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ABSTRACT OF DISSERTATION 
 
 
 
 

EVALUATING THE RELATIONSHIP BETWEEN PLASMA BIOMARKERS AND DEMENTIA 
USING HIERARCHICAL CLUSTERING ANALYSIS AND LINEAR MODELING 

 
 

Alzheimer’s disease (AD) and vascular contributions to cognitive impairment and 
dementia (VCID) are the two leading causes of dementia, and have pathologies which can 
be evaluated using MRI and protein quantification from cerebral spinal fluid (CSF). 
However, the high costs of MRIs and the invasiveness of CSF draws limit their utility as 
screening tools for dementia. Therefore, we must look toward a more cost effective and 
less invasive screening tool, which leads us to plasma-based biomarkers.  

In the first experiment, we compared two models of hierarchical clustering 
analysis to create plasma profiles of participants with mild cognitive impairment due to 
VCID. Both models identified a profile consisting of elevated VEGF-A, MMP1, MMP9, and 
IL-8, which suggests patients with this profile have an increased angiogenic and 
inflammatory state potentially coinciding with pathological progression. In the second 
experiment, we evaluated the association between plasma biomarkers and various 
dementia neuropathologies in an autopsy cohort of participants. In this study, we found 
that increased angiogenic markers are positively associated with worsening AD 
neuropathology. Lastly, we evaluated the relationship between plasma biomarkers and 
cognitive impairment in a longitudinal cohort of participants and found that 6-years post-
baseline GFAP and NfL were associated with a decline in verbal memory and verbal 
fluency, respectively. Interestingly, the anti-inflammatory cytokine, IL-10, was found to 
be positively associated with both verbal memory and verbal fluency at both 3- and 6-
years post-baseline.  

Overall, we show how angiogenic and inflammatory plasma biomarkers have the 
potential to be used as prognostic indicators of both pathology and cognitive impairment. 
The goal for these markers will be to use them in the clinic to facilitate the diagnosis of 
dementia and help physicians make more informed predictions about the progression of 
the disease.  
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1 Introduction 

1.1 Overview 

Dementia is clinically described by the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-5) as a major cognitive disorder with a significant cognitive decline from 

a previous level of performance in one or more cognitive domains, which interferes with 

independent everyday activities[1]. Dementia can be further classified based on both 

the type of cognitive symptoms seen clinically and the type of neuropathology seen on 

imaging and at autopsy[2]. While it is widely accepted that the neuropathology seen in 

dementia patients contributes to the cognitive symptoms seen in clinic, their exact 

relationship is still unknown[3, 4]. Therefore, it is vital to further study this relationship, 

especially in the preclinical and prodromal phases of the disease[4]. Biomarkers are 

increasingly being studied to help clinicians identify in-vivo neuropathology and create 

criteria for preclinical/prodromal phases of dementia and will ultimately play a major 

role in the future clinical management of dementia[5, 6]. The leading types of dementia 

are Alzheimer’s Disease (AD) and Vascular Cognitive Impairment and Dementia (VCID) 

with recent studies suggesting that the majority of dementia patients actually have 

multiple pathologies occurring simultaneously contributing to their dementia[7, 8]. 

Patients with multiple brain pathologies have been shown to have an increased 

likelihood of developing dementia, however the mechanism that underlies this potential 

synergistic effect is not well understood[9-12]. In this dissertation, I will be focusing on 

pathologies that underlie the two leading causes of dementia, AD and VCID 

independently of each other. 
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1.2 Alzheimer’s Disease 

AD was first described in 1907 by Dr. Alois Alzheimer studying Auguste Deter, a 

patient suffering from severe memory impairment[5].  On autopsy Dr. Alzheimer found 

the hallmark pathologies now associated with AD; amyloid plaques and neurofibrillary 

tangles[5]. Since 1907 these pathologic hallmarks have been extensively studied in the 

field to advance our understanding, however, our understanding about their initiation 

remains a mystery[13]. Currently, AD neuropathology can be characterized according to 

three different evaluation methods (Thal, Braak, and CERAD), each focusing on a 

different neuropathological finding (amyloid plaques, neurofibrillary tangles, and 

neuritic plaques – described in more detail below)[14].  

1.2.1 Neuropathological Findings 

1.2.1.1 Amyloid Plaques 

Amyloid plaques are extracellular deposits of a fibrillary protein called beta-

amyloid (Aβ)[2, 15]. Plaques are composed of aggregated Aβ1-42, which is more likely to 

aggregate and form plaque than the more prevalent Aβ1-40[16, 17]. Excess 

accumulation of Aβ1-42 can occur sporadically or as a result of genetic mutations in the 

amyloid precursor protein (APP) from which the Aβ peptide is cleaved, or presenilin 1 or 

2 (PSEN1/2), a component of the γ-secretase complex that cleaves the amyloid 

precursor protein (APP)[18-22]. Amyloid plaques are scored using the Thal scale which 

uses the density and location of amyloid plaques to determine disease progression. Thal 

is scored on a scale of 1-5 where a score of 1 indicates amyloid plaques in the 

neocortical region, 2 indicates additional amyloid plaques in the allocortical region, 3 
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indicates additional amyloid plaques in the diencephalic nuclei and the striatum, 4 

indicates additional amyloid plaques in distinct brainstem nuclei, and 5 indicates 

additional amyloid plaques in the cerebellum and additional brainstem nuclei[23]. Thal 

scoring can also be transformed using the NIA-AA guidelines to a scale of 0 – 3 for 

meaningful differences in classifications[14]. Aβ deposition as plaques are believed to be 

the initial step in the amyloid cascade hypothesis which posits that amyloid plaques 

cause the formation of neurofibrillary tangles and neurodegeneration ultimately leading 

to cognitive decline[24]. Multiple clinical trials have targeted the formation and removal 

of Aβ to treat AD, however most of these treatments have failed to show any 

improvement in their primary cognitive outcome measure[25]. 

1.2.1.2 Neurofibrillary Tangles 

Neurofibrillary tangles are intracellular aggregates of misfolded, abnormally 

phosphorylated tau protein found within neurons[26-28]. These intracellular tangles 

have been shown to precede neuronal death and have been linked to cognitive decline 

in humans[14, 28-30]. Neurofibrillary tangles are evaluated using Braak scoring which 

uses density and location of tangles to determine staging. Braak scoring is also on a 

scale of 1 – 6 where stage 1 indicates lesions in the transentorhinal region, stage 2 

indicates lesions extending into the entorhinal region, stage 3 indicates lesions that have 

extended into the neocortex of the fusiform and lingual gyri, stage 4 indicates that the 

disease process progresses more widely into neocortical association areas, stage 5 

indicates that the neocortical pathology extends fanlike in frontal, superolateral, and 

occipital directions, and reaches the peristriate region, and lastly stage 6 indicates that 
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the pathology reaches the secondary and primary neocortical areas and, in the occipital 

lobe, extends into the striate area[31, 32]. NIA-AA guidelines also allow for a 

transformation to a 0 – 3 scale of disease[14]. Tangles have been targeted in many 

clinical trials including removal of tau using immunotherapy or inhibition of aggregation 

using methylene blue, but these trials have also not yet demonstrated any clinical 

improvement[33]. 

1.2.1.3 Neuritic Plaques 

Neuritic plaques are a combination of amyloid plaques surrounded by dystrophic 

neurites containing intracellular tau formations[34]. Neuritic plaques are thought to 

form during a later stage of neurodegeneration and have also been shown to be 

associate with cognitive decline[14, 35, 36]. Consortium to Establish a Registry for 

Alzheimer's Disease (CERAD) provides the guidelines for classifying neuritic plaques 

using a semiquantitative scale of none, sparse, moderate, or frequent[14, 37]. 

1.2.1.4 AD Neuropathologic Change 

Together these three pathologic criteria of amyloid plaques, neurofibrillary 

tangles, and neuritic plaques, can be combined using the NIA-AA guidelines to 

determine AD neuropathologic change, consisting of four tiers (Table 1.1). Tiers range 

from “not” AD neuropathologic change to “high” AD neuropathologic changes. 

Individuals with cognitive impairment along with “high” or “intermediate” AD 

neuropathologic change are found to have their impairment sufficiently explained by 

AD. Patients with cognitive impairment and with “not” or “low” AD neuropathologic 

change are likely to have an additional pathology resulting in their cognitive decline[14]. 
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1.2.2 Biomarkers of Alzheimer’s Disease 

1.2.2.1 Neuroimaging 

 Antemortem clinical evaluation of AD neuropathology currently relies on 

neuroimaging and cerebrospinal fluid (CSF)[38-40]. The two main modalities of 

neuroimaging are magnetic resonance imaging (MRI) and positron emission tomography 

(PET)[41]. MRI’s primary utility is identifying regions of atrophy which, in the case of AD, 

is often primarily in hippocampus and medial-temporal lobe, along with expanded 

ventricles[42-44]. These findings although associated with cognitive decline do not have 

a high specificity for AD[45, 46]. 

PET imaging is more useful at evaluating specific AD pathologies, predominantly 

amyloid plaques and neurofibrillary tangles[38]. Specific radioligands were created to 

evaluate amyloid plaques in 2004; first described by Klunk and colleagues[47], PET 

amyloid tracers have now been refined and are utilized frequently in research studies 

and clinical trials[48-51]. Tangle PET ligands were developed later, and at the current 

time are undergoing refinement for specificity and sensitivity[52]. These tracers have 

now progressed sufficiently for use in research studies and clinical trials, although not as 

widely utilized as the amyloid ligands at this point[53-56].  FDG-PET imaging is a third 

type of PET imaging tool used to evaluate brain health by looking at glucose uptake in 

the brain. Researchers have found that a reduction in glucose uptake in the posterior 

cingulate cortex and temporoparietal is associated with cognitive decline, although this 

is not necessarily specific for AD[41, 44, 57, 58]. 
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Though both MRI and PET remain the gold standard of in-vivo neuropathology, 

they carry a substantial price tag, especially PET due to the high cost of the radioligands, 

and they lack accessibility for patients living in medically underserved areas. MRI and 

PET are primarily used for research purposes, however, there is a growing need for a 

more inexpensive and accessible tool used for screening individuals at a high risk of 

developing AD[59]. 

1.2.2.2 Fluid Biomarkers 

 Cerebral spinal fluid (CSF) and plasma are two inexpensive and widely accessible 

samples to collect, which are currently being evaluated to assist physicians in evaluating 

in-vivo neuropathology in order to both diagnosis and prognosticate a patient’s 

disease[59]. CSF biomarkers are currently the only fluid biomarkers which have been 

recommended for usage in a clinical setting.  While the first plasma biomarker was 

recently approved for Aβ, p-Tau biomarkers are still in testing phases [40, 60]. In this 

dissertation, we will focus on three broad groups of fluid biomarkers: 

Neurodegenerative, Inflammatory, and Angiogenic. 

1.2.2.2.1 Neurodegenerative 

 The most widely studied group of fluid biomarkers in their association with AD 

are the neurodegenerative biomarkers. CSF biomarkers for amyloid and tau pathology 

are currently used clinically to rule in or out AD as the cause of dementia in a patient[61-

63]. The ratio of Aβ42 to Aβ40 is hypothesized to be the earliest indicator of AD 

neuropathology[64]. Aβ42 and 40 are derived from APP which is normally expressed in 

neurons for normal cellular functions such as neuronal plasticity and response to acute 
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injury[65]. APP can be cleaved by both α- and β-secretase to produce non-

amyloidogenic fragments, however β− and γ- secretases function to cleave APP into two 

fragments of varying lengths, especially Aβ 42 or Aβ 40[65]. Aβ 42 has been found to 

accumulate within amyloid plaques while Aβ 40 appears in the vasculature in cerebral 

amyloid angiopathy[17, 66, 67]. When Aβ 42 is measured in CSF it has been found to be 

decreased in patients with AD due to the inability to remove it from the parenchyma as 

it has formed dense plaques[68-71]. Plasma Aβ 42, on the other hand appears to have 

mixed results for its relationship to CSF Aβ 42 while the ratio of Aβ 42/ Aβ 40 

demonstrates more consistency in having a significant positive relationship between 

plasma and CSF findings[72-75]. These findings show that plasma quantification of these 

proteins may provide similar information to that which can be obtained from CSF 

measurements. The ratio of Aβ 42/ Aβ 40 in plasma has already been shown to 

differentiate patients with AD from cognitively normal and non-AD dementia controls, 

with AD patients with having a significantly lower ratio of Aβ 42/ Aβ 40 compared with 

controls across multiple cohorts of patients, which was similarly observed in CSF Aβ 42/ 

Aβ 40 ratios[73, 74]. 

 Tau biomarkers measure either phosphorylation independent or dependent tau 

proteins[59]. Tau is an intraneuronal protein involved in the stabilization of the neuronal 

cytoskeleton along the axon[27, 76]. Phosphorylation of tau causes conformational 

changes in tau and detachment from the axon, therefore allowing for cytoskeleton 

remodeling in normal conditions[27, 77, 78]. In AD, and other tauopathies, 

neurofibrillary tangles form when tau is hyperphosphorylated and more permanently 
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detaches from the microtubules, aggregating in the cell body[76]. CSF based 

phosphorylation independent tau (Total-Tau) has been shown to positively correlate 

with neurodegeneration, while phosphorylation dependent tau (pTau) is hypothesized 

to be more disease specific and correlate with different stages of disease depending on 

the specific tau phospho-epitope[69, 79-81].  Plasma levels of p-tau-181, for example, is 

significantly increased in patients with AD compared with controls and one study found 

that it is significantly correlated with levels in the CSF[82]. Such use provides another 

alternative to the more invasive and expensive CSF protein quantifications at use 

presently.  

 Neurofilament light (NfL) is a component of the neurofilament protein, which is 

found in the axonal cytoskeleton[83]. When neurons are damaged, as in AD, 

neurofilament is released into the blood and CSF, where it can be quantified and used as 

a biomarker for evaluating neuronal damage[83]. Studies have been conducted 

measuring NfL in plasma, serum, and CSF, where NfL levels appeared to be correlated 

for plasma and CSF as well as serum and CSF[84, 85]. Plasma NfL levels were shown 

significantly elevated not only in AD compared with controls but also in patients with 

MCI compared with controls and in AD compared with MCI[83, 84, 86]. Serum NfL also 

has shown effectiveness as a biomarker in evaluating conversion of asymptomatic AD in 

autosomal dominant mutation carriers to symptomatic AD based on the rate of serum 

NfL change. Converters from asymptomatic to symptomatic AD had increased serum NfL 

change compared with those who remained asymptomatic from baseline to follow-up 

testing[87]. These studies provide evidence for the continued evaluation of NfL as a 
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biomarker to both evaluate and monitor disease progression in individuals at risk of 

developing AD in both the presymptomatic and MCI phases of the disease. NfL, 

however, is a nonspecific biomarker of accelerated neuronal death and degeneration, so 

may lack specificity for the AD disease state despite the strong data supporting its use in 

tracking disease progression[88, 89]. 

1.2.2.2.2 Inflammatory 

 Gliosis in the form of activated microglia and astrocytes are prominent 

pathologic findings in patients with AD, as well as other pathological findings of 

dementia[90-92]. These activated microglia and reactive astrocytes stimulate an 

inflammatory phenotype throughout the brain, which has been evaluated in the CSF and 

plasma[62]. Unlike traditional biomarkers associated with AD, some inflammatory 

biomarkers have been shown to differentiate patients at different stages of AD and may 

serve to monitor the progression of the disease. These markers are interesting for their 

ability to track disease progression but remain in a preliminary stage of study.  

TNFα is a protein involved in various inflammatory pathways, often resulting in 

the upregulation of more downstream cytokines[93-95]. Multiple mouse models of AD 

have been observed to have increased TNFα expression in the brain, which has also 

been found to occur in humans as well[93-95]. Early human plasma studies found an 

increase in TNFα in patients with AD and although this hasn’t been fully validated it is 

hypothesized that TNFα is increased in the plasma of patients with MCI and AD 

compared to cognitive controls[96]. Interestingly, SNPs in the promoter region of the 
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TNFα gene that are hypothesized to upregulate TNFα have been found to be associated 

with an increased risk of developing AD and an earlier age of onset of AD[97, 98]. 

 Reactive astrogliosis is a pathological finding which has been associated with 

amyloid plaques on human post-mortem tissue[91, 92]. Glial fibrillary acidic protein 

(GFAP) is a histological marker for reactive astrogliosis and has been found to be 

upregulated in human brain tissue of patients with AD[99, 100]. Higher levels of GFAP 

have also been found in the CSF, plasma, and serum of patient with AD[101-103]. 

Additionally, increased blood-based levels of GFAP have been found to positively 

associate with amyloid PET burden, inversely associate with MMSE scores, and predict 

conversion to AD dementia in a longitudinal cohort[104-107]. As a result of the 

association of GFAP and Aβ pathology, plasma GFAP can potentially be used as an early 

screening tool for AD along with other more specific plasma biomarkers. 

 Anti-inflammatory cytokines like IL-10 have also been hypothesized to play a role 

in reducing the inflammatory response in the development of AD[108]. SNPs in the 

promoter region of IL-10 have been evaluated for their association with AD, with low-

producing SNPs associated with a higher risk of AD[109]. Three SNPs have been 

evaluated in a meta-analysis independently and as haplotypes and demonstrated that 

two of the three SNPs have a significant positive association with AD [110]. Haplotype 

analysis also showed that having all three high-producing IL-10 SNPs resulted in a 

decreased risk of AD[110, 111]. IL-10 levels in the CSF were also found to be associated 

with rates of cognitive memory decline, with IL-10 having a significant interaction with 

time and a positive association with memory z-score adjusted for age, sex, race, and 
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education[112]. These findings suggest that there is a balance between inflammatory 

and anti-inflammatory cytokines that can be evaluated using fluid biomarkers.  

1.2.2.2.3 Angiogenic 

Lastly, angiogenic biomarkers have been studied to determine their association 

with AD. The results have not been straight forward, some studies have found that 

vascular endothelial growth factor A (VEGFA) was increased in the CSF of patients with 

AD, while other studies have found that higher levels of VEGFA decrease hippocampal 

atrophy, increase FDG-PET SUVR and benefit patient cognition longitudinally who are 

positive for Aβ and Tau[113-115]. VEGFA belongs to the vascular endothelial growth 

factor family of proteins which includes other growth factors including placental growth 

factor (PlGF), as well as their receptors, which are responsible for the growth and 

management of the vasculature throughout the body[116].  In evaluating gene 

expression of cognitive controls and patients with MCI and AD, increased expression of 

PlGF was associated with longitudinal cognitive decline and increased tau burden and 

neuritic plaques at autopsy[117]. Overall, the VEGF family of protein’s role in the 

development of AD remains elusive but offers multiple potential biomarkers to help 

physicians better predict the cognitive future of the patient. 

1.2.3 Course of Alzheimer’s Disease 

 AD is categorized into three phases of clinical disease: preclinical, mild cognitive 

impairment, and dementia[118]. The preclinical phase is of substantial interest as it 

represents patients who are positive for biomarkers of AD yet show no clinical 

symptoms of cognitive impairment[118]. Criteria for preclinical AD requires a positive 
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biomarker for amyloid beta pathology and/or neurofibrillary tau tangles while having no 

cognitive deficits[38]. Individuals in the preclinical AD phase are at an increased risk of 

developing dementia but some estimate that only between 5% to 42% of amyloid 

positive individuals in this phase progress to MCI or dementia[119, 120]. 

 MCI is classified as an intermediate step in the development of dementia due to 

AD. Patients are diagnosed with MCI if they suffer from a cognitive decline from a 

previous level of cognition while at the same time are able to maintain their social or 

occupational functioning[38, 121]. In MCI due to AD cognitive decline is often seen 

through evaluations of episodic memory however the domains affected in MCI are 

variable[121]. While not recommended cognitive decline can also be evaluated through 

subjective complaints detailed by an informant on behalf of the patient or through 

observation by the clinician[120]. Evaluating the influence of AD on MCI can be done 

through biomarkers. For a patient to have a high likelihood of experiencing MCI due to 

AD a positive biomarker for amyloid beta is required along with a positive biomarker of 

neuronal injury which includes those associated with neurofibrillary tangles[38, 120]. 

Patients with negative biomarkers of amyloid beta or neuronal injury are considered to 

have MCI unlikely due to AD[38, 120]. 

