a study of AD patients 

in Kazakhstan identified bacteria taxa that were differential for AD, including increased 

relative abundance of genera Prevotella, Alloprevotella, Ruminococcus, and 

Akkermansia, and decreases in Roseburia, Tyzerella, Erysipelotrichaceae UCG-003, and 

Lactobacillaceae in AD patients [90]. Third, further studies have shown a gut 

microbiome-inflammation relationship that is associated with AD pathology in humans. 
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Cattaneo et al. showed that amyloid-positive patients had increased levels of 

inflammatory taxa Escherichia/Shigella and a reduction in anti-inflammatory taxon E. 

rectale, as well as higher levels of inflammatory cytokines and reduced anti-inflammatory 

cytokines in the blood compared to healthy controls [83]. Fourth, another study comparing 

mild cognitively impaired (MCI) and AD adults to healthy controls found that patients 

with AD or MCI had increased abundance of the family Erysipelotoclostridiaceae and 

order Erysipleotrichales, which were also positively correlated with APOE4 status [93]. 

Lastly, Vogt et al. analyzed the gut microbiome profiles of AD patients compared to 

cognitively healthy controls and found that AD patients had decreased microbial 

diversity, including decreases in Firmicutes, increases in Bacteroidetes, and decreases in 

Bifidobacterium, which correlated with CSF biomarkers of AD [84].  

1.2.1.1 Gut microbiome alterations in AD murine models 

In addition to evidence of gut microbiome differences between AD and healthy 

adults, studies in murine models of AD corroborate that there are distinct differences in 

gut microbiome profiles in disease versus health [94-96], and that modulation of the gut 

microbiome can have direct impact on disease pathology. Several reports have found that 

Aβ burden in murine models is reduced in gnotobiotic mice or mice treated with 

antibiotics [97-102]. In addition to antibiotic knockdown of the gut microbiome causing 

shifts in AD-like pathology in these mouse models, treatment with pre-/pro-biotics to 

alter the gut microbiome also modulates disease pathology [100]. 

1.2.1.2 ApoE Effects on The Gut Microbiome 
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ApoE is a lipid transporter, contributing to lipid homeostasis in the periphery and in 

the brain. ApoE binds lipoproteins and lipid complexes in the plasma for transport to 

specific cell-surface receptors [103]. In the brain, ApoE modulates several pathways 

including lipid transport, glucose metabolism and neuroinflammation (reviewed in [52]). 

In the periphery, APOE2 is associated with decreased low-density lipoprotein (LDL) 

cholesterol, whereas APOE4 is associated with increased LDL cholesterol, relative to 

APOE3 [47]. The APOE effects on lipid metabolism include APOE4-associated risks of 

increased heart disease, and that APOE4 carriers may benefit from dietary intervention 

with omega fatty acids (reviewed in [104]). Although ApoE in the brain is separate from 

that in the periphery, many studies show a diet-dependent effect of ApoE in the brain 

(reviewed in [105]). Furthermore, more recent studies in mice and humans have shown 

differential effects of APOE on the gut microbiome (reviewed in [105]). The first study 

that caught the attention of my lab and inspired our gut microbiome studies was done by 

Dr. Richard Guerrant’s lab. In his studies of children in Northeast Brazil, Guerrant found 

that children who were carriers of the APOE4 allele had better defense against childhood 

diarrheal diseases [106-108]. In my studies of APOE effects on the gut microbiome, I 

observe increased gut microbial diversity in APOE4 carriers, which is associated with 

protection from gut dysbiosis ([109,110] and reviewed in [111,112]) and I suspect explains 

the APOE4 protective mechanism against gastrointestinal (GI) insult.  

Several studies in APOE mice observed significant differences in gut microbiome 

profiles related to APOE status. First, APOE-deficient mice display microbiome 

differences relative to wild-type mice [113]. Second, APOE4-targeted replacement (TR) 

mice were more resistant to gastrointestinal Cryptosporidium infection than APOE3 mice 
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[114]. Lastly, we and others have recently reported microbiome differences in a 

comparison of APOE3 and APOE4-TR mice [94,115-118]. In addition, a study done by 

Hou et al. genotyped 30 AD and 47 control patients, paired with 16S rRNA microbiome 

sequencing, and observed differential taxa associated with the APOE4 variant [119]. 

1.2.1.3 Gut microbiome effects on microglia 

Earlier I introduced microglia as the resident immune cells of the brain 

responsible for the compaction and phagocytosis of Aβ plaques in the brain. In AD, 

microglia shift more towards a DAM transcriptomic profile, which causes a functional 

shift from homeostatic, sentinel microglia to that of increased motility, proliferation and 

phagocytosis. Modulation of these microglial functions has an impact on AD pathology 

and neurodegeneration [120-122]. Recent studies have investigated how gut microbiome 

modulation impacts microglial functions ([101,123] and reviewed in [124-126]). Erny et al. 

demonstrated that the lack of a gut microbiome lacking in germ free (GF) mice causes 

defective microglia lacking functional responsiveness and an impaired innate immune 

response and that recolonization of the gut microbiome restored microglial functions 

[123]. In addition, Erny et al. determined that short-chain fatty acids (SCFAs) contribute 

to regulating microglial function because mice deficient for the SCFA receptor FFAR2 

displayed the same defective microglial phenotype as GF mice.  

1.2.1.4 Gut microbiome metabolites and short-chain fatty acids 

SCFAs are a major microbiota metabolite that have been suggested to mediate gut 

microbiome effects in the brain (reviewed in [127,128]). The major source of SCFAs in the 

body is microbial digestion of resistant starch. Recently, SCFA treatment was reported to 
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increase amyloid burden in specific-pathogen-free (SPF) APP/PS1 mice [101] while 

butyrate treatment was reported to decrease amyloid burden in SPF 5xFAD mice [44] and 

in 5xFAD mice maintained on a conventional microbiome [129]. We refer to a 

conventional microbiome as the microbiome of mice that were conventionally raised, as 

opposed to germ free (GF) or SPF mice, which have laboratory controlled/limited 

microbiomes. In an APOE-taupathy model for AD, male GF APOE4 mice treated with 

SCFAs showed an increase in reactive astrocytes and microglia, as well as an increase in 

phosphorylated tau pathology [118]. These studies provide evidence that SCFA 

supplementation has direct effects on AD pathology, although it is unclear if the overall 

effects will be beneficial or detrimental to disease. Current evidence suggests that SCFA 

supplementation may also depend on the mouse model, administration method, duration 

of treatment, conventional versus GF microbiomes, sex, strain, and other possibly 

unknown factors. Further studies are needed to evaluate the efficacy of SCFA treatment 

as a potential dietary therapeutic for MCI and AD. In this dissertation, I present my study 

investigating SCFA treatment on APP/PS1 mice, using the same treatment protocol of 

Colombo et al. and a similar mouse model of amyloidosis, and the effects of treatment on 

the gut microbiome, cognition, and amyloid pathology. We chose the APP/PS1 mouse 

because it is well characterized as a model of amyloidosis and cognitive impairment, 

differing from the APPPS1 mouse used by Colombo et al. mostly in that it is a less 

aggressive model of amyloidosis, taking several months to develop significant amyloid 

deposition and to present with cognitive deficits.  
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1.3 Summary 

The gut microbiome changes throughout life and is modulated by most 

environmental factors, including inoculation at birth, pets in the home, diet, age and 

hormonal changes, exercise, medical conditions, and medical treatments (reviewed in 

[130-133]). The impact that these environmental and lifestyle factors have on disease risk 

is in part due to these gut microbiome changes, and evidence shows that modulation of 

the gut microbiome with antibiotic knockdown and fecal transplants can immediately 

reduce disease pathology for a number of conditions [134-137], including neuro-cognitive 

disease such as autism [57,58,138] and Parkinson’s Disease [139-141]. Interestingly, 

modulation of the gut microbiome may also have a profound impact on AD pathology as 

supported by studies in AD murine models [101,118,129,142]. APOE genetics are known to 

impact AD risk and also seem to be differential for altered gut microbiome profiles in 

humans [108,119,143], and murine models [94,115-117]. Here, I investigate gut microbiome 

changes associated with APOE status in APOE targeted replacement (APOE-TR) mice. 

The findings from this study lead me to conduct a second study wherein I investigate the 

effect of SCFA treatment on the gut microbiome and AD pathology of APP/PS1 mice. 

The findings from these studies support the hypothesis that APOE genetics and SCFAs 

affect gut microbiome diversity, which could potentially impact disease pathology. 

  



 
 

CHAPTER 2. APOE GENETICS INFLUENCE MURINE GUT MICROBIOME 

[This section contains material adapted from the published manuscript: Zajac DJ, 

Green SJ, Johnson LA, Estus S. APOE genetics influence murine gut microbiome. Sci 

Rep. 2022 Feb 3;12(1):1906. doi: 10.1038/s41598-022-05763-1. PMID: 35115575; 

PMCID: PMC8814305.] 

2.1 Introduction 

Apolipoprotein E (APOE) alleles impact multiple facets of the human condition, 

ranging from Alzheimer’s Disease (AD) to cardiovascular disease, metabolic syndrome, 

obesity, fertility and longevity (reviewed in [144]). The three primary APOE alleles 

include APOE3, which has a 78% minor allele frequency, as well as APOE4 and APOE2, 

with minor allele frequencies of 14 and 8%, respectively. Regarding AD, APOE2 reduces 

AD risk while APOE4 strongly increases AD risk, both relative to APOE3 (reviewed in 

[47]). This association has prompted intense evaluation of possible mechanism(s) 

underlying APOE effects in AD, resulting in APOE allelic association with amyloid-beta 

(Aβ) clearance, Aβ aggregation and astrocyte stress [145-150]. In the periphery, APOE2 is 

associated with decreased low-density lipoprotein (LDL) cholesterol, whereas APOE4 is 

associated with increased LDL cholesterol, relative to APOE3.  While this may account 

for APOE association with cardiovascular disease, the mechanisms underlying APOE 

allelic effects on glucose metabolism, inflammation and innate immunity are unclear [47]. 

Elucidating these differential actions of APOE alleles may provide insights to these 

processes.  
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Several studies have suggested a relationship between APOE status, the gut 

microbiome and AD neuropathology. First, APOE-deficient mice display microbiome 

differences relative to wild-type mice [113]. Second, APOE4-targeted replacement (TR) 

mice were more resistant to gastrointestinal Cryptosporidium infection than APOE3 mice 

[114]. Third, the APOE4 allele in humans was associated with better defense against 

childhood diarrheal diseases in lower income countries [106-108]. Fourth, we and others 

have recently reported microbiome differences in a comparison of APOE3 and APOE4-

TR mice [94,115,116]. Lastly, several reports have found that Aβ-burden in murine models 

is reduced in gnotobiotic mice or mice treated with antibiotics [97-100]. The mechanism(s) 

whereby APOE alleles influence the gut microbiome are unclear, although APOE4 has 

been associated with a greater inflammatory response to lipopolysaccharide (LPS), a 

microbiome product common to all gram-negative bacteria, in both humans and mice 

[151,152].  

To begin to evaluate whether APOE allelic effects are dominant, co-dominant, or 

recessive, we compared animals heterozygous and homozygous for APOE alleles. 