 The dementia phase of AD begins when the cognitive deficits strongly affect 

multiple cognitive domains and interfere with a patient’s ability to independently care 

for themselves and affects their activities of daily living[38, 120, 122]. Dementia due to 

AD can often manifest in with different clinical phenotypes, predominantly the amnestic 

syndrome of the hippocampal type, however other more atypical phenotypes do exist 
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such as the posterior cortical atrophy or the logopenic primary progressive aphasia 

variant[120]. Similar to the criteria for MCI, two positive biomarkers are required for a 

clinical diagnosis of AD, one for amyloid pathology and the other for tau pathology[38, 

120].  

1.3 Vascular Cognitive Impairment and Dementia 

VCID is a leading cause of dementia in the world along with AD and encompasses the 

full spectrum of disease from MCI to dementia including cases of mixed dementia, often 

comorbid with AD[123-125]. VCID is a relatively new way to describe dementia as a 

result of cerebrovascular pathology. Older studies referred to dementia as a result of a 

major vascular insult as multi-infarct dementia, which subsequently became broadened 

to vascular dementia to incorporate all dementia which was believed to be the result of 

both chronic and acute vascular disease[125]. Vascular cognitive impairment (VCI) was 

introduced in the early 2000s as a term to encompass patients who do not meet the 

clinical criteria for dementia but are still experiencing cognitive impairment[126]. VCID 

has since followed as the most common terminology to refer to both the mild cognitive 

impairment and dementia stages of vascular origin[125].  

1.3.1 Clinical Assessment of VCID 

Classifying cases of VCID has proved challenging given the various pathological 

causes of VCID, ranging from acute injuries like stroke to more chronic processes such as 

arteriolosclerosis and cerebral amyloid angiopathy (CAA). Currently, VCID is broken 

down into two subtypes, mild and major[127]. Mild VCID is defined as “impairment in at 

least one cognitive domain and mild to no impairment in instrumental activities of daily 
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living (IADLs)”, while major VCID is defined as “clinically significant deficits of sufficient 

severity in at least one cognitive domain and severe disruption to IADLs”[127]. Core 

cognitive domains assessed when evaluating a patient for VCID include executive 

function, attention, memory, language and visuospatial[126, 127]. Impaired executive 

function, which is used in processes involving planning, decision making, and working 

memory, is widely considered to be the key clinical finding in a patient with VCID, and 

evaluation of executive function can differentiate patients with VCID from those with 

AD[123, 124, 128]. Assessment tools for fluency (semantic and phonemic) have also 

been shown to differentiate VCID and AD with AD patients demonstrating lower levels 

of semantic fluency compared to phonemic fluency and patients with VCID 

demonstrating the opposite phenomena[123, 129, 130].  

Major VCID is further broken down into four additional subdivisions: post stroke 

dementia, subcortical ischemic vascular dementia (SIVaD), multi-infarct (cortical) 

dementia, and mixed dementias[127]. Post stroke dementia occurs when patients 

experience cognitive impairment within 6 months of a stroke that persists. This is similar 

to, and can occur alongside, multi-infarct dementia, a term used when there are 

multiple large cortical infarcts likely contributing to the dementia[127]. SIVaD 

encompasses pathologies such as lacunar infarcts and white matter lesions which often 

occur subcortically[131]. Cerebral small vessel disease (cSVD) is the major cause of 

SIVaD pathology and is estimated to occur in 40-50% of cases of major VCID[128, 132].  

Diagnosis of VCID currently relies on the usage of neuroimaging to evaluate the 

brain changes in-vivo alongside a cognitive impairment as discussed earlier[127, 133]. A 
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diagnosis of probable VCID can be made when vascular lesions are identified either 

through MRI, or CT if MRI is unavailable. A diagnosis of possible VCID is made if all 

neuroimaging is unavailable and suspicion of vascular lesions is high[127]. 

1.3.2 Neuropathological Findings 

 VCID neuropathology has been found to affect both the cerebrovasculature and 

the parenchyma of the brain[123, 131]. Vascular pathologies focus on damage to vessels 

of all sizes within the brain and includes arteriolosclerosis, cerebral amyloid angiopathy 

(CAA) and large artery occlusions[123, 128]. Brain parenchymal lesions occur in both 

gray and white matter regions and range from small silent lesions to large infarctions 

and bleeds. Types of lesions include white matter lesions, lacunar infarcts, microinfarcts, 

microbleeds, white/gray matter atrophy, and large cortical infarctions[123, 128].  

Cerebral small vessel disease (cSVD) is a disease that affects all the small vessels 

of the brain (arterioles, capillaries, venules) and encompasses the pathology in the 

vasculature as well as the resulting parenchymal damage[134]. Two of the most 

common vascular pathologies in cSVD are arteriolosclerosis and CAA[134-136].  

Arteriolosclerosis is characterized by the deposition of fibro-hyaline in the lining of the 

blood vessel with subsequent loss of smooth muscle cells resulting in a narrowed lumen 

and thickened vessel[137]. Hypertension has been shown to be a leading risk factor for 

the development of arteriolosclerosis along with age[137]. Arteriolosclerosis is graded 

on an ordinal scale of 0-3 with a grade of 0 indicating no arteriolosclerosis, 1 as mild, 2 

as moderate, and 3 as severe[135-137]. As severity of arteriolosclerosis increases, the 

basement membrane thickens, and the vessel lumen begins to reduce. This can cause 
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cerebral blood flow to become dysregulated, resulting in downstream hypoperfusion 

causing endothelial cells within capillaries to undergo apoptosis. This resultant loss in 

capillaries is marked by the observation of string vessels, containing only the remnant 

basement membrane from the previous capillaries[138, 139]. Additionally, 

arteriolosclerotic changes can cause the vessels to lose elasticity affecting their ability to 

dilate and constrict, when necessary, in autoregulation of cerebral blood flow[137]. This 

capillary damage ultimately alters perfusion to regions surrounding the vasculature 

producing tissue pathology such as microinfarctions, lacunar infarcts, 

microhemorrhages, and leukoaraiosis[137, 138]. Arteriolosclerosis has been found to 

increase the odds of dementia in older persons even after adjusting for parenchymal 

pathologies such as microinfarctions and hemorrhages[140, 141]. This demonstrates 

that the effect of arteriolosclerosis on cognitive impairment is still not completely 

known, with hypotheses of subthreshold parenchymal pathology and reduced cerebral 

perfusion causing this effect[128]. 

CAA is another vascular pathology found in cSVD. CAA differs from 

arteriolosclerosis in that it primarily affects small to medium cortical and 

leptomeningeal arterioles and arteries where amyloid beta is deposited into the vessel 

wall[123]. CAA can be graded using a similar ordinal scale as arteriolosclerosis from 0-3, 

with 0 indicating no CAA, 1 as mild, 2 as moderate, and 3 as severe[136]. Ultimately, 

CAA can lead to loss of vessel compliance and decreased cerebral reactivity which is 

similar to the impact seen of arteriolosclerosis. Importantly, CAA has also been 
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associated with increased cortical microinfarctions, intracerebral and lobar 

hemorrhages, and cortical microbleeds[123].  

Microinfarctions are one of the parenchymal tissue findings in patients with 

cSVD[123, 131, 142]. As their name implies, microinfarctions are smaller than gross 

infarctions and generally must be seen using a microscope with sizes often smaller than 

1 mm[123, 131, 142]. Microinfarctions can be found cortically and subcortically, and it is 

hypothesized that different vasculature pathologies contribute to regional differences in 

microinfarctions, with CAA causing cortical lesions while arteriolosclerosis may play 

more of a role in subcortical microinfarctions[123, 131, 142-146]. On autopsy, 

microinfarctions have been found to be ubiquitous in both cognitively normal and 

patients with dementia, however increased observed quantities of microinfarctions 

have been associated with increased odds of dementia and cognitive impairment[147-

153]. As there are often countless numbers of microinfarctions, a sampling of tissue 

sections is used to estimate the number of microinfarctions found in the entire brain 

with it hypothesized that every microinfarction observed represents hundreds of 

microinfarctions present within the brain[154]. 

1.3.3 Neuroimaging of VCID 

Cerebral microbleeds and white matter lesions (WMLs) are two pathologies that 

result from cSVD that are most visible using MRI[132]. Cerebral microbleeds are small 

hypointense foci on T2* weighted scans[155]. They are hypothesized to form as a result 

of broken-down iron deposits from erythrocyte derived hemosiderin which leaked from 

the vasculature[156-158]. Cerebral microbleeds have been shown to have a positive 
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association with CAA and it was widely hypothesized that there is a causal relationship 

between the two[156-158]. Studies have also shown that patients with more 

microbleeds are at an increased risk of not only having dementia but also of future 

cognitive decline.  

WMLs or white matter hyperintensities (WMHs) are hyperintense regions within 

the white matter on T2 weighted MRI, and are lesions predominantly associated with 

reduced cerebral blood flow and vascular pathology[155, 156, 159]. The pathogenesis of 

WMHs is still unknown, but WMH regions have been shown to have increased blood 

brain barrier breakdown, demyelination, axon loss, and gliosis and may be the initial 

evidence of tissue breakdown in patients with SVD[156, 159-164]. WMHs are also 

associated with cognitive decline and an increased risk of dementia, although the 

findings of WMHs are not specific for VCID as cognitively normal and patients with AD 

may also have WMHs on MRI[159, 164-168]. 

1.3.4 Fluid Biomarkers of VCID 

In comparison to AD, VCID is lacking in fluid-based biomarkers, likely due to the 

many different pathologies which underlie VCID[169]. However, fluid-based biomarkers 

have still been studied and leverage two pathological processes that underlie most VCID 

pathologies: endothelial dysfunction and inflammation.  

Hypoperfusion resulting from cSVD-related endothelial dysfunction induces a 

local hypoxic environment in the parenchyma triggering an angiogenic response[170, 

171]. Angiogenesis begins when the hypoxic environment inhibits the breakdown of 

hypoxia inducible factor 1-alpha (HIF1α), allowing HIF1α to bind hypoxia response 
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elements in the DNA, ultimately upregulating vascular growth factors such as placental 

growth factor (PlGF) and VEGFA[172, 173]. PlGF serves to facilitate angiogenesis by 

acting through vascular endothelial growth factor receptor 1 (VEGFR1)[116]. This 

mechanism that involves PlGF is active in both physiologic and pathologic cases of 

hypoxia, appearing in the former role during placental growth and in the latter role in 

cases of tumor angiogenesis and cerebral ischemia[174]. Interestingly, low levels of free 

PlGF have predictive value in assessing pre-eclampsia, a disorder characterized by 

hypertension likely as a result of decreased uterine perfusion pressure in pregnant 

woman[175, 176]. Further, mouse models of pre-eclampsia have demonstrated that 

matrix metalloproteinases (MMPs) 2 and 9 are significantly decreased when free levels 

of PlGF are decreased as well but can be rescued via a supplementation of PlGF[176]. 

This provides evidence for PlGF’s role in upregulation of matrix metalloproteinases 

(MMPs) MMP2 and MMP9, which have also been implicated in development of 

microhemorrhages in a mouse model of SVD[177]. In the context of cognitive 

impairment, increased RNA expression of PlGF and VEGFA in the brain correlated to 

decreases in longitudinal cognition and increased odds of having AD and VCID[117]. 

 Inflammatory fluid biomarkers have also been hypothesized to be associated 

with VCID pathology, particularly IL-6, which has been shown to have a positive 

association with WMHs[169, 178]. IL-6 is a pro-inflammatory cytokine produced by 

microglia and the tunica muscularis cells of the blood vessels[169, 179, 180]. It is 

hypothesized that one mechanism for IL-6 to exert its effect on VCID is through the 

upregulation of c-reactive protein (CRP) in the liver, which increases blood brain barrier 
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permeability[169, 181]. In CSF studies of IL-6 in patients with VCID and AD, IL-6 levels 

were higher in patients with vascular dementia compared to AD and VCI, and in plasma 

studies higher levels of IL-6 were associated with decreased functional ability in patients 

with dementia[182-184]. Additionally, in a hyperhomocysteinemia induced mouse 

model of VCID, increased expression of IL-6 was seen in brain tissue[177].  

1.4 Current Research Efforts 

One of the biggest hurdles in developing novel treatments for dementia is in 

identifying patients who are at risk of developing dementia to prevent further cognitive 

impairment[4, 6]. Neuropsychological exams allow clinicians to evaluate the current 

level of cognitive impairment a patient may have[2, 38, 128]. Physicians can also 

visualize a patient’s AD and VCID neuropathology using in-vivo PET imaging and MRI 

assessments[2, 38, 128]. However, both of these tools are expensive and require 

specialized facilities to perform the assessments which limits accessibility to many 

patients[40, 59]. While CSF is a more cost-efficient alternative for AD evaluations it is 

still invasive to patients and not suitable as a tool for annual screenings for large 

demographics of patients[40, 59]. This presents an opportunity for the usage of a low-

cost, less invasive, and easily accessible tool which may be used in the early stages of AD 

and VCID to screen patients for future disease progression. Plasma biomarkers fill this 

niche and are widely used in other fields of medicine to assess risk of disease[59, 169]. 

Given the small concentration of proteins used in the assessment of AD and VCID it is 

vital to have technology that can match the required sensitivity necessary for the clinical 

usefulness of these biomarkers. Electrochemical immunoassays have emerged as one of 
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the primary tools that can achieve the picogram per mL level of quantification necessary 

to evaluate these blood-based biomarkers[185, 186].  

In this dissertation, I will discuss three studies that focus on the different aspects of 

evaluating blood-based biomarkers. The second chapter asks the question of whether 

there are identifiable blood-based biomarker profiles in a cohort of patients with MCI 

due to cerebrovascular disease. In that study I use hierarchical clustering to identify 

groups of patients with similar angiogenic and inflammatory plasma biomarker levels to 

evaluate which proteins are able to differentiate patient biomarker profiles. The third 

chapter evaluates the cross-sectional association of plasma biomarkers with AD and 

VCID neuropathology using linear modeling. In this study, I looked at biomarkers from 

plasma within two years of a patient’s autopsy related to AD and neurodegeneration, 

angiogenesis, and inflammation and determined their association with 

neuropathological findings at autopsy. Finally, in the fourth chapter I determined the 

relationship between plasma biomarkers at baseline and cognitive levels at 3 and 6 

years postbaseline. Here I also used linear modeling to evaluate neurodegenerative, 

inflammatory, and anti-inflammatory markers and assessed their relationship with age, 

sex, and education adjusted cognitive domain scores. Overall, I aim to demonstrate the 

utility of plasma biomarkers in their in-vivo assessment of AD and VCID.  



 22 

Table 1.1  AD Neuropathologic Change Scoring 

 B: NFT score 
A: Aβ/amyloid 
plaque score 

C: Neuritic 
plaque score 

B0 or B1 
(None or I/II) 

B2 
(III/IV) 

B3 
(V/VI) 

A0 (0) C0 (none) Not Not Not 

A1 (1/2) 

C0 or C1 
(none to 
sparse) 

Low Low Low 

C2 or C3 
(mod. to 

freq.) 
Low Intermediate Intermediate 

A2 (3) Any C Low Intermediate Intermediate 

A3 (4/5) 

C0 or C1 
(none to 
sparse) 

Low Intermediate Intermediate 

C2 or C3 
(mod. to 

freq.) 
Low Intermediate High 

AD neuropathologic change is evaluated using an “ABC” score that derives from three 

separate four-point scales: Aβ/amyloid plaques (A) by the method of Thal phases, NFT 

stage by the method of Braak (B), and neuritic plaque score by the method of CERAD 

(C). The combination of A, B, and C scores receive a descriptor of “Not”, “Low”, 

Intermediate” or “High” AD neuropathologic change. “Intermediate” or “High” AD 

neuropathologic change is considered sufficient explanation for dementia. Adapted 

from Hyman, B.T., et al., National Institute on Aging-Alzheimer's Association guidelines 

for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement, 2012. 

8(1): p. 1-13.  
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2 Hierarchical Clustering Analyses of Plasma Proteins in Subjects with Cardiovascular 

Risk Factors Identifies Informative Subsets Based on Differential Levels of 

Angiogenic and Inflammatory Biomarkers 

Zachary Winder, Tiffany L Sudduth, David Fardo, Qiang Cheng, Larry B Goldstein, Peter T 

Nelson, Frederick A Schmitt, Gregory A Jicha, Donna M Wilcock 

2.1 Abstract 

Agglomerative hierarchical clustering analysis (HCA) is a commonly used 

unsupervised machine learning approach for identifying informative natural clusters of 

observations.  HCA is performed by calculating a pairwise dissimilarity matrix, and then 

clustering similar observations until all observations are grouped within a cluster. 

Verifying the empirical clusters produced by HCA is complex and not well studied in 

biomedical applications. Here, we demonstrate the comparability of a novel HCA 

technique with one that was used in previous biomedical applications while applying 

both techniques to plasma angiogenic (FGF, FLT, PIGF, Tie-2, VEGF, VEGF-D) and 

inflammatory (MMP1, MMP3, MMP9, IL8, TNFα) protein data to identify informative 

subsets of individuals. Study subjects were diagnosed with mild cognitive impairment 

(MCI) due to cerebrovascular disease (CVD). Through comparison of the two HCA 

techniques, we were able to identify subsets of individuals, based on differences in 

VEGF (p < 0.001), MMP1 (p < 0.001), and IL8 (p < 0.001) levels. These profiles provide 

novel insights into angiogenic and inflammatory pathologies that may contribute to 

VCID.  
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2.2 Introduction 

Vascular Cognitive Impairment and Dementia (VCID) is an active area in 

dementia research[187] and is described as “encompassing all the cognitive disorders 

associated with cerebrovascular disease, from dementia to mild cognitive deficits”[125]. 

VCID is estimated to occur in roughly 20% of the cases of dementia, however the exact 

prevalence in the population is unknown with varying estimates in the literature[188, 

189]. Much of the uncertainty in assessing the prevalence of VCID is due to varied 

diagnostic criteria[190]. In addition, there is substantial overlap in cognitive 

manifestations of cerebrovascular and neurodegenerative pathologies (such as 

Alzheimer’s disease, AD) that can culminate in clinical dementia[191], which further 

complicates our understanding of VCID. Further, both pathologies commonly co-exist in 

the same individual, yet some autopsy studies suggest that there is a significant increase 

in dementia risk due to vascular factors when Alzheimer pathology is low[192, 193]. 

Currently, magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) 

biomarkers are used to differentiate VCID from AD and monitor the progression of 

VCID[169, 170]. Plasma biomarkers are currently being investigated as a lower cost and 

less invasive alternative approach. The current study is focused on exploring the 

potential clustering of plasma biomarkers using HCA in participants with VCID who have 

mild cognitive impairment due to cerebrovascular disease (MCI-CVD) to identify unique 

plasma profiles of disease[194]. Persons with MCI-CVD are of particular interest as they 

are at an increased risk of developing dementia and already have cognitive decline[195]. 
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We evaluated angiogenic (FGF, FLT, PIGF, Tie-2, VEGF, VEGF-D) and inflammatory 

(MMP1, MMP3, MMP9, IL8, TNFα) protein plasma biomarkers in these participants 

using the highly sensitive meso-scale discoveries (MSD) platform. Angiogenic and 

inflammatory markers are of particular interest due to their roles in endothelial 

dysfunction, which has been shown to play a role in the pathogenesis of cerebrovascular 

disease[171, 196]. Presently, studies have demonstrated mixed results in the association 

of angiogenic and inflammatory biomarkers with VCID, however it is suspected that this 

is due to the inconsistency in both the patient populations and the analytical 

measures[169].  

 Agglomerative hierarchical clustering analysis (HCA) is an unsupervised machine 

learning technique commonly used to determine similar subsets within a larger 

population[197]. HCA can be used to identify subsets within a variety of different 

patient populations. The accuracy of this technique is difficult to quantify, as most 

studies rely on post-hoc analysis of the clusters produced by HCA to determine their 

validity. We propose a unique methodology for validating clusters produced by HCA. 

This method relies on using two unique HCA models on the same dataset and evaluates 

congruencies between the two models by comparing a novel HCA model to one that is 

widely used[198-201]. Before applying both HCA models to our dataset, we tested the 

accuracy of each model on various distributions of data and compared them to each 

other using the adjusted rand index. After demonstrating the interchangeability of the 

two HCA models in the simulated data distribution comparable to our dataset, we 
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tested both models on our dataset and compared the underlying components of each 

cluster produced by the HCA models.  

2.3 Methods 

2.3.1 Participants 

 Plasma samples were collected from a cohort of adult research volunteers 

enrolled in a randomized behavioral intervention study for MCI-CVD (N = 80, 

NCT01924312). Inclusion criteria for the parent study include age older than 55-years 

Montreal Cognitive Assessment score < 29, and at least one uncontrolled vascular risk 

factor. Risk factors included poorly controlled hypertension, poorly controlled 

cholesterol, cardiomyopathy/CHF, diabetes with a fasting glucose > 110 or HbA1c > 7%, 

homocysteine > 12, history of transient ischemic attack, tobacco use > 30 pack-years, 

and BMI >30. Potential subjects were excluded from this cohort if they had dementia, 

evidence of a non-CVD cause of cognitive decline, evidence of a non-CVD neurologic 

disease, or any focal motor, sensory, visual, or auditory deficits. For the current study, 

participants were also excluded if they had an incomplete panel of markers as measured 

via MSD assays as described below (n = 7).  

2.3.2 Plasma Collection and Quantification 

 Plasma samples were collected by venous puncture using 10ml EDTA Vacutainer 

tubes. Plasma was aliquot into cryo-tubes at 500µl volumes. Quantification of plasma 

samples was accomplished using MSD Multi-Spot V-PLEX assays (Angiogenesis Panel 1 

(human) and Proinflammatory Panel 1 (human)) and Ultra-Sensitive assays (MMP 2-Plex 

and MMP 3-Plex). Plasma did not undergo any freeze-thaw cycles after the initial 
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thawing of the aliquot. Assays were performed using plate specific protocols as followed 

with analysis performed in the MSD Discovery Workbench 4.0 software: 

2.3.2.1 MMP 2-Plex and MMP 3-Plex 

MMP plates were brought to room temperature for approximately 30 minutes 

and then loaded with 25µl of diluent, covered (protect from light), and incubated at 

room temperature for 30 minutes while shaking at 600 rpm. After incubation, plates 

were removed from the shaker and 25µl of calibrator was added to the assigned wells in 

duplicate with 5µl of undiluted sample and 20µl of diluent. Plates were covered and 

incubated at room temperature while shaking at 600 rpm.  After incubation, plates were 

removed from the shaker and washed three times with 300µl of wash buffer. Plates 

were turned upside down and tapped against paper towels to ensure the removal of all 

wash buffer from the wells. 25µl of the antibody mix was loaded into each well, covered 

(protect from light), and incubated at room temperature for two hours shaking at 600 

rpm.  After incubation, plates were removed from the shaker and the wash steps were 

repeated from above.  150µl of read buffer was loaded into each well and read on the 

MSD Quickplex SQ 120 machine. 

2.3.2.2 Proinflammatory Panel 1 

Proinflammatory plates were brought to room temperature for approximately 

30 minutes and washed three times with 300µl of wash buffer.  Plates were turned 

upside down and tapped against paper towels to ensure the removal of all wash buffer 

from the wells.  50µl of calibrator was added to the assigned wells in duplicate with 50µl 

of undiluted sample and covered (protect from light).  Plates were incubated at 4°C 
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overnight while shaking at 600 rpm.  In the morning plates were removed from 4°C and 

incubated at room temperature for one hour while shaking at 600 rpm.  After 

incubation, plates were removed from the shaker and the wash steps were repeated 

from above. 25µl of the antibody mix was added into each well, covered (protect from 

light), and incubated at room temperature for two hours shaking at 600 rpm.  After 

incubation, plates were removed from the shaker and wash steps were repeated from 

above. 150µl of read buffer was loaded into each well and read on the MSD Quickplex 

SQ 120 machine.   

2.3.2.3 Angiogenesis Panel 1 

Angiogenesis plates were brought to room temperature for approximately 30 

minutes and then loaded with 150µl of diluent, covered (protect from light), and 

incubated at room temperature for one hour while shaking at 600 rpm. After 

incubation, plates were removed from the shaker and washed three times with 300µl of 

wash buffer. Plates were turned upside down and tapped against paper towels to 

ensure the removal of all wash buffer from the wells. 50µl of calibrator was added to 

the assigned wells in duplicate with 25µl of undiluted sample and 25µl of diluent. Plates 

were covered (protect from light) and incubated at 4°C overnight while shaking at 600 

rpm.  In the morning, plates were removed from 4°C and incubated at room 

temperature for one hour while shaking at 600 rpm. After incubation, plates were 

removed from the shaker and wash steps were repeated from above.  25µl of the 

antibody mix was added into each well, covered (protect from light), and incubated at 

room temperature for two hours shaking at 600 rpm.  After incubation, plates were 
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removed from the shaker and wash steps were repeated from above. 150µl of read 

buffer was loaded into each well and read on the MSD Quickplex SQ 120 machine.  

Samples were run in duplicate and three pooled control samples were run on 

each plate to measure inter- and intra-plate variability. MSD quantification was 

performed on a table stabilizer in order to reduce error in MSD plate readings.  

2.3.3 Plasma Sample Analysis 

Protein markers measured through MSD assays were subjected to intra- and 

inter-plate variability tests. Intra-plate variability was assessed through two distinct 

methods. The first method calculated the percentage of samples for each marker that 

had a coefficient of variation, as determined by the duplicate runs for each sample, 

greater than or equal to 0.25. Markers that contained 20% of samples above this 

threshold were removed from further analysis. The second method ran three pooled 

control sample twice on the same plate (two samples each run in duplicate) to ensure 

consistency in final quantifications. The coefficient of variation for each of the three 

controls measured for each marker were then averaged together. Markers with an 

average coefficient of variation greater than 0.25 were excluded from the analysis. 

Markers that passed both criteria were included in the final analysis. Inter-plate 

variability was accounted for using the three pooled control samples run on each plate. 

Each plate control value was divided by the control mean and all three of these values 

for each marker were averaged together to provide a plate-scaling factor. Each value 

was then divided by this factor to adjust for inter-plate variability. The resulting 

measures were log-transformed to scale each marker to a common order of magnitude, 
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which is required in clustering algorithms to provide equal weighting of markers. 

Grubb’s test was lastly applied to the data to remove outliers[202]. Individual samples 

containing one or more outliers in the measured markers were excluded from further 

analysis (n = 7) due to their effects on clustering techniques. The final dataset consisted 

of 66 patient plasma samples, which were quantified for 11 plasma markers (FGF, FLT, 

PLGF, Tie-2, VEGF, VEGFD, MMP1, MMP3, MMP9, IL8, TNFα).  

2.3.4 Hierarchical Clustering Analysis 

All HCA were performed using the Matlab Statistics and Machine Learning 

Toolbox functions pdist, linkage, and cluster. Previously described HCA models were 

comprised of three different algorithms, distance, linkage, and clustering [198-201]. The 

conventional HCA model consists of a Euclidean distance algorithm, which calculates the 

distance between two samples using the Euclidean distance formula (a special case of 

the generalized Minkowski distance formula), where the distance between observations 

s and t in a sample with n markers equals dst: 

𝑑𝑑𝑠𝑠𝑠𝑠 =  ���𝑋𝑋𝑠𝑠𝑠𝑠 − 𝑋𝑋𝑠𝑠𝑠𝑠�
2

𝑛𝑛

𝑠𝑠=1

  

The linkage algorithm used was Ward’s Linkage, which calculates the incremental 

increase in within-cluster sum of squares and links samples one at a time until all 

samples are combined into a single cluster[197]. This method combines similar samples 

until all samples fall within one cluster (i.e., agglomerative hierarchical clustering). The 

final algorithm in the conventional HCA model used a standard agglomerative clustering 

approach [199]. 
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 The novel proposed HCA model uses consensus clustering as presented by Fred 

and Jain [203] to combine HCA models with different distance and clustering algorithms. 

The distance algorithms used the Minkowski distance formula with p ranging from 0.1 to 

2.0 in increments of 0.1. The distance between observations s and t in a sample with n 

markers equals dst: 

𝑑𝑑𝑠𝑠𝑠𝑠 =  ���𝑋𝑋𝑠𝑠𝑠𝑠 − 𝑋𝑋𝑠𝑠𝑠𝑠�
2

𝑛𝑛

𝑠𝑠=1

  

 

Each distance algorithm’s data was then used with the weighted average linkage 

algorithm, which combines samples into clusters that have the smallest distance 

between them and determines that distance using a recursive function which treats the 

subset of linkages equally[197]. 

 Lastly, data from each linkage algorithm was clustered using an inconsistency 

clustering algorithm. This algorithm calculates an inconsistency coefficient of a new 

linkage using the mean and standard deviation of the linkage heights for a specified 

depth (dep) of sub linkages within each new linkage. Clusters were formed when the 

inconsistency coefficient for each linkage and all sub linkages were less than a specified 

cutoff (cut) value. Each linkage algorithm output was run through multiple iterations of 

the inconsistency clustering algorithm with values for depth (dep) from 2 to 6 in 

increments of 1, whereas cutoff (cut) values were adjusted from 1.0 to 3.0 in increments 

of 0.1. All iterations of depth and cutoff were evaluated, and if only one cluster was 

formed then that iteration was not used in the consensus clustering model.  Once each 
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clustering model was established, distances between samples were calculated based on 

the percentage of models in which two samples shared a cluster. Samples that shared 

no clusters were given a distance of 1 and, samples that were paired in the same cluster 

in each model were given a distance of 0. Plots of each clustering model were created 

using the dimensionality reduction function, t-Distributed Stochastic Neighbor 

Embedding (t-sne), with a random number generation seed of 10 to maintain 

reproducibility[204]. Clinical data was excluded from the clustering algorithm to avoid 

clusters based on clinical findings as this study sought to identify clusters of participants 

based on a differential level of fluid biomarkers.  

2.3.5 Simulated Data Generation and Analysis 

 Simulated data generation was performed using the Matlab Statistics and 

Machine Learning Toolbox function mvnrnd. Each simulated data experiment was run 

with 35 trials and each trial was initiated with a unique random number generation seed 

to maintain reproducibility. Generated data contained 11 variables and 100 samples per 

group, obtained from known distributions with the mean and sigma of each distribution 

differing depending on the experiment. Supplementary Tables 2.1, 2.2, and 2.3 detail 

the mean and sigma for each group within each experiment. The adjusted rand index 

(ARI) was used to evaluate the accuracy of each clustering model by comparing each 

clustering result to the known cluster assignment. The ARI has a maximum value of 1 

indicating that the clustering result matches perfectly to the known cluster assignment. 

An ARI of 0 indicates that the clustering model assigns observations to the correct 

cluster assignment with an equal probability as random chance. An ARI below 0 



 33 

demonstrates that the clustering model is less effective than random chance at 

assigning observations to the correct cluster assignment[205]. 

2.3.6 Statistical Analysis 

 Statistical analysis was performed using the Matlab Statistics and Machine 

Learning Toolbox and SPSS. A two-sample t-test using the Matlab function ttest2 was 

conducted to compare the ARI means of the two HCA models for all simulated data 

experiments. SPSS was used for the remaining statistical tests to determine differences 

between clusters for each log-transformed protein marker. Levene’s test for equality of 

variances was performed before each two-sample t-test, and Satterthwaite’s t-test was 

used for any marker found to have significantly different variances. Levene’s test for 

homogeneity of variances based on the mean was also conducted before performing an 

ANOVA test for each marker and a Welch’s test for equality of means was performed for 

markers with nonhomogeneous variances. Post-hoc analysis was then conducted on 

markers which had a significant p-value for an ANOVA or Welch’s test. Tukey’s HSD was 

used for significant ANOVA tests and Dunnett T3 was used for significant Welch’s Test.  

2.4 Results 

2.4.1 Study Population Description 

 Demographic and neurocognitive evaluations were obtained in 65/66 

participants within our MCI-CVD cohort (Table 2.1). The mean age of the participants 

was 75.07 ± 8.14 with a female population of 47%. MMSE scores ranged from 18-30 

with a mean of 26.86 ± 2.95, while MoCA scores ranged from 11-28 with a mean of 

22.11 ± 3.74. Vascular risk factors including systolic blood pressure, hemoglobin A1C, 
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and LDL cholesterol were also evaluated in our cohort (Table 2.1). Mean systolic blood 

pressure was found to be 141.33 ± 15.31 mmHg, hemoglobin A1c 6.18 ± 1.31 %, and LDL 

cholesterol 97.44 ± 42.63 mg/dL. 

2.4.2 Simulated Data Analysis 

 To test the applicability of the novel combined HCA model we tested its accuracy 

in eight unique simulated datasets (detailed in Supplementary Table 2.1). We tested the 

novel model against an established HCA model using the adjusted rand index (ARI) to 

measure the accuracy of each model (Figure 2.1). In our first experiment, we studied the 

accuracy of both models in a dataset with two distant uniform clusters (Figure 2.1a). The 

established HCA model using Euclidean distance showed no difference in ARI compared 

to the novel combined HCA model (Euclidean: 0.9892 ± 0.0029, Novel: 0.9920 ± 0.0019, 

p = 0.413). A similar result was found in a dataset with two distant variable clusters 

(Euclidean: 0.9920 ± 0.0023, Novel: 0.9926 ± 0.0020, p = 0.857) (Figure 2.1e). These 

results demonstrate that both models were able to assign each distribution to its own 

cluster. Next, we tested both models on a dataset with three distant uniform clusters 

(Figure 2.1c) and three distant variable clusters (Figure 2.1g). The established HCA 

model had a significantly increased ARI over the novel HCA model in both of these 

experiments (Euclidean: 0.6186 ± 0.0139, Novel: 0.4067 ± 0.0320, p < 0.001, Figure 2.1c) 

(Euclidean: 0.5767 ± 0.0200, Novel: 0.4393 ± 0.0092, p < 0.001, Figure 2.1g). These 

results show that the established HCA model has a higher accuracy when separating 

three distant clusters of normally distributed data. We then tested if the models 

performed differently on distributions that had more overlapping characteristics. The 
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first experiments of these distributions were with two close uniform clusters (Figure 

2.1b) and two close variable clusters (Figure 2.1f). In both experiments the established 

HCA model had a higher accuracy compared to the novel HCA model (Euclidean: 0.6579 

± 0.0150, Novel: 0.5482 ± 0.0237, p < 0.001, Figure 2.1b) (Euclidean: 0.6186 ± 0.0139, 

Novel: 0.4067, p < 0.001, Figure 2.1f). This difference continued in the final set of 

experiments which used three close uniform clusters (Euclidean: 0.2477 ± 0.0087, 

Novel: 0.2103 ± 0.0103, p < 0.007, Figure 2.1d) and three distant variable clusters 

(Euclidean: 0.2370 ± 0.0080, Novel: 0.2023 ± 0.0078, p < 0.003, Figure 2.1h). These 

experiments show that as the distributions progressively overlap the accuracy for both 

models decrease and the difference between the accuracy of the models decreases as 

well.  

2.4.3 Predicted Distribution Analysis 

 We hypothesized that clusters, if any, in our empirical dataset would overlap 

more and thus be more difficult to differentiate than those used in the previous 

experiments. To test the accuracy of each model in this distribution we generated 

simulated data from predicted distributions based on analysis from our collaborators 

(detailed in Supplementary Tables 2.2 and 2.3). The first experiment was based on a 

two-cluster model within our sample population (Figure 2.2a). This experiment showed 

no differences between the established Euclidean HCA model and the novel HCA model 

(Euclidean: 0.1422 ± 0.0118, Novel: 0.1270 ± 0.0181, p = 0.486, Figure 2.2a). In addition, 

we tested a three-cluster model for our sample population and found similar results 

with no differences between the two models in this study (Euclidean: 0.0902 ± 0.0092, 
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Novel: 0.0895 ± 0.0105, p = 0.962, Figure 2.2b). The data from these two experiments 

demonstrate the interchangeability of these two models when studying datasets with 

extensive overlapping distributions.  

2.4.4 Application of Models to Dataset 

 After validating the novel combined HCA model using predicted distributions, we 

applied both HCA models to our 66 patient sample (Figure 2.3). When the Euclidean 

distance HCA model was applied to our dataset, 4 clusters emerged (Figure 2.3a). 

Clusters 1, 3, and 4 appear to be more compact in the 2-D t-SNE dimensionality 

reduction plot, while cluster 2 exists along the periphery of the plot in a more scattered 

manner. We continued this experiment and applied the novel combined HCA model to 

the same dataset and uncovered 2 clusters (Figure 2.3b). Cluster 1 contains 14 samples 

of which 12 also appear in cluster 1 of the Euclidean distance HCA model. The other 52 

samples appear in cluster 2, which is comprised of clusters 2-4 from the Euclidean 

distance HCA model. The similarity of these two results emphasize the underlying 

distributions within this dataset.  

2.4.5 Characterizing Cluster Differences 

We proceeded to analyze the differences that drive cluster differentiation. First, 

we examined the clusters produced by the novel HCA model (Figure 2.4) and found that 

cluster 1 was increased compared to cluster 2 in FGF (p < 0.001), Tie-2 (p = 0.013), VEGF 

(p < 0.001), MMP1 (p < 0.001), MMP3 (p = 0.005), MMP9 (p < 0.001), and IL8 (p < 0.001) 

(Table 2.2). When the clusters produced from the Euclidean distance HCA model were 

analyzed (Figure 2.5), we found a similar pattern of clusters. In this model, cluster 1 was 
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increased compared to clusters 2-4 in VEGF (p = 0.006, p < 0.001, p = 0.013), MMP1 (p = 

0.003, p < 0.001, p = 0.001), and IL8 (p < 0.001, p< 0.001, p < 0.001) respectively (Table 

2.3). Cluster 1 was also increased in FGF (p = 0.004), Tie-2 (p = 0.033), and MMP9 (p = 

0.003) compared to cluster 3. The elevated level of these proteins in cluster 1 agrees 

with the characteristics of cluster 1 established previously with both models 

demonstrating a subset with significant increases in VEGF, MMP1, and IL8 compared to 

the other subsets (Figure 2.6). However, the Euclidean distance HCA model does show 

differences between clusters 2-4, which were not seen in the novel HCA model. Cluster 

2 and cluster 4 were similar in their makeup, both increased over cluster 3 in MMP1 (p < 

0.001 and p < 0.001) and VEGF (p = 0.032 and p = 0.016) respectively, but different 

levels of FGF (p < 0.001). These differences lead to the possibility of four disease profiles 

within the MCI-CVD patient population. 

2.5 Discussion 

 The results of this study provide evidence supporting the use of the novel 

combined HCA model in datasets with extensive overlapping distributions. The results of 

the first set of experiments demonstrate that the Euclidean distance HCA model 

outperforms the novel combined HCA model in datasets with a moderate amount of 

overlapping distributions (Figure 2.1(b-d,f-h)). This difference is reduced as the 

distributions progressively increase in overlap and eventually disappears entirely in our 

second set of experiments involving the more complex datasets with predicted 

distributions (Figure 2.2).  
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 It is important to note that the capacity of the two HCA models to accurately 

cluster data into their known distributions decreases as the datasets become more 

complex. In our experiments involving two distant distributions of data, both models 

were able to separate each distribution with an adjusted rand index approximately 

equal to 1 (Figure 2.1(a,e)). In experiments using our predicted distributions the average 

adjusted rand index decreased to approximately 0.13 and 0.09 for the two and three 

cluster models respectively (Figure 2.2). These findings demonstrate the limits of 

reliability in both HCA models and provide a measure to compare additional HCA 

models to in future experiments. Accounting for this accuracy is crucial when 

interpreting HCA results because clusters produced by the HCA model may not 

correspond to any true unique distribution and may simply be a subset within the 

normal variation of a larger distribution. Therefore, it is important to compare multiple 

HCA models on an unknown dataset in order to elucidate which clusters are in fact 

unique distributions within the dataset. Overall, results from our experiments support 

the interchangeability of HCA models in datasets similar to those shown in 

Supplementary Tables 2.2 and 2.3, which allows for the use of both models in assessing 

clustering distributions within our dataset.  