Additionally, we improved our study design for rigor and reproducibility by backcrossing 

the APOE-TR mice to obviate possible genetic drift, maintaining mice with mixed 

genotypes in the same cages to minimize possible cage effects, and mixing used bedding 

between cages to ensure a homogenous microbial environment among cages. 
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2.2 Materials and Methods 

2.2.1 Mice 

APOE3-TR [153,154] male mice were crossed to APOE4 and APOE2 female mice 

to produce APOE2/E3 and APOE3/E4 heterozygous offspring. These mice were then 

crossed to generate 76 experimental mice that included APOE2/E2 (N=6), APOE2/E3 

(N=12), APOE3/E3 (N=5), APOE3/E4 (N=8), and APOE4/E4 (N=4) female mice and 

APOE2/E2 (N=5), APOE2/E3 (N=7), APOE3/E3 (N=13), APOE3/E4 (N=11), and 

APOE4/E4 (N=5) male mice. Genotypes were determined by TaqMan SNP assays 

(Thermo). At weaning, mice were separated by sex and housed as mixed genotypes, 2-5 

mice per cage (average of 3.7 ± 1.4 (mean ± SD)). Mice were maintained on Teklad 

Global 18% Protein Rodent Diet. To minimize potential confounding effects of 

coprophagy (mice feeding partially on their feces) [155], approximately 20% of the new 

bedding was a mixture of used bedding from all the cages. Feces were obtained from this 

cohort of mice at three-, five- and seven-months of age. To obtain feces, mice were 

temporarily removed from their cage and placed into a clean Styrofoam cup. Fresh fecal 

pellets were stored at -80˚C until DNA isolation. All methods were approved by 

University of Kentucky Institutional Animal Care and Use Committee. This study was 

carried out in compliance with ARRIVE guidelines. 

2.2.2 Microbiome Analysis 

Fecal DNA was isolated by using a QIAamp PowerFecal Pro DNA Kit 

(QIAGEN). Genomic DNA was polymerase chain reaction (PCR) amplified with primers 

CS1_515F and CS2_806R (modified from the primer set employed by the Earth 

Microbiome Project (EMP; GTGYCAGCMGCCGCGGTAA and 
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GGACTACNVGGGTWTCTAAT) targeting the V4 regions of microbial small subunit 

ribosomal RNA genes. Amplicons were generated using a two-stage PCR amplification 

protocol as described previously [156]. The primers contained 5’ common sequence tags 

(known as common sequence 1 and 2, CS1 and CS2). First stage PCR amplifications 

were performed in 10 microliter reactions in 96-well plates, using MyTaq HS 2X 

mastermix (Bioline). PCR conditions were 95°C for 5 minutes, followed by 28 cycles of 

95°C for 30”, 55°C for 45” and 72°C for 60”.  

Subsequently, a second PCR amplification was performed in 10 µl reactions in 

96-well plates. A mastermix for the entire plate was made using MyTaq HS 2X 

mastermix. Each well received a separate primer pair with a unique 10-base barcode, 

obtained from the Access Array Barcode Library for Illumina (Fluidigm, South San 

Francisco, CA; Item# 100-4876). Cycling conditions were: 95°C for 5 mins, followed by 

8 cycles of 95°C for 30”, 60°C for 30” and 72°C for 30”. Samples were then pooled, 

purified, and sequenced on an Illumina MiniSeq platform employing paired-end 2x153 

base reads. Fluidigm sequencing primers, targeting the CS1 and CS2 linker regions, were 

used to initiate sequencing. De-multiplexing of reads was performed on instrument. 

Library preparation, pooling, and sequencing were performed at the University of Illinois 

at Chicago Genome Research Core (GRC) within the Research Resources Center (RRC). 

Forward and reverse reads were merged using PEAR [157] and trimmed based on 

a quality threshold of p =0.01. Ambiguous nucleotides and primer sequences were 

removed and sequences shorter than 225 bp were discarded. Chimeric sequences were 

identified and removed using the USEARCH algorithm with a comparison to the Silva 

132_16S reference database [158,159]. Amplicon sequence variants (ASVs) were 
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identified using DADA2 [160] and their taxonomic annotations determined using the 

UCLUST algorithm and Silva 132_16S reference with a minimum similarity threshold of 

90% [158,159]. Sequence processing and annotation was performed by the Research 

Informatics Core (RIC) within the RRC. 

This sequencing effort yielded 10,162,042 reads. Raw sequence data files were 

submitted in the Sequence Read Archive (SRA) of the National Center for Biotechnology 

Information (NCBI). Two samples with fewer than 30,000 reads each were discarded. 

Since APOE effects may be sex dependent [94], microbiomes from male and female mice 

were analyzed separately. Average read counts per sample for the three-month males was 

48,725, three-month females was 49,499, five-month males was 45,985, five-month 

females was 49,939, in seven-month males was 50,975, in seven-month females was 

51,931. Using MicrobiomeAnalyst [161] (updated version February 2021), samples were 

rarified to the minimum library size, which for three-month males was 36,421, three-

month females was 37,069, five-month males to 30,738, five-month females to 35,467, 

seven-month males to 35,452, and seven-month females to 36,730. Low abundance 

ASVs were removed, i.e., ASVs with < three counts in > 90% of the samples were 

removed, and low variance ASVs were also removed, i.e., ASVs whose inter-quantile 

range was in the lowest 10% [161]. These corrections reduced the number of ASVs from 

263 to 63 ASVs in three-month males and females, 67 in five-month females, 69 in five-

month males, 68 in seven-month females and 66 in seven-month males. Count data was 

normalized with a centered log-ratio transformation. Regarding APOE genetics, the 

results were analyzed as separate genotypes or as pooled alleles, i.e., APOE2/E3 

heterozygous mice were grouped with APOE2/E2 mice while APOE3/E4 mice were 
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grouped with APOE4/E4 as described in other APOE studies [162,163]. This resulted in 12 

APOE2, 13 APOE3 and 16 APOE4 male mice and 18 APOE2, five APOE3 and 12 

APOE4 female mice.   

Bacteria associated with APOE were identified by a linear discriminant analysis 

effect size (LefSe) approach [164]. Significance thresholds were set to 0.05 for the alpha 

values for Kruskal-Wallis/Wilcoxon tests and 2.0 for the logarithmic linear discriminant 

analysis (LDA) score, using a one-against-all multi-class analysis approach. These results 

were then plotted as a cladogram to document the phylogenetic relatedness of APOE 

allelic associations with the bacteria at each taxonomic level. Results are also presented 

as an LDA histogram. 

Alpha-diversity was assessed using the Shannon H diversity index [165] with 

APOE statistical significance determined by Kruskal-Wallis tests. Additional alpha-

diversity tests included Margalef taxon richness, Pielou’s evenness and the Simpson 

index with APOE statistical significance determined by Jonckheere–Terpstra 

nonparametric tests. Beta-diversity was assessed using Principal Coordinates Analysis 

(PCoA) of Bray-Curtis matrices with statistical significance determined by Permutational 

Multivariate Analysis of Variance (PERMANOVA) [166]. Taxonomic levels that 

associate with APOE status were determined using a classical univariate analysis with a 

Kruskal–Wallis test. A false discovery rate (FDR) approach was used to correct for 

multiple testing [161]. Heatmaps of family-level bacterial relative abundances were 

generated for male and female mice as a function of APOE status by using the Ward 

analysis of variance clustering algorithm that used Pearson Correlation Coefficient 

distance measures. 



19 
 

2.3 Results 

To investigate the hypothesis that APOE is associated with gut microbial 

community structure, we began with LefSe analysis and visualized the results with 

cladograms (Figs. 1, 2, Figs. S1, S2). This robust approach provides a visual means to 

identify statistically significant and phylogenetically-related taxa associated with APOE 

status [164]. These LefSe results are also presented as LDA histograms to provide a 

quantitative representation of the LefSe analyses (Fig. S3). Results are presented with 

APOE status stratified as APOE2 carriers, APOE3 and APOE4 carriers (pooled) (Figs. 

1A, 2A) and with APOE status as separate genotypes (Figs. 1B, 2B). These two 

representations of the data provide insights into whether APOE allelic effects are 

dominant or co-dominant. Robust gut microbiome differences were observed in male 

mice compared to female mice at 3-months of age (Figs. 1, 2) with similar results found 

at 5- and 7-months of age (Figs. S1, S2). The microbiome of both male and female mice 

showed APOE4-associated increases in members of the Actinobacteria phylum (Figs. 1, 

2). In contrast, only male mice showed APOE4-associated increases in the 

Erysipleotrichia and Gammaproteobacteria classes and APOE2-associated increases in 

the Cyanobacteria phylum. To gain further insights into these findings, we parsed the 

results into individual genotypes. This expanded our findings by showing that members 

of the Clostridia class were significantly associated with APOE2/E2 and APOE2/E3 (Fig. 

1B). Overall, these results indicated that a subset of bacteria were consistently associated 

with APOE status, especially in males. The male population captured the majority of taxa 

significantly associated with APOE in the female population. In the following results, we 

present analyses of data from male mice at 3-months of age with analyses for all ages and 

sexes included within the Supplemental Files. 
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Microbiome alpha- (within sample) diversity was assessed by the Shannon H index 

and Simpson index, measures of taxon richness and evenness, as well the Margalef taxon 

richness index and evenness index [167]. A robust association between alpha-diversity 

and APOE was not detected in female mice (Shannon index p-values in Table 1, all 

measures of alpha-diversity in Supplemental Files). In contrast, male mice showed a 

stepwise trend towards higher alpha-diversity with APOE2-APOE3-APOE4 at the genus 

level, and this trend became more defined and statistically significant at every higher 

level through phylum (phylum and family depicted in Fig. 3, all levels presented in Table 

1 and Supplemental Files, additional ages, and female data in Table S1). When the results 

are parsed into separate genotypes, the alpha-diversity of the APOE heterozygous animals 

tended to be intermediate relative to the homozygous animals. Hence, APOE was 

associated with alpha-diversity in male but not female mice and APOE allelic affects 

appeared co-dominant. 

Beta-diversity is a measure of between sample microbial communities based on 

their composition. Beta-diversity was visualized by using PCoA based on Bray-Curtis 

distance matrices [168-171], and analyzed using a PERMANOVA. We found that APOE 

status was significantly associated with microbiome beta-diversity in male mice (Fig. 3, 

Table 2, additional ages and female in Table S2). When the data were analyzed with each 

separate APOE genotype, beta-diversity was still significant at each of the same 

taxonomic levels. Overall, these results demonstrate that the microbiome is robustly 

associated with APOE genetics in male mice. 

Variation in bacterial relative abundance per sample was visualized using 

heatmaps, as seen in Figure 4. While cladograms identify bacterial phylogenetic branches 
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that correlate with high abundance in association with a specific APOE status, heatmaps 

provide a per sample depth of information for each APOE status. Inspection of the 

heatmaps suggests that the data are relatively complex although some bacterial patterns 

of association with APOE status are discernible, e.g., Ruminococcaceae and 

Erysipelotrichaceae in male mice (Figure 4).  

Although the use of LefSe analysis and cladograms provides insights into the 

microbiome and has been optimized for this purpose [164], another perspective is 

provided by taxon-by-taxon classical univariate analysis using a Kruskal-Wallis test for 

significance and an FDR correction for multiple testing. To highlight the taxa most 

robustly associated with APOE, we applied classical univariate analysis to identify results 

that were significant with both approaches. Classical univariate analysis of the 3-month 

old female mice found no ASVs, genera, families, orders, classes, or phyla that were 

significantly associated with APOE in either APOE model. However, this approach 

applied to 3-month old male mice in the dominant model found 12 APOE-associated 

ASVs, as well as 12 genera, six families, five orders, five classes, and one phylum 

(statistics for all taxa in each age group are listed in Supplementary Tables S1.1–S3.4). In 

the co-dominant model, this approach found eight ASVs, eight genera, three families, 

four orders, four classes, and no phyla that were significantly associated with APOE. A 

graphical representation of the findings in 3-month old male mice is depicted in Fig. 5. 

Several bacteria showed stepwise associations with APOE on multiple taxonomic levels 

and were overall increased with APOE2. For example, the Clostridia class, Clostridiales 

order and two major families within this phylogenic branch, Ruminococcaceae and 

Lachnospiraceae showed an increase in their relative abundance from APOE4 to APOE3 
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to APOE2 (Fig. 5). The most abundant genera within the Ruminococcaceae family 

significantly associated with APOE were Ruminiclostridium (Fig. 5A,E), 

Ruminiclostridium_5 and Ruminiclostridium_9, which in aggregate represent 

approximately half of the Ruminococcaceae family. At 5- and 7-months of age, other 

genera within Ruminococcaceae were associated with APOE (Supplemental Tables S5.0–

S7.5). Genera within the other major family, Lachnospiraceae, that increased with 

APOE2 were Acetifactor and Lachnoclostridium (Fig. 5B,C,F,G).  

In contrast, the relative abundance of other taxa was increased in APOE4 mice, 

most notably bacteria within the phylogenetic branch defined by the Erysipelotrichia 

class, confirming the findings from the LefSe cladograms (Figure 1). Bacteria within the 

Erysipelotrichia branch that were significantly associated with APOE included the order 

Erysipelotrichiales, its family Erysipelotrichaceae and its genera Turicibacter and 

Dubosiella (Figure 6, data for all ages shown in Supplementary Tables S1.1-S3.4). 

Consistent within this branch, bacterial relative abundance was near zero in the APOE2 

mice, moderate in APOE3 and highly enriched in APOE4 (Figure 6). Hence, both the 

LefSe and classical approaches identified members of the Clostridia class as enriched in 

APOE2 mice while members of the Erysipelotrichia class were enriched in APOE4 mice. 

To discern whether the Clostridiales and Erysipelotrichiales phylogenetic 

branches associated with APOE in this murine APOE-TR model are also associated with 

APOE in humans, we turned to a recent GWAS that evaluated the relationship between 

the gut microbiome and human polymorphisms [172]. This meta-analysis included data 

from as many as 18,340 individuals [172]. The only genetic locus that reached genome 

wide statistical significance was rs182549, which is associated with lactose intolerance. 
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Interestingly, this SNP is modestly associated with the risk of AD (p=0.003, N=445,779) 

[24], consistent with the possibility that the gut microbiome may influence AD risk. 

Focusing on APOE, the alleles of APOE2, APOE3 and APOE4 are defined by two SNPs, 

rs7412 and rs429358. The minor allele of rs7412 defines APOE2 while the minor allele 

of rs429358 determines APOE4 status. The Clostridiales and Erysipelotrichiales 

phylogenetic branches were not significantly associated with rs7412 (APOE2) at any 

phylogenetic level. However, the class Erysipelotrichia, the order Erysipelotrichales and 

the family Erysipelotrichaceae were nominally associated with rs429358 (Table 3). For 

each of these taxa, the minor APOE4 allele was associated with an increase in the relative 

abundance of these bacteria, reproducing the findings observed in the murine APOE-TR 

model. 

2.4 Discussion 

The primary finding reported here is that murine gut microbiome profiles are 

significantly associated with APOE status in a study wherein the APOE-TR mice were 

maintained in an optimized fashion for microbiome analyses. The microbiome 

association with APOE was observed in alpha- and beta-diversity, encompasses multiple 

bacterial lineages and was predominately in male mice. Both LefSe and classical 

univariate analyses identified specific taxa that were associated with APOE. This 

association occurred in a stepwise fashion in the mice with the progression from APOE2-

APOE3-APOE4. The stepwise association between indices of the gut microbiome and 

APOE2-APOE3-APOE4 reported here are reminiscent of APOE allelic association with 

other phenotypes ranging from LDL-cholesterol to AD risk [47,144]. Additionally, at least 

one of these associations, an increase in the Erysipelotrichia phylogenetic branch with 
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APOE4, is also observed in the human gut microbiome. Overall, these findings confirm 

and extend prior reports that APOE genetics are associated with the gut microbiome 

[94,115,116].   

To identify the impact of APOE alleles on the microbiome, we used several 

approaches in this study. These approaches included alpha-diversity, beta-diversity, 

LefSe and classical univariate analyses. Alpha- and beta-diversity analyses aggregate 

multiple variables to provide an assessment of overall microbiome diversity and of 

microbiome profile similarity, respectively. In contrast, LefSe and classical univariate 

analyses provide an indication of differences in the relative abundance of specific taxa 

between experimental groups. In this discussion, we will highlight the primary significant 

findings from these various analyses. 

APOE4 was associated with increased alpha-diversity as assessed by the Shannon 

H index. A stepwise progression was observed with lowest alpha-diversity in APOE2 

moderate in APOE3 and highest in APOE4. Alpha-diversity is a measure of the number 

of distinct taxa and the evenness of these numbers across taxa. High alpha-diversity in the 

gut microbiome has been associated with improved gut health and microbiome 

homeostasis (reviewed in [173]). The APOE4 association with increased alpha-diversity 

observed here is consistent with prior observations that APOE4 is associated with better 

response to diarrheal infections in a third-world environment [107,108]. Indeed, the 

enrichment of APOE4 in people indigenous to Amazonian basin has been proposed to be 

a result of evolutionary selection in this environment with insufficient sanitation [174]. 

A primary finding of this study was that both the LefSe and classical univariate 

analyses found that taxa within the Clostridia class were increased with APOE2 status, 
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confirming results from our prior study [115] and that of Tran et al [116]. This 

phylogenetic branch included the Clostridiales order, Ruminococcaceae family and 

several genera within this family. The Clostridiales order was increased in APOE2 mice 

compared to APOE3 and APOE4 mice. This was most robust in the three-month males 

with similar findings at five- and seven-months. The two major bacterial families within 

this order, Ruminococcaceae and Lachnospiraceae, were also both increased with 

APOE2. The stepwise fashion of the decline in Ruminnococcaceae relative abundance 

from APOE2 to APOE3 to APOE4 confirms the stepwise pattern seen previously [94,115] 

and extends it along the phylogenetic branch from the Clostridia class to associated 

genera, such as Ruminiclostridium, Ruminiclostridium_5, Ruminiclostridium_9. 

Interestingly, Tran et al. also reported an increase in relative abundance of the 

Clostridiales order and Ruminococcaceae family in APOE2/E3 humans compared to 

APOE3/E4 and APOE4/E4 humans [116]. This suggests that this increase in Clostridiales 

and Ruminococcaceae with APOE2 may extend to humans. Two additional genera in the 

Clostridia class, within the Lachnospiraceae family, i.e., Acetifactor and 

Lachnoclostridium, also increased with APOE2 status in the current study. However, this 

finding was not replicated by Tran et al., who reported that Lachnospiraceae increased in 

APOE4 mice compared to APOE3 mice [116].  

Our study strengthens the associations between APOE status and the Clostridiales 

order, Ruminococcaceae family and related genera, and the Acetifactor and 

Lachnoclostridium genera by demonstrating a stepwise pattern with APOE allelic status 

across the entire phylogenetic branch from the Clostridia class down to related genera. 

Ruminococcaceae and Lachnospiraceae are bacterial families that highly express genes 
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responsible for the metabolism of resistant starches in the large intestine, generating short 

chain fatty acids (SCFA)s. The presence of SCFAs in the gut affect human health in 

general (reviewed in [175,176]) and have been reported to promote microglial maturation 

and function in particular [123]. Treatment with SCFAs has been shown to reduce 

microglial pro-inflammatory signals and promote a homeostatic profile that is 

neuroprotective [177-180]. Considering these findings relative to disease pathology 

associated with the stepwise APOE2-APOE3-APOE4 phenotype, we propose a tentative 

model wherein (i) APOE2 is associated with an increase in the relative abundance of 

microbiome bacteria Ruminococcaceae, Acetifactor and Lachnoclostridium, relative to 

APOE3 and APOE4, (ii) this shift in bacterial profile increases the production of SCFAs 

and (iii) this increase in SCFAs promotes microglial homeostasis and disease-

ameliorating signaling, as suggested by robust genetic evidence [31,181-188], (reviewed in 

[189,190]). While speculative, this model serves as a framework for future studies.  

Another primary finding detected by both the LefSe and classical univariate 

analyses was that the Erysipelotrichia phylogenetic branch was significantly associated 

with APOE status in a stepwise APOE2-APOE3-APOE4 pattern. This finding appeared to 

extend to humans and replicates the increase of the Erysipelotrichaceae family in APOE4 

mice that we observed previously [115]. This parallels the association of the 

Erysipelotrichia class, Erysipelotrichales order and Erysipelotrichaceae family with the 

APOE4 minor allele rs429358 in human GWAS data. Our current study also extends this 

finding from the Erysipelotrichia phylogenetic order to its major genera, i.e. Turicibacter 

and Dubosiella. However, Tran et al. reported Erysipelotrichaceae were significantly 

increased in APOE3 compared to APOE4 mice. Erysipelotrichaceae has been shown to 
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increase in animals fed a high-fat diet and to decrease in patients on a low-fat diet 

[191,192]. Hence, diet variation between the mice in our study and those of Tran et al. may 

account for the Erysipelotrichaceae difference, noting that our Teklad Global 18% (2018) 

chow has a fat content that accounts for 18% of total calories, whereas the RPM3, Special 

Diet Services chow used in the Tran et al study has a fat content that accounts for 12% of 

total calories [116]. Since APOE genetics have been associated with BMI and obesity 

[144], there may be a complex interplay between diet, APOE genotype and relative 

abundance of Erysipelotrichaceae in the gut.  

2.5 Conclusions 

In this study in which mice were maintained with optimized conditions for 

microbiome analysis, we report a significant association between APOE status and gut 

microbiome profiles in three-month male mice that reproduces at five and seven months 

of age. The Clostridia class, Clostridiales order, its related family Ruminococcaceae, as 

well as related genera Ruminoclostridium, and Acetifactor and Lachnoclostridium of the 

Lachnopsiraceae family increase with APOE2, which may reflect an increase in resistant 

starch metabolism with APOE2, and a possible impact on SCFA levels. The 

Erysipelotrichia class, Erysipelotrichiales order, Erysipelotrichaceae family, and 

Turicibacter and Dubosiella genera increase with APOE4. The findings with the 

Erysipelotrichia phylogenetic branch appear to extend to humans. Understanding the 

effects of APOE genetics on the gut microbiome may provide novel approaches to 

counter deleterious APOE genetic effects on human disease.   

Alpha-diversity 
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 3 month p-values 5 month p-values 7 month p-values 

Taxonomic 

level 

Males Females Males Females Males Females 

genus 4.5x10-1 5.8x10-1 4.6x10-1 7.9x10-1 5.4x10-1 7.7x10-1 

family 5.8x10-4 3.2x10-1 2.0x10-2 4.1x10-1 5.0x10-1 7.4x10-1 

order 7.7x10-5 7.7x10-1 8.4x10-2 6.1x10-1 1.4x10-1 2.8x10-1 

class 7.7x10-5 7.3x10-1 7.3x10-2 6.3x10-1 1.4x10-1 2.4x10-1 

phylum 1.1x10-5 6.5x10-2 2.8x10-1 9.5x10-2 9.2x10-1 2.5x10-1 

Table 1. Alpha-diversity p-values for APOE mice. 

Microbiome alpha-diversity was significantly associated with APOE status in three-

month male but not female mice. P-values reflect nominal p-values and were determined 

using Kruskal-Wallis tests. P-values less than 0.5 are bolded.  
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Beta-diversity 
  3 month 5 month 7 month 

Taxonomic level Males Females Males Females Males Females 
Genus p-value 0.001 0.408 0.044 0.283 0.005 0.038 

R2 0.146 0.058 0.0085 0.066 0.123 0.095 
Family p-value 0.005 0.496 0.080 0.060 0.001 0.201 

R2 0.165 0.052 0.088 0.048 0.164 0.077 
Order p-value 0.003 0.688 0.089 0.789 0.006 0.165 

R2 0.206 0.036 0.100 0.031 0.179 0.091 
Class p-value 0.002 0.656 0.082 0.830 0.006 0.133 

R2 0.208 0.037 0.102 0.029 0.18 0.097 
Phylum p-value 0.028 0.263 0.846 0.059 0.360 0.105 

R2 0.122 0.069 0.023 0.046 0.055 0.102 
Table 2. Beta-diversity values for APOE mice. 

Microbiome beta-diversity significantly associated with APOE status in male, but not 

female, mice. The R2 values represent the proportion of the variance captured by APOE 

alleles. The PERMANOVA results were derived from 999 permutations. 
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Bacteria SNP Reference 
Allele 

Effect 
Allele 

Beta SE P-
value 

M 

Class: 
Erysipelotrichia 

rs429358 T C 0.032 0.015 0.035 18097 

Order: 
Erysipelotrichales 

rs429358 T C 0.032 0.015 0.035 18097 

Family: 
Erysipleotrichaceae 

rs429358 T C 0.032 0.015 0.035 18097 

Genus: 
Turicibacter 

rs429358 T C 0.011 0.021 0.87 8921 

Table 3. Human GWAS for Erysipelotrichia taxa. 