 Both the Euclidean distance HCA model and the novel combined HCA model 

resulted in similar disease profiles within our cohort of MCI-CVD patients (Figure 2.3). In 

this study both models classified participants into a cluster that had elevated levels of 

VEGF, MMP1, and IL8 compared to the other clusters (Figures 2.4-2.5). We suspect that 

this disease profile seen in cluster 1 may be involved in a more active VCID process 
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resulting in increased pathology due to the increased level of angiogenic and 

inflammatory markers. Clusters 2-4 in the Euclidean distance HCA model may also be 

clinically relevant in terms of disease pathology but require future studies to understand 

how these profiles may contribute to progression of VCID in a population of individuals 

with MCI-CVD.  

In conclusion, the usage of both the novel HCA model and a Euclidean distance 

HCA model identified a novel subset of patients within the MCI-CVD population. This 

study provides insight into a potential underlying inflammatory and angiogenic profile of 

disease in patients with VCID. Defining subsets of patients within this population with 

different disease profiles continues to be a key research objective. These profiles can 

provide a more complete understanding of disease progression and allow physicians 

and researchers to identify patients undergoing different rates of pathologic change in a 

prospective cohort. In the future, we hope to further clarify these profiles by combining 

plasma and MRI imaging biomarkers that can also be used in clinical trials as key 

outcome measures to determine the efficacy of novel therapeutics.  
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Table 2.1  MCI-CVD Cohort Demographics and Clinical History 

Means ± Standard Deviation for age, MMSE, and MoCA for the MCI-CVD cohort 

population in addition to percent of female participants.  

 Mean ± SDev Range 

Age (yrs) 75.07 ± 8.14 (56.99 - 89.22) 

MMSE 26.86 ± 2.95 (18 - 30) 

MoCA 22.11 ± 3.74 (11 - 28) 

Systolic Blood 

Pressure (mmHg) 
141.33 ± 15.31 (102-185) 

Hemoglobin A1c 

(%) 
6.18 ± 1.31 (4.3-11.8) 

LDL Cholesterol 

(mg/dL) 
97.44 ± 42.63 (22-299) 

Sex 47% Female 
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Table 2.2  Combined HCA Model Cluster Differences 

Biomarker p-value Cluster 1 (pg/mL) Cluster 2 (pg/mL) 

FGF < 0.001 24.56 ± 2.39 12.27 ± 1.22 

FLT 0.568 12.92 ± 1.35 11.87 ± 0.59 

PIGF 0.093 3.52 ± 0.38 2.94 ± 0.11 

Tie-2 0.013 500.55 ± 31.69 411.09 ± 14.77 

VEGF < 0.001 98.39 ± 17.46 43.55 ± 3.63 

VEGFD 0.350 560.73 ± 52.17 515.59 ± 24.35 

MMP1 < 0.001 5244.74 ± 700.11 2292.86 ± 219.55 

MMP3 0.005 17275.46 ± 3267.49 10547.71 ± 856.39 

MMP9 < 0.001 43561.18 ± 8177.19 19232.98 ± 1851.63 

IL8 < 0.001 4.20 ± 0.49 2.25 ± 0.11 

TNFα 0.283 1.81 ± 0.15 1.63 ± 0.10 

Means ± SEM for clusters 1 and 2 produced by the Combined HCA model. Statistical 

significance between groups was determined using the log transform of the data shown 

in Figure 2.4 in an independent samples t-test (p < 0.05)
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Table 2.3  Euclidean Distance Model Cluster Differences 

 

Means ± SEM for clusters 1-4 produced by the Euclidean Distance model. Statistical 

significance between groups was determined using the log transform of the data shown 

in Figure 2.5 in an ANOVA followed by Tukey’s HSD for post-hoc analysis (p < 0.05). 

Results of the ANOVA omnibus are shown in p-value.  

Biomarker p-value 
Cluster 1 
(pg/mL) 

Cluster 2 
(pg/mL) 

Cluster 3 
(pg/mL) 

Cluster 4 
(pg/mL) 

FGF < 0.001 
24.90 ± 

2.78 
5.16 ± 0.60 12.70 ± 1.37 20.11 ± 1.97 

FLT 0.340 
12.77 ± 

1.56 
13.08 ± 0.82 11.05 ± 1.44 11.42 ± 0.82 

PIGF 0.342 3.53 ± 0.45 2.94 ± 0.17 2.79 ± 0.28 3.10 ± 0.16 

Tie-2 0.040 
512.42± 

35.98 
437.13 ± 

25.44 
384.29 ± 

26.72 
405.64± 21.72 

VEGF < 0.001 
106.97 ± 

19.29 
49.97 ± 6.65 27.69 ± 4.39 48.56 ± 5.14 

VEGFD 0.258 
563.88 ± 

60.58 
579.18 ± 

46.39 
469.25 ± 

36.56 
487.25 ± 

32.33 

MMP1 < 0.001 
5605.20 ± 

769.82 
3061.39 ± 

356.41 
736.27 ± 

71.84 
2692.85 ± 

285.62 

MMP3 0.096 
17517.09 ± 

3822.29 
10666.69 ± 

1443.84 
9646.52 ± 
1192.19 

11587.35 ± 
1561.28 

MMP9 < 0.001 
46055.29 ± 

9378.94 
25868.67 ± 

3771.38 
17474.83 ± 

2787.13 
14764.34 ± 

1748.47 
IL8 < 0.001 4.49 ± 0.52 2.32 ± 0.18 1.78 ± 0.12 2.53 ± 0.18 

TNFα 0.362 1.86 ± 0.16 1.52 ± 0.16 1.51 ± 0.10 1.83 ± 0.21 
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Figure 2.1  Comparison of HCA Models in Multiple Simulated Datasets 

 

Compares the combined HCA model to the Euclidean distance model in eight different 

datasets. Each dataset was produced using the mvnrnd. The accuracy of each model was 

assessed using the adjusted rand index (ARI). Datasets used in figures 2.1(a-d) have 

identical means for each variable in each cluster. Datasets used in figures 2.1(e-h) have 

the same means for the first 6 variables and means of opposite signs for the other 5 

variables. Means and standard deviations for each dataset are shown in Supplementary 

Table 2.1. Horizontal red lines indicate means for each model. Stars (*) indicate 

statistical significance between groups using an independent samples t-test (p < 0.05).  
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Figure 2.2  Comparison of HCA Models in Predicted Distributions 

 

Compares the combined HCA model to the Euclidean distance model in two predicted 

distributions. Each dataset was produced using mvnrnd. The accuracy of each model 

was assessed using the adjusted rand index (ARI). Means and covariance matrix for each 

dataset are shown in Supplementary Tables 2.2 and 2.3. Horizontal red lines indicate 

means for each model. Stars (*) indicate statistical significance between groups using an 

independent samples t-test (p < 0.05).  
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Figure 2.3  Dimensionality Reduction Plots of Clustered Data 

 

T-SNE dimensionality reduction plot of clustered data. Data was clustered using the 

Euclidean Distance Model (a) and the Combined HCA model (b). The dataset was 

produced by measuring 11 inflammatory (MMP1, MMP3, MMP9, IL8, TNFα) and 

angiogenic proteins of interest (FGF, FLT, PIGF, Tie-2, VEGF, VEGF-D) from 66 participant 

plasma samples.  
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Figure 2.4  Combined HCA Model Cluster Comparison 

 

Compares cluster 1 and 2 produced from the Combined HCA model in each 

inflammatory and angiogenic protein measured. Horizontal red lines indicate the means 

for each cluster. Stars (*) indicate statistical significance between groups as calculated 

by the log transform of the data shown using an independent samples t-test (p < 0.05). 

Means ± SEM are shown in Table 2.2.  
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Figure 2.5  Euclidean Distance Model Cluster Comparison 

 

Compares clusters 1-4 produced from the Euclidean Distance model in each 

inflammatory and angiogenic protein measured. Horizontal red lines indicate the means 

for each cluster. Stars (*) indicate statistical significance between groups as calculated 

by the log transform of the data shown using ANOVA followed by Tukey’s HSD for post-

hoc analysis (p < 0.05). Means ± SEM are shown in Table 2.3.
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Figure 2.6  3-D Cluster Comparison 

 

Cluster comparison of VEGF (pg/mL), MMP1 (pg/mL), and IL8 (pg/mL) for data clustered 

using the Euclidean Distance Model (a) and the Combined HCA model (b) from 66 

participant plasma samples.  
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Supplementary Table 2.1 

Means and standard deviations for each cluster generated in each experiment. 

Distributions were generated using a multivariate normal random number generator 

consisting of 11 variables. The means and standard deviations for each variable are 

listed under Means and Sigma respectively.  

Experiment Name Cluster Means Sigma
Two Distant Uniform Clusters 1 [1 1 1 1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1 1 1 1]

2 [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1] [1 1 1 1 1 1 1 1 1 1 1]
Two Close Uniform Clusters 1 [.5 .5 .5 .5 .5 .5 .5 .5 .5 .5. 5] [1 1 1 1 1 1 1 1 1 1 1]

2 [-.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 ] [1 1 1 1 1 1 1 1 1 1 1]
Two Distant Variable Clusters 1 [1 1 1 1 1 1 -1 -1 -1 -1 -1] [1 1 1 1 1 1 1 1 1 1 1]

2 [-1 -1 -1 -1 -1 -1 1 1 1 1 1] [1 1 1 1 1 1 1 1 1 1 1]
Two Close Variable Clusters 1 [.5 .5 .5 .5 .5 .5 -.5 -.5 -.5 -.5 -.5 ] [1 1 1 1 1 1 1 1 1 1 1]

2 [-.5 -.5 -.5 -.5 -.5 -.5 .5 .5 .5 .5 .5] [1 1 1 1 1 1 1 1 1 1 1]
Three Distant Uniform Clusters 1 [1 1 1 1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1 1 1 1]

2 [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1] [1 1 1 1 1 1 1 1 1 1 1]
3 [0 0 0 0 0 0 0 0 0 0 0] [1 1 1 1 1 1 1 1 1 1 1]

Three Close Uniform Clusters 1 [.5 .5 .5 .5 .5 .5 .5 .5 .5 .5. 5] [1 1 1 1 1 1 1 1 1 1 1]
2 [-.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 ] [1 1 1 1 1 1 1 1 1 1 1]
3 [0 0 0 0 0 0 0 0 0 0 0] [1 1 1 1 1 1 1 1 1 1 1]

Three Distant Variable Clusters 1 [1 1 1 1 1 1 -1 -1 -1 -1 -1] [1 1 1 1 1 1 1 1 1 1 1]
2 [-1 -1 -1 -1 -1 -1 1 1 1 1 1] [1 1 1 1 1 1 1 1 1 1 1]
3 [0 0 0 0 0 0 0 0 0 0 0] [1 1 1 1 1 1 1 1 1 1 1]

Three Close Variable Clusters 1 [.5 .5 .5 .5 .5 .5 .5 .5 .5 .5. 5] [1 1 1 1 1 1 1 1 1 1 1]
2 [-.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 ] [1 1 1 1 1 1 1 1 1 1 1]
3 [0 0 0 0 0 0 0 0 0 0 0] [1 1 1 1 1 1 1 1 1 1 1]
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 Supplementary Table 2.2 

Means and covariance matrix for each cluster generated in the Estimated Two Cluster 

model. The means for each of the 11 variables within each cluster are listed above the 

covariance matrices used to generate the data using multivariate normal random 

number generators. 

1 2 3 4 5 6 7 8 9 10 11
1 2.41276 2.4264 1.05602 6.02993 3.82545 6.17825 7.83046 9.14212 9.81959 0.92351 0.42968
2 2.15408 2.20339 1.05094 5.87152 3.12812 6.13141 7.30849 9.21008 9.37979 0.63249 0.26084

Covariance Variable 1 2 3 4 5 6 7 8 9 10 11
1 0.87866 -0.0651 0.05276 0.04614 0.08183 -0.0553 0.1445 -0.0399 0.06146 0.12042 0.12095
2 -0.0651 0.12048 0.00538 0.01383 0.02846 0.03183 -0.1008 0.00634 0.07139 -0.0268 -0.0343
3 0.05276 0.00538 0.05599 0.00359 0.03583 0.01867 -0.0094 0.0072 0.03135 -0.0005 0.01021
4 0.04614 0.01383 0.00359 0.06156 0.03994 0.02873 0.02253 0.03366 0.04254 0.04244 0.01608
5 0.08183 0.02846 0.03583 0.03994 0.34416 -0.0086 0.02522 0.13695 0.04196 0.04953 -0.035
6 -0.0553 0.03183 0.01867 0.02873 -0.0086 0.11702 0.03837 0.03402 -0.0015 0.01459 0.00156
7 0.1445 -0.1008 -0.0094 0.02253 0.02522 0.03837 0.64788 0.14002 -0.0933 0.13159 -0.0034
8 -0.0399 0.00634 0.0072 0.03366 0.13695 0.03402 0.14002 0.35036 0.07319 0.05201 -0.0469
9 0.06146 0.07139 0.03135 0.04254 0.04196 -0.0015 -0.0933 0.07319 0.42658 0.02485 0.02224
10 0.12042 -0.0268 -0.0005 0.04244 0.04953 0.01459 0.13159 0.05201 0.02485 0.15123 0.0791
11 0.12095 -0.0343 0.01021 0.01608 -0.035 0.00156 -0.0034 -0.0469 0.02224 0.0791 0.19611

Covariance Variable 1 2 3 4 5 6 7 8 9 10 11
1 0.29432 -0.0239 0.03014 0.06766 0.10269 -0.0378 0.02776 -0.0334 -0.0488 -0.0314 0.14848
2 -0.0239 0.13127 -0.0015 0.00689 -0.0398 0.0716 0.03279 -0.0919 0.02203 0.01503 0.02645
3 0.03014 -0.0015 0.07576 0.03497 0.15223 -0.0008 0.13279 -0.0132 -0.0242 0.00894 -0.0131
4 0.06766 0.00689 0.03497 0.15692 0.16669 -0.0214 0.0743 -0.0896 -0.0866 0.02748 -0.0099
5 0.10269 -0.0398 0.15223 0.16669 0.68923 -0.0974 0.47091 -0.1791 -0.041 0.07102 -0.0335
6 -0.0378 0.0716 -0.0008 -0.0214 -0.0974 0.13077 0.01574 -0.0852 -0.0053 0.05371 0.03473
7 0.02776 0.03279 0.13279 0.0743 0.47091 0.01574 0.48734 -0.1808 0.0926 0.07875 0.01983
8 -0.0334 -0.0919 -0.0132 -0.0896 -0.1791 -0.0852 -0.1808 0.46144 -0.0346 -0.0149 0.02419
9 -0.0488 0.02203 -0.0242 -0.0866 -0.041 -0.0053 0.0926 -0.0346 0.2354 -0.0328 0.01535
10 -0.0314 0.01503 0.00894 0.02748 0.07102 0.05371 0.07875 -0.0149 -0.0328 0.09629 0.00637
11 0.14848 0.02645 -0.0131 -0.0099 -0.0335 0.03473 0.01983 0.02419 0.01535 0.00637 0.23125
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Supplementary Table 2.3

 

Means and covariance matrix for each cluster generated in the Estimated Three Cluster 

model. The means for each of the 11 variables within each cluster are listed above the 

covariance matrices used to generate the data using multivariate normal random 

number generators.  

1 2 3 4 5 6 7 8 9 10 11
1 2.58006 2.46903 1.05126 6.07113 3.81232 6.20695 7.91822 9.10489 9.89962 0.96325 0.52826
2 2.0921 2.3447 1.06516 5.95098 3.85062 6.12323 7.66225 9.21349 9.66618 0.84734 0.24075
3 2.15408 2.20339 1.05094 5.87152 3.12812 6.13141 7.30849 9.21008 9.37979 0.63249 0.26084

Covariance Variable 1 2 3 4 5 6 7 8 9 10 11
1 0.72923 -0.0599 -0.0254 0.02776 0.09885 -0.0845 0.00855 -0.04 -0.0736 0.10091 0.11139
2 -0.0599 0.09333 0.01431 0.01225 0.03817 0.02212 -0.0622 0.01042 0.09915 -0.0183 -0.0353
3 -0.0254 0.01431 0.05121 0.01365 0.0444 0.02786 -0.0245 0.02771 0.02918 0.01514 0.01952
4 0.02776 0.01225 0.01365 0.05857 0.06756 0.03975 -0.0134 0.03444 0.03935 0.02669 0.02364
5 0.09885 0.03817 0.0444 0.06756 0.47158 0.01604 0.07334 0.1683 0.03001 0.10498 -0.0304
6 -0.0845 0.02212 0.02786 0.03975 0.01604 0.1398 0.05691 0.06559 0.02986 0.00701 -0.0108
7 0.00855 -0.0622 -0.0245 -0.0134 0.07334 0.05691 0.65972 0.20798 -0.1576 0.12552 -0.0046
8 -0.04 0.01042 0.02771 0.03444 0.1683 0.06559 0.20798 0.43466 0.10547 0.06139 -0.039
9 -0.0736 0.09915 0.02918 0.03935 0.03001 0.02986 -0.1576 0.10547 0.4701 0.01007 0.00096
10 0.10091 -0.0183 0.01514 0.02669 0.10498 0.00701 0.12552 0.06139 0.01007 0.10393 0.0386
11 0.11139 -0.0353 0.01952 0.02364 -0.0304 -0.0108 -0.0046 -0.039 0.00096 0.0386 0.15638

Covariance Variable 1 2 3 4 5 6 7 8 9 10 11
1 1.08671 -0.1247 0.2188 0.04506 0.06861 -0.0312 0.34 -0.0054 0.25544 0.12985 0.0505
2 -0.1247 0.17467 -0.0108 0.00754 0.01503 0.0467 -0.2099 0.00843 0.00155 -0.0566 -0.0612
3 0.2188 -0.0108 0.07049 -0.015 0.02157 0.00283 0.02244 -0.0343 0.04085 -0.0308 -0.0046
4 0.04506 0.00754 -0.015 0.06278 -0.0084 0.00209 0.07443 0.0445 0.03267 0.06782 -0.0224
5 0.06861 0.01503 0.02157 -0.0084 0.11957 -0.0565 -0.0617 0.08372 0.07609 -0.0537 -0.0395
6 -0.0312 0.0467 0.00283 0.00209 -0.0565 0.07708 -0.0106 -0.0195 -0.0784 0.02413 0.0092
7 0.34 -0.2099 0.02244 0.07443 -0.0617 -0.0106 0.63612 0.03675 -0.016 0.13443 -0.0539
8 -0.0054 0.00843 -0.0343 0.0445 0.08372 -0.0195 0.03675 0.20516 0.03345 0.047 -0.0445
9 0.25544 0.00155 0.04085 0.03267 0.07609 -0.0784 -0.016 0.03345 0.33927 0.03727 0.0187
10 0.12985 -0.0566 -0.0308 0.06782 -0.0537 0.02413 0.13443 0.047 0.03727 0.24997 0.14341
11 0.0505 -0.0612 -0.0046 -0.0224 -0.0395 0.0092 -0.0539 -0.0445 0.0187 0.14341 0.23413

Covariance Variable 1 2 3 4 5 6 7 8 9 10 11
1 0.29432 -0.0239 0.03014 0.06766 0.10269 -0.0378 0.02776 -0.0334 -0.0488 -0.0314 0.14848
2 -0.0239 0.13127 -0.0015 0.00689 -0.0398 0.0716 0.03279 -0.0919 0.02203 0.01503 0.02645
3 0.03014 -0.0015 0.07576 0.03497 0.15223 -0.0008 0.13279 -0.0132 -0.0242 0.00894 -0.0131
4 0.06766 0.00689 0.03497 0.15692 0.16669 -0.0214 0.0743 -0.0896 -0.0866 0.02748 -0.0099
5 0.10269 -0.0398 0.15223 0.16669 0.68923 -0.0974 0.47091 -0.1791 -0.041 0.07102 -0.0335
6 -0.0378 0.0716 -0.0008 -0.0214 -0.0974 0.13077 0.01574 -0.0852 -0.0053 0.05371 0.03473
7 0.02776 0.03279 0.13279 0.0743 0.47091 0.01574 0.48734 -0.1808 0.0926 0.07875 0.01983
8 -0.0334 -0.0919 -0.0132 -0.0896 -0.1791 -0.0852 -0.1808 0.46144 -0.0346 -0.0149 0.02419
9 -0.0488 0.02203 -0.0242 -0.0866 -0.041 -0.0053 0.0926 -0.0346 0.2354 -0.0328 0.01535
10 -0.0314 0.01503 0.00894 0.02748 0.07102 0.05371 0.07875 -0.0149 -0.0328 0.09629 0.00637
11 0.14848 0.02645 -0.0131 -0.0099 -0.0335 0.03473 0.01983 0.02419 0.01535 0.00637 0.23125
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University of Kentucky, 1Sanders-Brown Center on Aging, College of Medicine, 

Departments of 2Physiology, 3Pathology and Laboratory Medicine,4Neurology, College of 

Public Health, 5Department of Epidemiology, Lexington KY 40536, USA. 