Bacteria in the Erysipelotrichia phylogenetic branch are nominally associated with 

rs429358 in humans. The positive beta values reflect that the bacterial taxa are increased 

with the minor APOE4 allele of rs429358. These results combine data from men and 

women and are supplemental data from a large microbiome genetics study [172].
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Figure 1. Cladograms of taxa differential for male APOE mice. 

Cladograms reveal microbial phylogenetic branches associated with APOE status in 

males. Taxa are represented as nodes and are connected by lines based on the 

phylogenetic relatedness of all taxa present in each experimental cohort. For example, the 

end node, a. represents the genus Bifodobacterium which is connected to other nodes 

representing higher level taxa related to Bifodobacterium including; b. the family 

Bifidobacteriaceae, c. the order Bifidobacteriales, and d. the class Actinobacteria. Many 

taxa are associated with APOE genetics, with node colors indicating the APOE associated 

with highest levels of that taxa. Statistical significance reflects both p < 0.05 for Kruskal–

Wallis tests and a logarithmic LDA score > 2.0. 

  



33 
 

 



34 
 

Figure 2. Cladograms of taxa differential for female APOE mice. 

Cladograms reveal microbial phylogenetic branches associated with APOE status in 

females. Taxa significantly associated with APOE are highlighted (p < 0.05 for Kruskal–

Wallis tests and a logarithmic LDA score > 2.0). 
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Figure 3. Alpha- and beta-diversity plots for APOE mice. 

Microbiome alpha- and beta-diversity as a function of APOE. Alpha-diversity is depicted 

as boxplots (A,B,D,E) and beta-diversity as PCoA plots (C,F). These results are from 

male mice at 3-months of age. Statistical significance for the findings is indicated below 

each graph. Ellipses in C and F represent 95% confidence intervals. Dominant model (C) 

R2 = 0.171 and co-dominant model (F) R2 = 0.206. Beta-diversity was also analyzed 

using a PERMDISP, which had no significant p-values, indicating that variances were not 

significantly different as a function of APOE.  
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Figure 4. Heatmaps of bacterial taxa for all groups of mice. 

Heatmaps depict overall microbiota profiles grouped by APOE status. These heatmaps 

depict per-sample relative abundance for family-level bacteria in female and male mice. 

Columns were grouped by APOE status, rows were grouped by the Ward clustering 

algorithm using Pearson Correlation Coefficient distance measures. Colored boxes 

highlight groups of taxa that follow either an APOE2- (A.2 and B.2), APOE3- (A.3 and 

B.3) or APOE4-associated pattern (A.4 and B.4). 
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Figure 5. The Clostridia branch in association with APOE in male mice. 

The phylogenetic branch defined by Clostridia and its lower taxa shows a significant 

association with APOE in male mice. The relative abundance of each depicted bacteria 

was significantly associated with APOE status. The relative abundance of these bacteria 

decreased in a stepwise fashion from APOE2 to APOE3 to APOE4. P values have been 

corrected using an FDR approach. (A–D) Are the plots depicted using the dominant 

model representation, while (E–H) are the plots depicted using the co-dominant model 

representation. These data are derived from the 3-month male mice with data for all ages 

provided in Supplementary Tables S5.0–SS7.5. 
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Figure 6. The Erysipelotrichia branch in association with APOE in male mice. 

The phylogenetic branch defined by Erysipelotrichia and its lower taxa shows a 

significant association with APOE in male mice. All depicted bacteria were significantly 

associated with APOE status. The relative abundance of these bacteria increased in a 

stepwise fashion from APOE2 to APOE3 to APOE4. P values have been corrected using 

an FDR approach. (A–C) Are the plots depicted using the dominant model representation, 

while (D–F) are the plots depicted using the co-dominant model representation. These 

results are derived from 3-month male mice.



 
 

CHAPTER 3. EXOGENOUS SHORT-CHAIN FATTY ACID EFFECTS IN APP/PS1 
MICE 

[This section contains material adapted from the published manuscript: Zajac DJ, 

Shaw BC, Braun DJ, Green SJ, Morganti JM, Estus S. Exogenous Short Chain Fatty Acid 

Effects in APP/PS1 Mice. Front Neurosci. 2022 Jul 4;16:873549. doi: 

10.3389/fnins.2022.873549. PMID: 35860296; PMCID: PMC9289923.] 

3.1 Introduction 

The impact of the gut microbiome on Alzheimer’s Disease (AD) is an area of 

intense current scrutiny (reviewed in [193,194]). Several studies have suggested 

differences in the gut microbiome between AD and non-AD individuals [83,84,88]. 

Whether the relationship between the gut microbiome and AD risk extends from 

correlation to causality is unclear, although several reports have found that Aβ burden in 

murine models is reduced in gnotobiotic mice or mice treated with antibiotics [97-102]. 

Hence, the gut microbiome may emerge as a modulator of AD risk.  

 SCFAs are a major microbiota metabolite that have been suggested to mediate gut 

microbiome effects in the brain (reviewed in [127,128]. The major source of SCFAs in the 

body is microbial digestion of resistant starch. Recently, SCFA treatment was reported to 

increase amyloid burden in specific-pathogen-free (SPF) APP/PS1 mice [101] while 

butyrate treatment was reported to decrease amyloid burden in SPF 5xFAD mice [44] and 

in 5xFAD mice maintained on a conventional microbiome [129]. We refer to a 

conventional microbiome as the microbiome of mice that were conventionally raised, as 

opposed to germ free or SPF mice, which have laboratory controlled/limited 

microbiomes. Here, we tested the effects of SCFAs on mice maintained under standard 
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laboratory conditions with a conventional microbiome. For this effort, five-month-old 

APP/PS1 mice were treated with SCFAs until ten months of age, and then evaluated for 

microbiome profile, spatial memory deficit, glial activation, and amyloid burden. We 

report that SCFA treatment impacted the gut microbiome but not memory impairment, 

glial activation, or amyloid burden in this paradigm.  

3.2 Methods 

3.2.1 Animals 

APP/PS1 (APPswe,PSEN1dE9) are double transgenic mice expressing a chimeric 

mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a human PSEN1 gene 

lacking exon 9 (PS1-dE9) [195]. We chose this mouse model because the mice begin to 

develop Aβ deposits by six months of age, with abundant plaques in the hippocampus 

and cortex by nine months [195]. Plaques continue to increase up to around 12 months of 

age [196]. This is a less aggressive amyloid phenotype with a delayed onset compared to 

other mouse models, such as the 5xFAD [197], and we hypothesized that a mild agent, 

such as SCFA treatment, would be more likely to have an effect in the APP/PS1 model. 

Behavioral deficits have been reported across cognitive domains, although severity and 

timing depend on the specific behavioral tests [198]. Mice were bred by crossing APP/PS1 

carriers with wild-type C57Bl/6J mice. At weaning, mice were separated by sex and 

housed as mixed genotypes with 2-5 mice per cage. Non-APP/PS1 (WT) littermates 

served as control mice. 

Mice were maintained on standard mouse chow (Teklad Global 18% Protein 

Rodent Diet) in individually ventilated cages. This diet consists of ground wheat, ground 



44 
 

corn, wheat middlings, dehulled soybean meal, corn gluten meal, soybean oil, and 

brewers dried yeast, as well as vitamins and minerals [199]. Soluble starches such as 

inulin that contribute to SCFA production are present in these ingredients, although the 

specific amounts are not available. Another dietary component, brewers dried yeast, is 

also known to impact the gut microbiome [200]. Each of the mice in this study were 

maintained on the same chow for the duration of the study. 

Beginning at five months of age, drinking water was supplemented with either 

SCFAs (67.5 mM sodium acetate, 25mM sodium propionate, 40 mM sodium butyrate, 

pH 6.8) or with sodium chloride (132.5 mM) [123]. This solution was administered via 

water bottles and was made fresh weekly for a total of five additional months. Equivalent 

amounts of water were consumed by each group. This approach has been previously used 

and shown to significantly increase plasma concentrations of acetate, propionate and 

butyrate in murine models, including an APPPS1 mouse model [101,201]. 

 

3.2.2 Microbiome Analysis 

Fecal samples were collected on the day of euthanasia.  The number of mice 

included 34 males (16 APP/PS1 which included eight on SCFA and eight on saline, and 

18 WT which included 11 on SCFA and seven on saline), and 32 females (14 APP/PS1 

which included five on SCFA and nine on saline, and 18 WT which included 10 on 

SCFA and eight on saline). DNA was isolated by using a QIAamp PowerFecal Pro DNA 

Kit (QIAGEN). Genomic DNA was polymerase chain reaction (PCR) amplified with 

primers CS1_515F and CS2_806R (modified from the primer set employed by the Earth 

Microbiome Project (EMP; GTGYCAGCMGCCGCGGTAA and 
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GGACTACNVGGGTWTCTAAT) targeting the V4 regions of microbial small subunit 

ribosomal RNA genes. Amplicons were generated using a two-stage PCR amplification 

protocol as described previously [156]. The primers contained 5’ common sequence tags 

(known as common sequence 1 and 2, CS1 and CS2). First stage PCR amplifications 

were performed in 10 microliter reactions in 96-well plates, using MyTaq HS 2X 

mastermix (Bioline). PCR conditions were 95°C for 5 minutes, followed by 28 cycles of 

95°C for 30”, 55°C for 45” and 72°C for 60”.  

Subsequently, a second PCR amplification was performed in 10 microliter 

reactions in 96-well plates. A mastermix for the entire plate was made using MyTaq HS 

2X mastermix. Each well received a separate primer pair with a unique 10-base barcode, 

obtained from the Access Array Barcode Library for Illumina (Fluidigm, South San 

Francisco, CA; Item# 100-4876). Cycling conditions were: 95°C for 5 minutes, followed 

by 8 cycles of 95°C for 30”, 60°C for 30” and 72°C for 30”. Samples were then pooled, 

purified, and sequenced on an Illumina MiniSeq platform employing paired-end 2x153 

base reads. Fluidigm sequencing primers, targeting the CS1 and CS2 linker regions, were 

used to initiate sequencing. De-multiplexing of reads was performed on instrument. 

Library preparation, pooling, and sequencing were performed at the University of Illinois 

at Chicago Genome Research Core (GRC) within the Research Resources Center (RRC). 

Forward and reverse reads were merged using PEAR [157] and trimmed based on a 

quality threshold of p=0.01. Ambiguous nucleotides and primer sequences were removed 

and sequences shorter than 225 bp were discarded. Chimeric sequences were identified 

and removed using the USEARCH algorithm with a comparison to the Silva 132_16S 

reference database [158,159]. Amplicon sequence variants (ASVs) were identified using 
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DADA2 [160] and their taxonomic annotations determined using the UCLUST algorithm 

and Silva 132_16S reference with a minimum similarity threshold of 90% [158,159]. 

This sequencing effort yielded 4,443,016 reads. Raw sequence data files were 

submitted to the Sequence Read Archive (SRA) of the National Center for Biotechnology 

Information (NCBI) (BioProject #: PRJNA809693). One sample with fewer than 30,000 

reads each was discarded. The average read count per sample was 67,318, where the 

minimum was 40,337 and the maximum was 134,816. Using MicrobiomeAnalyst [161] 

(updated version October 2021), samples were rarified to the minimum library size for 

each dataset. Low abundance ASVs were removed, i.e., ASVs with < three counts in > 

90% of the samples were removed, and low variance ASVs were also removed, i.e., 

ASVs whose inter-quantile range was in the lowest 10% [161]. These corrections reduced 

the number of ASVs from 156 to 87 and 84 ASVs in the male and female mice datasets 

respectively. Count data were normalized with a centered log-ratio transformation.  

Alpha-diversity was assessed using the Shannon H diversity index [165] with 

statistical significance determined by Kruskal-Wallis tests. Beta-diversity was assessed 

using Principal Coordinates Analysis (PCoA) of Bray-Curtis matrices with statistical 

significance determined by Permutational Multivariate Analysis of Variance 

(PERMANOVA) [202]. Taxa that associated with SCFA or APP/PS1 status were 

determined using a classical univariate analysis with a Kruskal–Wallis test. A false 

discovery rate (FDR) approach was used to correct for multiple testing [161].  

Bacteria associated with SCFA treatment or APP/PS1 status were identified by a 

linear discriminant analysis effect size (LefSe) approach [164]. Significance thresholds 

were set to 0.05 for the alpha values for Kruskal-Wallis/Wilcoxon tests and 2.0 for the 
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logarithmic linear discriminant analysis (LDA) score, using a one-against-all multi-class 

analysis approach. These results were then plotted as a cladogram using the Huttenhower 

Galaxy resources to document the phylogenetic relatedness of SCFA associations with 

the bacteria at each taxonomic level [164].  

 

3.2.3 Behavior Tests 

Testing was performed by the Sanders-Brown Rodent Behavior Facility. Since 

robust behavioral deficits were previously identified with a Radial Arm Water Maze 

(RAWM) [203], we used this learning and memory task which takes advantage of the 

simple motivation provided by immersion into water. The radial arm water maze has 

been well characterized and used many times to detect a deficit in reference and working 

memory in the APP/PS1 mouse model [204-206]. The two-day RAWM test of spatial 

reference memory [207] was performed as previously described [208,209]. Mice were 

trained to find a hidden platform in one of eight arms using extramaze visual cues and 

were scored for number of errors made before finding the platform. The platform was 

kept in the same goal arm for each mouse, with the start arm sequence randomized such 

that all mice started from each of the other five arms (not including the goal nor the two 

arms directly adjacent) three times per day. Each trial lasted until the mouse found the 

platform or 60s had elapsed, whichever occurred first. Mice that failed to reach the 

platform in 60s were gently guided there and allowed to remain for 15s. Errors were 

counted as a mouse fully entering an incorrect (non-goal) arm or spending 15 consecutive 

seconds or longer in the same non-goal zone. On day one, mice were trained with 12 

alternating hidden and visible platform trials followed by three hidden platform trials; 
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averaged across three consecutive trials into five blocks. On day two, mice again 

underwent 15 trials but with a hidden platform only. To ensure that any observed effects 

were not due to differences in vision or swimming ability, each mouse was tested in an 

open pool with no obstacles and the platform clearly identified (Figure S1). Each of the 

mice analyzed for microbiome were analyzed for behavior. Since females are known to 

have a larger amyloid burden in this model [210], results from males and females were 

analyzed separately by using a general linear model with treatment and transgene status 

and a treatment-transgene interaction term as main effects. 

3.2.4 Gfap Expression and Amyloid β (Aβ) Accumulation 

A random subset of mice were analyzed further for Gfap expression and Aβ 

quantitation. The number of mice included 22 males (nine APP/PS1 which included five 

on SCFA and four on saline, and 13 WT which included six on SCFA and seven on 

saline), and 16 females (eight APP/PS1 which included four on SCFA and four on saline, 

and eight WT which included three on SCFA and five on saline). Mice were deeply 

anesthetized with 5% isoflurane and then underwent transcardial perfusion with 50 ml 

ice-cold phosphate-buffered saline (PBS) at a flow rate of 10 ml/min before decapitation 

and brain removal and dissection. The right hemisphere was post-fixed in 4% 

paraformaldehyde for 24 h at 4 °C and cryo-protected in 30% sucrose for at least 48 h at 

4 °C. Brains were then embedded in a solid matrix at 40 per block and sectioned 

coronally (MultiBrain processing by NeuroScience Associates, Knoxville, TN). For Gfap 

immunohistochemistry, free floating sections were treated with hydrogen peroxide, 

blocked and immunostained with Gfap (Dako, Catalog#: Z0334,1/1000), incubated 

overnight at room temperature, and labeled cells detected with a biotinylated secondary 
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antibody (Vector Lab), and diaminobenzidine tetrahydrochloride (DAB). To visualize 

amyloid deposits, sections were then subjected to a Campbell–Switzer silver stain. A 

detailed protocol for this stain can be found online at the NeuroScience Associates 

website: http://www.neuroscienceassociates.com/Documents/Publications/campbell-

switzer_protocol.htm.  

 Gfap and amyloid staining was quantified in the dorsal hippocampus and 

overlying cortex by manually outlining these regions of interest in the HALO analysis 

suite (Indica Labs, version 2.3.2089.34) by an investigator blinded to experimental 

groups. The algorithm minimum intensity settings for all analyses were manually 

thresholded based upon negative control. Cortical and hippocampal analyses of Gfap and 

amyloid staining was quantified by using the area quantification algorithm (Area 

Quantification v.2.2.1) applied to the traced region across three-to-four sections per 

animal to give a single average count per square millimeter of tissue per region. Results 

from males and females were analyzed separately by using a general linear model with 

treatment and transgene status and a treatment-transgene interaction term as main effects. 

3.2.5 MesoScale (MDS) Multiplex ELISA 

Hippocampi and cortices were dissected from the left hemisphere to approximate 

the regions outlined for the amyloid staining analyses in the right hemisphere. Samples 

were snap frozen and kept at -80°C until Aβ quantitation.  For this analysis, a random 

subset of APP/PS1 mice included nine males (which included four on SCFA and five on 

saline), and nine females (which included five on SCFA and four on saline). Soluble Aβ 

peptides were then quantified with an MSD approach as described previously [211]. 

Briefly, the PBS-soluble tissue fraction was prepared from each mouse by 

http://www.neuroscienceassociates.com/Documents/Publications/campbell-switzer_protocol.htm
http://www.neuroscienceassociates.com/Documents/Publications/campbell-switzer_protocol.htm
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homogenization with an Omni Bead Ruptor 24 (Omni International). Samples were 

homogenized in PBS lysis buffer containing 1 mM phenylmethylsulfonyl fluoride (Sigma 

#P7626), 0.5 mM EDTA, and 0.2X Halt Protease Inhibitor Cocktail (Thermo Scientific 

#87786) and centrifuged at 12,000×g for 20 min at 4 °C. Supernatants were collected for 

Aβ1–40 (Aβ40)/Aβ1–42 (Aβ42) measurement using a human 6E10 Aβ kit (K15200E). All 

samples were run undiluted. Aβ peptide levels were normalized to the total mass of 

protein in the sample as determined by BCA Protein Assay (ThermoFisher #23225). 

Results were analyzed by using a general linear model with sex and treatment status as 

main effects. 

3.3 Results 

The purpose of this study was to test the effects of SCFA supplementation on 

APP/PS1 mice maintained in a standard laboratory environment. The SCFA and saline 

control treatments were well-tolerated by the mice. Mice maintained healthy coats and 

body weights were unaffected (Figure 1).  

The effects of SCFA supplementation on the gut microbiome have not been 

reported previously. Therefore, we analyzed 16S rRNA gene amplicon sequencing results 

from fecal DNA samples. Since sex impacts the amyloid burden in the APP/PS1 model, 

males and females were analyzed separately [210]. We began with microbiome alpha-

diversity (Shannon H index), which is a measure of within-sample diversity based on the 

richness and evenness of the taxa present. An alpha-diversity score was calculated using 

the Shannon H index for each sample. Both male and female mice showed a trend 

towards higher alpha-diversity with SCFA treatment, with male mice reaching statistical 
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significance at the taxonomic levels of order (p=0.0027), class (p=0.0027) and phylum 

(p=0.043) and female mice reaching significance at the genus (p=0.049) taxonomic level 

(Figures 2A and 2C, p-values for all taxonomic levels in Table 1). The presence of the 

transgene had no significant effect on alpha diversity at any taxonomic level in males or 

females (p>0.05). An increase in gut alpha-diversity, as associated with SCFA treatment 

here, is generally considered to be an indication of a healthier gut [212].  

Beta-diversity is a measure of similarity of the microbial communities between 

samples. Beta-diversity scores were visualized using PCoA plots with Bray-Curtis 

distance measures. In both male and female mice, beta-diversity was generally not 

significantly affected by SCFA treatment (Table 2). However, in male mice, beta-

diversity was significantly associated with SCFA treatment on the genus level (R2=0.073, 

p<0.049), while in female mice, it was significantly associated with SCFA treatment on 

the species level (R2=0.086, p<0.009) (Figures 2B and 2D, and scores for all taxonomic 

levels in Table 2). Although the p-values are significant, the R2 values are low, a result of 

variability within group and overlap between groups, so these results may not have 

biological meaning. 

Since alpha- and beta-diversity measures suggest some significant SCFA effects 

on the gut microbiome, additional analyses to identify specific taxa were performed. Taxa 

significantly associated with SCFA treatment were visualized with cladograms portraying 

phylogenetic relatedness between the taxa (Figures 3A and 4A). Significance was 

calculated using a linear discriminant analysis of effect size (LefSe). An additional 

classical univariate analysis with FDR-corrected p-values was used to generate box plots 

of individual taxa significantly associated with SCFA at all taxonomic levels (Figures 3B 
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and 4B). Both analyses identified similar taxonomic trends, with the classical univariate 

analyses identifying additional taxa.  

In male mice, SCFA supplementation resulted in a significant increase in the 

relative abundance of the phylum Actinobacterium, which includes the order 

Bifidobacteriales of the class Actinobacterium and the order Coriobacteriales of the class 

Coriobacteria (Figure 3A). In contrast, SCFA treatment resulted in a significant decrease 

in the families Prevotellaceae and Christensenellaceae and the genus Olsenella (Figure 

3, Supplemental files S1.1-1.6). 

In female mice, SCFA supplementation significantly increased relative abundance 

of the genus Anaeroplasma of the phylum Tenericutes, and the genus Lactobacillus of the 

class Bacilli. In both sexes, the genus Olsenella was significantly increased in association 

with SCFA treatment, while the relative abundance of the family Prevotellaceae was 

decreased. Interestingly, SCFA treatment resulted in a significant increase of the species 

Intestinale from genus Muribaculum in female mice (Figure 4B), but a decrease in male 

mice (Figure 3B).  

To determine whether SCFA supplementation improved cognition in the 

APP/PS1 mice, the animals were subjected to a RAWM test. The number of errors 

observed in male and female mice was determined on day one and day two (Figure 5). 

Since larger amyloid burden has been observed has been observed in female mice in this 

model [210], results from male and female mice were analyzed separately. These results 

were analyzed by a general linear model that included treatment status, transgene status, 

and treatment-transgene interaction (Figure 6).  
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The overall statistical model for male mice on day one was statistically significant 

(F3,60=3.674, p=0.017), where transgene was significant (p=0.005), but treatment and 

treatment-transgene interaction were not significant ((p=0.789) and (p=0.264) 

respectively). Regarding transgene effects, the SCFA-treated APP/PS1 mice made more 

errors than the SCFA-treated WT mice (p=0.004, Figure 5). However, the number of 

errors committed by the saline-treated APP/PS1 mice was not significantly different from 

saline-treated WT mice (p=0.218). Overall, these findings indicate no treatment effect, 

and a transgene effect only in SCFA-treated mice. 

The overall statistical model for female mice on day one was statistically 

significant (F3,39=3.077, p=0.039), where transgene was significant (p=0.005), but 

treatment and treatment-transgene interaction were not significant ((p=0.454) and 

(p=0.351) respectively). Regarding transgene effects, SCFA-treated APP/PS1 mice made 

more errors than the SCFA-treated WT mice (p= 0.016, Figure 5). In contrast, saline-

treated APP/PS1 mice were not significantly different from saline-treated WT mice 

(p=0.103). Overall, these findings again indicate no treatment effect in either APP/PS1 or 

WT mice and a transgene effect only in SCFA-treated mice. 

The overall statistical model for males on day two was not statistically significant 

(F3,58=1.068, p=0.370), where the overall transgene effect, treatment, and treatment-

transgene interaction were not significant (p=0.334, p=0.816 and p=0.153, respectively, 

Figure 6). Overall, male mice did not display any significant difference in errors made on 

day two based on treatment, transgene, or a combined treatment-transgene interaction. 