3.1 Abstract 

INTRODUCTION: Clinically, detection of disease-causing pathology associated with AD 

and VCID is limited to MRI and PET scans, which are expensive and not widely 

accessible. Here, we assess angiogenic, inflammatory, and AD-related plasma 

biomarkers to determine their relationships with human post-mortem neuropathology. 

METHOD: Plasma samples were analyzed using a digital immunoassay and pathological 

evaluation was performed by UK-ADRC neuropathologists. The association of plasma 

markers with neuropathology was estimated via proportional odds and logistic 

regressions adjusted for age.  

RESULTS: Included cases (N = 90) showed increased Tau/Aβ 42 ratio, GFAP, VEGF-A, and 

PlGF were positively associated with higher level of AD neuropathological change, while 

higher Aβ42/Aβ40 ratio was inversely associated. Higher PlGF, VEGF-A and IL-6 were 
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inversely associated with chronic cerebrovascular disease, while Aβ42/Aβ40 ratio was 

positively associated.   

DISCUSSION: Our results provide support for the continued study of plasma biomarkers 

as a clinical screening tool for AD and VCID pathology. 

3.2 Introduction  

Alzheimer’s Disease (AD) and Vascular Contributions to Cognitive Impairment and 

Dementia (VCID) are often co-morbid in patients with dementia[8, 206]. Currently, these 

conditions are diagnosed using cognitive evaluations and neuroimaging studies[122, 

128]. Diagnosis typically comes well into the course of the disease as patients do not 

often show cognitive decline until years after amyloid pathology begins to develop[207]. 

Blood-based biomarkers of disease have only been possible in recent years because we 

previously lacked the necessary sensitivity to measure relevant biomarkers 

accurately[208]. Recently, technological developments have made measuring picogram 

per mL concentrations more reliable using Single-molecule enzyme-linked 

immunosorbent assays (SiMoAs)[185, 186]. However, the relation between these new 

blood-based biomarkers and neuropathologically evaluated disease remains unclear. 

The current standard for neuropathological evaluation of AD is the 2012 National 

Institute on Aging-Alzheimer’s Association (“ABC”) guidelines, which include three 

measures of pathology[14]. The “A” component, Thal staging, evaluates distribution of 

amyloid beta plaques, noting progression from the neocortical brain region to the 

brainstem and cerebellum[23]. The “B” component, Braak staging, evaluates the 

distribution of neurofibrillary tangles as they progress from the entorhinal cortex to the 
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neocortex[209]. The “C” component, Consortium to Establish a Registry in Alzheimer’s 

Disease (CERAD) scores, evaluates the density of neuritic plaques in the neocortex[37]. 

Together, these scores describe the degree to which AD neuropathological changes 

(ADNC) have occurred[14]. Clinically, more severe neuritic plaque (“C”) and 

neurofibrillary tangle ratings (“B”) have been shown repeatedly to correlate with 

cognitive impairment and dementia[14]. While PET neuroimaging has been shown to 

identify brain amyloid and tau in vivo, it remains costly and inaccessible for most of the 

population[41, 210]. 

VCID encompasses multiple cerebrovascular pathologies that affect cognition, such 

as arteriolosclerosis, cerebral amyloid angiopathy (CAA), and microinfarctions[206]. 

Clinically, cerebral small vessel disease (cSVD), a subtype of VCID characterized by 

arteriolosclerosis and microinfarctions, is diagnosed based on white matter 

hyperintensities (WMH) seen on MRI[127, 134]. These pathologies may be evaluated on 

autopsy by a neuropathologist and are scored in different ways. Arteriolosclerosis and 

CAA, for example, may be rated from none to severe, while infarctions are often 

counted in multiple sampled sections throughout the brain[126, 211].  

Fluid biomarkers can be used as both diagnostic and prognostic indicators to assist 

the physician in their decision-making process and are vital to the rapidly developing 

treatment of dementia[38, 40]. Currently, several CSF biomarkers are available for 

clinical evaluation of Aβ42, Aβ40, and tau levels, which correlate well with observed AD 

neuropathology[62]. However, the procedure for collecting CSF, a lumbar puncture, 

remains invasive and frightening for many patients. 
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 Plasma and serum biomarkers, such as Aβ42 to Aβ40 ratio; pTau181, a phospho-

epitope of tau; and GFAP have been studied using SiMoAs and ultrasensitive 

immunoassays. These studies show positive correlations between biomarker levels in 

the plasma and the CSF, and distinct differences between AD patients and controls[40, 

104, 212]. Specifically, the ratio of Aβ42 to Aβ40 has been shown to be reduced in the 

plasma of patients with AD compared to controls[72-75].  GFAP, as measured in serum, 

has also been shown to differentiate AD patients from cognitively normal controls[104]. 

Studies have also demonstrated that plasma pTau181 is both positively and significantly 

associated with tau PET entorhinal cortex SUVR in patients with Aβ PET positivity based 

on SUVR[213]. Plasma biomarker development for VCID is less developed than for AD 

but is rapidly catching up, in large part due to the MarkVCID consortium founded in 

2016. MarkVCID aims to identify and validate both fluid and neuroimaging biomarkers 

for VCID in a multi-center cohort[214].  

Plasma biomarkers are much less expensive than neuroimaging, more easily 

accessible to patients, and they are minimally invasive. In the current study, we 

evaluated the relationship between a set of plasma-based angiogenic, inflammatory, 

and neurodegenerative biomarkers measured during the last two years of life and 

neuropathological hallmarks of AD and VCID observed at autopsy. Study participants 

were drawn from the longitudinal cohort study at the University of Kentucky 

Alzheimer’s Disease Research Center.  
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3.3 Methods 

3.3.1 Participant Selection and Plasma Collection 

Participants in this study were selected from the cohort enrolled at the 

University of Kentucky Alzheimer’s Disease Research Center (UK-ARDC) who had died 

and come to brain autopsy (N = 916). The UK-ADRC recruitment procedures and other 

methods have been previously described[215]. Briefly, participants consented to 

approximately annual study visits that included cognitive testing, physical examination, 

neurological examination, medical history, and other measures, and brain autopsy upon 

death. All participants provided written informed consent for their participation in UK-

ADRC research activities, which were approved by the University of Kentucky 

Institutional Review Board.  

Beginning in 2012, plasma samples were collected during annual study visits by 

venous puncture using 10 mL EDTA Vacutainer tubes; prior to 2012 only heparinized 

vacutainer tubes were used. Participants were selected for the current study if they had 

a banked plasma sample that was collected in an EDTA tube and within the two years 

prior to death (N = 90). One sample per participant, closest to death, was retrieved for 

this study.   

3.3.2 Plasma Sample Analysis 

Plasma samples were stored at -80oC until retrieved and thawed on ice. Samples 

were then centrifuged at 4°C for 10 minutes at maximum speed (approx. 21,000 x g). 

Samples were then plated at room temperature using the dilutions listed (Table 3.1) and 

run on the Quanterix Simoa HD-X in duplicate[186]. Simoa immunoassays for 
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phosphorylated threonine-181 tau (pTau181), neurofilament light (NfL), total Tau (Tau), 

amyloid beta 42 (Aβ42), amyloid beta 40 (Aβ40), tumor necrosis factor alpha (TNFα), 

glial fibrillary acidic protein (GFAP), transforming growth factor beta (TGFβ), interleukin 

10 (IL10), interleukin 6 (IL6), interleukin 8 (IL8), matrix metalloproteinase 9 (MMP9), 

vascular endothelial growth factor A (VEGF-A), and placental growth factor (PlGF) were 

run. Due to limited quantities of plasma from some participants, sample size was 

reduced for pTau181 and TNFα assessments (Table 3.2).  

After the run completed, data were retrieved, and the results were multiplied by 

the dilution factor. All biomarkers were log transformed and outliers from each 

biomarker set were removed using the generalized extreme studentized deviate test: 

VEGF-A (N = 1), MMP9 (N = 1), TGFβ (N = 1), Aβ 42 (N = 1), Tau (N = 3), Aβ 42/ Aβ 40 

Ratio (N = 1), Tau/ Aβ 42 Ratio (N = 3), TNFα (N = 4). 

3.3.3 Neuropathology 

3.3.3.1 Assessments 

All assessments were performed blind to clinical and biomarker information. 

Neuropathological assessments for AD were conducted using the National Institute on 

Aging–Alzheimer’s Association (NIA-AA) guidelines (i.e., Thal phase, Braak Stage, and 

CERAD plaque ratings)[211].   

3.3.3.2 Data Operationalizations 

Thal phase, Braak Stage, and CERAD ratings were converted to the scoring of the 

NIA-AA guidelines (each on a 0-3 scale), and AD neuropathologic change (ADNC) was 

categorized according to the guidelines[211]. For analysis of the individual components, 
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Braak stage and CERAD ratings were dichotomized, such that the lowest two scores (0 

and 1) were combined as well as the highest two scores (2 and 3), due to small numbers 

of cases with the highest and lowest ratings. Assessments of CAA and global 

arteriolosclerosis utilized the ordinal rating scales from the NACC Neuropathology Data 

Element Dictionary (v10) with responses (scored as 0–3) to designate ‘none’, ‘mild’, 

‘moderate’ or ‘severe’, respectively. Due to small cell sizes, ‘moderate’ and ‘severe’ 

categories were combined for both CAA and global arteriolosclerosis.   

Chronic vascular grade was determined using a novel ordinal rating system to 

assess global level of cSVD. Brains were graded by a neuropathologist on a scale from 0-

3, where 0 indicated no signs of arteriolosclerosis, atherosclerosis, other small vessel 

changes, or infarctions. A score of 1 denotes arteriolosclerosis, atherosclerosis, or other 

small vessel changes but with no infarctions, while a score of 2 indicates small vessel 

changes with chronic microinfarctions. A score of 3 represents small vessel changes with 

chronic gross infarcts. Analysis of chronic vascular grade excluded participants with a 

score of 3 as this model focused on the relationship between small vessel disease and 

plasma biomarkers.  

3.3.4 Statistical Analysis 

Proportional odds and binary logistic regression models were used to evaluate 

the relationship between plasma biomarkers (independent variable) and different 

vascular and AD neuropathologies (dependent variable). Proportional odds logistic 

models were used for neuropathologies with ordinal measurements, i.e., CAA, 

arteriolosclerosis, chronic vascular grade, and Aβ plaque score. Binary logistic models 
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were for binary outcome measurements, i.e., dichotomized Braak stage and neuritic 

plaque score. All models were adjusted for age of the participant at autopsy, and 

separate models were estimated for each pathology and biomarker; sample size for 

each model is reported in table 2. Odds ratios obtained from the model results indicate 

the relative change in age-adjusted odds of more severe pathology for a 1-unit increase 

in the log-transformed plasma biomarker level.  

Sensitivity analysis was conducted to assess the robustness of the results to the 

inclusion of sex, hypertension (yes vs. no), diabetes (yes vs. no), and APOEe4 allele 

status (any vs. none) as additional covariates. All data analysis was performed with 

MATLAB. Statistical significance was set at 0.05. False discovery rate for multiple 

comparison testing was conducted for each neuropathology analysis independently 

using the Benjamini-Hochberg method.[216] 

3.4 Results 

3.4.1 Study Participant Characterization 

Participants from the UK-ADRC autopsy cohort with banked plasma samples 

within two years of death were included in this study (N = 90). The sample was mean age 

82.0±9.2 years at autopsy and comprised 46.7% female participants (Table 3.3). This sub-

population is comparable in age at death, 82.8±9.3 years, but with a smaller percentage 

of females (58.9% female) than the larger autopsy cohort. A self-reported history of 

hypertension and diabetes, both risk factors for vascular dementia, was found in 72.2% 

and 21.4% of the study population, respectively (Table 3.3); both were greater than the 

observed proportions in the larger autopsy cohort of 65.8% and 17.7%, respectively[217, 
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218]. A relatively high proportion of the study sample, 37.5%, carried at least one APOEe4 

allele (Table 3.3), which is comparable to the larger autopsy cohort at 43.0%. Clinically, 

46.1% of participants were cognitively normal at their last clinical visit, 38.2% were 

diagnosed with dementia, while 12.8% had a final diagnosis of mild cognitive impairment 

(MCI). A small number (3.4%) were mildly impaired on cognitive testing but did not meet 

criteria for MCI. This contrasts with the larger autopsy cohort which had a 52.1% dementia 

diagnosis, 33.6% cognitively normal, 8.1% mild cognitively impaired, and 6.2% were mildly 

impaired on cognitive testing but did not meet the criteria for MCI.  

CERAD neuritic plaque scores of 0 or 1 were found in 58% of included cases (Table 

3.4). NFT stage had a similar distribution, with B scores of 0 and 1 observed in 49% of the 

sample (Table 3.4). More severe stages of arteriolosclerosis and CAA were less common, 

with moderate or severe stages showing 27% for cerebral arteriolosclerosis, and 16% in 

cerebral amyloid angiopathy (Table 3.4). Lastly, higher levels of Aβ plaque score were 

commonly seen in this cohort at 24% for a score 2 and 51% for a score of 3.  

3.4.2 Biomarkers for Pathological Hallmarks of Alzheimer’s Disease 

We hypothesized that pTau181 would be positively correlated with more severe 

AD pathology, while Aβ42/40 ratio would be inversely correlated with more severe AD 

pathology. Additionally, we sought to determine whether there are novel candidate 

plasma biomarkers that may have relationships with AD pathology.  

 Consistent with our hypothesis, age-adjusted odds ratios (OR) for a 1-unit 

increase in log-transformed pTau181 (OR: 1.11; 95% CI: 0.81-1.51; p = 0.51) and 

Aβ42/40 ratio (OR: 0.55; 95% CI: 0.17-1.79; p = 0.32) were positively and inversely 
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correlated with higher Thal Aβ plaque score, respectively (Figure 3.1A), though the 

associations were not statistically significant. Tau/Aβ42 ratio (OR: 1.89; 95% CI: 0.86-

4.19; p = 0.11) was also associated with higher Thal Aβ plaque score (Figure 3.1A). The 

age-adjusted OR for GFAP (OR: 1.77; 95% CI: 0.94-3.33; p = 0.08) and IL-6 (OR: 1.25; 95% 

CI: 0.80-1.94; p = 0.33) showed a positive relationship with Thal Aβ plaque score, while 

the age-adjusted ORs for VEGF-A (OR: 1.36; 95% CI: 1.05-1.76; p = 0.02) and PlGF (OR: 

1.22; 95% CI: 0.91-1.64; p = 0.17 ) were also positively associated with higher Thal Aβ 

plaque score, with the VEGF-A association having statistical significance (Figure 3.1A), 

which was subsequently reduced to non-statistical significance after multiple 

comparison testing (Adj. p = 0.34, Table 3.5). 

Using a binary logistic regression model, we saw that Braak NFT stage had similar 

relationships with our tested biomarkers compared to the other AD pathologies: 

Tau/Aβ42 ratio (OR: 1.39; 95% CI: 0.61-3.15; p = 0.43) and NfL (OR: 1.64; 95% CI: 0.82-

3.25; p = 0.16), were positively associated with Braak NFT stage, while Aβ42/40 ratio 

(OR: 0.46; 95% CI: 0.12-1.69; p = 0.24) showed an inverse relationship (Figure 3.1B). 

Unexpectedly, pTau181 (OR: 0.86; 95% CI: 0.62-1.19; p = 0.37) also showed an inverse 

relationship with Braak NFT stage. GFAP (OR: 1.42; 95% CI: 0.71-2.82; p = 0.32), IL-6 (OR: 

1.37; 95% CI: 0.83-2.28; p = 0.22), VEGF-A (OR: 1.20; 95% CI: 0.91-1.59; p = 0.20), and 

PlGF (OR: 1.19; 95% CI: 0.85-1.65; p = 0.32) all had positive age-adjusted associations 

with Braak NFT stage (Figure 3.1B). 

 For neuritic plaques, the age-adjusted OR for pTau181 (OR: 1.08; 95% CI: 0.79-

1.48; p = 0.62), Tau/Aβ42 ratio (OR: 1.96; 95% CI: 0.85-4.52; p = 0.12), and Tau (OR: 
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2.16; 95% CI: 1.04-4.49; p = 0.04) were positively associated with higher (worse) plaque 

scores, while Aβ42/40 ratio (OR: 0.43; 95% CI: 0.12-1.60; p = 0.21) was inversely 

associated (Figure 3.1C). Inflammatory plasma biomarkers GFAP (OR: 2.22; 95% CI: 1.04-

4.77; p = 0.04) and IL-6 (OR: 1.18; 95% CI: 0.74-1.89; p = 0.48), and angiogenic plasma 

biomarkers VEGF-A (OR: 1.15; 95% CI: 0.87-1.50; p = 0.33) PlGF (OR: 1.13; 95% CI: 0.83-

1.53; p = 0.43), had positive associations with more frequent neuritic plaques (Figure 

3.1C). 

 The magnitudes and directions of the age-adjusted ORs between the biomarkers 

and ADNC (rather than its individual components) were similar to the individual 

components (Figure 3.1D). Tau/Aβ42 ratio (OR: 1.84; 95% CI: 0.85-4.01; p = 0.12), NfL 

(OR: 1.79; 95% CI: 0.96-3.36; p = 0.07), GFAP (OR: 1.72; 95% CI: 0.92-3.24; p = 0.09), IL-6 

(OR: 1.46; 95% CI: 0.91-2.33; p = 0.11),  VEGF-A (OR: 1.21; 95% CI: 0.94-1.56; p = 0.15), 

and PlGF (OR: 1.24; 95% CI: 0.91-1.68; p = 0.17) were positively associated with worse 

ADNC, while Aβ42/40 ratio (OR: 0.31; 95% CI: 0.09-1.04; p = 0.06) was inversely 

associated (Figure 3.1D). Sensitivity analyses including additional covariates sex, 

hypertension, diabetes, and APOEe4 allele did not affect the magnitude or direction of 

the associations described. 

3.4.3 Biomarkers for Pathological Cerebral Small Vessel Disease 

We hypothesized that increased levels of VEGF-A and PlGF would correlate with 

higher levels of cSVD pathology, and we sought to evaluate the relationship between 

additional angiogenic, inflammatory, and AD-related plasma biomarkers with cSVD 

pathology. 
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 Our analysis demonstrated that PlGF (OR: 1.35; 95%CI: 1.00-1.82; p < 0.05) had a 

statistically significant positive age-adjusted association, which was subsequently 

reduced to non-statistical significance after multiple comparison testing (Adj. p = 0.55, 

Table 3.6), while VEGF-A (OR: 1.07; 95% CI: 0.82-1.40; p = 0.61) had a positive 

association with more severe CAA (Figure 3.2A). IL-6 (OR: 1.28; 95% CI: 0.81-2.03; p = 

0.30) and pTau181 (OR: 1.32; 95% CI: 0.97-1.81; p = 0.08) also had positive associations 

with more severe CAA (Figure 3.2A). MMP9 (OR: 0.64; 95%CI: 0.38-1.09; p = 0.10) and 

Tau/Aβ42 ratio (OR: 0.63; 95% CI: 0.26-1.51; p = 0.29) had inverse associations with CAA 

severity (Figure 3.2A).   

 Contrary to our hypothesis, PlGF (OR: 0.81; 95% CI: 0.60-1.09; p = 0.16) had an 

inverse association with more severe cerebral arteriolosclerosis, while VEGF-A (OR: 1.00; 

95% CI: 0.78-1.28; p = 0.99) had no association. MMP9 (OR: 0.78; 95% CI: 0.47-1.28; p = 

0.32), IL-6 (OR: 0.68; 95% CI: 0.43-1.07; p = 0.10), and Tau/Aβ42 ratio (OR: 0.71; 95% CI: 

0.33-1.52; p = 0.38) all had an inverse association with more severe cerebral 

arteriolosclerosis, while Aβ42/40 ratio (OR: 1.73; 95% CI: 0.53-5.66; p = 0.36) had a 

positive association (Figure 3.2B). 

 PlGF (OR: 0.90, 95% CI: 0.67-1.22; p = 0.49), VEGF-A (OR: 0.80; 95% CI: 0.60-1.07; 

p = 0.14), and MMP9 (OR: 0.94; 95% CI: 0.53-1.65; p = 0.82) all showed an inverse 

association with more severe chronic cerebrovascular grade, although the magnitude of 

the relationships was small (Figure 3.2C). IL-6 (OR: 0.43; 95% CI: 0.25-0.75; p < 0.01) was 

the only biomarker to show a statistically significant inverse relationship with more severe 

chronic vascular grade (Figure 3.2C), which maintained statistical significance after 
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multiple comparison testing (Adj. p = 0.04, Table 3.6). The largest magnitude of 

association was observed between Aβ42/40 ratio (OR: 2.23; 95% CI: 0.63-7.93; p = 0.22) 

and worse chronic vascular grade (Figure 3.2C). Sensitivity analyses did not affect the 

magnitude or direction of the associations described. 

3.5 Discussion 

In this study, we evaluated whether plasma-based biomarkers correlated to AD 

neuropathology at autopsy in 90 participants from the UK-ADRC cohort who had a blood 

draw within two years prior to death. Additionally, we evaluated how these markers 

correlated with pathology associated with cSVD. Biomarkers that allow clinicians to 

diagnose and monitor the level of neuropathology in patients is a crucial step towards 

identifying at-risk but not yet symptomatic populations, who may be more amenable to 

potential therapeutics. Currently, studies have shown that plasma pTau181 and 

Aβ42/40 ratio are highly correlated with amyloid and tau PET measures, with the 

potential to act as a more cost-effective and accessible yearly screening tool to evaluate 

the progression of AD[62].  

As previously reported in the literature[72-75, 104], GFAP had a positive 

association and Aβ42/40 ratio had an inverse association with Braak NFT stage, CERAD 

neuritic plaque scores, Thal Ab plaque scores, and combined AD neuropathologic 

change. While most of our results were not statistically significant, this was not 

unexpected given our limited sample size. Interestingly, in our sample, Tau/Aβ42 ratio 

had a positive association with all the AD neuropathologies investigated. In contrast, 

pTau181 had a smaller magnitude of association with Thal Aβ plaque scores and CERAD 
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neuritic plaque scores, and even had an inverse relationship with Braak NFT stage. Due 

to the small sample size in analyses using pTau 181, additional studies are required to 

validate the direction and magnitude of these findings.  

 A novel finding was the relationships between VEGF-A and PlGF with AD 

neuropathologies. Our data showed that both VEGF-A and PlGF had positive 

associations with NFT stage, neuritic plaque score, Ab plaque score, and ADNC. We 

hypothesize that the association between VEGF-A and AD neuropathology may be 

mediated by increased IL-1b as a result of inflammation.[219, 220] This result suggests 

further studies are needed to examine the effect of elevated levels of vascular plasma 

biomarkers on isolated AD pathologies and how this effect is mediated by inflammation.  

For cerebrovascular pathologies, our initial hypothesis was that vascular markers 

such as PlGF and VEGF-A would show a positive association since it is has been shown 

that these proteins play a major role in the development of new blood vessels, which 

can occur post vascular injury[116, 173, 174]. While PlGF had a positive association with 

CAA, it had an inverse association with arteriolosclerosis and chronic vascular grade. 

VEGF-A had similar results as PlGF, where it had a slightly positive association with 

cerebral amyloid angiopathy, no association with arteriolosclerosis, and an inverse 

association with chronic vascular grade. These results suggest new questions regarding 

the role that these vascular markers play in the development of cerebrovascular 

pathology in individuals close to death. Two novel markers for cSVD that stood out were 

Aβ42/40 ratio and IL-6. Aβ42/40 ratio had a strong positive association with cerebral 

arteriolosclerosis and chronic vascular grade, while IL-6 showed an inverse relationship 
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with cerebral arteriolosclerosis and chronic vascular grade. More studies will have to be 

conducted to validate these results and understand the mechanism of these two plasma 

markers as biomarkers of cerebrovascular disease.  

This study has some limitations. The sample size led to wide 95% confidence 

intervals for the age-adjusted odds ratios. While we did observe one statistically 

significant relationship after multiple comparison testing, many of the relationships we 

observed would require a larger sample size to demonstrate a statistically significant 

association, should the association truly exist. The cohort used for this study was a 

convenience sample comprising a heterogeneous mix of clinical diagnoses and 

neuropathological classification. While this provided us with a wide range of participants 

from which we could explore the relationships between neuropathologies and plasma 

biomarkers, we are not able to isolate the influence one pathology has on the 

expression of one biomarker. For example, when examining associations between 

Aβ42/40 ratio and cerebrovascular pathology, we note that those cases also have AD 

pathology. Cohorts designed specifically to validate biomarker associations with 

particular pathologies are needed. 

 While CSF biomarkers of AD pathology have been validated for clinical use, 

plasma biomarkers still require more studies[40, 62]. This study was one of the first to 

evaluate the direction and magnitude of the relationships between AD and 

cerebrovascular pathologies and plasma biomarkers in a community-based cohort. 

These associations may prove critical in diagnosing and monitoring the progression of 
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AD and cerebrovascular pathologies, by using a widely accessible and inexpensive 

routine clinical testing tool that can safely be administered to patients.  
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Table 3.1  Sample Size For Each Pathology 

Sample 
Size (N) 

Arteriolosclerosis CAA Chronic 
Vascular 

Grade 

Thal Braak CERAD AD 
Neuropathologic 

Change 
PlGF 83 83 71 83 79 83 79 

VEGF-A 89 89 75 89 85 89 85 
MMP9 89 89 75 89 85 89 85 

IL8 90 90 76 90 86 90 86 
IL6 89 89 75 89 85 89 85 

IL10 88 88 74 88 85 88 85 
TGFb 65 65 52 65 63 65 63 
GFAP 84 84 72 84 81 84 81 
Aβ40 82 82 70 82 79 82 79 
Aβ42 81 81 69 81 78 81 78 
Tau 80 80 69 80 77 80 77 
NfL 83 83 71 83 80 83 80 

Aβ4240 
Ratio 

81 81 69 81 78 81 78 

Tau/Aβ42 
Ratio 

79 79 68 79 76 79 76 

TNFa 36 36 32 36 35 36 35 
pTau-181 52 52 45 52 49 52 49 

Sample size (N) for each model 
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Table 3.2  Simoa Biomarker Dilutions 

Assay Dilution Catalog 
Number 

LLOQ LOD Dynamic Range 

Neuro3PlexA  1:20 101995    

     Aβ40   .675 pg/ml .196 pg/ml 0-560 pg/ml 

     Aβ42   .142 pg/ml .045 pg/ml 0-240 pg/ml 

     Tau   .063 pg/ml .019 pg/ml 0-400 pg/ml 

NfL 1:25 103186 .174 pg/ml .038 pg/ml 0-1800 pg/ml 

pTau181 V2 NEAT 103714 .085 pg/ml .028 pg/ml 0-424 pg/ml 

TNFα 1:5 101580 .034 pg/ml .016 pg/ml 0-200 pg/ml 

GFAP 1:10 102336 .686 pg/ml .221 pg/ml 0-4000 pg/ml 

IL6 1:2 101622 .010 pg/ml .0055 pg/ml 0-120 pg/ml 

IL8 NEAT 100198 .0921 pg/ml .0560 pg/ml 0-300 pg/ml 

IL10 1:2 101643 .021 pg/ml .0038 pg.ml 0-120 pg/ml 

PLGF NEAT 102318 .30 pg/ml .064 pg/ml 0-960 pg/ml 

VEGF 1:2 102794 .137 pg/ml .041 pg/ml 0-800 pg/ml 

MMP9 1:500 102491 4.88 pg/ml .581 pg/ml 0-5000 pg/ml 

TGFb NEAT 101984 .514 pg/ml .137 pg/ml 0-24000 pg/ml 

Dilutions required for quantification for Simoa biomarkers. Lower limit of quantification 

(LLOQ) and limit of detection (LOD) used to determine dilution.  
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Table 3.3  Participant Characteristics 

Characteristic Summary* 

Age at autopsy, years 82.0 ± 9.2 

Female sex 46.6% 

Ever Hypertension 72.2% 

Ever Diabetes 21.4% 

≥ 1 APOE e4 allele 37.5% 

Last clinical diagnosis  

    Normal cognition 46.1% 

    Impaired but not MCI 3.4% 

    Mild Cognitive Impairment 

(MCI) 
12.4% 

    Dementia 38.2% 

MMSE 24.12 ± 8.40 

Characteristics of included autopsied participants from the UK-ADRC cohort (N=90) 

*All results are mean±SD or proportion 
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Table 3.4  Neuropathological Lesion Distribution 

Neuropathology % of Cohort 

Aβ Plaque Score (0/1/2/3)* 12%/13%/24%/51% 

NFT Stage (0/1/2/3)* 4%/45%/10%/41% 

Neuritic Plaque Score (0/1/2/3)* 55%/3%/9%/33% 

AD Neuropathologic Change 
(No/Low/Intermediate/High) 13%/36%/13%/38% 

Amyloid Angiopathy 
(None/Mild/Moderate/Severe) 63%/21%/2%/14% 

Arteriolosclerosis 
(None/Mild/Moderate/Severe) 32%/41%/22%/5% 

Chronic Vascular Grade (0/1/2)** 22%/53%/25% 

Distribution of neuropathological lesions in included autopsied participants from UK-

ADRC (N=90) 

* NIA-AA guideline scores of 0-3 

** Increasing cSVD pathology from 0-2  
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Table 3.5  p-Values and Adjusted p-Values for Plasma Biomarkers and AD 
Neuropathology 

Neuropathology Biomarker p-value Adjusted p-
value 

Thal Aβ Plaque Score PlGF 0.17 0.56 
Thal Aβ Plaque Score VEGF 0.02 0.34 
Thal Aβ Plaque Score MMP9 0.75 0.86 
Thal Aβ Plaque Score IL8 0.70 0.86 
Thal Aβ Plaque Score IL6 0.33 0.75 
Thal Aβ Plaque Score IL10 0.59 0.86 
Thal Aβ Plaque Score TGFβ 1.00 1.00 
Thal Aβ Plaque Score GFAP 0.08 0.56 
Thal Aβ Plaque Score TNFα 0.39 0.78 
Thal Aβ Plaque Score Aβ40 0.72 0.86 
Thal Aβ Plaque Score Aβ42 0.93 0.99 
Thal Aβ Plaque Score TotalTau 0.17 0.56 
Thal Aβ Plaque Score NfL 0.71 0.86 
Thal Aβ Plaque Score Aβ4240ratio 0.32 0.75 
Thal Aβ Plaque Score TotalTauAβ42ratio 0.11 0.56 
Thal Aβ Plaque Score pTau 181 0.51 0.86 
Braak NFT Stage PlGF 0.32 0.63 
Braak NFT Stage VEGF 0.20 0.63 
Braak NFT Stage MMP9 0.82 0.82 
Braak NFT Stage IL8 0.59 0.73 
Braak NFT Stage IL6 0.22 0.63 
Braak NFT Stage IL10 0.43 0.63 
Braak NFT Stage TGFβ 0.72 0.82 
Braak NFT Stage GFAP 0.32 0.63 
Braak NFT Stage TNFα 0.28 0.63 
Braak NFT Stage Aβ40 0.47 0.63 
Braak NFT Stage Aβ42 0.80 0.82 
Braak NFT Stage TotalTau 0.28 0.63 
Braak NFT Stage NfL 0.16 0.63 
Braak NFT Stage Aβ4240ratio 0.24 0.63 
Braak NFT Stage TotalTauAβ42ratio 0.43 0.63 
Braak NFT Stage pTau 181 0.37 0.63 
CERAD Neuritic Plaque Score PlGF 0.43 0.73 
CERAD Neuritic Plaque Score VEGF 0.33 0.70 
CERAD Neuritic Plaque Score MMP9 0.35 0.70 
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CERAD Neuritic Plaque Score IL8 0.99 0.99 
CERAD Neuritic Plaque Score IL6 0.48 0.73 
CERAD Neuritic Plaque Score IL10 0.57 0.76 
CERAD Neuritic Plaque Score TGFβ 0.74 0.79 
CERAD Neuritic Plaque Score GFAP 0.04 0.32 
CERAD Neuritic Plaque Score TNFα 0.70 0.79 
CERAD Neuritic Plaque Score Aβ40 0.28 0.70 
CERAD Neuritic Plaque Score Aβ42 0.50 0.73 
CERAD Neuritic Plaque Score TotalTau 0.04 0.32 
CERAD Neuritic Plaque Score NfL 0.08 0.41 
CERAD Neuritic Plaque Score Aβ4240ratio 0.21 0.67 
CERAD Neuritic Plaque Score TotalTauAβ42ratio 0.12 0.46 
CERAD Neuritic Plaque Score pTau 181 0.62 0.76 
AD Neuropathologic Change PlGF 0.17 0.36 
AD Neuropathologic Change VEGF 0.15 0.36 
AD Neuropathologic Change MMP9 0.57 0.82 
AD Neuropathologic Change IL8 0.65 0.82 
AD Neuropathologic Change IL6 0.11 0.36 
AD Neuropathologic Change IL10 0.67 0.82 
AD Neuropathologic Change TGFβ 0.81 0.93 
AD Neuropathologic Change GFAP 0.09 0.36 
AD Neuropathologic Change TNFα 0.40 0.64 
AD Neuropathologic Change Aβ40 0.32 0.57 
AD Neuropathologic Change Aβ42 0.92 0.96 
AD Neuropathologic Change TotalTau 0.18 0.36 
AD Neuropathologic Change NfL 0.07 0.36 
AD Neuropathologic Change Aβ4240ratio 0.06 0.36 
AD Neuropathologic Change TotalTauAβ42ratio 0.12 0.36 
AD Neuropathologic Change pTau 181 0.96 0.96 

P-values and adjusted P-values for the association between plasma markers and AD 

Neuropathology  
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Table 3.6  p-Values and Adjusted p-Values for Plasma Biomarkers and cSVD 
Neuropathology 

Neuropathology Biomarker p-value Adjusted p-value 
Cerebral Amyloid Angiopathy PlGF 0.05 0.55 
Cerebral Amyloid Angiopathy VEGF 0.61 0.96 
Cerebral Amyloid Angiopathy MMP9 0.10 0.55 
Cerebral Amyloid Angiopathy IL8 0.57 0.96 
Cerebral Amyloid Angiopathy IL6 0.30 0.82 
Cerebral Amyloid Angiopathy IL10 0.92 0.96 
Cerebral Amyloid Angiopathy TGFβ 0.75 0.96 
Cerebral Amyloid Angiopathy GFAP 0.96 0.96 
Cerebral Amyloid Angiopathy TNFα 0.66 0.96 
Cerebral Amyloid Angiopathy Aβ40 0.76 0.96 
Cerebral Amyloid Angiopathy Aβ42 0.80 0.96 
Cerebral Amyloid Angiopathy TotalTau 0.31 0.82 
Cerebral Amyloid Angiopathy NfL 0.91 0.96 
Cerebral Amyloid Angiopathy Aβ4240ratio 0.92 0.96 
Cerebral Amyloid Angiopathy TotalTauAβ42ratio 0.29 0.82 
Cerebral Amyloid Angiopathy pTau 181 0.08 0.55 
Arteriolosclerosis PlGF 0.16 0.99 
Arteriolosclerosis VEGF 0.99 0.99 
Arteriolosclerosis MMP9 0.32 0.99 
Arteriolosclerosis IL8 0.21 0.99 
Arteriolosclerosis IL6 0.10 0.99 
Arteriolosclerosis IL10 0.76 0.99 
Arteriolosclerosis TGFβ 0.95 0.99 
Arteriolosclerosis GFAP 0.64 0.99 
Arteriolosclerosis TNFα 0.80 0.99 
Arteriolosclerosis Aβ40 0.91 0.99 
Arteriolosclerosis Aβ42 0.62 0.99 
Arteriolosclerosis TotalTau 0.92 0.99 
Arteriolosclerosis NfL 0.70 0.99 
Arteriolosclerosis Aβ4240ratio 0.36 0.99 
Arteriolosclerosis TotalTauAβ42ratio 0.38 0.99 
Arteriolosclerosis pTau 181 0.46 0.99 
Chronic Vascular Grade PlGF 0.49 0.89 
Chronic Vascular Grade VEGF 0.14 0.78 
Chronic Vascular Grade MMP9 0.82 0.89 
Chronic Vascular Grade IL8 0.83 0.89 
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Chronic Vascular Grade IL6 0.00 0.04 
Chronic Vascular Grade IL10 0.40 0.89 
Chronic Vascular Grade TGFβ 0.75 0.89 
Chronic Vascular Grade GFAP 0.16 0.78 
Chronic Vascular Grade TNFα 0.69 0.89 
Chronic Vascular Grade Aβ40 0.76 0.89 
Chronic Vascular Grade Aβ42 0.24 0.78 
Chronic Vascular Grade TotalTau 0.38 0.89 
Chronic Vascular Grade NfL 0.53 0.89 
Chronic Vascular Grade Aβ4240ratio 0.22 0.78 
Chronic Vascular Grade TotalTauAβ42ratio 0.91 0.91 
Chronic Vascular Grade pTau 181 0.71 0.89 

P-values and adjusted P-values for the association between plasma markers and 

cerebrovascular small vessel neuropathology  
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Figure 3.1  Associations of Plasma Biomarkers with Pathological Hallmarks of AD  

 

Pathological hallmarks of Alzheimer’s disease (AD) are associated with inflammation and 

angiogenesis biomarkers, as well as the expected AD biomarkers. Odds ratios from 

proportional odds (A,D) and binary logistic regression (B,C) models for each biomarker. 

All models were adjusted for age. Biomarkers were log transformed and outliers were 

removed based on the generalized extreme Studentized deviate test. (B) NFT stage and 

(C) neuritic plaque score models combined scores 0/1 and 2/3 to create a binary 

response due to small sample size. (*) indicates a P-value < .05. Aβ, amyloid beta; GFAP, 

glial fibrillary acidic protein; IL, interleukin; MMP9, matrix metalloproteinase 9; NfL, 

neurofilament light; NFT, neurofibrillary tangles; PlGF, placental growth factor; TNFα, 

tumor necrosis factor alpha; VEGF-A, vascular endothelial growth factor A.  
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Figure 3.2  Associations of Plasma Biomarkers with Pathological Hallmarks of cSVD 

 
Pathological hallmarks of cerebrovascular small vessel disease are associated with 

inflammation, angiogenesis, and Alzheimer’s disease biomarkers. Odds ratios from 

proportional odds models for each biomarker. Proportional odds models were adjusted 

for age. Biomarkers were log transformed and outliers were removed based on the 

generalized extreme studentized deviate test. Arteriolosclerosis and amyloid angiopathy 

models combined moderate and severe pathology categories due to small sample size. 

(*) indicates a P-value < .05. Aβ, amyloid beta; GFAP, glial fibrillary acidic protein; IL, 

interleukin; MMP9, matrix metalloproteinase 9; NfL, neurofilament light; NFT, 

neurofibrillary tangles; PlGF, placental growth factor; TGFβ, transforming growth factor 

beta; TNFα, tumor necrosis factor alpha; VEGF-A, vascular endothelial growth factor A.   
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4 Longitudinal effects of blood based neurodegenerative and inflammatory 

biomarkers on cognition in the University of Kentucky Alzheimer’s Disease Research 

Center cohort 

4.1 Abstract 

Physicians and researchers have been studying biomarkers for cognitive 

impairment in predominantly cross-sectional cohorts to determine which biomarkers 

may be beneficial in diagnosing impairment. Few of these biomarkers have been studied 

using a longitudinal cohort to evaluate how they may be used in a prognostic role to 

predict the development of future cognitive decline. In this chapter, we evaluate the 

relationship between inflammatory and neurodegenerative biomarkers at baseline to 

both middle- and long-term cognitive impairment. Participants from the UK-ADRC were 

evaluated at 3-years (N = 278) and 6- years (N = 205) post-baseline in 6 cognitive 

domains using inflammatory and neurodegenerative plasma biomarkers at baseline. 