The overall statistical model for females on day two was statistically significant 

(F3,39=3.746, p=0.019), where the overall transgene effect was significant (p=0.003), 
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while the treatment and treatment-transgene interaction were not significant (p=0.445 and 

p=0.606, respectively). On day two, the female saline-treated APP/PS1 mice made more 

errors than the saline-treated WT mice (p=0.008, Figure 6). The female SCFA-treated 

APP/PS1 mice showed a similar trend towards more errors than the SCFA-treated WT 

mice, but this trend did not reach significance (p=0.08, Figure 6). In summation, the 

female mice showed a robust transgene effect, especially in the saline-treated mice, while 

treatment and a treatment-transgene interaction were not significant.  

To determine SCFA effects on glial activation in the mice, Gfap 

immunohistochemistry was performed (Figure 7). HALO was used to quantify the extent 

of robust Gfap staining in cortical and hippocampal slices. Results are presented as the 

percent of the region of the interest that was strongly Gfap positive (Figure 7). As 

detailed below, SCFA treatment did not significantly affect staining in the cortex or 

hippocampus in either male or female mice. The presence of the APP/PS1 transgenes 

significantly increased Gfap staining only in the cortex (Figure 7). 

The overall statistical model for cortical Gfap staining in male mice was 

significant (F3,17=3.554, p=0.037), where the transgene effect was significant (p=0.008), 

the treatment effect was not significant (p=0.333), and the transgene-treatment interaction 

was not significant (p=0.622, Figure 7). Specifically, the presence of the APP/PS1 

transgenes significantly increased Gfap in the SCFA-treated mice (p=0.020), while the 

saline-treated mice showed a similar trend (p=0.106). 

The overall statistical model for cortical Gfap staining in female mice was also 

significant (F3,12=9.205, p=0.002), where the transgene effect was significant (p<0.001), 

and neither the treatment effect nor the transgene-treatment interaction were significant 
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(p=0.273 and p=0.637, respectively). Specifically, the presence of the APP/PS1 

transgenes significantly increased Gfap in both the SCFA-treated mice (p=0.014) and the 

saline-treated mice (p=0.002). 

The overall statistical models for hippocampal Gfap staining in male mice and female 

mice were not significant ((F3,17=0.443, p=0.0726) and (F3,14=0.680, p=0.579), 

respectively). For each model, transgene, treatment, and transgene-treatment interaction 

were not significant.  

To determine SCFA effects on amyloid accumulation in the APP/PS1 mice, 

amyloid burden was quantified in the cortex and in the hippocampus by both 

histochemistry and by MSD. For the histochemistry, HALO was used to quantify the 

percent area of the cortex and hippocampus ROI that was amyloid positive, and results 

analyzed by using a general linear model (Figure 8). The overall statistical models for 

cortical and hippocampal amyloid load were statistically significant ((F3,33=69.199, 

p<0.001) and (F3,33=68.610, p<0.001) respectively). In the cortex, SCFA treatment again 

had no significant effect on amyloid (F1,33=0.174, p=0.679). In the hippocampus, SCFA 

treatment had no significant effect (F1,33=0.071, p=0.791) on amyloid burden.  

Independent of treatment, female mice appeared to have robust amyloid 

deposition while male mice appeared to have a lighter amyloid burden (Figure 8A), as 

has been reported previously for this murine model [210]. Statistical analysis of the 

amyloid staining confirmed that female mice had a greater amyloid burden than male 

mice in the cortex (F1,33=14.126, p<0.001) and in the hippocampus (F1,33=14.484, 

p<0.001, Figure 8B). 
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To discern Aβ40 and Aβ42 independently, soluble amyloid peptide levels were 

quantified by MSD analyses. The results revealed robust levels of Aβ40 and Aβ42 in 

both the cortex and hippocampus (Figure 9). The overall models for cortical Aβ40 

(F2,15=5.360, p=0.018), hippocampal Aβ40 (F2,15=9.146, p=0.003), cortical Aβ42 

(F2,15=21.492, p<0.001), and hippocampal Aβ42 (F2,15=6.712, p=0.008), were statistically 

significant. SCFA treatment did not significantly impact cortical Aβ40 (F1,15=0.375, 

p=0.549), hippocampal Aβ40 (F1,15=1.069, p=0.318), cortical Aβ42 (F1,15=3.549, 

p=0.079), or hippocampal Aβ42 (F1,15=1.204, p=0.290). 

Independent of treatment, female mice had significantly more cortical Aβ40 

(F1,15=10.705, p=0.005), hippocampal Aβ40 (F1,15=16.077, p=0.001), cortical Aβ42 

(F1,15=42.798, p<0.001), and hippocampal Aβ42 (F1,15=11.238, p=0.004) compared to the 

male mice (Figure 9). Overall, these findings that female mice had significantly more 

amyloid than male mice, but that SCFA treatment had no significant effect on amyloid, 

confirm the results of the histochemistry analyses. 

3.4 Discussion 

The goal of this study was to test the effects of SCFA supplementation in APP/PS1 

mice maintained in a conventional laboratory animal environment. Our primary findings 

were that SCFA treatment significantly impacted the gut microbiome but had no effect on 

spatial memory deficits, glial activation nor amyloid burden in this model. In both male 

and female mice, SCFA supplementation was associated with increased alpha-diversity 

and increased relative abundance of several taxa associated with SCFA-production. 

Although a behavioral deficit was associated with the APP/PS1 transgenes, no effects 
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were detected following SCFA treatment. SCFA supplementation also had no significant 

effect on Gfap expression or amyloid burden. Overall, we interpret these findings as 

indicating that SCFA supplementation affects the gut microbiome, but not the hallmarks 

associated with this preclinical model of AD. 

 SCFA supplementation increased several bacteria in male and female mice. Based 

on LefSe analyses, the genera Bifidobacterium, Olsenella and Odoribacter increased in 

male mice, and the genera Lactobacillus, Olsenella and Anaeroplasma increased in 

female mice. Interestingly, of these taxa, the genera Bifidobacterium and Lactobacillus 

are known to produce SCFAs and SCFA precursors (reviewed in [213]). Overall, these 

findings suggest a possible feedforward effect of SCFA supplementation, in which 

SCFAs increase the relative abundance of bacteria that produce SCFAs. Further studies 

are needed to corroborate this finding.  

 Several studies report a role of SCFAs in the brain. For example, treatment of 

astrocyte or microglia in vitro with the SCFA acetate has been shown to reverse LPS-

induced astrocytic activation and inhibit NFkB signaling [177,214]. In vivo, SCFA 

treatment impacts microglial morphology, transcriptome, and response to stimuli, such as 

LPS [123]. The mechanisms by which SCFAs act on cells within the brain is under intense 

scrutiny. SCFAs have been found to inhibit histone deacetylation, thereby affecting gene 

expression and inflammation (reviewed in [215]). For example, treatment of mice with 

sodium butyrate reduces histone deacetylase (HDAC) activity in the gut, associated 

immune cells and the central nervous system ([216]; reviewed in [215]). A second 

mechanism that may mediate SCFA activity in the brain is the binding of SCFAs to free 

fatty acid receptors FFAR2 and FFAR3 (reviewed in [176,215]). While these receptors are 
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mostly expressed in intestinal mucosal cells and immune cells, FFAR3 is also expressed 

by neurons in the periphery [217]. FFAR2 and FFAR3 expression in the brain has not 

been reported. SCFA actions in the brain depend upon their transport across the blood 

brain barrier. This is mediated by monocarboxylate transporters which are expressed at 

high levels in the endothelial cells of the blood brain barrier (reviewed in [215]). 

 Several factors may influence SCFA levels in vivo. First, diet has been shown to 

clearly modulate SCFA levels because components of soluble fiber such as inulin are 

metabolized to SCFAs by the gut microbiome (reviewed in [218,219]). In this study, the 

mice were maintained on the Teklad Global 18% Protein Rodent Diet which contains 

ingredients such as ground wheat, ground corn and wheat middlings that are a source of 

soluble fiber that is metabolized to SCFAs by the gut [199,218,219]. Second, the profile of 

bacteria within the gut impacts SCFA levels because certain bacteria are particularly 

proficient at generating SCFAs ([220], reviewed in [213]). Third, genetics may impact 

SCFA levels. For example, APOE4, which is associated with increased LDL-cholesterol 

and AD risk, relative to APOE3, is associated with a gut microbiome profile with reduced 

SCFA-producing bacteria, such as Ruminococcaceae [94,115-117].  

 Because the gut microbiome produces SCFAs and has been shown to modulate 

AD pathology, and SCFAs may act in the brain, several groups have investigated the 

effects of SCFA treatment on amyloid accumulation in the brain. Results have not been 

consistent (Table 3). Colombo et al. found that SCFA treatment increased amyloid 

burden in APPPS1 mice [101]. In contrast, Fernando et al. and Jiang et al. found that 

sodium butyrate treatment reduced amyloid burden in 5xFAD mice [44,129]. Here, we 

treated APP/PS1 mice with SCFAs and found no effect on amyloid burden. In the 
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following paragraphs, we will compare and contrast prior results with the results 

presented here. 

 Differences in the experimental designs of these studies are multiple (Table 3). 

One difference is the mode of SCFA administration and type of SCFA. Our study and 

that of Colombo et al. were similar in that SCFAs were administered in the drinking 

water at identical concentrations. However, they differ in that the control group in 

Colombo et al. received water while the control group in our study received saline 

(132.5mM) as their drinking water such that their sodium intake was equal to that of the 

SCFA treated mice. Interestingly, APP/PS1 mice that received about three-times more 

sodium chloride than our control group were reported to have reduced amyloid plaques 

[221,222]. Whether comparing SCFA treatment to saline treatment may have obscured a 

SCFA effect in our study is not clear. Jiang et al. used intraperitoneal injection of sodium 

butyrate while Fernando administered sodium butyrate via chow [44,129]. 

 These SCFA studies also used different mouse models (Table 3). The Colombo et 

al. and Jiang et al. studies used mice maintained on a SPF microbiome background while 

mice in our study and Fernando et al. were maintained with a conventional microbiome. 

Since altering the microbiome with antibiotics reduces amyloid burden, differences in the 

microbiome may contribute to the differences observed in these studies [97,98,102]. The 

mouse models also differed in that Colombo et al. used an APPPS1 model wherein the 

APPPS1 transgenes were driven by the Thy1 promoter, and the PS1 mutation was L166P 

[101]. This mouse model begins to deposit amyloid at six weeks of age and Columbo et al. 

started SCFA treatment at eight weeks of age for a duration of five weeks. Jiang et al. and 

Fernando et al. used the 5xFAD murine model wherein extracellular amyloid deposits 
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begin at eight weeks of age. Both studies began butyrate treatment at eight weeks. Jiang 

et al. treated for two weeks while Fernando et al. treated for 12 weeks. In our study, the 

APP/PS1 transgene was driven by the mouse prion protein promoter, and the PS1 

mutation was deletion of exon 9 [195]. This mouse model begins to deposit amyloid at 

four to six months of age. We began SCFA treatment at five months of age for a duration 

of five months. Hence, the studies are similar in that mice underwent SCFA treatment 

during the time that amyloid was accumulating. The studies are different in that (i) 

Colombo et al, Jiang et al. and Fernando et al. used mouse models with earlier amyloid 

deposition compared to the APP/PS1 model in our study; and (ii) Colombo et al. and 

Jiang et al. used SPF mice while Fernando et al. and our study used mice with a 

conventional microbiome.  

 Considering these variables and the mixed study results, we speculate the 

treatment with butyrate per se reduces amyloid burden because similar results were found 

with two different routes of administration and with SPF and conventional microbiomes 

(Table 3). In contrast, treatment with a mixture of acetate, propionate and butyrate 

produces results that appear model dependent. We propose that future studies 

investigating the effects of individual SCFAs may provide clarity to this field. 