Plasma samples were quantified using the Quanterix SiMoA and ordinary least squares 

linear regression was used to complete the analysis. GFAP and NfL were found to be 

significantly associated with verbal memory (β: -0.28; 95% CI: -0.45 – -0.12; p = 0.0009) 

and verbal fluency (β: -0.15; 95% CI: -0.28 – -0.02; p = 0.0293) at 6-years post baseline 

but not at 3 years post-baseline. The anti-inflammatory biomarker, IL-10, was found to 

have a positive relationship with both verbal memory (β: 0.14: 95% CI: -0.01 – 0.29; p = 

0.0782); (β: 0.19; 95% CI: 0.06 – 0.31; p = 0.0032) and verbal fluency (β: 0.13; 95% CI: 

0.01 – 0.25; p = 0.0308); (β: 0.12; 95% CI: 0.04 – 0.20; p = 0.0024) at both 6- and 3-years 

postbaseline respectively. Our data suggest that NfL and GFAP levels may represent a 
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future cognitive decline 6-years postbaseline, while IL-10 appears to act against 

cognitive impairment at both medium- and long-term future timepoints from baseline. 

4.2 Introduction 

 Dementia is a disorder characterized by a significant decline from baseline in one 

or more cognitive domains that interferes with independence[1] The prevalence of 

dementia worldwide was estimated to be at 50 million with that number expected to 

triple by 2030, coming with a cost of roughly $2 trillion[221, 222]. Deficits can begin as 

mild cognitive impairments and worsen over time and eventually start to affect an 

individual’s daily living activities[121]. When a patient presents to a physician with 

symptoms such as loss of memory, the disease has likely been progressing for multiple 

decades[223]. Currently, clinical practitioners have a battery of different tests at their 

disposal that they can use to evaluate the domain specific cognitive status of an 

individual[224]. Cognitive domains that have been annually assessed at Alzheimer’s 

Disease Research Centers (ADRCs) since 2009 using the Uniform Data Set (UDS) include 

language, verbal fluency, processing speed, executive function, attention, verbal 

memory; with additional domains being assessed from 2015 onwards[224, 225]. Two 

domains of particular interest for the study of AD are verbal memory and verbal fluency. 

Verbal memory refers to the ability to recall information given to an individual both 

immediately and after a delay[226]. This domain helps to address a common symptom 

of AD in episodic memory loss[121]. Verbal fluency refers to the ability to retrieve 

information already known and recite the requested information[227, 228]. One large 

component of verbal fluency is categorical fluency where individuals are asked to name 
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as many members of a particular category as possible, such as animals or 

vegetables[227, 228]. Both verbal memory and verbal fluency have previously been 

shown to differentiate patients with AD from cognitively normal controls and predict 

those who may progress from MCI and dementia[121, 227, 229, 230].  

 While these cognitive evaluations are helpful tools at diagnosing and monitoring 

the progression of the disease over time, they are also frequently the result of 

neurodegenerative pathology which is known to accumulate over long periods of 

time[2]. Therefore, it is vital to evaluate the level of neurodegenerative pathology over 

time, especially as we consider identifying biomarkers predictive of a future decline. 

While there are a growing number of biomarkers for AD, including PET scans or CSF 

protein concentrations of β-amyloid 42 and 40 (Aβ 42/40), both neuroimaging and CSF 

draws have limitations in their clinical utility[2, 41, 59]. Neuroimaging remains 

expensive, especially PET imaging where the ligands are costly, and CSF draws are 

invasive to patients and contraindicated in a number of individuals. Ultimately, an 

inexpensive and less invasive screening tool is required to evaluate which patients are at 

risk of developing dementia in the future[40, 41, 59].  

 Plasma biomarkers fit the clinical need for low cost, minimally invasive 

biomarkers, and other blood-based biomarkers are already widely used in the clinical 

management of other diseases[231-234]. Glial fibrillar acidic protein (GFAP) and 

Neurofilament Light Chain (NfL) are both biomarkers which have been shown to be 

associated with neuroinflammation and multiple neurodegenerative processes including 

dementia[59, 169, 235]. GFAP is a filamentous protein expressed in astrocytes that is 
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found to be upregulated and released during neurodegeneration[99]. NfL is an 

intermediate filament found in neuronal axons, which is subsequently released after 

axonal or neuronal damage[83]. Both of these markers have been studied extensively in 

CSF, and with the introduction of pg/mL level of quantification, they are now beginning 

to be studied as a blood-based biomarkers as well[83-85, 101-103]. Additionally, anti-

inflammatory cytokine, IL-10, has also been implicated in the onset of AD[108, 109]. 

Previous studies have shown that loss-of-function genotypes of IL-10 are at an increased 

risk of developing AD[110, 111]. 

 Currently, most studies in the literature evaluate these biomarkers utilizing 

cross-sectional cohorts to determine the association of the biomarkers to disease. In 

this study we used a longitudinal cohort to evaluate the association between the 

baseline levels of plasma-based biomarkers and long-term domain-based cognitive 

status. We hypothesized that there would be an inverse association between neuro-

inflammatory plasma biomarkers at baseline and cognition 6-years post-baseline. 

Conversely, we hypothesize that anti-inflammatory plasma biomarkers would have a 

positive association with cognition 6-years post-baseline.  

4.3 Methods 

4.3.1 Participant Selection and Plasma Collection 

Participants in this study were selected from the cohort enrolled at the 

University of Kentucky Alzheimer’s Disease Research Center (UK-ARDC) who had a 

baseline plasma sample collected within 3 months of a yearly cognitive evaluation and a 

follow-up cognitive evaluation 2.5 - 3.5 years (N = 278) or 5.5 – 6.5 years (N = 205) from 
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baseline cognitive evaluation beginning in 2013 through 2020. The UK-ADRC 

recruitment procedures and other methods have been previously described[215]. 

Briefly, participants consented to annual study visits that included cognitive testing, 

physical examination, neurological examination, medical history, blood collection, and 

other measures. All participants provided written informed consent for their 

participation in UK-ADRC research activities, which were approved by the University of 

Kentucky Institutional Review Board.  

4.3.2 Plasma Sample Analysis 

 Plasma samples were processed within 4 hours of collection and stored at -80oC 

within 8 hours of collection until retrieved and thawed on ice. Thawed samples were 

centrifuged at 4°C for 10 minutes at maximum speed (approx. 21,000 x g) and then 

plated at room temperature using the dilutions listed (Table 4.1) for analysis on the 

Quanterix Simoa HD-X[186]. Simoa immunoassays for phosphorylated threonine-181 

tau (pTau181), neurofilament light (NfL), total Tau (Tau), amyloid beta 42 (Aβ42), 

amyloid beta 40 (Aβ40), tumor necrosis factor alpha (TNFα), glial fibrillary acidic protein 

(GFAP), transforming growth factor beta (TGFβ), interleukin 10 (IL10), interleukin 6 (IL6), 

interleukin 8 (IL8), matrix metalloproteinase 9 (MMP9), vascular endothelial growth 

factor A (VEGF-A), and placental growth factor (PlGF) were assessed.  

After the run completed, data were retrieved, and the results were adjusted for 

the dilution factor. Plasma biomarkers were run in batches based on the year of 

collection. To adjust for batch variability, plasma protein levels were z-scored after the 

biomarkers were log transformed and outliers from each biomarker set were removed 
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using the generalized extreme studentized deviate test: IL-10 (N = 1), GFAP (N = 0), NfL 

(N = 1). 

4.3.3 Cognitive Assessments 

 Six cognitive domains (verbal memory, verbal fluency, language, attention, 

executive function, and processing speed) in addition to a global cognitive performance 

were evaluated in each participant at 6-years post-baseline by a neuropsychiatrist at the 

UK-ADRC. Cognitive domain scores were calculated by taking the age, sex, and 

education adjusted z-scores of the cognitive tests listed for each domain and averaging 

them (Table 4.2). Raw test scores were adjusted using NACC z-score calculator[236]. 

Evaluations completed before March of 2015 were performed using UDS2 guidelines, 

while those completed after that date were performed using UDS3 guidelines. Cognitive 

tests performed only in UDS3 were converted to raw scores of their UDS2 counterpart 

using the NACC crosswalk[237]. Models evaluating the association of GFAP, NfL, and IL-

10 with verbal memory and verbal fluency had larger effect sizes and were further 

studied at the 3-years post-baseline timepoint.  

4.3.4 Statistical Analysis 

 Ordinary least squares (OLS) regression was used to evaluate the relationship 

between plasma biomarkers (independent variable) and domain-based cognitive 

function (dependent variable). Models were adjusted for age at baseline, sex, years of 

education, and presence of an APOEe4 allele. β coefficients for each model indicate the 

mean change of the cognitive domain, in units of standard deviation, for a 1-standard 

deviation increase in the log of the biomarker.  
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The association between each plasma biomarker and each cognitive domain at 6 

years post-baseline were assessed. Linear models were created by removing points with 

large delete-1 scaled difference in coefficient estimates of the biomarker to reduce the 

influence of highly leveraged datapoints.  

Due to the large number of models produced, false discovery rate for multiple 

comparison testing was conducted for each cognitive domain independently using the 

Benjamini-Hochberg method [216] Models with larger effect sizes and small p-values 

were further evaluated at 3 years post-baseline, and those results are detailed below. 

All data analysis was performed with MATLAB. Statistical significance was set at 0.05.  

4.4 Results 

4.4.1 Study Participant Characterization 

 Participants selected from the UK-ADRC cohort (N = 278, 3 years; N = 205; 6 

years) had a mean age of 75.7 7 ± 6.4 in both the 3- and 6-year post-baseline samples 

(Table 4.3). Additionally, the baseline MMSE scores, percentage of females, and years of 

education were nearly identical between the two samples because most of the 6-year 

individuals were represented in the 3-year samples (Table 4.3). The proportion of 

individuals with at least one ApoeE4 allele was higher in the 3-year post-baseline sample 

compared to the 6-year post-baseline sample at 33.5% vs 29.3% respectively (Table 4.3). 

4.4.2 GFAP and NfL are Inversely Associated with Cognition at Six-Years Post-Baseline 

 We hypothesized that increased inflammatory plasma proteins at baseline would 

have an inverse association with cognition level at 6-years post-baseline. Consistent 

with our hypothesis, we found that a one standard deviation increase in log GFAP 
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corresponds to a statistically significant mean decrease in verbal memory 6-years post-

baseline (β: -0.28; 95% CI: -0.45 – -0.12; p = 0.0009) (Figure 4.1A). However, this effect 

was not seen in verbal memory 3-years post-baseline (β: -0.03; 95% CI: -0.17 – 0.11; p = 

0.6896) (Figure 4.1B). After correcting for FDR, GFAP still maintained statistical 

significance (q = 0.014) 6-years post-baseline (Figure 4.1A). NfL was also found to be 

inversely associated with verbal fluency with a one standard deviation increase in log 

NfL corresponding to a statistically significant mean decrease in verbal fluency 6-years 

post-baseline (β: -0.15; 95% CI: -0.28 – -0.02; p = 0.0293) (Figure 4.2A). This effect was 

also not seen at 3-years post-baseline (β: 0.01; 95% CI: -0.07 – 0.01; p = 0.8132) (Figure 

4.2B). After correcting for FDR, NfL did not maintain statistical significance in the 6-year 

post-baseline (q = 0.25) (Figure 4.2A). 

4.4.3 IL-10 is Positively Associated with Verbal Memory and Verbal Fluency at Three- 

and Six-Years Post-Baseline 

 We also hypothesized that increased anti-inflammatory plasma proteins at 

baseline would have a positive association with cognition level at 6-years post-baseline. 

Interestingly, we saw that not only was IL-10 positively associated with verbal memory 

and verbal fluency at 6-years post-baseline, but also at 3-years post-baseline (Figure 4.3 

A-D). A one standard deviation increase in log IL-10 was found to have a mean increase 

in verbal memory 6-years post-baseline (β: 0.14: 95% CI: -0.01 – 0.29; p = 0.0782) and a 

statistically significant mean increase in verbal fluency 6-years post-baseline (β: 0.13; 

95% CI: 0.01 – 0.25; p = 0.0308) (Figure 4.3 A,C). At 3-years post-baseline we identified 

similar effects with a statistically significant mean increase in both verbal memory (β: 
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0.19; 95% CI: 0.06 – 0.31; p = 0.0032) and verbal fluency (β: 0.12; 95% CI: 0.04 – 0.20; p 

= 0.0024) 3-years post-baseline (Figure 4.3 B,D). While this does show that higher IL-10 

levels at baseline are associated with higher levels of verbal memory and fluency at 3- 

and 6-years post-baseline given equal age, sex, education level, and baseline cognitive 

function, it does not provide any indication on the amount of cognitive change that 

occurs over post-baseline. 

4.4.4 Discussion 

In this study, we evaluated the association between plasma-based biomarkers 

and cognitive status in a longitudinal cohort at the UK-ADRC. We began by analyzing the 

relationship between baseline plasma levels of neuro-inflammatory and anti-

inflammatory markers and evaluating their association with verbal memory and verbal 

fluency performance 6-years post-baseline. Through this analysis we found that baseline 

GFAP was inversely associated with 6-years post-baseline verbal memory, while NfL was 

inversely associated with verbal fluency (Chapter 4.3.2). Interestingly, the anti-

inflammatory IL-10 was positively associated with both verbal memory and verbal 

fluency at 6-years post-baseline (Chapter 4.3.3).   

Additionally, the same analyses were conducted using a sample of participants 

from the UK-ADRC cohort, investigating cognition at 3-years post-baseline. In this 

secondary analysis, both GFAP and NfL had no significant association with verbal 

memory or verbal fluency (Chapter 4.3.2). However, IL-10 maintained a positive 

association with both verbal memory and verbal fluency at this earlier time point 

(Chapter 4.3.2). These results suggest that increased levels of anti-inflammatory 
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proteins exert their influence on cognition at an earlier time point compared to 

inflammatory proteins and maintain the effect over a long period of time. In contrast, 

the effects of neuroinflammatory proteins like GFAP and NfL do not appear to show 

until much later in the disease process.  

Previous studies have already demonstrated the ability of GFAP and NfL to 

discriminate cognitively impaired individuals in cross-sectional studies using CSF and 

recently in plasma as well[59, 83, 84, 100-103]. This study is one of the first to evaluate 

the effect of these biomarkers on longitudinal cognitive function. The inverse 

association between verbal memory and verbal fluency with GFAP and NfL, respectively, 

support what has been previously observed.  

GFAP is a protein typically found in astrocytes, and in the brain, GFAP 

immunoreactivity is increased with neurodegenerative pathologies[91, 92]. 

Furthermore, neurovascular astrocyte reactivity is increased with cerebrovascular injury 

and cerebral amyloid angiopathy (CAA)[238, 239]. It can be hypothesized that increased 

plasma GFAP originates from hypertrophic, reactive astrocytes in the brain as 

neurodegenerative and cerebrovascular pathologies accumulate, however, future 

studies will be needed to fully evaluate this hypothesis[100, 240].  

In contrast to GFAP, NfL is a protein found in axons of neurons, and plasma NfL 

has been shown to originate from extracellular release by neurons undergoing 

neurodegeneration[83]. As neurodegeneration is a key component of dementia, CSF 

and plasma NfL have been studied for their association with the development of AD and 

have shown that NfL is elevated in patients with AD compared to controls[38, 59]. 
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However, as neurodegeneration is not specific to AD, NfL is also hypothesized to be a 

non-specific marker of neurodegeneration[59]. 

IL-10 is considered an anti-inflammatory cytokine produced by glial cells within 

the CNS[241]. IL-10 acts to dampen the inflammatory response after being upregulated 

during periods of inflammation[242]. IL-10 has also been found to associate with 

cognitive impairment, albeit from a genetic perspective. Previous studies of IL-10 have 

shown that participants with mutations causing decreased production of IL-10 are at an 

increased risk of having dementia[110, 111]. Those findings are supported by the 

observations in this study which identify a positive association between IL-10 at baseline 

and both 3- and 6-year post-baseline verbal memory and verbal fluency scores. Further 

analyses are needed to determine if this relationship is maintained after adjusting for an 

individual’s IL-10 polymorphism.  

While some of these findings lacked statistical significance after FDR, we believe 

that this is likely due to our study being underpowered as a result of using a 

convenience sample of participant data available to us from the UK ADRC. This may 

explain the lack of statistical association between GFAP and verbal fluency and NfL and 

verbal memory, which may be seen in a much larger cohort designed to elucidate these 

effects. Moving forward, these biomarkers need to be validated in multiple large 

cohorts before they can be brought to the clinic.  

In the future, the goal for these biomarkers is to use them individually or in 

combination to create a low-cost and minimally invasive biomarker panel which can 

help clinicians better prognosticate the onset of verbal memory and verbal fluency 
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decline in at-risk patients. These techniques can also be used to develop additional 

biomarkers which may be more specific to particular types of dementia which can help 

physicians distinguish between different courses of disease.   
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Table 4.1  Simoa Biomarker Dilutions 

Assay Dilution 
Catalog 
Number 

LLOQ LOD Dynamic Range 

NfL 1:25 103186 .174 pg/ml .038 pg/ml 0-1800 pg/ml 

GFAP 1:10 102336 .686 pg/ml .221 pg/ml 0-4000 pg/ml 

IL10 1:2 101643 .021 pg/ml .0038 pg/ml 0-120 pg/ml 

Dilutions required for quantification for SiMoA biomarkers. Lower limit of quantification 

(LLOQ) and limit of detection (LOD) used to determine dilution.  
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Table 4.2  Cognitive Tests Evaluating Cognitive Domains 

Cognitive Domain UDS2 Cognitive Tests UDS3 Cognitive Tests 

Language 
Animal Naming, 

Vegetable Naming, 
Boston Naming 

Animal Naming, Vegetable 
Naming, Total F- and L-
Words Naming, MINT 

Verbal Fluency Animal Naming, 
Vegetable Naming 

Animal Naming, Vegetable 
Naming 

Processing Speed Trails A, WAIS-R Trails A, WAIS-R 
Executive Function Trails B Trails B 

Attention Digit Span Forward, Digit 
Span Backward 

Number Span Forward, 
Number Span Backward 

Verbal Memory 
Logical Memory IA, 

Logical Memory IIA – 
Delayed 

Craft Story 21 Recall 
(Immediate), Craft Story 

21 Recall (Delayed) 
Global MMSE MoCA 

Cognitive tests comprising each cognitive domain evaluated by UDS2 or UDS3 cognitive 

assessment guidelines.  
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Table 4.3  Participant Characteristics 

Characteristic 3-year Cohort 
Summary* (N = 278) 

6-year Cohort 
Summary* (N = 205) 

Age at Baseline, years 75.7 ± 6.4 75.7 ± 6.4 

MMSE at Baseline 28.8 ± 1.8 28.9 ± 1.7 

Female Sex, % 62.6% 62.0% 

≥ 1 APOE e4 allele 33.5% 29.3% 

Education, years 16.7 ± 2.6 16.7 ± 2.7 

Characteristics of included participants from the UK-ADRC cohort. *All results are mean 

± SD or proportion 
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Figure 4.1  Baseline Plasma GFAP Association with Future Verbal Memory 

 
Baseline plasma GFAP association with verbal memory at 6 years (A) and at 3 years (B) 

post-baseline. (A,B) β represents the mean change of verbal memory, in units of 

standard deviation, for a 1-standard deviation increase in log GFAP. β was calculated 

using OLS adjusting for baseline verbal memory z-score, age at baseline, sex, years of 

education, and presence of an ApoE4 allele. P-values shown are nominal. Q-values 

calculated for FDR were (A) 0.014 and (B) 0.85.  
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Figure 4.2  Baseline Plasma NfL Association with Future Verbal Fluency 

 
Baseline plasma NfL association with verbal fluency at 6 years (A) and at 3 years (B) 

post-baseline. (A,B) β represents the mean change of verbal memory, in units of 

standard deviation, for a 1-standard deviation increase in log NfL. β was calculated using 

OLS adjusting for baseline verbal memory z-score, age at baseline, sex, years of 

education, and presence of an ApoE4 allele. P-values shown are nominal. Q-values 

calculated for FDR were (A) 0.25 and (B) 0.93.  
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Figure 4.3  Baseline Plasma IL-10 Association with Future Verbal Memory and Verbal 
Fluency 

 
Baseline plasma IL-10 association with verbal memory (A,B) and verbal fluency (C,D) at 

6 years (A,C) and at 3 years (B,D) post-baseline. (A-D) β represents the mean change of 

verbal memory and verbal fluency, in units of standard deviation, for a 1-standard 

deviation increase in log IL-10. β was calculated using OLS adjusting for baseline verbal 

memory z-score, age at baseline, sex, years of education, and presence of an ApoE4 

allele. P-values shown are nominal. Q-values calculated for FDR were (A) 0.56, (B) 0.052, 

(C) 0.25, and (D) 0.0388. 
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5 Discussion 

5.1 Overview 

In this section of my dissertation, I will briefly discuss the results from chapters 2-4 

individually and then focus on evaluating them together in the context of the current 

field of plasma biomarker usage in dementia. Additionally, I will discuss future studies 

which can be used to further our current understanding of the utility of plasma 

biomarkers in the diagnosis and treatment of AD and VCID. 