In conclusion, this is the first study to robustly evaluate SCFA supplementation 

effects on the gut microbiome itself, in addition to brain pathology and behavior, which 

have been reported on in previous studies. We found that SCFA treatment increased 

levels of SCFA-producing bacteria Lactobacillus and Bifidobacterium in a possible 

feedforward mechanism. Consistent with prior reports, female APPswe/PSEN1dE9 mice 

had a greater amyloid burden and memory deficit than male mice [210]. However, 
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inconsistent with prior reports, we did not detect an effect of SCFA supplementation on 

behavioral impairment or amyloid burden. We recognize that murine models of AD are 

pre-clinical, and so results are used to inform more physiologically relevant human 

studies. Given the conflicting results in these pre-clinical models, further studies are 

necessary to provide clarity to this emerging area. 
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Alpha-diversity p-values 
 Males Females 

Species 0.17 0.43 
Genus 0.056 0.049 
Family 0.19 0.37 
Order 0.0027 0.15 
Class 0.0027 0.18 

Phylum 0.043 0.29 
Table 4. Alpha-diversity for SCFA mice. 

Microbiome alpha-diversity was significantly associated with SCFA supplementation in 

male mice. P-values reflect nominal p-values and were determined using Kruskal-Wallis 

tests. P-values less than 0.05 are presented in bold font.  
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Beta-diversity scores 
Taxonomic level  Males Females 

Species p-value 0.300 0.009 
R2 0.036 0.140 

Genus p-value 0.049 0.140 
R2 0.073 0.051 

Family p-value 0.120 0.160 
R2 0.052 0.051 

Order p-value 0.310 0.550 
R2 0.035 0.023 

Class p-value 0.280 0.720 
R2 0.038 0.015 

Phylum p-value 0.440 0.440 
R2 0.026 0.028 

Table 5. Beta-diversity for SCFA mice. 

Microbiome beta-diversity did not significantly associate with SCFA treatment in both 

male and female mice. The R2 values represent the proportion of the variance captured by 

SCFA versus saline treatment. The p-values were derived from analysis of 999 

randomized permutations. P-values less than 0.05 are presented in bold font.  
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Study Treatment Mouse 

Model 
Microbiome Mouse 

Age 
during 
Treatment 

Effect on 
Amyloid 
Burden 

Fernando 
et al [129] 

NaB was added to 
chow pellets at a 
concentration of 
either 40 mg/kg or 
120 mg/kg where 
mice would receive 
either 5 mg/kg/day, 
or 15 mg/kg/day 

5xFAD 
with 
APOE3 

Conventional From 8 
weeks to 
20 weeks 

Reduced 

Jiang et al 
[44] 

0.2 g/kg daily 
intraperitoneal 
injection of NaB 
(0.1 ml/10 g) * 

5xFAD SPF From 8 
weeks to 
10 weeks  

Reduced 

Colombo 
et al [101] 

67.5 mM sodium 
acetate, 25mM 
sodium propionate, 
40 mM sodium 
butyrate, pH 6.8 in 
drinking water 

APPPS1 SPF From 8 
weeks to 
13 weeks 

Increased 

Zajac et al 
[223] 

67.5 mM sodium 
acetate, 25mM 
sodium propionate, 
40 mM sodium 
butyrate, pH 6.8 in 
drinking water * 

APP/PS1 Conventional From 20 
weeks to 
40 weeks 

No 
change 

Table 6. Comparison of studies evaluating SCFA effects on murine amyloid models. 

* SCFA treatment was compared to saline control. 

  



65 
 

 

Figure 7. Mouse body weights in the SCFA study. 

Mouse body weights were not affected by short chain fatty acid (SCFA) supplementation. 

Male mice weighed significantly more than female mice (p < 0.0001), but body weight 

was not influenced by SCFA-supplemented drinking water (A) or by the presence of the 

APP/PS1 transgenes (B) (p > 0.05). These data reflect weights on the day of euthanasia. 
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Figure 8. Alpha- and beta-diversity plots for SCFA mice 

Microbiome alpha- and beta-diversity as a function of short chain fatty acid (SCFA) 

treatment. Alpha-diversity (Shannon H index) data are depicted in boxplots (A,C). Beta-

diversity analyses are visualized in PCoA plots (B,D). Statistical significance for the 

findings is indicated below each graph. Ellipses in (B,D) represent 95% confidence 

intervals. For male mice (B) R2 = 0.035 and for female mice (D) R2 = 0.023. Beta-

diversity was also analyzed using PERMDISP, which had no significant p-values except 

in females at the species level (p = 0.027), indicating that there was generally no 

difference in dispersion between SCFA vs saline treated groups. 
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Figure 9. Cladograms and box plots of taxa for male mice. 
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Cladograms and box plots of individual taxa reveal microbial phylogenetic branches 

associated with short chain fatty acid (SCFA) supplementation in male mice. (A) Taxa 

are represented as nodes that are connected by lines based on the phylogenetic 

relatedness of all taxa present in each experimental cohort. For example, the end node, a, 

represents the genus Bifodobacterium which is connected to other nodes representing 

higher level taxa related to Bifodobacterium including b the family Bifidobacteriaceae, c 

the order Bifidobacteriales, and d the class Actinobacteria. Many taxa are associated with 

SCFA vs saline treatment, with node colors indicating treatment with highest levels of 

each taxa. Statistical significance reflects both p < 0.05 for Kruskal-Wallis tests and a 

logarithmic LDA score > 2.0. (B) Box plots present the relative abundance of individual 

taxa that are significantly associated with SCFA supplementation by classical univariate 

analysis. A full list of taxa with nominal p-values and FDR corrected p-values is provided 

in Supplementary Material 1.1–1.6. 
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Figure 10. Cladograms and box plots of taxa for female mice. 
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Cladograms and box plots of individual taxa reveal microbial phylogenetic branches 

associated with short chain fatty acid (SCFA) supplementation in female 

mice. (A) Statistical significance reflects both p < 0.05 for Kruskal-Wallis tests and a 

logarithmic LDA score > 2.0. (B) Box plots present the relative abundance of individual 

taxa that are significantly associated with SCFA supplementation by classical univariate 

analysis. A full list of taxa with nominal p-values and FDR corrected p-values is provided 

in Supplementary Material 1.1–1.6. 
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Figure 11. RAWM results for day one and day two trials. 

RAWM results for day one and day two trials. Data are represented as means of three 

trials per block of all animals within the group, with five blocks per day. Day one was 

training day, while day two was testing day. Error bars are standard deviation of the 

mean. 
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Figure 12. RAWM average errors in the mice. 

Female but not male mice show cognitive deficits that are unaffected by short chain fatty 

acids (SCFA) treatment. The average number of errors on day one and day two are 

shown. On day one, significant differences were observed for both male and female mice 

between SCFA treated WT vs. APP/PS1 mice (A,B). On day two, significant differences 

were observed only for female saline-treated WT vs. APP/PS1 mice (B). Statistical 

significance was determined by using a general linear model (* = p < 0.05, ** = p < 

0.01). 
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Figure 13. Gfap staining and quantification. 
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Gfap staining and quantification indicate short chain fatty acids (SCFA) has no effect 

although labeling is increased in cortices of APP/PS1 mice. Gfap expression was detected 

by Gfap immunohistochemistry (A). Scale bar represents 1 mm. Green outlining 

indicates the typical ROI for cortical staining while blue outlining indicates the ROI for 

hippocampal staining. Statistical analysis confirms a significant difference with APP/PS1 

transgenes but not SCFA treatment in the cortex (B). Staining was quantified using 

HALO Area Quantification v.2.2.1. Statistical significance was determined by using a 

general linear model. Datapoints marked as circles represent outliers (3rd quartile + 1.5 × 

interquartile range) while asterisks mark extreme outliers (3rd quartile + 3 × interquartile 

range). 
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Figure 14. Amyloid staining and quantification. 



77 
 

Amyloid staining and quantification indicate no significant short chain fatty acids 

(SCFA) effect although an increased amyloid load is observed in female mice. The 

Campbell–Switzer silver stain labels both parenchymal amyloid and cerebral vascular 

amyloid (A). Scale bar represents 1 mm. Statistical analysis confirms a significant 

difference with sex and genotype but not SCFA treatment (B). Staining was quantified 

using HALO Area Quantification v.2.2.1. Statistical significance was determined by 

using a general linear model. Datapoints marked as circles represent outliers (3rd quartile 

+/− 1.5 × interquartile range) while asterisks mark extreme outliers (3rd quartile +/− 3 × 

interquartile range). 
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Figure 15. Amyloid MSD quantification of Aβ40 and Aβ42 . 

Amyloid MSD indicates no significant effect of short chain fatty acids (SCFA) on Aβ40 

and Aβ42 and confirm that female mice had significantly more Aβ. Quantification of 

Aβ40 and Aβ42 in the cortex (A) and hippocampus (B) reveals a significant difference 

with sex but not with SCFA treatment. Statistical significance was determined by using a 

general linear model. 
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Figure 16. Supplemental Figure S1 shows Open Pool data. 

Supplemental Figure S1 shows Open Pool data for all groups to validate the normal 

physical ability of the mice to swim and navigate in the water. 
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CHAPTER 4. DISCUSSION AND FUTURE DIRECTIONS 

4.1 Primary findings and summary of dissertation 

The primary findings of this dissertation are two-fold: The first is that APOE 

genetics are differential for murine gut microbiome profiles in a way that may potentially 

inform a gut microbiome influence on disease risk. The second is that SCFAs increase 

murine gut microbiome diversity, but alone may not be sufficient to cause significant 

changes in cognition or AD-like pathology. 

First, APOE4 status is associated with increased murine gut microbial diversity, 

and APOE2 status is associated with an increase in bacteria known to produce SCFAs. 

The findings presented in Chapter 2 support previous research in that APOE4 status can 

be GI protective as evidenced by increased alpha-diversity. This may be an evolutionary 

trait that is still beneficial in third-world environments, but also has detrimental effects 

later in life, increasing risk for AD. The finding that APOE2 status is associated with 

increased SCFA-producing bacteria, specifically Ruminococcaceae and Lachnospiraceae, 

should be further explored, as other researchers have found that specific genera from 

these families increase in APOE2 carriers, while other genera from these families 

increase in APOE4 carriers. Functional pathway analysis for these bacterial taxa will shed 

light on the mechanisms involved, and whether the APOE-specific gut microbiome 

influences APOE-associated AD pathology or is simply a product of it.  

Second, although SCFA treatment affects the murine gut microbiome, it is not 

necessarily sufficient to affect amyloid pathology in the brain. Specifically, in Chapter 3 I 

show that SCFA treatment of APP/PS1 mice has a sex-specific effect, where male mice 

show an increase in some SCFA-producing taxa, while female mice show a decrease in 
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the same taxa. Regarding the effects of SCFA treatment on cognition and pathology, 

there were no significant changes, although some trends could be observed that suggest 

this is an area that needs further study. Findings from Fernando et al., Jiang et al. and 

Colombo et al. only complicate the interpretation of the data, where they see opposing 

effects that seem dependent on the AD mouse model and the microbial environment of 

the mice. 5xFAD mice, both SPF and those raised maintained on a conventional 

microbiome, showed a reduction of amyloid pathology with SCFA treatment [44,101,129]. 

However, APPPS1 mice maintained in an SPF environment showed increased amyloid 

pathology with SCFA treatment [101], whereas APP/PS1 mice in our study maintained on 

a conventional microbiome showed no effect of SCFA treatment on amyloid pathology. 

A careful review of the literature leads me to suggest that the effects of SCFA treatment 

may only be discernable in mice with a depleted gut microbiome, such as SPF or GF. In 

addition, basal plasma and brain levels of SCFAs should be measured, as well as during 

and post-treatment, to ascertain what amount is entering the bloodstream and crossing the 

BBB. However, it is unknown if SCFAs must cross the BBB to modulate microglia 

activity and other functions in the brain. The mechanisms by which SCFAs produced in 

the gut may modulate CNS functions are still being investigated and future studies may 

inform us of the pathway involved in SCFA microglial modulation. 