5.2 Chapter 2 Review 

Chapter 2 asks the question of whether there are identifiable blood-based 

biomarker profiles in a cohort of patients with MCI due to cerebrovascular disease. This 

was accomplished using hierarchical clustering analyses (HCA) on plasma samples 

collected from participants in a cross-sectional fashion from a clinical cohort called the 

MCI-CVD cohort. The MCI-CVD cohort included participants who were clinically 

diagnosed with MCI and had at least one risk factor of cerebrovascular disease. Plasma 

samples were collected from each participant’s annual visit and candidate plasma 

biomarkers were assessed for their intra- and inter-plate variability. Establishing the 

reliability of our protein quantification is of the utmost importance as any variability in 

the assay will make it harder to evaluate significant differences between groups of 

participants within our cohort. Plasma markers were subsequently log-transformed and 

clustered using two HCA. Two HCA were used to compare how the different algorithms 

cluster our dataset to reduce the bias associated with using one hierarchical clustering 
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technique versus another as the results of an HCA are often sensitive to the parameters 

of the algorithm in datasets where expected clusters are overlapping. We first evaluated 

how the two HCA algorithms perform in various datasets and found that in the dataset 

that most closely represented our human plasma biomarker dataset, there was no 

significant difference in how accurate they were (Chapter 2.4.2, Chapter 2.4.3). We then 

applied both HCA algorithms to our dataset and found that both algorithms identified a 

similar group of participants (Cluster 1) who shared a common plasma biomarker profile 

(Chapter 2.4.4). We then investigated the differences between the groups and identified 

multiple angiogenic and inflammatory biomarkers (FGF, VEGFA, MMP1, MMP9, IL-8) 

which were significantly elevated in cluster 1 in both HCA models (Chapter 2.4.5). 

These results led us to propose a subsequent hypothesis that participants with a 

plasma biomarker profile similar to cluster 1 were more likely to being undergoing 

pathogenic angiogenesis and have a proinflammatory response resulting in increased 

neurovascular pathology. Previous studies have already identified a positive association 

between VEGF-A and cerebral microbleeds in patients with dementia[243], as well as 

increased CSF levels in both patients with AD and VCID[113]. IL-8 is a proinflammatory 

cytokine seen upregulated in AD patients with a SNP associated with AD as well[244, 

245]. While individual markers have often been evaluated for their association with 

both AD and VCID pathologies, in this study we sought to evaluate a profile of 

angiogenesis and inflammation which in the future may provide more specificity for 

specific neurovascular pathologies than any one marker could do alone.  
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Together, the proteins upregulated in cluster 1 point to a high inflammatory state 

with IL-8 signaling to activate microglia and VEGF-A potentially acting to open access to 

the blood brain barrier alongside MMPs to the activated microglia, enhancing 

inflammation within the brain. IL-8 has already been found to increase cytokine 

production in in-vitro microglia, strengthening an effect seen with Aβ 42[246]. While, 

VEGF-A can be beneficial at promoting vasculature growth in physiological situations, it 

also has been found, along with MMPs, to downregulate key tight junction proteins in 

maintaining the blood barrier[247, 248], which combined with the activation of 

microglia creates a chronic neuroinflammatory response in the brain.  
Future studies on this work would need to focus how these plasma profiles change 

within an individual over different periods of time and how correlated they are to 

different stages of pathology. Ideally, multiple participants would have plasma samples 

collected at baseline, one week post-baseline, one month post-baseline, three months 

post-baseline, six months post-baseline, and one year post-baseline. These samples 

would allow us to study how stable these biomarkers are within an individual over time, 

as it is likely that biomarkers with a significant association with pathology would have a 

consistent relationship with the pathology over short periods of time. Alternatively, it is 

possible that longitudinal fluctuations in biomarkers correlate to neuropathology. This 

relationship is already seen in a biomarker for cardiovascular disease, blood pressure. 

Blood pressure at cross-sectional time points has been found to be associated with 

increased risk of cardiovascular disease, and it has also been shown that blood pressure 

variability over time is also positively associated with cardiovascular disease and all-
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cause mortality at long-, mid-, and short-term time points[249]. A similar finding may be 

seen when evaluating the relationship between angiogenic and inflammatory biomarker 

variability with neurovascular pathology.  

 A second follow-up study from this experiment should be to examine if 

neurovascular pathology differs between clusters derived from participants plasma 

biomarker profile. As this study was conducted using an observational cohort of 

individuals who are living, a future study would require in-vivo pathology assessments, 

ideally using MRI for vascular pathology to compare between clusters. We can 

hypothesize that participants with an increased angiogenic and pro-inflammatory profile 

would have increased levels of pathology either cross-sectionally or longitudinally. If 

future studies supported a longitudinal pathological development based on a novel 

plasma biomarker profile, then the profile could potentially act as a screening tool for 

clinicians to use to determine which patients require further neuroimaging evaluations. 

Given that this data was unavailable for these studies, we decided to evaluate the 

association of plasma biomarkers and neuropathological findings using an autopsy 

cohort and plasma samples from within two years antemortem in Chapter 3. 

5.3 Chapter 3 Review 

In chapter 3, we sought to continue from what we learned in chapter 2 and evaluate 

how not only angiogenic and inflammatory biomarkers correlate with neuropathological 

findings but also AD and neurodegenerative biomarkers as well. We accomplished this 

goal using an autopsy cohort of patients from the UK ADRC who had a plasma sample 

within two years prior to autopsy. A two-year maximum was chosen as we wanted the 
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plasma findings to be as representative of the neuropathology as possible. Previous 

studies have shown that a 1 standard deviation reduction in global cognition takes 

roughly three years to occur during the most rapid phase of decline[3]. This time point 

also afforded us an ample sample size to evaluate the point estimate of the 

relationships between pathology and plasma biomarkers. We also acknowledge that this 

sample does have a larger percentage of cognitively normal individuals and fewer 

patients diagnosed with dementia than our greater autopsy cohort. We believe that this 

is likely due to a falloff in clinic visits as cognitive impairment worsens. Many times, 

annual assessments are done in-home for advanced dementia patients precluding the 

collection of blood. Two different linear models were used depending on whether the 

neuropathological variables had a binary (neuritic plaque score and neurofibrillary 

tangle stage because the two highest and two lowest scores were grouped together 

because of limited sample size) or ordinal (amyloid plaque, AD neuropathologic change, 

CAA, arteriolosclerosis, and chronic vascular grade) structure. Logistic regression was 

used for binary variables while a proportional odds model was used for ordinal 

variables. With these models we were able to determine the association of each log-

transformed biomarker with each neuropathology using odds ratios.  

We used an odds ratio to indicate the odds of having a more severe pathology 

for every one-unit change in the log-transformed biomarker. We found that AD 

neuropathologic change was inversely associated with the Aβ42/40 ratio (Chapter 

3.4.2), which has been widely predicted based on previous studies on the association of 

CSF Aβ42/40 ratio and amyloid PET imaging[250]. Interestingly, pTau181 showed almost 
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no association with AD neuropathologic change and a slight positive association with 

amyloid and neuritic plaque scores (Chapter 3.4.2). This finding varies slightly from 

previous studies using in-vivo PET imaging that found that pTau181 was associated with 

early changes to amyloid PET uptake and to a lesser degree with tau PET[213, 251]. We 

hypothesize that this finding was due to the time frame in which we evaluated AD 

neuropathology. Since we evaluated patients using post-mortem neuropathology, it 

could be proposed that while Aβ42/40 ratio is continually decreased in patients with AD 

neuropathologic change, pTau181 may only be elevated in the beginning stages of AD 

neuropathologic change. This hypothesis lends itself to further testing as it is imperative 

to not only study these biomarkers in cross-sectional cohorts but also in longitudinal 

cohorts as well to evaluate how these biomarkers change overtime.  

In addition to the more typical AD biomarkers, we found that VEGFA, PlGF, and 

GFAP were positively associated with AD neuropathologic changes (Chapter 3.4.2). 

While GFAP has previously been shown to positively correlate with AD[101-107], VEGFA 

and PlGF are more recently beginning to be investigated for their association with AD, 

but the findings have been inconsistent. Some studies have found that CSF level of 

VEGFA is increased in patients with AD while another found that higher levels of VEGFA 

were associated with decreased hippocampal atrophy, increased FDG-PET SUVR and 

increased longitudinal cognition in patients who are positive for Aβ and Tau[113-115]. 

Our findings support the positive association of GFAP with AD neuropathology as both 

are linked pathologically to chronic neuroinflammation. We also provide additional 

evidence for the positive association between VEGFA/PlGF and AD neuropathology 
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through an elusive mechanism that may involve mediating the blood brain barrier as 

previously discussed. 

The studies in chapter 3 were some of the first in the field to evaluate the 

association of plasma biomarkers with autopsy confirmed neuropathological evaluation 

and generally support what was previously described in the literature, with all three 

candidate biomarkers of AD (Aβ42/40, pTau181, NfL) being significantly increased in 

participants with AD compared to cognitively normal controls[73, 74, 82-86]. 

We also evaluated the association of plasma AD-related, angiogenic, and 

inflammatory biomarkers on cerebrovascular neuropathology and found that PlGF had a 

significant positive association with CAA but had an inverse association with chronic 

vascular pathology and arteriolosclerosis (Chapter 3.4.3). This finding is interesting 

because it suggests that the induction of pathogenic angiogenesis via PlGF may be 

vessel dependent, with CAA predominantly affecting leptomeningeal and cortical 

arteries and arterioles, while arteriolosclerosis affects penetrating arterioles[123, 137]. 

The differentiating anatomy may play a role in how the vessels respond to inflammation 

and vessel stiffening and thereby the resultant upregulation of PlGF. Preliminary 

findings of PlGF run contrary to this association and show a positive relationship with 

WMHs, which are a known neuroimaging finding in chronic vascular disease. Pro-

inflammatory IL-6 was also found to have a significantly inverse association with chronic 

vascular grade (Chapter 3.4.3). This was surprising given that VCID is characterized by 

chronic inflammation and IL-6 has been found to be elevated in patients with VCID and 

associated with WMHs[178, 252]. We predict that this discrepancy derives from the fact 
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that WMHs are an in-vivo neuroimaging measure of VCID, while chronic vascular grade 

is a post-mortem evaluation of various vascular and parenchymal pathologies associated 

with VCID. While both entities are seen in VCID patients, it is still not clear what the 

relationship is between WMHs and the vascular pathologies that we evaluated within 

our novel measure of chronic vascular grade.  

Future studies associated with this project would need to focus on the 

longitudinal relationship of plasma biomarkers and neuropathology. One potential study 

could look at how biomarker changes over time coincide with neuropathological 

changes in the future. This would again require a prospective longitudinal cohort with 

yearly plasma draws and neuropathological evaluations. Currently, the only method of 

evaluating neuropathology in the living person requires the usage of MRI and PET scans. 

While our prospective ADRC cohort does conduct annual plasma draws, the number of 

participants with comparable longitudinal neuroimaging remains substantially less. As 

this dataset continues to grow now that the UK-ADRC is performing more longitudinal 

MRI of the cohort the ability to perform such analyses will be enhanced. For chapter 4, 

we were able to gather comprehensive annual neurocognitive evaluations along with 

plasma biomarker measures. 

5.4 Chapter 4 Review 

Here, we sought to clarify the relationship between baseline plasma biomarkers and 

longitudinal cognitive change. We hypothesized that biomarkers related to 

neurodegeneration would have an inverse association with future cognition. To test this 

hypothesis, we used the prospective longitudinal ADRC cohort where we utilized a 
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baseline plasma sample along with cognitive evaluations at baseline, as well as three- 

and six-years post baseline. These time points were selected as they represented both 

middle- and long-term cognitive change over time. One study found that cognition 

begins to decline at a faster rate at 7.5 years prior to diagnosis of dementia[3]. Given 

this information and sample size limitations within our cohort we felt confident that if a 

participant was to be diagnosed with dementia, a six-year longitudinal cognitive change 

would show significant cognitive changes. Three years was chosen as a half-way point to 

evaluate if cognitive impairment associated with plasma biomarkers could be seen at a 

middle-term time point as well. Some cognitive tests performed at baseline were not 

performed at future time points and vice versa due to the updating of the UDS 

neurocognitive evaluations from UDS2 to UDS3 in 2015[253]. In order to maintain fluid 

usage of all cognitive tests, a crosswalk was created by the National Alzheimer’s 

Coordinating Center (NACC) to convert UDS3 score to their UDS2 equivalent[237]. While 

this method is not 100% accurate it does allow for us to assess cognitive changes across 

the UDS standardizations. Each cognitive test was then translated into an age, sex, and 

education adjusted z-score using data supplied by NACC. Assessments of cognitive 

domains were then established by averaging the z-scores for all tests associated with 

each domain. Baseline cognitive domain scores and plasma biomarker levels were then 

included in an ordinary least squares linear regression model along with age at baseline, 

sex, education level, and presence of an APOEe4 allele to model longitudinal cognitive 

domain scores at three- and six-years post-baseline.  
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The results of this study highlighted three plasma biomarkers that had significant 

relationships with cognition. Two plasma biomarkers (NfL and GFAP) showed a negative 

association with cognition at six years post-baseline but not at three years (Chapter 

4.4.2). Both NfL and GFAP have been studied previously for their association with AD 

and neurodegeneration[83, 84, 86, 87, 101-107]. In the current study we found that 

GFAP was negatively associated with verbal memory scores six years post-baseline but 

not at three years, while NfL was negatively associated with verbal fluency scores six 

years post-baseline but not at three years. While this finding is supported by previous 

studies in the literature, it is interesting to note that the markers were specific for two 

distinct but related cognitive domains. It is possible that both GFAP and NfL are 

associated with both verbal fluency and verbal memory, but our sample size was not 

robust enough to detect such associations. This possibility would have to be tested in a 

larger prospective cohort to ensure that there is sufficient statistical power to identify 

this relationship.  

We found that the typically anti-inflammatory cytokine IL-10 was positively 

associated with both verbal fluency and verbal memory at both three- and six-year time 

points post-baseline (Chapter 4.4.3). Interestingly, patients with IL-10 polymorphisms 

associated with decreased IL-10 production were found to be at an increased risk of 

developing AD[110, 111]. Our study supports the hypothesis that IL-10 upregulation can 

help to reduce cognitive decline in patients at risk of developing AD. This finding lends 

itself to further studies about using IL-10 as a potential disease modifying agent. 

However, two studies using mouse models of AD found that IL-10 upregulation 
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contributed to increase Aβ deposition, while knocking out IL-10 reduces AD 

pathology[254, 255]. While contrary to our findings and other human based studies, 

these findings indicate that in a genetically induced model of Aβ deposition, IL-10 

prevents microglial activation to clear Aβ. However, sporadic AD is not caused by a 

genetic mutation causing Aβ deposition, and it is hypothesized that chronic 

neuroinflammation plays a large role in the development of AD neuropathology[256]. 

Therefore, it is still likely that upregulating anti-inflammatory IL-10 may be beneficial in 

sporadic AD.   

One aspect of this project that could be further evaluated in future studies is the 

mediating effect of neurodegenerative and inflammatory biomarkers on the relationship 

between AD related biomarkers such as Aβ42/40 ratio and pTau181, and cognition. 

While both Aβ42/40 ratio and pTau181 are associated with amyloid PET positivity and 

with conversion from MCI to dementia[213, 250, 251], the effect of neurodegenerative 

and inflammatory biomarkers on this relationship has not been studied. We hypothesize 

that there will be a significant interaction between AD related biomarkers and NfL/GFAP 

on longitudinal cognitive changes, with higher levels of NfL and GFAP increasing the 

effect of Aβ42/40 ratio and pTau181 on cognitive decline. Conversely, we hypothesize 

that IL-10 may lessen the effect of Aβ42/40 ratio and pTau181 on cognitive decline. In 

order to identify this statistical interaction a significantly larger sample size will be 

required and will likely need to include patients from multiple centers. While multi-

center trials are necessary to evaluate the generalizability of the scientific findings, they 

also present significant challenges in ensuring that protocols are uniform across multiple 
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locations. The ADRC network and the NACC steering committees are ideally suited to 

collaborate to test these broader hypotheses.  

5.5 Limitations 

While these studies have helped us to understand the relationships between 

plasma biomarkers and dementia, they are not without their limitations. One major 

limitation is the use of observational cohorts for these analyses. All the studies in this 

dissertation utilized previously collected samples from participants and statistical 

analyses to better appreciate the correlations between plasma biomarkers and various 

aspects of dementia. In conducting these analyses, we are limited to the sample sizes 

which have previously been collected and are therefore often underpowered to detect 

small effect sizes. As seen in our results, most of our relationships have small effect sizes 

which ultimately led to a lack of statistically significant findings in chapters 2 and 3. 

However, we were still able to interpret the relationships between our plasma 

biomarkers and dementia by focusing on the 95% confidence intervals and point 

estimates of the correlations. These confidence intervals provide us with a range which, 

we have high confidence, contain the true value of the correlation and can be used as a 

basis for future studies to further elucidate the relationship between plasma biomarkers 

and dementia. 

5.6 Current Research Focus 

Currently, there is a concerted effort within the AD and related dementia field to 

both identify and validate novel biomarkers to aid physicians in both diagnostic and 

prognostic aspects of dementia[41, 59, 256, 257]. While AD has established biologically 
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relevant proteins that have been determined to be associated with neuroimaging 

hallmarks (MRI and PET), VCID is still lacking fluid biomarkers[41, 169, 257]. The NINDS 

and NIA have recognized the need for novel biomarkers for VCID and created MarkVCID, 

a consortium of centers who are seeking to identify and cross-validate imaging and fluid 

biomarkers for VCID[258]. While this consortium is just beginning to pay dividends after 

the lengthy patient accrual and protocol development processes, their work will help to 

expedite the process of biomarker discovery to clinical usage.  

While neuroimaging has been the standard in-vivo neuropathological evaluation tool 

in clinic, there is a growing need for a more easily accessible and minimally invasive 

screening tool to determine which patients are at an increased risk of developing 

dementia[59]. This is vital to the ultimate goal of developing treatments for dementia as 

they are likely to be most beneficial during pre-clinical and pre-dementia stages. 

Therefore, identifying patients who are likely to progress to symptomatic stages of the 

disease process is a necessary component of clinical trials. Currently, trials for AD use 

PET imaging and/or CSF protein biomarkers to evaluate patients for inclusion/exclusion 

criteria[41]. However, these screening tools are costly, often inaccessible to more rural 

populations, and invasive to patients. Plasma biomarkers fill this niche of a widely 

available, minimally invasive, and cost-efficient screening tool for inclusion in clinical 

trials as well as a tool which can be translated for clinical usage to inform patients of 

their risk of developing dementia in the future[40, 59]. While the AD field is beginning to 

transition to plasma biomarker usage with the FDA approved PrecivityAD test, VCID and 

other ADRDs are in need of a plasma biomarker to help in its diagnosis[169]. These 
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projects contribute to this growing body of work in the dementia field in demonstrating 

the utility of plasma biomarkers for in-vivo assessment of AD and VCID.
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