The major findings regarding the effects of APOE on the murine gut microbiome 

and in related studies suggest that APOE2 status is associated with an increase in SCFA-

producing bacteria and lower alpha-diversity, while APOE4 status is associated with an 

increase in bacteria from the family Erysipelotrichaceae and higher alpha-diversity. The 

APOE4 association with increased alpha-diversity supports the findings by Oria et al. that 
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APOE4 protects children from GI insult [107,108]. Although SCFA studies show varying 

results that may reflect different factors in the study design, such as mouse model, 

treatment method and the laboratory microbial environment (i.e. conventional vs SPF or 

GF mice), the results from my study suggest that male APP/PS1 mice have increased 

SCFA-producing bacteria (i.e. Ruminococcaceae and Lachnospiraceae) with SCFA-

treatment, while female mice show a decrease in these bacteria with SCFA-treatment. 

Human studies show an association of AD with increased levels of fecal SCFA levels 

[81]. In our study, there is no correlation between SCFA-producing bacterial relative 

abundance and alpha-diversity, as there is no significant sex difference in alpha-diversity, 

so it cannot be assumed that SCFA-producing bacteria alone increase diversity in the gut 

microbiome. In addition, increased alpha-diversity is generally associated with a healthy 

gut barrier, decreased inflammation and reduced risk of chronic diseases (reviewed in 

[167,224]). The AD-protective allele APOE2 is associated with reduced alpha-diversity in 

these mouse studies, but further evidence parsing AD vs control patients for dysbiosis, as 

a factor of APOE status is needed to understand this complex relationship. Although 

increased gut diversity may overall be protective from chronic diseases such as AD, 

current evidence does not clarify the relationship between SCFA’s, gut diversity, APOE 

status and overall health in humans, nor in animal models. 

Similar work in the field illustrates the complexity of the gut microbiome-AD 

relationship and is evidence that further work is needed to understand APOE effects on 

the gut microbiome and the viability of SCFA treatment for the reduction of AD 

pathology. 
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4.2 Future Directions: APOE effects on the gut microbiome 

My work on APOE genetics leading to altered gut microbiome profiles, as well as 

the work of other researchers, provides evidence of an APOE bias on gut microbial 

diversity. Indeed, studies in both humans and animal models of APOE corroborate that 

APOE4 carriers are resistant to GI insult and gut dysbiosis. There is also evidence 

suggesting that gut microbiome modulation influences AD pathology, and that gut 

microbiome profiles differ significantly in patients with MCI and AD compared to 

healthy controls. This suggests that APOE effects on the gut microbiome may be an 

additional pathway by which APOE modulates AD risk. Current studies of APOE effects 

on the gut microbiome provide us with insight into which, if any, bacterial taxa are most 

differential for APOE. Currently, evidence supports that taxa of the Erysipelotrichaceae 

family are increased in APOE4 carriers, in both humans and murine models, while 

SCFA-producing taxa of the Ruminococcaceae and Lachnospiraceae families are 

increased in APOE2 carriers. However, whether these taxa also modulate disease is 

unclear. Additionally, the strongest APOE effects are seen in male mice compared to 

female mice, where female mice may be more resistant to gut microbiome changes. I 

suggest future studies of the APOE-gut microbiome-AD relationship focus on 

investigating the therapeutic potential of these differential taxa. One possible model that 

is used is the addition of specific bacteria to GF mice, which can be done in AD models 

such as APP/PS1 or 5xFAD. So, a possible study could be to inoculate GF 5xFAD mice 

with the APOE2-associated Ruminococcaceae taxa versus the APOE4-associated 

Erysipelotrichaceae taxa, and measuring changes in the gut microbiome, amyloid 

pathology and cognition. The hypothesis would be that mice inoculated with 

Ruminococcaceae taxa would display a phenotype similar to an APOE2-crossed 5xFAD 
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mouse, and that mice inoculated with Erysipelotrichaceae taxa would display a 

phenotype similar to an APO4-crossed 5xFAD mouse. APOE4-5xFAD mice typically 

have increased levels of Aβ, Aβ deposition, and amyloid plaque pathology in the brain 

compared to APOE3-5xFAD mice, with the lowest levels in APOE2-5xFAD mice 

(reviewed in [225]). This would suggest that APOE effects on the gut microbiome are an 

additional risk factor for AD. 

 Fecal microbiome transplant (FMT) models are also widely used to investigate 

the effects of the gut microbiome on disease state [226-229]. I propose another study 

wherein APOE-crossed 5xFAD mice that develop AD pathology reflective of APOE 

status have their gut microbiomes antibiotically knocked down and are reinoculated with 

the gut microbiome of their opposite APOE counterparts. Specifically, APOE4 mice will 

receive FMT from APOE2 mice, and APOE2 mice will receive FMT from APOE4 mice, 

without any additional changes to diet or environment. The hypothesis would be that 

APOE4 mice with APOE2 gut microbiomes would show a reduction in amyloid 

pathology and rescue in cognition, and the opposite for APOE2 mice with an APOE4 gut 

microbiome.  

4.3 Future Directions: SCFAs as a potential therapeutic agent for Alzheimer’s Disease 

Our current understanding of the health benefits of dietary fiber intake suggests that 

gut bacterial metabolites, such as SCFAs, are also beneficial to our health. Butyrate, one 

of the primary SCFAs, is the main source of energy for colonocytes and is essential for 

the healthy function of the colon, strengthening the integrity of the mucosal wall and 

preventing leaky gut syndrome, which is highly associated with many inflammatory 
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peripheral dysfunctions [230,231]. In Chapter 3, I investigate the effects of SCFA 

treatment on the gut microbiome, memory, astrocyte activation and amyloid pathology in 

APP/PS1 mice. My findings provide evidence that SCFA treatment can be used to 

increase gut microbial diversity, but that this treatment may not be sufficient on its own 

to ameliorate the disease phenotype. When comparing to similar studies of SCFA 

treatment on AD model mice, I observe that mouse model, treatment duration, and 

background microbial environment/diet may lead to contrasting effects of SCFA 

treatment. Furthermore, studies investigating the effects of SCFA treatment in murine 

models report mixed results regarding plasma concentrations of SCFAs post-treatment 

[101,223,232], whereas some studies simply do not report the plasma levels. In my study 

presented in Chapter 3, I find no significant changes to plasma SCFA levels post-

treatment, unlike Colombo et al. who shows a significant increase in plasma SCFA levels 

post-treatment. I hypothesize this may be dependent on whether the murine model is GF 

or SPF versus maintained on a conventional microbiome. To gain a clearer understanding 

of the impact of SCFAs in relation to AD, I propose several avenues of investigation: (i) 

SCFA treatment may not be sufficient to alter SCFA plasma levels, so further clarity as to 

the most effective treatment method is needed. I propose future studies to include brain 

and plasma concentrations immediately post-treatment and hours after to distinguish the 

relationship between gut, blood, and brain levels of SCFAs post-treatment. (ii) since 

studies where mice are maintained on a limited microbiome environment (i.e. GF or SPF) 

seem to have a more profound impact on AD pathology, which may be due to increased 

microbial diversity rather than specifically SCFAs, future studies should compare 

recolonization of the gut with random bacteria/bacterial metabolites to SCFA-specific 
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treatment. (iii) our study found a sex difference where SCFA-treated male mice showed 

an increase in SCFA-producing bacteria but female mice showed a decrease in the same 

bacteria, so it is unclear how SCFAs as a probiotic affect the levels of SCFA-producing 

bacteria in the gut, and why this may be different between males and females. To 

elucidate if SCFAs act in a sex-dependent manner, I propose a SCFA study be done 

comparing gonadectomized AD mice to controls. Ours was the only SCFA AD-mouse 

study that included gut microbiome profiling between treatment groups, so future studies 

would benefit from gut microbiome data that will further clarify the effect of SCFA 

treatment on the gut microbiome between different mouse models, sexes and 

administration methods. 

4.4 Future Directions: Gut microbiome as a proposed therapeutic target for 
Alzheimer’s Disease 

Overall, there is evidence that AD genetics may be differential for gut microbiome 

diversity and specific taxa, possibly associated with SCFA production. Current studies 

investigating the validity of the gut microbiome as a possible therapeutic for AD have 

focused on pro- and pre-biotic treatments, as well as plant-based diets high in dietary 

fibers, such as the Mediterranean diet, which improves gut health and increases SCFAs 

[233], as dietary intervention strategies [234] (reviewed in [235,236]). Indeed, the 

Mediterranean diet and Dietary Approaches to Stop Hypertension (DASH) diet are 

recommended interventions to delay neurodegeneration and decrease risk for AD 

[237,238]. These studies provide evidence that these dietary interventions can indeed lower 

the risk for cognitive decline and dementia [239,240]. In addition, when assessed with 

additional risk factors, such as APOE status, pro- and pre-biotic treatments show more 
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profound significant effects. A study in Italy of 848 aged participants found that an 

intervention strategy of increased dietary fiber intake (increase of 5g/d) in APOE4 

participants was significantly associated with a 30% decreased risk for cognitive decline 

[241].  

Dietary intervention is a potential strategy to decrease risk for AD, along with 

lifestyle changes such as increased aerobic exercise and novel tasks for mental training 

(reviewed in [242]). However, these strategies may not be sufficient to reduce amyloid 

and tau pathology, neurodegeneration, and cognitive decline in patients with MCI or AD. 

But, there is still hope, where the power of the gut microbiome can make a difference in a 

patient’s life. More drastic gut microbiome alterations have the potential to reverse 

cognitive decline in patients with AD [134,135,228,243-247]. Specifically, there are cases 

studies where patients with progressive cognitive decline receive FMT for treatment of C. 

Difficile infection and show a rescue of cognition as measured by cognitive tests 

[134,247]. Patients treated by FMT for Familial Amyloid Polyneuropathy were reported to 

have reduced amyloid deposits and improved cognition following transplantation and for 

two years post-FMT [137]. Similar results have been seen in AD mouse models [226,229] 

and other models of cognitive dysfunction [227,245,246]. The safety and efficacy of FMT 

for treatment of patients is fairly well established, and future FMT treatments may be 

leaning towards more targeted microbiome therapies [248-250].  

Finally, with the rise in big data analysis and sequencing technologies, more and 

more evidence connecting diet and gut metabolites to cognitive decline and AD genetic 

risk provides additional avenues for therapeutic insight [24,61,65,251,252]. Currently, 

genetic association studies have found genetic links to the gut microbiome [253-255], but 
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those targeted for specific diseases are lacking. In line with my background of statistical 

genomics and bioinformatics and values, I would like to propose a “call to action” for the 

collection and analysis of metabolic, dietary and gut microbiome patient data across all 

disease states. These types of analyses will allow us to better identify potential risk loci 

associated with dietary patterns and gut dysbiosis.  

4.5 Closing Remarks 

We cannot deny that AD is a multi-faceted disease, where diet and lifestyle have 

significant influence on disease risk, and therefore therapeutic strategies should also be a 

multi-faceted approach. Although genetics is a major contributor to AD risk, evidence 

from gut microbiome studies and from studies focused on other lifestyle factors illustrates 

the validity of lifestyle intervention for mitigation of AD risk. Additional lifestyle factors 

to consider are mental health and mindfulness [256-261] , physical exercise [262,263], sleep 

[264-266], stress [267-269], and spiritual wellness [270-272]. In conjunction with AD 

treatments targeting the neuropathology, such as amyloid antibodies that reduce amyloid 

burden in the brain of high-risk patients, holistic approaches to therapy may improve 

lifestyle and increase the likelihood of cognitive recovery in patients with MCI and AD 

[273,274]. At the very least, therapeutic approaches that improve digestion and quality of 

life of patients are important for essential care. In this dissertation, I provide evidence as 

to how gut microbiome interventions have the potential to rescue and ameliorate aspects 

of AD, slowing the decline and improving quality of life for patients. It is of my expert 

opinion that targeting the gut microbiome—as a potential lifestyle risk factor for AD—

should be used to complement current existing pharmacological and cognitive therapies 

of AD. It is of my humble option, based on peer-reviewed literature and personal 
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experiences, that targeting the overall physical, mental, emotional, and spiritual well-

being of individuals will lead to the greatest health outcomes in our population as a 

whole. 
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